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Animal organisms provide abundant examples of flows of biological liquids in the distensible 

tubes where fluid-structure interactions  are very important for the flow stability. Flow- induced 
instability leads to reduction of the blood flow through the vessel, to deviation of the shear stress 
distribution at the wall from the normal conditions. Stability of the physiological flows in the vessels 
can be provided by special structure of their walls. Blood vessels can be considered as multilayered 
thick-walled tubes from nonlinear incompressible viscoelastic material.  Material parameters of the 
different layers have been estimated in experiments with the intact vessels and wall segments [1-4]. 
Although there is an extensive literature on structure and dynamics of arterial wall, our understanding 
of wall mechanics is still incomplete.  

In the present paper the results of theoretical study of the stability of the flow of incompressible 
Newtonian liquid in the multilayered tethered compliant tube are presented. The wall of the tube is 
consisted of three layers with thicknesses 321 h,h,h . The Navier-Stokes equations for the liquid at the 
absence of the external forces and the governing equations for the layers are 
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where vr , ρ  and ν  are velocity, density and kinematic viscosity of the fluid, p and jp  are hydrostatic 

pressure in the fluid and the layers, jur , j
wρ ,  j?σ , 3,2,1j =  are the displacements,  densities and stress 

tensors for the layers. The constitutive equations for the layers are presented by Voight model of the 
viscoelastic material as  
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considered as transversely isotropic and the components of j
ikA are defined in [3].  

 The boundary conditions are:  
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where 2/)vv(V ikkiik ∇+∇= , R , H  and L are the inner radius, thickness  and length of the tube 

( 1L/R << , 1R/H << ). Solution of the system has been obtained as a superposition of small-amplitude 
axisymmetric perturbations and the Hagen-Poiseuille velocity field in the fluid and the displacement 
fields in the layers. The method and the numerical procedure are presented in [5]. 

Theoretical analysis and calculations have revealed multifarious  influence of the Young’s 

module 31E − ,  shear module 31G −  and viscosities j
wµ  of the layers on the stability of the flow. Some 

results are presented in fig.1-2. The isotropic uniform single- layered tube has one unstable mode [5]. 

Increasing 3,1G  and 2G  exhibit a stabilizing and destabilizing effects on this mode accordingly. For 

high values 3,1G  within the physiological range the system becomes stable. A small increase of 1
wµ  

leads to increasing the amplification rate of the unstable mode whereas increasing  2
wµ  stabilizes the 

system. For some values of  2
wµ  the group velocity 0Vg =  that suggests the existence of an absolute 

instability [5]. The comparative study of the uniform single- layered and the three- layered tubes 
revealed significant influence of the mechanical parameters and relative thicknesses of the layers on 
stability of the system. As far as thickening and increasing rigidity of separate layers are proper for 
different pathologies (hypertension, atherosclerosis etc) the stability of the vessel can be changed by 
the variations of the material parameters and the flow rate can be essentially decreased. At certain 
stages of the pathological processes the variations can be considered as adaptive mechanism which can 
be controlled by the inner (mechanosensitive) layer of the blood vessels. The presented results can be 
used for understanding the dynamics of the vessel wall and stability of the blood flow in the vessels in 
normal state and at different pathologies as well as for construction and optimization of the 
multilayered coating for the technological applications. 

  
Fig.1. Amplification rate os of the unstable mode versus the 

dimensionless shear modulus oG  of one of the layers 

3,2,1j =  (curves 1-3) while 1G k =o  for jk ≠ . 

Fig.2. Amplification rate os of the unstable mode versus the 

dimensionless viscosity o
wµ  of one of the layers 3,2,1j =  

(curves 1-3) while 0wk =µo  for jk ≠ . 
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