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Lecture 1

We begin by defining the Hausdorff dimension of a set F ⊂ Rn (see the book
[F] for more details). This is done by defining t-Hausdorff measures, where t ≥ 0,
and then choose the appropriate t for measuring F . When t = n, the n-Hausdorff
measure is just the n-dimensional exterior Lebesgue measure. The diameter of a
set U ⊂ Rn is denoted by |U |. We say that the countable collection of sets {Ui} is
a δ-cover of F if F ⊂

⋃∞
i=1 Ui and |Ui| ≤ δ for each i. Given t ≥ 0 and δ > 0 let

Ht
δ(F ) = inf

{

∞
∑

i=1

|Ui|
t : {Ui} is a δ-cover of F

}

.

Then the t-Hausdorff measure of F is given by

Ht(F ) = lim
δ→∞

Ht
δ(F )

(this limit exists because Ht
δ(F ) is increasing in δ). So, given F ⊂ Rn, what is

the appropriate t-Hausdorff measure for measuring F? Let us look at the function
t 7→ Ht(F ). It is not difficult to see that there is a critical value t0 such that

Ht(F ) =

{

∞ if t < t0

0 if t > t0.

0

00

t*

t H
t (F)

Figure 1

Definition 1. The Hausdorff dimension of F is

dimH F = t0.

Remark 1. In the definition of Hausdorff dimension we can use covers by balls.
More precisely, let Bt

δ(F ) be the number obtained using covers by balls of diameters
≤ δ instead of using any δ-cover when defining Ht

δ(F ). Of course, Ht
δ(F ) ≤ Bt

δ(F )
because we are restricting to a particular class of δ-covers and using inf over this
class. Now, given a set U with |U | ≤ δ there exists a ball B ⊃ U with |B| ≤ 2|U |.
This implies that Bt

2δ(F ) ≤ 2tHt
δ(F ). So, letting δ → 0 we obtain

Ht(F ) ≤ Bt(F ) ≤ 2tHt(F ),

and so the critical value t0 at which Ht(F ) and Bt(F ) jump is the same.
Using the same arguments, we can also use covers by squares. What we cannot

do is to use only covers formed by sets which are “too distorted”. This is why the
computation of Hausdorff dimension of invariant sets for “nonconformal dynamics”
reveals to be more complicated.

Problem: How to compute the Hausdorff dimension of a set?
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• If, for every δ > 0, we find some δ-cover {Ui} of F such that
∑

i

|Ui| ≤ C < ∞,

where C is a constant independent of δ, then Ht(F ) < ∞ which implies

dimH F ≤ t.

• How to obtain an estimation

dimH F ≥ t?

We must use every δ-cover... A priori this seems to be an untreatable prob-
lem. Is there some non-trivial mathematical object that takes acquaintance
with this? As we shall see now, the answer is yes, and the object is measure.

Mass Distribution Principle

Suppose there exists a Borel probability measure µ on Rn such that µ(F ) = 1,
and there exist a constant C > 0 and t > 0 such that for every set U ⊂ Rn,

µ(U) ≤ C|U |t.

Then, if {Ui} is any δ-cover of F ,
∑

i

|Ui|
t ≥ C−1

∑

i

µ(Ui) ≥ C−1µ(
∑

i

Ui) ≥ C−1µ(F ) = C−1.

This implies that Ht(F ) ≥ C−1 > 0 and so

dimH F ≥ t.

There is a “non-uniform” version of this principle as we shall describe now. The
main concept behind this is the Hausdorff dimension of a probability measure µ
defined by L.-S. Young as

dimH µ = inf{dimH F : µ(F ) = 1}.

By definition, if µ(F ) = 1 then dimH F ≥ dimH µ. The “non-uniform” version of
the Mass Distribution Principle deals with the following limit

dµ(x) = lim
r→0

log µ(B(x, r))

log r
,

where B(x, r) stands for the open ball of radius r centered at the point x, which
is called the lower pointwise dimension of µ. Then we have the following (see the
book [P] for a proof)

Lemma 1. (Volume Lemma)

(1) If dµ(x) ≥ t for µ-a.e. x then dimH µ ≥ t.
(2) If dµ(x) ≤ t for µ-a.e. x then dimH µ ≤ t.
(3) If dµ(x) = t for µ-a.e. x then dimH µ = t.

Corollary 1. If µ(F ) = 1 and dµ(x) ≥ t for µ-a.e. x then dimH F ≥ t.

Example 1. (Self-affine Cantor sets)
These are self-affine generalizations of the famous “middle-third” Cantor set. They
are constructed as limit sets of n-approximations: the 1-approximation consists in
m disjoint subintervals of [0, 1]; the 2-approximation consists in substituting each
interval of the 1-approximation by a rescaled self-affine copy of the 1-approximation
(from [0,1] to this interval), and so on. In the limit we get a Cantor set K.
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Until now we have not talked about “dynamical systems”. These sets are dynam-
ically defined (see Figure 2): Let {Ri}

m
i=1 be a collection of disjoint subintervals of

[0, 1], which we call Markov partition. Consider the map f :
⋃m

i=1 Ri → [0, 1] that
sends linearly each interval Ri onto [0, 1]. Then K is the set of points that always
remain in the Markov partition when iterated by f (the n-approximation is the set
of points that remain in the Markov partition when iterated n − 1 times). More
precisely,

K =
∞
⋂

n=0

⋃

i1,...,in

Ri1...in
(1)

where i1, ..., in ∈ {1, ...m} and

Ri1...in
= Ri1 ∩ f−1(Ri2) ∩ · · · ∩ f−n+1(Rin

) (2)

which we call basic intervals of order n.
Now we are going to compute the Hausdorff dimension of K in terms of the

numbers ai = |Ri|, i = 1, ..,m, the lengths of the elements of the Markov partition.
Estimate ≤. Let δ > 0 and n be such that (max ai)

n ≤ δ. So the basic sets of
order n form a δ-cover of K. Note that

|Ri1...in
| = ai1ai2 ...ain

.

So

Ht
δ(K) ≤

m
∑

i1=1

m
∑

i2=1

· · ·
m

∑

in=1

(ai1ai2 ...ain
)t =

(

m
∑

i=1

at
i

)n

. (3)

What is the least t such that the expression on the right hand side of (3) is finite
for every n? It is the unique solution t = t0 of the following equation

m
∑

i=1

at
i = 1 (4)

which is called Moran formula (note that
∑m

i=1 at
i is strictly decreasing in t, has

value m > 1 for t = 0 and value
∑m

i=1 ai < 1 for t = 1). So Ht0
δ (K) ≤ 1 for every

δ > 0 which implies

dimH K ≤ t0.
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Estimate dimH K ≥ t0. Let µ be the Bernoulli measure on K with weigths

µ(Ri) = at0
i , i = 1, ..,m

i.e.

µ(Ri1...in
) =

n
∏

l=1

at0
il

(note that f |K is topologically conjugated to a full shift on m symbols; also re-
member that

∑m
i=1 at0

i = 1). Then

log µ(Ri1...in
)

log |Ri1...in
|

= t0

and it follows from the Volume Lemma that dimH µ = t0 and so

dimH K ≥ dimH µ = t0.

Conclusion.
dimH K = t0

where t0 is given by the Moran formula
m

∑

i=1

at0
i = 1.

Example 2. If K is the middle-third Cantor set then its Hausdorff dimension is
the solution of

2

(

1

3

)t

= 1

i.e.

dimH K =
log 2

log 3
.

This equation has a dynamical meaning of the form

dimension =
entropy

Lyapunov exponent
. (5)

In general, the Lyapunov exponent of a 1-dimensional dynamics depends on in-
variant measures. For instance, is there some analogous formula for the Hausdorff
dimension of self-affine Cantor sets? The answer is yes as we shall see now in a more
general context. Also, a formula of the type (5) only makes sense for 1-dimensional
dynamics, since for n-dimensional dynamics it is expected to exist several Lyapunov
exponents.

Nonlinear Cantor sets

Now we consider sets Λ which are generated using a dynamics as for the self-
affine Cantor sets, but now the generating dynamics need not be linear. Let {Ri}

m
i=1

be a collection of disjoint subintervals of [0, 1], and f :
⋃m

i=1 Ri → [0, 1] be a C1+δ

transformation (for some δ > 0) such that f ′ ≥ σ > 1 and f |Ri is a homeomorphism
onto [0, 1] (see Figure 3).

As before we consider the f -invariant set Λ defined by (1) and (2). It follows
from the intermediate value theorem that the basic intervals of order n satisfy

|Ri1...in
| = ((fn)′(x))−1 =

(

n−1
∏

j=0

f ′(f jx)
)−1

for some x ∈ Ri1...in
. Using the fact that f ′ ≥ σ > 1 and f ∈ C1+δ we obtain the

following result (see the book [PT] for a proof)
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Lemma 2. (Bounded Distortion Property)
There exists C > 0 such that for every n ∈ N and every n-tuple (i1, ..., in),

(fn)′(x)

(fn)′(y)
≤ C

for every x, y ∈ Ri1...in
.

If ϕ : Λ → R, we use the following notation

(Snϕ)(x) =
n−1
∑

j=0

ϕ(f j(x)).

Then we can write

|Ri1...in
|t ∼ sup

x∈Ri1...in

e−t(Sn log f ′)(x),

where ∼ means “up to a constant (independent of n)”, due to the bounded distortion
property. As for the self-affine case, for proving the estimate ≤ we use the cover of
Λ by basic intervals of order n, so we want to find the “least” t such that

∑

i1,...,in

|Ri1...in
|t ∼

∑

i1,...,in

sup
x∈Ri1...in

e−t(Sn log f ′)(x) (6)

is finite for all n. Due to the uniform expansion of f , (6) grows at an exponential
rate in n: negative, zero or positive, depending on the value of t. So we want to
find the value t = t0 for which

lim
n→∞

1

n
log

∑

i1,...,in

sup
x∈Ri1...in

e−t0(Sn log f ′)(x) = 0 (7)

(for then, the exponential rate at t = t0 + ǫ, ǫ > 0, is negative). This motivates the
following definition.

Definition 2. Let ϕ : Λ → R be a Hölder continuous function. The Topological
Pressure of ϕ (with respect to the dynamics f |Λ) is

Pf |Λ(ϕ) = lim
n→∞

1

n
log

∑

i1,...,in

sup
x∈Ri1...in

eSnϕ(x).

The condition of ϕ being Hölder continuous is to apply the bounded distortion
property.
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Remark 2. The Topological Entropy is the Topological Pressure of the constant
zero function:

htop(f |Λ) = Pf |Λ(0).

Since in our case we are dealing with a dynamics which is topologically congugated
to a full shift in m symbols, we have that

htop(f |Λ) = log m.

So, equation (7) can be restated as: There is a unique solution t = t0 of the
following equation

Pf |Λ(−t log f ′) = 0, (8)

which is the celebrated Bowen’s equation. So

dimH Λ ≤ t0.

To prove the other inequality we shall need the well known Variational Principle
for the Topological Pressure. Before stating this principle we must introduce the
notion of entropy of an invariant measure. Denote by M(f |Λ) the set of all f |Λ-
invariant probability measures, and by Me(f |Λ) the subset of ergodic ones. Given
µ ∈ M(f |Λ), Shannon-McMillan-Breiman’s theorem (see [M]) says that the limit

lim
n→∞

−
1

n
log µ(Ri1...in

)

exists for µ-a.e. x ≡
⋂∞

n=1 Ri1...in
. Moreover, if µ is ergodic then this limit is

constant µ-a.e.

Definition 3. Let µ ∈ Me(f |Λ). The Entropy of µ (with respect to the dynamics
f |Λ) is

hµ(f) = lim
n→∞

−
1

n
log µ(Ri1...in

) (9)

for µ-a.e. x ≡
⋂∞

n=1 Ri1...in
. If µ ∈ M(f |Λ) then hµ(f) is just the integral of the

limit in (9) with respect to µ.

Note that, if µ ∈ Me(f |Λ) then by Shannon-McMillan-Breiman’s theorem,
Birkhoff’s ergodic theorem and the bounded distortion property,

dµ(x) = lim
n→∞

log µ(Ri1...in
)

log |Ri1...in
|

= lim
n→∞

− 1
n

log µ(Ri1...in
)

1
n
(Sn log f ′)(x)

=
hµ(f)

∫

log f ′ dµ

for µ-a.e. x ≡
⋂∞

n=1 Ri1...in
. So, by the Volume Lemma, if µ ∈ Me(f |Λ) then

dimH µ =
hµ(f)

∫

log f ′ dµ
. (10)

The next theorem is due to Sinai-Ruelle-Bowen and a proof can be seen in the
excelent exposition [Bo1].

Theorem 1. (Variational Principle for the Topological Pressure)
Let ϕ : Λ → R be Hölder continuous. Then

Pf |Λ(ϕ) = sup
µ∈M(f |Λ)

{

hµ(f) +

∫

ϕdµ

}

.

Moreover, this supremum is attained at a unique invariant measure, which is the
“Gibbs state for the potential ϕ” (hence ergodic) and is denoted by µϕ.
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When ϕ = 0 we obtain the Variational Principle for the Entropy.
At this time the reader might guess that, for calculating Hausdorff dimension,

we will use the potential ϕ = −t0 log f ′ where t0 is the solution of Bowen’s equation
(8). It follows from Theorem 1 and (10) that

0 = Pf |Λ(−t0 log f ′) = hµ
−t0 log f′

(f) − t0

∫

log f ′ dµ−t0 log f ′

and

t0 =
hµ

−t0 log f′
(f)

∫

log f ′ dµ−t0 log f ′

= dimH µ−t0 log f ′ .

Thus
dimH Λ ≥ dimH µ−t0 log f ′ = t0

as we wish.

Conclusion: The Hausdorff dimension of Λ is given by the root t0 of Bowen’s
equation

Pf |Λ(−t log f ′) = 0

(for a complete discussion see [Bo2] and [R1]). Moreover, the Gibbs state for the
potential −t0 log f ′ denoted by

µ−t0 log f ′

is the unique ergodic invariant measure on Λ of full dimension. Also, it is very
important to keep in mind, in what comes, the validity of the “Variational Principle
for the Dimension” i.e.

dimH Λ = sup
µ∈Me(f |Λ)

dimH µ, (11)

and

µ ∈ Me(f |Λ) ⇒ dimH µ =
hµ(f)

∫

log f ′ dµ
. (12)
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Lecture 2

Here we deal with sets Λ which are generated by smooth plane transformations
f which are nonconformal i.e. possess two different rates of expansion. As before
we also consider sets which are generated using a Markov partition, and so the
basic sets of order n (see (2)) form a natural cover of Λ by sets with diameter
arbitrarily small. The problem is that, due to nonconformality, these sets are not
“approximately” balls, and so covers formed by basic sets are not sufficiently for
calculating Hausdorff dimension (see Remark 1).

Nevertheless, Bowen’s equation

Pf |Λ(−t log ‖Df‖) = 0

still makes sense but, in general, its root does not give us the Hausdorff dimension of
Λ: it is greater than dimH Λ and depends on the dynamics f we use to generate Λ.
The aim of this lecture is to convince the reader that the main tool for computing
Hausdorff dimension in the nonconformal setting is not the Topological Pressure but
the Relativized Topological Pressure and, especially, the corresponding Relativized
Variational Principle.

Example 3. (General Sierpinski Carpets)
Let T2 = R2/Z2 be the 2-torus and f0 : T2 → T2 be given by

f0(x, y) = (lx,my)

where l > m > 1 are integers. The grid of lines [0, 1] × {i/m}, i = 0, ...,m − 1,
and {j/l} × [0, 1], j = 0, ..., l − 1, form a set of rectangles each of which is mapped
by f0 onto the entire torus (these rectangles are the domains of invertibility of
f0). Now choose some of these rectangles, the Markov partition, and consider
the fractal set Λ0 consisting of those points that always remain in these chosen
rectangles when iterating f0. As before, Λ0 is the limit (in the Hausdorff metric)
of n-approximations: the 1-approximation consists of the chosen rectangles, the 2-
approximation consists in dividing each rectangle of the 1-aproximation into l ×m
subrectangles and selecting those with the same pattern as in the begining, and so
on (see Figure 4).

Figure 4. l = 4, m = 3; 1-approximation and 2-approximation

We say that (f0,Λ0) is a general Sierpinski carpet. The Hausdorff dimension
of general Sierpinski carpets was computed by Bedford [Be] and McMullen [Mu],
independently, obtaining the beautiful formula

dimH Λ0 =
log(

∑m
i=1 nα

i )

log m
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where ni is the number of elements of the Markov partition in the horizontal strip
i, and

α =
log m

log l
.

See how it generalizes the 1-dimensional formula (5) it two ways: (i) put m = 1;
(ii) put ni = 1 whenever ni 6= 0, i = 1, ...,m.

Self-affine fractals in the plane

Now we consider sets which are self-affine generalizations of general Sierpinski
carpets (and generalize the corresponding 1-dimensional versions, the self-affine
Cantor sets).

Let S1, S2, ..., Sr be contractions of R2. Then there is a unique nonempty com-
pact set Λ of R2 such that

Λ =

r
⋃

i=0

Si(Λ).

This set is constructed like the general Sierpinski carpets (there, the contractions
are the inverse branches of f0 corresponding to the chosen rectangles, and the
equation above simply means that the set is f0-invariant). We will refer to Λ as
the limit set of the semigroup generated by S1, S2, ..., Sr.

We shall consider the class of self-affine sets Λ that are the limit sets of the
semigroup generated by the mappings Aij given by

Aij =

(

aij 0
0 bi

)

x +

(

cij

di

)

, (i, j) ∈ I.

Here I = {(i, j) : 1 ≤ i ≤ m and 1 ≤ j ≤ ni} is a finite index set. We assume

0 < aij < bi < 1, (13)

for each pair (i, j),
∑m

i=1 bi ≤ 1, and
∑ni

j=1 aij ≤ 1 for each i. Also, 0 ≤ d1 < d2 <
... < dm < 1 with di+1 − di ≥ bi and 1 − dm ≥ bm and, for each i, 0 ≤ ci1 <
ci2 < ... < cini

< 1 with ci(j+1) − cij ≥ aij and 1 − cini
≥ aini

. These hypotheses
guarantee that the rectangles

Rij = Aij([0, 1] × [0, 1])

have interiors that are pairwise disjoint, with edges parallel to the x- and y-axes,
are arranged in “rows” of height bi, and have height bi > width aij (see Figure 5).

b
1

b
2

b
3

a a a a
11 12 13 14

Figure 5
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Theorem 2.

dimH Λ = sup
p

{∑m
i=1 pi log pi

∑m
i=1 pi log bi

+ t(p)

}

(14)

where p = (p1, p2, ..., pm) is a probability vector, and t(p) is the unique real in [0, 1]
satisfying

m
∑

i=1

pi log





ni
∑

j=1

a
t(p)
ij



 = 0. (15)

This theorem was proved in [GL] with a slightly different formula than (14), and
later in [L1] using different methods aiming the Relativized Variational Principle.
Here we give a sketch of proof of this theorem following [L1].

Before that, we make some remarks concerning formula (14). See how it gen-
eralizes the computation of Hausdorff dimension for self-affine Cantor sets in two
ways: put m = 1; put ni = 1 for i = 1, ...,m. This formula looks like the variational
principle for dimension (see (11)). In fact, we shall see that, for each p, there exists
a Bernoulli measure µp on Λ such that

dimH µp =

∑m
i=1 pi log pi

∑m
i=1 pi log bi

+ t(p), (16)

so it follows from formula (14) the validity of the variational principle for dimension.
Also, since the functions

p 7→

∑m
i=1 pi log pi

∑m
i=1 pi log bi

and p 7→ t(p)

are continuous (by convention 0 log 0 = 0; the continuity of t(p) follows easily from
the implicit function theorem), we obtain the following

Corollary 2. There exists p
∗ such that

dimH Λ = dimH µp∗.

A good way of looking at Λ is as a (fibred) random 1-dimensional self-affine Can-
tor set : If we had only one horizontal strip, then Λ would be exactly a 1-dimensional
self-affine Cantor set characterized by the numbers a1j , j = 1, ..., n1 (the widths of
the elements of the Markov partition), and so its Hausdorff dimension is given by
the Moran formula (4). When there are several horizontal strips, say m, it is like
we are working at the same time with m 1-dimensional self-affine transformations.
When do we work with a particular 1-dimensional self-affine transformation and
when do we work with another? We must look at the dynamics in the vertical axis.
Given y ∈ π(Λ) where π(Λ) is the Cantor set obtained by projecting Λ onto the
vertical axis (i.e the self-affine Cantor set characterized by the numbers b1, ..., bm),
we iterate y using the vertical dynamics and see how the orbit of y distributes
along the different horizontal strips, i.e. until time n we calculate the proportion
of time the orbit of y stays in each horizontal strip. If the orbit of y distributes
along the horizontal strips according to the distrubution p = (p1, ..., pm), then the
1-dimensional Cantor set

Λy = Λ ∩ {(x, y) : x ∈ [0, 1]} (17)

has Hausdorff dimension t(p) given by the random Moran formula (15). Now the
the subset of points y ∈ π(Λ) that distribute according to the distribution p has
Hausdorff dimension

dim νp =

∑m
i=1 pi log pi

∑m
i=1 pi log bi

,
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where νp is the Bernoulli measure on π(Λ) which gives weigth pi to the horizontal
strip i. Finally, formula (14) says that “dimensions add”.

Sketch of proof of Theorem 2. Let

d(p) =

∑m
i=1 pi log pi

∑m
i=1 pi log bi

+ t(p).

As usual, the proof divides in two parts.

Part 1: dimH Λ ≥ sup
p

d(p)

For this part we use the Volume Lemma. As mentioned before, we construct
Bernoulli measures µp on Λ such that

dimH µp = d(p).

This gives what we want because dimH Λ ≥ dimH µp. So, let µp be the Bernoulli
on Λ that gives weigth

pij = pi

a
t(p)
ij

∑ni

k=1 a
t(p)
ik

to the basic rectangle Rij , for (i, j) ∈ I. Note that our dynamics is topologically
conjugated to a Bernoulli shift with #I symbols. Denote by

R(i1j1)...(injn), (il, jl) ∈ I, l = 1, ..., n

the basic sets of order n so that

Λ =

∞
⋂

n=1

⋃

(i1,j1),...,(in,jn)∈I

R(i1j1)...(injn).

Then

µp(R(i1j1)...(injn)) =

n
∏

l=1

piljl
.

Problem: We cannot use directly the sets R(i1j1)...(injn) for calculating the lower
pointwise dimension of µp, because these sets are not “approximately” balls.

In fact, R(i1j1)...(injn) is a rectangle with height
∏n

l=1 bil
and width

∏n
l=1 ailjl

which decay exponentially to zero when n goes to ∞ with different rates (see (13)).

Solution: For each point in Λ, construct a set containning this point by making a
union of several basic sets of order n, and which is “approximately” a ball in Λ (see
Figure 6).

We use the following notation: given z ∈ Λ we write z ≡ (i1j1, i2j2, ...) iff

z ∈

∞
⋂

n=1

R(i1j1)...(injn).

Given z ≡ (i1j1, i2j2, ...), let

Ln(z) = max

{

k ≥ 1 :

n
∏

l=1

bil
≤

k
∏

l=1

ailjl

}

(18)

and the approximate square

Bn(z) = {z′ ∈ Λ : i′l = il, l = 1, ..., n and j′l = jl, l = 1, ..., Ln(z)}.
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Note that Bn(z) is a union of basic rectangles of order n and is the the intersection

of Λ with a rectangle with height
∏n

l=1 bil
and width

∏Ln(ω)
l=1 ailjl

satisfying, by
(18),

1 ≤

Ln(z)
∏

l=1

ailjl

n
∏

l=1

bil

≤ max a−1
ij , (19)

hence the term “approximate square”.

Figure 6. Approximate square

Then we see that

µp(Bn(z)) =

n
∏

l=1

pil
·

Ln(z)
∏

l=1

a
t(p)
iljl

∑nil

j=1 a
t(p)
ilj

.

Exercise: Using Kolmogorov’s Strong Law of Large Numbers prove that

lim
n→∞

log µp(Bn(z))
∑n

l=1 log bil

= d(p) for µ̃p-a.e. z.

By the Volume Lemma, this implies that dimH µp = d(p) (we can use approx-
imate squares instead of balls) as we wish. As observed in the beginning of this
part, this implies

dimH Λ ≥ sup
p

d(p)

thus concluding Part 1.

Part 2: dimH Λ ≤ sup
p

d(p)

This is the harder part since, as observed in the beginning of this lesson, we
cannot use covers by basic sets of order n to get a good estimate for the Hausdorff
dimension. Also we do not want any estimate, we want the estimate

sup
p

d(p).

Remark 3. Surprisingly, if
bi ≤ aij ≤ b2

i (20)

then if follows from [HL] that we can actually use Bowen’s equation to compute the
Hausdorff dimension of Λ (condition (20) implies that the number of basic sets of
order n we need to form the approximate square “is not significant”). See also [L2]
for an extension of [HL] to nonlinear transformations.
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The main idea is to use an extension of the following formula to our setting:
Given E ⊂ Rk and F ⊂ Rn bounded,

dimH(E × F ) ≤ dimH E + dimBF. (21)

There is a new element in the scenario we need to introduce: the box counting
dimension of a set F , written dimBF (see the book [F] for more details). Given
δ > 0, let N(F, δ) be the smallest number of balls of radius δ needed to cover F .
Then

Definition 4. The box counting dimension of F is

dimBF = lim
δ→0

log N(F, δ)

− log δ
.

Since in the definition of Hausdorff dimension we use infimum over covers formed
by balls of radius ≤ δ, it is easy to see that

dimH F ≤ dimBF.

There are good things and bad things about this new dimension.

Good :
(i) Formula (21);
(ii) It is relatively easy to compute: consider a partition of the ambient space into
cubes of side-length 2−n, count the number of these cubes that intersect the set F ,
and then see how this number grows when n goes to ∞ (the exponential rate in
base 2);
(iii) For 1-dimensional dynamically defined sets F we have dimH F = dimBF .

Bad :
(i) In higher dimensions, Hausdorff dimension and box counting dimension need
not coincide: It is proved in [GL] that the coincidence of these dimensions for the
sets we are considering here only happens for exceptional choices of the numbers bi

and aij !

(ii) dimBF = dimBF . In particular, dimB(Q ∩ [0, 1]) = 1. This does not happen
with Hausdorff dimension because

dimH

(

∞
⋃

i=1

Fi

)

= sup
i

dimH Fi, (22)

in particular, the Hausdorff dimension of a countable set is 0.

Suggestion: Try to prove formula (21). For a proof see [F].

Of course our set Λ need not be a product of two Cantor sets. We can write (see
(17))

Λ =
⋃

y∈π(Λ)

Λy

in an attempt to fall into formula (21) with π(Λ) playing the role of E and Λy

playing the role of F . But this is no good because

π(Λ) ∋ y 7→ dimBΛy (23)

is far from being constant. So the idea is to decompose π(Λ) into subsets such
that the function (23) restricted to these subsets is constant. In fact, as argued
in remarks after Theorem 2, the value dimBΛy should only depend on the vertical
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distribution of the orbit of y along the horizontal strips. In this direction, let (for
more details see [L1])

Gp = {y ∈ π(Λ) : “the orbit of y has distribution p”}.

Then
y ∈ Gp ⇒ dimBΛy = t(p).

So if we define
Λp =

⋃

y∈Gp

Λy,

then we have an extension of formula (21) to the set Λp, with Gp playing the role
of E and Λy, y ∈ Gp playing the role of F (these sets depend on y but their box
counting dimension do not), namely

dimH Λp ≤ dimH Gp + t(p).

For proving this formula we use the domination condition bi < aij . Moreover,

dimH Gp =

∑m
i=1 pi log pi

∑m
i=1 pi log bi

,

and so

dimH Λp ≤

∑m
i=1 pi log pi

∑m
i=1 pi log bi

+ t(p).

Now since every y ∈ π(Λ) has some distribution p, we have

Λ =
⋃

p

Λp,

and so, by formula (22),

dimH Λ = sup
p

dimH Λp ≤ sup
p

{∑m
i=1 pi log pi

∑m
i=1 pi log bi

+ t(p)

}

.

In fact, we are cheating a little bit because the set of all distributions {p} is not
countable. Nevertheless, this set is compact and the function

p 7→ dimH Λp

is continuous, so we can use compacteness arguments to obtain what we want. This
concludes Part 2 and the sketch of proof of Theorem 2.

¤

Nonlinear skew-product transformations

In this section we consider C1+δ expanding maps f : T2 → T2 of the form

f(x, y) = (a(x, y), b(y)) (24)

satisfying the domination condition

min
x

∂xa(x, y) > b′(y) > 1 for all y, (25)

and f -invariant sets Λ possessing a good Markov structure.
For example, if (f0,Λ0) is a general Sierpinski carpet, we take f C1+δ-close to

f0 satisfying (24) and Λ to be the hyperbolic f-continuation of Λ0. Then f satisfies
(25) and f |Λ is topologically conjugated to a full shift.

In Lecture 1 we saw that the transition from self-afine Cantor sets to nonlinear
Cantor sets was done using the bounded distortion property and the Moran formula
was substituted by Bowen’s equation in terms of the Topological Pressure. Now the
self-affine sets that model the nonlinear transformations of skew-product type sat-
isfying (24) and (25) are the ones considered in the previous section: the condition
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of basic rectangles being aligned along horizontal strips translates into (24), and
the domination condition bi < aij translates into (25). So using bounded distortion
arguments we should be able to find a formula for the Hausdorff dimension of Λ
extending (14).

In the self-affine setting we considered probability vectors p that correspond
to Bernoulli measures νp on π(Λ). As before π is the projection onto the y-axis,
π(x, y) = y. Note that π ◦ f = b ◦ π, and we say that b|π(Λ) is a factor of f |Λ (in
the self-affine case we called b the “vertical dynamics”). In this nonlinear setting,
Bernoulli measures on π(Λ) should be replaced by the bigger set Me(b|π(Λ)) (the
set of “vertical” ergodic measures). By what expression should we replace

∑m
i=1 pi log pi

∑m
i=1 pi log bi

? (26)

By this time the reader should recognize this expression as the Hausdorff dimension
of the Bernoulli measure νp which is the quotient between the entropy of this
measure by its Lyapunov exponent (remember (12)). So, expression (26) should be
replaced by

dimH ν =
hν(b)

∫

log b′dν

for ν ∈ Me(b|π(Λ)). Now the number t(p) given by the random Moran formula
(15) should be replaced by what? Since, in Lecture 1, Moran formula was replaced
by Bowen’s equation in terms of the Topological Pressure, now we should have a
random Bowen’s equation in terms of the random Topological Pressure.

As before, let
R(i1j1)...(injn), (il, jl) ∈ I, l = 1, ..., n

be the basic sets of order n and

Ri1...in
, il ∈ {1, ...,m}, l = 1, ..., n

be the basic intervals of order n obtained by projecting the first ones onto the
y-axis. We use the notation y ≡ (i1, i2, ...) iff

y ∈

∞
⋂

n=1

Ri1...in
.

Definition 5. Let ϕ : Λ → R be a Hölder continuous function. Given y ∈ π(Λ)
with y ≡ (i1, i2, ...), the Relative Pressure of ϕ with respect to the fibre π−1(y) is

P (f |Λ, ϕ, π−1(y)) = lim
n→∞

1

n
log

∑

j1,...,jn

sup
x∈R(i1j1)...(injn)∩π−1(y)

eSnϕ(x,y).

Then, given ν ∈ Me(b|π(Λ)), the number t(p) should be replaced by the number
t(ν) which is the root of

∫

π(Λ)

P (f |Λ,−t(ν) log ∂xa, π−1(y)) dν(y) = 0. (27)

So we are led to the following question:

dimH Λ = sup
ν∈Me(b|π(Λ))

{

hν(b)
∫

log b′dν
+ t(ν)

}

? (28)

Before answering affirmatively to this question, we should interpret what is the
expression between brackets in (28). In the self-affine case this expression was the
Hausdorff dimension of a Bernoulli measure µp which projects under π to νp: it
is the vertical dimension plus the dimension of typical horizontal fibres. Now, this
expression still is the Hausdorff dimension of an ergodic measure µν projecting to
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ν. This is the time for introducing the Relativized Variational Principle due to
[LW] (in a more general context).

Theorem 3. (Relativized Variational Principle)
Given ϕ : Λ → R continuous and ν ∈ M(b|π(Λ)),

sup
µ∈M(f |Λ)

µ◦π−1=ν

{

hµ(f) − hν(b) +

∫

Λ

ϕdµ

}

=

∫

π(Λ)

P (f |Λ, ϕ, π−1(y)) dν(y). (29)

We say that µ is an equilibrium state for (29) if the supremum is attained at µ.

It follows from the work of [DG, DGH] the existence of a unique equilibrium state
for (29) relative to any ν ∈ M(b|π(Λ)) and any Hölder-continuous ϕ. Moreover,
the unique equilibrium state is ergodic if ν is ergodic, and has an important Gibbs
property, as we shall describe now.

A bad thing about working with the relative pressure is that, in general, the
function

y 7→ P (f |Λ, ϕ, π−1(y))

is only measurable. Now if ϕ is Hölder continuous then [DG, DGH] constructed a
Hölder continuous function Aϕ : π(Λ) → R, called Gauge function, such that

∫

π(Λ)

log Aϕ dν =

∫

π(Λ)

P (f |Λ, ϕ, π−1(y)) dν(y) (30)

for every ν ∈ M(b|π(Λ)). Moreover there is a Gibbs family of measures {µϕ,y}y∈π(Λ)

such that: the unique equilibrium state µ for (29) relative to ν ∈ M(b|π(Λ)) and ϕ
is µ = ν ×µϕ,y, and there exist positive constants c1, c2 such that, for all y ∈ π(Λ),

c1 ≤
µϕ,y(Rn ∩ π−1(y))

exp{Snϕ(z) + Sn(log Aϕ)(y)}
≤ c2 (31)

for all n ∈ N, basic rectangle of order n Rn, and z ∈ Rn ∩ π−1(y).
Let µν be the equilibrium state for (29) relative to ν ∈ M(b|π(Λ)) and the

potential ϕ = −t(ν) log ∂xa, where t(ν) is given by (27) so that
∫

π(Λ)

log A−t(ν) log ∂xa dν = 0. (32)

Then, using the Gibbs property (31) and (32), we can prove (see [L1]):

Lemma 3. If ν ∈ Me(b|π(Λ)) then

dimH µν =
hν(b)

∫

log b′dν
+ t(ν).

And

Theorem 4.

dimH Λ = sup
ν∈Me(b|π(Λ))

dimH µν .

In particular, the variational principle for dimension holds.

Problem: Is there an ergodic invariant measure of full dimension?

This problem is more difficult than it looks at first sight. In fact, we can see that
the map

Me(b|π(Λ)) ∋ ν 7→ dimH µν =
hν(b)

∫

log b′ dν
+ t(ν)



20

is upper-semicontinuous. However, we cannot conclude there is an invariant mea-
sure of full dimension because the subset Me(b|π(Λ)) ⊂ M(b|π(Λ)) is not closed
(is dense).
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Lecture 3

This lecture is devoted to answer positively to the problem proposed at the end
of the previous lecture: there is an ergodic invariant measure of full dimension.

This will follow from the abstract result of [L3]:

Theorem 5. Let (X,T ) and (Y, S) be mixing subshifts of finite type, and π : X → Y
be a continuous and surjective mapping such that π ◦ T = S ◦ π (S is a factor of
T ). Let ϕ : X → R and ψ : Y → R be positive Hölder continuous functions. Then
the maximum of

hµ◦π−1(S)
∫

ψ ◦ π dµ
+

hµ(T ) − hµ◦π−1(S)
∫

ϕdµ
(33)

over all µ ∈ M(T ) is attained on the set Me(T ).

Remark 4. This theorem answers positively to Problem 2 raised in [GP2] for mix-
ing subshifts of finite type and Hölder continuous potentials. So, it also applies to
obtain an invariant ergodic measure of full dimension for a class of transformations
treated in [GP1].

For proving this theorem we will need a new variational principle for the topo-
logical pressure of certain noncompact sets.

Conditional Variational Principle for the Topological Pressure

The notion of topological entropy for noncompact sets was introduced by Bowen
in the beautiful paper [Bo3]. Later this notion was generalized for the topological
pressure of noncompact sets in [PP], for a definition we refer the reader to this
paper (note the resemblance with the definition of Hausdorff dimension).

Given a continuous map T : X → X of a compact metric space, we denote by
P (ψ,K) the topological pressure associated to a continuous function ψ : X → R

and a T -invariant set K (not necessarly compact), as defined in [PP]. Let

Iψ =

(

inf
µ∈M(T )

∫

ψ dµ, sup
µ∈M(T )

∫

ψ dµ

)

.

Theorem 6. ([L3])
Let (X,T ) be a mixing subshift of finite type, and ϕ,ψ : X → R Hölder continuous
functions. For α ∈ R let

Kα =

{

x ∈ X : lim
n→∞

1

n

n−1
∑

i=0

ψ(T i(x)) = α

}

.

If 0 /∈ ∂Iψ and α ∈ Iψ then

P (ϕ,Kα) = sup

{

hµ(T ) +

∫

ϕdµ : µ ∈ M(T ) and

∫

ψ dµ = α

}

.

Morever, the supremum is attained at a unique measure µβ which is the Gibbs state
with respect to the potential ϕ + βψ, for a unique β ∈ R.
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Proof. Here we just prove the ‘moreover’ part since we will not use equality with
the pressure of the noncompact set. We have, for all β ∈ R,

sup

{

hµ(T ) +

∫

ϕdµ : µ ∈ M(T ) and

∫

ψ dµ = α

}

= sup

{

hµ(T ) +

∫

ϕdµ + β

∫

ψ dµ : µ ∈ M(T ) and

∫

ψ dµ = α

}

− βα

≤ sup

{

hµ(T ) +

∫

ϕdµ + β

∫

ψ dµ : µ ∈ M(T )

}

− βα.

Now it is well known (see [Bo1]) that the last supremum is uniquely attained at
the Gibbs state µβ associated to the potential ϕ + βψ (for the classical variational
principle). So we must find a unique β such that

∫

ψ dµβ = α.
We use the abbreviation P (·) = P (·,X) (in Lecture 1 we used the notation

PT (·)). It is proved in [R2] that P (·) is a real analytic function on the space of
Hölder continuous functions and that

d

dε

∣

∣

∣

ε=0
P (h1 + εh2) =

∫

h2 dµh1
,

∂2P (h + ε1h1 + ε2h2)

∂ε1∂ε2

∣

∣

∣

ε1=ε2=0
= Qh(h1, h2),

where Qh is the bilinear form defined by

Qh(h1, h2) =

∞
∑

n=0

(∫

h1(h2 ◦ Tn) dµh −

∫

h1 dµh

∫

h2 dµh

)

, (34)

and µh is the Gibbs measure for the potential h. Moreover, Qh(h1, h1) ≥ 0 and
Qh(h1, h1) = 0 if and only if h1 is cohomologous to a constant function. From this
we get that

d

dβ

∫

ψ dµβ =
d2

dβ2
P (ϕ + βψ) = Qϕ+βψ(ψ,ψ) > 0 (35)

(the hypothesis α ∈ Iψ prevents ψ being cohomologous to a constant). So we must
see that

lim
β→∞

∫

ψ dµβ = sup
µ∈M(T )

∫

ψ dµ, (36)

lim
β→−∞

∫

ψ dµβ = inf
µ∈M(T )

∫

ψ dµ. (37)

Proof of (36): We use the notation

p(β) ∼ q(β) (β → ∞) means lim
β→∞

p(β)

q(β)
= 1.

We have that
∫

ψ dµβ =
d

dβ
P (ϕ + βψ) =

d

dβ
sup

µ∈M(T )

{

hµ(T ) +

∫

ϕdµ + β

∫

ψ dµ

}

. (38)

Since µ 7→ hµ(T ) +
∫

ϕdµ is bounded, it is easy to see that

sup
µ∈M(T )

{

hµ(T ) +

∫

ϕdµ + β

∫

ψ dµ

}

∼ β sup
µ∈M(T )

∫

ψ dµ, (39)

so, using L’Hospital’s rule applied to (38) and (39), we obtain (36). The proof of
(37) is similar. This concludes the proof of the theorem. ¤
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Now we have everything we need to prove Theorem 5.

Proof of Theorem 5. Since ϕ is positive then, given ν ∈ M(S), there is a unique
real t(ν) ∈ [0, 1] such that

∫

Y

P (T,−t(ν)ϕ, π−1(y)) dν(y) = 0 (40)

(note that t 7→ P (T,−tϕ, π−1(y)) is strictly decreasing). Denote by µν the unique
equilibrium state for (29) relative to ν and −t(ν)ϕ. Then it follows from the
relativized variational principle that, for µ ∈ M(T ) such that µ ◦ π−1 = ν,

hµ(T ) − hν(S)
∫

ϕdµ
≤ t(ν) (41)

with equality if and only if µ = µν . Put

D(µ) =
hµ◦π−1(S)
∫

ψ ◦ π dµ
+

hµ(T ) − hµ◦π−1(S)
∫

ϕdµ

and

D = sup
µ∈M(T )

D(µ). (42)

Then it follows by (41) that

D = sup
ν∈M(S)

{

hν(S)
∫

ψ dν
+ t(ν)

}

, (43)

and if this supremum is attained at ν0 ∈ Me(S) then the supremum in (42) is
attained at µν0

∈ Me(T ) as we wish.
It follows from (43) that

sup
ν∈M(S)

{

hν(S) + (t(ν) − D)

∫

ψ dν

}

= 0, (44)

and if this supremum is attained at ν0 ∈ Me(S) then so is the supremum in (43)
and thus the supremum in (42) is attained at µν0

∈ Me(T ) as we wish. Let

t = inf
ν∈M(S)

t(ν) and t = sup
ν∈M(S)

t(ν).

The supremum in (44) can be rewritten as

sup
t≤t≤t

sup
ν∈M(S)
t(ν)=t

{

hν(S) +

∫

(t − D)ψ dν

}

. (45)

According to [DG, DGH], there is a Hölder continuous function A−tϕ : Y → R such
that

∫

log A−tϕ dν =

∫

P (T,−tϕ, π−1(y)) dν(y), (46)

so by (40),

t(ν) = t ⇔

∫

log A−tϕ dν = 0.

So, the supremum in (45) can be rewritten as

sup
t≤t≤t

sup

{

hν(S) +

∫

(t − D)ψ dν : ν ∈ M(S) and

∫

log A−tϕ dν = 0

}

. (47)

We assume the supremum above is not attained at t or t (see [L3] for more details).
Applying Theorem B (we should verify its hypotheses) we get that the intermediate
supremum in (47) is attained at the Gibbs measure (hence ergodic) νβ(t) for the
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potential (t−D)ψ + β(t) log A−tϕ, and the value of this supremum is, with P (·) =
P (·, Y ),

h(t) = P ((t − D)ψ + β(t) log A−tϕ), (48)

where β(t) is the unique real satisfying
∫

log A−tϕ dνβ(t) = 0 i.e. t(νβ(t)) = t.

So we should see that the function (t, t) ∋ t 7→ h(t) is continuous. This follows
from the continuity of t 7→ A−tϕ and β(t) (see [L3] for more details), together with
|P (ϕ1) − P (ϕ2)| ≤ ‖ϕ1 − ϕ2‖ (see [R2]). So if the supremum of (t, t) ∋ t 7→ h(t) is
attained at t∗ ∈ (t, t) then

D = D(µνβ(t∗)
),

and this concludes the proof of the theorem.

¤

Measure of full dimension

Let f : T2 → T2, f(x, y) = (a(x, y), b(y)) and Λ such that f(Λ) = Λ be as
in Lecture 2. Let π : T2 → T1 be the projection given by π(x, y) = y. Then
π ◦ f = b ◦ π, and we are in the conditions of Theorem 5 with

T = f |Λ, S = b|π(Λ), ϕ = log ∂xa, ψ = log b′.

Now we improve Theorem 4 in Lecture 2.

Theorem 7. There exists an ergodic invariant measure µ on Λ such that

dimH Λ = dimH µ.

Morever, µ is a Gibbs state for a relativized variational principle.

Proof. By the proof of Theorem 5,

sup
ν∈Me(b|π(Λ))

{

hν(b)
∫

log b′ dν
+ t(ν)

}

is attained at some ν0 ∈ Me(b|π(Λ)). Then, by Lemma 3 and Theorem 4,

dimH Λ = dimH µν0
.

¤

Question: Is there a unique ergodic measure of full dimension ?

It follows from the proof of Theorem 5 that ergodic measures of full dimension
are given by µνβ(t)

where t is a zero (i.e. a maximizing point) of the function h

defined by (48). For instance, this is the case if h is C2 and h′′ < 0.


