Álgebra Linear

Licenciaturas: Eng. Biológica, Eng. Ambiente 1° Semestre — $10/11/\ 2004$

Número:			Curso	
Duração: 30 Min	utos untas de escolha mú	iltipla : Corr		
A preencher pe	lo docente:			
Correctas Nota	Erradas	TEM	PD	
	atriz $n \times k$ tal que o de A é 1 e a dimen			
\square $n = 4$ e $k =$	$2 \qquad \Box \ n = 2 e \ k =$	$2 \qquad \Box \ n = 4$	e k = 5	$\exists n = 2 e k =$
afirmações seguinte $ \Box \text{ A dimensão } $		$\{0,1,1)\}$ é un \mathbb{R}^5 .		
	r dos polinómios de		u igual a dois	s, P_2 , consider
as afirmações segui I. $\{1+t, t^2, t-1\}$ II. As coordena $\{5, 0, -6\}$. III. $\{t, t^2\}$ é um	$-1, 2-t^2$ é linearradas de $p(t) = 5-t$ s	na base orden		$-1, t^2 - 1, t)$ sã
as afirmações segui I. $\{1+t,t^2,t-1\}$ II. As coordena $\{5,0,-6\}$. III. $\{t,t^2\}$ é um IV. $\{0,t,t^2\}$ nã	$-1, 2-t^2$ é linearradas de $p(t) = 5-t$ na base de P_2 .	na base orden		$-1, t^2 - 1, t)$ sã

 $AL\ 2004/2005$

4. Dê um exemplo de uma matriz 3×4 cuja dimensão do núcleo seja 3. Determine para esta matriz uma base para o espaço das linhas, para o espaço das colunas e para o núcleo. [1.5]

- **5.** Seja $S = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ a matriz de mudança de base, da base $B_1 \subset \mathbb{R}^2$ para a base $B_2 \subset \mathbb{R}^2$ (ou seja $x_{B_2} = Sx_{B_1}$ para $x \in \mathbb{R}^2$).
 - a) As coordenadas de um vector x na base B_2 são $x_{B_2}=(1,2)$. Determine as coordenadas de x na base B_1 .
 - b) Determine a base B_2 sabendo que $B_1 = ((2,1), (-1,1)).$ [1.0]