Instituto Superior Técnico - Álgebra Linear - 1º Semestre 2015/2016 LEAN - LEMat - MEQ

8^a Ficha de exercícios para as aulas de problemas

- 1. Diga quais das seguintes aplicações $\langle , \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definem em \mathbb{R}^2 um produto interno.
 - (i) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1^2 y_1^2 + x_2^2 y_2^2$
 - (ii) $\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 x_2 y_1 x_1 y_2 + 3x_2 y_2$
 - (iii) $\langle (x_1, x_2), (y_1, y_2) \rangle = -2x_1y_1 + 3x_2y_2$
- 2. Diga quais das seguintes aplicações $\langle,\rangle:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ definem em \mathbb{R}^3 um produto interno.
 - (i) $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$
 - (ii) $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_2 x_2 y_1$
 - (iii) $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 2x_1y_1 + x_1y_3 + x_3y_1 + 2x_2y_2 + x_3y_3$
- 3. Determine um produto interno em \mathbb{R}^2 tal que $\langle (1,0), (0,1) \rangle = 2$.
- 4. Considere os vectores $u = \left(\frac{1}{\sqrt{5}}, -\frac{1}{\sqrt{5}}\right)$ e $v = \left(\frac{2}{\sqrt{30}}, \frac{3}{\sqrt{30}}\right)$. Verifique que o conjunto $\{u, v\}$ é ortonormado relativamente ao produto interno definido em \mathbb{R}^2 por:

$$\langle u, v \rangle = 3u_1v_1 + 2u_2v_2,$$

onde $u = (u_1, u_2)$ e $v = (v_1, v_2)$. Verifique porém que o mesmo conjunto $\{u, v\}$ não é ortonormado relativamente ao produto interno usual definido em \mathbb{R}^2 .

- 5. Considere em \mathbb{R}^4 o produto interno usual. Determine o subespaço de \mathbb{R}^4 ortogonal aos vectores (1,0,0,0) e (1,0,0,1).
- 6. Considere em \mathbb{R}^3 o produto interno definido por:

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + x_1 y_2 + x_2 y_1 + 2x_2 y_2 + x_3 y_3.$$

- (i) Calcule ||u||, para qualquer vector $u = (x_1, x_2, x_3) \in \mathbb{R}^3$.
- (ii) Considere os vectores $u_1 = (1,0,0)$, $u_2 = (-1,1,0)$ e $u_3 = (0,0,1)$. Calcule os ângulos formados pelos vectores: u_1 e u_2 ; u_1 e u_3 ; u_2 e u_3 .
- (iii) Justifique que o conjunto $\{u_1, u_2, u_3\}$ é uma base ortonormada de \mathbb{R}^3 . Calcule as coordenadas de um vector $u \in \mathbb{R}^3$ em relação a esta base.
- 7. Considere \mathbb{R}^4 com o produto interno usual. Determine uma base ortonormada para o subespaço de \mathbb{R}^4 gerado pelos vectores:

$$(1,0,-1,0),(-1,2,0,1) \in (2,0,2,1).$$

8. Considere \mathbb{R}^3 com o produto interno usual. Considere também os seguintes subespaços de \mathbb{R}^3 :

$$U = L(\{(0,1,1),(0,0,1)\})$$
 e $V = \{(x,y,z) \in \mathbb{R}^3 : y - z = 0\}$.

- (i) Determine uma base ortogonal para U e uma base ortonormada para V.
- (ii) Determine duas bases ortonormadas para \mathbb{R}^3 : uma que inclua dois vectores de U e outra que inclua dois vectores de V.
- (iii) Determine o elemento de U mais próximo de (1,1,1) e a distância entre (1,1,1) e V^{\perp} .
- 9. Considere o produto interno usual. Sejam

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x + z + w = 0 \text{ e } x + y + z + w = 0\}$$

e

$$V = \{(x, y, z, w) \in \mathbb{R}^4 : x - z = 0 \text{ e } x - w = 0\}.$$

- a) Determine, justificando, uma base ortogonal para U^{\perp} .
- **b)** Calcule, justificando, a distância entre (1, 1, 1, 1) e U.
- c) Determine $u \in U$ e $v \in V$ tais que

$$(1,0,0,0) = u + v.$$

10. Considere o produto interno usual em \mathbb{R}^3 e os seguintes planos:

$$U = \{(0, -1, 1)\} + L(\{(1, 0, 0), (0, 1, 1)\}), V = \{(x, y, z) \in \mathbb{R}^3 : y - z = 0\}.$$

Determine, justificando, uma base ortogonal para \mathbb{R}^3 que inclua um vector de V^{\perp} e calcule, justificando, a distância entre U e V.

11. Considere em \mathbb{R}^3 o produto interno para o qual a base ordenada de \mathbb{R}^3 :

$$\{(1,0,-1),(0,1,0),(-1,0,2)\}$$

é ortonormada. Verifique que esse produto interno é definido pela aplicação $\langle,\rangle:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ dada por:

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = 5x_1y_1 + 3x_1y_3 + x_2y_2 + 3x_3y_1 + 2x_3y_3$$

e determine, relativamente a ele, uma base para $(L(\{(-2,0,3),(0,1,0)\}))^{\perp}$.

12. Seja

$$A = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 1 \end{array} \right]$$

e considere o produto interno usual. Sejam $\mathcal{N}(A)$, $\mathcal{C}(A)$ e $\mathcal{L}(A)$ respectivamente o núcleo, espaço das colunas e espaço das linhas de A.

- (i) Determine uma base ortonormada para \mathbb{R}^{3} que inclua dois vectores de $\mathcal{C}(A)$.
- (ii) Determine o elemento de $\mathcal{L}(A)$ mais próximo de (1,1,1) e a distância entre (1,1,1) e $\mathcal{N}(A)$.

13. Seja

$$A = \left[\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{array} \right]$$

e considere o produto interno usual. Sejam $\mathcal{N}(A)$, $\mathcal{C}(A)$ e $\mathcal{L}(A)$ respectivamente o núcleo, espaço das colunas e espaço das linhas de A.

- (i) Determine uma base ortonormada para $(\mathcal{N}(A))^{\perp}$ (o complemento ortogonal do núcleo de A).
- (ii) Determine uma base ortonormada para \mathbb{R}^3 que inclua dois vectores de $\mathcal{C}(A)$.
- (iii) Determine o elemento de $\mathcal{L}(A)$ mais próximo de (1,2,3) e a distância entre (1,2,3) e $(\mathcal{L}(A))^{\perp}$.
- 14. Considere em \mathbb{R}^4 o seguinte subespaço: $U = L(\{(1,1,1,0),(0,1,1,1)\})$. Determine uma matriz A do tipo 2×4 cujo núcleo seja igual a U, isto é, tal que $U = \mathcal{N}(A)$.
- 15. Defina o produto interno em \mathbb{R}^2 em relação ao qual a base $\{(1,0),(1,-1)\}$ é ortonormada.
- 16. Considere a aplicação $\langle , \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida por

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 - x_1 y_2 - x_2 y_1 + 4x_2 y_2 + x_3 y_3.$$

- (i) Verifique que \langle , \rangle define um produto interno em \mathbb{R}^3 .
- (ii) Seja $V = L(\{(3,4,0)\}) \subset \mathbb{R}^3$. Diga qual é o ponto de V mais próximo de (0,1,0).
- (iii) Determine uma base ortogonal para o complemento ortogonal de V, em relação ao produto interno \langle,\rangle .
- (iv) Seja $P_V : \mathbb{R}^3 \to \mathbb{R}^3$ a projecção ortogonal de \mathbb{R}^3 sobre V. Indique, em relação ao produto interno \langle, \rangle , uma base ortonormada de \mathbb{R}^3 para a qual a representação matricial de P_V seja dada por

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

- 17. Considere \mathbb{R}^3 com o produto interno usual. Seja U o subespaço de \mathbb{R}^3 gerado pelos vectores $v_1 = (0,1,0)$ e $v_2 = \left(\frac{4}{5},0,-\frac{3}{5}\right)$. Escreva u = (1,2,3) na forma $u = u_1 + u_2$, com $u_1 \in U$ e $u_2 \in U^{\perp}$.
- 18. Considere \mathbb{R}^4 com o produto interno usual. Em cada alínea seguinte, determine uma base ortogonal para o complemento ortogonal de U, isto é, para U^{\perp} .

3

- (i) $U = L(\{(1,0,0,0),(1,1,0,1)\})$
- (ii) $U = L(\{(1,0,1,1)\})$
- (iii) $U = \{(x, y, z, w) \in \mathbb{R}^4 : x + 2y + z + 2w = 0\}$
- (iv) $U = \{(x, y, z, w) \in \mathbb{R}^4 : x z = 0 \text{ e } 2x y + 2z w = 0\}$

19. Considere \mathbb{R}^3 com o produto interno usual. Considere também o seguinte subespaço de \mathbb{R}^3 :

$$U = L(\{(1,1,1),(1,0,0)\}).$$

- (i) Determine uma base ortogonal para U.
- (ii) Determine $u \in U$ e $v \in U^{\perp}$ tais que (3, 2, 1) = u + v.
- (iii) Determine a distância entre o ponto (1,0,1) e o plano $\{(1,1,0)\}+U$.
- (iv) Determine a distância entre o ponto (x, y, z) e o plano U.
- 20. Considere \mathbb{R}^4 com o produto interno usual. Considere também o seguinte subespaço de \mathbb{R}^4 :

$$U = \{(x, y, z, w) \in \mathbb{R}^4 : x - y + z = 0 \quad \text{e} \quad y - z + w = 0\}.$$

- (i) Determine uma base ortonormada para U.
- (ii) Determine uma base ortonormada para U^{\perp} .
- (iii) Determine as projecções ortogonais de (0,0,1,0) sobre U e U^{\perp} respectivamente.
- (iv) Determine as representações matriciais de $P_U : \mathbb{R}^4 \to \mathbb{R}^4$ e de $P_{U^{\perp}} : \mathbb{R}^4 \to \mathbb{R}^4$ em relação à base canónica de \mathbb{R}^4 .
- (v) Determine a distância entre o ponto (0,0,1,0) e o subespaço U.
- (vi) Determine a distância entre o ponto (x, y, z, w) e o subespaço U.
- 21. Considere $P_2 = \{a_0 + a_1t + a_2t^2 : a_0, a_1, a_2 \in \mathbb{R}\}$ a aplicação $\langle , \rangle : P_2 \times P_2 \to \mathbb{R}$ definida por

$$\langle p(t), q(t) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

Considere também o seguinte subespaço de P_2 : $U = \{p(t) \in P_2 : p(0) = 0\}$.

- (i) Verifique que \langle , \rangle define um produto interno em P_2 .
- (ii) Determine uma base ortonormada para U.
- (iii) Determine uma base ortonormada para U^{\perp} .
- (iv) Determine as projecções ortogonais do polinómio 1+t sobre U e U^{\perp} respectivamente.
- (v) Determine as representações matriciais de $P_U: P_2 \to P_2$ e de $P_{U^{\perp}}: P_2 \to P_2$ em relação à base canónica $\{1, t, t^2\}$ de P_2 .
- (vi) Determine a distância entre $1 + t \in U$.
- (vii) Determine a distância entre o polinómio $a_0 + a_1t + a_2t^2$ e o subespaço U.
- 22. Considere a aplicação $\langle , \rangle : \mathcal{M}_{2\times 2}(\mathbb{R}) \times \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ definida por

$$\langle A, B \rangle = \operatorname{tr}(AB^T).$$

Considere também o subespaço U de $\mathcal{M}_{2\times 2}(\mathbb{R})$ constituído por todas as matrizes simétricas reais do tipo 2×2 :

$$U = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : b = c \right\}.$$

- (i) Verifique que \langle , \rangle define um produto interno em $\mathcal{M}_{2\times 2}(\mathbb{R})$.
- (ii) Determine uma base ortonormada para U.
- (iii) Determine uma base ortonormada para U^{\perp} .
- (iv) Determine as representações matriciais de $P_U: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$ e de $P_{U^{\perp}}: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$ em relação à base canónica

$$\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}$$

de $\mathcal{M}_{2\times 2}(\mathbb{R})$.

- (v) Determine as projecções ortogonais da matriz $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ sobre U e U^{\perp} respectivamente.
- (vi) Qual é a matriz simétrica mais próxima da matriz $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$?
- (vii) Determine a distância entre $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ e U.
- (viii) Determine a distância entre $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ e U.
- 23. Considere \mathbb{R}^3 com o produto interno usual. Considere também o seguinte subespaço de \mathbb{R}^3 :

$$U = L(\{(1,0,-1),(0,-1,1)\}).$$

- a) Determine uma base ortogonal para U.
- b) Determine uma base ortonormada para \mathbb{R}^3 que inclua dois vectores geradores de U.
- c) Determine a projecção ortogonal de (1,0,0) sobre U^{\perp} , isto é, $P_{U^{\perp}}(1,0,0)$.
- d) Determine a distância do ponto (1,0,0) a U^{\perp} .
- 24. Seja

$$P_2 = \{ p(t) = a_0 + a_1 t + a_2 t^2 : a_0, a_1, a_2 \in \mathbb{R} \}$$

o espaço linear dos polinómios de grau menor ou igual a 2. Considere a aplicação \langle,\rangle : $P_2\times P_2\to\mathbb{R}$ definida por

$$\langle a_0 + a_1 t + a_2 t^2, b_0 + b_1 t + b_2 t^2 \rangle = 3a_0 b_0 + a_1 b_1 + 2a_2 b_2.$$
 (*)

Considere também o seguinte subespaço de P_2 :

$$W = \{ p(t) = a_0 + a_1 t + a_2 t^2 \in P_2 : p(0) = p(1) \text{ e } p(1) = p(-1) \}.$$

- a) Verifique que a aplicação \langle , \rangle define em P_2 um produto interno.
- **b)** Determine uma base ortonormada para W^{\perp} , relativamente ao produto interno (*).

5

25. Seja

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right]$$

e considere o produto interno usual. Sejam $\mathcal{N}(A)$, $\mathcal{C}(A)$ e $\mathcal{L}(A)$ respectivamente o núcleo, espaço das colunas e espaço das linhas de A.

- a) Determine uma base ortogonal para $\mathcal{L}(A)$.
- **b)** Determine uma base ortonormada para \mathbb{R}^{3} que inclua dois vectores de $\mathcal{C}(A)$.
- **c)** Determine o elemento de $(\mathcal{N}(A))^{\perp}$ mais próximo de (-1,1,-1) e a distância entre (-1,1,-1) e $(\mathcal{L}(A))^{\perp}$.
- 26. Considere \mathbb{R}^3 com o produto interno usual. Seja Uo subespaço de \mathbb{R}^3 gerado pelo conjunto

$$\{(1,0,-1),(0,1,2)\}.$$

- a) Determine uma base ortogonal para U.
- **b)** Determine $u \in U$ e $v \in U^{\perp}$ tais que (2, -3, 4) = u + v.
- c) Determine a distância entre o ponto (2,3,7) e o plano $\{(1,2,3)\}+U$.
- 27. Considere \mathbb{R}^3 com o produto interno usual. Seja

$$A = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right].$$

Sejam $\mathcal{C}(A)$, $\mathcal{L}(A)$ e $\mathcal{N}(A)$, respectivamente, o espaço das colunas, o espaço das linhas e o núcleo de A.

- a) Determine uma base ortogonal para \mathbb{R}^3 que inclua um vector de $(\mathcal{C}(A))^{\perp}$ (complemento ortogonal de $\mathcal{C}(A)$).
- **b)** Calcule a distância entre (1, 1, 0) e $\mathcal{L}(A)$.
- c) Determine uma matriz B tal que $(\mathcal{N}(A))^{\perp} = \mathcal{N}(B)$ (o complemento ortogonal de $\mathcal{N}(A)$ é igual ao núcleo de B).
- 28. Considere o espaço linear \mathbb{R}^4 munido com o produto interno usual e os seguintes subespaços lineares de \mathbb{R}^4 :

$$V = L\left(\{(1,1,0,0),(1,0,1,-1)\}\right), \qquad W = \{(x,y,z,w) \in \mathbb{R}^4: \ x-y+2z+3w=0\}.$$

a) Determine $u \in V$ e $v \in V^{\perp}$ tais que (2, -2, 1, -1) = u + v e calcule a distância entre (1, 1, 1, 1) e V.

6

- **b)** Encontre uma matriz A tal que $W^{\perp} = \mathcal{N}(A)$.
- c) Verifique que $V \subset W$ e determine uma base para $W^{\perp} \cap V^{\perp}$.
- d) Verifique se $V^{\perp} + W^{\perp} = \mathbb{R}^4$, justificando.

29. Considere o espaço linear \mathbb{R}^4 munido com o produto interno usual e os seguintes subespaços lineares de \mathbb{R}^4 :

$$U = L(\{(0, 1, 1, 1), (1, -1, 1, 0)\}), \qquad V = \{(x, y, z, w) \in \mathbb{R}^4 : 4x + 3y + 2z + w = 0\}.$$

- a) Determine uma base ortogonal para V^{\perp} .
- b) Determine a distância entre o ponto (1,2,3,4) e o subespaço V^{\perp} .
- c) Determine uma base ortogonal para \mathbb{R}^4 que inclua os vectores (0,1,1,1) e (1,-1,1,0).
- **d)** Encontre uma matriz A tal que $U = (\mathcal{C}(A))^{\perp}$.
- 30. Seja

$$W = \{(x, y, z) \in \mathbb{R}^3 : x - 2y - 3z = 0\}.$$

Considere o produto interno usual.

- a) Determine as equações cartesianas da recta que passa pelo ponto u = (1, 1, 1) e é perpendicular ao plano W.
- **b)** Determine a equação cartesiana do plano que passa pelo ponto u=(1,1,1) e é paralelo ao plano W.
- 31. Considere a recta

$$r = (1, 1, 1) + L(\{(1, -1, 1)\}).$$

Considere o produto interno usual.

- a) Determine as equações cartesianas da recta r.
- **b)** Determine a equação cartesiana do plano que passa pelo ponto u=(1,0,0) e é perpendicular à recta r.
- 32. Seja P o plano que passa pelos pontos

$$(1,1,1),(2,0,3)$$
 e $(0,2,2)$.

Considere o produto interno usual.

- a) Determine a equação cartesiana de P.
- **b)** Determine as equações paramétricas de P.
- c) Determine a equação vectorial de P.
- 33. Determine a solução de mínimos quadrados de Au = b, com

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 1 & -2 \end{bmatrix} \quad \mathbf{e} \quad b = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix},$$

7

calculando o correspondente vector erro de mínimos quadrados.