Autómatos finitos não deterministas com movimentos ϵ

Definição: AUTÓMATO FINITO NÃO DETERMINISTA COM MOVIMENTOS ϵ Um autómato finito não determinista com movimentos ϵ é um tuplo

$$A = (Q, I, \delta, q_0, F)$$

onde

- ullet Q é um conjunto finito e não vazio (conjunto dos estados)
- \bullet I é um conjunto finito (conjunto dos símbolos de entrada)
- $\delta: Q \times (I \cup \{\epsilon\}) \to 2^Q$ (função de transição directa)
- $q_0 \in Q$ (estado inicial)
- $F \subseteq Q$, tal que $F \neq \emptyset$ (conjunto dos estados finais).

Notação: Sendo $A=(Q,I,\delta,q_0,F)$ um autómato finito não determinista com movimentos $\epsilon,\,Q'\subseteq Q$ e $i\in I$ tem-se que $\delta(Q',i)=\bigcup_{q\in Q'}\delta(q,i)$.

Se $q' \in \delta(q, \epsilon)$, diz-se, informalmente, que é possível efectuar um movimento- ϵ de q para q'.

Exemplo: O autómato $A = (Q, I, \delta, q_0, F)$ onde

- $Q = \{q_0, q_1, q_2\}$
- $I = \{0, 1, 2\}$
- $F = \{q_2\}$
- $\delta = Q \times (I \cup {\epsilon}) \to 2^Q$ tal que

δ	0	1	2	ϵ
q_0	$\{q_0\}$	Ø	Ø	$\{q_1\}$
q_1	Ø	$\{q_1\}$	Ø	$\{q_2\}$
q_2	Ø	Ø	$\{q_2\}$	Ø

é um autómato finito não determinista com movimentos ϵ .

Definição: $Fecho-\epsilon$ DE UM ESTADO

Seja $A = (Q, I, \delta, q_0, F)$ um autómato finito não determinista com movimentos ϵ e $q \in Q$. O $fecho-\epsilon$ de q é o conjunto

$$fecho-\epsilon(q)$$

definido como o menor conjunto tal que

- $q \in fecho-\epsilon(q)$
- se $q' \in fecho \epsilon(q)$ então $\delta(q', \epsilon) \subseteq fecho \epsilon(q)$.

Informalmente, o fecho- $\epsilon(q)$ é o conjunto constituído pelo estado q e por todos os estados que podem ser "atingidos" a partir de q efectuando apenas movimentos- ϵ , ou seja, o conjunto de estados que podem ser "atingidos" a partir de q sem ler nenhum símbolo de I.

Notação: Sendo $A=(Q,I,\delta,q_0,F)$ um autómato finito não determinista com movimentos ϵ e $Q'\subseteq Q$ tem-se que fecho- $\epsilon(Q)=\bigcup_{q\in Q'}fecho$ - $\epsilon(q)$.

Exemplo: Tendo em conta o autómato A do exemplo anterior tem-se que

- $fecho-\epsilon(q_0) = \{q_0, q_1, q_2\}$
- $fecho-\epsilon(q_1) = \{q_1, q_2\}$
- $fecho-\epsilon(q_2) = \{q_2\}$

Definição: Função de transição em autómato finito não determinista com movimentos ϵ

Seja $A = (Q, I, \delta, q_0, F)$ um autómato finito não determinista com movimentos ϵ . A função de transição é a aplicação

$$\delta^*:Q\times I^*\to 2^Q$$

definida recursivamente como se segue

- $\delta^*(q, \epsilon) = fecho \epsilon(q)$
- $\delta^*(q, x.i) = \bigcup_{q' \in \delta^*(q,x)} fecho-\epsilon(\delta(q',i))$

para cada $q \in Q$, $x \in I^*$ e $i \in I$.

Exemplo: Tendo em conta o autómato A do exemplo anterior tem-se que

- $\delta^*(q_0, \epsilon) = fecho \epsilon(q_0) = \{q_0, q_1, q_2\}$
- $\delta^*(q_0,0) = \bigcup_{q' \in \delta^*(q_0,\epsilon)} fecho \epsilon(\delta(q',0)) = \bigcup_{q' \in \{q_0,q_1,q_2\}} fecho \epsilon(\delta(q',0)) = fecho \epsilon(\delta(q_0,0)) \cup fecho \epsilon(\delta(q_1,0)) \cup fecho \epsilon(\delta(q_2,0)) = fecho \epsilon(\{q_0\}) \cup fecho \epsilon(\emptyset) \cup fecho \epsilon(\emptyset) = \{q_0,q_1,q_2\}$
- $\delta^*(q_0, 01) = \bigcup_{q' \in \delta^*(q_0, 0)} fecho \epsilon(\delta(q', 1)) = \bigcup_{q' \in \{q_0, q_1, q_2\}} fecho \epsilon(\delta(q', 1)) = fecho \epsilon(\delta(q_0, 1)) \cup fecho \epsilon(\delta(q_1, 1)) \cup fecho \epsilon(\delta(q_2, 1)) = fecho \epsilon(\emptyset) \cup fecho \epsilon(\{q_1\}) \cup fecho \epsilon(\emptyset) = \{q_1, q_2\}$

Definição: Sequência aceite e linguagem reconhecida por autómato finito não determinista com movimentos ϵ

Seja $A = (Q, I, \delta, q_0, F)$ um autómato finito não determinista com movimentos ϵ . A sequência $w \in I^*$ diz-se aceite por A set $\delta^*(q, w) \cap F \neq \emptyset$. A linguagem reconhecida por A, ou linguagem de A, representa-se por L_A e é o conjunto das sequências aceites por A.

Exemplo: Sendo A o autómato do exemplo anterior tem-se que

$$L_A = \{w_0 w_1 w_2 : w_0 \in \{0\}^*, w_1 \in \{1\}^* w_2 \in \{2\}^*\}.$$