Instituto Superior Técnico - Álgebra Linear - 1º Semestre 2011/2012 LEAN - LEMat - MEAmbi - MEBiol - MEQ

1^a Ficha de exercícios facultativos

1. Sendo A, B, C matrizes de tipos apropriados, mostre que:

(i)
$$(AB) C = A (BC)$$

(i)
$$(AB) C = A (BC)$$
 (ii) $A (B+C) = AB + AC$

(iii)
$$(AB)^T = B^T A^T$$

2. Sendo A uma matriz do tipo $m \times n$, mostre que se $A^T A = \mathbf{0}$ então $A = \mathbf{0}$.

3. Sendo
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, determine todos os $u \neq \mathbf{0}$ tais que $Au = 5u$.

4. Obtenha, por indução, uma fórmula para A^n onde A é dada por:

(i)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

(i)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 (ii) $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ (iii) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

$$(iv) \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (v)
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} (\theta \in \mathbb{R})$$

5. Mostre que se AB = A e BA = B então $A^2 = A$ e $B^2 = B$.

6. Sendo A uma matriz 2×2 ortogonal, isto é, tal que $AA^T = A^TA = I$, mostre que

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \quad \text{ou} \quad A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}, \quad (\theta \in \mathbb{R}).$$

7. Diga de que tipos deverão ser as matrizes A e B de modo a poderem ser efectuados os seguintes produtos e desenvolva esses mesmos produtos.

(i)
$$(A + B)(A - B)$$

(ii)
$$(AB)^2$$

(iii)
$$(A + B)^2$$

8. (i) Verifique que as matrizes $A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix}$ não satisfazem a relação: $AB = \mathbf{0} \Rightarrow A = \mathbf{0}$ ou $B = \mathbf{0}$. O que pode concluir? E no caso de A ser invertível, o que concluiria acerca da veracidade da relação anterior?

(ii) Verifique que as matrizes $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} 2 & 2 \\ 0 & 0 \end{bmatrix}$ satisfazem a relação: $AB = AC \Rightarrow B = C$. O que pode concluir? E no caso de A ser invertível, o que concluiria acerca da veracidade da relação anterior?

9. Sejam A uma matriz do tipo $n \times n$ e B uma matriz do tipo $m \times n$ quaisquer.

(i) Prove que se A é simétrica (isto é $A = A^T$) então BAB^T também é simétrica.

1

(ii) Prove que se A é normal (isto é $A^HA=AA^H$) e B é unitária então BAB^H é normal.

(iii) Prove que B^TB e BB^T são matrizes simétricas e que B^HB e BB^H são matrizes hermitianas.

- 10. Uma matriz A do tipo $n \times n$ diz-se anti-simétrica se $A^T = -A$. Mostre que:
 - (i) Os elementos da diagonal principal de uma qualquer matriz anti-simétrica são todos nulos.
 - (ii) Para qualquer matriz A do tipo $n \times n$, a matriz $A A^T$ é anti-simétrica.
 - (iii) Escrevendo $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A A^T)$, toda a matriz quadrada pode ser decomposta de modo único pela soma de uma matriz simétrica com uma anti-simétrica.
- 11. Verifique que todas as matrizes $X=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]$ que satisfazem a equação $X^2=I$ são:

$$\pm I, \quad \pm \begin{bmatrix} 1 & 0 \\ c & -1 \end{bmatrix}, \quad \pm \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix}, \quad \begin{bmatrix} a & b \\ \frac{1-a^2}{b} & -a \end{bmatrix}.$$

Observe assim que a equação matricial $X^2 = I$ tem um número infinito de soluções em contraste com a equação escalar $x^2 = 1$ que tem apenas duas soluções (1 e - 1).

12. Mostre que:

$$\{X \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : XA = AX, \text{ para todo o } A \in \mathcal{M}_{2 \times 2}(\mathbb{R})\} = \left\{ \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} : \lambda \in \mathbb{R} \right\}.$$

Isto é, as matrizes 2×2 que comutam com todas as matrizes 2×2 são múltiplos escalares da matriz I.

- 13. Sendo A uma matriz do tipo $m \times n$, seja $\mathcal{N}(A) = \{X : AX = \mathbf{0}\}$. Mostre que:
 - (i) Sendo A e B matrizes de tipos apropriados, então $\mathcal{N}(B) \subset \mathcal{N}(AB)$.
 - (ii) Sendo $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, tem-se $\mathcal{N}(A^T A) = \mathcal{N}(A)$.
 - (iii) Sendo A e B matrizes do tipo $m \times n$ com m < n tais que AB^T é invertível, então B^TA não é invertível. Além disso, nenhuma linha de B pertence a $\mathcal{N}(A)$.
 - (iv) Sendo $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ tal que para todo o $B \in \mathbb{R}^m$, o sistema AX = B é possível, então $\mathcal{N}(A^T) = \{0\}$.
- 14. Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ tais que que Au = Bu para qualquer $u \in \mathcal{M}_{n \times 1}(\mathbb{R})$. Prove que A = B.
- 15. Sejam A,B matrizes não nulas do tipo $n\times 1$. Determine a característica de AB^T . Justifique.
- 16. Sendo A uma matriz do tipo $m \times n$ tal que car A = m, mostre que existe B do tipo $n \times m$ tal que AB = I.
- 17. Duas matrizes A e B do tipo $n \times n$ dizem-se semelhantes se existir S invertível tal que $A = SBS^{-1}$. Mostre que:
 - (i) Sendo A ou B invertíveis então AB e BA são semelhantes.
 - (ii) Sendo A e B semelhantes então $X \in \mathcal{N}(A)$ se e só se $S^{-1}X \in \mathcal{N}(B)$.

- 18. Seja A uma matriz quadrada (do tipo $n \times n$). Mostre que:
 - (i) Se A fôr invertível então A^{-1} também é invertível e $(A^{-1})^{-1} = A$.
 - (ii) Se A fôr invertível então A^T tambem é invertível e $(A^T)^{-1} = (A^{-1})^T$.
 - (iii) Se A fôr invertível e simétrica então A^{-1} tambem é simétrica.
- 19. Sejam $A \in B$ matrizes do tipo $n \times n$. Mostre que:
 - (i) Se A, B forem invertíveis então A + B não é necessariamente invertível.
 - (ii) Se $A, B \in A + B$ forem invertíveis então $A^{-1} + B^{-1}$ é invertível e

$$(A^{-1} + B^{-1})^{-1} = A(A+B)^{-1}B = B(A+B)^{-1}A.$$

Sugestão: comece por verificar que

$$I + B^{-1}A = B^{-1}(A+B)$$
 e $I + A^{-1}B = A^{-1}(A+B)$.

- 20. Seja A do tipo $n \times n$ tal que $A^2 = A$ (A diz-se idempotente). Mostre que:
 - (i) I A é idempotente.
 - (ii) 2A I é invertível e $(2A I)^{-1} = 2A I$. Além disso, se A fôr simétrica então 2A I é uma matriz ortogonal.
 - (iii) Se car A = n, então A = I.
- 21. Uma matriz B (do tipo $n \times n$) diz-se idempotente se $B^2 = B$. Mostre que

$$A^2 = I \quad \Leftrightarrow \quad \frac{1}{2}(I+A)$$
 é idempotente

- 22. Sendo $A = (a_{ij})$ uma matriz invertível e $B = (b_{ij})$ a inversa da A, mostre, para $k \neq 0$, a matriz $(k^{i-j}a_{ij})$ é invertível e a sua inversa é $(k^{i-j}b_{ij})$.
- 23. Seja A uma matriz do tipo 2×2 . Mostre que $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ é invertível se e só se $ad-bc \neq 0$. No caso de A ser invertível, utilize o método de eliminação de Gauss-Jordan para encontrar a matriz inversa de A.
- 24. Que condições devem ser verificadas para que a seguinte matriz diagonal do tipo $n \times n$

$$D = \begin{bmatrix} k_1 & 0 & \cdots & 0 \\ 0 & k_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & k_n \end{bmatrix}$$

3

seja invertível? Qual é a sua inversa?

25. Para matrizes quadradas $A = (a_{ij})_{n \times n}$ define-se o **traço** de A, tr(A), como sendo a soma de todas as entradas da diagonal principal de A, isto é,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Sejam $A = (a_{ij})_{n \times n}$ e $B = (b_{ij})_{n \times n}$ duas matrizes do tipo $n \times n$ e α um escalar. Mostre que

(i)

$$tr(A+B) = tr(A) + tr(B),$$

(ii)

$$\operatorname{tr}(\alpha A) = \alpha \operatorname{tr}(A),$$

(iii)

$$\operatorname{tr}(A^T) = \operatorname{tr}(A),$$

(iv)

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

Esta última igualdade continua a ser verdadeira se $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{n \times m}$.

26. Para cada matriz A do tipo $n \times n$, verifique que não existe X do tipo $n \times n$ tal que

$$AX - XA = I$$
.

27. Sejam A e B matrizes do tipo $n \times n$ tais que A é simétrica e B é anti-simétrica. Mostre que

$$tr(AB) = 0.$$

28. Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Mostre que

$$\operatorname{tr}(A^T A) = 0 \Leftrightarrow A = \mathbf{0}.$$

29. Sejam $u, v \in \mathcal{M}_{n \times 1}(\mathbb{R})$ tais que $u^T v \neq -1$. Seja

$$A = I + uv^T.$$

Verifique que A é invertível e que

$$A^{-1} = I - \frac{1}{1 + u^T v} u v^T.$$

Além disso verifique que

$$u^T v = \left[\operatorname{tr} \left(u v^T \right) \right]$$