Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise 10 de Janeiro de 2003 Duração: 3h.

1º EXAME DE ÁLGEBRA LINEAR

CURSOS: Lic. Eng. Geológica e Mineira, Lic. Eng. de Materiais e Lic. Eng. Mecânica

Seja

$$A_{\alpha} = \begin{bmatrix} 1 & \alpha & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & \alpha & \alpha \\ -1 & -\alpha & 1 & -\alpha \end{bmatrix}, \text{ com } \alpha \in \mathbb{R}.$$

- a) Determine a característica e a nulidade de A_{α} em função do parâmetro α .
- b) Diga, justificando, quais são os valores de α para os quais A_{α} é invertível.
- c) Para $\alpha = -1$, determine bases para o espaço das colunas e para o espaço nulo de A_{-1} .
- d) Para $\alpha = -1$, determine a solução geral do sistema de equações lineares $A_{-1}u = b$, onde b = (2, 2, 0, -2).

Considere \mathbb{R}^4 com o produto interno usual. Considere também os seguintes subespaços de \mathbb{R}^4 :

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y - z = 0\} \quad \text{e} \quad V = L(\{(0, 1, 1, 0)\}).$$

- a) Diga, justificando, quais as dimensões dos subespaços U + V e $U \cap V$.
- b) Determine uma base ortogonal para U e uma base ortonormada para U^{\perp} .
- c) Determine a projecção ortogonal do vector (1,0,1,0) sobre U^{\perp} .
- d) Determine a distância de (0,0,1,0) a U.

Considere a transformação linear $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ definida por

$$T(x, y, z, w) = (w + 2x - y, -w + 2y, 4y - 2w).$$

- a) Determine a matriz $M(T; \mathcal{B}_c^4; \mathcal{B}_c^3)$ que representa T em relação às bases canónicas \mathcal{B}_c^4 e \mathbb{R}^3 respectivamente.
 - b) Determine uma base para o núcleo $\mathcal{N}(T)$ de T. Diga se T é injectiva.
 - c) Determine uma base para o espaço imagem $\mathcal{I}(T)$ de T. Diga se T é sobrejectiva.
 - d) Determine a solução geral da equação T(x, y, z, w) = (1, -2, -4).

$$IV$$
 (3 val.)

Considere o espaço linear P_1 de todos os polinómios reais de grau menor ou igual a 1. Sejam $S_1 = \{1 - 2t, t\}$ e $S_2 = \{1 + t, 2 - t\}$ duas bases (ordenadas) de P_1 .

- a) Determine a matriz $S_{S_1 \to S_2}$ de mudança da base S_1 para a base S_2 .
- b) Suponha que as coordenadas de um vector $p(t) \in P_1$ em relação à base S_2 são dadas por (1,1). Determine as coordenadas do mesmo vector p(t) em relação à base S_1 .

c) Determine a matriz $S_{\mathcal{S}_2 \to \mathcal{S}_1}$ de mudança da base \mathcal{S}_2 para a base \mathcal{S}_1 .

$$V$$
 (3 val.)

Considere a transformação linear $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ que em relação à base canónica de \mathbb{R}^3 é representada pela matriz:

$$A = \left[\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 2 & -3 \end{array} \right].$$

- a) Determine os valores próprios e os subespaços próprios de T.
- b) Justifique que a matriz A é diagonalizável. Determine uma matriz de mudança de base S tal que a matriz $S^{-1}AS$ seja diagonal.
 - c) Justifique que a matriz A é invertível e calcule a entrada (1,1) da matriz inversa A^{-1} .

$$VI$$
 (2 val.)

- a) Seja A uma matriz do tipo $n \times n$. Mostre que se λ é um valor próprio de A então λ^k é um valor próprio de A^k , onde k é um inteiro positivo.
- b) Uma matriz A do tipo $n \times n$ diz-se nilpotente se $A^l = 0$ para algum inteiro positivo l. Mostre que se A é nilpotente então o único valor próprio de A é 0.