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Resumo

A detecção de desvios do estado de controlo estat́ıstico pode ser efectuada através do
registo e da observação dos dados naquilo que usualmente se designa de esquema (ou
carta) de controlo.

Subjacente à análise de um esquema, está aquela que é, indiscutivelmente, a mais po-
pular de todas as medidas de desempenho, o “run length” (RL) ou o número de amostras
recolhidas até à emissão de um sinal. O conhecimento da respectiva distribuição desem-
penha um papel preponderante na avaliação da capacidade de um esquema de controlo
para assegurar a qualidade de um processo.

Propõe-se o uso da ordenação estocástica com o objectivo de avaliar — de um modo
qualitativo e mais objectivo — a forma como a capacidade de detecção de um esquema
se altera face a modificações nos parâmetros de planeamento e intŕınsecos ao modelo dos
dados, ou esta se compara com a de um outro esquema de controlo. É dada especial
atenção ao RL de esquemas de controlo do tipo CUSUM e EWMA, sendo o RL encarado
como um tempo de primeira passagem associado a uma cadeia de Markov absorvente, logo
com distribuição “phase-type”.

Ao tirar partido do facto de, em certas condições, estas cadeias de Markov serem regi-
das por matrizes de probabilidades de transição estocasticamente monótonas (Cap. 2), foi
posśıvel estabelecer resultados gerais de monotonia estocástica para o RL no que diz res-
peito ao valor inicial da estat́ıstica sumária e outros parâmetros (Cap. 3). Estes resultados
são aplicados ao RL de esquemas combinados do tipo CUSUM–Shewhart para dados bi-
nomiais (Cap. 4) e ao de esquemas para µ na presença de alterações em σ (Cap. 5). A isto
segue-se a introdução (e estudo do comportamento monótono) de duas medidas de desem-
penho referentes ao fenómeno dos sinais erróneos (“misleading signals”): a probabilidade
de um sinal erróneo e o número de amostras recolhidas até à emissão de um sinal erróneo.
Estas medidas, a acrescentar ao RL, são cruciais na avaliação de esquemas de controlo
simultâneo de µ e de σ (Cap. 6). Avalia-se também a influência em termos estocásticos
dos parâmetros autoregressivos do modelo dos dados no RL de esquemas residuais para o
valor esperado de dados autocorrelacionados (Cap. 7).

Finalmente, concentramo-nos na investigação em curso, nas contribuições mais impor-
tantes desta tese e nalgumas recomendações para trabalho futuro.

Palavras chave: Controlo de Qualidade, Abordagem Markoviana, Tempos de Primeira
Passagem, Distribuições “Phase-type”, Ordenação Estocástica, Matrizes Estocasticamente
Monótonas.
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STOCHASTIC ORDERING IN THE PERFORMANCE ANALYSIS
OF QUALITY CONTROL SCHEMES

Abstract

Departures from a state of statistical control can be detected by plotting and viewing the
process data in what is usually called a control scheme (or chart).

Underlying the scheme analysis, there is an indisputedly popular performance measure,
the run length (RL). The knowledge of its distribution plays a major role in helping
understand the ability of the control scheme to monitor process quality.

The use of stochastic ordering is proposed to assess — in a qualitative and more
objective way — how the scheme monitoring ability is changed by modifications in design
or model parameters, or how its performance compares with the one of another control
scheme. Special attention is given to the RL of control schemes, such as CUSUM and
EWMA, which is viewed as a first passage time associated to an absorbing Markov chain,
thus, with a phase-type distribution.

By capitalizing on the fact that under certain conditions those Markov chains are gov-
erned by stochastically monotone transition matrices (Chap. 2), we were able to establish
general stochastic monotonicity results concerning the RL in terms of the initial value
of the scheme summary statistic and other parameters (Chap. 3). These results are ap-
plied to the RL of combined CUSUM–Shewhart schemes for binomial data (Chap. 4) and
schemes for µ in the presence of shifts in σ (Chap. 5). This is followed by the introduction
(and study of the monotone behaviour) of two performance measures referring to the phe-
nomenon of misleading signals: the probability of misleading signal and the run length to
a misleading signal, which add up to the RL and are crucial in the joint monitoring of µ
and σ (Chap. 6). The influence of the autoregressive parameters of the data model in the
RL of residual schemes for the mean of autocorrelated data is also evaluated (Chap. 7).

Finally, we focus on our current research, the major contributions of this thesis and
on a few recommendations for future work.

Keywords: Quality Control, Markovian Approach, First Passage Times, Phase-type Dis-
tributions, Stochastic Ordering, Stochastically Monotone Matrices.
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• Professor José Natário, for a fruitful pre-lunch discussion that led to the proof of
result (5.52);

• Professor M. Fernanda Ramalhoto, for introducing me to stochastic ordering and
quality control;

• Professor Sven Knoth, for the productive coffee break discussions during the VIIth
International Workshop on Intelligent Statistical Quality Control;

• The ever inspiring Aretha Franklin (“Queen of not only Soul Music”), Nusrat Fateh
Ali Khan (“The Brightest Star in Qawwali — Shahen-Shah-e-Qawwali”) and Ravi
Shankar (“Master of the Sitar and India’s Crown Jewel in the Coffers of World
Music”), for their intoxicating music; and

• All my colleagues from “Piso 5”, in particular, to my “sisters-in-crime”, Rosário
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Basic Notation

All vectors and matrices are in boldface type. Vectors are additionally underlined, and
unless specified otherwise, all vectors are column vectors. “Increasing” and “decreasing”
are used in the nonstrict sense, i.e., they mean “nondecreasing” and “nonincreasing”,
respectively.

Moreover, the following notation is used throughout this thesis:

Spaces

C decision region
IN = {1, 2, . . .} set of all positive integers
IN0 = {0, 1, 2, . . .} set of all nonnegative integers
IR real line
IR+

0 set of all nonnegative real numbers
IRx+1 Euclidean coordinate space of all (x+ 1)− dimensional vectors
Ξ parameter space

General

1 (0) vector of ones (zeroes); in most cases a (x+ 1)−dimensional vector
a a vector; usually (x+ 1)−dimensional
a> transpose of a
A = [aij ]li,j=k matrix with entries aij , i, j = k, k + 1, . . . , l
bin(n, p) binomial distribution with parameters n and p
χ2

k chi-square distribution with k degrees of freedom
eu (u+ 1)th vector of the orthonormal basis for IRx+1

geo(p) geometric distribution with parameter p
I identity matrix; with rank x+ 1 in most cases
IA(x) indicator function of set A; it is equal to 1, if x belongs to the set A, and

equal to 0, otherwise
i.i.d. independent and identically distributed
µ mean (of normal data)
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n sample size
N sample number
N(µ, σ2) univariate normal distribution with expected value µ and variance σ2

O matrix with all entries equal to zero; in general a (x+ 2)× (x+ 2) matrix
σ standard deviation (of normal data)
bxc integer part of a real number x

Functions

The following functions refer to the random variable X:

dX relative decrease of the probability function
FX distribution function
FX survival function
λX hazard rate function
λX reversed hazard rate function
PX probability function
rX equilibrium rate function

Stochastic orders

ev expected value sense
hr hazard rate sense
lr likelihood ratio sense
M majorization sense
rh reversed hazard rate sense
st usual sense

For ∗ = ev, hr, lr, hr,M, rh, st, we define:

≤∗ stochastically smaller in the ∗−sense
↓∗ stochastically decreasing in the ∗−sense
↑∗ stochastically increasing in the ∗−sense
M∗ class of stochastically monotone matrices in the ∗− sense
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Acronyms

ARL average run length
CKRL coefficient of kurtosis of the run length
CSRL coefficient of skewness of the run length
CUSUM cumulative sum (scheme)
CVRL coefficient of variation of the run length
EWMA exponentially weighted moving average (scheme)
FPT first passage time
FSI fixed sampling intervals
LCL lower control limit
MS misleading signal
OQC on-line quality control
PMS probability of a misleading signal
RL run length
RLMS run length to a misleading signal
SDRL standard deviation of the run length
SO stochastic ordering
SPC statistical process control
UCL upper control limit
VSI variable sampling intervals

The acronyms of several control schemes can be found in Appendix A and throughout
the dissertation.

The symbol • denotes the end of an Example, a Proof or a Remark.
Each chapter is divided into sections, with consecutive labelling of Corollaries, Defini-

tions, Equations, Examples, Lemmas, Propositions, Remarks and Theorems within each
chapter. Please note that results which are of general interest are given as Propositions,
and those results which only concern the run length are usually stated as Theorems, Lem-
mas or Corolaries.
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Chapter 1

Introduction

1.1 Background

Manufacturing processes are typically monitored using data: a random sample of n items
is usually taken on a regular basis and the observed values of a summary statistic are
sequentially plotted together with appropriate control limits. The resulting graphical
device is grandly termed as quality control scheme (or chart). It is used to track process
performance over time and identify the presence of assignable (or special) causes that may
affect the quality of the output, in order to deploy corrective actions to bring the process
back to target as quickly as possible.

This statistical tool was developed by Walter A. Shewhart of the Bell Telephone Lab-
oratories in 1924 (Montgomery (1985, p. 13)). It has gained widespread acceptance in
industry, and is among the most important and widely used devices in statistics (Stoum-
bos et al. (2000)). In fact, its use is not confined to manufacturing processes. Some of the
current applications of quality control schemes include

• administration (Hawkins and Olwell (1998, p. v) — document misfilling),

• clinical chemestry (Westgard et al. (1977) — detection of systematic changes in an
analytical process),

• epidemiology (Blacksell et al. (1994) — veterinary disease diagnosis),

• fraud detection (Johnson (1984) — systematic stealing by till understriking),

• health care (Hawkins and Olwell (1998, pp. v-vi) — control of the time taken for a
blood sample to be turned around),

• safety (Lucas (1985) — monitoring of accident data),

• staff management (Olwell (1997) — misconduct monitoring),

• water monitoring (Gibbons (1999) — detection programs at waste disposal facilities),

and also athletics, biology, environmental science, genetics, finance and law enforcement
(see Stoumbos et al. (2000)).
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The best-known control schemes are those pioneered by Walter A. Shewhart (1931)
and rightly called Shewhart schemes: the X̄ and R charts for monitoring possible changes
in the process mean and variance, respectively. The simplicity and the one-size-fits-all
character of these and other Shewhart schemes, such as the S2 chart, are responsible
for their sheer popularity between practitioners. However, the fact that the Shewhart
schemes only use the information about the process given by the last observed value of
their summary statistics, and completely ignore any other information contained in the
previous observed samples, is responsible for a serious limitation: they are not effective in
the detection of assignable causes that lead to small and moderate shifts in the parameter
being monitored.

The cumulative sum (or CUSUM) and the exponentially weighted moving average (or
EWMA) schemes for the process mean — introduced by Page (1954) and Roberts (1959),
respectively — incorporate all the information in the sequence of observed values of a
simple summary statistic (such as the sample mean) and prove to be more effective than
Shewhart schemes for detecting small and moderate shifts in the process mean.1 Although
the CUSUM and EWMA schemes date from the 50’s, the usage of these efficient schemes
was very infrequent for many years. Nowadays their use is still relatively low — but
slowly and steadily increasing — when compared to the Shewhart schemes (Stoumbos et
al. (2000)).

The process monitoring problem can be briefly described as follows. Let X denote a
quality characteristic and F%(x) its distribution function. This function is indexed by %, a
vector of at least one parameter. The production process is stable or in-control when the
(quality) parameter % is equal to some target value %0. The quality control operators and
engineers are alerted to the possible presence of assignable causes that affect the value of %
by a signal, given when the value of the summary statistic of one of the schemes described
above is beyond its control limits.

The control limits are set in such a way that the summary statistic is very unlikely to
fall outside them when % = %0. This choice is due to the fact that a control scheme should
trigger no signal for a period as long as possible if the process is in-control, contributing
to a reduction of the frequency of false alarms. In opposition, a control scheme should
give a signal with minimum delay if the process is out-of-control.

Thus, it comes as no surprise that the performance of any quality control scheme is
usually assessed in terms of characteristics of the run length (RL) — the number of samples
taken before a signal is triggered by the scheme —, assuming that the quality parameter
has remained constantly at %. The average run length (ARL) is by far the most popular
of those characteristics and has been — throughly and incorrectly — used to describe the
likely performance of a control scheme.2

1Similar results are reported for the combined CUSUM–Shewhart and EWMA schemes for the variance

by Yashchin (1985) and Crowder and Hamilton (1992), respectively.
2According to Lai (1974), it was Aroian and Levene (1950) who proposed the average efficiency number,

now more commonly known as the average run length, in the assessment of the performance of quality

control schemes.
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1.2 Aim and methodology

In the (on-line) quality control literature, the description and comparison of the perfor-
mance of control schemes is often tackled numerically. Tables and graphs, usually referring
to the ARL, are provided to make the descriptions and comparisons possible, but analytical
proofs are rarely presented.

This thesis mainly focus on providing analytical answers to the following question:

• What is the impact of a change in a design or model parameter in the properties of
a control scheme?

By establishing stochastic ordering results, we are able to

• Tell how the control scheme performance is affected when a design or model param-
eter changes, and

• Determine which one of two or more competing schemes has the best performance
in a specific sense,

without the need to compute the performance of the control schemes themselves.
Stochastic order relations between the performance measures of control schemes pro-

vide a qualitative basis for a more effective comparison of the control schemes we are
dealing with than the comparisons based entirely on numerical results. They can induce
monotonicity properties that are important theoretically and in practice because they lead
to various insights about the performance of the schemes.

Next we describe some stochastic order relations between the run length measures of
two control schemes 1 and 2:3 RL1 and RL2, respectively.

• Stochastically smaller in the expected value sense (≤ev)

RL1 ≤ev RL2 ⇔ ARL1 ≤ ARL2, (1.1)

where ARL1 and ARL2 are the average run lengths of schemes 1 and 2, respectively.
Since 1/ARL may be regarded as the average detection speed, RL1 ≤ev RL2 means
that scheme 1 is in average faster than scheme 2 in giving signals (i.e., signals towards
the detection of an assignable cause, or false alarms).

However, the ARL provides an unidimensional and possibly misleading snapshot of
the scheme performance, specially if the summary statistic has a Markovian structure
(as in the case of EWMA and CUSUM schemes) because the out-of-control RL
distribution may deviate considerably from the geometric distribution (Luceño and
Puig-Pey (2000)). For this reason, some authors have argued that the percentage
points of the RL provide a second and more appropriate performance measure when

3It should be pointed out that schemes 1 and 2 can correspond to the same control scheme with different

design or model parameters — e.g. two CUSUM control schemes that only differ in the reference value or

an EWMA scheme in the in-control and out-of-control situations.
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Shewhart control schemes are not used (see, e.g., Yashchin (1985)). As a result,
stronger stochastic order relations, such as the ones described below, should be
established.

• Stochastically smaller in the usual stochastic sense (≤st)

RL1 ≤st RL2 ⇔ P (RL1 > m) ≤ P (RL2 > m), m ∈ IR. (1.2)

RL1 ≤st RL2 means that scheme 1 signals within the firstm samples more frequently
than scheme 2, for any value of m. Thus, the probability that we obtain a signal at
the first sample is greater in scheme 1 than in scheme 2.

Since RL1 ≤st RL2 ⇒ P (RL1 ≤ RL2) ≥ 1/2, it follows that if RL1 ≤st RL2

then scheme 1 signals before scheme 2 most of the time. In addition, RL1 ≤st

RL2 ⇒ RL1 ≤ev RL2, and, furthermore, RL1 ≤st RL2 ⇔ E[f(RL1)] ≤
E[f(RL2)] for all increasing (cost) functions for which the expectations exist (see
Shaked and Shanthikumar (1994, p. 4)). Therefore, the stochastic order relation
RL1 ≤st RL2 provides more information than RL1 ≤ev RL2, and can be thought as
providing a bidimensional snapshot of the performance comparison.

• Stochastically smaller in the hazard rate sense (≤hr)

RL1 ≤hr RL2 ⇔ λRL1(m) ≥ λRL2(m), m ∈ IN, (1.3)

where λRL(m) = P (RL = m)/P (RL ≥ m) represents the hazard rate function of
the RL and was proposed by Margavio et al. (1995) as the alarm rate at sample m.

If RL1 ≤hr RL2, we can state that, for any value of m, scheme 1 is more likely to
signal at sample m than scheme 2, given that the previous m− 1 samples were not
responsible for triggering a signal in any of the two schemes. Moreover, following
Marvagio et al. (1995), we can add that scheme 1 has a larger alarm rate than
scheme 2, regardless of the value of the sample number.

The stochastic comparison based on hazard rate functions is far more meaningful
than the one based on survival functions because: RL1 ≤hr RL2 ⇒ RL1 ≤st

RL2 and the hazard rate comparison provides a performance confrontation in a
specific conditional setting, thus, it gives a conditional snapshot of the performance
comparison.

• Stochastically smaller in the reversed hazard rate sense (≤rh)

RL1 ≤rh RL2 ⇔ λRL1(m) ≤ λRL2(m), m ∈ IN, (1.4)

where λRL(m) = P (RL = m)/P (RL ≤ m) denotes the reversed hazard rate function
(see Kijima (1997, p. 113) or Shanthikumar, Yamazaki and Sakasegawa (1991)) of
the RL.

In case the inequality above holds, we can interpret ≤rh similarly to ≤hr: for any
value of m, scheme 1 is less likely to signal at sample m than scheme 2, given that
both control schemes triggered at least one signal up to sample m.
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• Stochastically smaller in the likelihood ratio sense (≤lr)

RL1 ≤lr RL2 ⇔ P (RL1 = m)/P (RL2 = m) ↓m over the set IN. (1.5)

Thus, the odds of scheme 1 signalling by the mth sample against scheme 2 triggering
a signal at the same sample decreases as m increases.

Note that RL1 ≤lr RL2 ⇒ RL1 ≤hr RL2 and RL1 ≤lr RL2 ⇔ (RL1|{a ≤ RL1 ≤
b}) ≤st (RL2|{a ≤ RL2 ≤ b}) whenever a ≤ b (Shaked and Shanthikumar (1994,
p. 29)). Therefore, establishing the order relation RL1 ≤lr RL2 provides a compari-
son between the detection speed of schemes 1 and 2 in a stricter conditional setting
than the one imposed by RL1 ≤hr RL2.

Furthermore,

RL1 ≤lr RL2 ⇔ rRL1(m) ≥ rRL2(m), m ∈ IN, (1.6)

where rRL denotes the equilibrium rate (see Shaked and Shanthikumar (1994, p. 436))
of RL; i.e., rRL(1) = 0 and rRL(m) = P (RL = m− 1)/P (RL = m),m = 2, 3, . . ..

It is worth adding that if we denote by dRL(m) the relative decrease in the probability
that the mth sample triggers a signal relative to the probability of the signal being
given by the previous sample — that is,

dRL(m) =
P (RL = m− 1)− P (RL = m)

P (RL = m− 1)
= 1− 1

rRL(m)
, m = 2, 3, . . . (1.7)

— then we have:

RL1 ≤lr RL2 ⇔ dRL1(m) ≥ dRL2(m), m = 2, 3, . . . . (1.8)

Thus, RL1 ≤lr RL2 allows us to assert that the relative sequential decrease in the
probability of emission of a signal is larger in scheme 1 than in scheme 2.

Clearly (see Theorems 1.C.1 and 1.B.1 of Shaked and Shanthikumar (1994, pp. 28 and
14)),

RL1 ≤lr RL2 ⇒
{
RL1 ≤hr RL2

RL1 ≤rh RL2
⇒ RL1 ≤st RL2 ⇒ RL1 ≤ev RL2. (1.9)

Establishing stochastic order relations involving two RLs is rather trivial when we are
dealing with Shewhart schemes for a single parameter, based on independent data from
an univariate quality control characteristic. This follows by virtue of the fact that in this
case the RL has a geometric distribution, as reported in Section 2.1.

When CUSUM or EWMA control schemes are at use, the RL is (or can be approxi-
mated by) a first passage time of a Markov chain. In this case, stochastic ordering results
do not follow in a straightforward manner, although the Markov approach provides a con-
venient way of obtaining detailed properties of the CUSUM and EWMA control schemes,
as described in Section 2.3, including the exact (or the approximate) average detection
speed and other moments of RL, and the RL survival, hazard rate and probability func-
tions.
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1.3 A brief literature review

The desire to confront what is random is probably as old as probability itself. Consider,
for instance, the problem of comparing two games in order to decide which one is more
favorable to a gambler. For this reason, Bawa (1982) traces the origins of stochastic
dominance in the work of J. Bernoulli published in 1713, Ars Conjectardi.4

A landmark in the history of stochastic ordering is the pioneering work by Lorenz
(1905) in the assessment of income inequality in a population of n individuals. Lorenz —
feeling that all of the summary measures then under consideration constituted too much
condensation of the data (Arnold (1987, p. 2)) — proposed what is now known as the
Lorenz curve. Given the incomes of n individuals, x1, . . . , xn, the Lorenz curve unites the
points (k/n, Sk/Sn), k = 0, . . . , n with S0 = 0 and Sk =

∑k
i=1 x(i) where x(i) denotes the

ith smallest income, so that Sk represents the total income of the poorest k individuals.
If the total income is equally distributed among the n individuals the Lorenz curve is
nothing but a 45o line.

Lorenz suggested the following rule of interpretation: a high level of income inequality
is associated to a severely bent curve. This rule was subsequently clarified by Dalton
(1920) and mathematically formulated by Hardy, Littlewood and Pólya (1929): the vector
x = (x1, . . . , xn) represents a less unequal income distribution than y = (y1, . . . , yn), in
notation x ≤M y, if and only if

k∑
i=1

x(i) ≥
k∑

i=1

y(i), k = 1, . . . , n− 1 (1.10)

and
∑n

i=1 x(i) =
∑n

i=1 y(i) (see Marshall and Olkin (1979, p.5)).
For a comprehensive historical perspective of stochastic ordering see Mosler and Scarsini

(1993, p. 1–5). Extensive listings (but by no means exhaustive) of references on stochastic
ordering, stochastic dominance, and their applications can be found in Bawa (1982), Levy
(1992) and Mosler and Scarsini (1993).

Shaked and Shanthikumar (1994) is another extremely important reference in stochas-
tic ordering. The first part of this book (corresponding to six chapters) is an exposition
of many results on a large number of stochastic orders. The second part (ten chapters)
consists of material written by leading researchers in various fields in which stochastic
ordering is applied — including Statistical Inference, Risk Theory, Biology, Scheduling,
Queueing Theory, and Reliability Theory.

Papers or other material devoted simultaneously to on-line quality control (OQC) and
stochastic ordering (SO) are not as numerous as we would expect, although the advantages
of the combination of these two fields would seem to follow straightforwardly.5 Here are
some examples and a brief reference to the relevant results of each paper to provide a
setting for the contributions of this thesis.

4For the definition of stochastic dominance of degree k see Arnold (1987, p. 81–87). Note that the

stochastic dominance of degree k = 1 corresponds to the stochastic ordering in the usual sense.
5There seems to exist even fewer references combining off-line quality control (or acceptance sampling)

and stochastic ordering. Kirmani and Peddada (1993) and Yao and Zheng (1995, 1999) are some of the

exceptions.
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• Lai (1974). As far as we have investigated, this is the oldest reference relating OQC
and SO, and provides an inequality which can be rephrased as a stochastic ordering
result involving two RLs.

Lemma 2 of Lai (1974) provides an upper bound for the survival function of the RL of
an upper one-sided moving average chart for the mean of i.i.d. data: under certain
conditions involving the distribution of the data and the weights of the moving
average, there exist α ∈ (0, 1) and λ > 0 such that P (RL > n) ≤ λαn for all
n. This relation can be rewritten as RL ≤st N where P (N = 1) = 1 − λα and
P (N = n) = λ(1− α)αn−1, n = 2, 3, . . ., with 0 < α < 1 and 0 < λ ≤ 1/α.6

• Ghosh, Reynolds Jr. and Hui (1981). These authors consider an upper one-sided X̄
scheme for the case where the process variance, σ2, is unknown and the upper control
limit depends on an estimator of σ2, S2

0 , the variance of an auxiliary and independent
random sample. Since the same S0 is permanently used in the monitoring process,
the distribution of the RL is no longer geometric but can be stochastically related
to a geometric random variable:

geo(p(δ)) ≤st RL(δ), (1.11)

where δ =
√
n(µ − µ0)/σ and p(δ) = P (X̄i ≥ µ0 + kS0/

√
n | µ = µ0 + δσ/

√
n)

denotes the probability that the procedure signals at sample i, with µ0 being the
target value for the mean µ and k a positive constant.

• Jensen (1984, p. 32). This reference devotes its Theorem 8 to the effects of a re-
duction in variability on the run length of a Hotelling T 2 scheme for monitoring the
mean vector of a multivariate normal distribution Np(µ,Σ) where the nominal value
of µ is known and equal to µ

0
and the covariance matrix Σ is also known (see, e.g.

Woodall and Ncube (1985) or Runger and Prabhu (1996)). The result presented in
Theorem 8 is an application of the order preservation under Loewner ordering ≤L

(Loewner (1934)) of positive semidefinite Hermitian p× p matrices, and states that
if efforts are made to tighten the process variability in such a way that Σ2 ≤L Σ1

then the associated run lengths verify RL2 ≤ RL1 for all µ ∈ IRp.

• Jensen and Hui (1990a,b). Theorem 1 of Jensen and Hui (1990a) reports a similar
result to the one derived by Ghosh, Reynolds Jr. and Van Hui (1981) for the non-
standard R and S2 schemes, whose decision rule depends on a prior estimator of the
unknown variance σ2. Hence, these schemes tend to signal less frequently (in the
usual sense) than standard R and S2 schemes that assume a known σ2

0 and share
the false alarm rate of the former schemes, whether the process variance is or not
on-target.

6Böhm and Hackl (1990) derive a lower bound for the ARL that does not depend on normality, and

is much sharper than the one obtained by Lai (1974) in many situations. This bound and the remaining

ones in this reference cannot be easily stated as an useful stochastic relation order (in the expected value

sense) between two RLs.
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Jensen and Hui (1990b) consider a more general situation comprising a non-sustained
shift in the process variance. Let {σ0, σ1, σ2, . . .} be the scale parameters corre-
sponding to the initial and subsequent samples, where σi ≥ σ0, i = 1, 2, . . .. Then,
according to Theorem 1 of this reference, the run lengths of non-standard schemes R
and S2 stochastically decrease in the usual sense with γ = {σ1/σ0, σ2/σ0, . . .} under
the componentwise ordering of vectors.7

Now, we proceed to describe the work of W. Schmid and his collaborators on control
schemes for correlated data. Among other merits, these references prove that, under mild
conditions, the in-control RLs of several modified schemes8 for the mean of a correlated
process are stochastically larger than the corresponding RLs in the case of independent
variables.

• Schmid (1995). The author proves in this paper that the result mentioned above
holds for a two-sided modified X̄ scheme for the mean, µ, of rather general stochastic
processes {YN}, like the ones with elliptically contoured marginal distributions (see
Tong (1990, p. 62–63)) or positively lower orthant-dependent random variables (Tong
(1990, p. 93)). Moreover, if all marginal distributions of YN − µ0 (where µ0 denotes
the known target value of µ) have a continuous, unimodal and symmetric (about
the origin) density, Schmid (1995) proves that the RL stochastically decreases in the
usual sense with the absolute value of the magnitude of the shift in µ.

• Schmid (1997a,b). These two references provide similar results to Schmid (1995)
for the modified schemes of types EWMA and CUSUM for the mean of stationary
Gaussian processes with particular autocovariance structure.

• Schmid and Schöne (1997). The main result of this reference can be translated in
stochastic ordering terms as:

RLiid ≤st RLG, (1.12)

where RLG (RLiid) represents the in-control RL of an upper one-sided modified
EWMA scheme for the mean of a stationary Gaussian process with autocovariance
function {γν} such that γ0 > 0 and γν ≥ 0, ν ∈ IN (an upper one-sided EWMA
scheme for the mean of Gaussian i.i.d. data), with initial value equal to µ0 and upper
control limit dependent on the exact variance of the EWMA summary statistic.

• Schöne, Schmid and Knoth (1999). This paper presents a corollary which is an
extension of (1.12). Consider two stationary Gaussian processes with autocovariance
functions {γν , ν ∈ IN0} and {δν , ν ∈ IN0}, such that: γ0, δ0 > 0, γν , δν ≥ 0, ν =
1, . . . , k and γν × δξ ≥ γξ × δν for 0 ≤ ξ < ν ≤ k − 1, k ∈ IN . Let RLγ and RLδ be
the in-control RLs of the associated upper one-sided EWMA charts for the process
mean, defined as in Schmid and Schöne (1997). Then P (RLγ > k) ≥ P (RLδ > k).

7γ = (γ1, γ2, . . .) ≤ γ∗ = (γ∗1 , γ∗2 , . . .) if and only if γi ≤ γ∗i , i = 1, 2, . . ..
8This sort of scheme for autocorrelated data is described in Chapter 7.
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If the autocovariances monotonicity condition is valid for every nonnegative integer
k this corollary can be phrased as a stochastic ordering result: RLγ ≥st RLδ.

The proof of (1.12) involves the use of Slepian’s inequality (Theorem 5.1.7 of Tong
(1990, p. 103)) for the multivariate normal distribution. Furthermore, the theorems
of Schmid and Schöne (1997) and Schöne, Schmid and Knoth (1999) still hold for
stationary processes having elliptically contoured marginal distributions because of a
generalization of Slepian’s inequality for these distributions (Theorem 4.3.6 of Tong
(1980, p. 74)).

• Kramer and Schmid (2000). Theorems 1 and 2 cast some light in the comparison of
the in-control RLs, in the stationary and i.i.d. situations, of modified and residual
Shewhart schemes that make use of an initial estimate of the process variance.

The author of this thesis is the co-author of some papers that are concerned with
the control of i.i.d. data and relate SO and OQC. We conclude this section with a brief
reference to the main results in some of those references.

• Morais and Natário (1998). Let ATSFSI and ATSV SI be the average times to signal
of the upper one-sided c-scheme with fixed sampling intervals (FSI), for controlling
the expected value of Poisson data, and of the corresponding matched in-control
upper one-sided c-scheme with variable sampling intervals (VSI).9 Using the fact
that the χ2

ν random variable stochastically increases in the likelihood sense with ν,
the authors show that the VSI feature improves the average detection time of any
increase in the expected value of magnitude θ, i.e.,

ATSV SI(θ) ≤ ATSFSI(θ), θ > 0. (1.13)

Morais (1995) and Ramalhoto and Morais (1995, 1999) obtain similar results for
upper and lower one-sided FSI and VSI Shewhart schemes for the scale parameter
of data with three-parameter Weibull distribution, using the increasing failure rate
character of the summary statistic which has a χ2

ν distribution.

• Morais and Pacheco (1998b). This paper provides sufficient conditions and a proof
by induction of two intuitive stochastic results concerning the RL of upper one-
sided EWMA and CUSUM schemes, using a representation of such control schemes
as Markov chains and the special features of their associated transition probability
matrices. In particular, they show that:

– the run length stochastically decreases (in the usual sense) with the shift in the
parameter being controlled, implying that these schemes become progressively
more sensitive to the shift as it grows in magnitude; and

– if the process is out-of-control when the control scheme is started (or is restarted
following an ineffective corrective action), the RL is stochastically reduced (also

9For more details on VSI schemes refer to Reynolds Jr. et al. (1988), Reynolds Jr., Amin and Arnold

(1990) or the introduction of Chapter 4.
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in the usual sense) when a head start value is used. If the process is in-control,
there is also a stochastic reduction of the RL when a head start value is given
to the chart, producing short RLs more frequently.

Alternative proofs for both properties can be also found in Chapter 3.

• Morais and Pacheco (2001b). By using the stochastic monotonicity properties of the
RLs of the individual upper one-sided EWMA schemes for µ and σ (see Chapter
5) of normally distributed data, this paper establishes monotonicity properties for
the probability of misleading signal (PMS) and stochastic monotonicity properties
for the run length to a misleading signal (RLMS) — which are both performance
measures of joint schemes for µ and σ, introduced by Morais and Pacheco (2000a)
and Morais and Pacheco (2001b), respectively. The extension of all these properties
for other joint schemes for µ and σ can be found in Chapter 6.

1.4 Organization and summary of contributions

We now summarize the content, organization and what we believe are some of the main
contributions of this thesis. Here is what lies ahead in the next seven chapters and Ap-
pendix A. (The number of every chapter is put between parentheses.)

(2) First passage times and RL — RL is viewed as a first passage time and we single out
two possible distributions: the geometric, obtained when basic Shewhart schemes
are at use; and the discrete phase-type distribution, for some Markov-type schemes.

Associating stochastically monotone matrices — in the usual, the hazard rate, the
reversed hazard rate and the likelihood ratio senses — to control schemes whose RL
has a discrete phase-type distribution is a vital contribution of this chapter. Some
ageing properties of the RL are also reviewed.

(3) Monotonicity and RL — We take advantage of the stochastic monotonicities of
the transition matrices to obtain stochastic monotonicity results concerning the be-
haviour of the RL of Markov-type schemes.

The first lot of results concerns the decreasing monotonicity of the RL in terms of
the initial value of the summary statistic, in the usual, hazard rate and likelihood
ratio senses. A monotonicity result in the usual sense is also obtained for the RL
in terms of any other parameter; the problems that arise when we try to strengthen
this result are also discussed.

In addition, we explore the validity of all these results for the exact RL of schemes
such as CUSUM and EWMA for continuous data.

(4) Combined CUSUM–Shewhart schemes for binomial data — Upper one-sided com-
bined CUSUM–Shewhart schemes for binomial data are discussed in this chapter;
we stress an analogy between the RL of these schemes and the first passage time
introduced by Li and Shaked (1995, 1997).
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This type of scheme illustrates some of the stochastic properties alluded in the pre-
vious chapter. It also draws our attention to the fact that the associated transition
matrix is not stochastically monotone in the hazard rate and likelihood ratio senses,
and that the RL does not decrease with the head start in the likelihood ratio sense.

We assess the stochastic impact of supplementing an upper one-sided CUSUM scheme
with a Shewhart upper control limit. An extended example numerically illustrates
the magnitude of this impact, and numerical comparisons between upper one-sided
combined CUSUM–Shewhart schemes and upper one-sided CUSUM schemes with a
50% head start are carried out too.

(5) Upper one-sided schemes for µ in the presence of shifts in σ — This chapter explores
some monotonicity properties referring to the stochastic influence of changes in the
mean and variance of a normally distributed quality characteristic. For instance,
we prove that under certain conditions the discriminating effect of the upper one-
sided schemes for µ of Shewhart, CUSUM, combined CUSUM–Shewhart, EWMA
and combined EWMA–Shewhart types stochastically decreases with the magnitude
of the shift in σ.

We conclude the chapter with an investigation of the decreasing monotonicity of the
RL in terms of the initial value of the summary statistic of all four Markov-type
upper one-sided schemes mentioned earlier.

(6) Misleading signals in joint schemes for µ and σ — We introduce two performance
measures in this chapter, adding up to the RL. They refer to the phenomenon of
misleading signals — which can possibly send the user of the joint scheme for the
mean and variance to try to diagnose and correct a nonexistent assignable cause
— and are the probability of a misleading signal (PMS) and the run length to a
misleading signal (RLMS).

Monotonicity properties of PMSs and stochastic ordering results involving RLMSs
are proved. To complete the chapter we present some striking examples showing
that the ocurrence of misleading signals is surely a cause of concern in practice and,
thus, PMS and RLMS should be used in the assessment of the performance of joint
schemes for the process mean and standard deviation.

(7) Assessing the impact of autocorrelation in the performance of residual schemes for
µ — This is the only chapter of this thesis addressing control schemes involving
autocorrelated data.

Sufficient conditions are obtained to guarantee that the RL of standard Shewhart
residual schemes for the mean of a stationary Gaussian AR(1) (AR(2)) model
stochastically increases with the (first) autoregressive parameter in the hazard rate
sense. A similar monotonicity result in the usual sense also holds for the RL of
upper one-sided CUSUM and EWMA residual schemes for the mean of stationary
Gaussian AR(1) processes.

(8) Concluding remarks — The first part of the chapter focus on our current research
on the comparison between phase-type and geometric RLs, and on our joint work

11



with W. Schmid concerning the extension of some of the stochastic ordering results
in Chapter 5 to modified EWMA schemes for autocorrelated data.

Finally, the major contributions of this thesis are briefly reviewed and recommenda-
tions for further work are outlined.

Appendix A — This appendix comprises the summary statistics, control limits and
RL distributions of several individual control schemes for µ and σ for a normally
distributed quality characteristic. A few monotonicity properties of the individual
schemes for σ are stated and proved in the last section of this appendix. This
appendix provides a working basis for Chapters 5 and 6.

We end this chapter with the following remarks. A detailed or brief review generally
preceeds the main results of each chapter to provide a setting for our contributions. Several
programs for the package Mathematica 4.0 (Wolfram (1996)) have been written to produce
all the graphs and tables in this thesis; these programs will be made available to those
who are interested and request them from the author.
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Chapter 2

First passage times and run

lengths

First passage times (FPTs) arise naturally in level-crossing problems in:

• Reliability theory — FPTs of appropriate stochastic processes often represent the
time to failure of a device subjected to shocks (and wear), which fails when its
damage level crosses a threshold or the maximal increment of the damage level
exceeds a critical value (Li and Shaked (1995, 1997));

• Queueing systems — The identity of the first customer whose waiting time exceeds
a critical threshold is a FPT (Greenberg (1997)). This is an important performance
measure of single-server (multiserver) queues with impatient customers, in paralel
with the number of lost customers and the number of sucessful departures over given
intervals as discussed by Bhattacharya and Ephremides (1991);

and certainly in

• Quality control — For the basic control schemes (i.e., with no supplementary run
rules) the out-of-control signal is given as soon as the summary statistic falls outside
the control limits. So it follows that the RL is the first passage time

RL = min{N : ZN 6∈ C}, (2.1)

where ZN and C represent the summary statistic at the sampling period N and the
decision region, respectively.

For further examples of FPTs see, e.g., Wasan (1994) and Greenberg (1997). Wasan (1994)
covers detailed techniques to find first passage probabilities and FPT distributions for sev-
eral stochastic processes. Greenberg (1997) reviews approximate computational methods,
using Markov chains, to determine expected FPTs in CUSUM schemes, and extends them
to more general stochastic processes.

Let the underlying distribution function of the quality characteristic X be denoted by

F%(x), % ∈ Ξ, (2.2)
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where Ξ is the set of possible values of %, and

θ = g(%, %0) (2.3)

be the parameter which relates the quality level % to its target value %0. If

Θ = {g(%, %0) : % ∈ Ξ} (2.4)

represents the set of possible values of θ (Θ is usually a convex set), it can be added that
the production process is operating in-control as long as θ = θ0, where

θ0 = g(%0, %0), (2.5)

and it will be out-of-control as soon as an assignable cause is responsible for a change to
a value θ 6= θ0, so that

θ = g(%, %0), for some % ∈ Ξ \ {%0}. (2.6)

As described above, the basic control charting amounts to a sequential yes/no decision
procedure based on the successive observed values of the summary statistic and the decision
region. Therefore, the process monitoring procedure can be viewed as the repeated testing
of hypotheses

H0 : θ = θ0 (in control) vs. H1 : θ ∈ Θ \ {θ0} (out-of-control), (2.7)

if we assume that an assignable cause results in a sustained shift in the parameter of
interest %.1

The monitoring is performed by: updating the value of the summary statistic cal-
culated from the incoming data each time a new sample is collected; and triggering a
signal as soon as the value of the summary statistic is beyond the decision region. This
signal is called: a valid alarm, in case the process is out-of-control; and a false alarm,
otherwise. The scheme parameters should be suitably selected in order to provide as few
false alarms as possible and, simultaneously, swift detection when the process is operating
out-of-control.

The sensitivity of the control scheme is usually measured by the RL — the number of
samples taken up to and including the one which is responsible for the signal. The RL
depends upon the form of the density of the observations and upon the values of scheme
parameters such as the decision region or the initial value of the summary statistic (for
example, when EWMA or CUSUM schemes are at use). Nevertheless, we will usually
suppress the dependence on the parameters whenever no ambiguities can arise, except for
θ. Henceforth, the run length is denoted by RL(θ). Moreover, we will not suppress in
general the notational dependence on θ of the N th random sample XN = (X1N , . . . , XnN )
or the summary statistic ZN , from now on denoted XN (θ) = (X1N (θ), . . . , XnN (θ)) and
ZN (θ), respectively.

1This resemblance “better reflects statistical thinking in showing ties between two important areas of

statistics” and “provides a formal basis for evaluating properties of control charts”, as put by Woodall

(2000). However, there are some disagreements regarding the similarity between control charting and

repeated hypothesis testing; for further details please refer to the third section of Woodall (2000).
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In the next section, we discuss and give examples of geometric RLs, the simplest RLs,
in the setting described above.

In order to provide RL related mesures we need some preparatory (and rather trivial)
results. Let us consider the probability generating function (PG), and the integer facto-
rial moments (FM) and central moments (CM) of an arbitrary positive integer random
variable X, respectively:

PGX(z) = E
(
zX
)
, 0 ≤ z ≤ 1; (2.8)

FMX(s) = E
[
X(s)

]
= E[X(X − 1) . . . (X − s+ 1)], s ∈ IN ; (2.9)

CMX(s) = E
[
X [s]

]
= E[{X − E(X)}s], s ∈ IN. (2.10)

Recall that E(X) = E
[
X(1)

]
, and that the standard deviation (SD) and the coefficients

of variation (CV ), skewness (CS) and kurtosis (CK) of X can be written in terms of its
central moments as follows:

SD(X) =
√
E
[
X [2]

]
(2.11)

CV (X) =
SD(X)
E(X)

(2.12)

CS(X) =
E
[
X [3]

]
[SD(X)]3

(2.13)

CK(X) =
E
[
X [4]

]
[SD(X)]4

− 3. (2.14)

Also note that the central moments of order 2, 3 and 4 in the expressions above are the
following functions of the factorial moments:

E
[
X [2]

]
= E

[
X(2)

]
+E

[
X(1)

]
×
{
1− E

[
X(1)

]}
(2.15)

E
[
X [3]

]
= E

[
X(3)

]
+E

[
X(2)

] {
3− 3E

[
X(1)

]}
+ E

[
X(1)

] (
1− 3E

[
X(1)

]
+ 2

{
E
[
X(1)

]}2
)

(2.16)

E
[
X [4]

]
= E

[
X(4)

]
+E

[
X(3)

] {
6− 4E

[
X(1)

]}
+E

[
X(2)

] (
7− 12E

[
X(1)

]
+ 6

{
E
[
X(1)

]}2
)

+E
[
X(1)

] (
1− 4E

[
X(1)

]
+ 6

{
E
[
X(1)

]}2
− 3

{
E
[
X(1)

]}3
)
. (2.17)
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2.1 Geometric RLs

In case the control scheme operates as a sequence of independent hypotheses tests (as in the
basic Shewhart schemes) and the quality parameter remains constant at %, the summary
statistics ZN (θ), N ∈ IN , are also i.i.d. to some statistic Z(θ), and RL(θ) has a very
simple probability function:

PRL(θ)(m) = [π(θ)]m−1[1− π(θ)], m ∈ IN, (2.18)

where

1− π(θ) = P [Z(θ) 6∈ C]. (2.19)

That is, RL(θ) is a geometric random variable with parameter 1− π(θ).
The parameter 1− π(θ) denotes the probability that, given θ, a signal is triggered by

the scheme each time a new sample is collected. It can be thought as the power function
of the hypothesis test (2.7) which is sequentially repeated after drawing each sample. In
addition, in the quality control literature,

π(θ), θ ∈ Θ, (2.20)

represents the well known operating-characteristic function.
A summary of twelve RL(θ) related measures — namely: the probability, survival,

hazard rate and equilibrium rate functions, p × 100% percentage point, probability gen-
erating function; and the integer factorial moment of order s, expected value, standard
deviation, and coefficients of variation, skewness and kurtosis — can be found in Table
2.1, where bxc denotes the integer part of the real number x. Also note that the p× 100%
percentage point can be written in terms of the generalized inverse function of FRL, as
defined in Szekli (1995, p. 3), F−1

RL(p) = inf{m ∈ IR : FRL(m) ≥ p}.

In what follows we examine the stochastic monotone behaviour of geometric RLs with
regard to the parameter 1− π(θ).

Lemma 2.1 — Let RL(θ) and RL(θ′) be two RLs with geometric distribution with pa-
rameters 1− π(θ) and 1− π(θ′). If 1− π(θ) ≥ 1− π(θ′) then RL(θ) ≤lr RL(θ′).

Proof — When 1− π(θ) ≥ 1− π(θ′), the likelihood ratio P [RL(θ)=m]
P [RL(θ′)=m] equals

[
π(θ)
π(θ′)

]m−1
×

1−π(θ)
1−π(θ′) and decreases with m over the set of positive integers. Thus, RL(θ) ≤lr RL(θ′).

We can provide an alternative proof: according to Table 2.1, we can assert that 1 −
π(θ) ≥ 1− π(θ′) ⇒ rRL(θ)(m) ≥ rRL(θ′)(m), m = 2, 3, . . .⇔ RL(θ) ≤lr RL(θ′). •

Remark 2.2 — The stochastic monotone behaviour of geometric RLs is completely de-
fined by the parameter 1−π(θ). In fact RL(θ) stochastically decreases as 1−π(θ) increases
— in the likelihood ration sense, thus, in the hazard rate, the usual and the expected value
senses.2

2And, since FMRL(θ)(s) also decreases with 1 − π(θ), RL(θ) stochastically decreases in the factorial

moments order sense (see Shaked and Shanthikumar (1994, p. 100)). Note that this behaviour immediately

follows from the decreasing monotonicity of RL(θ) with 1 − π(θ) in the usual sense (see Theorem 3.B.11

in Shaked and Shanthikumar (1994, p. 102)).
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Table 2.1: Run length related measures — geometric case.

Probability function PRL(θ)(m) = [π(θ)]m−1 × [1− π(θ)], m ∈ IN

Survival function FRL(θ)(m) =

{
1, m < 1
[π(θ)]bmc

, m ≥ 1

Hazard Rate function λRL(θ)(m) = 1− π(θ), m ∈ IN

Equilibrium Rate function rRL(θ)(m) = [π(θ)]−1, m = 2, 3, . . .

p× 100% Percentage point F−1
RL(θ)(p) = inf{m ∈ IR : FRL(θ)(m) ≥ p}, 0 < p < 1

Probability Generating function PGRL(θ)(z) = z[1− zπ(θ)]−1[1− π(θ)], 0 ≤ z < [π(θ)]−1

Factorial Moment of order s FMRL(θ)(s) = s!× [π(θ)]s−1[1− π(θ)]−s, s ∈ IN

Expected Value ARL(θ) = [1− π(θ)]−1

Standard Deviation SD[RL(θ)] = [π(θ)]1/2[1− π(θ)]−1

Coefficient of Variation CV [RL(θ)] = [π(θ)]1/2

Coefficient of Skewness CS[RL(θ)] = [1 + π(θ)][π(θ)]−1/2

Coefficient of Kurtosis CK[RL(θ)] = 4 + [π(θ)]−1 + π(θ)

In addition, a close study of the remaining RL related measures in Table 2.1 allows us
to assert that the standard deviation and coefficient of variation (coefficients of skewness
and kurtosis) of RL(θ) decrease (increase) with 1− π(θ). •

For simplicity, let us assume that % ∈ Ξ represents a real parameter, whose increases
(increases or decreases) are controlled by an upper one-sided scheme (a standard scheme)
with decision region — now a decision interval — C. This assumption is made so that
any technical details will not obfuscate the essence of the interpretation of Lemma 2.1 in
Remark 2.3, and the illustrations in Example 2.4 and Example 2.5 of Section 2.2.

Remark 2.3 — Assume that the quality characteristic has a distribution belonging to
an increasing monotone likelihood ratio family.3 If we are dealing with an upper one-
sided uniformly most powerful (UMP) test (Casella and Berger (1990, p. 365)) for % and
θ = g(%, %0) increases with %, for % ≥ %0, then 1 − π(θ) increases with θ ≥ θ0. As a
consequence

RL(θ) ↓lr with θ, for θ ≥ θ0. (2.21)

3A family of random variables {X(θ), θ ∈ [a, b]} is said to be an increasing monotone likelihood ratio

family if X(θ1) ≤lr X(θ2), a ≤ θ1 ≤ θ2 ≤ b, i.e. X(θ) ↑lr with θ.
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Analogously, if we are dealing with an uniformly most powerful unbiased (UMPU) test
(Casella and Berger (1990, p. 374)) for % then 1 − π(θ) decreases (increases) with θ for
θ ≤ θ0 (θ ≥ θ0). Therefore

RL(θ) ↑lr (↓lr) with θ, for θ ≤ θ0 (θ ≥ θ0). (2.22)

Thus, in the first (second) situation, the larger the increase (increase or decrease) in
%, the smaller the number of samples taken until the detection of such a change in the
likelihood ratio sense. These properties enhance what Ramalhoto and Morais (1999) called
the “primordial criterion”, which can be phrased as follows: the in-control ARL should be
larger than any out-of-control ARL. •

2.2 Examples of geometric RLs

When we deal with nonconformities or defects such as surface flaws on a sheet metal panel,
weaving irregularities in bolts of cloth or color inconsistencies on a painted surface, the
quality assessment of a running production process is made using the so-called control
charts for attribute data.

One of the main concerns, when dealing with attribute data, is to alert quality control
operators and engineers of possible increases in the total expected number of

• defects (e.g., number of surface flaws on a panel) or

• defectives items4 (e.g., number of cans which leak)

per random sample of constant size n. The underlying distributions of these totals are
usually taken as Poisson and binomial, respectively, and arise from counting and catego-
rization.

A comprehensive bibliography and review on control charting using attribute data can
be found in Woodall (1997).

Example 2.4 — Suppose that in the final phase of Hi-Fi decks production, a deck is
considered defective if it has more than two color inconsistencies in its front panel surface.
Furthermore, the expected number of defective decks in each sample of n = 100 decks
should not exceed two. That is, while operating in-control the quality characteristic has a
Bernoulli(p0) distribution with p0 = 0.02. The presence of an assignable cause yields an
increase in the expected number of defectives per random sample — from np0 to n(p0 +θ),
where 0 < np0 < n(p0+θ) < n.5 Although these defects do not affect the deck functioning,
they are perceptible; thus, they can affect its price.

To control increases in the expected number of defective decks in a sample of n items,
np, an upper one-sided np-scheme is adopted with the defectives count as summary statis-
tic,

ZN (θ) =
n∑

i=1

XiN (θ), (2.23)

4Number of items with at least one disqualifying defect.
5In this particular case Ξ = [p0, 1), θ = g(p, p0) = p− p0 and Θ = [0, 1− p0).
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where XiN (θ) is equal to 1, if the ith deck of sample N is defective, and equal to 0,
otherwise. The decision interval is given by

C = [LCL,UCL] = [0, bnp0 + γ
√
np0(1− p0)c] (2.24)

where γ is a positive constant that should be chosen in such a way that the probability of
a false alarm takes a small value. For example, if γ = 5/

√
1.96 then UCL = 7 and a false

alarm occurs with probability

1− π(0) = FZN (0)(UCL) = 1− Fbin(100,0.02)(7) ' 0.000932. (2.25)

Note that, since the underlying data distribution is Bernoulli(0.02 + θ), the RL of this
control scheme has a geometric distribution with parameter

1− π(θ) = 1− Fbin(100,0.02+θ)(7), (2.26)

regardless of the value of γ in the interval [5/
√

1.96, 6/
√

1.96).
For any positive integer n and 0 < p ≤ p′ < 1, the likelihood ratio

Pbin(n,p)(m)
Pbin(n,p′)(m)

=
[
p(1− p′)
p′(1− p)

]m
×
(

1− p

1− p′

)n

(2.27)

is a decreasing function of m over the set {0, 1, . . . , n}. Thus, it follows that the random
variable bin(n, p) is stochastically smaller than bin(n, p′) in the likelihood ratio sense, and
therefore

1− Fbin(n,p)(x) ≤ 1− Fbin(n,p′)(x), −∞ < x <∞. (2.28)

For this reason, 1− π(θ) increases with θ and so, using Lemma 2.1,

RL(θ) ↓lr with θ. (2.29)

Thus, the larger the increase in the expected number defective items per random sample,
the smaller (in the likelihood ratio sense) the number of samples taken until the detection
of such a change. This is an expected result and a direct consequence of dealing with a
sequence of independent UMP tests for np. •

Many quality characteristics — such as weight, temperature, blood pressure, fuel con-
sumption and insurance claims — are expressed in terms of numerical measurements.
Schemes for those quality characteristics are usually called control schemes for variables.
These schemes usually provide more information about the production process and are
more effective than control schemes for attributes.

The next example (taken from Morais and Pacheco (1998a)) refers to the standard
X̄ scheme for the expected value and provides what we think is a useful complementary
illustration of Lemma 2.1 and Remark 2.3.

Example 2.5 — Assume that it is possible to specify the target values of the process
mean (µ) and variance (σ2) of a normally distributed quality characteristic so that an
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analysis of past data is not required. Also assume that the process variance remains
constant at the target level. Then the control limits of a standard X̄ scheme are given by

LCL = µ0 − γσ0/
√
n and UCL = µ0 + γσ0/

√
n, (2.30)

where: µ0 and σ0 are the target values of µ and σ, and the process mean relates to these
target values as follows, µ = µ0 +θσ0/

√
n;6 and γ is chosen in such way that the in-control

ARL, ARL(0), takes a fixed large value and using the fact that γ = Φ−1(1−[2ARL(0)]−1).
Conditioned on the fact that the process mean equals µ = µ0 + θσ0/

√
n (−∞ < θ <

+∞), the RL of this control scheme, RL(θ), has a geometric distribution with parameter

1− π(θ) = 1− [Φ(γ − θ)− Φ(−γ − θ)]. (2.31)

This is a continuous and even function of θ, and its first derivative is an odd function
equal to

d[1− π(θ)]
dθ

=
√

2/πe−(γ2+θ2)/2 × sinh(γθ), (2.32)

which is nonpositive for θ ∈ (−∞, 0] and nonnegative for θ ∈ [0,+∞). Therefore we can
assert that 1− π(θ) takes the minimum value at the origin and increases as |θ| increases.
As a consequence of Lemma 2.1,

RL(θ) ↓lr with |θ|, (2.33)

i.e., the time to detect a change in µ with magnitude θσ0/
√
n stochastically decreases (in

the likelihood ratio sense) as |θ| increases. Note that it is a well known fact that this
control scheme operates as a sequence of independent UMPU hypotheses tests. •

In Chapter 3 we prove that stochastic monotonicity results such as (2.21) — which are
intuitive and obviously imply

RL(θ) ↓ev with θ (2.34)

— can be extended to one-sided control schemes whose summary statistics are governed
by Markov chains, such as EWMA and CUSUM schemes. The stochastic implication of
setting such control schemes to an initial head start value is also studied in Chapter 3,
leading to other stochastic monotonicity properties.

We close this section with a final example. It illustrates that a well established scheme
in practice can have undesired (stochastic) properties.

Example 2.6 — The use of a S2 scheme is recommended to practitioners for controlling
the variance σ2 of normally distributed data. The summary statistic at the N th sample,
(X1N (θ), . . . , XnN (θ)), is the sample variance S2

N (θ) = (n− 1)−1∑n
i=1[XiN (θ)− X̄N (θ)]2

and the control limits are

LCL =
σ2

0

n− 1
× F−1

χ2
n−1

(α/2) (2.35)

6Ξ = (−∞, +∞), θ = g(µ, µ0) =
√

n(µ− µ0)/σ0 and Θ = (−∞, +∞).
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UCL =
σ2

0

n− 1
× F−1

χ2
n−1

(1− α/2), (2.36)

where σ2
0 is the target value, related to σ2 by θ = σ/σ0,7 and α is such that the in-control

ARL of this scheme, ARL(1), is equal to 1/α.
The RL of this scheme has a geometric distribution with parameter

1− π(θ) = 1−

Fχ2
n−1

F−1
χ2
n−1

(1− α/2)

θ2

− Fχ2
n−1

F−1
χ2
n−1

(α/2)

θ2

 . (2.37)

In order to establish stochastic order relations involving RL(θ) we have to study the
behaviour of the function 1− π(θ). The first derivative of 1− π(θ) has the same sign as

F−1
χ2
n−1

(1− α/2)× fχ2
n−1

F−1
χ2
n−1

(1− α/2)

θ2


−F−1

χ2
n−1

(α/2)× fχ2
n−1

F−1
χ2
n−1

(α/2)

θ2

 (2.38)

which in turn has the same sign as

k(θ) =

F−1
χ2
n−1

(1− α/2)

F−1
χ2
n−1

(α/2)


n−1

2

×

× exp
{
− 1

2θ2

[
F−1

χ2
n−1

(1− α/2)− F−1
χ2
n−1

(α/2)
]}
− 1. (2.39)

Since k(θ) is continuous and strictly increasing function of θ in (0,+∞), such that

lim
θ→0+

k(θ) = −1 and lim
θ→+∞

k(θ) =

F−1
χ2
n−1

(1− α/2)

F−1
χ2
n−1

(α/2)


n−1

2

− 1 > 0, (2.40)

the first derivative of 1−π(θ) changes sign (from negative to positive) only once in (0,+∞).
As a consequence, 1−π(θ) takes its minimum value at the unique root of equation k(θ) = 0
in (0,+∞), θ∗(α, n), given by

θ∗(α, n) =

√√√√√√ F−1
χ2
n−1

(1− α/2)− F−1
χ2
n−1

(α/2)

(n− 1)
{

ln
[
F−1

χ2
n−1

(1− α/2)
]
− ln

[
F−1

χ2
n−1

(α/2)
]} . (2.41)

Thus, we conclude that 1−π(θ) decreases (increases) with θ for θ ≤ θ∗(α, n) (θ ≥ θ∗(α, n)).
This particular behaviour of 1 − π(θ) is illustrated for α = 0.02 and n = 5 in Figure

2.1, and for other values of n in Table 2.2. This figure and this table also suggest that
0 < θ∗(α, n) < 1, which holds in general, since

k(1) =

F−1
χ2
n−1

(1− α/2)

F−1
χ2
n−1

(α/2)


n−1

2

×

× exp
{
−1

2

[
F−1

χ2
n−1

(1− α/2)− F−1
χ2
n−1

(α/2)
]}
− 1 > 0. (2.42)
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Table 2.2: Values of 1− π(θ) for S2−schemes with σ2
0 = 1 and α = 0.002 (i.e., ARL(1) =

500).

n

θ 4 5 7 10 15 100

0.50 0.007828 0.014624 0.042134 0.132929 0.406761 1.000000

0.75 0.002359 0.003089 0.005036 0.009313 0.020672 0.762450

0.80 0.001958 0.002409 0.003528 0.005751 0.011016 0.419837

0.90 0.001533 0.001652 0.001926 0.002391 0.003274 0.037724

0.95 0.001600 0.001628 0.001699 0.001819 0.002035 0.006949

1.00 0.002000 0.002000 0.002000 0.002000 0.002000 0.002000

1.10 0.004522 0.004874 0.005553 0.006569 0.008323 0.054761

1.20 0.010808 0.012654 0.016447 0.022530 0.033848 0.373172

0.75 0.8 0.85 0.9 0.95 1.05 1.1
q

0.0025

0.003

0.0035

1-pHqL

Figure 2.1: Values of 1− π(θ) for a S2−scheme with σ2
0 = 1, α = 0.002 and n = 5.

which implies that 0 < θ∗(α, n) < 1, for all n ≥ 2 and 0 < α < 1.
By virtue of the monotonous behaviour of 1− π(θ), the stochastic order relations

RL(θ) ↓lr with θ, for 0 < θ ≤ θ∗(α, n) < 1 (2.43)

RL(θ) ↑lr with θ, for θ ≥ θ∗(α, n) (2.44)

hold, for n ≥ 2 and 0 < α < 1. Hence the number of samples taken until a false alarm
occurs can be stochastically smaller (in the likelihood ratio sense) than the one to detect
certain small and moderate decreases in the process variance. For instance, the number of
samples taken until the detection of a 5% decrease in σ (θ = 0.95) is stochastically larger
(in the likelihood ratio sense) than the one until the ocurrence of a false alarm, for small
to moderate sample sizes and ARL(1) = 500. (For further examples, please refer to the
entries in bold in Table 2.2.)

It is worth adding that this sort of performance behaviour is apparent in standard
control schemes introduced by some authors, namely Kaminsky et al. (1992) — see, for
instance, its Figure 4 which refers to the operating-characteristic curve of a g−scheme for
geometric data. •

7Ξ = (0, +∞), g(σ, σ0) = σ/σ0 and Θ = (0, +∞).
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2.3 Discrete phase-type RLs

One way of increasing the sensitivity to permanent shifts in parameter(s) involves the
accumulation of information across successive observations. The CUSUM scheme (Page
(1954)) is an example and, undoubtedly, a very informative graphical device as it also
provides simple graphical estimates of the time of occurrence of the shift and of its magni-
tude (Hawkins and Olwell (1998, p. 20)). The EWMA scheme (Roberts (1959)) is another
important example.

The oldest CUSUM and EWMA schemes are the ones for detecting changes in the
expected value of normal data. These schemes are also defined for the parameters of all
standard distributions used in control charting, such as the expected value of the total of
defective items in a sample (np), as illustrated in Example 2.7 ahead.

In addition, the CUSUM and EWMA schemes have dependent summary statistics and
can be regarded as forming Markov chains in discrete time and discrete or continuous state
space, leading to what is usually called the Markov approach.

This approach, originally proposed by Brook and Evans (1972), hardly fails to pro-
vide the exact (or approximate) RL distribution and any other RL related performance
measures of that sort of scheme if taylored for discrete (or continuous) data.

Example 2.7 — Consider the same setting as in Example 2.4. However, suppose that the
detection of increases in np is done by using an upper one-sided CUSUM scheme (without
head start). Following Hawkins and Olwell (1998, pp. 122-123), the summary statistic of
this scheme is given by

ZN (θ) =

{
0, N = 0
max{0, ZN−1(θ) + YN (θ)− k}, N ∈ IN,

(2.45)

where YN (θ) =
∑n

i=1XiN (θ) denotes the defectives count for theN th sample and k, usually
called reference value, is a positive constant, smaller than n for this scheme.

If k is a positive integer, then the summary statistic is governed by a discrete time
Markov chain with infinite state space IN0, null initial state, and transition matrix, de-
pendent on the parameter θ,

Fθ(k) Pθ(k + 1) Pθ(k + 2) · · ·
Fθ(k − 1) Pθ(k) Pθ(k + 1) · · ·
Fθ(k − 2) Pθ(k − 1) Pθ(k) · · ·
Fθ(k − 3) Pθ(k − 2) Pθ(k − 1) · · ·
...

...
...

. . .

 , (2.46)

where Fθ(i) = Fbin(100,0.02+θ)(i) and Pθ(i) = Pbin(100,0.02+θ)(i) represent the distribution
and probability functions of YN (θ) for any nonnegative integer i.

Now assume that a signal is triggered as soon as the summary statistic exceeds the
upper control limit UCL = x, where x is a positive integer.8 Thus, the run length of this
upper one-sided CUSUM scheme is defined as the following FPT:

min{N : ZN (θ) > x | Z0(θ) = 0}. (2.47)
8The suitable choice of the reference value and UCL, namely the possibility of nonintegers values for

these two parameters, will be discussed later.
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This random variable is related to a FPT of the absorbing discrete time Markov chain
{SN (θ), N ∈ IN0}, where: S0(θ) = Z0(θ); and, for N ∈ IN ,

SN (θ) =

{
ZN (θ), if ZN (θ) ≤ x and SN−1(θ) ≤ x

x+ 1, otherwise.
(2.48)

This Markov chain has finite state space {0, 1, . . . , x + 1} and absorbing state x + 1.
Furthermore, its transitions are ruled by the transition matrix

Fθ(k) Pθ(k + 1) Pθ(k + 2) · · · Pθ(k + x) 1− Fθ(k + x)

Fθ(k − 1) Pθ(k) Pθ(k + 1) · · · Pθ(k + x− 1) 1− Fθ(k + x− 1)

Fθ(k − 2) Pθ(k − 1) Pθ(k) · · · Pθ(k + x− 2) 1− Fθ(k + x− 2)
...

...
...

. . .
...

...

Fθ(k − x) Pθ(k − x + 1) Pθ(k − x + 2) · · · Pθ(k) 1− Fθ(k)

0 0 0 · · · 0 1


. (2.49)

In fact, the run length of this CUSUM scheme and the FPT

min{N : SN (θ) = x+ 1 | S0(θ) = 0} (2.50)

have the same distribution. •

For the sake of clarity, we restrict our attention to a control scheme whose sequence
of summary statistics {ZN (θ), N ∈ IN0} form an irreducible discrete time Markov chain
with infinite state space IN0, initial (possibly random) state Z0(θ), and transition matrix

P̃(θ) = [p̃ij(θ)]i,j∈IN0 , (2.51)

which depends on the model parameter θ ∈ Θ. In addition, we assume that the scheme
does not trigger a signal while ZN (θ) ≤ x (i.e. C = [0, x]). Then, for each pair (x, θ)
belonging to IN × Θ, we can construct an absorbing Markov chain {SN (θ), N ∈ IN0}
defined as follows: S0(θ) = Z0(θ); and, for N ∈ IN ,

SN (θ) =

{
ZN (θ), if ZN (θ) ∈ C and SN−1(θ) ∈ C
x+ 1, otherwise.

(2.52)

This Markov chain has finite state space {0, 1, . . . , x+1}, with state x+1 being an absorbing
state and states 0, 1, . . . , x being transient states, and transition matrix, represented in
partitioned form,

P(θ) =

[
Q(θ) [I−Q(θ)]1
0> 1

]
(2.53)

where:

• Q(θ) = [p̃ij(θ)]xi,j=0, i.e., this sub-stochastic (x+1)× (x+1) matrix is obtained from
P̃(θ) by deleting its final row and column;

• 1 (0>) is a column vector (row vector) of x+ 1 ones (zeros); and

• I is the identity matrix with rank x+ 1.

As shown in Example 2.7, the RL of a control scheme can be related to the number of
transitions needed for absorption to occur in the Markov chain {SN (θ), N ≥ 0} described
in the previous paragraph. In other words, the RL is governed by a discrete phase-type
distribution, depending on θ.9

9See Neuts (1981, Chap.2) for a discussion on continuous and discrete phase-type distributions.
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Proposition 2.8 — Let (α0(θ), . . . , αx(θ), αx+1(θ)) = (α(θ), αx+1(θ)) be the initial prob-
ability vector of the absorbing Markov chain {SN (θ), N ∈ IN0}, where α(θ) ranges over all
the sub-stochastic (x+ 1)−vectors, and αx+1(θ) < 1 to avoid a trivial process. Then Q(θ)
is a sub-stochastic matrix such that I − Q(θ) is nonsingular, and the distribution of the
number transitions until absorption is said to have a θ−parameterized discrete phase-type
distribution with representation (α(θ),Q(θ)).

As far as its probability law is concerned, we are dealing with a nonnegative integer-
valued random value T (θ) defined as follows:

PT (θ)(m) =

{
αx+1(θ), m = 0
α>(θ) [Q(θ)]m−1 [I−Q(θ)]1, m ∈ IN.

(2.54)

Its probability generating function and factorial moment of order s may be derived from
(2.54) and, following Neuts (1981, p. 46), are equal to

PGT (θ)(z) = αx+1(θ) + z × α>(θ) [I− zQ(θ)]−1 [I−Q(θ)]1 (2.55)

and

FMT (θ)(s) = s!× α>(θ) [Q(θ)]s−1 [I−Q(θ)]−s 1, s ∈ IN, (2.56)

respectively.

One of the purposes of this thesis is to investigate closely the stochastic properties
of the RL and, in particular, to what extent we can establish stochastic order relations
involving such a performance measure. In light of the fact that the RL is a positive
random variable, we only consider θ−parameterized discrete phase-type random variables
with representation (α(θ),Q(θ)) such that α>(θ)1 = 1 (i.e. αx+1(θ) = 0).

Corollary 2.9 — Let RLu(θ) represent the RL of a control scheme whose summary statis-
tic has initial value u, u ∈ {0, 1, .., x}. Then RLu(θ) has a θ-parameterized discrete phase-
type distribution with representation (eu,Q(θ)), where eu denotes the (u + 1)th vector of
the orthonormal basis for IRx+1.

Originally, Page (1954) set the initial value of the CUSUM statistic equal to 0. How-
ever, if Z0(θ) = u > 0 then a head start (Lucas and Crosier (1982)) value has been given
to the control scheme and RLu(θ) is the corresponding RL.

Another possibility (but fairly unusual in the quality control literature) is to assign a
random initial value to the summary statistic, belonging to the decision interval, whose
probability vector is denoted by α(θ) with α>(θ)1 = 1. In this case, RL(θ) has a θ-
parameterized discrete phase-type distribution with representation (α(θ),Q(θ)).10

For future reference we list in Table 2.3 all but the last four RL related measures in
Table 2.1 (which concerns geometric RLs) for the discrete phase-type RL(θ). Note that

10Instead of representing the RL by RLα(θ)(θ), we simplify the notation and denote it by RL(θ) whenever

no ambiguities arise.
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from the higher order factorial moments in Table 2.3 we can derive the central moments of
orders 2-4 of RL using Equations (2.15)–(2.17) and, then compute the standard deviation,
and the coefficients of variation, skewness and kurtosis of RL(θ).

There are some similarities between the entries of Table 2.3 and those of Table 2.1;
for that matter Q(θ) can be thought as the matrix analogue of π(θ). This is somehow
expected since the discrete phase-type distribution corresponds to a generalization of the
geometric distribution used in the matrix-analytic methodology.11

The fact that phase-type distributions are very appealing in computational work is
also apparent in Table 2.3. First, the RL(θ) related measures can be represented only in
terms of two parameters (α(θ) and Q(θ)). Second, the evaluation of all these measures
only involves the use of trivial operations such as:

• matrix multiplication (to obtain, for instance, the probability and survival functions);

• matrix inversion (to evaluate the factorial moments and the ARL).

Third, some of these measures may be computed in a recursive way. As an illustration, we
recall that the probability function of RL(θ) may be computed recursively (Champ and
Rigdon (1991)).

Let RL(θ) = [RLu(θ)]xu=0 be the vector of the RLs associated with the (x+1) possible
initial values of the summary statistic, and let PRL(θ)(m) =

[
PRLu(θ)(m)

]x
u=0

be the vector
of the corresponding probability functions. Then

PRL(θ)(m) = Q(θ)PRL(θ)(m− 1), m = 2, 3, . . . (2.57)

and, thus,

PRL(θ)(m) = α>(θ)PRL(θ)(m)

= α>(θ)Q(θ)PRL(θ)(m− 1), m = 2, 3, . . . . (2.58)

2.4 Example of a phase-type RL

To design of a control scheme we have to make a trade-off between a large in-control RL
and a quick detection of a specific change in the process parameter. Bearing this in mind,
Gan (1993) suggests, for instance, that the reference value for the upper one-sided CUSUM
scheme for binomial data should be selected to be close to

n× ln[(1− p0)/(1− p1)]
ln[(1− p0)p1/(1− p1)p0]

. (2.59)

Recall that np0 is the nominal expected number of defectives per random sample of size n,
and np1 denotes the corresponding out-of-control value that we want to quickly detect.12

Gan (1993) alleged that extensive numerical results suggest that the reference value in
(2.59) leads to upper one-sided CUSUM schemes for binomial data which are optimal —
in the ARL sense — in detecting an upward shift of magnitude p1 − p0.

11Recall that the discrete phase-type distribution is a particular case of a matrix-geometric distribution

(Asmussen and O’Cinneide (1999, p. 436)).
12This reference value corresponds to the one used in the sequential probability ratio test (SPRT) of

H0 : p = p0 against H1 : p = p1 (p1 > p0).
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Table 2.3: Run length related measures — discrete phase-type case (αx+1(θ) = 0).

Probability function PRL(θ)(m) = α>(θ) [Q(θ)]m−1 [I−Q(θ)]1, m ∈ IN

Survival function FRL(θ)(m) =

{
1, m < 1

α>(θ) [Q(θ)]bmc 1, m ≥ 1

Hazard Rate function λRL(θ)(m) = 1− α>(θ) [Q(θ)]m 1
α>(θ) [Q(θ)]m−1 1

, m ∈ IN

Equilibrium Rate function rRL(θ)(m) = α>(θ) [Q(θ)]m−2 [I−Q(θ)] 1
α>(θ) [Q(θ)]m−1 [I−Q(θ)] 1

, m = 2, 3, . . .

p× 100% Percentage point F−1
RL(θ)(p) = inf{m ∈ IN : FRL(θ)(m) ≥ p}, 0 < p < 1

Probability Generating f. PGRL(θ)(z) = z × α>(θ) [I− zQ(θ)]−1 [I−Q(θ)]1, 0 ≤ z ≤ 1

Factorial Moment of order s FMRL(θ)(s) = s!× α>(θ) [Q(θ)]s−1 [I−Q(θ)]−s 1, s ∈ IN

Expected Value E[RL(θ)] = α>(θ) [I−Q(θ)]−1 1

Example 2.10 — Consider the upper one-sided CUSUM scheme with no head start
described in Example 2.7 with reference value k = 3 — which corresponds to np1 = 4.27685
according to Equation (2.59) — and upper control limit x = 6. In this case, the in-control
RL, RL0(0) has a discrete phase-type distribution represented by (e0,Q(0)), where the
in-control substochastic matrix Q(0) equals:

0.8590 0.0902 0.0353 0.0114 0.0031 0.0007 0.0002
0.6767 0.1823 0.0902 0.0353 0.0114 0.0031 0.0007
0.4033 0.2734 0.1823 0.0902 0.0353 0.0114 0.0031
0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114
0 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353
0 0 0.1326 0.2707 0.2734 0.1823 0.0902
0 0 0 0.1326 0.2707 0.2734 0.1823


. (2.60)

The parameters yield to a scheme with ARL at the nominal and out-of-control values
np0 and np1 equal to ARL0(0) = 1015.71 — which is close to the in-control ARL of the
np−scheme in Example 2.4, 1073.03 — and ARL0(p1 − p0) = 5.932, as reported in Table
2.4.

This table pictures the stochastic behaviour of RL0(θ), through the inclusion of several
RL related measures, for θ = 0, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02, p1− p0, 0.03. It also
illustrates how unreliable the ARL can be as a performance measure of a control scheme,
in the on-target situation; for instance, the probability of a signal being triggered within
the first 295 samples is of at least 0.25, although the in-control ARL barely exceeds 1015
samples. Besides, in the absence of a shift in p, the SDRL is also about 1000 samples,
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therefore it is possible to have observations beyond the control limits much sooner or much
later than expected.

Table 2.4: Some RL percentage points, ARL, SDRL, CVRL, CSRL and CKRL values for
an upper one-sided binomial CUSUM scheme (n = 100, p0 = 0.02, p1 = 0.0427685) and
the upper one-sided np–scheme from Example 2.4.

Upper one-sided binomial CUSUM scheme

RL perc. θ = p− p0

points 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

5% 55 34 18 9 6 4 2 2 2

25% 295 173 85 32 16 10 4 4 3

Median 705 411 198 72 33 19 6 5 4

75% 1407 819 392 140 63 34 9 7 5

90% 2334 1358 649 230 101 53 13 10 7

95% 3036 1765 843 297 130 68 16 12 8

ARL 1015.71 591.724 284.121 102.081 46.227 25.458 7.194 5.932 4.095

SDRL 1012.18 588.012 280.175 97.895 42.022 21.419 4.320 3.322 1.998

CVRL 0.997 0.994 0.986 0.959 0.909 0.841 0.600 0.560 0.488

CSRL 2.000 2.000 2.000 1.998 1.989 1.961 1.627 1.523 1.303

CKRL 6.000 6.000 5.999 5.992 5.953 5.833 4.296 3.814 2.853

Upper one-sided np−scheme

RL perc. θ = p− p0

points 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

5% 56 41 27 14 8 5 2 1 1

25% 309 227 148 78 45 27 6 5 3

Median 744 546 355 187 107 65 15 11 6

75% 1487 1092 710 374 214 130 29 21 11

90% 2470 1813 1179 621 355 216 48 35 17

95% 3214 2359 1534 808 461 281 62 45 22

ARL 1073.030 787.737 512.346 270.112 154.275 94.128 21.047 15.369 7.815

SDRL 1072.530 787.237 511.846 269.611 153.774 93.627 20.541 14.861 7.298

CVRL 1.000 0.999 0.999 0.998 0.997 0.995 0.976 0.967 0.934

CSRL 2.000 2.000 2.000 2.000 2.000 2.000 2.001 2.001 2.005

CKRL 6.000 6.000 6.000 6.000 6.000 6.000 6.002 6.005 6.019

We can also add that the well-known RL distribution skewness to the right of the RL
of Markov-type schemes (see Woodall (2000)) starts to steadily decrease only for moderate
values of the magnitude of the shift; the same behaviour holds for the coefficient of kurtosis
of this scheme. However, these two coefficients increase with θ when we make use of the
upper one-sided np−scheme.

Moreover, replacing the upper one-sided np−scheme in Example 2.4 by the upper one-
sided binomial CUSUM scheme yields a reduction in both the ARL and SDRL and in
most of percentage points, as illustrated by Table 2.4. •
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Before we proceed into the special features of the stochastic matrix P(θ) we present
three brief notes.

Any standard Markov-type scheme, with discrete summary statistics and a null (non-
null) lower control limit, can also be associated to an absorbing Markov chain with state
space {0, 1, . . . , x, x+ 1} (or {−x, . . . ,−1, 0, 1, . . . , x, x+ 1} as in Chapter 6); this results
from a suitable left or right shifting of the original Markov chain, and from associating
both the values below LCL and above UCL to the absorbing state x+ 1.

In case the summary statistic takes fractional values the Markov approach can be
applied after covering those values by suitable rescaling, as suggested by Brook and Evans
(1972), Lucas (1985) and Gan (1993). See Chapter 4 for further details.

The application of the Markov chain approach to schemes for continuous data is ad-
dressed in Section 3.3 and Chapters 5-6.

2.5 Special features of the transition matrix

A few features are apparent in the matrix Q(θ) given in Equation (2.60) from Example
2.10. As suggested by Brook and Evans (1972), since we are dealing with a nonnegative
random variable, the substochastic matrix Q(θ) has a triangular block of zeros in the lower
left hand corner corresponding to states i = k + 1, . . . , x. We can also add that for the
last x columns all values along a line parallel to the main diagonal are equal. In fact, the
absorbing Markov chain is space homogeneous with two boundaries: a reflecting one (0),
and an absorbing one (x+ 1).

The matrices Q(θ) and, in particular, P(θ) that usually arise in the quality control
literature have far more important features than these.

In what follows, we shall omit the argument θ and consider it fixed. Moreover, we
consider a transition matrix P = [pij ]x+1

i,j=0; it depends on θ and governs the behaviour of
a Markov chain {SN , N ∈ IN0} with state space {0, 1, . . . , x+ 1}.13 Moreover, ≤∗ denotes
some fixed but unspecified stochastic order relation.

Definition 2.11 — The Markov chain {SN , N ∈ IN0} is said to be stochastically mono-
tone in the ∗−sense if, for N ∈ IN0,

(SN+1|SN = i) ≤∗ (SN+1|SN = m) , 0 ≤ i ≤ m ≤ x+ 1. (2.61)

In this case we write {SN , N ≥ 0} ∈ M∗ or P ∈M∗.

Remark 2.12 — The constraint (2.61) is equivalent to

(SN+1|SN = i) ≤∗ (SN+1|SN = i+ 1) , 0 ≤ i ≤ x (2.62)

or, in other words,

(SN+1|SN = i) ↑∗ with i (2.63)

over the set {0, 1, . . . , x+ 1}, for N ∈ IN0. Furthermore M∗, ∗ = st, hr, rh, lr, stands here
for the class of all matrices that are

13This finite state space setting is chosen for convenience and has no bearing on most of the auxiliary

notions and results stated ahead.
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• stochastically monotone in the usual sense (Mst),

• stochastically monotone in the hazard rate sense (Mhr),

• stochastically monotone in the reversed hazard rate sense (Mrh), and

• stochastically monotone in the likelihood ratio sense (Mlr).

Actually, Definition 2.11 is nothing but Corollary 3.5 in Kijima (1997, pp. 130-131)
restated. •

Remark 2.13 — The notion of stochastically monotone matrices in the usual sense was
introduced by Daley (1968) for real-valued discrete time Markov chains. We were not
able to trace back the origin of the notion of stochastically monotone Markov chains in
the hazard rate sense (Mhr) or in the reversed hazard rate sense (Mrh). As for the
notion of stochastically monotone Markov chains in the likelihood ratio sense (Mlr): a
reading of Kijima (1998) misleadingly suggests that they can be traced back to Karlin and
McGregor (1959);14 however, Karlin (1964) implicitely states that totally positive of order
2 15 transition matrices possess a monotone likelihood ratio property and, thus, gets very
close to defining stochastically monotone Markov chains in the likelihood ratio sense.

Recalling that the ith row of P corresponds to the probability (row vector) of the
random variable (SN+1|SN = i), and taking advantage of the notions of ≤st, ≤hr, ≤rh

and ≤lr, we can conclude that the easiest way of investigating whether P ∈ M∗, ∗ =
st, hr, rh, lr, is to check if (respectively):

•
∑x+1

l=j pil = P (SN+1 ≥ j|SN = i) ↑i over the set {0, 1, . . . , x+ 1}, for any fixed j;

• pij/
∑x+1

l=j pil ↓i over the set {0, 1, . . . , x+ 1}, for any fixed j;

• pij/
∑j

l=0 pil ↑i over the set {0, 1, . . . , x+ 1}, for any fixed j;

• pij/pi+1 j ↓j over the set {0, 1, . . . , x+ 1}, for any fixed i such that 0 ≤ i ≤ x. •

In order to rephrase once more the four notions mentioned in Remark 2.12, we clearly
need a few preparatory definitions.

First, we consider the square matrix U, introduced by Keilson and Kester (1977), with
ones on and below the diagonal and zeroes elsewhere. That is,

U =



1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1


and U−1 =



1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 −1 1


. (2.64)

14In fact, Karlin and McGregor (1959) deal with continuous time Markov chains governed by totally

positive of order 2 probability transition matrices (see definition ahead). However, these matrices are not

even called as stochastically monotone.
15For the definition of totally positivity of order 2 see Definition 2.14 below, and for the relation between

monotone Markov chains in the likelihood ration sense and Markov chains possessing a totally positive of

order 2 transition matrix please refer to Proposition 2.15.
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The rank of the matrix U will not be explicitly mentioned in the text, so that it should
be inferred as the appropriate one in each instance of U.

Finally, we recall the notions of total positivity of order 2 (abbreviated TP2) matrices,
and, for the sake of completeness and for future reference, of sign-regular of order 2 (RR2)
matrices.16

Definition 2.14 — The nonnegative matrix A = [aij ]x+1
i,j=0 is said to be totally positive of

order 2, denoted here by A ∈ TP2, iff all the 2× 2 minors of A are nonnegative; i.e.,

aij × ai′j′ ≥ ai′j × aij′ , 0 ≤ i ≤ i′ ≤ x+ 1, 0 ≤ j ≤ j′ ≤ x+ 1. (2.65)

If the inequality (2.65) is reversed, A is called a sign-regular of order 2 matrix, i.e. A ∈
RR2.

Note that U is a TP2 matrix and in what follows the inequality A ≥ B, for matrices
A = [aij ] and B = [bij ] with the same dimension, is in the componentwise sense; i.e.,
A ≥ B if and only if aij ≥ bij , for all i, j.

Proposition 2.15 — As pointed out in Definition 3.11 from Kijima (1997, p. 129) the
following results are valid:

P ∈Mst ⇔ U−1PU ≥ O ⇔ (U>)−1PU> ≥ O (2.66)

P ∈Mhr ⇔ PU ∈ TP2 (2.67)

P ∈Mrh ⇔ PU> ∈ TP2 (2.68)

P ∈Mlr ⇔ P ∈ TP2. (2.69)

Clearly,

P ∈Mlr ⇒
{

P ∈Mhr

P ∈Mrh
⇒ P ∈Mst. (2.70)

Remark 2.16 — Let (B)ij denote the entry in row i and column j of a matrix B and
let A = [aij ]x+1

i,j=0 be an (x+ 2)× (x+ 2) matrix. Then, for i, j = 0, 1, . . . , x+ 1:

(AU)ij =
x+1∑
l=j

ai l and (AU>)ij =
j∑

l=0

ai l, (2.71)

(U−1AU)ij =
x+1∑
l=j

ai l −
x+1∑
l=j

ai−1 l and

((U>)−1AU>)ij =
∑j

l=0 ai l −
∑j

l=0 ai+1 l, (2.72)

16For the definitions of totally positive of order r (TPr) and sign-regular of order r (RRr) functions see

Karlin (1964) or Karlin (1968, Chap.1). This last reference is an authorative and comprehensive treatment

of total positivity theory and its applications in a wide variety of fields.
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where a−1 l = ax+2 l = 0 for l = 0, 1, . . . , x+ 1.
Also note that the second equivalence in (2.66) does not hold in general for non-

stochastic matrices. For example, if

A =

[
0.5 0
0 1

]
and B =

[
1 0
0 0.5

]
(2.73)

then U−1AU ≥ O and (U>)−1BU> ≥ O whereas (U>)−1AU> 6≥ O and U−1BU 6≥ O. •

When we are dealing with an absorbing Markov chain with transition matrix P as in
(2.53) we can infer several properties of the substochastic matrix Q (which governs the
transition between the transient states) from the features of P, and vice-versa, as stated
in the following lemma.

Lemma 2.17 — Let P = [pij ]x+1
i,j=0 be the transition matrix of a Markov chain with ab-

sorbing state x+ 1, so that P can be represented in the partitioned form

P =

[
Q (I−Q)1
0> 1

]
. (2.74)

Then the following relations hold:

(U>)−1QU> ≥ O ⇔ (U>)−1PU> ≥ O ⇔ U−1PU ≥ O (2.75)

P ∈ TP2 ⇒ Q ∈ TP2 (2.76)

PU> ∈ TP2 ⇒ QU> ∈ TP2 (2.77)

However, in general,

U−1PU ≥ O 6⇒ U−1QU ≥ O and U−1QU ≥ O 6⇒ U−1PU ≥ O (2.78)

Q ∈ TP2 6⇒ P ∈ TP2 (2.79)

QU> ∈ TP2 6⇒ PU> ∈ TP2 (2.80)

PU ∈ TP2 6⇒ QU ∈ TP2 and QU ∈ TP2 6⇒ PU ∈ TP2. (2.81)

Proof — Equation (2.75) follows from the second equivalence in (2.66) and the fact that

(U>)−1PU> =

[
(U>)−1QU> 0
0> 1

]
. (2.82)

Results (2.76) and (2.77) are immediate consequences of the definition of total posi-
tivity of order 2 and the form of P and PU>, respectively, since

PU> =

[
QU> 1
0> 1

]
. (2.83)
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The relations (2.78)–(2.81) follow quite easily if we take, e.g.,

P1 =

[
Q1 (I−Q1)1
0> 1

]
=

 0.2 0 0.8
0.1 0.3 0.6
0 0 1

 (2.84)

and

P2 =

[
Q2 (I−Q2)1
0> 1

]
=

 0.4 0.1 0.5
0.3 0 0.7
0 0 1

 . (2.85)

In this case, we have

Q1 ∈ TP2, Q1U ∈ TP2, Q1U> ∈ TP2, U−1Q1U ≥ O, and

P2U ∈ TP2 and U−1P2U ≥ O (2.86)

whereas

P1 6∈ TP2, P1U 6∈ TP2, P1U> 6∈ TP2, U−1P1U 6≥ O, and

Q2U 6∈ TP2 and U−1Q2U 6≥ O. (2.87)

•

Since the classes of stochastic matrices M∗, ∗ = st, hr, rh, lr, include many of the
common Markov models of applied probability theory (see, e.g., Keilson and Kester (1977)
and Bäuerle and Rolsky (2000)) it is natural to inquire whether there are control schemes
(with dependent statistics) associated to these four classes of matrices.

Let us take an upper one-sided CUSUM scheme for discrete data with summary statis-
tic

ZN =

{
0, N = 0
max{0, ZN−1 + YN − k}, N ∈ IN,

(2.88)

such as the one described in Example 2.7, with θ omitted. That is, a control scheme
whose RL has a discrete phase-type distribution related to a finite, space homogeneous,
absorbing Markov chain with two boundaries — a reflecting one (0), and an absorbing one
(x+ 1) — and governed by the transition matrix

P =



F (k) P (k + 1) P (k + 2) · · · P (k + x) F (k + x)

F (k − 1) P (k) P (k + 1) · · · P (k + x− 1) F (k + x− 1)

F (k − 2) P (k − 1) P (k) · · · P (k + x− 2) F (k + x− 2)
...

...
...

. . .
...

...

F (k − x) P (k − x + 1) P (k − x + 2) · · · P (k) F (k)

0 0 0 · · · 0 1


(2.89)

where F (.), P (.) and F (.) refer to the distribution, the probability and the survival func-
tions of the nonnegative integer random variable YN . This matrix can be written in
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a condensed way that makes the spatial homogeneity far more obvious: P = [pij ]x+1
i,j=0,

where

pi j =


F [k + (j − i)], 0 ≤ i ≤ x+ 1, j = 0
P [k + (j − i)], 0 ≤ i ≤ x, 1 ≤ j ≤ x

F [k + (j − i)− 1], 0 ≤ i ≤ x, j = x+ 1
I{0}(j − i), i = x+ 1, 0 ≤ j ≤ x+ 1.

(2.90)

The next result, Proposition 2.20, provides sufficient conditions that guarantee that
the transition matrix P belongs to the classes Mst, Mhr, Mrh and Mlr. However, before
we present the result, we recall a few important ageing notions taken from Kijima (1997,
Section 3.2). We use the convention 0/0 = 0.

Definition 2.18 — Consider a nonnegative integer random variable Y with probability
function P and distribution function F . Then

• Y is new better than used, Y ∈ NBU , if

F (i+ j) ≤ F (i)F (j), i, j ∈ IN0; (2.91)

• Y has increasing hazard rate in average, Y ∈ IHRA, if

F
i+1(i− 1) ≥ F

i(i), i ∈ IN. (2.92)

• Y has increasing hazard rate, Y ∈ IHR, if

F
2(i) ≥ F (i− 1)× F (i+ 1), i ∈ IN ; (2.93)

• Y has decreasing reversed hazard rate, Y ∈ DRHR, if

F 2(i) ≥ F (i− 1)× F (i+ 1), i ∈ IN ; (2.94)

• Y has decreasing likelihood ratio (i.e. Y has a Pólya frequency character of order
2), Y ∈ DLR, if

P 2(i+ 1) ≥ P (i)× P (i+ 2), i ∈ IN0. (2.95)

Remark 2.19 — Note that by raising both member of (2.92) to the power 1
i(i+1) we can

conclude that

Y ∈ IHRA⇔ F
1
i+1 (i) ↓i over IN0. (2.96)

In addition, the following equivalent characterizations of properties IHR, DRHR and
DLR 17 hold, as reported by Kijima (1997, p. 113-115):

Y ∈ IHR ⇔ P (i)
F (i− 1)

↑i over IN0 (2.97)

⇔
[
F (1) F (2) F (3) . . .

F (0) F (1) F (2) . . .

]
∈ TP2 (2.98)

17If we had defined the likelihood ratio as equal to the equilibrium rate, P (i− 1)/P (i), as Shanthikumar

and Yao did in Shaked and Shanthikumar (1994, p. 437), then Y would have an increasing lihelihood ratio.
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Y ∈ DRHR ⇔ P (i)
F (i)

↓i over IN0 (2.99)

⇔
[
F (1) F (2) F (3) . . .

F (0) F (1) F (2) . . .

]
∈ TP2 (2.100)

Y ∈ DLR ⇔ P (i+ 1)
P (i)

↓i over IN0 (2.101)

⇔
[
P (0) P (1) P (2) . . .

0 P (0) P (1) . . .

]
∈ TP2. (2.102)

It is worth mentioning that (2.97), (2.99) and (2.101) rightly justify the names given to
the ageing notions IHR, DRHR and DLR. •

Kijima (1997, pp. 120-121) provides some illustrative examples of random variables
with decreasing likelihood ratio, namely the binomial and Poisson distributions, and adds,
in page 118, a well known fact:

Y ∈ DLR⇒
{
Y ∈ IHR
Y ∈ DRHR

⇒ Y ∈ IHRA⇒ Y ∈ NBU. (2.103)

We now present Proposition 2.20, which is inspired by Example 3.11 from Kijima (1997,
p. 131). This example only provides proofs of results analogous to (2.104) and (2.105).

Proposition 2.20 — Let Y be a random variable with the same distribution as YN defined
in (2.88) and P be the transition matrix defined by (2.89). Then the following results hold:

P ∈Mst (2.104)

Y ∈ IHR⇒ P ∈Mhr (2.105)

Y ∈ DRHR⇒ P ∈Mrh (2.106)

Y ∈ DLR⇒ P ∈Mlr (2.107)

Proof — A sketch of the proof of results (2.106) and (2.107) immediately follows.
If Y ∈ DRHR then we get from (2.100)

F (i)F (j) ≥ F (i− 1)× F (j + 1), 1 ≤ i ≤ j. (2.108)

This result in turn implies that

PU> =



F (k) F (k + 1) F (k + 2) · · · F (k + x) 1

F (k − 1) F (k) F (k + 1) · · · F (k + x− 1) 1

F (k − 2) F (k − 1) F (k) · · · F (k + x− 2) 1
...

...
...

. . .
...

...

F (k − x) F (k − x + 1) F (k − x + 2) · · · F (k) 1

0 0 0 · · · 0 1


∈ TP2, (2.109)

i.e., P ∈Mrh.
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In case Y ∈ DLR, it follows from (2.102) that

P (i)P (j) ≥ P (i− 1)P (j + 1), 1 ≤ i ≤ j. (2.110)

Moreover, due to (2.65), we conclude that P = [pij ]x+1
i,j=0 ∈Mlr if

pi0

pi+1 0
≥ pi1

pi+1 1
≥ pi2

pi+1 2
≥ . . . ≥ pix

pi+1 x
≥ pi x+1

pi+1 x+1
(2.111)

holds for 0 ≤ i ≤ x− 1. We shall now prove (2.111) using (2.110). The first inequality of
(2.111) is valid since

pi0 pi+1 1 − pi+1 0 pi 1 = F (k − i)P (k − i)− F (k − i− 1)P (k − i+ 1) (2.112)

equals the nonnegative sum

P (0)P (k − i) + [P (1)P (k − i)− P (0)P (k − i+ 1)]

+ [P (2)P (k − i)− P (1)P (k − i+ 1)]

+ . . .

+ [P (k − i)P (k − i)− P (k − i− 1)P (k − i+ 1)]. (2.113)

As for the last inequality, we can state that

pix pi+1 x+1 − pi+1 x pi x+1 = P (k + x− i) [1− F (k + x− i− 1)]

−P (k + x− i− 1) [1− F (k + x− i)] (2.114)

equals

+∞∑
j=0

[P (k + x− i)P (k + x− i+ j)− P (k + x− i− 1)P (k + x− i+ j + 1)] (2.115)

which is nonnegative as well, by (2.110).
The remaining inequalities in (2.111) are particular cases of (2.110). •

Features such as the total positivity of order 2 of the transition matrix play a vital
role is establishing monotonicity properties concerning the RL distribution.18 This issue
is discussed in more detail in the next chapter.

2.6 A few ageing properties of RL

The immense literature on FPTs has extensively devoted its attention to the study of
the ageing properties of these random variables (see Shaked and Li (1997) and references
therein). It shows that such properties are closely related to the stochastic monotonicity
properties of the underlying process, as noted by Li and Shaked (1995).

This observation takes form in a series of results stated in Shaked and Li (1997); a few
of these results can be found in the next lemma conveniently restated for the RL.

18Such features also influence the monotonicity and unimodality of the transition probabilities. For

related results see Karlin (1964) and Section 3.5 of Kijima (1997).
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Lemma 2.21 — Let {SN , N ∈ IN0} be a discrete time Markov chain with state space IN0,
governed by the transition matrix P = [pij ]i,j∈IN0. Furthermore, consider the following
FPT:

RLu = min{N : SN > x | S0 = u}, u = 0, 1, . . . , x. (2.116)

That is, RLu has a discrete phase-type distribution with parameter (eu,Q) where Q =
[pij ]xi,j=0 Then:

P ∈Mst ⇒ RLu ∈ NBU, u = 0, 1, . . . , x (2.117)

P ∈Mst and P is upper triangular ⇒ RL0 ∈ IHRA (2.118)

P ∈Mrh ⇒ RL0 ∈ IHR (2.119)

P ∈Mlr ⇒ RL0 ∈ DLR. (2.120)

Results (2.117), (2.119) and (2.120) are due to Brown and Chaganty (1983), Durham,
Lynch and Padgett (1990) and Assaf, Shaked and Shanthikumar (1985), respectively. We
can also add that Shaked and Li (1997) obtained (2.118) from a general result of Shaked
and Shanthikumar (1987).

We were unable to prove the discrete analogue of Theorem 4.1 of Kijima (1998):

P ∈Mhr ⇒ RL0 ∈ DRHR. (2.121)

However, Lemma 3.1 of Kijima (1992) suggests that such a ageing character cannot be
derived by merely using P. In fact this lemma asserts that:

QU ∈ TP2

U−1QU ≥ O[
α

αQ

]
U ∈ TP2 (RR2)

⇒ RL ∈ DHR (IHR) (2.122)

QU> ∈ TP2

(U>)−1QU> ≥ O[
α

αQ

]
U> ∈ TP2 (RR2)

⇒ RL ∈ IHR (DHR), (2.123)

where RL stands for the run length considering a random initial value with probability
vector (α, 0). The proof of this lemma follows from four auxiliary and useful results,
presented below and taken from pages 122, 107 (Theorem 3.1), 108 (Theorem 3.2) and
110 (Theorem 3.3) of Kijima (1997), respectively.

Proposition 2.22 — Let X and Y be discrete random variables defined on IN , with
probability vectors a and b, respectively. Then:

X ≤st Y (or a ≤st b) ⇔ a>U ≤ b>U (or a>U> ≥ b>U>) (2.124)

X ≤hr Y (or a ≤hr b) ⇔
[

a>

b>

]
U ∈ TP2 (2.125)
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X ≤rh Y ⇔ (or a ≤rh b) ⇔
[

a>

b>

]
U> ∈ TP2 (2.126)

X ≤lr Y (or a ≤lr b) ⇔
[

a>

b>

]
∈ TP2. (2.127)

The result below is also known as the basic composition formula.

Proposition 2.23 — Suppose A = [aij ]i,j∈IN and B = [bij ]i,j∈IN are both TP2 matrices.
If C = AB is well defined then C ∈ TP2.

The next proposition is due to Shanthikumar (1988, Lemma 2.1), and is referred by
Kijima (1997, p. 108) as the composition law. See also Lemma 1.2 of Kijima (1992).

Proposition 2.24 — Let A = [aij ]i,j∈IN and B = [bij ]i,j∈IN be nonnegative matrices. If
AU ∈ TP2, BU ∈ TP2 and U−1BU ≥ O, then ABU ∈ TP2.

The dual composition law also follows similarly to Kijima (1997, p. 110).

Proposition 2.25 — Let A = [aij ]i,j∈IN and B = [bij ]i,j∈IN be nonnegative matrices. If
AU> ∈ TP2, BU> ∈ TP2 and (U>)−1BU> ≥ O, then ABU> ∈ TP2.

In Chapter 8 we briefly discuss the role that some of these ageing properties of the run
length may have in the stochastic comparison of geometric and phase-type run lengths.
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Chapter 3

Monotonicity and run length

Woodall (2000) notes that, according to Pearson (1967), the more mathematical treatment
of the statistical performance of control schemes began in Great Britain after a visit
there by Walter A. Shewhart in 1932. In this thesis we are clearly pursuing this line of
thought by aiming to obtain qualitative statements about quantities which, for a given
control scheme(s), describe its (their) behaviour as completely as possible. The quantities
considered so far are related to a FPT, the run length.

In the previous chapter we realized that, for the simplest schemes (Shewhart-type),
we are able to obtain simple expressions for the RL related measures and — through the
behaviour of the parameter 1 − π(θ) of the geometric-type RL, i.e., the probability that
a signal is triggered at each sample — give straight answers for questions concerning,
e.g., the assessment of the impact of a change in a design or model parameter on the
performance of a control scheme.

However, Markov-type control schemes lead to formulae that, although easy to han-
dle numerically, require some mathematical work on the special features of the matrix
analogue of π(θ), Q(θ), to provide answers for questions such as the one in the previous
paragraph. These answers will be stated as monotonicity properties, which are among
the most important qualitative properties of stochastic models, as noted by Stoyan (1983,
p. 39).

Early results concerning the monotonicity behaviour of FPTs in terms of the initial
value can be found in two papers, and immediately derived from a third one:1

• Kamae, Krengel and O’Brien (1977). These authors prove in Corollary 1 (ii) of
Theorem 2 that, for a monotone Markov chain (in the usual sense) {SN , N ∈ IN0},
with either discrete or continuous state space, the first passage time T u = min{N :
SN > x|S0 = u} stochastically decreases with u in the usual sense.

Particular cases of this result are given in Morais and Pacheco (1998b). This refer-
ence provides an induction-based proof of a result that implies that the RL of some
upper one-sided EWMA and CUSUM control schemes is stochastically decreasing in

1Some of the original results are stated in a more general form than the one presented here.
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the head-start value.2

Brown and Chaganty (1983) used Theorem 2 of Kamae, Krengel and O’Brien (1977)3

to prove that if the state space of {SN , N ∈ IN0} has a minimum u0, then T u0 is a
NBU random variable.

• Lee and Lynch (1997). To prove the IHR ageing character of the continuous FPTs,
T u = min{t : St > x|S0 = u}, u = 0, 1, . . . , x, these authors state and prove that this
random variable decreases with u, in the hazard rate sense, in case the underlying
discrete-state non-homogeneous continuous-time Markov chain, {St, t ∈ IR+

0 }, is
stochastically monotone in the reversed hazard rate sense.

• Karlin (1964). This is an account of the connections between totally positive of
order r transition probability matrices/kernels and the TPr and RRr characters of
several FPTs of one-dimensional Markov chains in discrete/continuous time with
discrete/continuous state space.

In the light of result (i) of Theorem 2.1 of this paper we sucessfully manage to prove
a stochastic decreasing behaviour of T u in the likelihood ratio sense.

Kalmykov (1969) also deserves a few comments although it does not provide a stochas-
tic monotonicity result in the initial state in any of the senses we mentioned earlier. This
paper provides estimates to

P (τ̂ξ[s, {a(t), t ∈ T}] < min{z, τ̂ξ[s, {b(t), t ∈ T}]}|ξs = x) (3.1)

where: {ξt, t ∈ T} is a real one-dimensional Markov process with T ⊂ IR; τ̂ξ[s, {c(t), t ∈ T}]
denotes the first time after s (s ∈ T ) at which a sample trajectory of the process intersects
the curve {c(t), t ∈ T}. This quantity arises in hypothesis testing. In fact, if {a(t), t ∈ T}
is the boundary separating the domain of acceptance of hypothesis H0 from the domain
of indifference and {b(t), t ∈ T} (a(t) < b(t), for all t ∈ T ) does exactly the same for
hypothesis H1, then (3.1) represents the probability that H0 will be accepted up to time
z considering observations from time s on at point x. (Thus, if we consider b(t) = +∞,
(3.1) would be the distribution function of the run length of an one-sided scheme at time
z−.) Theorem 2.1 of this reference asserts that the probability in (3.1) can be bounded
by a similar probability involving another Markov process

P (τ̂ξ′ [s, {a(t), t ∈ T}] < min{z, τ̂ξ′ [s, {b(t), t ∈ T}]}|ξ′s = x′) (3.2)

with x ≤ x′. This holds under certain conditions which reminds us of a restricted version
— in time and in the state space — of the stochastic order in the usual sense between two
probability matrices. For further details see Kalmykov (1969).

Effort has also been made to find stochastic monotonicity results with respect to other
parameters of FPTs (e.g. θ). Our investigations seem to indicate a lack of results proba-
bly due to the fact that the FPTs considered in the literature are (usually) parameter-free.

2That result also leads to a monotone behaviour of the RL in terms of the magnitude of the shift in

the parameter being monitored by the control scheme.
3Brown and Chaganty (1983) incorrectly mention that they use Theorem 1 of Kamae, Krengel and

O’Brien (1977).
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In order to provide monotonicity results concerning the run length we have to tackle
important issues like ordering Markov chains. This is what lies in the next section.

3.1 Ordering Markov chains

We begin this section with an abbreviated presentation of some useful ordering notions
for stochastic processes like Markov chains.

Let x = (x1, . . . , xm) and x′ = (x′1, . . . , x
′
m) be two vectors in IRm; then we write

x ≤ x′ if xi ≤ x′i, i = 1, . . . ,m. Additionally, recall that U ⊆ IRm is called an upper set if
x′ ∈ U whenever x ≤ x′ and x ∈ U .

Definition 3.1 — Let X and X′ be two m−dimensional random vectors. Then X is said
to be smaller than X′ in the usual sense — X ≤st X′ — in case

P (X ∈ U) ≤ P (X′ ∈ U) (3.3)

for every upper set U in IRm.

Shaked and Shanthikumar (1994, pp. 114-115) also state that X ≤st X′ iff the inequal-
ity

E[φ(X)] ≤ E[φ(X′)] (3.4)

holds for every increasing function φ on IRm for which the two expectations exist.
Now we are able to introduce a notion of stochastic ordering between two univariate

stochastic processes in discrete time.

Definition 3.2 — Let {XN , N ∈ IN0} and {X ′
N , N ∈ IN0} be two stochastic processes

with state space E. Then {XN , N ∈ IN0} is said to be smaller than {X ′
N , N ∈ IN0} in the

usual sense if

(XN1 , . . . , XNm) ≤st (X ′
N1
, . . . , X ′

Nm) (3.5)

for every m ∈ IN and (N1, . . . , Nm) ∈ INm
0 .

Definition 4.1.2 from Stoyan (1983, p. 59) provides a weaker order relation between
two stochastic processes, as it only requires that XN ≤st X

′
N for all N ∈ IN0.

The next proposition gives a condition that leads to an ordering of stochastic processes.

Proposition 3.3 — The stochastic order relation in the usual sense in Definition 3.2 is
equivalent to

E[g(X)] ≤ E[g(X′)] (3.6)

for every increasing functional g for which the expectations in (3.6) exist.4

4Recall that a functional g is called increasing if g ({xN , N ∈ IN0}) ≤ g ({x′N , N ∈ IN0}) whenever

xN ≤ x′N , for N ∈ IN0 (see Shaked and Shanthikumar (1994, p. 124)).
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The next theorem, whose simple proof is omitted, relates the survival function of the
run length with an increasing functional of a Markov chain and proves to be crucial in the
proof of some monotonicity properties in the usual sense.

Theorem 3.4 — Let {SN , N ∈ IN0} be a discrete time Markov chain with transient states
{0, . . . , x} and absorbing state x+ 1. The survival function of the first passage time

RLu = min{N ∈ IN0 : SN = x+ 1 | S0 = u}, (3.7)

evaluated at m, can be written in terms of the number of visits made by the Markov chain
{SN , N ∈ IN0} to the absorbing state x+ 1 until time m,

∑m
N=0 I{x+1}(SN ). Namely,

P [RLu > m] = 1− E

(
min

{
1,

m∑
N=0

I{x+1}(SN )

})
= 1− E [g({SN , N ∈ IN0})] , (3.8)

where g(s0, . . . , sm) = min
{
1,

∑m
N=0 I{x+1}(sN )

}
is an increasing functional in {0, . . . , x+

1}, for m ∈ IN0.

Theorem 2 by Kalmykov (1962) suggests a stochastic ordering between the matrices
that govern two discrete time Markov chains with the same state space; it corresponds to
what Kulkarni (1995, pp. 148-149) calls the Kalmykov-dominance or Kalmykov order.

Definition 3.5 — Let {SN , N ∈ IN0} and {S′N , N ∈ IN0} be two discrete time Markov
chains on {0, 1, ..., x + 1} with transition probability matrices, P = [pij ]x+1

i,j=0 and P′ =
[p′ij ]

x+1
i,j=0, respectively. Then, P is said to be smaller than P′ in the usual sense (or in the

Kalmykov sense) — P ≤st P′ — if

x+1∑
l=j

pil ≤
x+1∑
l=j

p′ml, 0 ≤ i ≤ m ≤ x+ 1, 0 ≤ j ≤ x+ 1. (3.9)

That is, for N ∈ IN0,

(SN+1|SN = i) ≤st
(
S′N+1|S′N = m

)
, 0 ≤ i ≤ m ≤ x+ 1. (3.10)

Remark 3.6 — The inequality (3.10) rightly clarifies the meaning of the Kalmykov order
in terms of the conditional distributions of the two Markov chains. It is worth mentioning
here that if P,P′ ∈Mst then (3.9) is equivalent to

x+1∑
l=j

pil ≤
x+1∑
l=j

p′i l, 0 ≤ i ≤ x+ 1, 0 ≤ j ≤ x+ 1. (3.11)

It is easy to check that condition (3.11) is equivalent to

(SN+1|SN = i) ≤st
(
S′N+1|S′N = i

)
, 0 ≤ i ≤ x+ 1. (3.12)

Moreover, P ∈Mst iff P ≤st P. •

By virtue of Definition 3.5, Theorem 4.B.16 in Shaked and Shanthikumar (1994, p. 125)
can be rephrased as in Kulkarni (1995, p. 149) or as in the next proposition.
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Proposition 3.7 — Let P and P′ be two transition probability matrices governing the
discrete time Markov chains on {0, 1, ..., x + 1}, {SN , N ∈ IN0} and {S′N , N ∈ IN0},
respectively. If S0 ≤st S

′
0 and P ≤st P′, then the following stochastic order relation holds

{SN , N ∈ IN0} ≤st {S′N , N ∈ IN0}. (3.13)

This proposition proves to be useful to assess the monotonicity behaviour of RLu in
u, in the usual sense.

3.2 Monotonicities in the initial value and other parameters

Lucas and Crosier (1982) recommended the use of head start values, that is, a non-zero
value for the initial value of (Markov-type) summary statistics.

The rationale of it is as follows: if the process is operating in-control, the summary
statistic of the scheme is soon brought to zero (for instance, by the reference value in case
a CUSUM scheme is at use), so that the expected effect of the head start is minimal;
otherwise, the operator is alerted to the out-of-control situation much sooner, which may
prevent start-up problems.

These authors only assess the influence of the adoption of a head start numerically. In
this section we assess it stochastically, in the usual, hazard rate and likelihood ratio senses.

The next theorem yields new comparisons and also unifies some existing results. It
should be noted that this theorem could also have been casted in the framework of more
general FPTs and, therefore, provide more generality to the results. In addition, it shows
that the stochastic monotone character of the Markov chain is crucial to guarantee the
decreasing behaviour of the RL with respect to the initial value of the summary statistic
of the control scheme.

Theorem 3.8 — Let {SN , N ∈ IN0} be an absorbing Markov chain on {0, 1, . . . , x + 1}
with transition matrix P and absorbing state x + 1, and define RLu = min{N : SN =
x + 1 | S0 = u}, u = 0, 1, . . . , x. Then, the following stochastic implications of the
adoption of a head start hold:

P ∈Mst ⇒ RLu ↓st with u (3.14)

P ∈Mrh ⇒ RLu ↓hr with u (3.15)

P ∈Mlr ⇒ RLu ↓lr with u. (3.16)

We prove the stochastic monotonicity results (3.14)–(3.16) separately.

Proof (3.14) — We provide an alternative proof to the one presented by Morais and
Pacheco (1998b); it closely follows the one presented in Morais and Pacheco (2000b).

Let {S∗N , N ∈ IN0} and {S′N , N ∈ IN0} be two absorbing Markov chains, with initial
values S∗0 = u∗ and S′0 = u′ such that 0 ≤ u∗ ≤ u′ ≤ x, both governed by the stochastically
monotone matrix P. Since P ∈Mst it follows that P ≤st P. If we add to this the relation
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order S∗0 = u∗ ≤st u
′ = S′0 and use Proposition 3.7, we conclude that {S∗N , N ∈ IN0} ≤st

{S′N , N ∈ IN0}.5 Thus, Proposition 3.3 and Theorem 3.4 let us assert that, with

g(s0, . . . , sm) = min

{
1,

m∑
N=0

I{x+1}(sN )

}
(3.17)

for m ∈ IN and s0, s1, . . . , sm ∈ IR,

P (RLu > m) = 1− E [g({S∗N , N ∈ IN0})]
≥ 1− E

[
g({S′N , N ∈ IN0})

]
= P (RLu′ > m), (3.18)

which proves the result. •

Proof (3.15) — Let {S∗N , N ∈ IN0} and {S′N , N ∈ IN0}, as well as u∗ and u′, be as in
the previous proof but now with P ∈ Mrh. In addition, consider: u∗0 = eu∗ , u′0 = eu′ ;
u∗m = u∗m−1Q and u′m = u′m−1Q for m ∈ IN , where Q is the substochastic matrix in the
block representation (2.74) of P.

Note that, for m ∈ IN , u∗m−11 = P (RLu∗ ≥ m), u′m−11 = P (RLu′ ≥ m), u∗m−1(I −
Q)1 = P (RLu∗ = m) and u′m−1(I−Q)1 = P (RLu′ = m).

Now, remember that since P ∈Mrh we have PU> ∈ TP2, which in view of Proposition
3.7 implies (U>)−1PU> ≥ O. As a consequence we get QU> ∈ TP2 and (U>)−1QU> ≥
O according to Lemma 2.17. Moreover, by virtue of the fact that 0 ≤ u∗ ≤ u′ ≤ x, we
have u∗0 ≤rh u′0, i.e.,[

u∗>0
u′>0

]
U> ∈ TP2, (3.19)

according to result (2.126) from Proposition 2.22. By the dual of the composition law
(Proposition 2.25) and using induction, we conclude that[

u∗>m−1

u′>m−1

]
U> ∈ TP2, (3.20)

for all m ∈ IN . Applying the fact that the entries of (I − Q)1 increase with i (i.e.
(U>)−1(I−Q)1 ≤ O) to result (3.20) we get, for any m ∈ IN ,[

u∗>m−1

u′>m−1

]
U> ∈ TP2 ⇒

u∗>m−1

u∗>m−11
≤rh

u′>m−1

u′>m−11

⇒
u∗>m−1

u∗>m−11
≤st

u′>m−1

u′>m−11

⇒
u∗>m−1U

>

u∗>m−11
≥

u′>m−1U
>

u′>m−11

⇒
u∗>m−1U

>(U>)−1(I−Q)1
u∗>m−11

5This result corresponds to Theorem 4.B.17 in Shaked and Shanthikumar (1994, p. 126), which is stated

without a proof.
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≤
u′>m−1U

>(U>)−1(I−Q)1
u′>m−11

⇔ P (RLu∗ = m)
P (RLu∗ ≥ m)

≤ P (RLu′ = m)
P (RLu′ ≥ m)

⇔ λRLu∗ (m) ≤ λRLu
′ (m). (3.21)

That is, RLu∗ ≥hr RL
u′ , 0 ≤ u∗ ≤ u′ ≤ x. •

Proof (3.16) — A simplified version of result (i) of Theorem 2.1 of Karlin (1964) reads as
follows: if P ∈ TP2 (equivalently, P ∈Mlr) then P (RLu = m) is RR2 in u and m,6 i.e.,

P (RLu∗ = m− 1)× P (RLu′ = m) ≤ P (RLu∗ = m)× P (RLu′ = m− 1) (3.22)

for 0 ≤ u∗ ≤ u′ ≤ x and m ∈ IN . This inequality is equivalent to

P (RLu∗ = m− 1)
P (RLu∗ = m)

≤ P (RLu′ = m− 1)
P (RLu′ = m)

, m ∈ IN ⇔

rRLu
∗ (m) ≤ rRLu

′ (m), m ∈ IN ⇔

RLu∗ ≥lr RL
u′ , (3.23)

for 0 ≤ u∗ ≤ u′ ≤ x. That is, the run length decreases with u in the likelihood ratio sense. •

Remark 3.9 — An induction-based proof of the following result

(U>)−1QU> ≥ O ⇒ RLu ↓st with u (3.24)

can be found in Morais and Pacheco (1998b). Please note that, in this reference, instead
of condition (U>)−1QU> ≥ O we have the equivalent condition (see (2.72)):

∑j
l=0 pi l

decreases with i in {0, 1, . . . , x}, for fixed j = 0, 1, . . . , x.

Capitalizing on the closure property of the usual stochastic order under mixtures7 we
can generalize result (3.14) to the (fairly unusual) case of a random head start.

Corollary 3.10 — Let α and α′ represent the probability vectors of two random ini-
tial values (which eventually depend on θ), and RLα and RLα′ be the corresponding run
lengths. If P ∈Mst and α ≤st α

′ then

RLα ≥st RL
α′ . (3.25)

Remark 3.11 — We are not able to strengthen this result to the ≤hr and ≤lr orderings,
due to a limitation of these two orderings: they have not the property of being simply
closed under mixtures, according to pages 18 and 33 of Shaked and Shanthikumar (1994).

6The original result refers to a TPr discrete time Markov chain.
7Theorem 1.A.3 (d) of Shaked and Shanthikumar (1994, p. 6) reads as follows. Let X, Y and U be

random variables such that (X|U = u) ≤st (Y |U = u) for all u in the support of U . Then X ≤st Y .
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It is worth noting that both orders have the closure property under quite strong condi-
tions that do not hold in the RL setting, namely: given the random variables X, Y — both
conditioned on U —, X ≤∗ Y if (X|U = u) ≤∗ (Y |U = u′), for all u and u′ in the support
of U , where ∗ = hr, lr (see Theorems 1.B.8 and 1.C.10 of Shaked and Shanthikumar (1994,
pp. 18 and 33)). •

So far we have assessed the stochastic consequences of adopting a head start. A few
other possibilities include studying the stochastic implication of:

• an increase of the magnitude of the shift;

• a change in parameters, such as, the reference value in a CUSUM scheme, the range
of the decision interval, etc.

To proceed with the discussion of these issues we have to resume the initial notation
that includes an argument in the Markov chain and its transition matrix, and so on.
Assume ρ is one of the parameters mentioned in the previous paragraph, whose influence
in the run length we are concerned with.

Theorem 3.12 — Let {SN (ρ), N ∈ IN0} and {SN (ρ′), N ∈ IN0} be two absorbing Markov
chains characterized as follows: they have the same state space; their initial values are
S0(ρ) = u and S0(ρ′) = u′ with u ≤ u′; and they are ruled by the transition matrices P(ρ)
and P(ρ′), respectively. Then

P(ρ) ≤st P(ρ′) ⇒ RLu(ρ) ≥st RL
u′(ρ′). (3.26)

Proof — Since S0(ρ) ≤st S0(ρ′) and P(ρ) ≤st P(ρ′), Proposition 3.7 allows us to conclude
that {SN (ρ), N ∈ IN0} ≤st {SN (ρ′), N ∈ IN0}. Thus,

P [RLu(ρ) > m] = 1− E [g({SN (ρ), N ∈ IN0})]
≥ 1− E

[
g({SN (ρ′), N ∈ IN0})

]
= P [RLu′(ρ′) > m], (3.27)

where g is the increasing functional defined in Theorem 3.4. •

As a consequence of the previous theorem and the closure property of the ≤st ordering
under mixtures, we obtain the following result.

Corollary 3.13 — If S0(ρ) ≤st S0(ρ′) and P(ρ) ≤st P(ρ′) then RL(ρ) ≥st RL(ρ′).

Another consequence of Theorem 3.12 is the following corollary, which can be found
in Morais and Pacheco (1998b) along with an induction-based proof.

Corollary 3.14 — If P(ρ) ∈Mst for all ρ and the left partial sums of Q(ρ),
∑j

l=0 pi l(ρ),
decrease with ρ for every i, j = 0, . . . , x — i.e., all the entries of Q(ρ)U> decrease with ρ
— then RLu(ρ) ↓st with ρ.
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A few problems that arise when we try to strengthen stochastic property (3.26) to the
≤hr and ≤lr orderings ought to be discussed.

Multivariate stochastic orders are throughly discussed by Shaked and Shanthikumar
(1994, pp. 113-152), namely: the usual multivariate stochastic order (Definition 3.2);
the cumulative hazard order; the multivariate hazard order (Shaked and Shanthikumar
(1987)); the multivariate likelihood ratio order (which is closely related to multivariate
totally positivity of order 2 introduced and studied by Karlin and Rinott (1980)); the
multivariate mean residual life order; and a few other multivariate stochastic orders.

However, as far as we have investigated, the orderings ≤hr, ≤rh and ≤lr have not been
proposed to Markov chains or transition matrices. This is a major drawback since a strong
ordering of performance measures like RL would “naturally” require a strong ordering of
the Markov chains.

Following the relation between the usual multivariate stochastic order and the ordering
of transition matrices in the usual sense (Definition 3.5), we would consider ordering two
univariate Markov chains in discrete time in a similar manner: {XN , N ∈ IN0} is said to
be smaller than {X ′

N , N ∈ IN0} in the ∗ − sense if

(XN1 , . . . , XNm) ≤∗ (X ′
N1
, . . . , X ′

Nm) (3.28)

for every m ∈ IN and (N1, . . . , Nm) ∈ INm
0 . A totally different possibility would be to

define

P ≤∗ P′ ⇔ (XN | XN−1 = i) ≤∗ (X ′
N | X ′

N−1 = m), i ≤ m, (3.29)

and state that {XN , N ∈ IN0} is stochastically smaller than {X ′
N , N ∈ IN0} in the ∗−sense

if P ≤∗ P′.
Nevertheless, effort have been made to set sufficient conditions under which RLu(ρ) ↓∗

with ρ, for ∗ = hr, lr, using mathematical induction and two other approaches described
as follows.

The multivariate likelihood ratio ordering is preserved under strictly monotone trans-
formations of each individual coordinate of the underlying random vectors, and is closed
under marginalization and conjunctions (Shaked and Shanthikumar (1994, p. 133)). These
consequences have no bearing whatsoever in the proof of the result RLu(ρ) ↓lr with ρ,
under the assumption of stochastically monotone transition probability matrices (in the
likelihood ratio sense), related as in Equation (3.29) with ∗ = lr. A similar problem holds
for the multivariate hazard rate order which has even less properties.

Effort has also been made to establish the results using a technique similar to the one
used to prove result (3.15). This approach requires an analogue of the composition law
(and its dual) involving two substochastic matrices, Q(ρ) and Q(ρ′).

As a consequence, stronger versions of (3.26) are not stated.

3.3 Results in the continuous state space case

The Markov approach was originally introduced by Brook and Evans (1972) as an alter-
native to the integral equation method proposed by Van Dobben de Bruyn (1968) (see
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also Crowder (1987a)) for approximating the RL related measures of CUSUM schemes
designed to control any continuous quality characteristic. The publication of Lucas and
Saccucci (1990) had a tremendous impact in the widespread application of the Markov
approach. Its popularility stems from the way that it leads to very elegant recurrence re-
lations for some RL related measures (such as the probability and distribution functions),
and therefore may be computationally implemented using only few operations.

When we are dealing with continuous data the Markov chain approach begins by
approximating the problem — through the discretization of the summary statistic state
space (see Example 3.15) —, and then by obtaining the exact solution to the approximate
problem. On the other hand, the integral equation approach starts with the exact problem
and finds an approximate solution to it.8

More recently, Luceño and Puig-Pey (2000) proposed a fast and accurate approxima-
tion algorithm for obtaining RL related quantities for any continuous data.

The next example shows how the Markov approach can be used to produce approxi-
mations to RL related measures of an upper one-sided CUSUM scheme for the standard
deviation (σ) of a normally distributed quality characteristic.

Example 3.15 — Let (X1N , . . . , XnN ) be the random sample of size n at the sampling
period N taken from a normal distribution with nominal mean and standard deviation µ0

and σ0. An increase in σ is measured by θ = σ/σ0 ≥ 1.
The summary statistic of the upper one-sided CUSUM scheme for σ depends on θ and

can be found, such as presented below, in Gan (1995):

ZN =

{
u,N = 0
max{0, ZN−1 + ln(S2

N )− k}, N ∈ IN
(3.30)

where: u belong to the decision interval [LCL,UCL) = [0, h); S2
N = (n−1)−1∑n

i=1(XiN−
XN )2 represents the sample variance at the sampling period N ; and, given θ, (n −
1)S2

N/(θσ0)2 has a χ2
n−1 distribution.

This summary statistic is associated to {VN , N ∈ IN0}, a discrete time, absorbing and
homogeneous Markov chain with continuous state space [LCL,UCL], defined as follows:
V0 = u and

VN =

{
UCL, if VN−1 + ln(S2

N )− k ≥ UCL or VN−1 = UCL

max{0, VN−1 + ln(S2
N )− k}, otherwise.

(3.31)

The initial distribution P (V0 ≤ z) = I[u,∞)(z) and the transition probability function,

K(z; y) = P (VN ≤ z | VN−1 = y), (3.32)

of this homogeneous Markov chain uniquely determine its behaviour. This function equals

K(z; y) =


0, z < LCL

Fχ2
n−1

[
(n− 1) exp(z − y + k)/(θσ0)2

]
, LCL ≤ z < UCL

Fχ2
n−1

[
(n− 1) exp(UCL− y + k)/(θσ0)2

]
, z ≥ UCL,

(3.33)

8We note in passing that Champ and Rigdon (1991) show the following result: if the product midpoint

rule is used to approximate the integral equation, then both approaches yield the same approximations for

the ARL.
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for y ∈ [LCL,UCL), and is given by K(z; y) = I[UCL,∞)(z), for y = UCL.
To discretize the continuous state space of the Markov chain {VN , N ∈ IN0} it suffices

to divide the decision interval in (x + 1) sub-intervals with equal range ∆ = (UCL −
LCL)/(x+ 1), [ei, ei+1), i = 0, 1, . . . , x where x is a positive integer and

ei = LCL+ i×∆, i = 0, 1, . . . , x. (3.34)

Each sub-interval [ei, ei+1) is then associated to transient state i of an approximating
absorbing Markov chain with discrete state space {0, 1, . . . , x + 1}, {VN (x), N ∈ IN0}.
According to this discretization the real value y, y ∈ [LCL,UCL), is associated to state

e(y;x) =
⌊

y − LCL

UCL− LCL
× (x+ 1)

⌋
; (3.35)

and y = UCL is associated to the absorbing state x+ 1. Furthermore, the initial value of
the approximating Markov chain {VN (x), N ∈ IN0} is equal to e(u;x), which is the state
related to V0 = u, u ∈ [LCL,UCL).

This approximating Markov chain is ruled by the transition matrix P(x) = [pij(x)]x+1
i,j=0

where:

pij(x) = P

(
ej ≤ VN < ej+1 | VN−1 =

ei + ei+1

2

)
= K

(
ej+1;

ei + ei+1

2

)
−K

(
ej ;

ei + ei+1

2

)
(3.36)

for i, j = 0, 1, . . . , x, with

K

(
el;

ei + ei+1

2

)
= Fχ2

n−1

(
n− 1
θ2σ2

0

× exp
{
k +

h[l − (i+ 1/2)]
x+ 1

})
, (3.37)

for l = 0, 1, . . . , x. Since P(x) can be partitioned as in Equation (2.53) we have:

pi x+1(x) = 1−
x∑

l=0

pi l(x), i = 0, 1, . . . , x (3.38)

px+1 j(x) = I{x+1}(j), i = 0, 1, . . . , x+ 1. (3.39)

Thus, the exact run length of this scheme is approximated by a phase-type distribution
involving the substochastic matrix Q(x) = [pi j(x)]xi,j=0; and the approximations of all the
RL related measures in Table 2.3 are obtained by replacing Q(θ) with Q(x). •

Note that, although having proposed the Markov approach in the case of continuous
quality characteristics, Brook and Evans (1972) did not prove that {VN (x), N ∈ IN0}
converges in law to {VN , N ∈ IN0} as x→∞, or that the approximating run length,

RLe(u;x)(x) = min{N : VN (x) = UCL | V0(x) = e(u;x)}, (3.40)

converges in law to the exact run length,

RLu = min{N : ZN ≥ UCL | Z0 = u}. (3.41)

For the sake of completeness these two results are stated and proved below. (Analogous
convergence results for all schemes in Chapters 5 and 6 follow quite similarly.)
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Lemma 3.16 — The following convergence results hold, as x→∞:

{VN (x), N ∈ IN0} −→st {VN , N ∈ IN0} (3.42)

RLe(u;x)(x) −→st RL
u, (3.43)

for all u ∈ [LCL,UCL), where ”−→st” denotes convergence in distribution.

Proof — Before proving (3.42) and (3.43), recall the following result involving the integer
part of a specific real number:

lim
x→∞

bc(x+ 1)/dc × d/(x+ 1) = c, (3.44)

for all c ∈ IR and d 6= 0.
Since the initial distribution and the transition probability function uniquely define

the Markov chain {VN , N ∈ IN0}, to show (3.42) we must prove that

lim
x→∞

P [V0(x) ≤ e(z;x)] = P (V0 ≤ z), (3.45)

lim
x→∞

P [VN (x) ≤ e(z;x)|VN−1(x) = e(y;x)] = K(z; y), N ∈ IN, (3.46)

for every continuity point z ∈ [LCL,UCL]. Thus, (3.42) follows since, using (3.44),

lim
x→∞

P [V0(x) ≤ e(z;x)]

= lim
x→∞

P

[
V0 ≤ LCL+

e(z;x)(UCL− LCL)
x+ 1

]

= lim
x→∞

P

[
V0 ≤ LCL+

⌊
(z − LCL)× (x+ 1)

UCL− LCL

⌋
× UCL− LCL

x+ 1

]
= P (V0 ≤ z), (3.47)

and, in addition, for N ∈ IN ,

lim
x→∞

P [VN (x) ≤ e(z;x)|VN−1(x) = e(y;x)]

= lim
x→∞

P

[
VN ≤ LCL+

e(z;x)(UCL− LCL)
x+ 1

∣∣∣∣
VN−1 = LCL+

[e(y;x) + 1/2](UCL− LCL)
x+ 1

]

= lim
x→∞

P

[
VN ≤ LCL+

⌊
(z − LCL)× (x+ 1)

UCL− LCL

⌋
× UCL− LCL

x+ 1

∣∣∣∣
VN−1 = LCL+

{⌊
(y − LCL)× (x+ 1)

UCL− LCL

⌋
+

1
2

}
× UCL− LCL

x+ 1

]

= P (VN ≤ z|VN−1 = y)

= K(z; y). (3.48)
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The convergence result (3.43) concerning the approximation of the run length follows
immediately from (3.42) and Theorem 3.4. •

A question that immediately springs to mind is: “Do the monotonicity properties of
the approximating run length RLe(u;x)(x) still hold for the exact run length RLu when
we are dealing with schemes for continuous data?” The answer is affirmative because
the stochastic orderings ≤st, ≤hr, ≤rh and ≤lr have what Stoyan (1983, p. 2) calls the
weak convergence property — i.e. these orderings are closed under the limit operation as
referred by the next proposition.

Proposition 3.17 — Let {Xi, i ∈ IN} and {Yi, i ∈ IN} be two sequences of positive
integer value random variables such that:

• Xi ≤∗ Yi, i ∈ IN , where ∗ stands for the orderings ≤st, ≤hr, ≤rh and ≤lr;

• Xi −→st X and Yi −→st Y , as i→∞.

Then X ≤∗ Y.

Proof — Proposition 3.17 corresponds to Proposition 1.2.3 of Stoyan (1983, p. 6) and
Theorem 1.A.3c) of Shaked and Shanthikumar (1994, p. 6) when ∗ = st. The three
remaining cases are not stated in those two references. The proofs of all these results are
quite similar and are inspired by the one presented by Stoyan (1983, p. 6). Thus, we only
present the proof corresponding to ∗ = hr.

Let {Fi(x), i ∈ IN} and {Gi(x), i ∈ IN} be the sequences of distribution functions
associated with {Xi, i ∈ IN} and {Yi, i ∈ IN}. Under the conditions of the proposition we
have, for every i ∈ IN :

1− Fi(y)
1− Fi(y − 1)

≤ 1−Gi(y)
1−Gi(y − 1)

, y ∈ IN, (3.49)

for the ordering ≤hr. Moreover, Fi(y) and Gi(y) converge to F (y) and G(y), for all
continuity points of F (y) and G(y).

By virtue of these facts we conclude that

1− F (y)
1− F (y − 1)

= lim
i→∞

1− Fi(y)
1− Fi(y − 1)

≤ lim
i→∞

1−Gi(y)
1−Gi(y − 1)

=
1−G(y)

1−G(y − 1)
, (3.50)

for every continuity point y of F and G.9

Now take a discontinuity point y of F and G and admit that

1− F (y)
1− F (y − 1)

>
1−G(y)

1−G(y − 1)
(3.51)

for the ordering hr. Since the discontinuity points are at most countable there exists a
sequence of continuity points {wm(y),m ∈ IN} of F and G for which wm(y) ↓ y as m→∞.

9Note that in this case y − 1 is also a continuity point.
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Therefore, by the right-continuity property of F and G:

1− F (y)
1− F (y − 1)

= lim
m→∞

1− F [wm(y)]
1− F [wm(y − 1)]

≤ lim
m→∞

1−G[wm(y)]
1−G[wm(y − 1)]

=
1−G(y)

1−G(y − 1)
, (3.52)

whence a contradiction. •

Lemma 3.18 — If RLe(u;x)(x) satisfies a stochastic monotonicity property (in the st, hr,
rh or lr sense) so will RLu.

Proof — The results can be inferred from a direct application of the stochastic conver-
gence of the Markov approximation and Proposition 3.17. •

As a final remark we would like to add that Morais and Pacheco (1998c, 1999b) applied
result (3.14) and Corollary 3.13 to first passage times/performance measures arising in
reliability theory, queueing systems and quality control.
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Chapter 4

Combined CUSUM–Shewhart

schemes for binomial data

Improving the detection speed of a small, a moderate or a large upward shift in the
expected number of defective items can be done in several ways. For instance:

• By changing the summary statistic — Upper one-sided CUSUM and modified1 EWMA
schemes tend to give earlier indication of small and moderate increases in process pa-
rameters when compared to the classical upper one-sided Shewhart control schemes.
See, for example, Gan (1990a, 1993) for binomial data, and Lucas (1985), Gan
(1990b) and White, Keats and Stanley (1997) in the case of Poisson data.

• By adopting variable sampling intervals (VSI) — The efficiency of a control scheme
may be enhanced by relating the sampling interval to the observed values of the sum-
mary statistic: for instance, using a longer sampling interval if the sample statistic
is close to the target and a shorter one otherwise. Results on the advantages of using
VSI policies have been presented, for example, by: Reynolds Jr. et al. (1988) for
the X̄-scheme; Shobe (1988) for count data control schemes; Reynolds Jr., Amin
and Arnold (1990) for CUSUM control schemes; Vaughan (1993) for binomial data;
Morais and Natário (1998) for upper one-sided c-schemes; and Ramalhoto and Morais
(1998, 1999) for the scale parameter of a Weibull control variable.2

• By changing the decision rule — We can also use two or more observations of a
summary statistic to come up with a non standard decision rule that is better (in
some sense) than the standard decision rule which is based on only one observation.
Several supplementary runs rules have been suggested in the literature. They may

1This adjective has here quite a different meaning from the one in the papers by W. Schmid and his

collaborators.
2Note that Vaughan proposes another version of the VSI policy for binomial data, which is far more

complex in terms of operationality than the VSI policy described in the previously mentioned papers: a) if

a sample reveals more than c defective items the state of the process is investigated and possibly corrected;

the sampling interval in this case is equal to the time required for the process to produce kR units of

output; b) if d (d ≤ c) defectives are observed, production is allowed to continue, and the next sample is

begun after kd units of output have been produced.
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be stated in the following way: an out-of-control signal is triggered if k of the last m
observed values of the summary statistic fall in a specific interval defined by what is
commonly known as the warning lines.3 As shown by Champ and Woodall (1987)
for normal data, these non standard decision rules lead to Shewhart schemes capable
of providing a quick detection of a change in the process parameter (although they
do not bring their performance up to CUSUM levels) at the cost of increasing the
false alarm rate.

Nelson (1997) suggests a runs test for a np−scheme to signal the occurrence of a
special cause indicating that p has decreased. This test is particularly advantageous
when there is no lower control limit.

• By adopting combined upper one-sided CUSUM–Shewhart control schemes — Adding
Shewhart limits is probably the simplest possible modification of a CUSUM scheme.
Also considerable advantage is to be gained by using the combination of these two
types of schemes since it takes advantage of two well known facts: the Shewhart
schemes are favored when a large shift has occured, and the CUSUM schemes allows
a fast detection of small and moderate shifts. Numerical results concerning the com-
bined upper one-sided CUSUM–Shewhart schemes for Poisson data can be found in
Yashchin (1985), Abel (1990) and Morais and Pacheco (1999a).

The statistical research in the area of combined CUSUM–Shewhart control schemes
seems to have been initiated by

• Westgard et al. (1977). These authors propose the use of this sort of scheme for
singular observations as an easier alternative to a standard CUSUM control scheme
with a V-mask, which had not been readily accepted in clinical chemistry laborato-
ries.

This paper was soon followed by:

• Lucas (1982). In this paper Lucas proposes a combined two-sided CUSUM–Shewhart
scheme. In any case this work is restricted to the control of increases and decreases
of the mean of a normally distributed quality control characteristic, and to the
comparison of non-matched CUSUM and combined CUSUM–Shewhart schemes.

• Yashchin (1985). This reference not only considers combined one-sided and two-
sided CUSUM–Shewhart schemes for normal data, but also addresses the use of
combined CUSUM–Shewhart control schemes for count data as in Abel (1990).4

The count data considered had, in both cases, a Poisson distribution.

As for applications (other than industrial quality control) of these combined schemes,
we mention the following papers:

3According to Lai (1974), the use of warning lines was proposed by Dudding and Jennett (1944).
4One of the major contributions of Yashchin (1985) is the proposed design procedure: it is not based in

the ARL behaviour as in Lucas (1982). This procedure is based, for instance, in the RL survival function

behaviour in the on-target situation.
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• Blacksell et al. (1994). It is a mere application of a combined CUSUM–Shewhart
scheme for the mean of normally distributed data — as described by Westgard et al.
(1977) — to the control of results from an enzyme-linked immunoabsorbent assay
(ELISA) for the typing of foot and mouth disease virus (FMVD) antigen in the
routine laboratory diagnosis of FMVD.

• Gibbons (1999). This author starts his presentation by referring that the combined
CUSUM–Shewhart schemes have been routinely applied to detection monitoring pro-
grams at waste disposal facilities. According to the author, this follows by virtue of
the fact that this combined scheme is the only statistical procedure that is directly
recommended for use in intra-well monitoring by U.S. EPA (1989, 1992).

As a final note we mention two other papers referring to combined Shewhart–Cumulative
Score schemes for controlling the process mean of a continuous process production: Ncube
and Woodall (1984) and Amin and Ncube (1991).

This review of closely related work gives the distinct idea that combined CUSUM–
Shewhart quality control schemes have mainly been concerned with monitoring continuous
variables and Poisson data. In fact, as far as we have investigated, we have not seen
any work on combined CUSUM–Shewhart control scheme for binomial data, although the
advantages of this combined approach would seem to follow straightforwardly for this kind
of data, as reported in the following sections.

4.1 Description of the combined scheme

The upper one-sided binomial CUSUM scheme is planned to detect increases from the
nominal value np0 to a larger expected value of defectives count n(p0 + θ), θ ∈ Θ\{0}
where Θ = [0, 1 − p0). This control scheme makes use of a summary statistic similar to
the one considered in Example 2.7:

ZN (θ) =

{
u, N = 0
max{0, ZN−1(θ) + YN (θ)− k}, N > 0,

(4.1)

Recall that: u represents the initial value given to the summary statistic; YN (θ) =∑N
i=1XiN (θ) is of course the total number of defectives in the N th sample; given θ, the

YN (θ)’s are i.i.d. to Y (θ) ∼ bin(n, p0 + θ); k is the so called reference value.
The usual practice in maintaining an upper one-sided CUSUM control scheme for this

type of data (and certainly for other types of atribute and for continuous data) is to trigger
a signal as soon as ZN (θ) exceeds the upper control limit x. However, it seems reasonable
that the upper one-sided CUSUM scheme gives a signal at the first time N such that

ZN (θ) > x or ZN (θ)− ZN−1(θ) > y. (4.2)

The reason for this stems from the fact that a large increment in the summary statistic,
say exceeding y (0 ≤ y ≤ x), should also be taken as an indication of a shift in the process
parameter, even if the summary statistic does not exceed the upper control limit.

The second condition in (4.2) will be responsible for a signal at time N when

ZN (θ)− ZN−1(θ) = YN (θ)− k > y, (4.3)
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or when

YN (θ) > y + k if ZN−1(θ) = 0. (4.4)

Therefore, the combined decision rule (4.2) corresponds to the simultaneous use of stan-
dard upper one-sided control schemes of types CUSUM and Shewhart, with summary
statistics ZN (θ) and YN (θ), respectively. This combined scheme states that the process is
out of control at time N if

ZN (θ) > x or YN (θ) > y + k. (4.5)

Now we illustrate the performance of an upper one-sided binomial CUSUM control
scheme before and after combining it with an upper one-sided Shewhart scheme (i.e. an
upper one-sided np−scheme), using a simulated data set and a control scheme, both taken
from Gan (1993, pp. 453-4).

Example 4.1 — Table 4.2 has the observed defective counts, that is, the observed values
of the summary statistic of an upper one-sided np−scheme. The first 50 observations
were drawn when the process was operating at the nominal mean level np0 = 100× 0.05.
The next 20 observations were taken from the same process after a shift to n(p0 + θ) =
100× (0.05 + 0.006).

Table 4.1: Observed values of the binomial CUSUM statistic with: n = 100; p = p0 = 0.05,
for N = 1, . . . , 50; and p = p0 + θ = 0.056, for N = 51, . . . , 70.

N zN N zN N zN N zN N zN N zN N zN

1 0 11 8.1 21 0.20 31 5.30 41 12.40 51 7.50 61 19.60

2 4.71 12 7.81 22 0.91 32 5.01 42 9.11 52 7.21 62 23.31

3 4.42 13 7.52 23 2.62 33 4.72 43 11.82 53 8.92 63 23.02

4 10.13 14 5.23 24 2.33 34 6.43 44 10.53 54 12.63 64 20.73

5 6.84 15 3.94 25 3.04 35 10.14 45 10.24 55 11.34 65 21.44

6 7.55 16 2.65 26 4.75 36 9.85 46 12.95 56 12.05 66 24.15

7 4.26 17 5.36 27 7.46 37 12.56 47 13.66 57 15.76 67 22.86

8 6.97 18 4.07 28 5.17 38 13.27 48 14.37 58 17.47 68 23.57

9 9.68 19 5.78 29 5.88 39 13.98 49 10.08 59 18.18 69 22.28

10 8.39 20 1.49 30 4.59 40 13.69 50 7.79 60 18.89* 70 22.99

* first out-of-control signal

The observed values of the CUSUM statistic ZN (θ) can be found in Table 4.1, for
the reference value k = 5.29 and the initial value u = 0 (that is, no head start (0%HS)
has been given to the scheme). The upper control limit of the CUSUM scheme is equal
to UCLC = x = 18.3. Moreover, if the critical level for the increments of the CUSUM
statistic is equal to y = 3.5 then the upper control limit of the Shewhart scheme is equal
to UCLS = y + k = 8.79.
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Table 4.2: Observed defective counts yN with: n = 100; p = p0 = 0.05, for N = 1, . . . , 50;
and p = p0 + θ = 0.056, for N = 51, . . . , 70.

N yN N yN N yN N yN N yN N yN N yN

1 4 11 5 21 4 31 6 41 4 51 5 61 6

2 10† 12 5 22 6 32 5 42 2 52 5 62 9

3 5 13 5 23 7 33 5 43 8 53 7 63 5

4 11‡ 14 3 24 5 34 7 44 4 54 9* 64 3

5 2 15 4 25 6 35 9†† 45 5 55 4 65 6

6 6 16 4 26 7 36 5 46 8 56 6 66 8

7 2 17 8 27 8 37 8 47 6 57 9 67 4

8 8 18 4 28 3 38 6 48 6 58 7 68 6

9 8 19 7 29 6 39 6 49 1 59 6 69 4

10 4 20 1 30 4 40 5 50 3 60 6 70 6

† first false alarm; ‡ second false alarm; †† third false alarm

* first out-of-control signal

The upper one-sided binomial CUSUM scheme gives an out-of-control signal at obser-
vation 60. However, if the combined upper one-sided binomial CUSUM–Shewhart scheme
described above had been active at the time this data was being collected, the operators
or engineers would have been immediately alerted to this out-of-control situation by the
54th observation, i.e. only 4 observations (instead of 10) after the shift had ocurred. Then,
they could have been able to assign a cause and improve the control system or remove the
source of disturbance earlier.

It is worth mentioning that the upper one-sided Shewhart scheme from the combined
control scheme was also responsible for 3 false alarms (prior to the ocurrence of the shift).

Figure 4.1: Observed values of the CUSUM (zN ) and Shewhart (yN ) summary statistics.

Both CUSUM and Shewhart summary statistics can be plotted simultaneously on a
single chart and both statistics are interpreted similarly against upper control limits x
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and y + k (respectively), thus, minimizing the effort in introducing and maintaining two
separate charts, as suggested by Westgard et al. (1977) and illustrated in Figure 4.1. •

We close this section remarking that Li and Shaked (1997) stress the importance in
reliability of first passage times associated with a discrete time Markovian failure model
{XN , N ≥ 0} that describes situations where a device fails once its damage level XN

crosses a threshold x or the increment of the damage level process XN − XN−1 exceeds
a certain critical value y. This first passage time immediately reminds us the one that
follows from the decision rule (4.2) of the combined upper one-sided CUSUM–Shewhart
schemes. These authors present sufficient conditions (involving the transition matrix of
the underlying Markov chain) under which the first passage time described above possesses
ageing properties such as IHR and IHRA.

4.2 RL distribution

Let the RLs of the upper one-sided CUSUM and the combined upper one-sided CUSUM–
Shewhart schemes be denoted by RLu(x; θ) and RLu(x, y; θ). Morever, let {ZN (θ), N ∈
IN0} denote the discrete time Markov chain formed by the evolution of the summary
statistic of the upper one-sided CUSUM scheme.

Now note that both Abel (1990) and Yashchin (1985) consider integer values for the
reference value of the combined CUSUM–Shewhart scheme for Poisson data. However,
following Lucas (1985) and Gan (1993), we can consider CUSUM schemes for count data
with rational reference value k because the Markov approach can still give an exact solution
for the RL distribution. Thus, if the reference value, the decision interval, the initial value
and the critical increment are rational numbers in the reduced form k = a/b, x = c/b,
u = d/b, and y = e/b (respectively), {ZN (θ), N ∈ IN0} has, after this rescaling, a discrete
state space {0, 1/b, 2/b, . . . , c/b, c/b+ 1, . . .}.

In this setting

RLu(x; θ) = min{N : ZN (θ) > x | Z0(θ) = u} (4.6)

RLu(x, y; θ) = min{N : ZN (θ) > x or ZN (θ)− ZN−1(θ) > y | Z0(θ) = u}
= min{N : ZN (θ) > x or YN (θ) > y + k | Z0(θ) = u}. (4.7)

The associated absorbing discrete time Markov chains have discrete state space {0, 1/b,
2/b, . . . , (c−1)/b, c/b, c/b+1} and are denoted by {SN (θ), N ∈ IN0} and {SN (θ), N ∈ IN0},
for the upper one-sided CUSUM and the upper one-sided combined CUSUM–Shewhart
schemes, respectively. {SN (θ), N ∈ IN0} is defined as in Equation (2.52); and {SN (θ), N ∈
IN0} is defined as follows: S0(θ) = S0(θ) = Z0(θ); and, for N ∈ IN

SN (θ) =

{
ZN (θ), while SN (θ) ≤ x and SN (θ)− SN−1(θ) ≤ y

SN (θ) = x+ 1, otherwise.
(4.8)

Furthermore RLu(x; θ) and RLu(x, y; θ) have θ−parameterized phase-type distributions
with parameters (eu,Q(θ)) and (eu,Q(θ)), respectively.
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For the sake of simplicity the entries of these two substochastic matrices are indexed
on {0, 1, . . . , xb}, that is, Q(θ) = [pij(θ)]xb

i,j=0 and Q(θ) = [pij(θ)]xb
i,j=0. The entries of Q(θ)

can be written in an alternative way:

pij(θ) =
j∑

l=0

pil(θ)−
j−1∑
l=0

pil(θ), i, j = 0, 1, . . . , xb, (4.9)

where

−1∑
l=0

pil(θ) = 0, i = 0, 1, . . . , xb (4.10)

j∑
l=0

pil(θ) = P [ZN+1(θ) ≤ j/b | ZN (θ) = i/b]

= FY (θ)[(j − i)/b+ k], i, j = 0, 1, . . . , xb. (4.11)

Additionally, the non-zero entries of Q(θ) are equal to

pij(θ) =
j∑

l=0

pil(θ)−
j−1∑
l=0

pil(θ),

i = 0, 1, . . . , xb, j = 0, 1, . . . ,min{i+ yb, xb}, (4.12)

since any transition corresponding to an increment ZN+1(θ)− ZN (θ) larger than y = e/b

is not allowed.5

So far we have not discussed the possible values for the critical increment y. This issue
is somehow related to the following topic: the relationship between the RLs of the upper
one-sided Shewhart and CUSUM schemes, and the combined CUSUM–Shewhart scheme.

The upper one-sided Shewhart and CUSUM schemes are obviously special cases of
the combined upper one-sided CUSUM–Shewhart scheme. In fact, if RLS(y + k; θ) and
RLu(x; θ) represent the run lengths of the upper one-sided Shewhart and CUSUM schemes,
we have:

RLS(y + k; θ) =st lim
x→+∞

RL0(x, y; θ) =st RL
0(+∞, y; θ) (4.13)

RLu(x; θ) =st RL
u(x, y; θ), y ≥ x. (4.14)

We can, thus, conclude that y should be always smaller than x, otherwise the performance
of the resulting scheme will not be any different from the one of the upper one-sided
CUSUM scheme.

5Equivalently, the entries of the matrix Q(θ) can be defined in terms of an improper distribution

function as in Yashchin (1985): pij(θ) =
∑j

l=0
pil(θ)−

∑j−1

l=0
pil(θ), i, j = 0, 1, . . . , xb, where

∑−1

l=0
pil(θ) =

0, i = 0, 1, . . . , xb, and, for i, j = 0, 1, . . . , xb,
∑j

l=0
pil(θ) = F+

Y (θ)[(j − i)/b + k] = FY (θ)[(j − i)/b + k] for

(j − i)/b ≤ y and FY (θ)(y + k) when (j − i)/b > y.
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Example 4.2 — Since Example 4.1 makes use of the reference value k = 5.29 and the
upper control limit x = 18.3, and therefore requires the use of a huge number of transient
states, 1 +xb = 1831, we consider a combined upper one-sided CUSUM–Shewhart scheme
whose CUSUM and Shewhart components correspond to the schemes described in Example
2.10 and Example 2.4, respectively. Recall that the parameters are: n = 100; p0 = 0.02 and
p1 = 0.0427685; the reference value and the upper control limit of the CUSUM component
are equal to k = 3 and x = 6; and the critical value for the increment is y = 4 because the
upper control limit of the Shewhart component equals y + k = 7.

Then RL0(6, 4; 0) has a discrete phase-type distribution represented by (e0,Q(0)),
where

Q(0) =



0.8590 0.0902 0.0353 0.0114 0.0031 0 0
0.6767 0.1823 0.0902 0.0353 0.0114 0.0031 0
0.4033 0.2734 0.1823 0.0902 0.0353 0.0114 0.0031
0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114
0 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353
0 0 0.1326 0.2707 0.2734 0.1823 0.0902
0 0 0 0.1326 0.2707 0.2734 0.1823


. (4.15)

This set of parameters yields to ARL0(6, 4; 0) = 603.743 which represents a 40.6%
reduction in the in-control ARL of the CUSUM component of the combined scheme,
ARL0(6; 0) = 1015.71, and a 43.7% reduction in the in-control ARL of its Shewhart com-
ponent, ARLS(4+3; 0) = 1073.03. Additionally, ARL0(6, 4; p1−p0) = 3.99, ARL0(6; p1−
p0) = 5.93 and ARLS(4 + 3; p1 − p0) = 15.37. These results lead us to assert that an up-
ward shift in p will remain unnoticed for less time in average when the combined scheme
is adopted at the cost of a higher false alarm rate, as previously noted in Example 4.1. •

In the next sections we shall make a clarification for such matters as the special fea-
tures of the stochastic matrix P(θ) of {SN (θ), N ∈ IN0} in order to investigate some of
the monotonicity properties of RLu(x, y; θ) and properly answer the following question:
“Can we go beyond the numerical comparisons concerning the ARL and stochastically
compare the performance of the combined upper one-sided CUSUM–Shewhart with the
two constituent schemes?”

4.3 Some features of the transition matrix and stochastic

monotonicities in the initial state

The stochastic matrix P(θ) results from a simple modification of P(θ) and is equal to6

p0 0 p0 1 · · · p0 y 0 · · · · · · 0 1−
∑y

l=0
p0 l

p1 0 p1 1 · · · · · · p1 y+1 0 · · · 0 1−
∑y+1

l=0
p1 l

.

.

.

.

.

. · · · · · · · · · · · · · · ·
.
.
.

.

.

.

px−y−1 0 px−y−1 1 . . . . . . . . . . . . px−y−1 x−1 0 1−
∑x−1

l=0
px−y−1 l

px−y 0 px−y 1 . . . . . . . . . . . . . . . px−y x 1−
∑x

l=0
px−y l

px−y+1 0 px−y+1 1 . . . . . . . . . . . . . . . px−y+1 x 1−
∑x

l=0
px−y+1 l

.

.

.

.

.

. · · · · · · · · · · · · · · ·
.
.
.

.

.

.

px 0 px 1 · · · · · · · · · · · · · · · px x 1−
∑x

l=0
px l

0 0 0 0 0 0 0 0 1


. (4.16)

6We shall omit θ for space reasons whenever we write down all the entries of P(θ), P(θ)U> or P(θ)U.
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As mentioned in Section 2.5 the binomial distribution has a decreasing likelihood ratio
(DLR). Thus, P(θ) ∈ Mlr according to Proposition 2.20. The next example help us
realize that P(θ) does not inherit this and another special feature of P(θ).

Example 4.3 — Take once again the combined scheme described in Example 4.2. The
in-control transition matrix that governs the associated absorbing Markov chain equals

P(0) =



0.8590 0.0902 0.0353 0.0114 0.0031 0 0 0.0010

0.6767 0.1823 0.0902 0.0353 0.0114 0.0031 0 0.0010

0.4033 0.2734 0.1823 0.0902 0.0353 0.0114 0.0031 0.0010

0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0114 0.0041

0 0.1326 0.2707 0.2734 0.1823 0.0902 0.0353 0.0155

0 0 0.1326 0.2707 0.2734 0.1823 0.0902 0.0508

0 0 0 0.1326 0.2707 0.2734 0.1823 0.1410

0 0 0 0 0 0 0 1


. (4.17)

It is clear that P(0) 6∈ TP2: this rightly follows from the fact that the 2× 2 minor in bold
in the previous equation is negative. Thus, P(0) 6∈ Mlr. Writing down

P(0)U =



1 0.1410 0.0508 0.0155 0.0041 0.0010 0.0010 0.0010

1 0.3233 0.1410 0.0508 0.0155 0.0041 0.0010 0.0010

1 0.5967 0.3233 0.1410 0.0508 0.0155 0.0041 0.0010

1 0.8674 0.5967 0.3233 0.1410 0.0508 0.0155 0.0041

1 1 0.8674 0.5967 0.3233 0.1410 0.0508 0.0155

1 1 1 0.8674 0.5967 0.3233 0.1410 0.0508

1 1 1 1 0.8674 0.5967 0.3233 0.1410

1 1 1 1 1 1 1 1


(4.18)

leads to a similar conclusion: P(0) 6∈ Mhr.
Despite the fact that P(0) 6∈ Mhr,Mlr, all the 2× 2 minors of

P(0)U> =



0.8590 0.9492 0.9845 0.9959 0.9990 0.9990 0.9990 1

0.6767 0.8590 0.9492 0.9845 0.9959 0.9990 0.9990 1

0.4033 0.6767 0.8590 0.9492 0.9845 0.9959 0.9990 1

0.1326 0.4033 0.6767 0.8590 0.9492 0.9845 0.9959 1

0 0.1326 0.4033 0.6767 0.8590 0.9492 0.9845 1

0 0 0.1326 0.4033 0.6767 0.8590 0.9492 1

0 0 0 0.1326 0.4033 0.6767 0.8590 1

0 0 0 0 0 0 0 1


(4.19)

are nonnegative, according to our calculations using Mathematica. Therefore P(0) ∈Mrh.
•

Theorem 4.4 — The matrix P(θ) has the following properties

P(θ) ∈Mst (4.20)

Y (θ) ∈ DLR⇒ P(θ) ∈Mrh (4.21)

P(θ) 6∈ Mhr (4.22)

P(θ) 6∈ Mlr, (4.23)

for 0 < y < x.
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These special features of P(θ) essentially mean that, if we associate probability func-
tions of discrete random variables to each row of P(θ), the associated random variables
increase stochastically — in the usual sense and in the reversed hazard rate sense in some
cases, but not in the hazard rate and likelihood ratio senses —, as we progress in the rows
of this stochastic matrix.

Theorem 4.4 holds for binomial and Poisson data and any other discrete DLR distri-
bution. Without loss of generality we consider b = 1 in the proof of this theorem.

Proof (4.20) — A direct substitution yields that

j∑
l=0

pil(θ) =
min{j,min{i+y,x}}∑

l=0

pil(θ)

= FY (θ)(min{j − i,min{y, x− i}}+ k) (4.24)

is a decreasing function of i, for all j = 0, 1, . . . , x, regardless of the distribution of Y (θ).
In the light of this result we can conclude that P(θ) is stochastically monotone in the
usual sense. •

Proof (4.21) — Taking into consideration that P(θ) ∈ TP2 for Y (θ) ∈ DLR and that
P(θ)U> equals



p0 0 . . .
∑y−1

l=0
p0 l

∑y

l=0
p0 l · · · · · · · · ·

∑y

l=0
p0 l 1

p1 0 . . . . . .
∑y

l=0
p1 l

∑y+1

l=0
p1 l · · · · · ·

∑y+1

l=0
p1 l 1

.

.

.

.

.

. · · · · · · · · · · · · · · ·
.
.
.

.

.

.

px−y−1 0 · · · . . . . . . . . . . . .
∑x−1

l=0
px−y−1 l

∑x−1

l=0
px−y−1 l 1

px−y 0 · · · . . . . . . . . . . . .
∑x−1

l=0
px−y l

∑x

l=0
px−y l 1

px−y+1 0 · · · . . . . . . . . . . . .
∑x−1

l=0
px−y+1 l

∑x

l=0
px−y+1 l 1

.

.

.

.

.

. · · · · · · · · · · · · · · ·
.
.
.

.

.

.

.

.

.

.

.

. · · · · · · · · · · · · · · ·
.
.
.

.

.

.

px 0 · · · · · · · · · · · · · · ·
∑x−1

l=0
px l

∑x

l=0
px l 1

0 0 0 0 0 0 0 0 1


(4.25)

we only need to prove that[ ∑y+h
l=0 ph l 1∑y+h+1

l=0 ph+1 l 1

]
∈ TP2, h = 0, 1, . . . , x− y − 1 (4.26)

and [ ∑x
l=0 ph l 1∑x

l=0 ph+1 l 1

]
∈ TP2, h = x− y, x− y + 1 . . . , x− 1 (4.27)

(see the proof of Theorem 2.8 of Li and Shaked (1997)). Statement (4.26) follows from

y+h∑
l=0

ph l =
y+h+1∑

l=0

ph+1 l = FY (y + k), (4.28)
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due to the spatial homogeneity of the Markov chain ruled by P(θ) and to Equation (4.11).7

On the other hand (4.27) is a consequence of the stochastic monotonicity of P(θ). •

Proof (4.22) — Visualizing P(θ)U,

1 1− p0 0 . . . 1−
∑y

l=0
p0 l · · · · · · 1−

∑y

l=0
p0 l 1−

∑y

l=0
p0 l

1 1− p1 0 . . . 1−
∑y

l=0
p1 l 1−

∑y+1

l=0
p1 l · · · 1−

∑y+1

l=0
p1 l 1−

∑y+1

l=0
p1 l

.

.

.

.

.

. · · · · · · · · · · · ·
.
.
.

.

.

.

1 1− px−y−1 0 · · · · · · · · · · · · 1−
∑x−1

l=0
px−y−1 l 1−

∑x−1

l=0
px−y−1 l

1 1− px−y 0 · · · · · · · · · · · · 1−
∑x−1

l=0
px−y l 1−

∑x

l=0
px−y l

1 1− px−y+1 0 · · · . . . · · · · · · 1−
∑x−1

l=0
px−y+1 l 1−

∑x

l=0
px−y+1 l

.

.

.

.

.

. · · · · · · · · · · · ·
.
.
.

.

.

.

.

.

.

.

.

. · · · · · · · · · · · ·
.
.
.

.

.

.

1 1− px 0 · · · · · · · · · · · · 1−
∑x−1

l=0
px l 1−

∑x

l=0
px l

1 1 1 1 1 1 1 1


, (4.29)

shall help us prove that P(θ)U is not a TP2 matrix.
This result can be immediately inferred if we observe that, from the spatial homogene-

ity of P(θ), the 2×2 minor in bold, concerning the two last columns of P(θ)U and states
(x− y − 1) and (x− y), is equal to

−px−y x ×
(

1−
x−1∑
l=0

px−y−1 l

)
< 0. (4.30)

•

Proof (4.23) — (4.23) is a consequence of (4.22) in view of (2.70); and alternative proof
of (4.23) is as follows.

From (4.16), and also as suggested by Example 4.3, it follows that any 2 × 2 minor
that includes the two last columns of P(θ) and involves the line associated with state
(x − y) and one of the first (x − y) rows of P(θ) is negative. In fact, if we pick the rows
corresponding to states x− y and h (0 ≤ h ≤ x− y− 1) and the last two columns of P(θ),
given by (4.16), the corresponding 2× 2 minor is equal to

−px−y x ×

1−
y+h∑
l=0

ph l

 < 0. (4.31)

•

Remark 4.5 — We note that (4.23) is also a consequence of Theorem 2.1 of Keilson and
Kester (1978), which describes the zero-structure of TP2 matrices as follows. Let BNE

m n be
the “northeast” quadrant of a matrix B = [bij ]

N,M
i,j=1, that is, the submatrix with component

indices (i, j) with i ≤ m, j ≥ n. Define the “southwest” quadrant of B, BSW
m n , similarly.

7Li and Shaked (1997) used instead the assumption of stochastic convexity of the transition matrix.

Recall that a matrix R = [ri j ]i,j∈IN0 is stochastically monotone convex if
∑+∞

j=k
ri j ≤

∑+∞
j=k+1

ri+1 j , i, k ∈
IN0. According to Remark 2.3 in Li and Shaked (1997) it easy to see that R is upper triangular. Clearly,

we are not dealing with a stochastic matrix with such a property, in the quality control setting.
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Theorem 2.1 of Keilson and Kester (1978) asserts that if B ∈ TP2 and bm n is a zero
element in a non-null row and non-null column, then either BNE

m n = O, or BSW
m n = O.

Needless to say that every zero entry above the diagonal of P(θ) — take for instance
(m,n) = (h, x), h = 0, 1, . . . , x− y− 1 — belongs to a non-null row and a non-null column
and has no “northeast” or “southwest” quadrants equal to O. Thus, P(θ) is not TP2. •

Under the conditions of Theorem 4.4, a direct application of Theorem 3.8 enables us
to state the next theorem.

Theorem 4.6 — The run length of the upper one-sided combined CUSUM–Shewhart has
the following stochastic behaviour in terms of the initial value u of the summary statistic,
for discrete data and a critical increment y < x:

RLu(x, y; θ) ↓st with u (4.32)

Y (θ) ∈ DLR⇒ RLu(x, y; θ) ↓hr with u. (4.33)

Proof — The first result of Theorem 4.6 follows from result (4.20) of Theorem 4.4 and
the stochastic implication of the adoption of a head start condensed in result (3.14) of
Theorem 3.8. Similarly, (4.33) is a direct consequence of results (4.21) and (3.15), which
also refer to Theorem 4.4 and Theorem 3.8, respectively. •

Remark 4.7 — Giving a head start to a combined upper one-sided CUSUM–Shewhart
scheme leads to:

• more frequent signals within the firstm samples (for any value ofm), namely, it yields
an increase in the chance that the combined scheme will detect a shift immediately
after it occurred; and

• an increase of the alarm rate of this scheme at sample m, λRLu(m), in case the
discrete data has a DLR distribution.

In practice, false alarms will be more likely to happen as the initial value of the summary
statistic grows. In addition, the number of samples taken until detection of an increase
in the parameter is stochastically reduced by increasing the initial value of the summary
statistic. •

As seen in Theorem 4.4 the transition matrix P(θ) can be stochastically monotone
in reversed hazard rate sense. Therefore, if we apply the result (2.119) of Lemma 2.21,
we get the following corollary concerning the monotone character of the hazard rate of
RL0(x, y; θ).

Corollary 4.8 — If Y (θ) ∈ DLR then RL0(x, y; θ) ∈ IHR.

Since P(θ) 6∈Mlr, RLu(x, y; θ) is bound to have no decreasing behaviour in the likeli-
hood ratio sense. The next example illustrates not only this fact but also the monotone
character of the alarm rate function of RL0(x, y; θ).
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Example 4.9 — ConsiderRLu(6, 4; θ), the RL of the upper one-sided combined CUSUM–
Shewhart scheme for binomial data described in Example 4.2.

In Table 4.3 we can find some values of the hazard (or alarm) rate and equilibrium
rate functions of four distinct RLs associated with the combined scheme without head
start (RL0(6, 4; 0) and RL0(6, 4; p1 − p0)), and with a 50% head start (RL3(6, 4; 0) and
RL3(6, 4; p1 − p0)).

Table 4.3: ARLs, alarm rates and equilibrium rates of RLu(6, 4; θ), for u = 0, 3.

λRL(m) rRL(m)

m RL0(6, 4; 0) RL3(6, 4; 0) RL0(6, 4; p1 − p0) RL3(6, 4; p1 − p0) RL0(6, 4; 0) RL3(6, 4; 0)

1 0.000932 0.004062 0.065065 0.136973 — —

2 0.001013 0.006201 0.089031 0.272616 0.920552 0.657783

3 0.001206 0.005159 0.157957 0.300351 0.841304 1.209509

4 0.001372 0.003938 0.208567 0.303617 0.880166 1.316624

5 0.001484 0.003063 0.239501 0.301431 0.925239 1.290967

10 0.001648 0.001764 0.284820 0.292443 0.996186 1.042719

20 0.001661 0.001661 0.290638 0.290772 1.001636 1.001887

30 0.001661 0.001661 0.290740 0.290742 1.001663 1.001664

100 0.001661 0.001661 0.290741 0.290741 1.001663 1.001663

ARL 603.743 592.559 193.813 184.854 — —

If we compare columns 2 and 3, and 4 and 5, we can see that the alarm rate function
increases with the initial value of the summary statistic, as stated in Theorem 4.6. These
values also show how unlikely (likely) is the emission of a false alarm (of a correct signal)
at sample m, given that no previous signal has been triggered.

The use of a 50% head start yields a mild reduction in the in-control ARL and a slightly
larger relative reduction in the out-control ARLs, because the right tail behaviour of the
in-control RL distribution is practically independent of the head start (see Lucas and
Crosier (1982)). However, the alarm rate at the first samples can increase considerably,
specially in out-of-control situations, as we can see by comparing columns 4 and 5 of Table
4.3.

Columns 2 and 4 of Table 4.3 illustrate the increasing behaviour of the alarm rate
function of RL0(6, 4; θ) (Corollary 4.8). Thus, signalling, given that no observation has
previously exceeded the upper control limit, becomes more likely, as we proceed with
the sampling procedure. However, this table and Figure 4.2 enable us to also add that
RL3(6, 4; 0), RL3(6, 4; p1 − p0) 6∈ IHR (see columns 3 and 5).

We should also add that the limiting form of the probability function of the RL is
geometric-like with parameter 1−ξ(θ), where ξ(θ) is the maximum real eigenvalue of Q(θ)
(see Brook and Evans (1972)), regardless of the initial value u of the summary statistic.
Thus, it comes as no surprise that the values of the alarm rate functions of RL0(6, 4; 0)
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and RL3(6, 4; 0), and RL0(6, 4; p1 − p0) and RL3(6, 4; p1 − p0) rapidly converge to

lim
m→+∞

λRLu(6,4;0)(m) = 1− ξ(0) = 0.001661 (4.34)

lim
m→+∞

λRLu(6,4;p1−p0)(m) = 1− ξ(p1 − p0) = 0.290741, (4.35)

respectively, as seen in Table 4.3 and Figure 4.2.

Figure 4.2: Alarm rates of RLu(6, 4; 0) and RLu(6, 4; p1 − p0), for u = 0 (on the left) and
u = 3 (on the right).

The fact that the equilibrium rate of RL3(6, 4; 0), rRL3(6,4;0)(m) = P [RL3(6, 4; 0) =
m − 1]/P [RL3(6, 4; 0) = m],m = 2, 3 . . ., is not always pointwise above rRL0(6,4;0)(m) is
apparent from the two last columns of Table 4.3. As a consequence we can infer that
RL3(6, 4; 0) 6≤lr RL

0(6, 4; 0). •

4.4 Other stochastic monotonicities

As we have seen in the previous section, adopting a head start HS can lead to a stochastic
reduction (in the usual and hazard rate senses) of the run length of the upper one-sided
combined CUSUM–Shewhart scheme for discrete data.

In this section, we present, interpret (as remarks) and prove several other stochastic
properties of combined upper one-sided CUSUM–Shewhart schemes, namely the stochastic
consequences of the adoption of such a scheme in the performance of upper one-sided
Shewhart and CUSUM control charts.

In the following consider binomial data (without any loss of generality), k ≥ 0, x > 0,
0 ≤ u ≤ x, 0 ≤ y ≤ x and θ ∈ Θ = [0, 1− p0).
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In addition, we adopt a specific notation: for instance, RLu(x, y; θ, n) (P(θ;n)) is used
to explicitly declare that the run length (transition matrix) depends on the sample size n
and that we are interested in knowing the stochastic implications of changes in n. This
also holds for other parameters like k (or x and y, when we refer to the transition matrix).

Theorem 4.10 — RLu(x, y; θ) has the following decreasing stochastic monotonicity prop-
erties in the usual sense:

RLu(x, y; θ) ↓st with θ (4.36)

RLu(x, y; θ, n) ↓st with n. (4.37)

Furthermore, RLu(x, y; θ) increases stochastically in the usual sense with k, x and y:

RLu(x, y; θ, k) ↑st with k (4.38)

RLu(x, y; θ) ↑st with x (4.39)

RLu(x, y; θ) ↑st with y. (4.40)

Remark 4.11 — Statements (4.36)-(4.40) are very intuitive; they essentially (and re-
spectively) mean that:

• The control chart stochastically increases its ability to trigger an out-of-control signal
as the increase in the parameter becomes more severe.

• In the case of binomial data, increasing the sample size corresponds to colecting more
information about the process, thus, the chart is more sensitive to upward shifts at
the cost of increasing the frequency of false alarms. However, recall that “unnec-
essarily large samples sizes may result in reaction to small effects of no practical
significance”, as mentioned by Woodall (2000) when this author refers to Woodall
and Faltin (1996).8

• An increase in the reference value k implies values of the summary statistic closer
to the origin, yielding a control chart that stochastically produces fewer false alarms
and larger detection times of upward shifts in the parameter.

• Adopting a larger decision interval leads to stochastically larger RLs. Therefore, the
false alarm rate decreases, but an increase of the process mean from its target value
will stochastically remain unnoticed for more time.

• Increasing y means a less stringent monitoring program and corresponds to weakning
the impact of the Shewhart part of the combined scheme. Thus, a stochastic increase
of the RL occurs if the critical increment for the summary statistic increases. •

8According to Lai (1974), Weiler (1952) discussed the choice of the sample size and pointed out that

larger samples than those usually taken in industry should be used when it is important to detect small

shifts in the mean, and that small but frequent samples may be adequate for detecting large shifts in the

mean.
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The stochastic improvement over the performance of the upper one-sided CUSUM
scheme, derived from the adoption of the combined upper one-sided CUSUM–Shewhart
scheme, and two other stochastic properties in the usual sense are stated in detail in the
next theorem.

Recall that RLS(y+k; θ) and RLu(x; θ) denote the run lengths of the upper one-sided
Shewhart and CUSUM schemes, respectively.

Theorem 4.12 — The run lengths of the upper one-sided Shewhart and CUSUM schemes
have the following properties:

RLu(x, y; θ) ≤st RLS(y + k; θ) (4.41)

RLu(x, y; θ) ≤st RL
u(x; θ), y ≤ x (4.42)

RLu(x; θ) ≤st RL
u(x′, y; θ), x′ ≥ x, x ≤ y ≤ x′. (4.43)

Remark 4.13 — The combined upper one-sided CUSUM–Shewhart scheme certainly has
a larger ability of discriminating increases in the expected value of the defects/defectives
count than both its Shewhart and CUSUM components, leading for instance to smaller
ARLs. However, the adoption of the combined scheme has an unpleasant disadvantage: it
also leads to a stochastic reduction of the RL when the production process is in-control,
therefore false alarms occur more frequently.

If we desire to compensate the stochastic decrease of the in-control RL of the upper
one-sided CUSUM scheme due to the adoption of the combined upper one-sided CUSUM–
Shewhart scheme, by using an upper control limit x′, larger than x, then we should not
forget that we can never improve, stochastically, an upper one-sided CUSUM scheme
(with upper control limit equal to x), by adopting a combined upper one-sided CUSUM–
Shewhart scheme with larger decision interval x′ and, simultaneously, a critical increment
y such that x ≤ y ≤ x′. •

The proofs of Theorems 4.10 and 4.12 are presented below, now with b ∈ IN . We
need to always have in mind Theorem 3.12 and that we are dealing with stochastically
monotone matrices in the usual sense.

Proof ((4.36) and (4.37): monotonicities in θ and n) — These two properties follow
trivially from the fact that the random variable bin(n, p) stochastically increases with n

and p, in the likelihood ratio sense. Therefore, for i, j = 0, 1, . . . , xb,

j∑
l=0

pil(θ;n) = Fbin(n,p0+θ)(min{j − i, yb}+ kb) (4.44)

decreases with θ and n, for binomial data. Thus, we have: P(θ) ≤st P(θ′), θ ≤ θ′;
P(θ;n) ≤st P(θ;n′), n ≤ n′; and, according to Theorem 3.12, RLu(x, y; θ) ≥st RL

u(x, y; θ′),
θ ≤ θ′, and RLu(x, y;n) ≥st RL

u(x, y;n′), n ≤ n′, respectively. •
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Proof ((4.38): monotonicity in k) — We can add that
∑j

l=0 pi l(θ; k) increases with the
reference value k, that is P(θ; k′) ≤st P(θ; k), k ≤ k′. Applying Theorem 3.12, we get
RLu(x, y; k′) ≥st RL

u(x, y; k), k ≤ k′. •

Proof ((4.39): monotonicity in x) — The proof of this stochastic result is slightly more
delicate since this property regards two Markov chains with different state spaces, one for
each upper control limit.

We start by considering the absorbing Markov chains {SN (θ;x + 1/b), N ∈ IN0} and
{S′N (θ), N ∈ IN0}. In one hand, the first absorbing Markov chain is associated with
a combined upper one-sided CUSUM–Shewhart scheme whose CUSUM component has
upper control limit x+1/b, {0, 1/b, . . . , x, x+1/b, x+2/b} as state space, and is governed
by P(θ;x+ 1/b). On the other hand, {S′N (θ), N ∈ IN0} results from a slight variation of
the absorbing Markov chain {SN (θ;x), N ∈ IN0}; it is also defined on {0, 1/b, . . . , x, x +
1/b, x+ 2/b}, however, it is ruled by the transition matrix

P′(θ) =

 Q(θ;x) 0 [I−Q(θ;x)]1
0> 0 1
0> 0 1

 . (4.45)

Recall that the entries of P(θ;x+1/b) and P′(θ) are indexed on {0, 1, . . . , xb, xb+1, xb+2}.
Then note that, for 0 ≤ u ≤ x, RLu(x, y; θ) = min{N : SN (θ;x) > x or SN (θ;x) −
SN−1(θ;x) > y} has the same distribution as

min{N : S′N (θ) > x+ 1/b or S′N (θ)− S
′
N−1(θ) > y}. (4.46)

The simple inspection of P(θ;x+ 1/b) and P′(θ), and the fact that P′(θ) ∈Mst allow us
to assert that

j∑
l=0

pi l(θ;x+ 1/b) ≥
j∑

l=0

p′i l(θ) ≥
j∑

l=0

p′m l(θ), (4.47)

for 0 ≤ i ≤ m ≤ xb+ 2, 0 ≤ j ≤ xb+ 2. Therefore, we conclude that

P(θ;x+ 1/b) ≤st P′(θ). (4.48)

Using Theorem 3.12, we get

RLu(x, y; θ) ≤st RL
u(x+ 1/b, y; θ), (4.49)

which leads to the stated increasing behaviour in x. •

Proof ((4.40): monotonicity in y) — Consider two absorbing Markov chains governed
by P(θ) = P(θ; y) and P′(θ) = P(θ; y′). Due to the definition of the block matrices
Q(θ) = Q(θ; y) and Q′(θ) = Q(θ; y′) and the fact that P(θ),P′(θ) ∈Mst, we immediately
conclude that, for 0 < y ≤ y′ < xb,

j∑
l=0

p′il(θ) =
j∑

l=0

pil(θ; y
′) ≥

j∑
l=0

pil(θ; y) ≥
j∑

l=0

pml(θ; y)

=
j∑

l=0

pml(θ), 0 ≤ i ≤ m ≤ xb+ 1, 0 ≤ j ≤ xb+ 1. (4.50)
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Thus, for 0 < y ≤ y′ < xb,

P(θ; y′) ≤st P(θ; y). (4.51)

Finally, taking into account Theorem 3.12, we conclude that

RLu(x, y; θ) ≤st RL
u(x, y′; θ), for 0 < y ≤ y′ < xb, (4.52)

which proves the monotonicity in y. •

Proof ((4.41) and (4.42)) — These results follow by virtue of the monotonicity in terms of
x and y (see (4.39) and (4.40), respectively) and the facts RLS(y+k; θ) =st RL

0(+∞, y; θ)
and RLu(x; θ) =st RL

u(x, y; θ), y ≥ x. •

Proof (4.43) — Since RLu(x; θ) =st RL
u(x, x; θ), we have

RLu(x; θ) =st RL
u(x, y; θ) ≤st RL

u(x′, y; θ), x ≤ y ≤ x′ (4.53)

by using the monotonicity property in the decision interval x, stated in (4.39). •

Remark 4.14 — The stochastic property (4.43) could have been proved in a similar way
to property (4.39). In fact, let S(θ;x′, y) and S′(θ) be two absorbing Markov chains, both
on {0, 1/b, . . . , x, x+ 1/b, . . . , x′, x′ + 1/b}, where x′ = c′/b ≥ x. These two Markov chains
are governed by the probability transition matrices P(θ) = P(θ;x′, y) and P′(θ), with this
latter matrix given by Q(θ;x) 0 0>c′−c [I−Q(θ;x)]1

0c′−c 0> 0c′−c 0>c′−c 1c′−c

0> 0>c′−c 1

 (4.54)

where 1 and 1′c′−c (0 and 0′c′−c) are column vectors of xb + 1 and c′ − c ones (zeroes),
respectively. Now, noting that, for 0 ≤ u ≤ xb, RLu(x, y; θ) and the first passage time

min{N : S′N (θ) > x′ or S′N (θ)− S
′
N−1(θ) > y} (4.55)

are equally distributed and that, for x ≤ y ≤ x′, we have

P(θ;x′, y) ≤st P′(θ), (4.56)

the stochastic behaviour (4.43) follows from Theorem 3.12.
It is interesting to notice that a stochastic order relation in the usual sense can never

be established between the matrices P(θ;x′, y), with y < x, and the matrix P′(θ) defined
in (4.54). Therefore, the associated run lengths cannot be related in the usual sense.

The intuition on most of these properties previously discussed is so strong that stating
them as stochastic ordering results and proving them could be thought as excessive. How-
ever, as seen earlier, the proof of these results can be non trivial and depend — crucially —
on the stochastic monotonicity character of the transition matrix. In addition, the exten-
sion of all the results to the hazard rate and likelihood ratio senses is still an open problem.
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Nevertheless, Table 4.3 and Figure 4.2 suggest that RLu(6, 4; 0) ≤hr RL
u(6, 4; p1 − p0),

u = 0, 3. Additional numerical results not only suggest that this stochastic order relation
holds for other constelations of parameters but also that the result holds in the likelihood
ratio sense.

4.5 Comparative assessment of Shewhart, CUSUM and com-

bined schemes: an example

Instead of illustrating the gist of some of the stochastic properties stated earlier on and
complement the few existing illustrations in the quality control literature,9 the foregoing
tables and graphs provide an extended example of a comparative assessment of the per-
formance of the following three schemes for binomial counts (with n = 100, p0 = 0.02,
p1 = 0.0427685):

• upper one-sided CUSUM scheme without head start (C0),

• upper one-sided Shewhart scheme (S), and

• combined upper one-sided CUSUM–Shewhart scheme with no head start (CS0),

as described in Example 4.2.
In Table 4.4, there are several values of ARL, SDRL, CVRL, CSRL, CKRL and RL

percentage points; this table refers to the three schemes mentioned above.
Table 4.5 display values of the percentage reduction in these RL related measures, due

to the adoption of the combined scheme (CS0). For example, the percentage reductions
in the ARL are[

1− ARL0(x, y; θ)
ARL0(x; θ)

]
× 100%, and

[
1− ARL0(x, y; θ)

ARLS(y + k; θ)

]
× 100% (4.57)

when we compare the average detection time of the combined scheme CS0 with the cor-
responding measure of its CUSUM and Shewhart constituent charts (respectively). These
reductions are defined similarly for the five remaining RL related measures.

These two tables illustrate the impact of the adoption of the combined scheme in the de-
tection of small and moderate shifts with magnitude θ = 0.001, 0.0025, 0.005, 0.0075, 0.01,
0.02, p1 − p0, 0.03. The range of values includes the magnitude of the shift in p we want
to detect as quickly as possible, p1 − p0 = 0.0227685.

Using the combined scheme CS0 virtually yields a 40% reduction in the RL of schemes
S and C0, when the production process is in-control. Thus, false alarms are more frequent,
as suggested by Table 4.5. For instance, a false alarm occurs in the combined scheme CS0

9In the case of Poisson data we note that: Tables IV and VI (V) in Abel (1990) illustrate the mono-

tonicities of ARLu(x, y; θ) in terms of x, y and θ (u); and Figure 9 of Yashchin (1985) illustrates the

monotonicity of some percentage points of RLu(x, y; θ) in terms of θ. Lucas (1982) illustrates through

Table 2 (in four parts) the monotonicities of ARL of combined schemes for the mean of normal data, in

terms of x, k, u, y + k and θ (it denotes the positive displacement of the population mean).
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Table 4.4: ARL, SDRL, CVRL, CSRL, CKRL and RL percentage points values — listed
in order corresponding to schemes C0, S and CS0.

θ

0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

ARL 1015.710 591.724 284.121 102.081 46.227 25.458 7.194 5.932 4.095

1073.030 787.737 512.346 270.112 154.275 94.128 21.047 15.369 7.815

603.743 394.192 214.972 87.704 42.275 23.973 6.882 5.648 3.824

SDRL 1012.18 588.012 280.175 97.895 42.022 21.419 4.320 3.322 1.998

1072.53 787.237 511.846 269.611 153.774 93.627 20.541 14.861 7.298

601.712 391.853 212.199 84.390 38.724 20.452 4.384 3.418 2.134

CVRL 0.997 0.994 0.986 0.959 0.909 0.841 0.600 0.560 0.488

1.000 0.999 0.999 0.998 0.997 0.995 0.976 0.967 0.934

0.997 0.994 0.987 0.962 0.916 0.853 0.637 0.605 0.558

CSRL 2.000 2.000 2.000 1.998 1.989 1.961 1.627 1.523 1.303

2.000 2.000 2.000 2.000 2.000 2.000 2.001 2.001 2.005

2.000 2.000 2.000 1.997 1.983 1.947 1.515 1.376 1.087

CKRL 6.000 6.000 5.999 5.992 5.953 5.833 4.296 3.814 2.853

6.000 6.000 6.000 6.000 6.000 6.000 6.002 6.005 6.019

6.000 6.000 5.998 5.986 5.931 5.775 3.880 3.289 2.087

RL perc. θ

points 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

5% 55 34 18 9 6 4 2 2 2

56 41 27 14 8 5 2 1 1

33 22 14 8 5 4 2 1 1

25% 295 173 85 32 16 10 4 4 3

309 227 148 78 45 27 6 5 3

175 115 64 28 15 10 4 3 2

Median 705 411 198 72 33 19 6 5 4

744 546 355 187 107 65 15 11 6

419 274 150 62 31 18 6 5 4

75% 1407 819 392 140 63 34 9 7 5

1487 1092 710 374 214 130 29 21 11

836 546 297 120 57 32 9 7 5

90% 2334 1358 649 230 101 53 13 10 7

2470 1813 1179 621 355 216 48 35 17

1388 905 491 198 93 51 13 10 7

95% 3036 1765 843 297 130 68 26 12 8

3214 2359 1534 808 461 281 62 45 22

1805 1176 638 256 119 65 15 12 8

within the first 419 samples with probability of at least 50%, whereas the median of the
run length of scheme C0 equals 705.
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Table 4.5: Percentage reduction in the ARL, SDRL, CVRL, CSRL, CKRL and RL percent-
age points values due to the adoption of the CS0 scheme — listed in order corresponding
to (1− CS0/C0)× 100% and (1− CS0/S)× 100%.

Percentage θ

reduction 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

ARL 40.6 33.4 24.3 14.1 8.5 5.8 4.3 4.8 6.6

43.7 50.0 58.0 67.5 72.6 74.5 67.3 63.2 51.1

SDRL 40.6 33.4 24.3 13.8 7.8 4.5 -1.5 -2.9 -6.8

43.9 50.2 58.5 68.7 74.8 78.2 78.7 77.0 70.8

CVRL 0.0 0.0 -0.1 -0.3 -0.8 -1.4 -6.1 -8.1 -14.4

0.3 0.5 1.2 3.6 8.1 14.2 34.7 37.4 40.2

CSRL 0.0 0.0 0.0 0.1 0.3 0.7 6.9 9.7 16.6

0.0 0.0 0.0 0.2 0.8 2.7 24.3 31.2 45.8

CKRL 0.0 0.0 0.0 0.1 0.4 1.0 9.7 13.8 26.9

0.0 0.0 0.0 0.2 1.1 3.8 35.4 45.2 65.3

Percentage θ

reduction 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

5% 40.0 35.3 22.2 11.1 16.7 0.0 0.0 50.0 50.0

41.1 46.3 48.1 42.9 37.5 20.0 0.0 0.0 0.0

25% 40.7 33.5 24.7 12.5 6.2 0.0 0.0 25.0 33.3

43.4 49.3 56.8 64.1 66.7 63.0 33.3 40.0 33.3

Median 40.6 33.3 24.2 13.9 6.1 5.3 0.0 0.0 0.0

43.7 49.8 57.7 66.8 71.0 72.3 60.0 54.5 33.3

75% 40.6 33.3 24.2 14.3 9.5 5.9 0.0 0.0 0.0

43.8 50.0 58.2 67.9 73.4 75.4 69.0 66.7 54.5

90% 40.5 33.4 24.3 13.9 7.9 3.8 0.0 0.0 0.0

43.8 50.1 58.4 68.1 73.8 76.4 72.9 71.4 58.8

95% 40.5 33.4 24.3 13.8 8.5 4.4 6.2 0.0 0.0

43.8 50.1 58.4 68.3 74.2 76.9 75.8 73.3 63.6

Moreover, the adoption of the combined scheme CS0 yields a benefit of at least 10%
— in ARL, SDRL and the RL percentage points considered here — of both constituent
charts of such a scheme, for small shifts up to an 25% increase in p (i.e. for 0 < θ ≤ 0.005).
These improvements can be larger than the 40% reduction in the in-control RL measures,
when we add a CUSUM upper control limit to the upper one-sided Shewhart scheme —
thus, obtaining once again the combined upper one-sided CUSUM–Shewhart scheme —
for values of θ ranging from 0.001 to 0.01. When we do the opposite, the benefit of
supplementing an upper one-sided CUSUM scheme with a Shewhart upper control limit is
always smaller than the 40% reduction we have just mentioned.

The skewness and kurtosis coefficients of the three upper one-sided schemes only differ
for moderate shifts, as shown in Table 4.5. Also, according to additional graphs (for
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θ ∈ [0, 0.2]) ommitted here, substituting scheme S by scheme CS0 always leads to a
reduction of these two coefficients. However, they can increase if we replace scheme C0

with scheme CS0.
When it comes to θ = p1−p0, we fail to see a reason for advocating the addition of the

Shewhart upper control limit y+k = 7 to the upper one-sided CUSUM scheme: the changes
in ARL and the RL percentage points considered here seem to be irrelevant. In fact the
results obtained here give the distinct impression that the performance of the CUSUM
scheme that makes use of the optimal reference value for the detection of an upward shift
with magnitude p1 − p0 (as suggested by Gan (1993)) can be hardly improved.

Figure 4.3: ARL percentage reductions due to the adoption of the combined scheme CS0

in the intervals [0, p1 − p0] and [0, 0.2].

Figure 4.4: SDRL percentage reductions due to the adoption of the combined scheme CS0

in the intervals [0, p1 − p0] and [0, 0.2].

Figure 4.3 and Figure 4.4 portray the overall behaviour of the ARL and SDRL reduc-
tions (respectively) in the interval [0, 0.2].

Figure 4.3 confirms what we expected from the combined scheme CS0. Its average
detection speed outperforms substantially the one of its Shewhart component in the case
of small and moderate shifts. Additionally, the CUSUM component — which is unable to
detect large shifts faster than the Shewhart scheme — is outperformed in the detection of
large shifts by the combined scheme.

Figure 4.4 adds that the SDRL can increase after replacing scheme C0 by the combined
scheme in the detection of moderate shifts. On the other hand SDRL never increases when
we use the combined scheme CS0 by supplementing scheme S with scheme C0.

74



Table 4.6: ARL, SDRL, CVRL, CSRL, CKRL and RL percentage points values — listed
in order corresponding to schemes C3, CS0 and CS3.

θ

0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

ARL 995.070 574.634 270.937 93.044 39.670 20.475 4.920 3.991 2.710

603.743 394.192 214.972 87.704 42.275 23.973 6.882 5.648 3.824

592.559 383.773 205.790 80.490 36.661 19.560 4.870 3.960 2.699

SDRL 1011.980 587.776 279.885 97.517 41.574 20.930 3.879 2.918 1.684

601.712 391.853 212.199 84.390 38.724 20.452 4.384 3.418 2.134

601.585 391.686 211.963 84.032 38.260 19.916 3.826 2.885 1.671

CVRL 1.017 1.023 1.033 1.048 1.048 1.022 0.788 0.731 0.621

0.997 0.994 0.987 0.962 0.916 0.853 0.637 0.605 0.558

1.015 1.021 1.030 1.044 1.044 1.018 0.786 0.729 0.619

CSRL 2.001 2.002 2.006 2.020 2.047 2.081 2.026 1.949 1.721

2.000 2.000 2.000 1.997 1.983 1.947 1.515 1.376 1.087

2.001 2.002 2.006 2.021 2.049 2.085 2.032 1.954 1.723

CKRL 6.005 6.009 6.024 6.085 6.210 6.384 6.290 5.936 4.816

6.000 6.000 5.998 5.986 5.931 5.775 3.880 3.289 2.087

6.005 6.010 6.025 6.088 6.221 6.406 6.339 5.980 4.841

RL perc. θ

points 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

5% 35 17 6 3 2 2 1 1 1

33 22 14 8 5 4 2 1 1

22 12 6 3 2 2 1 1 1

25% 274 156 71 23 10 6 2 2 2

175 115 64 28 15 10 4 3 2

164 104 54 20 9 5 2 2 2

Median 684 394 185 63 26 14 4 3 2

419 274 150 62 31 18 6 5 4

408 263 140 54 24 13 4 3 2

75% 1386 802 379 130 55 28 6 5 3

836 546 297 120 57 32 9 7 5

825 535 288 113 51 27 6 5 3

90% 2313 1340 636 220 94 48 10 8 5

1388 905 491 198 93 51 13 10 7

1376 894 482 190 87 46 10 8 5

95% 3015 1748 830 288 123 63 13 10 6

1805 1176 638 256 119 65 15 12 8

1793 1166 629 248 113 60 12 10 6
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Table 4.7: Percentage reduction in the ARL, SDRL, CVRL, CSRL, CKRL and RL per-
centage points due to the adoption of the CS scheme — listed in order corresponding to
(1− CS0/C3)× 100% and (1− CS3/C3)× 100%.

Percentage θ
reduction 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

ARL 39.3 31.4 20.7 5.7 -6.6 -17.1 -39.9 -41.5 -41.1

40.5 33.2 24.0 13.5 7.6 4.5 1.0 0.8 0.4

SDRL 40.5 33.3 24.2 13.5 6.9 2.3 -13.0 -17.1 -26.7

40.6 33.4 24.3 13.8 8.0 4.8 1.4 1.1 0.8

CVRL 2.0 2.8 4.4 8.2 12.6 16.5 19.2 17.2 10.2

0.2 0.2 0.3 0.4 0.4 0.4 0.3 0.3 0.3

CSRL 0.1 0.1 0.3 1.2 3.1 6.5 25.2 29.4 36.9

0.0 0.0 0.0 0.0 -0.1 -0.2 -0.3 -0.3 -0.1

CKRL 0.1 0.2 0.4 1.6 4.5 9.5 38.3 44.6 56.7

0.0 0.0 0.0 -0.1 -0.2 -0.3 -0.8 -0.7 -0.5

Percentage θ
reduction 0 0.001 0.0025 0.005 0.0075 0.01 0.02 p1 − p0 0.03

5% 5.7 -29.4 -133.3 -166.7 -150.0 -100.0 -100.0 0.0 0.0

37.1 29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25% 36.1 26.3 9.9 -21.7 -50.0 -66.7 -100.0 -50.0 0.0

40.1 33.3 23.9 13.0 10.0 16.7 0.0 0.0 0.0

Median 38.7 30.5 18.9 1.6 -19.2 -28.6 -50.0 -66.7 -100.0

40.4 33.2 24.3 14.3 7.7 7.1 0.0 0.0 0.0

75% 39.7 31.9 21.6 7.7 -3.6 -14.3 -50.0 -40.0 -66.7

40.5 33.3 24.0 13.1 7.3 3.6 0.0 0.0 0.0

90% 40.0 32.5 22.8 10.0 1.1 -6.2 -30.0 -25.0 -40.0

40.5 33.3 24.2 13.6 7.4 4.2 0.0 0.0 0.0

95% 40.1 32.7 23.1 11.1 3.3 -3.2 -15.4 -20.0 -33.3

40.5 33.3 24.2 13.9 8.1 4.8 7.7 0.0 0.0

Another sort of comparison that springs to mind involves the very well known head
start technique. This confrontation will tell us if a practitioner should go to the trouble
of adopting a combined scheme or just add a head start to the upper one-sided CUSUM
scheme.

The Tables 4.6 and 4.7 and the Figures 4.5 and 4.6 have numerical results that are
crucial to make comparisons possible between the

• upper one-sided CUSUM scheme with a 50% head start (C3),

the CS0 scheme, and finally with the

• upper one-sided combined CUSUM–Shewhart scheme with a 50% head start (CS3).

We begin with a brief comment concerning schemes CS0 and CS3 and the consequences
of adding a 50% head start. It was proved that the alarm rate at sample m increases after
having given the scheme a head start. In addition, the numerical results in Table 4.6
suggest that the standard deviation of the combined scheme is virtually independent of
the 50% head start, for small and moderate shifts in p.
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Figure 4.5: ARL percentage reductions relative to the upper one-sided CUSUM scheme
with a 50% headstart C3 in the intervals [0, p1 − p0] and [0, 0.2].

Figure 4.6: SDRL percentage reductions relative to the upper one-sided CUSUM scheme
with a 50% headstart C3 in the intervals [0, p1 − p0] and [0, 0.2].

Adding a Shewhart upper control limit to scheme C3 — thus, yielding the scheme CS3

— has not the same consequences we reported previously when we compared schemes C0

and CS0. For instance, the schemes C3 and CS3 give approximately the same protection
to large shifts, as we can see from Figure 4.5; in addition, the SDRL of scheme CS3 is
larger than the SDRL of scheme C3, not only for moderate but also for large shifts (see
Figure 4.6).

Results in Tables 4.6 and 4.7 show that an upper one-sided CUSUM chart with a 50%
head start gives most of the improvement of the slightly more elaborate upper one-sided
combined CUSUM–Shewhart scheme without a head start, for moderate and large shifts.
In fact, scheme C3 has larger in-control ARL, but substantial increases occur in ARL and
SDRL, when this scheme is replaced by the scheme CS0 for moderate and large shifts.
Furthermore, note that, although the in-control ARL0(6, 4; θ) is smaller than ARL3(6; θ)
for small shifts, the 5% percentage points of RL3(6; θ) may be remarkably smaller than
those of RL0(6, 4; θ), meaning that a correct signals can occur earlier when we use scheme
C3.

However, scheme CS0 seems to outperform the scheme C3 for small shifts, in the in-
terval (0, 0.005], when it comes to average time detection, standard deviation, and the
variation, skewness and kurtosis coefficients, as suggested by Table 4.7, Figure 4.5 and
Figure 4.6. Thus, the combined upper one-sided CUSUM–Shewhart scheme without head
start does not seem to be completely superseded by the upper one-sided CUSUM scheme
with the well know 50% head start. We would like to remind the reader that we are dealing
with a very small nominal value p0, therefore small changes are more likely to occur than
moderate or large shifts (despite the value of p1, which doubles p0).
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Figure 4.7: ARL and SDRL percentage reductions due to the adoption of the combined
scheme CS0 for y = 0, . . . , 5 (from top to bottom).

Figure 4.8: ARL and SDRL percentage reductions relative to the upper one-sided CUSUM
scheme with a 50% headstart C3 for y = 0, . . . , 5 (from top to bottom).

Some additional investigations on the impact of the choice of y in the ARL and SDRL
of the combined scheme (when compared to schemes C0 and C3) are gathered next.

Although Figure 4.7 and Figure 4.8 have self explanatory captions, we note that they
include several graphs of the reduction in ARL and SDRL induced by the adoption of a
CS0 scheme as an alternative to scheme C0 (Figure 4.7) and yielded by the replacement
of scheme C3 by scheme CS0 (Figure 4.8), for distinct values of the critical increment, y.
The graphs correspond to y = 0, 1, . . . , x− 1 = 5, from top to bottom.

We add to this observation that the average performance of scheme CS0 appears to
show reasonable improvement over scheme C0 — without a tremendous decrease in the
in-control ARL — only for y = 4 (see Figure 4.7). Additionally, the SDRL generally
decreases after that substitution. Therefore y = 4 seems to be the natural choice for the
critical increment.

As far as the comparison of schemes C3 and CS0 is concerned, only values y = 0, 1, 2
yield an overall decrease in ARL (and in SDRL for most of the values of θ in the interval
[0, 0.2]); however the increase in the in-control ARL is rather unreasonable, as Figure 4.7
clearly suggests also for y = 3.

As suggested by Lucas (1982) when a combined scheme is implemented it may be
advantageous to increase the value of the CUSUM upper control limit x slightly to get a
larger in-control ARL. However, our numerical investigations with x = 7 and y = 3, 4 lead
to worse results than those achieved previously with x = 6 and y = 4. With x = 7 and
y = 4 the obtained improvements were far less significant (due to the stochastic property
(4.39)); and with x = 7 when y = 3 there was a dramatic 75% reduction in the in-control
ARL.
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As a concluding remark, we would like to recall that supplementing the upper one-
sided CUSUM scheme (with or without head start) with a Shewhart upper control limit
can provide meaningful improvement in the RL related measures for small changes in the
process parameter with little additional computational effort. But this is achieved with
an undesirable reduction of the in-control ARL. Therefore adopting the combined upper
one-sided CUSUM–Shewhart scheme would depend on whether we are more concerned
with detecting small shifts as fast as possible or with false alarms.

Furthermore, the best way to compare control chart performance is probably to match
the in-control ARL and then compare the out-of-control performance; barring that, com-
parisons are difficult as seen in this section. However, the discrete character of binomial
data affects ARLs and causes unique problems in the matching procedure of CUSUM and
combined CUSUM–Shewhart schemes — it can never be achieved for this sort of data
(or any other discrete data) — and, thus, prevents a “fair” numerical comparison between
different schemes. Matters such as this are going to be addressed in the next two chapters,
while making use of combined schemes for continuous data.
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Chapter 5

Upper one-sided schemes for µ in

the presence of shifts in σ

One of the standard assumptions, when control schemes for the process mean µ are at use,
is that the process data is a collection of observed values of independent random variables
with constant standard deviation σ equal to a known target value σ0.

Some attention has been given in the statistical process control literature to the RL
distribution of schemes for the expected value µ, when the target of the process standard
deviation is unknown (although constant), and therefore the control limits have to be
estimated (see, e.g., Bagshaw and Johnson (1975), Ghosh, Reynolds Jr. and Hui (1981)
and Chen (1997)). In any case it may be quite misleading to assume that the behaviour
of the RL for σ known can be carried over to draw conclusions about the case where σ is
unknown, specially in the in-control situation.

More recently, Jones, Champ and Rigdon (2001) derived the run length distribution
of the EWMA scheme with estimated parameters, and discussed the effect of estimation
on the performance of the scheme in several practical scenarios.

Another compelling question concerning schemes for µ is to know what happens to
the RL distribution in the presence of shifts in the process standard deviation σ, if the
operator falsely assumes that σ is constant and equal to a known target value σ0, and
designs the control scheme for µ accordingly.

• Hawkins and Olwell (1998, pp. 66-67). These authors briefly discuss this problem.
They note that standard deviation shifts have severe effects on Shewhart and CUSUM
schemes for the process mean, and give a numerical illustration for the in-control
ARL of an upper one-sided CUSUM scheme for µ.

• Gan (1989). This paper provides ARL tables for two-sided (Shewhart, CUSUM
and EWMA) schemes for µ in such a setting. These tables cast some light on the
performance of these schemes. For example, Tables 6–8 show that, for some large
but fixed shifts in µ, the ARL of these two-sided schemes can be an increasing or
even a nonmonotone function of σ. This behaviour — although not commented by
the author — is apparent in the last rows of Tables 6–8, and it implies that these
schemes become progressively less sensitive to some shifts in the process mean, as
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the process standard deviation grows.

• Morais and Pacheco (2001a). In this reference we establish sufficient conditions for
the RL of the upper one-sided X̄ (S+ − µ) and EWMA (E+ − µ) schemes for the
process mean to stochastically increase (or decrease) with an increase in the process
standard deviation.

Such conditions and their analogue for the upper one-sided CUSUM (C+ − µ), combined
CUSUM-Shewhart (CS+ − µ) and combined EWMA-Shewhart (ES+ − µ) schemes are
stated and proved in this chapter.

These preparatory results and several other stochastic properties of the RL cast inter-
esting light on the performance of the five upper one-sided schemes for µ in Table A.1,
namely on their ability to detect shifts in process standard deviation, and prove to be
crucial for Chapter 6, devoted to misleading signals in joint schemes for µ and σ.

Throughout the remainder of this chapter we shall consider that the N th random
sample XN = (X1N , . . . , XnN ) is drawn from a distribution belonging to the normal
family {N(µ, σ2),−∞ < µ < +∞, σ2 > 0}.

The shift in µ is represented in terms of the nominal value of the sample mean standard
deviation δ =

√
n(µ − µ0)/σ0, and the increase of the process standard deviation will be

measured by θ = σ/σ0 where µ0 and σ0 represent the nominal values of µ and σ, δ ≥ 0
and θ ≥ 1. When the process is in control we have (δ, θ) = (0, 1), whereas out-of-control
(δ, θ) takes a constant value (assumed to be known) in [0,+∞)× [1,+∞) \ {(0, 1)}. And
in the absence of shifts in σ we have (δ, θ) ∈ [0,+∞)× {1}.

Finally, note that the summary statistics, the control limits and the RL distribution
of the five upper one-sided schemes for µ considered here can be found in Tables A.2, A.3
and A.8.

5.1 The Shewhart scheme

The production is declared out-of-control at time N by the upper one-sided X̄ scheme,
S+ − µ, if

z+
N = max{0, zN} = max{0,

√
n× (x̄N − µ0)/σ0}, (5.1)

the observed value of the summary statistic Z+
N , equals or is above the control limit

UCLS+−µ = ξ+µ . (5.2)

σ0/
√
n denotes the nominal value of the sample mean standard deviation. ξ+µ belongs to

(0,+∞) and is usually selected by fixing the ARL for the S+−µ scheme in two situations:
one being when the quality level is acceptable (µ = µ0 and σ = σ0), and one when it is
rejectable (µ > µ0 or σ > σ0),

Conditioned on the fact that the process mean and standard deviation equal µ =
µ0 + δσ0/

√
n and σ = θ×σ0 (respectively), the RL of the upper one-sided scheme S+−µ
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— RLS+−µ(δ, θ) — has a geometric distribution with survival function given by

FRLS+−µ(δ,θ)(m) =

{
1, m < 1
{Φ[(ξ+µ − δ)/θ]}bmc, m ≥ 1.

(5.3)

Theorem 5.1 — RLS+−µ(δ, θ) has the following stochastic properties:

• for fixed θ ≥ 1,

RLS+−µ(δ, θ) ↓lr with δ; (5.4)

• for fixed δ < ξ+µ ,

RLS+−µ(δ, θ) ↓lr with θ; (5.5)

• for fixed δ = ξ+µ ,

RLS+−µ(δ, θ) =st RLS+−µ(δ, θ′), for θ, θ′ ≥ 1; (5.6)

• for fixed δ > ξ+µ ,

RLS+−µ(δ, θ) ↑lr with θ. (5.7)

Proof — Recall that RLS+−µ(δ, θ) has a geometric distribution with parameter {1 −
Φ[(ξ+µ − δ)/θ]}, and that this distribution stochastically decreases in the likelihood ratio
sense, as its parameter increases, according to Remark 2.2. Now, noting that, for δ ≥ 0
and θ ≥ 1, {1− Φ[(ξ+µ − δ)/θ]} is an increasing function of δ and an increasing, constant
and decreasing function of θ when δ < ξ+µ , δ = ξ+µ and δ > ξ+µ (respectively), statements
(5.4)–(5.7) follow immediately. •

It can be seen from result (5.4) ((5.5)) that, for fixed θ ≥ 1 (for fixed δ < ξ+µ ), the
larger the increase in the process mean (standard deviation), the smaller (in the likelihood
ratio sense) the number of samples taken until the detection of such a change. Thus,
dRLS+−µ(δ,θ)(m) — the (relative) decrease in the probability that the mth sample triggers
a signal relative to the probability of the signal being given by the previous sample —
increases with δ. In addition, since ≤lr⇒≤hr we can also assert that the alarm rate at
any fixed sample m increases as the shift in µ becomes more severe.

It is worth mentioning that result (5.6) means that when δ = ξ+µ the RL has a distri-
bution function which does not depend on θ and it is a geometric random variable with
parameter 0.5 (see Figure 5.1). This fact is not surprising because scheme S+−µ (as well
as the other upper one-sided schemes for µ) is not designed to detect changes in σ.

Remark 5.2 — Result (5.7) can be phrased more clearly by the following statement. For
fixed δ > ξ+µ , the more severe is the shift in σ the smaller is the ability (in the likelihood
ratio sense) of the scheme S+ − µ to discriminate effectively changes in the two process
parameters, and in particular, in the process mean.
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Figure 5.1: Two out-of-control sample mean distributions ((δ, θ) = (ξ+µ , 1.5), (δ, θ) =
(ξ+µ , 1.2)), illustrating result (5.6), and in-control distribution ((δ, θ) = (0, 1)).

Figure 5.2: Two out-of-control sample mean distributions ((δ, θ) = (2ξ+µ , 1.5), (δ, θ) =
(2ξ+µ , 1.2)), illustrating result (5.7), and in-control distribution ((δ, θ) = (0, 1)).

As a consequence, RLS+−µ(δ, θ) also increases with θ in the hazard rate sense; i.e., the
signalling rate at sample m decreases with θ, regardless of the value of m. An intuitive
explanation was mentioned in the previous paragraph.

A further justification for this increasing behaviour of the RL stems from the fact that,
when δ > ξ+µ , the true process mean is above the upper control limit UCLS+−µ, and the
probability that the nominal standardized sample mean exceeds UCLS+−µ is equal to
Φ[(δ − ξ+µ )/θ] and larger than 0.5; thus, a decrease of σ will make it more likely that the
nominal standardized sample mean will be responsible for a signal at each sample than it
would be if σ would increase (see Figure (5.2)). •
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5.2 The EWMA scheme

The summary statistic of the upper one-sided EWMA scheme can be expressed as follows:

W+
µ,N =

{
w+

µ,0, N = 0
max

{
0, (1− λ+

µ )×W+
µ,N−1 + λ+

µ × ZN

}
, N > 0.

(5.8)

λ+
µ belongs to (0, 1] and corresponds to the weight given to the most recent sample mean

and w+
µ,0 is the initial value given to the E+ − µ control scheme statistic.

This scheme gives an out-of-control signal at the sampling period N if the observed
value of W+

µ,N equals or exceeds the control limit

UCLE+−µ = γ+
µ

√
λ+

µ /(2− λ+
µ ), (5.9)

where γ+
µ belongs to (0,+∞) and is selected in the same manner as ξ+µ .

Set

w+
µ,0 = αγ+

µ

√
λ+

µ /(2− λ+
µ ), (5.10)

where α ∈ [0, 1); if α ∈ (0, 1) (α = 0) a α × 100% head start (no head start) has been
given to the chart.

Let RLα
E+−µ(δ, θ;x+

µ ) = RL
bα(x+

µ+1)c
E+−µ (δ, θ;x+

µ ) be the Markov approximation for the
run length of the scheme E+ − µ with an α × 100% head start, based on an absorbing
Markov chain with discrete state space {0, 1, . . . , x+

µ + 1} and absorbing state (x+
µ + 1).1

In this case RLα
E+−µ(δ, θ;x+

µ ) has survival function given by

FRLα
E+−µ

(δ,θ;x+
µ )(m) =


1, m < 1

e>bα(x+
µ+1)c ×

[
Q(δ, θ;x+

µ )
]bmc

×1, α ∈ [0, 1), m ≥ 1,

(5.11)

where the (x+
µ + 1)× (x+

µ + 1) sub-stochastic matrix which rules the transitions between
the transient states is defined as follows

Q(δ, θ;x+
µ ) =

[
pij(δ, θ;x+

µ )
]x+
µ

i,j=0
=

 j∑
l=0

pi l(δ, θ;x+
µ )−

j−1∑
l=0

pi l(δ, θ;x+
µ )

x+
µ

i,j=0

(5.12)

with
j∑

l=0

pi l(δ, θ;x+
µ ) = Φ

1
θ
×

γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

− δ


 , (5.13)

for i, j = 0, . . . , x+
µ , and

∑−1
l=0 pi l(δ, θ;x+

µ ) = 0, i = 0, . . . , x+
µ . (For the underlying details

of this Markov chain refer to Appendix A.)

The next three theorems concern the stochastic monotone character of the transition
matrix P(δ, θ;x+

µ ) and the monotone behaviour of RL with respect to the head start and

1Note that a α× 100% head start corresponds to the initial state bα(x+
µ + 1)c in the Markov approxi-

mation.
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other parameters. A further feature of this transition matrix is discussed in detail in
Section 5.5 because we are not dealing with a space homogeneous Markov chain (with a
reflecting and an absorbing barrier) like the one associated with upper one-sided CUSUM
schemes.

Theorem 5.3 — Let P(δ, θ;x+
µ ) be the stochastic matrix ruling the approximating Markov

chain associated with scheme E+ − µ. Then

P(δ, θ;x+
µ ) ∈Mst. (5.14)

Proof — The decreasing behaviour of
∑j

l=0 pi l(δ, θ;x+
µ ) in terms of i is responsible for

this result. •

Theorem 5.4 — For fixed δ ≥ 0 and θ ≥ 1,

RLα
E+−µ(δ, θ;x+

µ ) ↓st with α. (5.15)

Proof — This stochastic property follows from Theorem 5.3 and result (3.14) from The-
orem 3.8. •

Theorem 5.5 — For fixed 0 ≤ α < 1, results (5.4), (5.5) and (5.7) have an analogue for
the scheme E+ − µ:

• for fixed θ ≥ 1,

RLα
E+−µ(δ, θ;x+

µ ) ↓st with δ; (5.16)

• for fixed δ ≤ δE+−µ(x+
µ ),

RLα
E+−µ(δ, θ;x+

µ ) ↓st with θ, (5.17)

• for fixed δ ≥ δE+−µ(x+
µ ),

RLα
E+−µ(δ, θ;x+

µ ) ↑st with θ, (5.18)

where

δE+−µ(x+
µ ) =

γ+
µ [1− (1− λ+

µ )(x+
µ + 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

(5.19)

and

δE+−µ(x+
µ ) =

γ+
µ [(x+

µ + 1)− (1− λ+
µ )/2]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

(5.20)

depend on the number of transient states of the approximating Markov chain.
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Proof ((5.16): monotonicity in δ) — The approximating RL of schemes E+−µ is related to
a stochastically monotone matrix P(δ, θ;x+

µ ) and to the left partial sums
∑j

l=0 pi l(δ, θ;x+
µ )

that decrease with δ (see (5.13)), for i, j = 0, . . . , x+
µ . Hence, by Corollary 3.14, RLα

E+−µ

(δ, θ;x+
µ ) stochastically decrease with δ. •

Proof ((5.17) and (5.18): monotonicities in θ) — The identification of the stochastic
monotone behaviour of RLα

E+−µ(δ, θ;x+
µ ) with respect to θ is far less obvious and implies

the calculation of the following sign:

sign

{
∂
∑j

l=0 pi l(δ, θ;x+
µ )

∂θ

}

= sign

−γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

+ δ

 (5.21)

for i, j = 0, . . . , x+
µ . This sign is negative if

δ < min
i,j=0,...,x+

µ

γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

⇔

δ <
γ+

µ × [1− (1− λ+
µ )(x+

µ + 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

= δE+−µ(x+
µ ), (5.22)

and it is positive if

δ > max
i,j=0,...,x+

µ

γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

⇔

δ >
γ+

µ × [(x+
µ + 1)− (1− λ+

µ )/2]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

= δE+−µ(x+
µ ). (5.23)

Also note that, for δ = δE+−µ(x+
µ ) (δ = δE+−µ(x+

µ )), all the derivatives of
∑j

l=0 pi l(δ, θ;x+
µ )

with respect to θ are surely nonpositive (nonnegative). Thus, using Corollary 3.14, we can
conclude that

RLα
E+−µ(δ, θ;x+

µ ) ↓st (↑st) with θ, (5.24)

for fixed δ ≤ δE+−µ(x+
µ ) (δ ≥ δE+−µ(x+

µ )). •

Remark 5.6 — We note that as far as its monotone behaviour is concerned,
∑j

l=0 pi l(δ, θ;
x+

µ ) is an increasing function of λ+
µ if

sign

{
∂
∑j

l=0 pi l(δ, θ;x+
µ )

∂λ+
µ

}
= sign

−γ
+
µ × [(j + 1)(1− λ+

µ )− (i+ 1/2)]

(x+
µ + 1)

[
λ+

µ (2− λ+
µ )
]3/2

 (5.25)

is nonnegative, for i, j = 0, . . . , x+
µ . This is necessarily the case for

λ+
µ ≥ max

i,j=0,...,x+
µ

(
1− i+ 1/2

j + 1

)
⇔ λ+

µ ≥ 1− 1
2(x+

µ + 1)
. (5.26)
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Recalling that λ ∈ (0, 1] and using Corollary 3.13, we conclude that, for fixed δ ≥ 0, θ ≥ 1
and 0 ≤ α < 1,

RLα
E+−µ(δ, θ;x+

µ ) ↑st with λ+
µ , for 1− 1

2(x+
µ + 1)

≤ λ+
µ ≤ 1. (5.27)

Two additional remarks on the stochastic monotone behaviour with respect to λ+
µ .

Regarding the sufficient condition (5.27), please note that we get λ+
µ = 1 when x+

µ →∞;
thus, statement (5.27) is of no practical use. Moreover, (5.25) is nonpositive if

λ ≤ min
i,j=0,...,x+

µ

(
1− i+ 1/2

j + 1

)
⇔ λ ≤ 1−

x+
µ + 1/2

2
, (5.28)

where 1− x+
µ+1/2

2 is negative for all positive integers but x+
µ = 1, and particularly large for

the usual values of x+
µ ; therefore it comes as no surprise that we did not state a sufficient

condition for the decreasing stochastic behaviour of RLα
E+−µ(δ, θ;x+

µ ) in terms of λ+
µ . •

Corollary 5.7 — Let RLα
E+−µ(δ, θ) be the exact RL of the E+−µ scheme. Then proper-

ties (5.15)–(5.18) remain valid for RLα
E+−µ(δ, θ), with δE+−µ(x+

µ ) and δE+−µ(x+
µ ) replaced

by

δE+−µ = lim
x+
µ→∞

δE+−µ(x+
µ ) =

−γ+
µ (1− λ+

µ )√
λ+

µ (2− λ+
µ )

(5.29)

and

δE+−µ = lim
x+
µ→∞

δE+−µ(x+
µ ) =

γ+
µ√

λ+
µ (2− λ+

µ )
(5.30)

in (5.17) and (5.18).

Proof — This is a consequence of Theorems 5.4 and 5.5, and Lemmas 3.16 and 3.18,
which concern the convergence of the approximating RL and the closure of ≤st under the
limit operation. •

Result (15) of Table 5.1 — which has a summary of the stochastic properties of
RLα

E+−µ(δ, θ) — reflects the stochastic implication of setting the E+ − µ scheme to an
initial head start value: it will imply a decrease of the run length, which is reasonable
enough because, for 0 ≤ α < α′ < 1, the scheme with a α × 100% head start tends to
signal less frequently than the same chart with a α′ × 100% head start.

Result (16) of Table 5.1 essentially means that the run length of the E+ − µ scheme
is stochastically decreasing in δ. Thus, the control chart increases its ability to detect
an increase in δ as this change becomes more severe; result (16) of Table 5.1 is somehow
expected since there is some similarity between the survival functions of RLS+−µ(δ, θ) and
RLE+−µ(δ, θ;x+

µ ). Morais and Pacheco (1998), p. 950, briefly mention these two stochastic
properties.
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Remark 5.8 — Given the usual values of ξ+µ , RLS+−µ(δ, θ) decreases stochastically with
θ for most of the likely values of δ (i.e., small and moderate values of δ). But, notice
that δE+−µ(x+

µ ) is rarely positive (in fact its limit δE+−µ is negative) because we tend
to use large values of x+

µ and small values of λ+
µ , to provide a fine approximation to the

properties of the true run length of the E+ − µ scheme, and to yield a good performance
in comparison to RLS+−µ, respectively. •

Remark 5.9 — We cannot predict the monotone behaviour of RLα
E+−µ(δ, θ;x+

µ ) in terms
of θ, for any fixed δ in the interval (δE+−µ, δE+−µ). If we recall the considerations about
the sign of δE+−µ and the fact that δE+−µ is rather large for the same reasons pointed
out previously, we could assert that the interval (δE+−µ, δE+−µ) includes all the relevant
values of δ — the small and moderate ones. This is a severe disadvantage of not having
the E+−µ scheme associated to a unique turning point in terms of stochastic monotonous
behaviour (similarly to the upper one-sided scheme S+ − µ) as a consequence of dealing
with a summary statistic with a far more complex structure — a Markov chain with
continuous state space. •

The stochastic monotonicity result (18) of Table 5.1 is valid for “very large” shifts in
µ, in particular, for δ ≥ δE+−µ. Thus, the associated ARL values are quite small and it
seems at first glance that the increasing behaviour of the RL has no practical significance.
However, this behaviour has an impact in some performance measures of the joint schemes
for µ and σ, as we shall see in the next chapter.

After all these comments and remarks, we conclude that results (17) and (18) of Table
5.1 are not perfect analogues of (5.5) and (5.7).

5.3 The remaining schemes

Results of the same flavour of those in Theorems 5.4 and 5.5 and Corollary 5.7 can be
stated for the three remaining upper one-sided schemes for µ, C+ − µ, CS+ − µ and
ES+ − µ. Table 5.1 gives an overview of such stochastic monotonicity properties.

The proof of results (5)–(9) of Table 5.1 concerning scheme C+−µ are sketched next;
the proof and a remark on results (10)-(14) and (19)–(22), which concern the combined
schemes and are somewhat more delicate, close this section.

Proof ((5) in Table 5.1: monotonicity in α, scheme C+ − µ) — The transition matrix
associated to scheme C+ − µ is stochastically monotone in the usual sense because the
corresponding left partial sums in Table A.7 decrease with the row index i. Thus, accord-
ing to result (3.14) from Theorem 3.8 and Lemma 3.18 the approximating and exact RLs
stochastically decrease with the initial state, i.e., with α. •

Proof ((6) in Table 5.1: monotonicity in δ, scheme C+−µ) — The stochastic monotonicity
in δ of the approximating (and, thus, of the exact) RL of scheme C+ − µ follow suit. In
fact, the associated left partial sums in Table A.7 decrease with δ. Hence, the stochastic
decreasing behaviour with regard to δ of this RL. •
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Table 5.1: Stochastic properties of the exact RLs of the upper one-sided schemes for µ.

Scheme for µ Stochastic properties

S+ − µ

(1) RLS+−µ(δ, θ) ↓lr with δ

(2) RLS+−µ(δ, θ) ↓lr with θ, if δ < δS+−µ = δS+−µ = ξ+
µ

(3) RLS+−µ(δ, θ) =st RLS+−µ(δ, θ
′) for θ, θ′ ∈ [1, +∞),

if δ = δS+−µ = δS+−µ = ξ+
µ

(4) RLS+−µ(δ, θ) ↑lr with θ, if δ > δS+−µ = δS+−µ = ξ+
µ

C+ − µ

(5) RLαC+−µ(δ, θ) ↓st with α

(6) RLαC+−µ(δ, θ) ↓st with δ

(7) RLαC+−µ(δ, θ) ↓st with θ,

if δ ≤ δC+−µ = lim
x+

µ→+∞

{
k+
µ +

h+
µ [1−(x+

µ +1/2)]

(x+
µ +1)

}
= k+

µ − h+
µ

(8) RLαC+−µ(δ, θ) ↑st with θ,

if δ ≥ δC+−µ =lim
x+

µ→+∞

{
k+
µ +

h+
µ [(x+

µ +1)−1/2]

(x+
µ +1)

}
= k+

µ + h+
µ

(9) RLαC+−µ(δ, θ; k
+
µ ) ↑st with k+

µ

CS+ − µ

(10) RLαCS+−µ(δ, θ) ↓st with α

(11) RLαCS+−µ(δ, θ) ↓st with δ

(12) RLαCS+−µ(δ, θ) ↓st with θ,

if δC+−µ − θξ+
µ < δ ≤ δC+−µ and θ >

2h+
µ

ξ+µ

= lim
x+

µ→+∞
δ

C+−µ
(x+

µ )−δ
C+−µ

(x+
µ )

ξ+µ

(13) RLαCS+−µ(δ, θ) ↑st with θ, if δ ≥ δC+−µ

(14) RLαCS+−µ(δ, θ; k
+
µ ) ↑st with k+

µ

E+ − µ

(15) RLαE+−µ(δ, θ) ↓st with α

(16) RLαE+−µ(δ, θ) ↓st with δ

(17) RLαE+−µ(δ, θ) ↓st with θ,

if δ ≤ δE+−µ = lim
x+

µ→+∞
γ+

µ [1−(1−λ+
µ )(x+

µ +1/2)]

(x+
µ +1)

√
λ+

µ (2−λ+
µ )

=
−γ+

µ (1−λ+
µ )√

λ+
µ (2−λ+

µ )

(18) RLαE+−µ(δ, θ) ↑st with θ,

if δ ≥ δE+−µ = lim
x+

µ→+∞
γ+

µ [(x+
µ +1)−(1−λ+

µ )/2]

(x+
µ +1)

√
λ+

µ (2−λ+
µ )

=
γ+

µ√
λ+

µ (2−λ+
µ )

ES+ − µ

(19) RLαES+−µ(δ, θ) ↓st with α

(20) RLαES+−µ(δ, θ) ↓st with δ

(21) RLαES+−µ(δ, θ) ↓st with θ,

if δE+−µ − θξ+
µ < δ ≤ δE+−µ and θ >

γ+
µ

ξ+µ

√
(2− λ+

µ )(λ+
µ )−1

= lim
x+

µ→+∞
δ

E+−µ
(x+

µ )−δ
E+−µ

(x+
µ )

ξ+µ

(22) RLαES+−µ(δ, θ) ↑st with θ, if δ ≥ δE+−µ
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Proof ((7) and (8) in Table 5.1: monotonicities in θ, scheme C+ − µ) — The stochastic
monotone behaviours of the RLs in terms of θ are proved below and follow quite similarly
to the proofs for scheme E+ − µ. When it comes to scheme C+ − µ we are dealing with

sign

{
−k+

µ −
h+

µ × [(j + 1)− (i+ 1/2)]
x+

µ + 1
+ δ

}
, (5.31)

for i, j = 0, . . . , x+
µ . This sign is negative if

δ < min
i,j=0,...,x+

µ

{
k+

µ +
h+

µ × [(j + 1)− (i+ 1/2)]
x+

µ + 1

}
⇔

δ < k+
µ −

h+
µ × [1− (x+

µ + 1/2)]
x+

µ + 1
= δC+−µ(x+

µ ), (5.32)

and positive if

δ > max
0≤i,j≤x+

µ

{
k+

µ +
h+

µ × [(j + 1)− (i+ 1/2)]
x+

µ + 1

}
⇔

δ > k+
µ +

h+
µ × [(x+

µ + 1)− 1/2]
x+

µ + 1
= δC+−µ(x+

µ ). (5.33)

Also, for δ = δC+−µ(x+
µ ) (δ = δC+−µ(x+

µ )), all the derivatives of the left partial sums of
the transition matrix with respect to θ are nonpositive (nonnegative). Thus, we get result
(7) ((8)) in Table 5.1 by using Corollary 3.13 and Lemma 3.18. •

Proof ((9) in Table 5.1: monotonicity in k+
µ , scheme C+ − µ) — The increasing stochas-

tic behaviour in k+
µ of RLα

C+−µ(δ, θ) follows from the fact that the approximating RL,
RLα

C+−µ(δ, θ;x+
µ ), is associated to left partial sums that increase with k+

µ (see Table A.7),
along with Lemma 3.18. •

Proof ((10) and (19) in Table 5.1: monotonicity in α, combined schemes CS+ − µ and
ES+ − µ) — The transition matrices associated to the combined schemes CS+ − µ and
ES+−µ are all stochastically monotone in the usual sense because the corresponding left
partial sums in Table A.7 decrease with the row index i, whether we use the distribution
function Φ or its truncated version Φ+. Thus, the stochastic monotonicity in α of the run
length of both combined schemes follows from result (3.14) from Theorem 3.8 and Lemma
3.18. •

Proof ((11) and (20) in Table 5.1: monotonicity in δ, combined schemes CS+ − µ and
ES+−µ) — Results (6) and (16) in Table 5.1 still hold for the RL of the combined scheme
CS+ − µ and ES+ − µ because the left partial sums are defined in terms of a truncation
that does not affect their decreasing behaviour with regard to δ. Hence, the stochastic
monotone decreasing behaviour in terms of δ of the run length of schemes CS+ − µ and
ES+ − µ follows from Lemma 3.18. •

Proof ((14) in Table 5.1: monotonicity in k+
µ , combined scheme CS+−µ) — An analogue

of result (9) in Table 5.1 is also valid for the RL of the combined scheme CS+− µ for the
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same reason pointed in the previous proof. In fact, the truncation that does not affect the
sign of the derivative of the left partial sums with respect to k+

µ : they remain positive.
Thus, we conclude that the run length of scheme CS+ − µ stochastically increases with
k+

µ , by using once again Lemma 3.18. •

Proof ((12) and (13) in Table 5.1: monotonicities in θ, combined scheme CS+ − µ) —
To obtain the analogues of results (7) and (8) in Table 5.1, for scheme CS+ − µ, we must
add that the sign of the derivatives of the left partial sum with respect to θ is non-null
and equal to (5.31) if

1
θ

{
k+

µ +
h+

µ × [(j + 1)− (i+ 1/2)]
x+

µ + 1
− δ

}
< ξ+µ , (5.34)

due to the truncation in ξ+µ (see Equation (A.2)).
The sign in (5.31) is nonpositive, for i, j = 0, . . . , x+

µ , if

δ ≤ min
i,j=0,...,x+

µ

{
k+

µ +
h+

µ × [(j + 1)− (i+ 1/2)]
x+

µ + 1

}
= δC+−µ(x+

µ ) and

δ > max
i,j=0,...,x+

µ

{
k+

µ +
h+

µ × [(j + 1)− (i+ 1/2)]
x+

µ + 1

}
− θξ+µ

= δC+−µ(x+
µ )− θξ+µ . (5.35)

These two conditions only make sense when θ >
δC+−µ−δC+−µ

ξ+
µ

, and in that case we get

δC+−µ − θξ+µ < δ ≤ δC+−µ.
Similarly, the sign in (5.31) is nonnegative under the constraint (5.34), for i, j =

0, . . . , x+
µ , if

δ ≥ max
0≤i,j≤x+

µ

{
k+

µ +
h+

µ × [(j + 1)− (i+ 1/2)]
x+

µ + 1

}
= δC+−µ(x+

µ ) and

δ > δC+−µ(x+
µ )− θξ+µ , (5.36)

i.e., if δ ≥ δC+−µ(x+
µ ). Thus, the stochastic monotone behaviours (12) and (13) in Table

5.1 follow using Corollary 3.13 and Lemma 3.18. •

Proof ((21) and (22) in Table 5.1: monotonicities in θ, combined scheme ES+ − µ) —
Finally, we ought to obtain the analogues of (17) and (18) in Table 5.1 for the combined
scheme ES+ − µ. They follow quite easily. This time the sign of derivatives of the left
partial sum with respect to θ is non-null and equal to (5.21) if

1
θ

γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

− δ

 < ξ+µ , (5.37)

due to the truncation in ξ+µ .
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The sign in (5.21) is nonpositive under the constraint (5.37), for i, j = 0, . . . , x+
µ , if

δ ≤ min
i,j=0,...,x+

µ

γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

 = δE+−µ(x+
µ ) and

δ > max
i,j=0,...,x+

µ

γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

− θξ+µ

= δE+−µ(x+
µ )− θξ+µ . (5.38)

Once again, these two conditions only make sense when θ >
δE+−µ−δE+−µ

ξ+
µ

, and in that

case we get δE+−µ − θξ+µ < δ ≤ δE+−µ.
Analogously, the sign in (5.21) is nonnegative under the constraint (5.37) in case

δ ≥ max
i,j=0,...,x+

µ

γ+
µ × [(j + 1)− (1− λ+

µ )(i+ 1/2)]

(x+
µ + 1)

√
λ+

µ (2− λ+
µ )

 = δE+−µ and

δ > δE+−µ(x+
µ )− θξ+µ , (5.39)

that is, if δ > δE+−µ(x+
µ ).

Thus, the stochastic monotone behaviours of the RL of scheme ES+ − µ in terms of
θ, summarized by the expressions (21) and (22) in Table 5.1, follow from Corollary 3.13
and Lemma 3.18. •

Remark 5.10 — As we have demonstrated, the exact RL of scheme C+−µ stochastically
increases with θ if δ ≥ δC+−µ; this is also valid for the combined scheme CS+−µ. However,
the extension of the stochastic decreasing behaviour of RLα

C+−µ(δ, θ) to the combined
scheme CS+−µ requires a slight modification — it only holds for δC+−µ−θξ+µ < δ ≤ δC+−µ

and in case θ > (δC+−µ−δC+−µ)/ξ+µ = 2h+
µ /ξ

+
µ , that is, for θ usually larger than the unity

(see Table 5.2).
Similar extensions hold for the combined scheme ES+ − µ, for which the stochastic

decreasing behaviour occurs for rather large values of θ (also refer to Table 5.2). •

5.4 Examples

We shall not illustrate the properties alluded to in the previous sections. We proceed with
a numerical investigation over the stochastic monotone behaviour with respect to θ of the
RLs of the five upper one-sided schemes, in the interval [0, δ).

These examples refer to schemes S+ − µ, C+ − µ, CS+ − µ, E+ − µ and ES+ − µ,
obtained by considering n = 5, µ0 = 0, σ0 = 1, x+

µ = 40 (i.e. 41 transient states in the
Markov chain approximations) and the remaining parameters equal to those in Table 5.2.

The in-control ARLS+−µ(0, 1) is fixed at 500 samples which leads to ξ+µ = Φ−1(1 −
1/500) = 2.87816. The range of the decision intervals [LCL,UCL) of the remaining
schemes for µ was chosen in such way that, when no head start has been adopted, all
five schemes are approximately matched in-control, that is, all schemes require the same
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average number of samples to a false alarm — thus, ARL0
C+−µ(0, 1), ARL0

E+−µ(0, 1),
ARL0

CS+−µ(0, 1) and ARL0
ES+−µ(0, 1) are close to 500. In both combined schemes for

µ, the Shewhart type constituent charts have in-control ARL equal to 1000 samples. For
further details on the choice of the parameters of these schemes please refer to Chapter 6,
where these and other schemes are used in the joint monitoring of µ and σ.2

Regarding the process parameter θ, we have to note that the set of parameters used
here lead to values of δ(x+

µ ), δ(x+
µ ), δ and δ, also in Table 5.2.

Table 5.2: Parameters, in-control ARLs, and values of δ(x+
µ ), δ(x+

µ ), δ and δ, for the upper
one-sided schemes for µ.

Scheme Parameters ARL(0, 1) δ(x+
µ ) δ(x+

µ ) δ δ

S+ − µ ξ+
µ = 2.87816 500.000 — — 2.87816 2.87816

C+ − µ h+
µ = 4.4456, k+

µ = 0.50 500.021 -3.782956 4.891385 -3.9456 4.9456

CS+ − µ ξ+
µ = 3.09023, h+

µ = 4.9854, k+
µ = 0.50 500.020 -4.303007∗ 5.424602 -4.4854∗∗ 5.4854

E+ − µ γ+
µ = 2.8116, λ+

µ = 0.134 500.097 -4.672742 5.563324 -4.869263 5.622705

ES+ − µ ξ+
µ = 3.09023, γ+

µ = 3.0016, λ+
µ = 0.134 500.094 -4.988513(∗) 5.939278 -5.198314(∗∗) 6.00267

for θ larger than: * 3.14786; ** 3.22655; (*) 3.536236; and (**) 3.624642.

Figure 5.3 presents three ARL curves for values of θ ranging from the in-control situ-
ation to a 500% increase in the process standard deviation.

These plots show that, for δ = δS+−µ − 0.1, δ = δS+−µ and δ = δS+−µ + 0.1 (recall
that δS+−µ = δS+−µ = ξ+µ ), ARLS+−µ(δ, θ) is (respectively) a decreasing, constant and
increasing function of θ, as a consequence of the stochastic monotonicity results (5.5)–(5.7).

Figure 5.3: Plots of ARLS+−µ(δ, θ), for δ = δS+−µ − 0.1, δ = δS+−µ, δ = δS+−µ + 0.1 and
θ ∈ [1, 5].

The plots on the right of Figure 5.4 portray a completely different scenario for δ =
δ − 0.1, δ = δ and δ = δ + 0.1 and schemes C+ − µ, CS+ − µ, E+ − µ and ES+ − µ.

The function ARL0(δ, θ) of all these four schemes increases with θ when δ = δ + 0.1
and δ = δ; recall that both monotone behaviours are a direct consequence of results (8),
(13), (18) and (22) in Table 5.1. However, ARL0(δ, θ) has no monotone behaviour in terms
of θ, for δ = δE+−µ − 0.1.

2Note that in Morais and Pacheco (2000c) the examples only refer to a pair of matched upper one-sided

schemes S+ − µ and E+ − µ with in-control ARL equal to 500.567 samples.
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Figure 5.4: Plots of ARL0(δ, θ), for schemes C+−µ, E+−µ, CS+−µ and ES+−µ. On
the left: δ = 0 and θ ∈ [1, 2]. On the right: δ = δ − 0.1, δ = δ and δ = δ + 0.1 from top to
bottom, and θ ∈ [1, 5].
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A plausible explanation for this nonmonotone behaviour as the level of the standard de-
viation increases when δ is fixed and belongs to (δ, δ) is the fact that δ ≤ δ (δ ≥ δ) is
not a necessary condition for a stochastic decreasing (increasing) behaviour of RLα(δ, θ)
in terms of θ.

The plots from the left hand side of Figure 5.4 suggest that ARL0(0, θ) decreases with
θ for any of the four control schemes — regardless of the fact that the stochastic behaviour
of RLα(δ, θ) is unknown, for any fixed δ in the interval [0, δ).

Table 5.3: Percentage points of RL0(δ, θ) and ARL0(δ, θ) values for schemes C+ − µ,
CS+ − µ, E+ − µ and ES+ − µ.

C+ − µ CS+ − µ

δ = 0.1 δ = 2 δ = 0.1 δ = 2

RL perc. θ θ θ θ

points 1 2 3 1 2 3 1 2 3 1 2 3

5% 18 3 1 2 1 1 20 3 2 2 2 1

25% 75 7 3 3 2 2 90 8 4 3 2 2

Median 174 14 7 3 3 3 210 17 8 4 3 3

75% 342 25 12 4 5 4 415 30 14 5 5 5

90% 563 40 19 5 6 6 686 49 22 6 7 7

95% 731 51 24 6 8 8 891 63 28 6 8 9

ARL 247.9 18.6 8.8 3.6 3.7 3.4 300.9 22.7 10.2 4.0 4.0 3.8

E+ − µ ES+ − µ

δ = 0.1 δ = 2 δ = 0.1 δ = 2

RL perc. θ θ θ θ

points 1 2 3 1 2 3 1 2 3 1 2 3

5% 19 3 2 2 2 1 21 4 2 3 2 1

25% 74 8 4 3 2 2 90 9 4 3 3 2

Median 168 16 8 4 3 3 208 18 8 4 4 3

75% 329 28 14 5 5 5 410 33 15 5 5 5

90% 541 45 21 6 7 7 677 53 24 6 7 7

95% 702 58 27 6 8 9 878 68 31 7 9 9

ARL 239.0 21.2 10.1 9.6 7.6 5.9 297.1 24.8 11.3 10.7 8.3 6.4

Our additional numerical investigations yield, in any case, similar conclusions when
a 50% head start has been given to all of the four schemes with phase-type distributed
RLs. Nevertheless, we were able to obtain increasing functions ARL0

C+−µ(δC+−µ − 0.1, θ)
and ARL0

CS+−µ(δC+−µ − 0.1, θ) for a different constelation of parameters: h+
µ = 2.3807,

k+
µ = 1.00, and ξ+µ = 3.09023, h+

µ = 2.2515, k+
µ = 1.00.
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All these numerical results concerning ARL0(δ, θ), for δ = 0, δ − 0.1, suggest a close
investigation of the percentage points of RL0(δ, θ) for some values of θ, and of δ in the
interval [0, δ).

The results in Table 5.3 portray an interesting situation: most of the ARL0(δ, θ) values
decrease with θ but the same does not occur with the percentage points in bold. In fact,
the percentage points of RL0(δ, θ), for θ = 1, 2, 3 and for δ = 2 for schemes C+ − µ,
CS+−µ, E+−µ and ES+−µ, exhibit decreasing, constant, increasing and nonmonotone
behaviours. Thus, the phase-type distributed RLs do not seem to make a sharp transition
from being stochastically decreasing in θ (for δ ≤ δ) to being stochastically increasing in
θ (when δ ≥ δ), as the run length of the upper one-sided S+ − µ scheme, RLS+−µ(δ, θ).

Table 5.4: Percentage points of RL0(0, θ) and ARL0(0, θ) values for schemes C+ − µ,
CS+ − µ, E+ − µ and ES+ − µ.

C+ − µ CS+ − µ

RL perc. θ θ

points 1.01 1.1 1.25 1.5 2 3 1.01 1.1 1.25 1.5 2 3

5% 29 17 10 6 3 1 28 20 12 7 3 2

25% 137 75 36 17 8 4 140 91 48 22 9 4

Median 322 173 82 37 16 7 331 213 109 48 19 8

75% 638 341 160 71 29 13 659 421 213 93 36 15

90% 1056 564 263 116 47 20 1092 696 351 152 58 23

95% 1372 732 341 149 60 26 1420 905 455 196 74 30

ARL 461.5 247.5 116.5 52.0 21.4 9.4 476.5 304.8 154.7 68.0 26.5 11.0

E+ − µ ES+ − µ

RL perc. θ θ

points 1.01 1.1 1.25 1.5 2 3 1.01 1.1 1.25 1.5 2 3

5% 30 19 11 7 4 2 29 21 13 8 4 2

25% 138 79 40 20 9 4 140 93 50 24 11 5

Median 324 180 89 42 18 8 332 217 114 52 21 9

75% 640 355 173 79 33 15 660 429 222 100 39 16

90% 1059 585 283 129 53 23 1093 709 366 163 63 26

95% 1375 759 367 166 69 30 1421 920 475 210 82 33

ARL 463.7 257.6 126.0 58.2 24.7 10.9 477.3 310.6 161.7 73.0 29.2 12.2

We close this section with the analysis of a particularly important scenario — (δ, θ) ∈
{0} × (1,+∞) — that is closely related to misleading signals of type III, defined in the
next chapter.

Table 5.4 has several percentage points of the RL0(0, θ) of all four charts, for θ =
1.01, 1.1, 1.25, 1.5, 2, 3. According to these tables RL0(0, θ) seems to stochastically decrease
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as the process standard deviation increases.3

5.5 Further stochastic properties

In this section we shall try to sharpen the stochastic monotonicity properties with regard to
the initial state, derived in Sections 5.2 and 5.3. This naturally requires the investigation
of the features of the transition matrix, which will be summarized in Theorem 5.14. For
that matter we shall need the following lemma concerning the decreasing likelihood ratio
(or PF2) character of the standard normal distribution.

Proposition 5.11 — Let X =st N(0, 1). Then X ∈ DLR, and therefore X ∈ DRHR.

Proof — For the lack of a reference, we include a proof of both results. The density
function and the distribution function of X are represented by φ(x) = (2π)−1/2 exp−x2/2

and Φ(x), respectively. Therefore d2 logφ(x)
dx2 = −1 ≤ 0, that is, φ(x) is log-concave; in other

words φ(x) ∈ PF2 (Barlow and Proschan (1975, p. 76)) or X ∈ DLR.
As mentioned by Shaked and Shanthikumar (1994, p. 12) the notion of hazard rate (and

certainly the one of reversed hazard rate) may be also defined for general random variables
although usually applied to nonnegative random variables. Let λ(x) = φ(x)/[1 − Φ(x)],
λ(x) = φ(x)/Φ(x), be the hazard rate function and the reversed hazard rate function of
X, respectively.

As a consequence of Theorems 1.C.22, 1.C.1 and 1.B.19 of Shaked and Shanthikumar
(1994, pp. 40, 28 and 23) and the symmetry of φ(x), we successively get

X ∈ DLR ⇔ (X − t |X > t) ≥lr (X − t′ |X > t′), for all t ≤ t′

⇒ (X − t |X > t) ≥hr (X − t′ |X > t′), for all t ≤ t′

⇔ X ∈ IHR
⇔ λ(x) ↑x over IR

⇔ λ(x) = λ(−x) ↓x over IR. (5.40)

Thus, the reversed hazard rate of X, φ(x)/Φ(x), decreases with x. •

We have just proved that the normal distribution has DRHR. If we add to this property
result (2.106), Proposition 2.20 would immediately suggest that the matrix PC+−µ(δ, θ)
belongs to the class of stochastically monotone matrices in the reversed hazard rate sense.
This is in fact the case although we are dealing now with the discretized version of normal
data.

Lemma 5.12 — Let PC+−µ(δ, θ;x+
µ ) be the transition matrix ruling the approximating

Markov chain associated to the C+ − µ scheme. Then

PC+−µ(δ, θ;x+
µ ) ∈Mrh. (5.41)

3This result will provide an interesting explanation for the nonmonotonous character of the probability

of a misleading signal of type III, introduced in the following chapter.
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Proof — From the decreasing behaviour of λ(x) for X =st N(0, 1), we conclude that, for
any x ∈ IR and ξ > 0,

d Φ(x+ ξ)/Φ(x)
dx

= [λ(x+ ξ)− λ(x)]× Φ(x+ ξ)
Φ(x)

≤ 0, (5.42)

that is,

Φ(x+ ξ)/Φ(x) ↓x over IR, for any ξ > 0. (5.43)

Thus,[
Φ(x1) Φ(x2) Φ(x3) . . .

Φ(x0) Φ(x1) Φ(x2) . . .

]
∈ TP2, (5.44)

where xi = x0 + iξ, i = 0, 1, . . .. By capitalizing on the fact that each pair of consecutive
rows of PC+−µ(δ, θ;x+

µ )U> corresponds to a right-truncated version of the matrix in (5.44)
supplemented by a column of two ones, we conclude that PC+−µ(δ, θ;x+

µ )U> ∈ TP2, and,
thus, prove the result. •

We shall need the next lemma in order to strenghten or extend result (5.41) to schemes
CS+ − µ, E+ − µ and ES+ − µ.

Lemma 5.13 — The following conditions involving 2 × 2 minors hold, for any x ∈ IR,
∆ > 0 and 0 ≤ ε ≤ ∆:∣∣∣∣∣ Φ(x) Φ(x+ ∆)− Φ(x)

Φ(x−∆ + ε) Φ(x+ ε)− Φ(x−∆ + ε)

∣∣∣∣∣ ≥ 0, (5.45)

∣∣∣∣∣ Φ(x)− Φ(x−∆) Φ(x+ ∆)− Φ(x)
Φ(x−∆ + ε)− Φ(x− 2∆ + ε) Φ(x+ ε)− Φ(x−∆ + ε)

∣∣∣∣∣ ≥ 0. (5.46)

Proof — Condition (5.45) is equivalent to

Φ(x)Φ(x+ ε)− Φ(x+ ∆)Φ(x−∆ + ε) ≥ 0, (5.47)

which proves to be true since the decreasing behaviour of Φ(x + ξ)/Φ(x) in x (for any
ξ > 0) guarantees that, for 0 ≤ ε ≤ ∆,

Φ(x+ ε)
Φ(x+ ε−∆)

≥ Φ(x+ ∆)
Φ(x)

. (5.48)

On the other hand, the 2× 2 minor in (5.46), is equal to∫ x

x−∆

∫ x+ε

x−∆+ε
φ(u)φ(v)dvdu−

∫ x−∆+ε

x−2∆+ε

∫ x+∆

x
φ(u)φ(v)dvdu

=
∫ ∆

0

∫ ∆

0
[φ(x−∆ + a)φ(x−∆ + ε+ b)− φ(x− 2∆ + ε+ a)φ(x+ b)]dbda

=
∫ ∆

0

∫ ∆

0
[φ(x−∆ + a)φ(x−∆ + ε+ b) {1− exp[−(ε−∆)(a− b−∆)]} dbda.(5.49)

Under the conditions of Lemma 5.13 this 2 × 2 minor is nonnegative since −(ε −∆)(a −
b−∆) ≤ 0 and, thus, the integrand is nonnegative; this proves (5.46). •
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Theorem 5.14 — Let P∗+−µ(δ, θ;x+
µ ) be the approximating stochastic matrix ruling the

Markov chain associated to the upper one-sided scheme “∗+ − µ”. Then

P∗+−µ(δ, θ;x+
µ ) ∈Mlr, for ∗+ −µ = C+ − µ,E+ − µ (5.50)

P∗+−µ(δ, θ;x+
µ ) ∈Mrh, for ∗+ −µ = CS+ − µ,ES+ − µ. (5.51)

Proof (C+ − µ) — By using a similar argumentation as in the proof of Lemma 5.12,
PC+−µ(δ, θ;x+

µ ) ∈Mlr if we guarantee that[
Φ(x1) Φ(x2)− Φ(x1) Φ(x3)− Φ(x2) . . .

Φ(x0) Φ(x1)− Φ(x0) Φ(x2)− Φ(x1) . . .

]
∈ TP2, (5.52)

where xi = xi−1 + ∆, i = 1, 2, . . ..
This result immediately follows since the 2× 2 minors of the matrix in (5.52)∣∣∣∣∣ Φ(x1) Φ(x2)− Φ(x1)

Φ(x0) Φ(x1)− Φ(x0)

∣∣∣∣∣ (5.53)

∣∣∣∣∣ Φ(xi+1)− Φ(xi) Φ(xi+2)− Φ(xi+1)
Φ(xi)− Φ(xi−1) Φ(xi+1)− Φ(xi)

∣∣∣∣∣ , i = 1, 2, . . . , (5.54)

are all nonnegative by applying Lemma 5.13 and considering the range of the intervals
used in the discretization procedure equal to ∆ = h+

µ /(x
+
µ + 1), and ε = 0. •

Proof (CS+ − µ) — By benefiting from the proof of result (4.21) of Theorem 4.4 and
from the fact that PC+−µ(δ, θ;x+

µ ) ∈ Mlr, we similarly conclude that the stochastic ma-
trix PCS+−µ(δ, θ;x+

µ ) is stochastically monotone in the reversed hazard rate sense. •

Proof (E+−µ) — The nontruncated generic form of two consecutive rows of PE+−µ(δ, θ;x+
µ )

is as follows[
Φ(x1) Φ(x2)− Φ(x1) Φ(x3)− Φ(x2) . . .

Φ(x1 −∆ + ε) Φ(x2 −∆ + ε)− Φ(x1 −∆ + ε) Φ(x3 −∆ + ε)− Φ(x2 −∆ + ε) . . .

]
,(5.55)

where xi = xi−1 + ∆, i = 1, 2, . . ., with ∆ = γ+
µ

(x+
µ+1)

√
λ+
µ (2−λ+

µ )
and ε = λ+

µ ∆. Thus, by

considering ∆ and ε as stated and applying result (5.46) from Lemma 5.13, we prove that
PE+−µ(δ, θ;x+

µ ) ∈ TP2. •

Proof (ES+ − µ) — This proof is similar to the one of PCS+−µ(δ, θ;x+
µ ) ∈Mrh. •

Theorem 5.15 — The approximating RLs of schemes C+ − µ, E+ − µ, CS+ − µ and
ES+ − µ have the following stochastic properties:

RLα
C+−µ(δ, θ;x+

µ ), RLα
E+−µ(δ, θ;x+

µ ) ↓lr with α (5.56)

RLα
CS+−µ(δ, θ;x+

µ ), RLα
ES+−µ(δ, θ;x+

µ ) ↓hr with α. (5.57)
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Proof — The mere application of Theorem 3.8 and Theorem 5.14 leads to all the results. •

Corollary 5.16 — Results (5.56) and (5.57) hold for the exact RLs of schemes C+ − µ,
E+ − µ, CS+ − µ and ES+ − µ.

Proof — Apply the closure property under the limit operation stated in Lemma 3.18. •

The next example provides a few values of the alarm rate and equilibrium rate functions
to illustrate the results in Theorem 5.15.

Example 5.17 — Let RLα
C+−µ(δ, θ), RLα

CS+−µ(δ, θ), RLα
E+−µ(δ, θ) and RLα

ES+−µ(δ, θ)
now denote the approximate RLs of the Markov-type upper one-sided schemes C+ − µ,
CS+ − µ, E+ − µ and ES+ − µ (respectively), with a α × 100% head start. Moreover
consider the parameters given at the beginning of Section 5.4.

The values in Table 5.5 and Table 5.6 illustrate the increases in the alarm rates of the
four schemes after the adoption of a 50% head start, in agreement with Theorem 5.15. As
in Example 4.9, this increase steadily converges to zero since

lim
m→+∞

λRLα
∗+−µ

(δ,θ)(m) = ξ(δ, θ), (5.58)

for any α ∈ [0, 1), where ξ(δ, θ) is the maximal real eigenvalue of the substochastic matrix
Q∗+−µ(δ, θ;x+

µ ) concerning scheme ∗+ − µ, as seen in Figures 5.5–5.8.
We can also add some comments on the monotone behaviour of the alarm rate functions

of all these RLs as we did in Example 4.9. For example, when no head start has been
given to schemes C+−µ, CS+−µ, E+−µ, and ES+−µ, the alarm rate functions of the
associated RLs increase as we collect more samples. Moreover, the RLs of most schemes
with a 50% head start are not IHR, as apparent in the graphs on the right hand side of
Figures 5.5–5.8.

The numerical values in Table 5.5 and Table 5.6 also show that after having given such
a head start the equilibrium rate functions of the RLs of schemes C+ − µ and E+ − µ

increase, a consequence of the decreasing behaviour of these RLs with regard to α, in the
likelihood ratio sense. This increase essentially mean that giving a head start yields an
increase in the relative sequential decrease in the probability that the schemes triggers a
signal, 1 − 1/rRL(m). However, this property does not hold for schemes CS+ − µ and
ES+ − µ, as illustrated by the two last columns of Table 5.5 and Table 5.6; thus, we
can assert that both RLα

CS+−µ(δ, θ) and RLα
ES+−µ(δ, θ) do not decrease with α in the

likelihood ratio sense. •

An increase in the process standard deviation is certainly a cause of concern. Quite
apart from the relevance of a standard deviation change in its own right, a dilation in this
scale parameter changes the stochastic behaviour of the RL of a scheme for the process
mean.

In fact, it was proved that the run length of the upper one-sided X̄ control scheme
(S+ − µ) can be a decreasing, a constant, or an increasing function of θ (in the usual
sense), depending on the fixed value of δ.
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Table 5.5: ARLs, alarm rates and equilibrium rates of the RLs of schemes C+ − µ and
CS+ − µ, for α× 100% = 0%, 50% head starts.

λRL(m) rRL(m)

m RL0%
C+−µ(0, 1) RL50%

C+−µ(0, 1) RL0%
C+−µ(1, 1) RL50%

C+−µ(1, 1) RL0%
C+−µ(0, 1) RL50%

C+−µ(0, 1)

1 0.000001 0.003237 0.000050 0.042462 — —

2 0.000069 0.010014 0.008228 0.166623 0.007232 0.324255

3 0.000346 0.010196 0.042735 0.209693 0.200194 0.992045

4 0.000731 0.008403 0.085672 0.218102 0.473420 1.225965

5 0.001088 0.006614 0.120316 0.216824 0.671807 1.281159

10 0.001881 0.002701 0.185221 0.202120 0.966266 1.124782

20 0.002017 0.002033 0.196988 0.197540 1.001380 1.005169

30 0.002020 0.002020 0.197364 0.197382 1.002012 1.002084

100 0.002020 0.002020 0.197376 0.197376 1.002024 1.002024

ARL 500.021 476.580 9.164 5.761 — —

λRL(m) rRL(m)

m RL0%
CS+−µ(0, 1) RL50%

CS+−µ(0, 1) RL0%
CS+−µ(1, 1) RL50%

CS+−µ(1, 1) RL0%
CS+−µ(0, 1) RL50%

CS+−µ(0, 1)

1 0.001000 0.001383 0.001000 0.023147 — —

2 0.001001 0.006759 0.003181 0.130277 1.000347 0.204853

3 0.001056 0.007922 0.022413 0.184327 0.948952 0.858976

4 0.001195 0.007136 0.056353 0.200748 0.884502 1.118928

5 0.001365 0.005998 0.089745 0.204036 0.876235 1.198345

10 0.001879 0.002807 0.166770 0.193255 0.973301 1.117519

20 0.002008 0.002038 0.185496 0.186951 1.001127 1.007224

30 0.002012 0.002013 0.186485 0.186568 1.001988 1.002184

100 0.00201 0.002012 0.186545 0.186545 1.002016 1.002016

ARL 500.020 482.516 10.216 6.328 — —

As for the run length of the remaining upper one-sided schemes — C+ − µ, E+ − µ,
CS+ − µ and ES+ − µ —, sufficient conditions were established for this random variable
to increase (decrease) stochastically as the process standard deviation grows, implying
that this chart becomes progressively less (more) sensitive to the same shift in the process
mean.

Some numerical investigations carried on this chapter show that the phase-type run
length of the upper one-sided schemes C+−µ, E+−µ, CS+−µ and ES+−µ can exhibit
a nonmonotonic stochastic behaviour in θ for certain values of δ.

These properties are due to the fact that these individual schemes for µ are not tai-
lored for the detection of shifts in σ. And the differences between the behaviours of the
geometric RL and the phase-type RLs, in terms of θ, are a natural consequence of dealing,
respectively, with independent and dependent summary statistics.
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Figure 5.5: Alarm rates of RLα
C+−µ(0, 1) and RLα

C+−µ(1, 1), for α × 100% = 0% (on the
left) and α× 100% = 50% (on the right).

Figure 5.6: Alarm rates of RLα
CS+−µ(0, 1) and RLα

CS+−µ(1, 1), for α×100% = 0% (on the
left) and α× 100% = 50% (on the right).
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Table 5.6: ARLs, alarm rates and equilibrium rates of the RLs of schemes E+ − µ and
ES+ − µ, for α× 100% = 0%, 50% head starts.

λRL(m) rRL(m)

m RL0%
E+−µ(0, 1) RL50%

E+−µ(0, 1) RL0%
E+−µ(1, 1) RL50%

E+−µ(1, 1) RL0%
E+−µ(0, 1) RL50%

E+−µ(0, 1)

1 0.000000 0.000716 0.000002 0.014332 — —

2 0.000013 0.003740 0.002554 0.097783 0.001037 0.191608

3 0.000124 0.004882 0.024212 0.152818 0.103295 0.768992

4 0.000367 0.004744 0.064038 0.176760 0.336491 1.034228

5 0.000672 0.004263 0.103045 0.187671 0.546769 1.117923

10 0.001693 0.002568 0.185644 0.199420 0.932163 1.077627

20 0.002011 0.002051 0.200405 0.200781 0.999269 1.006436

30 0.002025 0.002027 0.200807 0.200818 1.001907 1.002230

100 0.002026 0.002026 0.200819 0.200819 1.002030 1.002030

ARL 500.047 486.277 9.610 6.798 — —

λRL(m) rRL(m)

m RL0%
ES+−µ(0, 1) RL50%

ES+−µ(0, 1) RL0%
ES+−µ(1, 1) RL50%

ES+−µ(1, 1) RL0%
ES+−µ(0, 1) RL50%

ES+−µ(0, 1)

1 0.001000 0.001000 0.001000 0.008119 — —

2 0.001000 0.002754 0.001681 0.072191 1.001001 0.363471

3 0.001019 0.003744 0.013588 0.124273 0.982640 0.737562

4 0.001100 0.003793 0.042615 0.149588 0.927100 0.990758

5 0.001231 0.003540 0.076083 0.161943 0.894356 1.075691

10 0.001791 0.002428 0.160007 0.176447 0.961360 1.058632

20 0.002003 0.002034 0.177804 0.178359 0.999928 1.005800

30 0.002014 0.002016 0.178402 0.178421 1.001908 1.002222

100 0.002015 0.002015 0.178424 0.178424 1.002019 1.002019

ARL 500.044 491.560 10.740 7.694 — —
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Figure 5.7: Alarm rates of RLα
E+−µ(0, 1) and RLα

E+−µ(1, 1), for α × 100% = 0% (on the
left) and α× 100% = 50% (on the right).

Figure 5.8: Alarm rates of RLα
ES+−µ(0, 1) and RLα

ES+−µ(1, 1), for α×100% = 0% (on the
left) and α× 100% = 50% (on the right).
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Chapter 6

Misleading signals in joint schemes

for µ and σ

Control schemes are also widely used as process monitoring tools to detect simultaneous
changes in the process mean µ and in its standard deviation σ which can indicate a
deterioration in quality. The joint monitoring of these two parameters can be achieved by
running what is grandly termed a joint (or combined) scheme.

Joint schemes for µ and σ — when the quality characteristic has a normal distribution
and the data is independent — have received a great deal of attention in the quality control
literature. The several joint schemes that have been proposed and studied can be divided
in two broad and distinct categories:

• the joint schemes which make use of one control chart for an univariate summary
statistic (Chengalur, Arnold and Reynolds Jr. (1989), Domangue and Patch (1991))
or a bivariate summary statistic (Takahashi (1989));

• and the popular joint schemes that result from running simultaneously two individual
control charts — a chart for µ and another one for σ (Crowder (1987b), Saniga
(1989), Gan (1989, 1995), St. John and Bragg (1991), Morais (1998), Morais and
Pacheco (2000a)).

This last category comprises the joint schemes in Table 6.1 that are briefly described in
the next paragraphs.

Primary interest is usually in detecting increases or decreases in the process mean, and
yet we consider both standard charts for µ and upper one-sided charts for µ. The former
individual charts have acronyms S − µ, C − µ, CS − µ, E − µ and ES − µ and the latter
are denoted by S+−µ, C+−µ, CS+−µ, E+−µ and ES+−µ; these charts can be found
in Table 6.1.

Moreover, we only consider the problem of detecting inflations in the process standard
deviation, because an increase in σ corresponds to a reduction in quality and, as put by
Reynolds Jr. and Stoumbos (2001), in most processes, an assignable cause that influences
the standard deviation is more likely to result in an increase in σ.1 Thus, only upper

1Recall that if reductions in σ occur they are more likely to be the result of an attempt to improve

process quality (Reynolds Jr. and Stoumbos (2001)).
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one-sided charts for σ are considered in this chapter. Their acronyms are S+ − σ,C+ −
σ,CS+ − σ,E+ − σ and ES+ − σ and can be also found in Table 6.1.

Table 6.1: Some individual and joint schemes for µ and σ.

Acronym Individual scheme for µ

S − µ X̄

C − µ CUSUM
CS − µ Combined CUSUM-Shewhart
E − µ EWMA
ES − µ Combined EWMA-Shewhart

S+ − µ Upper one-sided X̄
C+ − µ Upper one-sided CUSUM
CS+ − µ Combined upper one-sided CUSUM-Shewhart
E+ − µ Upper one-sided EWMA
ES+ − µ Combined upper one-sided EWMA-Shewhart

Individual scheme for σ

S+ − σ Upper one-sided S2

C+ − σ Upper one-sided CUSUM
CS+ − σ Combined upper one-sided CUSUM-Shewhart
E+ − σ Upper one-sided EWMA
ES+ − σ Combined upper one-sided EWMA-Shewhart

Joint scheme Scheme for µ Scheme for σ

SS S − µ S+ − σ

CC C − µ C+ − σ

CCS CS − µ CS+ − σ

EE E − µ E+ − σ

CES ES − µ ES+ − σ

SS+ S+ − µ S+ − σ

CC+ C+ − µ C+ − σ

CCS+ CS+ − µ CS+ − σ

EE+ E+ − µ E+ − σ

CES+ ES+ − µ ES+ − σ

As a result we shall deal with the joint schemes denoted by SS, CC, CCS, EE, CES,
SS+, CC+, CCS+, EE+ and CES+ in Table 6.1. These joint schemes involve the in-
dividual charts for µ and σ whose summary statistics and control limits can be found in
Tables A.2–A.3 and Tables A.5–A.6 (respectively), in Appendix A.

The process is deemed out-of-control whenever a signal is observed on either individual
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chart of any of these joint schemes for µ and σ. Thus, when dealing with a joint scheme a
signal from any of the individual schemes could indicate a possible change in the process
mean or in its standard deviation or both. Also, the following events are likely to happen:

• a signal is triggered by the chart for µ although µ is on-target and σ is off-target;

• µ is out-of-control and σ is in-control, however, a signal is given by the chart for σ.

These are some instances of what St. John and Bragg (1991) called “misleading signals”
(MS).

Keeping this in mind, this chapter provides striking and instructive examples that
alert the user — namely of the ten joint schemes for µ and σ referred above — to the
phenomenon of misleading signals.

6.1 Misleading signals

Diagnostic procedures that follow a signal can differ depending on whether the signal is
given by the chart for the mean or the chart for the standard deviation. Moreover, they
can be influenced by the fact that the signal is given by the positive or negative side of the
chart for µ (that is, the observed value of the summary statistic is above the upper control
limit or below the lower control limit, respectively). Therefore a misleading signal can pos-
sibly send the user of a joint scheme in the wrong direction in the attempt to diagnose and
correct a nonexistent assignable cause (St. John and Bragg (1991)). These misleading re-
sults suggest inappropriate corrective action, aggravating unnecessarily process variability
and increasing production (inspection) costs.

St. John and Bragg (1991) identified the following types of misleading signals arising
in joint schemes for µ and σ:

I. the process mean increases but the signal is given by the chart for σ, or the signal
is observed on the negative side of the chart for µ;

II. µ shifts down but the signal is observed on the chart for σ, or the chart for µ gives
a signal on the positive side;

III. an inflation of the process standard deviation occurs but the signal is given by the
chart for µ.

Only type III correspond to what is called a “pure misleading signal” by Morais and
Pacheco (2000a) because it is associated to a change in the value of one of the two pa-
rameters that is followed by an out-of-control signal by the chart for the other parameter
— it corresponds to misinterpreting a standard deviation change as a shift in the mean.
However, there is a situation that also leads to a “pure misleading signal” and is related
to both misleading signals of Types I and II:

IV. a shift occurs in µ but the out-of-control signal is observed on the chart for σ.
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This is called a mislealing signal of Type IV (although it is a sub-type of Types I or II)
by Morais and Pacheco (2000a) and it corresponds to misinterpretating a mean change as
a shift in the process standard deviation.

In this chapter we shall also consider that the shift in µ is represented in terms of the
nominal value of the sample mean standard deviation δ =

√
n(µ−µ0)/σ0 and the inflation

of the process standard deviation will be measured by θ = σ/σ0 with: −∞ < δ < +∞
and θ ≥ 1, for the joint schemes SS, CC, EE, CCS and CES; and δ ≥ 0 and θ ≥ 1, for
schemes SS+, CC+, EE+, CCS+ and CES+.

Figure 6.1: Misleading signals of Types I–IV for the schemes SS, CC, EE, CCS and
CES.

In this setting misleading signals of Type III occur when δ = 0 and θ > 1. On the
other hand, misleading signals of Type IV occur when: δ 6= 0 and θ = 1, for schemes SS,
CC, EE, CCS and CES; and δ > 0 and θ = 1, for schemes SS+, CC+, EE+, CCS+

and CES+.
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Figure 6.2: Misleading signals of Types III and IV for the schemes SS+, CC+, EE+,
CCS+ and CES+.

The misleading signals of Types I-IV are graphically described in Figure 6.1 for the
joint schemes that make use of a standard chart for µ. Since the joint schemes comprising
upper one-sided charts for µ have no negative side only misleading signals of Types III
and IV are illustrated in Figure 6.2. A misleading signal corresponds to an observation(s)
in the shadowed area of the each graph in Figure 6.1 and Figure 6.2.

Following Morais and Pacheco (2000a) we shall only focus on these two last types of
misleading signals because they both correspond to “pure misleading signals”. To illustrate
the occurrence of misleading signals of Types III and IV, we consider an example with
two simulated data sets and a joint SS scheme.

Example 6.1 — The nominal value for the mean and the standard deviation of a chem-
ical reactant temperature are µ0 = 100oC and σ0 = 1oC, respectively. Suppose groups of
n = 9 temperatures of the reactant are recorded every hour for ten consecutive hours. In
the first case the process only has its standard deviation level initially off-target and equal
to σ = 1.2oC. In the second case only the process mean is initially out-of-control at level
µ = 100.05oC.

The SS scheme was run using a X̄ chart for µ (S−µ) and an upper one-sided S2 chart
for σ (S+−σ), whose summary statistics are X̄ and max{σ2

0, S
2}, respectively. The control

limits of these two individual charts are (LCLS−µ, UCLS−µ) = (99.064, 100.936) and
(LCLS+−σ, UCLS+−σ) = (1, 2.744), and both charts have in-control ARL equal to 200.
The observed values of these two summary statistics and the sample standard deviation
for two simulated temperature data sets are in Table 6.2.

The joint scheme produced a misleading signal of Type III by the 9th observation of
the 1st data set as shown by Table 6.2. Similarly, the 1th observation of the 2nd data set
fell outside the control limits of the scheme for σ, indicating that the process standard
deviation was seemingly out of control, thus, producing a misleading signal of Type IV.

It is worth mentioning that the 10th sample of the 1st data set was responsible for a
correct signal (i.e., a non misleading signal), triggered by the S+ − σ chart. However, the
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Table 6.2: Mean (x̄), variance (s2) and max{σ2
0, s

2} of the simulated temperatures.

(µ, σ) = (100oC, 1.2oC) (µ, σ) = (100.05oC, 1oC)
N x̄ s2 max{σ2

0 , s
2} x̄ s2 max{σ2

0 , s
2}

1 99.887 0.437 1.000 99.980 3.295 3.295***
2 99.429 1.085 1.085 100.478 0.922 1.000
3 100.807 0.610 1.000 99.962 0.963 1.000
4 99.992 1.497 1.497 99.878 0.978 1.000
5 100.025 0.761 1.000 100.130 0.904 1.000
6 100.380 1.113 1.113 99.589 1.402 1.402
7 100.702 1.861 1.861 99.776 0.943 1.000
8 99.897 0.512 1.000 100.093 1.819 1.819
9 101.015* 1.343 1.343 100.408 1.507 1.507
10 100.139 4.779 4.779** 100.116 1.281 1.281

* Misleading signal of Type III *** Misleading signal of Type IV
** Non misleading signal
µ0 = 100oC; σ0 = 1oC; n = 9;
(LCLS−µ, UCLS−µ) = (99.064, 100.936); (LCLS+−σ, UCLS+−σ) = (1, 2.744).

S − µ chart did not give any out-of-control signals within the first 10 observations of the
2nd data set. •

We strongly believe that no quality control operator or engineer with proper training
would be so näıve to think that a signal from the scheme for the mean only indicates
possible shifts in the mean. However, based on the independence between µ and the RL
distributions of the schemes for σ, signals given by the scheme for σ are more likely to be
associated to an eventual shift in this parameter. Nevertheless, the main question here is
not whether there will be misleading signals but rather

• the “probability of a misleading signal” (PMS) and the

• the number of sampling periods before a misleading signal is given by a joint scheme,
the “run length to a misleading signal” (RLMS).

St. John and Bragg (1991) believed that the phenomenon of misleading signals had not
been previously reported. The fact that no such studies had been made is rather curious
because misleading signals can arise in any joint scheme for multiple parameters (as, e.g.,
the multivariate CUSUM quality control schemes proposed by Woodall and Ncube (1985))
and also in any two-sided control scheme for a single parameter. But, in fact, as far as
we have investigated, there are few references devoting attention to misleading signals or
even realizing that they are confronted with such signals.

• St. John and Bragg (1991). Figure 3 of this reference illustrates the frequency of
misleading signals for various shifts in the process mean when a joint scheme of
type (X̄, R) is used; the results were obtained considering 5000 simulated runs of
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subgroups of five observations from a normal process with mean µ and standard
deviation σ.

• Yashchin (1985). In Figure 10 of Yashchin (1985) we can find three values of the
probability of a signal being given by the upper one-sided chart for µ when there
is a decrease in this parameter; but the author does not mention that these values
refer in fact to the probability of a misleading signal for a two-sided control scheme
for µ which comprises an upper one-sided chart and a lower one-sided chart for µ.

• Morais and Pacheco (2000a). These authors provide formulae for the probability of
misleading signals of Types III and IV for joint schemes for µ and σ. Based on those
expressions these probabilities are evaluated for the joint schemes SS and EE. This
paper also accounts for the comparison of these two joint schemes, not only in terms
of conventional performance measures such as ARL and RL percentage points, but
also with regard to the probabilities of misleading signals.

• Morais and Pacheco (2001b). As mentioned in the initial chapter, this paper in-
troduces the notion of run length to a misleading signal and provides monotonicity
properties to both PMS and RLMS of the joint EWMA scheme EE+.

• Reynolds Jr. and Stoumbos (2001). This paper refers to the joint monitoring of µ and
σ using individuals observations and also discusses the phenomenon of misleading
signals (although not referred as such). Table 3 provides simulation-based values
not only of the probability of misleading signals of Types III and IV but also of
the probability that correct signals (i.e. non misleading signals) occur and of the
probability of a simultaneous signal in both individual charts, when µ is on-target
and σ is out-of-control, and when σ is in-control and µ is off-target. The authors
claim that these probabilities can provide guidelines in the diagnosis of the type of
parameter(s) shift(s) that have ocurred.

The monotonicity behaviours of PMSs and the stochastic monotonicity properties of
RLMSs of some of these joint schemes are addressed in this chapter.

Comparisons between the joint schemes are also carried out. They are based on PMSs
and RLMSs. The numerical study that we conduct is designed with careful thought into
the appropriate selection of individual chart parameters to ensure common ARLs for these
charts and hence fair comparisons among the joint schemes.

Based on this extensive study (that closely follows Morais and Pacheco (2000b) though
adding other aspects to the investigations done by these authors), we believe that the PMSs
and the RLMSs of Types III and IV should also be taken in consideration as additional
performance measures in the design of joint schemes for µ and σ or any joint scheme for
more than one parameter. Recall that Morais and Pacheco (2000a) proposed a design
strategy for the joint schemes SS and EE, whose Step 4 involves the investigation of the
overall behaviour of the designed combined scheme, in terms of not only the in-control and
out-of-control ARLs and RL percentage points but also in terms of the PMSs of Types III
and IV.
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This completes the introduction on misleading signals. Some considerations on the
evaluation of conventional performance measures of the joint schemes such as the RL
survival function, the RL percentage points and the ARL is what lies ahead.

6.2 Approximations to the RL distribution and ARL

For convenience, let RLµ(δ, θ), RLσ(θ) and RLµ,σ(δ, θ) denote, in general and respectively,
the RLs of an individual chart for µ, an individual chart for σ and a joint scheme for µ
and σ. When we want to specifically address the Markov approximations to the RLs
of those individual charts and schemes we write RLα

µ(δ, θ;xµ or x+
µ ), RLβ

σ(θ;x+
σ ) and

RLα,β
µ,σ(δ, θ;xµ or x+

µ , x
+
σ ). Similarly, the exact RLs are denoted by RLα

µ(δ, θ), RLβ
σ(θ) and

RLα,β
µ,σ(δ, θ).
Since we are dealing with a normally distributed quality characteristic, the summary

statistics of the two individual charts for µ and σ are independent, given (δ, θ). Thus, we
can provide simple expressions for the performance measures of these joint schemes, such
as the RL survival function, RL percentage points and ARL, which depend exclusively on
the performance of the two individual charts.

A change in the process production must be detected quickly so that a corrective
action can be taken, and, as mentioned before, a signal is given by the joint scheme at
the sampling period N if such a signal is observed on either individual scheme at time
N . Thus, following Gan (1995) (who proposed the use of a joint scheme which comprises
individual charts of type EWMA for µ and σ without head starts) and Woodall and Ncube
(1985) (who considered the simultaneous use ofm univariate charts form expected values),
the RL of the joint schemes studied here is given by

RLµ,σ(δ, θ) = min{RLµ(δ, θ), RLσ(θ)}. (6.1)

And since RLµ(δ, θ) and RLσ(θ) are independent, conditioned on (δ, θ), the survival func-
tion of RLµ,σ(δ, θ) equals the product of the survival functions of the RL of the two
individual schemes:

FRLµ,σ(δ,θ)(m) = FRLµ(δ,θ)(m)× FRLσ(θ)(m). (6.2)

As a consequence, the RLs of the joint schemes SS and SS+ are also geometric random
variables with survival functions with parameters

1− {Φ[(ξµ − δ)/θ]− Φ[(−ξµ − δ)/θ]} × Fχ2
n−1

(ξ+σ /θ
2) (6.3)

1− Φ[(ξ+µ − δ)/θ]× Fχ2
n−1

(ξ+σ /θ
2), (6.4)

respectively.
When we are dealing with Markov-type summary statistics we must use the Markov

approximations to the survival functions of the individual charts for µ and σ in Equation
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(6.2), given in Tables A.8 and A.9 in Appendix A.2

The p× 100% (0 < p < 1) percentage point of RLµ,σ(δ, θ), F−1
RLµ,σ(δ,θ)(p), is defined by

the smallest integer m satisfying

FRLµ,σ(δ,θ)(m) ≤ 1− p (6.5)

Exact or approximate values to this percentage point can be easily obtained plugging the
exact or approximate RL survival function.

The ARLs of the joint schemes SS and SS+ follow quite trivially because the RLs have
geometric distribution. The ARL of the remaining schemes can be aproximated using any
one of the three procedures described below.

In the first approximation procedure we take into account that the ARL is found by
simply summing the survival function of RLµ,σ(δ, θ):

ARLα,β
µ,σ(δ, θ) =

+∞∑
m=0

FRLαµ(δ,θ)(m)× F
RLβσ(θ)

(m). (6.6)

Hence, ARLα,β
µ,σ(δ, θ) can be computed approximately obtained by truncating this series

after having replaced FRLαµ(δ,θ)(m) and F
RLβσ(θ)

(m) by their Markov approximation in Ta-
bles A.8 and A.9. Moreover, the approximation procedure used here (and by Morais and
Pacheco (2000b)) to compute ARL values considers 41 transient states and assumes that
the convergence of the series is attained as soon as the relative error is less than 10−6.

Denote the matrix of all ARLs of the joint scheme CC+ by

U(δ, θ;x+
µ , x

+
σ ) = [ARLu,v(δ, θ;x+

µ , x
+
σ )]x

+
µ+1; x+

σ+1
u=0; v=0 (6.7)

where ARLu,v(δ, θ;x+
µ , x

+
σ ) represents the ARL of this scheme assuming that the initial

states of the summary statistics of the individual schemes for µ and σ are associated with
the in-control or out-of-control states u and v in the Markov approximation.

In the second approximation procedure, the matrix U(δ, θ;x+
µ , x

+
σ ) is computed by

adapting the iterative procedure proposed by Prabhu and Runger (1996) to this particular
control scheme3

U(k+1)(δ, θ;x+
µ , x

+
σ ) = T • [T + Pµ(δ, θ;x+

µ )U(k)(δ, θ;x+
µ , x

+
σ )Pσ(θ;x+

σ )], (6.8)

for k = 0, 1, . . ., where:

• U(k)(δ, θ;x+
µ , x

+
σ ) represents the approximation for U(δ, θ;x+

µ , x
+
σ ) in the kth itera-

tion;
2It is worth noticing that an approximation to the distribution function of RLµ,σ(δ, θ) could have been

obtained considering a two-dimensional Markov chain. However, the independence between the horizontal

and vertical transitions of this approximating two-dimensional Markov chain makes it possible to avoid

the computation of a transition matrix with unusual dimensions: (xµ + 2)2 × (xσ + 2)2.
3The original procedure was used by Runger and Prabhu (1996) to obtain approximate values to the

ARL of a multivariate EWMA scheme for the control of a multivariate normal mean vector.
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• U(0)(δ, θ;x+
µ , x

+
σ ) = 0>µ 0σ where 0µ and 0σ denote a vector of (x+

µ +2) and (x+
σ +2)

zeroes, respectively;

• Pµ(δ, θ;x+
µ ) and Pσ(θ;x+

σ ) are probability transition matrices defined in terms of
the sub-stochastic matrices Qµ(δ, θ;x+

µ ) and Qσ(θ;x+
σ );

• T is a (x+
µ + 2)× (x+

σ + 2) matrix which indicates the in-control or transient states
of the approximating two-dimensional Markov chain, defined as

T =

[
1µ 1>σ 0µ

0>σ 0

]
, (6.9)

where 1µ and 1σ (and now 0µ and 0σ) represent a vector of (x+
µ + 1) and (x+

σ + 1)
ones (zeroes);

• and the symbol “•” indicates elementwise multiplication of the matrices.

This iterative procedure, which was used by Morais (1998) to approximate the ARL
of a joint scheme EE without head starts, requires a large number of iterations until con-
vergence is attained for the in-control ARL of this joint scheme, and a steadily decreasing
number of iterations when |δ| or θ increases. The results obtained here and by Morais and
Pacheco (2000b) using the first approximation procedure lead to the common conclusion
that the number of iterations is virtually independent of the head starts given to the in-
dividual control charts.

We could have also used a third approximation procedure proposed by Knoth and
Schmid (1999) for the determination of the ARL of joint residual EWMA schemes for the
process mean and standard deviation of autocorrelated data.4

Following these two authors, the Markov approximation toARLα,β
µ,σ(δ, θ), with 2xµ+1 =

x+
µ + 1 = x+

σ + 1 = x+ + 1 transient states, equals

ARLα,β
µ,σ(δ, θ;x+, x+) =

+∞∑
m=0

FRLαµ(δ,θ;x+)(m)× F
RLβσ(θ;x+)

(m)

=
+∞∑
m=0

{
e>bα(x++1)c

[
Qµ(δ, θ;x+)

]m 1

×e>bβ(x++1)c
[
Qσ(θ;x+)

]m 1
}

= e>bα(x++1)c Z(δ, θ;x+) e>bβ(x++1)c (6.10)

where

Z(δ, θ;x+) =
+∞∑
m=0

([
Qµ(δ, θ;x+)

]m 1× 1>
{[

Qσ(θ;x+)
]>}m)

(6.11)

is the solution of the matrix equation

Z(δ, θ;x+) = 11> + Qµ(δ, θ;x+)Z(δ, θ;x+)
[
Qσ(θ;x+)

]> (6.12)
4Residual schemes are addressed in Chapter 7.
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or equivalently[
I−Qµ(δ, θ;x+)

]−1 Z(δ, θ;x+)

+ Z(δ, θ;x+) [Qσ(θ;x+)]>
{
I− [Qσ(θ;x+)]>

}−1

= [I−Qµ(δ, θ;x+)]−1 1× 1>
{
I− [Qσ(θ;x+)]>

}−1
, (6.13)

a Sylvester equation that can be solved with the NAG function sylv().

6.3 Probability of a misleading signal (PMS)

Once again the independence between the summary statistics of the individual charts for µ
and σ plays a major role in providing plain expressions for the probabilities of misleading
signals of Types III and IV, denoted in general by PMSIII(θ) and PMSIV (δ).

Lemma 6.2 — The expressions of the PMSs of Types III and IV for joint schemes involv-
ing individual schemes with independent summary statistics (such as the ten joint schemes
in Table 6.1) are

PMSIII(θ) = P [RLσ(θ) > RLµ(0, θ)]

=
+∞∑
i=2

FRLµ(0,θ)(i− 1)× PRLσ(θ)(i) (6.14)

=
+∞∑
i=1

PRLµ(0,θ)(i)× FRLσ(θ)(i), θ > 1 (6.15)

PMSIV (δ) = P [RLµ(δ, 1) > RLσ(1)]

=
+∞∑
i=1

FRLµ(δ,1)(i)× PRLσ(1)(i) (6.16)

=
+∞∑
i=2

PRLµ(δ,1)(i)× FRLσ(1)(i− 1), δ 6= 0 (6.17)

(or δ > 0 when we are using upper one-sided schemes for µ), where RLµ(δ, θ) and RLσ(θ)
represent the run lengths of the individual schemes for µ and σ, as previously mentioned.

The exact expressions of the PMSs of the joint schemes SS and SS+ can be found in
Table 6.3 and follow immediately by pluging in the survival functions of the run lengths
RLµ and RLσ (see Tables A.8 and A.9, respectively) into equations (6.15) and (6.16).

The approximations to PMSs of the remaining joint schemes are found by using the
Markov approximations to the survival function of RLµ and RLσ (also in Tables A.8 and
A.9) and truncating the series (6.15) and (6.16). The approximate values of the PMSs
converge to the true values due to the convergence in law of the approximate RLs involved
in the definition of the PMSs.
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Table 6.3: Exact PMS of Types III and IV for the joint schemes SS and SS+.

Joint scheme PMSIII(θ), θ > 1 PMSIV (δ), δ 6= 0 (δ > 0)

SS
1−[Φ(ξµ/θ)−Φ(−ξµ/θ)]

[F
χ2

n−1
(ξ+

σ /θ2)]−1−[Φ(ξµ/θ)−Φ(−ξµ/θ)]

1−F
χ2

n−1
(ξ+

σ )

[Φ(ξµ−δ)−Φ(−ξµ−δ)]−1−F
χ2

n−1
(ξ+

σ )

SS+ 1−Φ(ξ+
µ /θ)

[F
χ2

n−1
(ξ+

σ /θ2)]−1−Φ(ξ+
µ /θ)

1−F
χ2

n−1
(ξ+

σ )

[Φ(ξ+
µ −δ)]−1−F

χ2
n−1

(ξ+
σ )

Theorem 6.3 — The monotonicity properties (1)–(16) in the table below are valid for
the (exact) PMSs of Types III and IV of the joint schemes in Table 6.1 based exclusively
on upper one-sided individual charts: SS+, CC+, CCS+, EE+ and CES+.

Joint scheme Type III (δ = 0, θ > 1) Type IV (δ > 0, θ = 1)

SS+ (1) PMSIII(θ) ↓ with θ (8) PMSIV (δ) ↓ with δ

CC+, CCS+ (2) PMSIII(θ) ↑ with α (9) PMSIV (δ) ↓ with α
(3) PMSIII(θ) ↓ with β (10) PMSIV (δ) ↑ with β
(C1) PMSIII(θ)* (11) PMSIV (δ) ↓ with δ
(4) PMSIII(θ) ↓ with k+

µ (12) PMSIV (θ) ↑ with k+
µ

(5) PMSIII(θ) ↑ with k+
σ (13) PMSIV (θ) ↓ with k+

σ

EE+, CES+ (6) PMSIII(θ) ↑ with α (14) PMSIV (δ) ↓ with α
(7) PMSIII(θ) ↓ with β (15) PMSIV (δ) ↑ with β
(C2) PMSIII(θ)* (16) PMSIV (δ) ↓ with δ

*(C1, C2) Conjecture of no monotone behaviour in terms of θ

Proof — The monotonicity properties of PMSs of Types III and IV given in Theorem
6.3 are intuitive and have an analytical justification — most of them follow directly from
expressions (6.14)–(6.17) from Lemma 6.2, and from the stochastic monotone properties
of the RLs of the individual schemes for µ (see Table 5.1) and of those for σ (refer to Table
A.10).

Take for instance the PMS of Type IV of the joint scheme SS+,

PMSIV,SS+(δ) = P [RLS+−µ(δ, 1) > RLS+−σ(1)]. (6.18)

It is a decreasing function of δ because: the distribution of RLS+−σ(1) does not depend
on δ; RLµ(δ, 1) stochastically decreases with δ and so does its survival function for any i
and PMSIV,SS+(δ) defined by Equation (6.16). As a consequence the joint scheme SS+

tends to trigger less misleading signals of Type IV as δ increases.
As for the monotone behaviour of the PMS of Type III of the joint scheme SS+,

PMSIII,SS+(θ), it follows immediately that it is a decreasing function of θ if we note
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that, for θ > 1,

PMSIII,SS+(θ) =
1− Φ(ξ+µ /θ)

[Fχ2
n−1

(ξ+σ /θ2)]−1 − Φ(ξ+µ /θ)

=

1−
1− [Fχ2

n−1
(ξ+σ /θ

2)]−1

1− Φ(ξ+µ /θ)

−1

. (6.19)

The results concerning the remaining schemes follow quite similarly. For example, the
approximation to the PMS of Type III of the joint scheme CC+,

PMSα,β
III,CC+(θ;x+

µ , x
+
σ ) = P [RLβ

C+−σ(θ;x+
σ ) > RLα

C+−µ(0, θ;x+
µ )]

=
+∞∑
i=1

PRLα
C+−µ

(0,θ;x+
µ )(i)× F

RLβ
C+−σ

(θ;x+
σ )

(i), (6.20)

decreases with β because a change in the head-start of the individual scheme for σ does
not influence the probability function of RLα

C+−µ(0, θ;x+
µ ) but is responsible for a decrease

in the survival function of RLβ
C+−σ(θ;x+

σ ), as a consequence of property (2) in Table A.10.
Hence, it leads to a decrease in PMSα,β

CC+(θ;x+
µ , x

+
σ ), given by Equation (6.20), and also

in

PMSα,β
III,CC+(θ) = P [RLβ

C+−σ(θ) > RLα
C+−µ(0, θ)]

= lim
x+
µ ,x+

σ→+∞
PMSα,β

III,CC+(θ;x+
µ , x

+
σ ). (6.21)

•

Remark 6.4 — The conjectures (C1) and (C2) included in the table of Theorem 6.3
concern the PMSs of Type III of the joint schemes CC+ (CCS+) and EE+ (CES+),
respectively, and surely deserve a comment.

PMSIII(θ) involves in its definition RLµ(0, θ) and RLσ(θ). If, in one hand, this latter
random variable stochastically decreases with θ (see Table A.10), on the other hand, we
cannot tell what is the stochastic monotone behaviour of RLµ(0, θ) in terms of θ,5 since
δ = 0 belongs to the intervals

(δC+−µ, δC+−µ) = (k+
µ − h+

µ , k
+
µ + h+

µ ) (6.22)

(δE+−µ, δE+−µ) =

− γ+
µ (1− λ+

µ )√
λ+

µ (2− λ+
µ )
,

γ+
µ√

λ+
µ (2− λ+

µ )

 . (6.23)

Thus, establishing a monotonic behaviour of PMSIII(θ) in terms of θ seems to be non
trivial.6

5However, note that the percentage points in Table 5.4 and those reported by Morais and Pacheco

(2000c) suggest that RLµ(0, θ) decreases with θ.
6In view of the numerical results from Section 5.4 and additional investigations we dare to hint that

RLµ(0, θ) stochastically decreases with θ. This fact is a possible explanation for the nonmonotonous

behaviour of PMSIII(θ).
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Note that this fact also holds for the joint schemes based on upper one-sided combined
schemes, CCS+ and CES+, according to the results (12)–(13) and (21)–(22) in Table 5.1.

As we shall see, the numerical results in the next section support conjectures (C1)
and (C2): values of PMSIII(θ) seem to decrease and then increase with θ for the joint
schemes CC+, CCS+, EE+ and CES+. The practical significance of this nonmonotonous
behaviour is as follows: the joint scheme ability to misidentify a shift in σ can increase as
the displacement in σ becomes more severe. •

6.4 PMS: numerical illustrations

As an illustration, the PMSs of Types III and IV were obtained for the ten joint schemes
considered in Table 6.1, whose individual schemes for µ and σ have the parameters given
in Table 6.4. We provide values for those probabilities considering:

• sample size equal to n = 5;

• nominal values µ0 = 0 and σ0 = 1; and

• δ = 0.05, 0.10, 0.20, 0.30, 0.40, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 3.0 and
θ = 1.01, 1.03, 1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, 3.00,

which practically cover the same range that was found useful previously in Gan (1989).
With the exception of the joint schemes SS and SS+, the values of these probabil-

ities are approximate and based on the Markov approach using 41 transient states and
considering a relative error of 10−6 in the truncation of the series in (6.15) and (6.16) as
mentioned earlier.

The range of the decision intervals [LCL,UCL) of all the individual schemes for µ
and for σ has been chosen in such way that, when no head start has been adopted, these
schemes are approximately matched in-control and all the corresponding in-control ARLs
are close to 500 samples (see Table 6.4). Take for instance the Shewhart–type schemes:

• S − µ: ξµ = Φ−1[1− 1/(2× 500)] = 3.09023;

• S+ − µ: ξ+µ = Φ−1(1− 1/500) = 2.87816;

• S+ − σ: ξ+σ = F−1
χ2

4
(1− 1/500) = 16.9238.

It should be also added that, in the case of the individual combined CUSUM–Shewhart
and EWMA–Shewhart schemes for µ and for σ, all the Shewhart–type constituent charts
have in-control ARL equal to 1000. For example:

• CS − µ, ES − µ: ξµ = Φ−1[1− 1/(2× 1000)] = 3.29053;

• CS+ − µ, ES+ − µ: ξ+µ = Φ−1(1− 1/1000) = 3.09023;

• CS+ − σ, ES+ − σ: ξ+σ = F−1
χ2

4
(1− 1/1000) = 18.4668.
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Table 6.4: Parameters and in-control ARLs of individual and joint schemes for µ and σ.

Scheme for µ Parameters ARLµ(0, 1)

S − µ ξµ = 3.09023 500.000

C − µ hµ = 22.7610 500.001

CS − µ ξµ = 3.29053, hµ = 31.1810 500.001

E − µ γµ = 2.8891, λµ = 0.134 499.988

ES − µ ξµ = 3.29053, γµ = 3.0934, λµ = 0.134 499.999

S+ − µ ξ+µ = 2.87816 500.000

C+ − µ h+
µ = 4.4456, k+

µ = 0.5 500.021

CS+ − µ ξ+µ = 3.09023, h+
µ = 4.9854, k+

µ = 0.5 500.020

E+ − µ γ+
µ = 2.8116, λ+

µ = 0.134 500.047

ES+ − µ ξ+µ = 3.09023, γ+
µ = 3.0016, λ+

µ = 0.134 500.044

Scheme for σ Parameters ARLσ(1)

S+ − σ ξ+σ = 16.9238 500.000

C+ − σ h+
σ = 3.5069, k+

σ = 0.055 499.993

CS+ − σ ξ+σ = 18.4668, h+
σ = 3.9897, k+

σ = 0.055 500.002

E+ − σ γ+
σ = 1.2198, λ+

σ = 0.043 500.027

ES+ − σ ξ+σ = 18.4668, γ+
σ = 1.3510, λ+

σ = 0.043 500.033

Joint scheme No. of Iterations for ARLµ,σ(0, 1) ARLµ,σ(0, 1)

SS − σ —— 250.250

CC − σ 1882 272.653

CCS − σ 1909 267.309

EE − σ 2050 253.318

CES − σ 2060 252.003

SS+ − σ —— 250.250

CC+ − σ 2051 253.230

CCS+ − σ 2059 252.071

EE+ − σ 2049 253.475

CES+ − σ 2059 252.093

A few more remarks on the choice of the individual charts parameters ought to be
made, namely that most of them were taken from the literature in order to optimize the
detection of a shift in µ from the nominal value µ0 to µ0 + 1.0 × σ0/

√
n and a shift in σ

from σ0 to 1.25 × σ0. “Optimality” here means that extensive numerical results suggest
that with such reference values and smoothing constants will produce an individual chart
for µ (σ) with the smallest possible out-of-control ARL, ARLµ(1.0, 1.0) (ARLσ(1.25)), for
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a fixed in-control ARL of 500 samples. The upper control limits of the individual charts
are always searched in such way that, when no head start has been adopted, they have
in-control ARLs close to 500.

• C − µ: we adopted a null reference value because we are dealing with a standard
CUSUM;7

• E − µ: the smoothing constant λµ = 0.134 was taken from Gan (1995) and aggrees
with Figure 4 from Crowder (1989);

• C+ − µ: the reference value k+
µ = 0.5 is suggested by Gan (1991) for a two-sided

chart for µ;

• E+ − µ: we adopt the same smoothing constant λ+
µ = 0.134 as E − µ;

• C+−σ, E+−σ: Gan (1995) suggests a reference value k+
σ = 0.055 and a smoothing

constant λ+
σ = 0.043, respectively.

Finally, note that the individual charts CS−µ, ES−µ, CS+−µ, ES+−µ, CS+−σ,
ES+−σ have the same reference values and smoothing constants as C−µ, E−µ, C+−µ,
E+ − µ, C+ − σ, E+ − σ. The control limits are larger than the corresponding “non-
combined” individual schemes and are obtained taking into account the supplementary
Shewhart control limits and the in-control matching of the ARLs.

We proceed to illustrate the monotonicity properties stated in the previous section
with the joint scheme EE+. For that purpose some head starts have been given to this
joint scheme: HSµ = 0%, 50% and HSσ = 0%, 50%.8

The results in Table 6.5 not only show that PMSs of Types III and IV can be as high
as 0.47 but also remind us of some of the monotonicity properties in Theorem 6.3, namely
that:

• giving head starts to the individual chart for µ, E+−µ, leads to an increase of PMSs
of Type III and a decrease of the PMSs of Type IV;

• adopting a head start to the individual chart for σ, E+ − σ, yields a decrease of the
values of PMS of Type III and an increase of the ones of Type IV; and

• underestimating the magnitude of the changes in µ results in an overestimation of
the PMS values of Type IV.

The numerical results also suggest that underestimating the magnitude of the changes in
σ also leads to an overestimation of the values of the PMSs of Type III (recall Conjecture
(C1)), for most of the values we considered for θ. However, note that PMSIII(θ) changes

7A positive (negative) reference value would suggest that positive (negative) shifts are more likely to

occur. Also note that this standard individual chart is different from the two-sided scheme which makes

use of an upper and a lower one-sided chart for µ.
8It is worth recalling that we did not consider HSµ, HSσ = −50% because both individual schemes are

upper one-sided.
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Table 6.5: PMSs of Types III and IV for the joint scheme EE+ and number of iterations
until convergence.

PMSIII(θ) PMSIV (δ)

HSσ HSσ

0% 50% 0% 50%

HSµ HSµ HSµ HSµ

θ 0% 50% 0% 50% δ 0% 50% 0% 50%

1.01 .455274 .471146 .432002 .447743 0.05 .403991 .389425 .429989 .415191

1.03 .377092 .397075 .351439 .371084 0.10 .319232 .304463 .348887 .333675

1.05 .313194 .337278 .285745 .309181 0.20 .191651 .177663 .226708 .211665

1.10 .206131 .239939 .176070 .207955 0.30 .114210 .101826 .152328 .138045

1.20 .114615 .164954 .083117 .126973 0.40 .069767 .059179 .109302 .095759

1.30 .081130 .144553 .049742 .100509 0.50 .044152 .035268 .084026 .070964

1.40 .065605 .139364 .034609 .089256 0.60 .028898 .021542 .068364 .055500

1.50 .057295 .139322 .026587 .083500 0.70 .019432 .013413 .057926 .045048

1.60 .052531 .141293 .021890 .080240 0.80 .013327 .008462 .050401 .037394

1.70 .049768 .144098 .018961 .078290 0.90 .009262 .005378 .044563 .031405

1.80 .048249 .147214 .017070 .077056 1.00 .006491 .003430 .039755 .026497

1.90 .047556 .150386 .015842 .076181 1.50 .001126 .000351 .022935 .010964

2.00 .047439 .153486 .015069 .075427 2.00 .000185 .000032 .012581 .004034

3.00 .059958 .181832 .015744 .058932 3.00 .000004 .000000 .003124 .000368

No. of iterations for PMSIII(θ) No. of iterations for PMSIV (δ)

HSσ HSσ

0% 50% 0% 50%

HSµ HSµ HSµ HSµ

θ 0% 50% 0% 50% δ 0% 50% 0% 50%

1.01 1772 1759 1772 1758 0.05 1707 1707 1686 1685

1.03 1320 1307 1320 1307 0.10 1388 1388 1367 1366

1.05 991 979 991 979 0.20 885 885 865 864

1.10 517 507 517 506 0.30 561 561 542 541

1.20 194 187 194 185 0.40 364 364 347 346

1.30 101 95 100 94 0.50 246 246 231 230

1.40 64 60 63 58 0.60 174 174 160 159

1.50 45 42 45 41 0.70 128 127 116 114

1.60 35 32 34 31 0.80 97 97 87 85

1.70 28 26 28 25 0.90 76 76 67 66

1.80 24 22 23 21 1.00 62 61 54 52

1.90 20 19 20 18 1.50 28 28 23 22

2.00 18 17 18 16 2.00 17 17 14 13

3.00 9 8 8 8 3.00 9 9 7 7

its monotonous behaviour, for large values of θ, according to the values in bold in Table
6.5.
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As mentioned earlier, when we addressed the approximation procedures to the ARL
of a joint scheme, the evaluation of approximate values of PMSs of Types III and IV also
requires a large number of iterations until convergence is attained for small values of θ and
δ, as suggested by Table 6.5. However, this number steadily decreases with both θ and δ.
Moreover, according to Table 6.5, the number of iterations needed for the convergence of
PMSIII(θ) (PMSIV (δ)) is virtually independent of HSσ (HSµ) and varies slightly with
HSµ (HSσ).

The second illustration accounts for the comparative assessment of the schemes SS,
CC, CCS, EE and CES, and of the schemes SS+, CC+, CCS+, EE+ and CES+, with
regard to probabilities of misleading signals of Types III and IV.

Tables 6.6 and 6.7 provide values of these probabilities for the former and the latter
groups of five joint schemes, respectively. Also, no head starts have been given to any
of the individual schemes whose approximate RL has a phase-type distribution. Values
of PMSIV (δ), for δ < 0, were ommitted from Table 6.6 by virtue of the fact that the
run length RLµ(δ, 1) is identically distributed to RLµ(−δ, 1) for symmetric values of HSµ,
hence PMSIV (−δ) for HSµ = −α× 100% equals PMSIV (δ) for HSµ = α× 100%, where
α ∈ [0, 1).

Tables 6.6 and 6.7 and Figures 6.3 and 6.4 show how the use of joint schemes based on
CUSUM and EWMA summary statistics can offer substantial improvement with regard
to the (non)emission of MSs of Type III: schemes SS and SS+ tend to produce this type
of MSs more frequently for a wide range of the values of θ.

We can add that the joint schemes EE and CES are outperformed by schemes CC
and CCS (respectively) in terms of PMSs of Type III. However, the joint schemes EE+

and CES+ appear to offer a slightly better performance than CC+ and CCS+, having in
general lower PMSs of Type III.

The numerical results in Tables 6.6 and 6.7 and Figures 6.3 and 6.4 also suggest that the
use of joint schemes CCS, CES, CCS+ and CES+ instead of CC, EE, CC+ and EE+

(respectively), causes in general an increase in PMSs of Type III. This is probably due to
the fact that a combined scheme has two constituent charts, thus, two possible sources of
MSs. However, note that there are a few instances where combined joint schemes appear
to trigger slightly less PMSs of Type III than their “non combined” counterparts, for
moderate and large values of θ.

Remark 6.4 gives a plausible justification for the nonmonotonicity of PMSIII(θ) for
joint schemes based on upper one-sided individual charts for µ. In fact, PMSIII(θ) appears
to be a nonmonotonous function of θ for the joint schemes CC+ CCS+, EE+ and CES+,
according to the numerical results in bold in Table 6.7 and in Figure 6.4, thus, supporting
the Conjectures (C1) and (C2).

Note that, with the exception of schemes EE and CES, the joint schemes that make
use of a standard individual chart for µ have decreasing PMSIII(θ), i.e., the misinterpre-
tation of a change in σ for a shift in µ becomes less likely as the inflation in σ increases.
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Table 6.6: PMSs of Types III and IV for the joint schemes SS, CC, CCS, EE and CES
(standard case).

PMSIII(θ) PMSIV (δ)

θ SS CC CCS EE CES δ SS CC CCS EE CES

1.01 .487829 .392328 .426881 .456768 .472459 0.05 .496258 .458452 .470651 .471953 .481438

1.03 .465842 .272037 .335857 .380735 .412206 0.10 .486730 .335180 .371602 .404501 .433744

1.05 .445584 .180287 .249729 .318577 .351238 0.20 .451344 .193887 .239985 .249228 .299705

1.10 .401783 .057484 .107222 .214222 .230228 0.30 .400673 .131095 .172396 .143296 .184767

1.20 .337471 .005523 .029520 .124961 .122136 0.40 .343289 .096875 .132907 .084406 .112475

1.30 .294136 .000727 .015075 .092832 .086656 0.50 .286308 .075459 .107255 .052103 .071164

1.40 .263400 .000145 .009973 .078522 .072009 0.60 .234262 .060823 .089280 .033605 .047440

1.50 .240238 .000042 .007442 .071400 .065085 0.70 .189271 .050199 .076024 .022426 .033238

1.60 .221722 .000016 .005945 .067838 .061766 0.80 .151773 .042144 .065858 .015332 .024304

1.70 .206146 .000008 .004961 .066312 .060427 0.90 .121258 .035833 .057821 .010654 .018418

1.80 .192512 .000005 .004265 .066071 .060288 1.00 .096797 .030763 .051311 .007479 .014388

1.90 .180230 .000003 .003748 .066698 .060987 1.50 .032678 .015611 .031452 .001329 .005883

2.00 .168950 .000003 .003349 .067936 .062554 2.00 .012359 .008445 .021488 .000226 .003465

3.00 .088310 .000003 .001663 .097349 .092315 3.00 .002305 .002570 .012065 .000005 .001818

Figure 6.3: PMSs of Types III and IV for the joint schemes SS, CC, CCS, EE and
CES (standard case).

Tables 6.6 and 6.7 and Figures 6.3 and 6.4 show that MSs of Type IV are more likely
to happen in schemes SS and SS+ than while using the remaining joint schemes for µ
and σ.

All these latter joint schemes seem to have a similar behaviour in terms of the frequency
of PMSs of Type IV, in particular when the individual charts for µ are upper one-sided,
as shown by Figures 6.3 and 6.4.

For additional values of PMSs of Type III referring to HSµ,HSσ = 0%, 50%9 and of
Type IV considering HSµ = −50%, 0%, 50%, HSσ = 0%, 50%, but a smaller range of val-
ues of θ and δ (θ = 1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 2.00 and δ = 0.05, 0.10, 0.25, 0.50, 0.75,

9Please note that the run length RLµ,σ(0, θ) associated with the joint schemes when δ = 0 has the

same distribution for symmetric HSµs. Therefore the PMSs of Type III are equal for symmetric HSµs

and, thus, values of PMSIII(θ) were not considered for HSµ = −50%.
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1.00, 1.50, 2.0010), please refer to Morais and Pacheco (2000b).

Table 6.7: PMSs of Types III and IV for the joint schemes SS+, CC+, EE+, CCS+ and
CES+ (upper one-sided case).

PMSIII(θ) PMSIV (δ)

θ SS+ CC+ CCS+ EE+ CES+ δ SS+ CC+ CCS+ EE+ CES+

1.01 .484676 .456547 .471625 .455274 .471752 0.05 .460162 .407942 .438859 .403991 .437911

1.03 .456701 .379127 .408637 .377092 .410277 0.10 .421864 .326254 .373455 .319232 .371239

1.05 .430911 .316409 .345546 .313194 .348189 0.20 .349949 .199310 .247793 .191651 .245285

1.10 .375334 .212859 .223748 .206131 .225089 0.30 .286075 .119085 .153533 .114210 .152790

1.20 .295048 .126933 .119744 .114615 .114963 0.40 .231295 .071855 .094389 .069767 .095342

1.30 .242637 .096917 .086868 .081130 .078150 0.50 .185599 .044411 .059826 .044152 .061665

1.40 .206805 .083728 .073449 .065605 .062268 0.60 .148269 .028177 .039686 .028898 .041781

1.50 .180893 .077166 .067059 .057295 .054102 0.70 .118230 .018281 .027593 .019432 .029617

1.60 .161108 .073836 .063830 .052531 .049520 0.80 .094298 .012058 .020030 .013327 .021845

1.70 .145270 .072337 .062265 .049768 .046871 0.90 .075349 .008040 .015103 .009262 .016671

1.80 .132095 .071984 .062058 .048249 .045348 1.00 .060389 .005395 .011776 .006491 .013103

1.90 .120806 .072392 .063020 .047556 .044512 1.50 .021323 .000736 .004941 .001126 .005488

2.00 .110920 .073315 .064443 .047439 .044674 2.00 .008458 .000092 .002980 .000185 .003272

3.00 .051170 .092146 .086259 .059958 .058549 3.00 .001644 .000001 .001544 .000004 .001717

Figure 6.4: PMSs of Types III and IV for the joint schemes SS+, CC+, CCS+, EE+

and CES+ (upper one-sided case).

Further justification for the behaviour of the PMSs of Types III and IV can be partially
found in the log(ARL) profiles of the individual schemes for µ in Figures 6.5 and 6.6 or
in the corresponding values in Tables 6.8 and 6.9.

For example, since ARLσ(θ) does not depend on δ and all the individual schemes for
σ have in-control ARL close to 500 samples we can roughly say that the larger the values
of RLµ(δ, 1) the larger those of PMSIV (δ) = P [RLµ(δ, 1) > RLσ(1)]. This would explain
why the curves of ARLµ(δ, 1) and PMSIV (δ) appear in the same order in the top right
hand side graphs of Figures 6.5 and 6.6 and Figures 6.3 and 6.4.

10PMSs of Type IV for negative values of δ were omitted for the same reason pointed previously when

we referred to Tables 6.6 and 6.7.
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Figure 6.5: ARLs of individual and joint schemes for µ and σ (standard case).

Figure 6.6: ARLs of individual schemes for µ and joint schemes for µ and σ (upper
one-sided case).
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In addition, the curves of PMSIII(θ) are practically in the inverse order of those of
ARLµ(0, θ), as shown by the top graphs on the left hand side of Figures 6.5 and 6.6
and Figures 6.3 and 6.4. A crude explanation could be: a large value of ARLµ(0, θ) will
tend to imply a small value of PMSIII(θ) = P [RLσ(θ) > RLµ(0, θ)]; note, however, that
ARLσ(θ) does depend on θ and surely influences PMSIII(θ).

It is worth noting that the graphs of ln[ARLµ(0, θ)] in Figures 6.5 and 6.6 also give
considerable evidence that there is no benefit in replacing Shewhart-type individual charts
for µ by CUSUM or EWMA-based ones, when the process mean is on-target and there is
a displacement in σ. As a matter of fact charts S − µ and S+ − µ are far less sensitive
to a shift in σ than the remaining individual charts for µ. However, supplementing the
CUSUM and EWMA-based individual charts for µ with another one for σ gives extra
protection and yields joint schemes with better performance than SS and SS+, at least
for small and moderate shifts in µ and σ, as suggested by Morais (1998) and Morais and
Pacheco (2000a), and by Figures 6.5 and 6.6.

We would like to note in passing that additional numerical investigation suggest
that the adoption of matched in-control combined CUSUM-Shewhart or EWMA-Shewhart
schemes in place of CUSUM or EMWA did not yield a significant improvement in the ARL,
as shown by Tables 6.8 and 6.9. It is worth mentioning that Lucas (1982) was only able to
propose combined CUSUM-Shewhart schemes for µ which led to improved ARL curve for
large shifts in µ, with only small changes both in the detection speed with regard to small
values of δ and in the in-control ARL values, hence, this author did not compare matched
in-control schemes. Based on all these and other computations reported in Morais and
Pacheco (2000b), we conclude that the use of combined schemes, matched in-control with
the corresponding “non combined” schemes, deserves more careful scrutiny in application.

6.5 Run length to a misleading signal (RLMS)

Another performance measure that also springs to mind is the number of sampling periods
until a misleading signal is given by the joint scheme, the run length to a misleading
signal (RLMS) of Type III, RLMSIII(θ), and of Type IV, RLMSIV (δ). RLMSIII(θ)
and RLMSIV (δ) are improper random variables with an atom in +∞ because the non
occurrence of a misleading signal is an event with non-zero probability:

P [RLMSIII(θ) = +∞] = 1− PMSIII(θ) (6.24)

P [RLMSIV (δ) = +∞] = 1− PMSIV (δ). (6.25)

The next lemma not only adds the survival functions of the RLMSs of Types III and IV
but also provides alternative expressions that prove to be useful in the investigation of the
stochastic monotonicity properties of this performance measure.
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Table 6.8: ARLs of individual and joint schemes for µ and σ (standard case).

ARLµ(0, θ) ARLµ(δ, 1)

θ S − µ C − µ CS − µ E − µ ES − µ δ S − µ C − µ CS − µ E − µ ES − µ

1.01 451.251 491.245 495.290 461.639 476.311 0.05 493.572 369.878 389.250 449.206 465.876

1.03 370.673 474.400 486.031 396.282 431.224 0.10 475.145 228.388 260.233 342.792 384.446

1.05 307.724 458.395 476.986 343.131 389.922 0.20 412.318 117.510 146.124 171.110 216.088

1.10 201.414 421.720 455.309 247.542 303.007 0.30 335.269 78.433 100.758 89.933 116.518

1.20 99.816 360.362 414.947 144.613 187.984 0.40 262.370 58.875 76.808 52.937 67.274

1.30 57.309 311.456 377.915 94.629 124.044 0.50 201.582 47.142 62.048 34.545 42.581

1.40 36.640 271.891 344.923 67.090 87.151 0.60 153.964 39.323 52.031 24.490 29.328

1.50 25.391 239.455 315.665 50.423 64.578 0.70 117.729 33.739 44.800 18.509 21.648

1.60 18.715 212.547 289.820 39.586 49.966 0.80 90.465 29.553 39.339 14.687 16.866

1.70 14.472 189.986 266.312 32.136 40.021 0.90 69.995 26.298 35.00 12.094 13.695

1.80 11.626 170.889 245.250 26.780 32.958 1.00 54.585 23.696 31.642 10.248 11.480

1.90 9.629 154.584 226.493 22.790 27.755 1.50 17.891 15.900 21.310 5.789 6.307

2.00 8.175 140.552 209.781 19.728 23.802 2.00 7.257 12.015 16.113 4.078 4.392

3.00 3.301 66.473 109.184 7.810 8.940 3.00 2.155 8.148 10.904 2.644 2.819

ARLσ(θ) ARLσ(1)

θ S+ − σ C+ − σ CS+ − σ E+ − σ ES+ − σ S+ − σ C+ − σ CS+ − σ E+ − σ ES+ − σ

1.01 430.804 387.589 425.080 389.535 427.167 500.000 499.993 500.02 500.027 500.033

1.03 324.266 243.185 298.499 246.280 303.307

1.05 248.318 161.017 207.283 163.868 212.635

1.10 136.277 70.418 90.421 71.873 93.6764

1.20 51.843 25.035 29.872 25.228 30.372

1.30 24.881 14.007 16.150 13.917 16.035

1.40 14.102 9.702 11.027 9.548 10.778

1.50 9.029 7.508 8.473 7.343 8.201

1.60 6.332 6.198 6.964 6.037 6.698

1.70 4.758 5.331 5.973 5.178 5.721

1.80 3.772 4.717 5.274 4.571 5.036

1.90 3.117 4.258 4.755 4.120 4.530

2.00 2.662 3.903 4.354 3.772 4.140

3.00 1.320 2.436 2.664 2.364 2.534

ARLµ,σ(0, θ) ARLµ,σ(δ, 1)

θ SS CC CCS EE CES δ SS CC CCS EE CES

1.01 220.646 238.318 245.735 214.552 227.373 0.05 248.633 233.719 238.225 240.010 243.276

1.03 173.209 178.971 200.300 154.981 180.47 0.10 243.878 173.108 189.248 206.795 219.663

1.05 137.671 133.266 157.237 113.715 140.057 0.20 226.221 103.637 124.167 130.327 153.296

1.10 81.523 66.758 81.519 57.788 73.630 0.30 200.936 72.763 90.746 78.138 96.377

1.20 34.348 24.928 29.170 22.720 27.382 0.40 172.301 55.938 71.220 49.090 60.560

1.30 17.563 14.000 15.978 13.021 15.068 0.50 143.868 45.407 58.536 33.105 40.062

1.40 10.388 9.701 10.955 9.080 10.296 0.60 117.897 38.210 49.647 23.883 28.250

1.50 6.860 7.508 8.433 7.039 7.895 0.70 95.446 32.983 43.092 18.227 21.127

1.60 4.928 6.198 6.939 5.811 6.474 0.80 76.735 29.018 38.065 14.545 16.587

1.70 3.777 5.331 5.956 4.994 5.541 0.90 61.508 25.909 34.089 12.019 13.532

1.80 3.046 4.717 5.261 4.413 4.882 1.00 49.302 23.405 30.867 10.206 11.378

1.90 2.555 4.258 4.745 3.978 4.392 1.50 17.307 15.815 21.004 5.786 6.286

2.00 2.212 3.903 4.345 3.640 4.011 2.00 7.167 11.984 15.957 4.078 4.384

3.00 1.203 2.436 2.661 2.238 2.409 3.00 2.150 8.143 10.843 2.644 2.816
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Table 6.9: ARLs of individual schemes for µ and joint schemes for µ and σ (upper one-sided
case).

ARLµ(0, θ) ARLµ(δ, 1)

θ S+ − µ C+ − µ CS+ − µ E+ − µ ES+ − µ δ S+ − µ C+ − µ CS+ − µ E+ − µ ES+ − µ

1.01 456.983 461.525 476.531 463.720 477.296 0.05 427.203 349.407 393.685 342.199 391.100

1.03 384.563 396.027 431.831 401.451 434.155 0.10 365.849 247.914 300.905 239.007 297.105

1.05 326.623 342.871 390.994 350.429 394.466 0.20 270.170 131.341 168.372 124.546 165.376

1.10 225.140 247.531 304.779 257.588 310.552 0.30 201.354 74.991 95.017 71.156 93.846

1.20 121.479 145.263 190.941 155.421 198.070 0.40 151.445 46.318 56.825 44.494 56.835

1.30 74.541 95.735 127.404 104.501 134.139 0.50 114.948 30.871 36.693 30.193 37.228

1.40 50.253 68.46 90.590 75.849 96.453 0.60 88.040 22.032 25.556 21.955 26.253

1.50 36.355 51.950 67.963 58.204 72.981 0.70 68.041 16.656 19.000 16.880 19.700

1.60 27.762 41.199 53.260 46.561 57.549 0.80 53.058 13.192 14.884 13.557 15.531

1.70 22.112 33.795 43.215 38.451 46.907 0.90 41.745 10.838 12.141 11.265 12.724

1.80 18.211 28.462 35.985 32.556 39.266 1.00 33.135 9.164 10.216 9.610 10.740

1.90 15.406 24.480 30.583 28.118 33.591 1.50 11.894 5.139 5.670 5.529 6.009

2.00 13.322 21.418 26.486 24.679 29.185 2.00 5.265 3.603 3.958 3.923 4.214

3.00 5.928 9.4160 10.977 10.886 12.174 3.00 1.823 2.342 2.544 2.558 2.718

ARLµ,σ(0, θ) ARLµ,σ(δ, 1)

θ SS+ CC+ CCS+ EE+ CES+ SS+ CC+ CCS+ EE+ CES+

1.01 222.004 213.870 226.934 215.125 227.672 0.05 230.621 208.849 222.491 206.544 221.726

1.03 176.173 153.681 179.023 155.856 181.045 0.10 211.510 168.670 190.144 164.803 188.715

1.05 141.315 112.297 138.040 114.564 140.688 0.20 175.624 106.212 127.987 101.961 126.346

1.10 85.127 56.840 71.863 58.322 74.078 0.30 143.752 66.700 81.341 63.789 80.533

1.20 36.547 22.553 27.072 22.930 27.559 0.40 116.416 43.374 52.034 41.840 52.056

1.30 18.844 13.083 15.206 13.136 15.164 0.50 93.614 29.732 34.850 29.131 35.328

1.40 11.186 9.202 10.539 9.158 10.362 0.60 74.986 21.552 24.762 21.487 25.405

1.50 7.396 7.175 8.155 7.100 7.947 0.70 59.997 16.438 18.616 16.656 19.278

1.60 5.312 5.946 6.729 5.863 6.519 0.80 48.055 13.086 14.678 13.444 15.300

1.70 4.067 5.125 5.783 5.041 5.582 0.90 38.599 10.785 12.021 11.204 12.587

1.80 3.273 4.539 5.111 4.457 4.921 1.00 31.134 9.136 10.140 9.576 10.652

1.90 2.740 4.098 4.607 4.019 4.430 1.50 11.640 5.137 5.654 5.527 5.990

2.00 2.367 3.754 4.216 3.680 4.049 2.00 5.221 3.603 3.951 3.922 4.206

3.00 1.252 2.314 2.542 2.287 2.455 3.00 1.820 2.342 2.542 2.558 2.715
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Lemma 6.5 — Let RLMSIII(θ) and RLMSIV (δ) denote the RLMSs of Types III and
IV of any of the joints schemes in Table 6.1. Then

FRLMSIII(θ)(m) = 1−
m∑

i=1

PRLµ(0,θ)(i)× FRLσ(θ)(i) (6.26)

= 1−
m∑

i=1

FRLµ(0,θ)(i)× PRLσ(θ)(i+ 1)

−FRLµ(0,θ)(m)× FRLσ(θ)(m+ 1), θ > 1 (6.27)

FRLMSIV (δ)(m) = 1−
m∑

i=1

FRLµ(δ,1)(i)× PRLσ(1)(i) (6.28)

= 1−
m∑

i=1

PRLµ(δ,1)(i+ 1)× FRLσ(1)(i)

−FRLµ(δ,1)(m+ 1)× FRLσ(1)(m), δ 6= 0 (6.29)

(or δ > 0 when upper one-sided schemes for µ are at use), for any positive integer m.

Exact expressions for the survival functions of the RLMS of Types III and IV of the
schemes SS and SS+ can be found in Table 6.10.

Table 6.10: Exact survival functions of RLMSs of Types III and IV for schemes SS and
SS+.

Joint scheme FRLMSIII(θ)(m) FRLMSIV (θ)(m)

SS 1− (1−a)b[1−(ab)m]
1−ab 1− (1−d)c[1−(cd)m]

1−cd

SS+ 1− (1−e)b[1−(eb)m]
1−eb 1− (1−d)f [1−(fd)m]

1−fd

a = Φ(ξµ/θ)− Φ(−ξµ/θ); b = Fχ2
n−1

(ξ+σ /θ
2); c = Φ(ξµ − δ)− Φ(−ξµ − δ);

d = Fχ2
n−1

(ξ+σ ); e = Φ(ξ+µ /θ); f = Φ(ξ+µ − δ)

Additionally, if we recall the exact expressions of the PMSs of the joint schemes SS and
SS+ we get

FRLMSIII(θ)(m) = PMSIII(θ)× FRLµ,σ(0,θ)(m) (6.30)

FRLMSIV (δ)(m) = PMSIV (δ)× FRLµ,σ(δ,1)(m) (6.31)

where FRLµ,σ(δ,θ)(m) = 1−FRLµ(δ,θ)(m)×FRLσ(θ)(m). These alternative expressions of the
distribution function of the RLMSs are due to the fact that the constituent Shewhart charts
of schemes SS and SS+ deal in any case with (time–)independent summary statistics.

Approximations to these performance measures for the remaining joint schemes are
obviously obtained by replacing the survival functions in Equations (6.26) and (6.28) by
the corresponding Markov approximations and Equations (6.30) and (6.31) do not hold in
this case because of the (time–)dependence structure of their summary statistics.
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Theorem 6.6 — The stochastic monotonicity properties (1)–(16) below hold for the (ex-
act) RLMSs of Types III and IV of the joint schemes SS+, CC+, CCS+, EE+ and
CES+.

Joint scheme Type III (δ = 0, θ > 1) Type IV (δ > 0, θ = 1)

SS+ (C3) RLMSIII(θ)* (7) RLMSIV (δ) ↑st with δ

CC+, CCS+ (1) RLMSIII(θ) ↓st with α (8) RLMSIV (δ) ↑st with α
(2) RLMSIII(θ) ↑st with β (9) RLMSIV (δ) ↓st with β
(C4) RLMSIII(θ)* (10) RLMSIV (δ) ↑st with δ
(3) RLMSIII(θ) ↑st with k+

µ (11) RLMSIV (θ) ↓st with k+
µ

(4) RLMSIII(θ) ↓st with k+
σ (12) RLMSIV (θ) ↑st with k+

σ

EE+, CES+ (5) RLMSIII(θ) ↓st with α (14) RLMSIV (δ) ↑st with α
(6) RLMSIII(θ) ↑st with β (15) RLMSIV (δ) ↓st with β
(C5) RLMSIII(θ)* (16) RLMSIV (δ) ↑st with δ

* (C3, C4, C5): without stochastic monotonous behaviour, in the usual sense, regarding θ

Proof — The stochastic monotonicity properties described in Theorem 6.6 come as no
surprise — they point in the opposite direction of the monotone behaviour of the corre-
sponding PMSs.11 These properties are ensured by the stochastic monotonicity properties
of RLµ(δ, θ) and RLσ(θ) and Equations (6.26)–(6.29).

For example, the increasing behaviour of the survival function of RLMSIV,SS+(δ)
follows from (6.28) and the fact that RLµ(δ, 1) stochastically decreases with δ.

The run length to a misleading signal of Type III of the joint schemes CC+, CCS+,
EE+ and CES+, RLMSIII(θ), stochastically decreases with α. This conclusion can be
immediately drawn from (6.27) because: RLβ

σ(1) does not depend on the head start α;
and RLα

µ(0, θ) stochastically decreases with α, thus FRLµ(0,θ)(i) increases with α for any
i. However, this result could not be drawn from (6.26) because PRLαµ(0,θ)(i) is not an
increasing function of α, although RLα

µ(0, θ) stochastically decreases with α.

Similarly, to prove that RLMSIV (δ) stochastically decreases with β, we have to use
(6.29) instead of (6.28). •

We ought to add that, based on the percentage points of RLMSIII(θ) numerically
obtained in the next section and by Morais and Pacheco (2000b), we conjecture that
RLMSIII(θ) has no stochastic behaviour, in terms of θ, for none of the five upper one-
sided joint schemes under investigation.

11Except for Conjecture (C3) which refers to the joint scheme SS+ that we proved it has decreasing

PMSIII(θ).
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6.6 RLMS: numerical illustrations

The percentage points of RLMS are crucial because this random variable has no expected
value or any other moment; and note that any p× 100% percentage point of probability,
for p equal or larger than PMS, is equal to +∞, as illustrated by Tables 6.11–6.13.

The presentation of the numerical results concerning RLMS follows closely the one in
Section 6.4. Thus, we use the same constelation of parameters for the ten joint schemes
and we begin with an illustration of some stochastic monotonicity properties of the RLMS
of the joint scheme EE+.

Table 6.11: Percentage points of RLMS of Type III and Type IV of the joint scheme EE+

(listed in order corresponding to p×100% = 1%, 5%, 10%, 15%, 20% percentage points, for
each θ and each δ); percentage points of RLµ,σ(0, θ) and RLµ,σ(δ, 1) are in parenthesis.

F−1
RLMSIII (θ)

(p) (F−1
RLµ,σ(0,θ)

(p)) F−1
RLMSIV (δ)

(p) (F−1
RLµ,σ(δ,1)

(p))

HSσ HSσ

0% 50% 0% 50%

HSµ HSµ HSµ HSµ

θ 0% 50% 0% 50% δ 0% 50% 0% 50%

1.01 11 (8) 3 (3) 11 (3) 4 (2) 0.05 12 (8) 12 (3) 3 (3) 3 (2)

31 (18) 17 (12) 32 (8) 18 (5) 34 (17) 35 (10) 11 (9) 12 (5)

59 (29) 43 (23) 62 (18) 46 (12) 64 (28) 66 (21) 39 (19) 40 (12)

90 (41) 73 (35) 96 (30) 78 (24) 100 (40) 104 (32) 71 (31) 75 (23)

127 (53) 109 (47) 136 (43) 116 (36) 143 (52) 151 (44) 111 (43) 116 (35)

1.03 10 (7) 3 (3) 11 (3) 3 (2) 0.10 12 (8) 12 (3) 3 (3) 3 (2)

28 (15) 14 (10) 30 (6) 15 (5) 34 (15) 35 (8) 11 (8) 12 (5)

53 (23) 37 (18) 57 (12) 40 (9) 66 (24) 70 (16) 39 (17) 42 (10)

82 (31) 65 (26) 90 (21) 71 (16) 107 (33) 114 (25) 75 (26) 80 (18)

119 (40) 98 (35) 132 (30) 109 (25) 162 (42) 176 (35) 120 (35) 130 (28)

1.05 10 (7) 3 (3) 10 (2) 3 (2) 0.20 12 (7) 12 (3) 3 (3) 3 (2)

25 (12) 12 (8) 27 (5) 13 (4) 36 (12) 38 (6) 11 (7) 12 (4)

48 (18) 33 (14) 53 (9) 36 (7) 77 (17) 85 (10) 42 (13) 47 (7)

77 (24) 58 (21) 87 (15) 66 (11) 152 (23) 183 (16) 90 (18) 103 (12)

116 (31) 92 (27) 136 (21) 106 (17) +∞ (28) +∞ (21) 189 (24) 261 (17)

1.10 8 (5) 3 (3) 9 (2) 3 (2) 0.30 12 (6) 13 (2) 3 (3) 3 (2)

21 (9) 9 (6) 23 (4) 10 (3) 40 (9) 45 (4) 12 (7) 13 (4)

41 (12) 24 (10) 49 (5) 29 (4) 125 (13) 234 (7) 49 (10) 60 (6)

73 (15) 47 (13) 105 (8) 61 (6) +∞ (16) +∞ (10) 225 (14) +∞ (8)

188 (18) 89 (16) +∞ (10) 164 (8) +∞ (20) +∞ (13) +∞ (17) +∞ (11)

Table 6.11 and the following ones include 1%, 5%, 10%, 15%, 20% percentage points of
RLMSIII(θ) and RLMSIV (δ) for a smaller range of θ and δ values: θ = 1.01, 1.03, 1.05,
1.10 and δ = 0.05, 0.10, 0.20, 0.30. Also, in order to give the user an idea of how quick a
misleading signal of Type III and Type IV is triggered by a joint scheme, the correspond-
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ing percentage points of RLµ,σ(0, θ) and RLµ,σ(δ, 1) have been added in parenthesis to
Tables 6.11–6.13 and, thus, can be compared to the corresponding percentage points of
RLMSIII(θ) and RLMSIV (δ).

The results in Table 6.11 illustrate the findings concerning the RLMSs stochastic mono-
tonicity properties. The emission of MSs of Type III is indeed speeded up by the adoption
of a head start HSµ; giving a head start to the individual chart for σ has exactly the op-
posite effect. Besides this RLMSIV (δ) stochastically increases with δ, which means that
MS of Type IV will tend to occur later as the increase in µ becomes more severe. However,
the entries in bold in Table 6.11 show that a few percentage points of RLMSIII(θ) do
not decrease with θ.

Table 6.11 also gives the reader an idea of how soon misleading signals can occur. For
instance, the probability of triggering a misleading signal of Type III within the first 59
samples is of at least 0.10 when there is a shift of 1% in the process standard deviation
and no head start has been adopted for scheme EE+.

Tables 6.12 and 6.13 in this section allow us to assess and compare the performance
of all the joint schemes in terms of number of sampling periods until the emission of
misleading signals. The examination of these two tables leads to overall conclusions similar
to those referring to the PMSs.

According to the percentage points in Table 6.12, the joint scheme SS tends to produce
MSs of Type III considerably sooner than scheme CC, and the schemes EE, CCS and
CES appear to trigger them later than scheme SS. This probably comes by virtue of the
fact that PMSIII(θ) of scheme SS is larger than the corresponding PMSs of the remaining
joint schemes, as mentioned in Section 6.4. Note, however, that the percentage points of
RLMSIII(θ) for schemes SS+, CC+, CCS+, EE+ and CES+ differ much less than when
standard individual charts for µ are at use, as apparent in Table 6.13.

The schemes CC and CCS tend to require more samples to trigger MSs of Type III
than joint schemes EE and CES, respectively. On the other hand, scheme CC+ appears
to give such MSs almost as late as scheme EE+. The same seems to hold for schemes
CCS+ and CES+.

Supplementing Shewhart upper control limits to the individual CUSUM charts for µ
and σ of the joint CC scheme seems to substantially speed up the emission of MS of Type
III. The same comments do not stand for schemes EE and CES, or CC+ and CCS+, or
even EE+ and CES+.

A brief remark on the percentage points of RLMSIII,SS+(θ): all the values suggest
that this random variable stochastically decreases as the shift in the process standard
deviation increases. However, recall that we proved that PMSIII,SS+(θ) decreases with θ.
Thus, if we had considered larger values of θ, as we did in the additional investigations or in
Table G1.b in Morais and Pacheco (2000b), we would soon get percentage points equal to
+∞ instead of smaller ones. In addition, note that Conjectures (C4) and (C5) concerning
the remaining schemes CC+, CCS+, EE+ and CES+ are conveniently supported by the
numerical results in bold in Table 6.13.

As for RLMSs of Type IV, it is interesting to notice that the joint schemes SS and SS+

do not show such a poor performance when compared to their Markov-type counterparts
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Table 6.12: Percentage points of RLMSs of Type III and Type IV (listed in order corre-
sponding, to p × 100% = 1%, 5%, 10%, 15%, 20% percentage points, for each θ and each
δ); percentage points of RLµ,σ(0, θ) and RLµ,σ(δ, 1) are in parenthesis.

F−1
RLMSIII (θ)

(p) (F−1
RLµ,σ(0,θ)

(p)) F−1
RLMSIV (δ)

(p) (F−1
RLµ,σ(δ,1)

(p))

θ SS CC CCS EE CES δ SS CC CCS EE CES

1.01 5 (3) 64 (11) 11 (5) 11 (8) 8 (5) 0.05 6 (3) 12 (12) 9 (5) 12 (9) 9 (5)

24 (12) 105 (27) 54 (19) 30 (17) 29 (16) 27 (13) 33 (33) 31 (20) 33 (19) 31 (17)

51 (24) 144 (47) 110 (35) 58 (29) 57 (28) 56 (27) 60 (56) 59 (38) 63 (31) 60 (30)

81 (36) 184 (65) 159 (52) 89 (41) 89 (41) 90 (41) 89 (74) 90 (57) 96 (45) 94 (43)

117 (50) 231 (82) 208 (70) 126 (53) 127 (54) 129 (56) 122 (90) 124 (76) 136 (59) 133 (58)

1.03 4 (2) 63 (9) 11 (5) 10 (7) 8 (5) 0.10 6 (3) 12 (12) 9 (5) 12 (8) 9 (5)

20 (9) 106 (20) 56 (17) 27 (14) 27 (14) 27 (13) 33 (33) 31 (20) 34 (17) 31 (16)

42 (19) 151 (33) 114 (29) 51 (22) 53 (24) 56 (26) 60 (53) 59 (38) 64 (28) 61 (28)

68 (29) 204 (45) 168 (42) 80 (31) 83 (34) 90 (40) 90 (67) 90 (57) 100 (40) 96 (40)

97 (39) 282 (58) 228 (56) 117 (40) 121 (44) 129 (55) 127 (79) 126 (75) 143 (52) 137 (53)

1.05 4 (2) 62 (8) 11 (5) 9 (7) 8 (5) 0.20 6 (3) 12 (12) 9 (5) 12 (7) 9 (5)

17 (8) 109 (15) 57 (15) 24 (12) 25 (13) 27 (12) 33 (32) 31 (20) 35 (14) 31 (14)

35 (15) 169 (24) 121 (24) 46 (18) 49 (20) 57 (24) 61 (45) 59 (38) 70 (21) 64 (22)

57 (23) 277 (33) 188 (34) 74 (24) 79 (28) 92 (37) 101 (53) 92 (55) 120 (28) 106 (30)

82 (31) +∞ (42) 287 (44) 112 (31) 117 (36) 133 (51) +∞ (60) 140 (68) 206 (35) 166 (39)

1.10 3 (1) 64 (6) 11 (5) 8 (5) 7 (5) 0.30 6 (3) 12 (12) 9 (5) 12 (6) 9 (5)

11 (5) 179 (10) 69 (11) 19 (9) 21 (10) 27 (11) 33 (29) 31 (20) 37 (11) 33 (11)

24 (9) +∞ (14) 236 (16) 38 (12) 43 (14) 58 (22) 66 (38) 59 (38) 91 (15) 74 (17)

38 (14) +∞ (18) +∞ (20) 67 (15) 75 (18) 95 (33) +∞ (43) 102 (51) +∞ (19) 153 (22)

56 (19) +∞ (21) +∞ (25) 145 (18) 141 (22) 139 (45) +∞ (48) +∞ (59) +∞ (24) +∞ (28)

CC, EE, CCS, CES and CC+, EE+, CCS+, CES+, respectively.
Also, joint schemes CC, EE, CCS and CES seem to have similar performance as

far as RLMSIV (δ) is concerned, as suggested earlier by the PMSIV (δ) values in Table
6.6 and by Figure 6.3. The same appears to happen with schemes CC+, EE+, CCS+,
CES+.

In addition, the use of combined schemes yields in general smaller values for the per-
centage points of RLMSIV (δ); that is, the MSs of Type IV tend to be triggered sooner.

It is worth mentioning that the RLMS is important to assess the performance (in terms
of misleading signals) of schemes for µ and σ based on univariate summary statistics, such
as the Shewhart type scheme proposed by Chengalur, Arnold and Reynolds Jr. (1989)
whose statistic is n−1∑n

i=1 (Xi−µ0

σ0
)2. This comes by virtue of the fact that in such cases

we cannot define PMS. The RLMSs of those schemes are particular cases of the run length
of the joint scheme itself:

RLMSIII(θ) =st RLµ,σ(0, θ) (6.32)

RLMSIV (δ) =st RLµ,σ(δ, 1). (6.33)
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Table 6.13: Percentage points of RLMSs of Type III and Type IV (listed in order corre-
sponding to p× 100% = 1%, 5%, 10%, 15%, 20% percentage points, for each θ and each δ);
percentage points of RLµ,σ(0, θ) and RLµ,σ(δ, 1) are in parenthesis.

F−1
RLMSIII (θ)

(p) (F−1
RLµ,σ(0,θ)

(p)) F−1
RLMSIV (δ)

(p) (F−1
RLµ,σ(δ,1)

(p))

θ SS+ CC+ CCS+ EE+ CES+ δ SS+ CC+ CCS+ EE+ CES+

1.01 5 (3) 10 (8) 8 (5) 11 (8) 9 (5) 0.05 6 (3) 13 (8) 9 (5) 12 (8) 9 (5)

25 (12) 29 (17) 29 (16) 31 (18) 29 (16) 27 (12) 34 (17) 31 (16) 34 (17) 31 (16)

52 (24) 57 (29) 57 (28) 59 (29) 57 (28) 57 (25) 65 (28) 61 (28) 64 (28) 61 (28)

83 (36) 88 (40) 89 (41) 90 (41) 90 (41) 91 (38) 101 (39) 96 (40) 100 (40) 95 (40)

118 (50) 125 (53) 126 (54) 127 (53) 127 (54) 132 (52) 144 (52) 138 (53) 143 (52) 137 (53)

1.03 4 (2) 9 (7) 8 (5) 10 (7) 8 (5) 0.10 6 (3) 13 (7) 9 (5) 12 (8) 9 (5)

21 (10) 26 (14) 27 (14) 28 (15) 27 (14) 27 (11) 35 (15) 32 (14) 34 (15) 31 (15)

44 (19) 50 (22) 53 (24) 53 (23) 54 (24) 58 (23) 67 (23) 63 (25) 66 (24) 62 (25)

70 (29) 79 (31) 83 (34) 82 (31) 84 (34) 93 (35) 108 (33) 100 (35) 107 (33) 99 (35)

102 (40) 115 (40) 120 (44) 119 (40) 122 (45) 136 (48) 162 (43) 147 (46) 162 (42) 146 (46)

1.05 4 (2) 8 (6) 7 (5) 10 (7) 8 (5) 0.20 6 (2) 13 (6) 9 (5) 12 (7) 9 (5)

18 (8) 23 (12) 25 (13) 25 (12) 26 (13) 27 (9) 37 (11) 33 (12) 36 (12) 32 (12)

38 (15) 45 (18) 49 (20) 48 (18) 50 (20) 59 (19) 77 (17) 68 (19) 77 (17) 67 (19)

61 (23) 73 (24) 79 (28) 77 (24) 81 (28) 99 (29) 147 (23) 119 (26) 152 (23) 118 (26)

88 (32) 111 (30) 118 (36) 116 (31) 120 (36) 149 (40) +∞ (29) 206 (33) +∞ (28) 207 (33)

1.10 3 (1) 7 (5) 7 (5) 8 (5) 7 (5) 0.30 6 (2) 13 (5) 9 (4) 12 (6) 9 (5)

13 (5) 18 (9) 21 (10) 21 (9) 22 (10) 28 (8) 41 (9) 35 (10) 40 (9) 34 (10)

27 (9) 37 (12) 43 (14) 41 (12) 45 (14) 62 (16) 119 (12) 84 (14) 125 (13) 83 (15)

44 (14) 66 (15) 76 (18) 73 (15) 79 (18) 107 (24) +∞ (16) 288 (19) +∞ (16) 299 (19)

65 (19) 145 (18) 149 (22) 188 (18) 153 (22) 173 (32) +∞ (20) +∞ (23) +∞ (20) +∞ (24)

The numerical results obtained along this chapter suggest that the schemes SS and
SS+ compare unfavorably to the more sophisticated joint schemes CC, CC+, etc., in
terms of MSs of both types, in most cases. Thus, the SS and SS+ schemes are far from
being reliable in identifying which parameter has changed. This is the answer for St. John
and Bragg’s (1991) concluding question: — (Misleading signals can be a serious problem
for the user of joint charts.) Would alternatives (EWMA or CUSUM) perform better in
this regard?.

Tables 6.6 and 6.7 give the distinct impression that joint schemes for µ and σ can be
very sensitive to MSs of both types: the values of PMSs are far from negligible, especially
for small and moderate shifts in µ and σ, thus, misidentification of signals is likely to
occur.

The practical significance of all these results will depend on the amount of time and
money that is spent in attempting to identify and correct nonexisting causes of variation
in µ (σ), i.e., when a MS of Type III (IV) occurs.

No monotonicity properties results have been added whatsoever to the RLs of standard
individual schemes for µ in Chapter 5, and therefore to the PMSs and the RLMSs of the
joint schemes CC, CCS, EE and CES; scheme SS followed suit. This is due to the fact
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that the constituent individual schemes for µ are not associated with stochastically mono-
tone matrices, an absolutely crucial characteristic to prove the stochastic monotonicity
results of the RLs and, thus, the monotonicity properties of the PMSs and the stochastic
monotonicity properties of the RLMSs.

Finally, we would like to refer that Reynolds Jr. and Stoumbos (2001) advocate that
these probabilities are useful to diagnose which parameter(s) has(have) changed, and sug-
gest the use of the pattern of the points beyond the control limits of the constituent charts
in the identification of the parameter that has effectively changed. A plausible justification
for this diagnostic aid stems from the fact that changes in µ and σ have different impacts
in those patters.

137





Chapter 7

Assessing the impact of

autocorrelation in the performance

of residual schemes for µ

Assuming that the observations from the process output are independent is a standard
assumption when developing a control scheme. However, this assumption can be totally
irrealistic and significantly affect the performance of standard control schemes — mis-
takenly designed to detect departures from in-control parameter values of independent
data.

The effects and implications of autocorrelation have been frequently addressed in the
Statistical Process Control (SPC) literature. For a detailed review please refer to Knoth
and Schmid (2001). These issues are usually tackled only numerically: take for instance
the investigations by Johnson and Bagshaw (1974), Alwan (1992), Maragah and Woodall
(1992), Wardell, Moskowitz and Plante (1994), Runger, Willemain and Prabhu (1995),
VanBrackle III and Reynolds Jr. (1997) and Lu and Reynolds Jr. (1999a). These and
several other papers have tables and graphs, usually referring to the ARL, to provide
evidence that the performance of the appealing traditional control schemes is severely
compromised by the presence of serial correlation.

Analytical investigations on the effects and implications of autocorrelation have been
so far presented in a few papers, e.g., Schmid (1995, 1997a, 1997b), Schmid and Schöne
(1997), Schöne, Schmid and Knoth (1999) and Kramer and Schmid (2000), already re-
viewed in Chapter 1. These papers provide in general a comparison between the survival
functions of the RLs of two modified schemes for monitoring the mean of two (weakly)
stationary Gaussian processes with different autocorrelation functions. Most of these
stochastic order relations are established by using the fact that the joint distribution of
any finite collection of Xt’s from a stationary Gaussian process {Xt} is a multivariate
normal distribution.

In these latter investigations, some emphasis is given to ARL based interpretations of
the results because the ARL is by far the most popular of the RL related performance
measures and has been extensively used to describe the likely performance of a control
scheme. However, we should have in mind that confronting two ARLs essentially means
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comparing unidimensional and possibly misleading snapshots of the performances of the
two schemes and ignores detailed information about the probabilistic behaviour of the RLs.
On the other hand, establishing stochastic order relations, in the line of work pioneered by
W. Schmid, provides a qualitative and a rather more objective assessment of the impact of
serial correlation in the performance of quality control schemes we are dealing with than
the comparisons based entirely on ARLs.

We focus in this latter aspect and special attention is given to Shewhart (CUSUM and
EWMA) residual schemes for the mean of stationary autoregressive models of order 1 and
2 (of order 1), described in the following sections and in Morais and Pacheco (2001c).

7.1 Shewhart residual schemes

One of the two following approaches is usually adopted to build control schemes for the
mean of autocorrelated data. In the first approach, the original data is plotted in a
traditional scheme (Shewhart, CUSUM, EWMA, etc.), however, with readjusted control
limits to account for the autocorrelation; the resulting monitoring tool is the so-called
modified scheme (Vasilopoulos and Stamboulis (1978), Schmid (1995, 1997a) and Zhang
(1998)).

The second approach also makes use of a traditional scheme, but the residuals of a
time-series model are plotted instead of the original data; this sort of scheme is termed a
special-cause control scheme (Alwan and Roberts (1988) and Wardell, Moskowitz and
Plante (1992, 1994)) or, more commonly, a residual scheme (Runger, Willemain and
Prabhu (1995) and Zhang (1997)).1 The rationale behind residual schemes is that the
residuals are independent in case the time-series model is valid, thus they meet one of
the standard assumptions of traditional schemes, which facilitates the evaluation of RL
related measures.

There are a few points in favour of residual schemes. According to the comparison
studies in Schmid (1995) and Schmid (1997b), and as mentioned by Kramer and Schmid
(2000) residual schemes tend to be better than modified schemes (in the ARL sense) in the
detection of shifts in the mean of a stationary Gaussian autoregressive of order 1 model,
when the autoregressive parameter is negative. In addition, the critical values required
to implement the residuals schemes do not depend on the underlying in-control process,
as those needed by modified schemes. Finally, the ARL of modified schemes are usually
obtained using simulations (see Schmid (1995, 1997a, 1997b)) and can only have closed
expressions for very special cases like exchangeable normal variables (Schmid (1995)).

Let {Xt} be a Gaussian autoregressive model of order 2 (AR(2)) satisfying the equation

(1− φ1B − φ2B
2)(Xt − µ) = at (7.1)

where: µ represents the process mean; {at} corresponds to Gaussian white noise with
variance σ2

a; and B represents the backshift operator defined as BXt = Xt−1 and BjXt =
Xt−j . Also, recall that {Xt} is a stationary process if φ1 + φ2 < 1, φ2 − φ1 < 1 and

1According to Knoth and Schmid (2001), Harrison and Davies (1964) were the first authors to use

control charts for residuals.
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−1 < φ2 < 1 (Box, Jenkins and Reinsel (1994, p. 60)). Needless to say that we are
dealing with a stationary autoregressive model of order 1 (AR(1)) in case φ2 = 0 and
−1 < φ1 = φ < 1.

The residual scheme proposed by Zhang (1997) for AR(2) data makes use of the resid-
uals

et = (1− φ1B − φ2B
2)(Xt − µ0) (7.2)

where µ0 is the nominal value of the process mean, E(Xt). It is worth noticing that
these residuals are summary statistics since they only depend on the nominal value of the
process mean. Thus, they do not vary with the true value of the process mean as the
residuals used in Wardell, Moskowitz and Plante (1994).

The main purpose of the Shewhart residual scheme we consider is to detect a single
step change in the process mean from the nominal value E(Xt) = µ0, for t = . . . ,−1, 0,
to E(Xt) = µ0 + δσx, for t = 1, 2, . . ., where δ 6= 0 and σ2

x = V (Xt) remains constant.
In the absence of an assignable cause, the residuals given by (7.2) verify et ∼iid

N(0, σ2
a), where σ2

a = (1 + φ2){(1 − φ2)2 − φ2
1}/(1 − φ2) × σ2

x (Box, Jenkins and Rein-
sel (1994, p. 62)). As a consequence, the control scheme ought to trigger a signal at time
t if

et < −ξ × σa or et > ξ × σa (7.3)

where ξ is a positive constant usually selected by fixing the ARL in two situations: one
being when the quality level is acceptable — i.e., δ = 0 — and one when it is rejectable —
that is, δ is equal to some fixed nonzero value. Moreover, the RLs of the Shewhart residual
schemes — sharing the same ξ — are all matched in-control and have geo(2[1−Φ(ξ)]) in-
control distribution. Thus, these RLs are identically distributed to the one of a standard
Shewhart X-scheme for i.i.d. data, with control limits µ0± ξσx, as mentioned by Wardell,
Moskowitz and Plante (1994).

In the out-of-control situation, we still get independent residuals with variance σ2
a.

However: E(e1) = δσx and E(et) = δ(1 − φ)σx, t = 2, 3, . . ., for the AR(1) model; and
E(e1) = δσx, E(e2) = δ(1 − φ1)σx, E(et) = δ(1 − φ1 − φ2)σx, t = 3, 4, . . ., for the AR(2)
model. All these properties enable us to independently determine the probability that the
residual et is beyond the control limits and, therefore, to assess the detection speed of the
Shewhart residual scheme in a straighforward manner, as we shall see below.

7.1.1 AR(1) model

Let RL(φ, δ) be the run length of the Shewhart residual scheme for an AR(1) process,
conditioned on the fact that the autoregressive parameter is equal to φ and the mean µ

equals µ0, for t = . . . ,−1, 0, and µ = µ0 + δσx (−∞ < δ < +∞), for t = 1, 2, . . .. Then,
the survival function, the hazard rate (or alarm rate) function and the equilibrium rate
function of RL(φ, δ) are given, respectively, by

P [RL(φ, δ) > t] = β(1;φ, δ)× [β(2;φ, δ)]t−1, t = 1, 2, . . . (7.4)

λRL(φ,δ)(t) =

{
1− β(1;φ, δ), t = 1
1− β(2;φ, δ), t = 2, 3, . . .

(7.5)
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rRL(φ,δ)(t) =


0, t = 1

1−β(1;φ,δ)
β(1;φ,δ)[1−β(2;φ,δ)] , t = 2

1
β(2;φ,δ) , t = 3, 4, . . .

(7.6)

where

1− β(t;φ, δ) = 1− {Φ [ξ − δ × f(t;φ)]− Φ [−ξ − δ × f(t;φ)]} (7.7)

with

f(t;φ) =
|E(et)|
δσa

=


1√

1−φ2
, t = 1√

1−φ
1+φ , t = 2, 3, . . . .

(7.8)

Given that no signal has been triggered before time t, [1−β(min{t, 2};φ, δ)] represents
the probability that sample t is responsible for triggering a signal, and according to Equa-
tion (7.5) it also denotes the alarm rate at sample t. The function f(t;φ) is what Zhang
(1997) called the detection capability index.

According to Equation (7.5), the alarm rate takes at most two distinct values: 1 −
β(1;φ, δ) at sample 1, and 1 − β(2;φ, δ) at the following samples. As a consequence,
RL(φ, δ) has either increasing, constant or decreasing hazard rate function depending
on whether the alarm rate at sample 1 is smaller, equal or greater than the alarm rate
at the subsequent samples. Therefore the monotone character of λRL(φ,δ)(t) allows the
comparison of the scheme ability to trigger a signal at sample 1 and at the following
samples.

Theorem 7.1 — RL(φ, δ) has an increasing (constant, decreasing) hazard rate function,
if and only if −1 < φ < 0 (φ = 0, 0 < φ < 1).

Proof — The detection capability index verifies:

• f(t; 0) = 1

• f(t;φ) > 1, if −1 < φ < 0 (Corollary 1, Zhang (1997, p. 479)).

Moreover, since the sign of the derivative d β(t;φ,δ)
d f(t;φ) equals the sign of −2δ× sinh[ξδf(t;φ)],

we can assert that β(t;φ, δ) is a decreasing function of the detection capability index,
for any −∞ < δ < +∞. Then, by noting that f(t;φ) ≥ f(1;φ), for −1 < φ < 0 and
t = 2, 3, . . ., we immediately conclude that λRL(φ,δ)(t) = 1 − β(t;φ, δ) ≥ 1 − β(1;φ, δ) =
λRL(φ,δ)(1). In view of (7.5), we conclude that λRL(φ,δ) is an increasing hazard rate func-
tion.

Analogously, we get, for 0 < φ < 1 and t = 2, 3, . . ., f(t;φ) ≤ f(1;φ). Thus,
λRL(φ,δ)(t) = 1 − β(t;φ, δ) ≤ 1 − β(1;φ, δ) = λRL(φ,δ)(1), and λRL(φ,δ)(t) is a decreas-
ing hazard rate function for 0 < φ < 1.

For φ = 0 we have a constant alarm rate: λRL(0,δ)(t) = 1− β(1; 0, δ), t = 1, 2, . . .. •

The increasing behaviour of the alarm rate function for −1 < φ < 0 is consistent with
the fact that when the process is negatively correlated “the one step-ahead forecast moves
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in the opposite direction of the shift” (Wardell, Moskowitz and Plante (1994)). This yields
increasingly large residuals and hence increasing hazard rates. This fact is illustrated by
the numerical results in Table 7.1. Conversely, for positively correlated data, the alarm
rate decreases because residuals tend to get smaller; thus, early detection is more likely to
happen.

The next theorem concerns the increasing stochastic behaviour of RL(φ, δ) in terms
of the autoregressive parameter and can be found in Morais and Pacheco (2000d). Let
RLiid(δ) = RL(0, δ), so that RLiid(δ) represents the RL of a standard Shewhart X-scheme
whose summary statistic and control limits are given by Equations (7.2) and (7.3) with
φ1 = φ2 = 0.

Theorem 7.2 — If −1 < φ ≤ 0 then

RL(φ, δ) ↑hr with φ. (7.9)

As a consequence RL(φ, δ) ≤hr RLiid(δ), for −1 < φ < 0.

Proof — Recall that β(t;φ, δ) is a decreasing function of f(t;φ), for −1 < φ < 0, and in
this case f(1;φ) and f(2;φ) are both decreasing functions of φ. The result follows imme-
diately since 1−β(t;φ, δ) turns out to be a decreasing function of φ in the interval (−1, 0]. •

Theorem 7.2 can be phrased more clearly by noting that the detection ability (or the
alarm rate) of the Shewhart residual scheme for any stationary Gaussian AR(1) model
decreases with a nonpositive autoregressive parameter φ. For the numerical illustration of
these properties please refer to Table 7.1.

Remark 7.3 — a) β(1;φ, δ) decreases with φ whereas β(2;φ, δ) increases with φ, for
positively autocorrelated AR(1) data. Therefore, it comes as no surprise that we are
unable to establish the stochastic monotone behaviour of RL(φ, δ), in the usual, the hazard
rate or likelihood ratio senses, for 0 < φ < 1.

b) It is worth mentioning in passing that RL(φ, δ) 6≤lr RLiid(δ), for −1 < φ < 0, because
the equilibrium rate can be a nonmonotonous function of φ (for fixed t). Furthermore,
when rRL(φ,δ)(2) and rRL(φ,δ)(3) are monotone functions of φ, −1 < φ < 0, they usually
have distinct behaviour and we cannot assert that the odds of a signal at sample t has a
monotone behaviour with regard to φ. The mentioned properties are apparent in Table
7.1.

c) Theorem 7.2 strenghtens Conclusion 2(a) of Zhang (1997, p. 484):

ARL(φ, δ) ≤ ARLiid(δ), for − 1 < φ < 0. (7.10)

d) Theorem 1 in Schmid and Schöne (1997) refers to modified EWMA schemes and reads as
follows: RLiid(0) ≤st RLG(0), where RLiid(0) and RLG(0) refer here to the in-control RLs
of EWMA modified schemes for i.i.d. data and a stationary Gaussian model with nonneg-
ative autocovariance function. RL(φ, δ) ≤hr RLiid(δ), for −1 < φ < 0, is a consequence
of result (7.9) and resembles Schmid and Schöne’s result; however, the stochastic order
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Table 7.1: ARLs, alarm rates and equilibrium rates of some RLs of the Shewhart residual
scheme for AR(1) data (ξ = 3).

Alarm rate Equilibrium rate

δ φ ARL t = 1 t ≥ 2 t = 2 t ≥ 3

0 φ ∈ (-1,1) 370.4 0.002700 0.002700 1.002707 1.002707

0.10 -0.75 273.2 0.003007 0.003663 0.823405 1.003677

-0.50 322.2 0.002878 0.003105 0.929754 1.003114

-0.25 342.1 0.002842 0.002923 0.975109 1.002932

0 352.9 0.002833 0.002833 1.002842 1.002842

0.50 -0.75 22.1 0.012500 0.046767 0.270673 1.049061

-0.50 61.2 0.007877 0.016478 0.481861 1.016754

-0.25 106.6 0.006722 0.009407 0.719371 1.009497

0 155.2 0.006442 0.006442 1.006484 1.006484

0.75 -0.75 7.3 0.031031 0.154890 0.206759 1.183277

-0.50 23.1 0.016478 0.044484 0.376628 1.046555

-0.25 47.7 0.013107 0.021126 0.628686 1.021581

0 81.2 0.012313 0.012313 1.012466 1.012466

1.00 -0.75 3.6 0.068360 0.361576 0.202933 1.566358

-0.50 10.5 0.032513 0.102409 0.328153 1.114093

-0.25 23.3 0.024607 0.043734 0.576857 1.045734

0 43.9 0.022782 0.022782 1.023313 1.023313

2.00 -0.75 1.5 0.509460 0.989033 1.050088 91.181141

-0.50 2.1 0.244909 0.678713 0.477880 3.112477

-0.25 3.4 0.175047 0.337970 0.627837 1.510504

0 6.3 0.158656 0.158656 1.188574 1.188574

3.00 -0.75 1.1 0.937679 1.000000 15.045836 2.524× 106

-0.50 1.3 0.678713 0.985959 0.985959 71.222445

-0.25 1.6 0.539187 0.808664 0.808664 5.226406

0 2.0 0.500000 0.500000 2.000000 2.000000

relation we obtained is not only reversed but also stronger, and refers to both in-control
and out-of-control situations. These differences probably stem from the fact that Shewhart
residual schemes have simpler RL characteristics than the modified EWMA schemes con-
sidered by Schmid and Schöne (1997), and that we are dealing with a stricter class of
stationary processes (autoregressive models) with simpler autocorrelation behaviour than
the class considered by those authors.

e) Theorem 7.2 is also in agreement with the notes in the last paragraph of page 182 of
Kramer and Schmid (2000). •
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7.1.2 AR(2) model

The survival, hazard rate (or alarm rate) and equilibrium rate functions of RL(φ1, φ2, δ),
the run length of the Shewhart residual scheme for stationary AR(2) data conditioned on
φ1, φ2 and δ, are equal, respectively, to

P [RL(φ1, φ2, δ) > t] =


β(1;φ1, φ2, δ), t = 1
β(1;φ1, φ2, δ)β(2;φ1, φ2, δ)
×[β(3;φ1, φ2, δ)]t−2, t = 2, 3, . . .

(7.11)

λRL(φ1,φ2,δ)(t) =


1− β(1;φ1, φ2, δ), t = 1
1− β(2;φ1, φ2, δ), t = 2
1− β(3;φ1, φ2, δ), t = 3, 4, . . .

(7.12)

rRL(φ1,φ2,δ)(t) =


0, t = 1

1−β(t−1;φ1,φ2,δ)
β(t−1;φ1,φ2,δ)[1−β(t;φ1,φ2,δ)] , t = 2, 3

1
β(3;φ1,φ2,δ) , t = 4, 5, . . .

(7.13)

where

β(t;φ1, φ2, δ) = Φ [k − δf(t;φ1, φ2)]− Φ [−k − δf(t;φ1, φ2)] , t = 1, 2, . . . (7.14)

with the detection capability index given by

f(t;φ1, φ2) =


√

1−φ2

1+φ2
× 1

(1−φ2)2−φ2
1
, t = 1

|1− φ1| × f(1;φ1, φ2), t = 2
(1− φ1 − φ2)× f(1;φ1, φ2), t = 3, 4, . . . ,

(7.15)

following the expressions (6)–(8) and (A1)–(A2) of Zhang (1997, p. 478 and p. 489).
Let us define the following sets in IR2:

A = {(φ1, φ2) : φ1 + φ2 < 1, φ2 − φ1 < 1,−1 < φ2 < 1}
B = {(φ1, φ2) : φ1 < 0, φ2 < 0}
C = {(φ1, φ2) : φ1 > 0, (φ2 > 0 or 2φ1 + φ2 > 2)}

D =
{

(φ1, φ2) : φ1 <

[
(1− φ2)−

√
(1− φ2)(1− φ2 − 2φ2

2)
]
/2 or

φ1 >

[
(1− φ2) +

√
(1− φ2)(1− φ2 − 2φ2

2)
]
/2
}

;

E =
{
(φ1, φ2) : φ1 + φ2 − φ2

2 < 0
}
.

Recall that A corresponds to the stationarity region for the AR(2) model. The meaning
of the remaining sets will be discussed next.

The following result corresponds to the analogue of Theorem 7.1 for AR(2) models
and can be also found in Morais and Pacheco (2000d).

Theorem 7.4 — RL(φ1, φ2, δ) has increasing (constant, decreasing) hazard rate if (φ1, φ2) ∈
A ∩B, ((φ1, φ2) = (0, 0), (φ1, φ2) ∈ A ∩ C).
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Proof — The alarm rate function λRL(φ1,φ2,δ)(t) increases with t if f(1;φ1, φ2) < |1−φ1|×
f(1;φ1, φ2) < (1−φ1−φ2)×f(1;φ1, φ2). Taking into account that (φ1, φ2) must belong to
set A to guarantee the process stationarity, the double inequality 1 < |1−φ1| < 1−φ1−φ2

holds if

(φ1, φ2) ∈
{
(φ′1, φ

′
2) ∈ A : (φ′1 < 0 or φ′1 > 2), (φ′2 < 0 and 2φ′1 + φ′2 < 2)

}
=

{
(φ′1, φ

′
2) ∈ A : φ′1 < 0, φ′2 < 0

}
= A ∩B.

The inequalities are reversed for the decreasing behaviour and the result also follows by
adding the stationarity condition:

(φ1, φ2) ∈
{
(φ′1, φ

′
2) ∈ A : (φ′1 > 0 and φ′1 < 2), (φ′2 > 0 or 2φ′1 + φ′2 > 2)

}
=

{
(φ′1, φ

′
2) ∈ A : φ′1 > 0, (φ′2 > 0 or 2φ′1 + φ′2 > 2)

}
= A ∩ C.

The increasing behaviour of the alarm rate for φ1, φ2 < 0 is illustrated in Table 7.2,
for δ = 0.10, 1.

Table 7.2: ARLs, alarm rates and equilibrium rates of some RLs of the Shewhart residual
scheme for AR(2) data (ξ = 3).

Alarm rate Equilibrium rate

δ φ1 φ2 ARL t = 1 t = 2 t ≥ 3 t = 2 t = 3 t ≥ 4

0 (φ1, φ2) ∈ A 370.4 0.002700 0.002700 0.002700 1.002707 1.002707 1.002707

0.10 -0.50 -0.50 284.3 0.002901 0.003156 0.003522 0.921759 0.899073 1.003534

-0.25 310.1 0.002870 0.003085 0.003227 0.932858 0.959012 1.003237

0 322.2 0.002878 0.003105 0.003105 0.929754 1.003114 1.003114

-0.25 -0.50 306.0 0.002883 0.002988 0.003270 0.967858 0.916438 1.003281

-0.25 329.4 0.002848 0.002933 0.003036 0.974035 0.968682 1.003046

0 342.1 0.002842 0.002923 0.002923 0.975109 1.002932 1.002932

0 -0.50 322.2 0.002878 0.002878 0.003105 1.002887 0.929754 1.003114

-0.25 342.1 0.002842 0.002842 0.002923 1.002850 0.975109 1.002932

0 352.9 0.002833 0.002833 0.002833 1.002841 1.002841 1.002841

1.00 -0.50 -0.40 5.9 0.033501 0.106052 0.217532 0.326839 0.545359 1.278007

-0.25 9.6 0.029326 0.053285 0.120942 0.566996 0.465379 1.137582

0 15.4 0.028158 0.028158 0.070449 1.028974 0.411276 1.075789

-0.50 0 10.5 0.032513 0.102409 0.102409 0.328153 1.114093 1.114093

-0.25 23.3 0.024607 0.043734 0.043734 0.576857 1.045734 1.045734

0 43.9 0.022782 0.022782 0.022782 1.023313 1.023313 1.023313

-0.50 0.40 4.0 0.152412 0.484359 0.203620 0.371251 4.613153 1.255683

-0.25 39.6 0.035963 0.066850 0.023892 0.558032 2.998391 1.024477

0 100.0 0.028158 0.028158 0.009634 1.028974 3.007654 1.009727

Before we proceed, we would like to remind the reader that the detection capability
index of a standard Shewhart X-scheme is unitary, as observed by Zhang (1997); also,
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the alarm rate function is constant. Moreover, note that, as in the AR(1) model, the
alarm rate, 1 − β(t;φ1, φ2, δ), is also an increasing function of the detection capability
index. Summing up these facts, we can assert that the alarm rate of the Shewhart residual
scheme for AR(2) data is larger than the one of the standard Shewhart X-scheme in case
f(t;φ1, φ2) > 1, t = 1, 2, 3, . . .. Hence, it is very important to identify the sets where these
inequalities hold, as we do in the next lemma that corresponds to Theorem 1 of Zhang
(1997).

Lemma 7.5 — For fixed t, the detection capability index satisfies

f(t;φ1, φ2, δ) > 1 ⇔ (φ1, φ2) ∈


A, t = 1
A ∩D, t = 2
A ∩ E, t = 3, 4, . . .

(7.16)

Let RLiid(δ) = RL(0, 0, δ). Then an analogue of Theorem 7.2 holds for the stationary
AR(2) model.

Theorem 7.6 — For (φ1, φ2) ∈ A ∩D ∩ E,

RL(φ1, φ2, δ) ≤hr RLiid(δ). (7.17)

Furthermore, for fixed φ2 (−1 < φ2 < 1),

RL(φ1, φ2, δ) ↑hr with φ1 over the interval (φ2 − 1, 0]. (7.18)

Proof — First, note that in the stationarity region A the two following conditions hold:
1 − φ1 − φ2 > 0 and 1 − φ2 + φ1 > 0. As the sign of ∂f(1;φ1,φ2)

∂φ1
equals the one of

φ1[(1− φ2)2 − φ2
1],

∂f(1;φ1,φ2)
∂φ1

is nonpositive if φ1 ≤ 0. Moreover, since

∂f(2;φ1, φ2)
∂φ1

= −f(1;φ1, φ2) + (1− φ1)
∂f(1;φ1, φ2)

∂φ1
, (7.19)

and
∂f(3;φ1, φ2)

∂φ1
= −f(1;φ1, φ2) + (1− φ1 − φ2)

∂f(1;φ1, φ2)
∂φ1

, (7.20)

a sufficient condition for ∂f(t;φ1,φ2)
∂φ1

≤ 0, t = 1, 2, 3, . . . is to have the pair of parameters
(φ1, φ2) belonging to the set {(φ1, φ2) ∈ A : φ1 ≤ 0} = {(φ1, φ2) : −1 < φ2 < 1, φ2 − 1 <
φ1 ≤ 0}. In this last set, the alarm rate function decreases with φ1 since λRL(φ1,φ2,δ)(t) is
an increasing function of f(t;φ1, φ2). •

The stochastic increasing behaviour in the hazard rate sense of RL(φ1, φ2, δ) with
respect to φ1 is apparent in Table 7.2, for δ = 1. Although the ARL increases with φ2,
Table 7.2 illustrates the nonmonotonous behaviour of the alarm rate in terms of φ2 (for
δ = 0.10) — thus the ARL gives a misleading idea of the scheme performance.

Remark 7.7 — a) Corollary 2 of Zhang (1997, p. 481) can be read as follows: ARL(φ1, φ2,
δ) ≤ ARLiid(δ), −1 < φ1 < −0.25. Equation (7.17) clearly strengthens this corollary.

b) Once again, we cannot compare the RL of the Shewhart residual scheme and the RL of
the standard X-scheme for uncorrelated data in the likelihood ratio sense. Actually, for
the same reasons pointed out for the AR(1) model, RL(φ1, φ2, δ) 6≤lr RLiid(δ), as we can
see from the numerical results regarding the equilibrium rate function in Table 7.2. •
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7.2 CUSUM and EWMA residual schemes

The improvement of the sensitivity of Shewhart residual schemes to small and moder-
ate shifts through the adoption of CUSUM and EWMA residuals schemes has been also
addressed in the SPC literature. For example, Harris and Ross (1991), Runger, Wille-
main and Prabhu (1995) and Lu and Reynolds Jr. (1999a) discuss the application of the
CUSUM and the EWMA techniques and conclude that the resulting residual schemes have
superior performance than their Shewhart counterparts, in ARL terms.

In this section we assess the impact of the serial autocorrelation in the performance of
upper one-sided CUSUM and EWMA schemes for residuals of a stationary AR(1) model,
by means of stochastic ordering. The main purpose of the upper one-sided CUSUM and
EWMA residual schemes, described in the next two subsections, is the detection of upward
shifts in the process mean — from µ0 to µ0 + δσx, where δ > 0.

7.2.1 CUSUM residual schemes

The detection of upward shifts is done by the upper one-sided CUSUM scheme which uses
the following summary statistic

Vt =

{
v, t = 0
max {0, Vt−1 + (et − k × σa)} , t = 1, 2, . . .

(7.21)

and lower and upper control limits

LCLC = 0 and UCLC = h× σa. (7.22)

v denotes the initial value given to the upper one-sided CUSUM statistic. Let v = LCLC +
β(UCLC − LCLC) for some β ∈ [0, 1). If β ∈ (0, 1) (or β = 0) a β × 100% head start (or
no head start) has been given to the chart.

By virtue of the fact that the reference value and the upper control limit are both
multiples of σa, the RLs of the CUSUM residual schemes are identically distributed in the
absence of an assignable cause (δ = 0) for all values of the parameter φ. Thus, all these
CUSUM residual schemes have matched in-control performance, as well as the Shewhart
residual schemes considered in the previous section.

Let RLbβ(x++1)c
C (φ, δ;x) be the Markov approximation for the run length of the upper

one-sided CUSUM residual scheme for stationary AR(1) data with an β × 100% head
start, based on an absorbing Markov chain with discrete state space {0, 1, . . . , x+ +1} and
absorbing state (x+ +1). Note that a β× 100% head start corresponds to the initial state
bβ(x+ + 1)c in the Markov approximation.

As mentioned earlier, the Markov approach starts with the division of the decision
interval [LCL,UCL) in (x+ + 1) sub-intervals, [ei, ei+1), with equal length ∆ = (UCL−
LCL)/(x+ +1). These sub-intervals are then associated with the (x+ +1) transient states
of an absorbing Markov chain, say {St(φ, δ;x+), t = 0, 1, . . .}, with discrete state space
{0, 1, . . . , x+ + 1} and absorbing state (x+ + 1).

Since, in the presence of a shift in the process mean, the residuals et have their expected
value equal to δσx (for t = 1) and δ(1−φ)σx (for t = 2, 3, . . .), the transitions between the
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transient states of {St(δ, φ;x+), t = 0, 1, . . .} are governed by the substochastic matrices
Q(φ, δ;x+), for the first transition, and Q(φ, δ(1−φ);x+), for the subsequent transitions.
The matrices Q have the following generic form

Q(φ, δ′;x+) = [qi j(φ, δ′;x+)]x
+

i,j=0 =
j∑

l=0

qi l(φ, δ′;x+)−
j−1∑
l=0

qi l(φ, δ′;x+). (7.23)

where
j∑

l=0

qi l(φ, δ′;x+) = Φ

(
k +

h× [(j + 1)− (i+ 1/2)]
x+ 1

− δ′√
1− φ2

)
, (7.24)

for i, j = 0, . . . , x+, and
∑−1

l=0 qi l(φ, δ′;x+) = 0, for i = 0, . . . , x+.

On account of the first transition, RLbβ(x++1)c
C (φ, δ;x+) is associated to a time-non-

homogeneous Markov chain. In this setting, the approximating RL is related to a first
passage time: T

α(φ,δ;x+)
C (φ, δ(1 − φ);x+), that takes values in the set IN0 and concerns

a time-homogeneous absorbing Markov chain whose random initial state equals the dis-
cretized version of V1 and whose transitons between transient states are governed by the
substochastic matrix Q(φ, δ(1− φ);x+). Thus,

P [RLbβ(x++1)c
C (φ, δ;x+) = m] = P [Tα(φ,δ;x+)

C (φ, δ(1− φ);x+) = m− 1] (7.25)

for m = 1, 2, . . ..
T

α(φ,δ;x+)
C (φ, δ(1− φ);x+) has a discrete phase-type distribution with parameters

(α(φ, δ;x+),Q(φ, δ(1− φ);x+)) (7.26)

where

α>(φ, δ;x+) = e>bβ(x++1)c ×Q(φ, δ;x+). (7.27)

Considering 1 a (x+ + 1)−dimensional vector of ones,

(α>(φ, δ;x+), 1− α>(φ, δ;x+)× 1) (7.28)

corresponds to the probability vector of the discretized version of V1, i.e., the initial state
of the absorbing Markov chain concerning Tα(φ,δ;x+)

C (φ, δ(1− φ);x+).
As far as its survival function is concerned, RL[β(x+1)]

C (φ, δ;x+) is defined as follows:

P [RLbβ(x++1)c
C (0, δ;x+) > m] = e>bβ(x++1)c × [Q(0, δ;x+)]m × 1,m = 1, 2, . . . , (7.29)

for i.i.d. data; and

P [RLbβ(x++1)c
C (φ, δ;x+) > m] =

=

{
α>(φ, δ;x+)× 1, m = 1
α>(φ, δ;x+)× [Q(φ, δ(1− φ);x+)]m−1 × 1, m = 2, . . . ,

(7.30)

for AR(1) data. Moreover, the Markov approximation to the ARL, ARLbβ(x++1)c
C (φ, δ;x+),

equals:

e>bβ(x++1)c × [I−Q(0, δ;x+)]−1 × 1 (7.31)
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for i.i.d. data; and

1 + α>(φ, δ;x+)× [I−Q(φ, δ(1− φ);x+)]−1 × 1 (7.32)

otherwise. Also the alarm rate function is obviously given by

λ
RL

bβ(x++1)c
C (φ,δ;x+)

(m) = 1− P [RLbβ(x++1)c
C (φ, δ;x+) > m]

P [RLbβ(x++1)c
C (φ, δ;x+) > m− 1]

(7.33)

for m = 1, 2, . . . .

In Subsection 7.1.1 we were able to obtain simple expressions for the RL related mea-
sures of the Shewhart residual schemes and — through the behaviour of the detection
capability index — give straight answers for questions concerning the assessment of the
impact of a change in the autogressive parameter φ on the performance of a control scheme.
So far we have been able to assess the stochastic behaviour of RLbβ(x++1)c

C , with regard
to φ, in the usual sense.

Furthermore, since RL
bβ(x++1)c
C (φ, δ;x+) converges in law to the exact RL of this

scheme, RLβ
C(φ, δ), as x+ → ∞, the next theorem still holds for the exact run length

RLβ
C(φ, δ).

Theorem 7.8 — If −1 < φ ≤ 0 then, for fixed k and h,

RL
bβ(x++1)c
C (φ, δ;x+) ↑st with φ. (7.34)

Namely, RLbβ(x++1)c
C (φ, δ;x+) ≤st RL

bβ(x++1)c
C (0, δ;x+), for −1 < φ < 0.

Proof — Let {St(φ, δ;x+), t = 0, 1, . . .} be the absorbing chain used to obtain the ap-
proximation of the run length RLbβ(x++1)c

C (φ, δ;x). Analogously, {Ut(φ, δ(1− φ);x+), t =
1, 2, . . .} denotes the absorbing Markov chain whose absorption time is represented by
Tα(φ,δ;x+)(φ, δ(1− φ);x+).

The initial state of this last Markov chain, U1(φ, δ(1− φ);x+), has probability vector
(α>(φ, δ;x+), 1−α>(φ, δ;x+)×1) where, as mentioned earlier, α>(φ, δ;x+) = e>bβ(x++1)c×
Q(φ, δ;x+). In addition, the state transitions are governed by the stochastic matrix

P(φ, δ(1− φ);x+) = [pi j(φ, δ(1− φ);x+)]x+1
i,j=0

=

[
Q(φ, δ(1− φ);x+) [I−Q(φ, δ(1− φ);x+)]× 1

0> 1

]
. (7.35)

In view of (7.24), ai j(φ, δ;x+) =
∑j

l=0 pi l(φ, δ;x+) increases with φ ∈ (−1, 0], the
initial state U1(φ, δ(1− φ);x+) stochastically decreases with φ:

U1(φ, δ(1− φ);x+) ≥st U1(φ′, δ(1− φ′);x+), for − 1 < φ ≤ φ′ ≤ 0. (7.36)

Another consequence (7.24) is:

j∑
l=0

pi l(φ, δ(1− φ);x+) ≤
j∑

l=0

pi l(φ′, δ(1− φ′);x+), for − 1 < φ ≤ φ′ ≤ 0; (7.37)
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i.e., the probability transition matrices P(φ, δ(1− φ);x+) and P(φ′, δ(1− φ′);x+) can be
ordered in the usual sense:

P(φ, δ(1− φ);x+) ≥st P(φ′, δ(1− φ′);x+),−1 < φ ≤ φ′ ≤ 0. (7.38)

Then, from Proposition 3.7, we conclude that the Markov chains {Ut(φ, δ(1− φ);x+), t =
1, 2, . . .} and {Ut(φ′, δ(1− φ′)), t = 1, 2, . . .} can be also ordered in the usual sense:

{Ut(φ, δ(1− φ);x+), t = 1, 2, . . .} ≥st {Ut(φ′, δ(1− φ′);x+), t = 1, 2, . . .}, (7.39)

for −1 < φ ≤ φ′ ≤ 0. Therefore, according to Collorary 3.13,

P [Tα(φ,δ;x+)(φ, δ(1−φ);x+) > m−1] ≤ P [Tα(φ′,δ;x+)(φ′, δ(1−φ′);x+) > m−1],(7.40)

for all m = 1, 2, . . . and −1 < φ ≤ φ′ ≤ 0. That is,

RLbβ(x++1)c(φ, δ;x+) ≤st RL
bβ(x++1)c(φ′, δ;x+),−1 < φ ≤ φ′ ≤ 0. (7.41)

This concludes the proof. •

Theorem 7.8 allows us to assert that, for any stationary Gaussian AR(1) model with
nonpositive parameter, the detection speed of the CUSUM residual scheme decreases with
the autoregressive parameter φ.

7.2.2 EWMA residual schemes

Now we provide a brief description of the upper one-sided EWMA residual scheme for the
stationary AR(1) model.

This residual scheme uses the summary statistic

Wt =

{
w, t = 0
max {0, (1− λ)×Wt−1 + λ× et} , t = 1, 2, . . .

(7.42)

and the lower and upper control limits

LCLE = 0 and UCLE = γ
√
λ(2− λ)−1 × σa, (7.43)

where λ ∈ (0, 1] corresponds to the weight given to the most recent sample residual and
w is the initial value of the summary statistic.

To avoid repetition, we merely mention that the Markov approximation to the RL of
this residual scheme, RLbβ(x++1)c

E (φ, δ;x+), has a similar distribution to the one of the
upper one-sided CUSUM residual scheme previously described — the two substochastic
matrices, Q(φ, δ;x+) and Q(φ, δ(1−φ);x+) have to be conveniently replaced. The generic
form of the left partial sums of the entries of these matrices is

j∑
l=0

qi l(φ, δ′;x+) = Φ

(
γ × [(j + 1)− (1− λ)(i+ 1/2)]

(x+ + 1)
√
λ(2− λ)

− δ′√
1− φ2

)
, (7.44)

for i, j = 0, . . . , x+, and once more
∑−1

l=0 qi l(φ, δ′;x+) = 0, for i = 0, . . . , x+.

In addition, RLbβ(x++1)c
E (φ, δ;x) and the exact RL of this EWMA residual scheme,

RLβ
E(φ, δ), also have a stochastic increasing behaviour in terms of φ (−1 < φ ≤ 0).
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Theorem 7.9 — If −1 < φ ≤ 0 then, for fixed λ and γ,

RL
bβ(x++1)c
E (φ, δ;x+) ↑st with φ. (7.45)

Thus, RLbβ(x++1)c
E (φ, δ;x+) ≤st RL

bβ(x++1)c
E (0, δ;x+), for −1 < φ < 0.

Proof — The proof of this result is similar to the one of Theorem 7.8 since
∑j

l=0 qi l(φ, δ;x+)
and

∑j
l=0 qi l(φ, δ(1− φ);x+) both increase with φ. •

7.2.3 Numerical illustrations

Now we proceed into the numerical illustration of the properties stated in Theorems 7.8
and 7.9 and other properties of the upper one-sided CUSUM and EWMA residual schemes.

The numerical results in Table 7.3 refer to the ARL and alarm rate function of an
upper one-sided CUSUM residual scheme with no head start, k = 0.125, h = 9.9609 and
x+ + 1 = 30 transient states, yielding to an in-control ARL of approximately 370.409
samples. Similarly, Table 7.4 comprises the same performance measures for an upper
one-sided EWMA residual scheme with λ = 0.05, γ = 2.4432 and, once again, with 30
transient states; with this constelation of parameters we got an in-control ARL of 370.382
samples.

We note that our ARL values for the upper one-sided CUSUM residual scheme differ
from those obtained by Runger, Willemain and Prabhu (1995) not only because of the
constelation of parameters but also for other reasons: these authors considered the dis-
cretization proposed by Brook and Evans (1972), whereas we followed the one in Morais
and Pacheco (2001a); the magnitude of the upward shift equals δ in the former paper
instead of δσx; and, in addition, σa was taken equal to 1.

The first apparent feature from both tables is the magnitude of the alarm rate values
for t = 1, 2: both schemes often lead to values that up to six decimal places are equal
to 0.000000, which are then ommited. This fact happens with stronger emphasis in the
CUSUM case and leads, in particular, to the omission of all the alarm rate values referring
to t = 1 from Tables 7.3 and 7.4. This is essentially due to the well known initial inertia
of CUSUM and EWMA summary statistics which causes the skewness to the right of the
RL of these schemes.

These two tables also suggest that the alarm rate of both upper one-sided CUSUM
and EWMA residual schemes increases as we collect more samples for fixed φ (φ ∈ (−1, 0])
and δ and it decreases with φ (φ ∈ (−1, 0]), as in the Shewhart case. Thus, the RLs of
both upper one-sided CUSUM and EWMA residual schemes seem to also increase with φ
(φ ∈ (−1, 0]) in the hazard rate sense.

In addition, the numerical results concerning ARL, in both tables, misleadingly suggest
that the RL stochastically increases with φ in the interval [0, 1). However, additional
investigations made us realize that the same does not occur to some RL percentage points
concerning the upper one-sided EWMA residual scheme, leading to the conclusion that
the increasing behaviour does not hold in the usual sense.

The upper one-sided EWMA residual scheme leads to slightly larger alarm rates at the
first samples than the matched in-control upper one-sided CUSUM residual scheme, thus
suggesting a greater ability to detect upward shifts at the first samples.
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Table 7.3: ARLs and alarm rates of some RLs of the CUSUM residual scheme for AR(1)
data (k = 0.125, h = 9.9609;x+ = 29).*

Alarm rate

δ φ ARL t = 2 t = 3 t = 4 t = 5 t = 10

0 φ ∈ (-1,1) 370.4 0.000002 0.000194

0.10 -0.75 54.2 0.000002 0.000020 0.002472

-0.50 86.8 0.000001 0.000009 0.001110

-0.25 116.1 0.000001 0.000006 0.000737

0 144.5 0.000005 0.000560

0.50 -0.75 9.3 0.000049 0.002737 0.023931 0.341026

-0.50 14.2 0.000003 0.000193 0.002132 0.096229

-0.25 19.4 0.000001 0.000046 0.000527 0.035666

0 25.7 0.000018 0.000199 0.015614

0.75 -0.75 6.3 0.000001 0.001769 0.053872 0.238243 0.736166

-0.50 9.4 0.000057 0.002889 0.023974 0.328881

-0.25 12.5 0.000009 0.000484 0.004711 0.142409

0 16.3 0.000003 0.000137 0.001382 0.062660

1.00 -0.75 4.9 0.000016 0.026329 0.321621 0.666664 0.934758

-0.50 7.1 0.000699 0.024186 0.130327 0.605919

-0.25 9.3 0.000081 0.003563 0.027027 0.328620

0 12.0 0.000018 0.000840 0.007180 0.163284

2.00 -0.75 2.9 0.111184 0.973210 0.999664 0.999964 0.999997

-0.50 3.8 0.001292 0.294935 0.837998 0.956693 0.993862

-0.25 4.8 0.000070 0.045220 0.377360 0.684913 0.925994

0 5.9 0.000010 0.008185 0.119386 0.344764 0.755253

0.75 13.1 0.000005 0.000587 0.005833 0.020255 0.122137

0.90 18.8 0.000211 0.003474 0.012649 0.024945 0.065966

3.00 -0.75 2.0 0.956633 1.000000 1.000000 1.000000 1.000000

-0.50 2.9 0.164324 0.979785 0.999641 0.999951 0.999995

-0.25 3.3 0.015067 0.645757 0.960742 0.990412 0.998560

0 4.0 0.002161 0.248735 0.736428 0.896450 0.976054

*The empty cells in the table correspond to alarm rate values that up to six decimal places

are equal to 0.000000.

Replacing the Shewhart residual scheme described in the previous section for any of the
two upper one-sided CUSUM and EWMA residual schemes leads to smaller ARL values
for small and moderate values of δ. Besides this well known feature of the CUSUM and
EWMA schemes, we got smaller alarm rate values for t = 1, 2 and significantly larger
values for t ≥ 3 with small or moderate values of δ (δ = 0.10, 0.50, 0.75, 1.00). These
results would suggest an occasional early detection of upward shifts with the Shewhart
residual schemes and a more persistent early detection with the upper one-sided CUSUM
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Table 7.4: ARLs and alarm rates of some RLs of the EWMA residual scheme for AR(1)
data (λ = 0.05, h = 2.4432;x+ = 29).*

Alarm rate

δ φ ARL t = 2 t = 3 t = 4 t = 5 t = 10

0 φ ∈ (-1,1) 370.4 0.000002 0.000017 0.000070 0.000944

0.10 -0.75 57.2 0.000010 0.000119 0.000530 0.007756

-0.50 95.1 0.000005 0.000064 0.000277 0.004012

-0.25 127.7 0.000004 0.000047 0.000202 0.002855

0 158.1 0.000003 0.000039 0.000164 0.002266

0.50 -0.75 7.8 0.000021 0.003512 0.036154 0.112973 0.391210

-0.50 12.4 0.000003 0.000430 0.005117 0.020052 0.141798

-0.25 17.6 0.000001 0.000143 0.001685 0.006865 0.064591

0 24.3 0.000001 0.000070 0.000784 0.003161 0.033304

0.75 -0.75 5.3 0.000385 0.043672 0.252497 0.472803 0.751732

-0.50 7.9 0.000026 0.003856 0.036830 0.111089 0.378395

-0.25 10.8 0.000007 0.000951 0.009941 0.034961 0.191760

0 14.5 0.000003 0.000367 0.003775 0.013827 0.099256

1.00 -0.75 4.1 0.004340 0.233316 0.650779 0.823683 0.935195

-0.50 5.9 0.000207 0.022930 0.151943 0.327040 0.632614

-0.25 7.9 0.000042 0.004887 0.041574 0.117537 0.376109

0 10.3 0.000015 0.001613 0.014442 0.045754 0.211409

2.00 -0.75 2.4 0.629697 0.998391 0.999941 0.999985 0.999996

-0.50 3.2 0.068988 0.734780 0.949054 0.979868 0.993286

-0.25 3.9 0.011018 0.303690 0.679317 0.823076 0.925811

0 4.8 0.002924 0.109529 0.368147 0.552753 0.763822

0.75 11.4 0.001573 0.015601 0.042530 0.070282 0.139912

0.90 17.8 0.017660 0.040531 0.054688 0.062002 0.067155

3.00 -0.75 2.0 0.999493 1.000000 1.000000 1.000000 1.000000

-0.50 2.3 0.713931 0.998649 0.999926 0.999979 0.999994

-0.25 2.8 0.259578 0.925537 0.988458 0.995323 0.998320

0 3.3 0.084119 0.665812 0.891416 0.942356 0.974353

*The empty cells in the table correspond to alarm rate values that up to six decimal places

are equal to 0.000000.

and EWMA residual schemes, for small and moderate shifts.
Additional numerical investigations with an upper one-sided Shewhart residual scheme

with an in-control ARL of 370.4 samples lead to the same conclusions.

Special attention has been given to the impact of serial autocorrelation in the alarm
rate function of a few residual schemes for AR(1) and AR(2) data. Sufficient conditions
have been established to guarantee that the run length stochastically increases (in the
hazard rate sense, in the Shewhart case; and in the usual sense, in the CUSUM and
EWMA cases) with the autoregressive parameter(s).
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The monotonicity of the alarm rate, in terms of the autoregressive parameter(s), has
practical importance if the quality engineers design the control scheme following the rec-
ommendations of Margavio et al. (1995); that is, by choosing the control limits according
to a desired in-control ARL and a desired pattern of false alarm rate.

As a final remark, we would like to add that stochastic ordering provides insight into
how residual schemes work in practice, and we strongly believe that it leads to an effective
assessment of the impact of autocorrelation in an objective and informative manner.
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Chapter 8

Concluding remarks

There is yet other directions in which we can study the interplay between stochastic
ordering and the performance analysis of control schemes, as shown for instance by our
current research on

• the comparison between phase-type and geometric RLs,

and by the ongoing joint work with W. Schmid concerning

• the stochastic behaviour of the RL of modified EWMA schemes for the mean of
autocorrelated data in the presence of shifts in the process variance.

Both issues are discussed in the next section, followed by another section devoted to a
summary of what we firmly believe are the main contributions of this thesis.

We close this concluding chapter with a few recommendations for future work.

8.1 Ongoing research

As seen earlier, the RL of Markov-type schemes that use sequentially accumulated in-
formation in order to detect out-of-control situations have (or can be approximated) by
phase-type distributions. Assessing the improvement due to the replacement of a Shewhart
scheme by a Markov-type scheme requires two sorts of comparisons between geometric and
discrete phase-type RLs:

• numerical comparisons which have been extensively discussed in the quality control
literature; and

• inherently difficult stochastic confrontations,

as we shall shortly see.
The rationale behind these stochastic results is the discrete analogue of a well known

fact: the exponential distribution can be stochastically compared to other nonnegative
continuous random variables with NBU, IHRA and IHR ageing properties, as stated in
Theorem 3.C.5 of Shaked and Shanthikumar (1994, pp. 107–108). This theorem involves
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transform orders, such as the superadditive (≤su), the star (≤∗) and the convex (≤c)
orders (see, for example, Shaked and Shanthikumar (1994, pp. 105–109)).1

Therefore, obtaining similar stochastic order relations between geometric and discrete
phase-type RLs demands for a discrete version of these three transform orders for positive
integer-valued random variables.

If these discrete orderings satisfy ≤c⇒≤∗⇒≤su and if, in addition, ≤∗ implies the
Lorenz order (≤Lorenz) (see the definition of this latter ordering in Shaked and Shanthiku-
mar (1994, p. 59)) then we would conclude that:

• if we take two matched in-control schemes with run lengths RLu(θ0) and RL(θ0) =st

geo(1 − π(θ0)) — i.e., ARLu(θ0) = 1/[1 − π(θ0)] — and RLu(θ0) ∈ IHRA or
RLu(θ0) ∈ IHR then this phase-type RL has a smaller variance than the one with
the geometrically distributed RL, RL(θ0).

As seen in Chapter 5, as the process variance grows, upper one-sided schemes for the
process mean of independent data can become either progressively more sensitive or less
sensitive to a shift in µ with magnitude δ, depending on the value of δ. Sufficient conditions
(involving bounds for δ) for this sort of behaviour were established for the upper one-sided
EWMA schemes (and also for the upper one-sided CUSUM, combined CUSUM–Shewhart
and combined EWMA–Shewhart schemes) using the Markov approach, and correspond to
Equations (17) and (18) in Table 5.1.

Schmid, Morais and Pacheco (2001) obtained analogous sufficient conditions — thus,
bounds for δ — concerning the upper one-sided modified EWMA scheme for the process
mean of a stationary Gaussian process. These results are proved using a different approach
because the presence of correlation destroys the Markov property of the summary statistic
(Yashchin (1993)).2

It is worth mentioning that these bounds for δ are often difficult to obtain. However,
we prove that, under mild conditions involving the in-control variance of the EWMA
statistic, these bounds can have very simple expressions: one of the bounds is related to
the assymptotic value of such variance and the other one is a trivial function of the range
of the decision interval. We also prove that these simpler bounds hold for the stationary
AR(1) and ARMA(1, 1) models.

8.2 Claim of contributions

As far as contributions are concerned this thesis documents several aspects, described
below in order of appearance.

1Let X and Exp denote a nonnegative continuous random variable and an exponential random variable

(with arbitrary mean), respectively. Then: X ∈ NBU ⇔ X ≤su Exp; X ∈ IHRA ⇔ X ≤∗ Exp;

X ∈ IHR ⇔ X ≤c Exp.
2Recall that modified schemes plot the original EWMA observations and have control limits adjusted

to account for the autocorrelation inherent to the data. Moreover, their summary statistic is different from

the one used by Morais and Pacheco (2001a) which immediately resets any value below the target mean

µ0 and turns the analysis of the RL distribution practically infeasible in the case of autocorrelated data.
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1. We provide useful interpretations of several stochastic order relations in a RL setting,
in Chapter 1.

The orders ≤ev (expected value) and ≤st (usual sense) can be found (implicitely or
explicitely) in the SPC literature.

However, the stochastic orders involving the notions of hazard rate (or alarm rate),
reversed hazard rate and likelihood ratio of RLs — ≤hr, ≤rh and ≤lr, respectively —
are not as common as that. Indeed, the notion of alarm rate at sample N of the RL
was seemingly introduced by Margavio et al. (1995) but the associated order was
not proposed in the paper. In addition, as far as we have investigated the remaining
orders have been not used so far by those or other authors in the SPC literature.

2. The RLs of Markov-type schemes are viewed as random variables with discrete phase-
type distributions in Chapter 2, with related stochastic matrices P(θ) with special
features, adding up to a few properties mentioned by Brook and Evans (1972).

We sincerely believe that we brought the issue of stochastically monotone matrices
into focus in the SPC setting. We proved that the stochastic matrices P(θ) in the
partitioned form (2.53) that usually arise from upper one-sided control schemes (and,
analogously, in lower one-sided schemes, as observed by Morais and Pacheco (1998b))
are stochastically monotone in the usual sense. If, in addition, the (discrete) quality
characteristic is IHR/DRHR/DLR then P(θ) is stochastically monotone in the
hazard rate/reversed hazard rate/likelihood ratio senses, respectively.

By trivial capitalization on results from the first passage times literature we were
able to characterize some RLs in terms of ageing properties.

3. In Chapter 3, we give some stochastic flavour to the influence of the adoption of a
head start in the RL distribution: this random variable stochastically decreases as
we increase the initial value u of the summary statistic of the control scheme. The
implications of giving a scheme a head start are surely guaranteed by the stochastic
monotone character of the associated Markov chain, devised in the previous chapter.

The decreasing behaviour of the RL in the hazard rate sense corresponds to the
discrete time analogue of a result by Lee and Lynch (1997), whereas the one in the
likelihood ratio sense is a direct consequence of the RR2 character of the probability
function of a specific first passage time, established by Karlin (1964).

We also established a decreasing monotonicity property of the RL in terms of any
other parameter ρ; however, we have proved so far that it holds in the usual sense.
If ρ represents the magnitude of the shift in the parameter being monitored then the
stochastic decreasing behaviour of the RL paralels with the notion of a sequentially
repeated UMP test as in Shewhart–type schemes.

For the sake of completeness, we also proved that all these monotonicity results
are still valid for the exact RL of schemes for continuous data, in case they hold
for the Markov approximation of the RL. This is ensured by the convergence in
law of the Markov approximation to the exact RL of schemes for continuous data
(which was not proved by Brook and Evans (1972) when they introduced this sort
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of approximation) and the closure property under the limit operation of all the
stochastic order relations involved here ensures that both stochastic monotonicity
properties hold for the exact RL if they are valid for the approximating RL.

4. The validity of the stochastic monotonicity properties, alluded in the previous chap-
ter, is investigated in Chapter 4 for upper one-sided combined CUSUM–Shewhart
schemes which seem to have not been applied so far to binomial data.

By virtue of the presence of a few null entries above the main diagonal of the associ-
ated stochastic matrix, these schemes are not governed by a stochastically monotone
matrix in the hazard rate or likelihood ratio senses. As a consequence, the adoption
of a head start does not yield a stochastic decrease in the RL in the likelihood sense
although it implies an increase in the alarm rate function of the RL.

Besides proving that supplementing an upper one-sided CUSUM scheme with a
Shewhart upper control limit yields a stochastically smaller RL we numerically assess
the impact of replacing the former scheme (with or without a 50% head start) by
the combined scheme.

In view of the numerical results we fail to see strong reasons for advocating the ad-
dition of the Shewhart upper control limit to the upper one-sided CUSUM scheme,
considering the fact that this is followed by a significant decrease in the in-control
ARL and a smaller decrease in out-of-control ARLs. Moreover, the numerical con-
frontations suggest that a practitioner should add a head start to the upper one-sided
CUSUM scheme instead of going to the trouble of adopting a combined scheme, un-
less he/she wants to privilege the detection of very small shifts in the percentage of
defectives per sample.

5. Chapter 5 generalizes some results published by Morais and Pacheco (2001a) for
the RL of upper one-sided Shewhart and EWMA schemes for the mean µ of a nor-
mally distributed quality characteristic — in the presence of shifts in σ — to upper
one-sided CUSUM, combined CUSUM–Shewhart and combined EWMA–Shewhart
schemes.

These results refer to an underreaction to a wide range of increases in µ when the
process standard deviation increases and gets off-target.

Bearing in mind the ageing character of normal data we demonstrated that a decreas-
ing monotonicity property holds for the RL, in terms of the head start given to any
of the four Markov-type upper one-sided schemes mentioned earlier. The strongest
results (in the likelihood ratio sense) are not valid for the combined schemes, as
reported in Chapter 4.

6. The phenomenon of misleading signals was brought to our attention in 1998 by
St. John and Bragg (1991). Since then we proposed the misleading signals of Type III
and Type IV, and two related performance measures: the probability of a misleading
signal (in Morais and Pacheco (2000a)) and, more recently, the run length to a
misleading signal (Morais and Pacheco (2001b)).
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The monotonicity properties of the PMSs and the stochastic ordering results referring
to the RLMSs, established in Chapter 6, prove to be vital, e.g., in the assessment of
the frequency of such signals when we underestimate changes in σ (MS of Type III)
and in µ (MS of Type IV).

We are convinced that the paper by Reynolds Jr. and Stoumbos (2001) will finally
draw the attention of quality control practitioners to the issue of misleading signals,
whose ocurrence is certainly a cause of concern in the joint monitoring of the process
mean and variance or any other vector of parameters.

7. Finally, in Chapter 7 we address residual schemes for the mean of autocorrelated
data and the impact of the autoregressive parameters in the RL.

Results such as the various ageing characters of the RL of standard Shewhart resid-
ual schemes for the mean of stationary Gaussian AR(1) and AR(2) models provide
information on how the alarm rate behaves as we proceed on collecting more sam-
ples. Sufficient conditions regarding the autoregressive parameters guarantee an
increasing, constant or decreasing behaviour of the alarm rate function. We also
prove that the alarm rate function of the associated RL can decrease with the first
autoregressive parameter in case it is nonpositive.

The RL of upper one-sided CUSUM and EWMA residual schemes for the mean of
AR(1) processes also increases — however, in the usual sense — with the autore-
gressive parameter also for nonpositive values.

8.3 Recommendations for further work

The limitations of some stochastic monotonicity results concerning phase-type RLs were
the starting point of many wanderings and naturally suggested further work.

Take for instance the effort towards stronger versions of Theorem 3.12 concerning the
monotonicity in the usual sense of the RL of Markov-type schemes, in terms of a parameter
other than the initial value of the summary statistic. This issue was already addressed in
Chapter 3. However, we note in passing that extensive numerical investigations suggest
that when the RL stochastically decreases in the usual sense with the magnitude of the
shift, it also decreases in the likelihood ratio sense. Moreover, the same seems to hold,
e.g., for the range of the decision interval with the exception of those schemes combining
CUSUM or EWMA and Shewhart schemes probably because the associated transition
matrices are not TP2.

Another possibility of further work, that certainly deserves some consideration, is the
assessment of the impact of the autoregressive parameters in the PMSs and the stochas-
tic properties of RLMSs of Types III and IV of joint residual schemes for the mean and
variance of autocorrelated data. Knoth, Schmid and Schöne (1998) and Knoth, Schmid
and Schöne (1999) propose several residual and modified joint schemes for µ and σ, as-
suming that the samples are independent but the observations within each sample follow
an AR(1) model, whereas Lu and Reynolds (1999b) consider the joint residual EWMA
scheme based on individual observations governed by an AR(1) model. We believe that
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capitalizing on the results therein we shall be able to obtain numerical values for the PMSs
and RLMSs of Types III and IV, and establish some monotonicity results concerning these
two performance measures, in particular for residual schemes.

Control schemes are often used to monitor a process for the sole purpose of detecting
assignable causes that result in changes in parameters which in turn may result in lower-
quality output.

Unlike some authors who argue that consideration of the theoretical properties of the
control schemes (the “probabilistic” approach) reduces the usefulness of the techniques (as
observed by Woodall (2000)), we believe that the knowledge of the RL distribution and its
stochastic monotone behaviour in terms of design or model parameters provides decisive
insights into how schemes work in practice and helps practitioners better understand the
ability of the control scheme to monitor process quality and the way its performance can
change or be improved. Moreover, this knowledge provides guidelines to design schemes
that have a desired RL performance by adjusting design parameters like initial values,
control limits, etc.

Stochastic ordering has been largely excluded from the quality control literature despite
the fact that it is a vital and powerful tool in the study of the statistical performance of
control schemes. This thesis essentially proposes the use of such a tool in quality control,
thus, giving a stimulus and contributing to fill the huge gap between these two areas.

We also hope this thesis can make some of the contributions of the leading authors in
the FPT and stochastic ordering literature more accessible to quality control practicioners.
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Appendix A

Individual control schemes for µ

and σ

A.1 Summary statistics and control limits

The joint schemes for µ and σ considered in this thesis involve the individual schemes for
µ and σ with the acronyms in Table A.1 and Table A.4, respectively.

Table A.1: Individual schemes for µ.

Acronym Scheme for µ

S − µ X̄

C − µ CUSUM
CS − µ Combined CUSUM-Shewhart
E − µ EWMA
ES − µ Combined EWMA-Shewhart

S+ − µ Upper one-sided X̄
C+ − µ Upper one-sided CUSUM
CS+ − µ Combined upper one-sided CUSUM-Shewhart
E+ − µ Upper one-sided EWMA
ES+ − µ Combined upper one-sided EWMA-Shewhart

Let (X1N , . . . , XnN ) denote the random sample of size n at the sampling period N

(N ∈ IN). X̄N = n−1∑n
i=1XiN , S2

N = (n − 1)−1∑n
i=1(XiN − X̄N )2 and ZN =

√
n ×

(X̄N − µ0)/σ0 represent the sample mean, sample variance and nominal standardized
sample mean, respectively. According to this, we define the summary statistics of the
individual schemes for µ and σ in Table A.2 and Table A.5 (respectively), preceeded by
the corresponding acronym.

Some of the summary statistics of these individual control schemes are trivial (S − µ,
S+ − µ, S+ − σ) or can be found, such as presented here or with a slight variation, in
Montgomery and Runger (1994, p. 875) (C − µ), Lucas and Saccucci (1990) (E − µ and
ES − µ), Lucas and Crosier (1982) (C+ − µ), Yashchin (1985) (CS+ − µ), Crowder and
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Table A.2: Summary statistics of the individual schemes for µ.

Chart for µ Summary statistic

S − µ ZN

C − µ Vµ,N =
{
vµ,0, N = 0
Vµ,N−1 + ZN , N > 0

CS − µ Vµ,N and ZN

E − µ Wµ,N =
{
wµ,0, N = 0
(1− λµ)×Wµ,N−1 + λµ × ZN , N > 0

ES − µ Wµ,N and ZN

S+ − µ Z+
N = max{0, ZN}

C+ − µ V +
µ,N =

{
v+

µ,0, N = 0

max
{

0, V +
µ,N−1 + (ZN − k+

µ )
}
, N > 0

CS+ − µ V +
µ,N and Z+

N

E+ − µ W+
µ,N =

{
w+

µ,0, N = 0

max
{

0, (1− λ+
µ )×W+

µ,N−1 + λ+
µ × ZN

}
, N > 0

ES+ − µ W+
µ,N and Z+

N

Table A.3: Control limits of the individual schemes for µ.

Scheme for µ Control limits

S − µ CS−µ = [−ξµ, ξµ)

C − µ CC−µ = [−hµ, hµ)

CS − µ CC−µ and CS−µ

E − µ CE−µ =
[
−γµ ×

√
λµ/(2− λµ), γµ ×

√
λµ/(2− λµ)

)
ES − µ CE−µ and CS−µ

S+ − µ CS+−µ = [0, ξ+µ )

C+ − µ CC+−µ = [0, h+
µ )

CS+ − µ CC+−µ and CS+−µ

E+ − µ CE+−µ =
[
0, γ+

µ ×
√
λ+

µ /(2− λ+
µ )
)

ES+ − µ CE+−µ and CS+−µ

Hamilton (1992) (E+−σ), Gan(1995) (C+−σ), or are natural extensions of existing ones
(CS − µ, E+ − µ, ES+ − µ, CS+ − σ, ES+ − σ).

Note that, with the exception of the charts S −µ, S+−µ and S+− σ, an initial value
has to be considered for the summary statistic of the standard schemes for µ (C − µ,
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Table A.4: Individual schemes for σ.

Initials Scheme for σ

S+ − σ Upper one-sided S2

C+ − σ Upper one-sided CUSUM
CS+ − σ Combined upper one-sided CUSUM-Shewhart
E+ − σ Upper one-sided EWMA
ES+ − σ Combined upper one-sided EWMA-Shewhart

Table A.5: Summary statistics of the individual schemes for σ.

Scheme for σ Summary statistic

S+ − σ S2+
N = max

{
σ2

0 , S
2
N

}
C+ − σ V +

σ,N =

{
v+

σ,0, N = 0

max
{

0, V +
σ,N−1 + [ln(S2

N )− k+
σ ] }, N > 0

CS+ − σ V +
σ,N and S2+

N

E+ − σ W+
σ,N =

{
w+

σ,0, N = 0

max
{

ln(σ2
0), (1− λ+

σ )×W+
σ,N−1 + λ+

σ × ln(S2
N )
}
, N > 0

ES+ − σ W+
σ,N and S2+

N

Table A.6: Control limits of the individual schemes for σ.

Scheme for σ Control limits

S+ − σ CS+−σ =
[
σ2

0 , ξ
+
σ × σ2

0/(n− 1)
)

C+ − σ CC+−σ = [0, h+
σ )

CS+ − σ CC+−σ and CS+−σ

E+ − σ CE+−σ =
[
ln(σ2

0), ln(σ2
0) + γ+

σ ×
√
ψ′
(

n−1
2

)
× λ+

σ /(2− λ+
σ )
)

ES+ − σ CE+−σ and CS+−σ

CS−µ, E−µ, ES−µ) and the individual upper one-sided schemes for µ and σ (C+−µ,
CS+ − µ, E+ − µ, ES+ − µ, and C+ − σ, CS+ − σ, E+ − σ, ES+ − σ).

Let (LCL+UCL)/2+α× (UCL−LCL)/2 (LCL+α× (UCL−LCL)) be the initial
value of the summary statistic of the standard schemes for µ (upper one-sided schemes for
µ and σ), with α ∈ (−1, 1) (α ∈ [0, 1)). If α ∈ (−1, 0) ∪ (0, 1) (α ∈ (0, 1)) an α × 100%
head start (HS) has been given to the standard schemes for µ (to the individual upper
one-sided schemes for µ and σ); no head start has been adopted, otherwise.

The adoption of a head start may speed up the detection of shifts by the control
scheme at start-up and also after a restart following a (possibly ineffective) control action

164



(see Lucas (1982), Lucas and Crosier (1982), Yashchin (1985) and Lucas and Saccucci
(1990)).

The control limits of the individual charts for µ and σ are in Table A.3 and Table A.6,
respectively. It is worth adding that the control limits of the individual EWMA charts for
µ and σ are all specified in terms of the exact asymptotic standard deviation of Wµ,N and
Wσ,N = (1 − λσ) ×Wσ,N−1 + λσ × ln(S2

N ) (see Lucas and Saccucci (1990) and Crowder
and Hamilton (1992), and recall that these latter authors used an infinite series expansion
to approximate the trigamma function ψ′(.)).

A.2 Run length distribution

Conditioned on the values of δ and θ, where δ =
√
n(µ−µ0)/σ0 and θ = σ/σ0, the RLs of

the Shewhart type charts S − µ, S+ − µ and S+ − σ are geometric random variables with
survival functions given in Table A.8 and Table A.9.

As for schemes C−µ, E−µ, CS−µ and ES−µ (C+−µ, E+−µ, CS+−µ, ES+−µ,
C+−σ, E+−σ, CS+−σ and ES+−σ) we have to divide the decision interval [LCL,UCL)
in 2x+ 1 (x+ 1) sub-intervals with equal range ∆, [ei, ei+1), i = −x, . . . , x (i = 0, . . . , x)
where x is a positive integer and ei = LCL + (i + x) × ∆ (ei = LCL + i × ∆), i =
−x, . . . , x (i = 0, . . . , x). These sub-intervals are associated to the 2x+1 (x+1) transient
states of a Markov chain with one absorbing state.

The transitions between the transient states are governed by a sub-stochastic matrix
Q = [pi j ], where pij = ai j − ai j−1 with the left partial sums ai j defined in Table A.7.

It is important to notice that, when dealing with combined schemes, aij depends on
improper distribution functions as suggested by Yashchin (1985). In this case they are:

Φ∗(y) =


Φ(−ξµ), y < −ξµ
Φ(y), − ξµ ≤ y < ξµ
Φ(ξµ), y ≥ ξµ

(A.1)

Φ+(y) =

{
Φ(y), y < ξ+µ
Φ(ξ+µ ), y ≥ ξ+µ

(A.2)

F+
χ2
n−1

(y) =

 Fχ2
n−1

(y), y < ξ+σ

Fχ2
n−1

(ξ+σ ), y ≥ ξ+σ .
(A.3)

165



Table A.7: Left partial sums of the sub-stochastic matrices Q of the individual schemes
for µ and σ (Markov approach).

Scheme for µ Left partial sums

C − µ
aµ, i j(δ, θ; xµ) = Φ

(
1
θ
×
{

2hµ×[(j+1+xµ)−(i+1/2+xµ)]

2xµ+1
− δ
})

,

i = −xµ, . . . , 0, . . . , xµ, j = −xµ − 1, . . . , 0, . . . , xµ

CS − µ
aµ, i j(δ, θ; xµ) = Φ∗

(
1
θ
×
{

2hµ×[(j+1+xµ)−(i+1/2+xµ)]

2xµ+1
− δ
})

,

i = −xµ, . . . , 0, . . . , xµ, j = −xµ − 1, . . . , 0, . . . , xµ

E − µ
aµ, i j(δ, θ; xµ) = Φ

(
1
θ
×
{
− γµ√

λ−1
µ (2−λµ)

+
2γµ×[(j+1+xµ)−(1−λµ)(i+1/2+xµ)]

(2xµ+1)
√
λµ(2−λµ)

− δ

})
,

i = −xµ, . . . , 0, . . . , xµ, j = −xµ − 1, . . . , 0, . . . , xµ

ES − µ
aµ, i j(δ, θ; xµ) = Φ∗

(
1
θ
×
{
− γµ√

λ−1
µ (2−λµ)

+
2γµ×[(j+1+xµ)−(1−λµ)(i+1/2+xµ)]

(2xµ+1)
√
λµ(2−λµ)

− δ

})
,

i = −xµ, . . . , 0, . . . , xµ, j = −xµ − 1, . . . , 0, . . . , xµ

C+ − µ
aµ, i j(δ, θ; x

+
µ ) = Φ

(
1
θ
×
{

k+
µ +

h+
µ×[(j+1)−(i+1/2)]

x+
µ +1

− δ
})

, i, j = 0, . . . , x+
µ

aµ, i −1(δ, θ; x
+
µ ) = 0, i = 0, . . . , x+

µ

CS+ − µ
aµ, i j(δ, θ; x

+
µ ) = Φ+

(
1
θ
×
{

k+
µ +

h+
µ×[(j+1)−(i+1/2)]

x+
µ +1

− δ
})

, i, j = 0, . . . , x+
µ

aµ, i −1(δ, θ; x
+
µ ) = 0, i = 0, . . . , x+

µ

E+ − µ
aµ, i j(δ, θ; x

+
µ ) = Φ

(
1
θ
×
{
γ+

µ ×[(j+1)−(1−λ+
µ )(i+1/2)]

(x+
µ +1)

√
λ+

µ (2−λ+
µ )

− δ

})
, i, j = 0, . . . , x+

µ

aµ, i −1(δ, θ; x
+
µ ) = 0, i = 0, . . . , x+

µ

ES+ − µ
aµ, i j(δ, θ; x

+
µ ) = Φ+

(
1
θ
×
{
γ+

µ ×[(j+1)−(1−λ+
µ )(i+1/2)]

(x+
µ +1)

√
λ+

µ (2−λ+
µ )

− δ

})
, i, j = 0, . . . , x+

µ

aµ, i −1(δ, θ; x
+
µ ) = 0, i = 0, . . . , x+

µ

Scheme for σ Left partial sums

C+ − σ
aσ, i j(θ; x

+
σ ) = Fχ2

n−1

(
n−1
θ2σ2

0
× exp

{
k+
σ +

h+
σ×[(j+1)−(i+1/2)]

x+
σ +1

})
, i, j = 0, . . . , x+

σ

aσ, i −1(θ; x
+
σ ) = 0, i = 0, . . . , x+

σ

CS+ − σ

aσ, i j(θ; x
+
σ ) = F+

χ2
n−1

(
n−1
θ2σ2

0
× exp

{
k+
σ +

h+
σ×[(j+1)−(i+1/2)]

x+
σ +1

})
,

i, j = 0, . . . , x+
σ

aσ, i −1(θ; x
+
σ ) = 0, i = 0, . . . , x+

σ

E+ − σ

aσ, i j(θ; x
+
σ ) = Fχ2

n−1

(
n−1
θ2

× exp
{
γ+

σ ×
√
ψ′[(n−1)/2]×[(j+1)−(1−λ+

σ )(i+1/2)]

(x+
σ +1)

√
λ+

σ (2−λ+
σ )

})
,

i, j = 0, . . . , x+
σ

aσ, i −1(θ; x
+
σ ) = 0, i = 0, . . . , x+

σ

ES+ − σ

aσ, i j(θ; x
+
σ ) = F+

χ2
n−1

(
n−1
θ2

× exp
{
γ+

σ ×
√
ψ′[(n−1)/2]×[(j+1)−(1−λ+

σ )(i+1/2)]

(x+
σ +1)

√
λ+

σ (2−λ+
σ )

})
,

i, j = 0, . . . , x+
σ

aσ, i −1(θ; x
+
σ ) = 0, i = 0, . . . , x+

σ
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The time to absorption of this Markov chain approximates the RL of the corresponding
control scheme. Conditional to δ, θ — and to the adoption of an α× 100%HS, with α ∈
(−1, 1) (α ∈ [0, 1)), which corresponds to the initial state bα(x+1/2)+1/2c (bα(xµ +1)c)
—, the Markov approximation of the survival function of the time to absorption is given
in Table A.8 and Table A.9, where: byc represents the integer part of the real number y;
eu denotes the (u + 1)th vector of the orthonormal basis for IR2x+1 (IRx+1); and 1 is a
column vector of 2x+ 1 (x+ 1) ones.

Table A.8: Survival functions of the RL of the individual schemes for µ.

Scheme for µ Survival function of RL, for i = 0, 1, . . .

S − µ {Φ[(ξµ − δ)/θ]− Φ[(−ξµ − δ)/θ]}i

C − µ, CS − µ,
E − µ, ES − µ

e>bα(xµ+1/2)+1/2c+xµ
× [Qµ(δ, θ;xµ)]i × 1, α ∈ (−1, 1) *

S+ − µ
{
Φ[(ξ+µ − δ)/θ]

}i

C+ − µ, CS+ − µ,
E+ − µ, ES+ − µ

e>bα(x+
µ +1)c ×

[
Qµ(δ, θ;x+

µ )
]i × 1, α ∈ [0, 1) *

* Markov approximation

Table A.9: Survival functions of the RL of the individual schemes for σ.

Scheme for σ Survival function of RL, for i = 0, 1, . . .

S+ − σ
[
Fχ2

n−1
(ξ+σ /θ

2)
]i

C+ − σ, CS+ − σ,
E+ − σ, ES+ − σ

e>bβ(x+
σ +1)c × [Qσ(θ;x+

σ )]i × 1, β ∈ [0, 1) *

* Markov approximation

A.3 Stochastic properties of RLσ

The RL of the upper one-sided individual schemes for σ have some stochastic monotonicity
properties which prove to be fundamental to demonstrate some monotonicity behaviours of
the corresponding PMSs (and some stochastic monotonicity properties of their run lengths
to misleading signals, RLMSs).

These results are condensed in Table A.10 and proved in this section. As we did with
the upper one-sided schemes for µ (see Chapter 5) we first prove the property for the
approximating RL and then we apply the closure property under the limit operation.

Let v = LCL+ β × (UCL− LCL) be the initial value of the summary statistic of an
upper one-sided control scheme for σ and RLβ(θ) represent the associated exact run length.
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Also consider RLbβ(x+1)c(θ;x+
σ ) the Markov approximation of RLβ(θ), based on (x+

σ + 1)
transient states and initial value of the summary statistic bβ(x+

σ +1)c. Let fχ2
n−1

(z) be the
probability density function of the chi-square distribution with n− 1 degrees of freedom.

Table A.10: Stochastic properties of the exact RL of the individual schemes for σ.

Scheme for σ Stochastic properties of RL

S+ − σ (1) RLS+−σ(θ) ↓lr with θ

C+ − σ

(2) RLβ
C+−σ(θ) ↓st with β

(3) RLβ
C+−σ(θ) ↓st with θ

(4) RLβ
C+−σ(θ; k+

σ ) ↑st with k+
σ

CS+ − σ

(5) RLβ
CS+−σ(θ) ↓st with β

(6) RLβ
CS+−σ(θ) ↓st with θ

(7) RLβ
CS+−σ(θ; k+

σ ) ↑st with k+
σ

E+ − σ
(8) RLβ

E+−σ(θ) ↓st with β
(9) RLβ

E+−σ(θ) ↓st with θ

ES+ − σ
(10) RLβ

ES+−σ(θ) ↓st with β
(11) RLβ

ES+−σ(θ) ↓st with θ

Proof ((1) in Table A.10: stochastic property of RLS+−σ(θ)) — The parameter of the
geometric random variable RLS+−σ(θ) verifies

∂

∂θ

{
1− Fχ2

n−1
(ξ+σ /θ

2)
}

=
2ξ+σ
θ3

× fχ2
n−1

(ξ+σ /θ
2) ≥ 0. (A.4)

Thus, RLS+−σ(θ) stochastically decreases with θ in the likelihood sense according to
Lemma 2.1. •

Proof ((2), (5), (8) and (10) in Table A.10: stochastic monotonicity in the head start of
the phase-type RLσs) — The control schemes C+ − σ, CS+ − σ, E+ − σ, and ES+ − σ

have approximating RLs associated to aσ, i −1 = 0, i = 0, ..., x+
σ , and aσ, ij , i, j = 0, ..., x+

σ ,
which decrease with i (see Table A.7), whether we use the distribution function Fχ2

n−1
or

its truncated version F+
χ2
n−1

. Thus, the approximating chains are stochastically mono-
tone in the usual sense and we conclude by using Theorem 3.8 that the respective RLs
stochastically decrease with the initial state. Hence, by the closure property under the
limit operation (Lemma 3.18), the exact RLs, RLβ

C+−σ(θ), RLβ
CS+−σ(θ), RLβ

E+−σ(θ) and
RLβ

ES+−σ(θ) stochastically decrease in the usual sense with β. •

Proof ((3), (6), (9) and (11) in Table A.10: stochastic monotonicity in θ of the phase-
type RLσs) — The approximating RLs of these schemes for σ are related to stochastically
monotone matrices P(θ;x+

σ ), and, according to Table A.7, to aij(θ) = aij(θ;x+
σ ) which
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decrease with θ. Thus, by applying Theorem 3.12 and Lemma 3.18, we can assert that
RLβ

C+−σ(θ), RLβ
CS+−σ(θ), RLβ

E+−σ(θ) and RLβ
ES+−σ(θ) stochastically decrease with θ. •

Proof ((4) and (7) in Table A.10: stochastic monotonicity in k+
σ of the phase-type RLσs)

— The increasing stochastic behaviour in k+
σ of RLβ

C+−σ(θ) and RLβ
CS+−σ(θ) follows from

the fact that the approximating RLs are associated to aij which are in any case increasing
functions of k+

σ (see Table A.7), and the application of Theorem 3.12 and Lemma 3.18. •
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Knoth, S., Schmid, W. and Schöne, A. (1998). Simultaneous Shewhart-type charts for
the mean and the variance of a time series. Arbeitsbericht 107, Lehrstuhl für Quati-
tative Methoden insbesondere Statistik, Europa–Universität Viadrina, Frankfurt (Oder),
Germany.
Knoth, S. and Schmid, W. (1999). Monitoring the mean and the variance of a stationary
process. Arbeitsbericht 130, Lehrstuhl für Quatitative Methoden insbesondere Statistik,
Europa–Universität Viadrina, Frankfurt (Oder), Germany.
Knoth, S. and Schmid, W. (2001). Control charts for time series: a review. In Proceedings
of the VIIth International Workshop on Intelligent Statistical Quality Control (Session:
Statistical Product & Process Control II), University of Waterloo, Canada, September
5–7, 2001.
Kramer, H. and Schmid, W. (2000). The influence of parameter estimation on the ARL
of Shewhart type charts for time series. Statistical Papers 41, 173–196.

Kulkarni, V.G. (1995). Modeling and Analysis of Stochastic Systems. Chapman and Hall,
London.
Lai, T.L. (1974). Control charts based on weighted sums. The Annals of Statistics 2,
134–147.
Lee, S. and Lynch, J. (1997). Total positivity of Markov chains and the failure rate
character of some first passage times. Advances in Applied Probability 29, 713–732.
Levy, H. (1992). Stochastic dominance and expected utility: survey and analysis. Man-
agement Science 38, 555–593.

173



Li, H. and Shaked, M. (1995). On the first passage times for Markov processes with
monotone convex transition kernels. Stochastic Processes and their Applications 58, 205–
216.
Li, H. and Shaked, M. (1997). Ageing first-passage times of Markov processes: a matrix
approach. Journal of Applied Probability 34, 1–13.
Lorenz, M.O. (1905). Methods of measuring the concentration of wealth. Publication of
the American Statistical Association 9, 209–219.
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