
Dynamic Probabilistic Epistemic Logic

towards information security

Andreia Filipa Torcato Mordido

Dissertação para obtenção do Grau de Mestre em

Matemática e Aplicações

Júri

Presidente: Prof.a Doutora Maria Cristina Sales Viana Serodio Sernadas

Orientador: Prof. Doutor Carlos Manuel Costa Lourenço Caleiro

Vogal: Prof. Doutor Paulo Alexandre Carreira Mateus

Dezembro 2011

Agradecimentos

Ao Professor Carlos Caleiro agradeço este último ano: o que me ensinou, a capacidade

que tem de simplificar até o que é inerentemente complexo, mas acima de tudo agradeço a

escolha do tema, nenhum outro me motivaria tanto para os tempos que se seguem.

Ao Professor Paulo Mateus pelo interesse que as aulas de Criptografia despertaram em

mim para a área da segurança de informação.

Aos Professores Filipe Oliveira e Fabio Chalub agradeço a amizade, o contágio do gosto

pela matemática e a motivação que sempre me deram. O meu agradecimento permanente

ao Professor Lúıs Trabucho pela honra que senti por assistir às suas lições.

À famı́lia agradeço os sorrisos, os poemas e a dedicação.

i

ii

Resumo

Pretendemos estudar na literatura uma lógica que permita raciocinar sobre aspectos rele-

vantes em segurança de informação. Tipicamente num problema de segurança precisamos

de raciocinar sobre o conhecimento do intruso, a incerteza associada à distribuição dos

objectos desconhecidos e ainda sobre actualizações de informação. A lógica dinâmica

probabilistica e epistémica parece cobrir todos estes requisitos e impõe-se suficientemente

expressiva para modelar situações simples mas pertinentes em segurança. Neste texto

faremos uma revisão da lógica dinâmica probabilistica e epistémica e culminamos com a

aplicação desta lógica a duas situações simples mas bastante significativas em segurança

de informação. A primeira aplicação surge no âmbito da criptanálise e baseia-se na de-

scoberta de um segredo por parte de um atacante que tem a capacidade de interagir com

o sistema. O segundo problema prende-se com os conhecidos chosen-plaintext attack e

chosen-chiphertext attack e desenvolve-se em torno da importante noção de indistinguibil-

idade computacional.

A lógica dinâmica probabilistica epistémica prova ser importante no contexto da segurança

de informação, apresentando potencialidades para no futuro ser a base da correcção de

alguns protocolos em segurança.

Palavras-chave: lógica modal, lógica epistémica, lógica probabilistica epistémica, lógica

dinâmica probabilistica epistémica, segurança de informação, indistinguibilidade computa-

cional.

iii

iv

Abstract

We pretend to study in the literature a logic that allows us to reason about relevant issues

in information security. Typically in a security problem we need to reason about the in-

truder’s knowledge, the uncertainty related with the distribution of the unknown objects

and still about updates of information. The dynamic probabilistic epistemic logic seems

to cover all these requirements and imposes itself to be expressive enough to model simple

but relevant situations in security. In this text we make an overview of the dynamic prob-

abilistic epistemic logic and we end up applying this logic to a couple of simple but quite

significant situations in information security. The first application arises in the context of

cryptanalysis and is based upon the discovery of a secret by an attacker who is able to

interact with the system. The second problem is related to the known chosen-plaintext

attack and chosen-ciphertext attack and is developed around the important notion of com-

putational indistinguishability.

The dynamic probabilistic epistemic logic proves to be importance worthy in the context

of information security, with the potential to constitute in the future the basis of the

correctness of some security protocols.

Key words: modal logic, epistemic logic, probabilistic epistemic logic, dynamic proba-

bilistic epistemic logic, information security, computational indistinguishability.

v

vi

Contents

1 Introduction 1

2 Preliminary 5

3 Dynamic Probabilistic Epistemic Logic 13

3.1 Epistemic Logic . 15

3.2 Probabilistic Epistemic Logic . 23

3.2.1 Single Agent Case . 39

3.3 Dynamic Probabilistic Epistemic Logic . 42

3.3.1 Public Announcement Model . 42

3.3.2 Product Update Logic . 51

4 Applications 59

4.1 Mastermind . 59

4.1.1 Smart Strategy . 61

4.1.2 Dumb strategy . 69

4.2 Computational Indistinguishability . 77

5 Conclusion 85

Bibliography 87

vii

viii

Chapter 1

Introduction

Information security is a topic that has been shown essential nowadays. We live in a world

full of electronic communications and commerce, which requires a growing need for security.

Actually, information security has been the subject of much research in the last years.

To study secure communication protocols, two approaches have been used. The formal

approach adopts the Dolev and Yao attacker under an idealization of the cryptographic

systems. Despite assuming an idealization of the cryptographic primitives, this approach

represented a significant breakthrough in research in recent years, in fact it is scalable and

automatable. Nevertheless this approach is not perfect and omits many of the concrete

problems in cryptography. On the contrary, the computational approach seems to be closer

to reality. In this approach all the issues of computational complexity, resource-bounded

attackers and probabilities of attack are taken into consideration. Since it stands closer to

reality, it is far from being scalable or automatable. Recently, there has been an effort into

making these approaches closer and getting profit from the advantages of both of them.

One way of approaching the problem is to incorporate equational theories, probabilities,

and to a certain extent complexity issues, into a full-fledged security logic, and this is our

long term objective.

For now, this work consists in preparing the ground for the subsequent construction of the

information security logics we have in mind. Typically, in problems of information security

we need to reason about the intruder’s knowledge, the uncertainty related with the distri-

bution of the unknown objects and still with updates of information. We shall therefore

1

concern ourselves with studying the literature on logics for knowledge and probability that

also allow us to reason about information changes. The purpose of this text is to present

an overview of dynamic probabilistic epistemic logic and then test it by modeling original

applications on security motivated questions.

Reasoning about knowledge (see [7] for an overview) is an interesting topic of research since

early in economics, philosophy and more recently in computer science and mathematics.

It was a very exploited area until a strong interest in talking about uncertainty emerged

and in 1976 Aumann began introducing probabilities on his papers. However, a proper

logic with a language that allows us to reason about both knowledge and probability was

just presented in 1988 with the preliminary versions of [5] and [6]. After Gerbrandy’s [8]

concern on introducing a dynamical component on the epistemic case, in 2003 Kooi [15]

pieced together the probabilistic epistemic case of [5] with the dynamical epistemic case of

[8]. More recently [3] presents a more complete approach of dynamic probabilistic epistemic

logic.

Often, in problems of information security we focus on the behavior of the attacker thus

confining ourselves to the study of a single-agent in the system. The applications that we

will study at the end of this text rely on this. Therefore we will not concern ourselves on

defining common knowledge not even distributed knowledge as usual in the literature.

This text is divided into two major parts. In the first one (Chapter 3) we recall the

construction of the logic for knowledge, probability and information updates, step by step.

This first part consists of an overview of the already known results of probabilistic epistemic

logic with a dynamical component. In the second part (Chapter 4) we test the logic in

a couple of original applications that depict two simple but quite significant situations in

information security.

In Section 3.1 we begin by introducing and making an overview of epistemic logic. This

logic allows us to reason about the knowledge of the agents in static scenarios. Then we

increment the logic, introducing uncertainty in Section 3.2 and obtaining probabilistic epis-

temic logic. Pairing this definitions together with the proofs of soundness and completeness

we get the logic for the static case. With this static logic we make a detour on the single

agent case in Subsection 3.2.1 and study complexity-related questions in this simpler case.

Then we come back to the general case to remember we need to reason about information

updates and with this purpose in Chapter 3.3 we begin introducing a particular case of

2

update, the public announcements. Hence we generalize this approach to the case where,

in fact, updates are not deterministic and occur with a given probability.

In the closing Chapter 4 we dedicate ourselves on applying this theory to a pair of original

applications towards information security. In this last chapter, the logic is reduced to the

single agent case, focusing the analysis on the intruder’s behavior.

In the first application, the logic is used to model a usual problem associated with crypt-

analysis: there is a secret and an attacker who interacts with the system, gets information

and so reduces the uncertainty associated to the secret and eventually ends up discover-

ing its value. The second application is based on the important concept of computational

indistinguishability, which is crucial in information security, namely it is the base of the se-

mantic characterization of asymmetric encryption schemes such as chosen-plaintext attack

or chosen-ciphertext attack. We introduce the definition of computational indistinguisha-

bility and after analyzing its possible variations use dynamic probabilistic epistemic logic

in order to express it.

3

4

Chapter 2

Preliminary

This preliminary section aims to make this text self contained. We define several notions

in logic and present some introductory results.

The development of a logic consists in defining a formal language and in specifying a

procedure to obtain valid reasoning patterns.

Definition 2.0.1 A logic consists of a language and a consequence operator, L = (L,`),

where L 6= ∅ and `⊆ 2L × L verifies the following conditions:

(i) Γ ` A if A ∈ Γ

(ii) if Γ ⊆ ∆ and Γ ` A then ∆ ` A

(iii) if Γ ` A for all A ∈ ∆ and ∆ ` B then Γ ` B.

In axiomatizable logics it still verifies

(iv) if Γ ` A then there exists a finite Γ0 ⊆ Γ such that Γ0 ` A.

Notice that if the language L have some structure and some connectives then the conse-

quence operator may verify some extra conditions.

Notation: Most of the times we confuse the notation of language L with L.

We must establish a consequence relation. With this purpose we can use either the deduc-

tive way or the semantic way. We begin by introducing a consequence relation by means

5

of the deductive approach. For this we need to characterize a deductive system.

Definition 2.0.2 A rule of inference has the form A1,...,An
A . The formulas A1, . . . , An are

the premises and A is termed the conclusion.

A set of formulas is closed for an inference rule A1...,An
A if whenever the set contains all the

premises then it also contains the conclusion.

We define an axiom to be an inference rule without premises.

Notation: We denote an axiom

A

without the horizontal bar, i.e

A.

Definition 2.0.3 An inference system is a collection of axioms and inference rules.

To reason in a logic we need to establish a relation between formulas and it can be achieved

through the notion of derivability.

Definition 2.0.4 Consider an inference system. A proof consists of a sequence of for-

mulas, each of which is an hypothesis, an instance of an axiom or is the result of applying

an inference rule to the previous formulas.

We say that we have a proof of ϕ from Γ if we have a proof where ϕ is the last formula in

the sequence and all the hypotheses belong to Γ.

Moreover, we say that ϕ is provable (or ϕ is a theorem), and write ` ϕ, if we have a proof

of ϕ.

Notation: To simplify the notation, we write ψ1, . . . , ψn ` ϕ instead of {ψ1, . . . , ψn} ` ϕ.

Moreover we denote Γ ` A and Γ ` B by Γ ` A,B.

Now that we already introduced the notion of consequence relation in a deductive way, we

care about the definition of a consequence relation in a semantic approach. So we need to

clarify the notion of a model for a logic.

Models for a logic are structures that attribute a meaning to formulas of the language.

Definition 2.0.5 Let L be a logic. A satisfaction relation is such that ⊆M×L, where

M is the class of models for L and L is the language.

6

We say we are in the presence of a semantics when it is defined a class of models M and

a satisfaction relation .

Definition 2.0.6 Let L be a logic, M the class of models for L and ϕ ∈ L a formula.

We say that

ϕ is valid, ϕ, if ϕ is true in all the models in M,

ϕ is satisfiable if exists a model in M that makes the formula ϕ true,

ϕ is semantic consequence of a set Γ ⊆ L, Γ |= ϕ, if in any model where all the formulas

of Γ are valid, ϕ is also valid.

Definition 2.0.7 Let L be a logic and consider a semantics M, .

We say that the inference system is strongly sound for L if for every set of formulas Γ ⊆ L,

any formula that is provable from Γ, follows semantically from Γ,

if Γ ` ϕ then Γ |= ϕ.

An inference system is weakly sound if every formula provable in L is valid with respect to

every model M , i.e.

if ` ϕ then ϕ.

Reciprocally, an inference system is strongly complete for L if for every set of formulas

Γ ⊆ L, any formula which semantically follows from Γ is derivable from Γ,

if Γ |= ϕ then Γ ` ϕ.

An inference system is weakly complete for L if every valid formula is provable, i.e.,

if ϕ then ` ϕ.

Definition 2.0.8 Let L be a logic and Ψ ⊆ L be a set of formulas. We define

Ψ to be `-consistent if exists ψ ∈ L such that Ψ 6` ψ.

If Ψ is not `-consistent , we say Ψ is `-inconsistent .

The notion of (in)consistency is very important. Definition 2.0.8 expresses pretty well the

concept of inconsistency, however there is another approach to this notion that in the more

specific context where we will work is equivalent to the previous one, and it is quite easy

to use in the proofs we will have to do.

7

For this reason we now reduce the level of generality and specify the logics with which we

will deal.

Definition 2.0.9 A set C provided with a function f : C −→ N0 is called a set of

constructors. The function f assigns to each constructor c ∈ C its arity f(c) ∈ N0.

Typically, the language is constructed inductively from a set of primitive propositions and

a set of constructors.

Definition 2.0.10 Given a set Φ of primitive propositions and C a set of constructors,

a language L is defined inductively as follows:

• P ⊆ L

• if c ∈ C and ϕ1, . . . , ϕf(c) ∈ L then c
(
ϕ1, . . . , ϕf(c)

)
∈ L

Later on we are interested in modal logics, so in particular we want to talk about classical

based logics. With this purpose we assume from now that the language is constructed

at least with the connectives ¬,∧,→,∨. In addition assume some properties over these

connectives:

i. Γ, A ` B iff Γ ` A→ B

ii. Γ ` A,B iff Γ ` A ∧B

iii. Γ ` A or Γ ` B iff Γ ` A ∨B

iv. if Γ ` A then Γ 6` ¬A

v. A,¬A ` B,

where A,B ∈ L are any formulas.

As stated above, the notion of inconsistency is very important and the approach of consis-

tency with connectives is easier to use, therefore consider the following

Definition 2.0.11 Let L be a logic, ϕ,ϕ1, . . . , ϕn ∈ L formulas and Ψ ⊆ L an infinite

set of formulas. We define

• ϕ to be `-consistent if 6` ¬ϕ;

• {ϕ1, . . . , ϕn} to be `-consistent if ϕ1 ∧ . . . ∧ ϕn is `-consistent ;

• Ψ is `-consistent if all its finite subsets are `-consistent .

8

If Ψ is not `-consistent , we say Φ is `-inconsistent .

Proposition 2.0.1 Let L be a logic (with the assumptions above).

Definition 2.0.8 and Definition 2.0.11 are equivalent.

Proof: Since the classical negation is explosive, i.e.

for all Λ ⊆ L, A,B ∈ L we have Λ, A,¬A ` B,

Definition 2.0.8 is equivalent to the following definition

Ψ is `-inconsistent iff exists a formula B such that Ψ ` B,¬B. (2.1)

Let ϕ be any formula.

Assume ϕ is `-inconsistent in the sense of Definition 2.0.11. Then we have ` ¬ϕ. So

ϕ ` ϕ,¬ϕ, so (2.1) holds.

Reciprocally, assume ϕ is `-inconsistent wrt Definition 2.0.8. Then ϕ ` ¬ϕ. By the

assumption of local deduction, we can use deduction metatheorem (property i.) and it

follows that ` ϕ→ ¬ϕ. Since we are working with classical negation we have ` ¬ϕ. �

Definition 2.0.12 Consider an inference system and let Υ,∆ ⊆ L be any sets of formu-

las.

Υ is a maximal consistent subset of ∆ if

• Υ is `-consistent

• Υ ⊆ ∆

• for all ϕ ∈ ∆ \Υ, the set Υ ∪ {ϕ} is `-inconsistent .

Lemma 2.0.13 Consider an inference system and let ∆ ⊆ L a countable set of formulas

which is closed with respect to classical negation and conjunction.

Then, every `-consistent set Υ ⊆ ∆ can be extended to a maximal consistent subset of ∆.

If Υ is a maximal consistent subset of ∆ then

(i) for every formula ϕ ∈ ∆ exactly one of ϕ and ¬ϕ belongs to Υ,

(ii) if ϕ ∧ ψ ∈ ∆ then ϕ ∧ ψ ∈ Υ iff ϕ ∈ Υ and ψ ∈ Υ,

(iii) if ϕ, (ϕ⇒ ψ) ∈ Υ then ψ ∈ Υ,

9

(iv) if ϕ is provable then ϕ ∈ Υ.

Proof: Let Υ ⊆ ∆ be an `-consistent set. ∆ is a countable set of formulas, say ∆ =

{ψi}i∈N.

Now consider the following construction of the extension of Υ to a maximal consistent

subset of ∆:

Υ0 = Υ

Υi+1 =

{
Υi ∪ {ψi+1} if Υi ∪ {ψi+1} is `-consistent

Υi otherwise

Let Υ̃ =
⋃∞
i=0 Υi.

Each finite subset Λ of Υ̃ is contained in some Υk, k ∈ N. Since Υk is `-consistent so is Λ.

Therefore Υ̃ is `-consistent .

Let ϕ ∈ ∆ be a formula such that ϕ 6∈ Υ̃ and ϕ ∈ ∆ = {ψi}i∈N, say ϕ = ψm. If Υm∪{ψm}
is `-consistent , then Υm+1 = Υm ∪ {ψm} ⊆ Υ̃ and ψm ∈ Υ̃, which is a contradiction. So

Υm ∪ {ψm} ⊆ Υ̃∪ {ψm} is `-inconsistent and hence Υ̃∪ {ψm} is `-inconsistent . We then

have Υ̃ a maximal `-consistent set which contains Υ.

Now let Υ to be a maximal consistent subset of ∆. Using the properties of ` we have:

(i) Let ϕ ∈ ∆, we want to show that either Υ∪{ϕ} or Υ∪{¬ϕ} is `-consistent . Assume

that both Υ ∪ {ϕ} and Υ ∪ {¬ϕ} are `-inconsistent . Then for all formulas ξ ∈ L,

Υ ∪ {ϕ} ` ξ and Υ ∪ {¬ϕ} ` ξ. Since we are working with classical logic it follows

that Υ ∪ {ϕ ∨ ¬ϕ} ` ξ. But then Υ ∪ {ϕ ∨ ¬ϕ} is `-inconsistent and therefore Υ

is `-inconsistent (because ϕ ∨ ¬ϕ is a classical propositional tautology), which is a

contradiction.

So Υ ∪ {ϕ} is `-consistent or Υ ∪ {¬ϕ} is `-consistent . If Υ ∪ {ϕ} is `-consistent ,

then ϕ ∈ Υ because Υ is maximal. Similarly, in the other case, ¬ϕ ∈ Υ. Of course,

ϕ and ¬ϕ could not belong both to Υ, for otherwise by property v. of `, Υ would

not be `-consistent .

(ii) Let ϕ ∧ ψ ∈ ∆.

If ϕ ∧ ψ ∈ Υ, then we must have ϕ ∈ Υ, for otherwise, by (i) ¬ϕ ∈ Υ and Υ would

be `-inconsistent . Similarly, ψ ∈ Υ.

Assume now ϕ,ψ ∈ Υ, we must have ϕ ∧ ψ ∈ Υ, for otherwise by (i), ¬(ϕ ∧ ψ) ∈ Υ

10

and then Υ could be `-inconsistent .

(iii) Suppose ϕ, (ϕ→ ψ) ∈ Υ and assume ¬ψ ∈ Υ.

Consider {ϕ,ϕ→ ψ,¬ψ} ⊆ Υ a subset. We have:

¬(ϕ ∧ ϕ→ ψ ∧ ¬ψ) = ¬(ϕ ∧ (¬ϕ ∨ ψ) ∧ ¬ψ)

= ¬((ϕ ∧ ¬ϕ ∧ ¬ψ) ∨ (ϕ ∧ ψ ∧ ¬ψ)) = (¬ϕ ∨ ϕ ∨ ψ) ∧ (¬ϕ ∨ ¬ψ ∨ ψ)

which is provable. So Υ is `-inconsistent , which is a contradiction.

By (i) we must have ψ ∈ Υ.

(iv) Suppose ϕ is provable.

Υ ∪ {ϕ} is clearly `-consistent , but Υ is maximal, so ϕ ∈ Υ. �

Lemma 2.0.14 Let ϕ1, . . . , ϕm, ϕ ∈ L be formulas.

If {ϕ1, . . . , ϕm,¬ϕ} is `-inconsistent then ` ϕ1 → (ϕ2 → (. . .→ (ϕn → ϕ) · · ·)).

Proof: Suppose {ϕ1, . . . , ϕm,¬ϕ} is `-inconsistent . By Definition 2.0.11,

ϕ1, . . . , ϕm,¬ϕ ` ¬(ϕ1 ∧ . . . ∧ ϕm ∧ ¬ϕ).

Since we are working with classical negation we equivalently have

ϕ1, . . . , ϕm,¬ϕ ` ¬ϕ1 ∨ . . . ∨ ¬ϕm ∨ ϕ.

And using i. it follows that

ϕ2, . . . , ϕm,¬ϕ ` ϕ1 → (¬ϕ1 ∨ . . . ∨ ¬ϕm ∨ ϕ).

Using propositional reasoning this is clearly equivalent to

ϕ2, . . . , ϕ,¬ϕ ` ϕ1 → (¬ϕ2 ∨ . . . ∨ ¬ϕm ∨ ϕ).

By an induction argument we get

¬ϕ ` ϕ1 → (ϕ2 → (· · · → (ϕm → ϕ) · · ·)).

Therefore ` ¬ϕ→ (ϕ1 → (ϕ2 → (· · · → (ϕm → ϕ) · · ·))), which is equivalent to

` ϕ1 → (ϕ2 → (· · · → (ϕm → ϕ) · · ·)).

�

As we saw, the language is typically defined recursively. In the proofs we will use very

often this recursive feature of the language. For this we define the notion of subformula.

11

Definition 2.0.15 Let L be a language and consider Φ and C to be, respectively, the set

of primitive propositions and the set of constructors used ti define the language.

We define the set of subformulas of ϕ as:

• Sub(p) = {p}, for p ∈ Φ

• Sub(c(ϕ1, . . . , ϕn)) = {c(ϕ1, . . . , ϕn)} ∪
n⋃
i=1

Sub(ϕi).

Moreover, we define Subϕ to be the set of subformulas of ϕ and their negations,

Subϕ = Sub(ϕ) ∪ {ψ ∈ L | ¬ψ ∈ Sub(ϕ)}.

Later we will need the notion of functional completeness. Its reciprocal consists of a simple

observation.

Remark 2.0.16 If we assume the logic to have propositional symbols p1, . . . , pn and to

be classical based, then it is straightforward to see that each classical formula ϕ with n

variables, ϕ(p1, . . . , pn), define a Boolean function f : 2n −→ 2. To define the function f

it is sufficient to construct a truth table.

Example 2.0.1 To the formula p1 ∧ p2 corresponds the function f : 22 −→ 2 defined by

f(1, 1) = 1, f(1, 0) = 0, f(0, 1) = 0, f(0, 0) = 0.

Definition 2.0.17 If every function f : 2n −→ 2 for n ≥ 1 can be realized by a formula

ϕ which only uses the connectives on a set C, we say that the set C is functional complete.

Remark 2.0.18 {∧,¬} is functional complete.

12

Chapter 3

Dynamic Probabilistic Epistemic

Logic

We are interested in studying dynamical probabilistic epistemic logics. With this purpose

we start our study with the epistemic case, then we introduce uncertainty and further we

want to be able to reason about a dynamical component.

All of these logics have the particularity of being modal logics. We shall therefore briefly

introduce the study of modal logic.

In modal logic, the language has, besides the usual constructors of classical based logics,

modal operators {�j}j∈J and {♦j}j∈J , which represents necessity and possibility. Assume

each modal operator �j (or ♦j) has arity mj .

Convention: We define the possibility operator ♦ as

♦A↔ ¬�¬A.

The language in modal logic is defined recursively, as usual. We fix Φ to be a set of

primitive propositions, then using the constructors and the modal operators the formulas

are constructed.

Notation: We define the formula true to be p∨¬p for any primitive proposition p. false

is defined to be ¬true.

The models for modal logic that we use are Kripke structures.

13

Definition 3.0.19 A Kripke structure is a tuple M = (S, π, {Rj}j∈J) where S is a set

of states, π is an identification function that for each s ∈ S assigns true or false to the

primitive propositions and Rj is a (mj + 1)-ary relation on S, for each j ∈ J .

For semantics to be fully characterized we define by induction the truth of formulas with

the modal operator �.

Definition 3.0.20 Let Φ be the set of primitive propositions, M a Kripke structure and

L a language with the modal operator � which has arity n. Let s ∈ S be a state and ϕ ∈ L
a formula.

If ϕ is a primitive proposition, we have (M, s) ϕ iff π(s)(ϕ) = true.

If ϕ is of the form �(ϕ1 . . . , ϕn) for some formulas ϕ1, . . . , ϕn ∈ L, we define

(M, s) �(ϕ1, . . . , ϕn) iff for all v1, . . . , vn ∈ S such that (s, v1, . . . , vn) ∈ R, (M,vi) ϕi,

for all i = 1, . . . , n.

Moreover, when the logic uses connectives, the truth of formulas using that connectives

should be defined.

Typically in modal logic we study infinite sets which usually makes the logic not complete

in the strong sense. Therefore in this text we will seek to prove soundness and completeness

in the weak sense only.

To close this preamble in modal logic we present two basic definitions and a trivial result

that are needed in future proofs.

Definition 3.0.21 Let R be a binary relation on a set S.

R is said to be an equivalence relation if

• R is reflexive, i.e, for all s ∈ S, (s, s) ∈ R,

• R is symmetric, i.e., whenever (r, s) ∈ R, (s, r) ∈ R and

• R is transitive, i.e., whenever (r, s), (s, t) ∈ R, (r, t) ∈ R.

Definition 3.0.22 Let R be a binary relation on a set S.

R is said to be Euclidean if whenever (s, t) ∈ R and (s, u) ∈ R then (t, u) ∈ R, where

s, t, u ∈ S.

Lemma 3.0.23 If R is reflexive and Euclidean, then R is symmetric.

14

Proof: Suppose R is reflexive and Euclidean and let s, t ∈ S be such that (s, t) ∈ R.

Since R is reflexive, (s, s) ∈ R. So we have (s, t), (s, s) ∈ R. R is Euclidean, so (t, s) ∈ R
and R is symmetric. �

3.1 Epistemic Logic

In this section we provide an overview of epistemic logic in [7].

Definition 3.1.1 Consider n agents 1, . . . , n. The epistemic language LKn (Φ) has the

following inductive syntax

ϕ ::= p | ¬ϕ |ϕ ∧ ψ |Kiϕ

where p ∈ Φ and i ∈ {1, . . . , n}.

Notation: Since the set of primitive propositions was fixed at the beginning of the chapter,

we will drop the dependence of the language on Φ and we will denote LKn := LKn (Φ).

The epistemic logic we are presenting contains the modal operators K1, . . . ,Kn that allow

us to reason about the knowledge of each agent.

The expression Kiϕ should be read as “agent i knows ϕ”.

It should be noted however that there are other approaches to epistemic logic, namely

logics that reason about belief.

Definition 3.1.2 A Kripke structure for knowledge for n agents 1 . . . , n over Φ is a

tuple M = (S, π,K1, . . . ,Kn) where S is a nonempty set of states or worlds, π is an

interpretation function that for each state s ∈ S assigns true or false to the primitive

propositions p ∈ Φ, and finally, for each i ∈ {1, . . . , n} Ki is an equivalence relation.

In the context of epistemic logic is intuitive the meaning of the equivalence relation Ki:
(s, t) ∈ Ki if agent i considers world t possible given his information in world s.

Remark 3.1.3 It is common to define Kripke structures assuming Ki to be any binary

relation, but in order to model knowledge we require each Ki to be an equivalence relation.

Then it will coincide with our idea that (s, t) ∈ Ki if s and t are indistinguishable for agent

i, i.e., agent i has the same information in both worlds.

15

The assumption that Ki are equivalence relations traduces in properties that represent the

characteristics of a perfect reasoner. It is our assumption throughout this text that the

agents are perfect reasoners.

Notation: Let Ki(s) := {t ∈ S | (s, t) ∈ Ki} represent the set of all the states indistin-

guishable from s from the point of view of the agent i.

Definition 3.1.4 Let LKn be the epistemic language over Φ and M = (S, π,K1, . . . ,Kn)

a Kripke structure for knowledge over Φ. Let s ∈ S be a state and ϕ ∈ LKn be a formula.

If ϕ is a primitive proposition p ∈ Φ, we define

(M, s) p if and only if π(s)(p) = true. (3.1)

If ϕ is of the form ¬ψ, for some formula ψ, we define

(M, s) ¬ψ if and only if (M, s) 6 ψ (3.2)

If ϕ is of the form ξ ∧ ψ, for some formulas ξ and ψ, we define

(M, s) ξ ∧ ψ if and only if (M, s) ξ and (M, s) ψ. (3.3)

If ϕ is of the form Kiψ, for some formula ψ we define

(M, s) Kiψ if and only if for all t ∈ S s.t. (t, s) ∈ Ki, (M, t) ψ. (3.4)

(3.2) and (3.3) tell us we are dealing with classical connectives. Whereas (3.4) expresses

the idea that agent i knows ψ at a given world s if ψ holds in all worlds that agent i

considers indistinguishable from s.

Notation: Let MK
n denote the collection of Kripke structures for knowledge for agents

1, . . . , n over Φ.

Throughout the overview of the dynamic probabilistic epistemic logic we will follow closely

an example inspired in my bus trips to the high school. The pictures depict the situation

and should be observed while the problem is exposed.

Example 3.1.1 Consider four passengers traveling in a bus.

In the beginning of the trip the driver reveals that the bus has four passenger seats, two of

them have black back side and the other two have white back sides.

Passengers are arranged in such a way that passenger 1 and passenger 2 do not see any

16

back side of the other seats, passenger 3 sees the back side of 2’s seat and passenger 4 sees

the back side of the seats of 2 and 3.

In this bus trip there are 4 agents. The primitive propositions should express the color

of each seat’s back side. For each i ∈ {1, 2, 3, 4} let us assume wi means “the back side

of passenger i’s seat is white”. Consider Φ = {w1, w2, w3, w4} to be the set of primitive

propositions.

The Kripke structure for knowledge is given by M = (S, π,K1,K2,K3,K4), where S =

{(x1, x2, x3, x4) ∈ {0, 1}4 : x1 + x2 + x3 + x4 = 2} represents all the possible worlds.

Denoting the real world by s∗ we have

π(s∗)(w1) = π(s∗)(w3) = true,

π(s∗)(w2) = π(s∗)(w4) = false.

It is straightforward to define π on all the other worlds of S.

We should expect that

K4 =
{

((s1, s2, s3, s4), (t1, t2, t3, t4)) ∈ S2 : s2 = t2 and s3 = t3
}
,

This means agent 4 can not distinguish worlds where seats 2 and 3 has the same color. In

particular, this restriction on K4 implies

(M, s∗) K4(¬w2) ∧K4(w3),

i.e. passenger 4 knows that the back side of 2’s seat is black and the back side of 3’s seats

is white, as we imposed in the beginning.

Moreover, K3 =
{

((s1, s2, s3, s4), (t1, t2, t3, t4)) ∈ S2 : s2 = t2
}

and K1 = K2 = S2. �

17

Now that we have inspired us, we need to introduce some axioms and inference rules that

allow us to reason deductively over the epistemic logic.

Definition 3.1.5 Let the inference system for knowledge HK be composed by the following

axioms and inference rules:

K1. All tautologies of the classical propositional calculus

K2. (Kiϕ ∧Ki(ϕ→ ψ))→ Kiψ, i = 1, . . . , n [Distribution Axiom]

K3. Kiϕ→ ϕ, i = 1 . . . , n [Knowledge Axiom]

K4. Kiϕ→ KiKiϕ, i = 1, . . . , n [Positive Introspection Axiom]

K5. ¬Kiϕ→ Ki¬Kiϕ, i = 1, . . . , n [Negative Introspection Axiom]

R1. From ϕ and ϕ→ ψ infer ψ [Modus Ponens]

R2. From ϕ infer Kiϕ [Knowledge Generalization]

Notation: Let `Kn represent the deductive system corresponding to the inference system

for knowledge.

This inference system allows us to reason about knowledge. K2 represents the idea that

agents know all the logical consequences of their knowledge. K3 means agents only know

valid formulas. Moreover, agents are perfect reasoners and it follows that our logic verifies

the additional properties K4, agent i recognizes all the things he knows, and K5, agent i

recognizes what he does not know.

Proposition 3.1.1 Consider the epistemic deductive system `Kn . We have the theorems

K(A→ B)→ (KA→ KB) (3.5)

K(A ∧B)↔ (KA ∧KB) (3.6)

KA→ K(A ∨B) (3.7)

Proof:

18

(3.5) Is an immediate consequence of K2.

(3.6)

K(A ∧B) iff K(¬(A→ ¬B)) then ¬K(A→ ¬B) then ¬(KA→ K¬B) then

¬(¬KA ∨K¬B) then ¬(¬KA ∨ ¬KB) iff KA ∧KB.

Reciprocally, since B → (A→ A∧B) is a tautology, if KA∧KB then KA∧K(A→ A∧B)

and using K2, K(A ∧B).

(3.7) Suppose KA holds.

Since A→ A ∨B is a tautology, applying R2 we have K(A→ A ∨B).

Then KA ∧K(A→ A ∨B) holds and by K2 it follows that K(A ∨B). �

Lemma 3.1.6 If

every `K-consistent formula in LKn is satisfiable with respect to MK
n (3.8)

then

every formula in LKn that is valid with respect to MK
n is provable in HK .

Proof: Suppose that (3.8) holds and let ϕ ∈ LKn be a formula.

In order to obtain a contradiction let us assume ϕ is valid with respect to MK
n and ϕ is

not provable. Since we are using classical negation this means ¬¬ϕ is not provable. Then,

by Definition 2.0.11, ¬ϕ is `K-consistent . By (3.8), ¬ϕ is satisfiable with respect toMK
n ,

which contradicts the assumption that ϕ is valid. �

Theorem 3.1.7 HK is a sound and (weakly) complete axiomatization for the epistemic

logic with respect to MK
n .

Proof:

Let us begin proving soundness. Consider M to be a Kripke structure for knowledge in

MK
n .

First of all, we will see K1 holds. Let A be a propositional tautology. We want to see that

M A.

A being a tautology means A is true in every valuation, with the inductive definition of

validity this means that for every state t we have (M, t) A, so M A.

19

Let us now see R1 is a valid in LKn . Suppose M ϕ and M ϕ→ ψ.

For all states s ∈ S, (M, s) ϕ and (M, s) ϕ→ ψ. By K1, for each state s, (M, s) ψ,

so M ψ.

For R2, suppose M ϕ. For all states s ∈ S, (M, s) ϕ. Let t ∈ S be any state, we have,

for all s ∈ Ki(t), (M, s) ϕ, so (M, t) Kiϕ. Since t ∈ S is any state, M Kiϕ.

For axiom K2, let i ∈ {1, . . . , n} and s ∈ S be any state. Suppose that

(M, s) (Kiϕ ∧Ki(ϕ→ ψ)).

We have

for all state t ∈ Ki(s) such that (M, t) ϕ and (M, t) ϕ→ ψ

iff for all state t ∈ Ki(s) such that (M, t) ϕ ∧ (ϕ→ ψ)

By R1 we have for all state t ∈ Ki(s) such that (M, t) ψ, so (M, s) Kψ.

Since s is any state it follows that M Kiψ.

For K3 assume M Kiϕ, then for all s ∈ S, (M, s) Kiϕ. Fix s ∈ S. For all t ∈ Ki(s)
we have (M, t) ϕ. Ki is reflexive so (s, s) ∈ Ki and we have (M, s) ϕ. Now let s range

over S and get M ϕ.

Axiom K4 follows from transitivity. Suppose M Kiϕ.

For any state s ∈ S, (M, s) Kiϕ. Fix s ∈ S. For each state t ∈ Ki(s) we have that for

all u ∈ Ki(s), since Ki is transitive and (u, t), (t, s) ∈ Ki(s) then u ∈ Ki(s) so (M,u) ϕ.

Therefore, (M, s) Kiϕ and since t is any state in Ki(s) it follows that (M, s) KiKiϕ.

Hence M KiKiϕ.

Finally, axiom K5 follows from symmetry and transitivity. Suppose M ¬Kiϕ. Then, for

every w ∈ S, (M,w) ¬Kiϕ iff

exists t ∈ Ki(s) such that (M, t) 6 ϕ, i.e.,

exists t ∈ Ki(s) such that (M, t) ¬ϕ.

For each u ∈ Ki(s), since Ki is transitive and symmetric, (t, u) ∈ Ki, so (M,u) ¬Kiϕ.

And therefore (M,w) Ki¬Kiϕ.

Since w ∈ S is any state, it now follows that M Ki¬Kiϕ.

For completeness to be proved we want to show that every formula in LKn that is valid

with respect to Mn is provable. By Lemma 3.1.6, if we prove (3.8) we are done. With

20

this purpose, consider ϕ to be a `K-consistent formula and let us construct a canonical

structure MC ∈Mn where ϕ is valid.

Our construction has in mind its subsequent extension to the more complex logics we will

define later. It could be done in a more general procedure, like in [7], but want to prepare

the ground for further completeness proofs.

Let the canonical structure for ϕ be defined by MC = (S, π,K1, . . . ,Kn) where

S =
{
sV | V is a Subϕ maximal consistent set

}
π(sV)(p) =

{
true if p ∈ V
false if p 6∈ V

for each state sV ∈ S and primitive proposition p ∈ Φ.

Ki =
{

(sV , sW) ∈ S2 | V/Ki ⊆W
}
, where V/Ki = {ϕ ∈ LKn | Kiϕ ∈ V }.

Lemma 3.1.8 For all Subϕ maximal consistent set V and epistemic formula ψ ∈ Subϕ
we have

(MC , sV) ψ iff ψ ∈ V.

Proof of Lemma 3.1.8: Let ψ ∈ Subϕ be a formula and sV ∈ S be a state.

The proof is done by induction on the structure of formulas. If ψ is a primitive proposition,

the result follows from the definition of π(sV).

We proceed assuming it holds for all subformulas of ψ. (IH)

If ψ is of the form ψ = ¬ξ,

(M, sV) ψ iff (M, sV) 6 ξ iff ξ 6∈ V.

Since V is a maximal consistent subset of Subϕ, by Lemma 2.0.13, ψ = ¬ξ ∈ V .

If ψ is of the form ψ = ξ ∧ χ,

(M, sV) ξ ∧ χ iff (M, sV) ξ and (M, sV) χ iff ξ ∈ V and χ ∈ V.

By Lemma 2.0.13, ξ ∧ χ ∈ V .

Now let us assume ψ is of the form Kiξ, we want to show that

(MC , sV) Kiξ iff Kiξ ∈ V.

Suppose (MC , sV) Kiξ. Note that, by construction of V , either Kiξ ∈ V or ¬Kiξ ∈ V .

Let us see that (V/Ki) ∪ {¬ξ} is `-inconsistent .

21

Suppose (V/Ki) ∪ {¬ξ} is `-consistent , by Lemma 2.0.12 it is contained in some Subϕ

maximal consistent set W . Note that (sV , sW) ∈ Ki. By (IH), since ¬ξ ∈ W we have

(MC , sW) ¬ξ therefore (MC , sV) ¬Kiξ which is a contradiction. So (V/Ki) ∪ {¬ξ} is

`-inconsistent , then it has a finite subset {ϕ1, . . . , ϕk,¬ξ} which is `-inconsistent .

By Lemma 2.0.14,

` ϕ1 → (ϕ2 → (. . .→ (ϕk → ξ) · · ·)).

By the inference rule R2 we have

` Ki(ϕ1 → (ϕ1 → (ϕ2 → (. . .→ (ϕk → ξ) · · ·))).

By induction on k and using (3.5) we have

` Kiϕ1 → (Kiϕ2 → (. . .→ (Kiϕk → Kiξ) · · ·)).

By (iv) of Lemma 2.0.13 we have

Kiϕ1 → (Kiϕ2 → (. . .→ (Kiϕk → Kiξ) · · ·)) ∈ V.

Since ϕ1, . . . , ϕk ∈ V/Ki we have Kiϕ1, . . . ,Kiϕk ∈ V and by (iii) of Lemma 2.0.13 we

have Kiξ ∈ V .

Reciprocally, suppose Kiξ ∈ V , then ξ ∈ V/Ki. By definition of Ki, for all X such that

(sV , sX) ∈ Ki, ξ ∈ X then, by (IH), we have (MC , sX) ξ. Hence, (MC , sV) Kiξ, which

concludes the proof of Lemma 3.1.8. �

As a consequence of Lemma 3.1.8 we have that (3.8) holds: let ϕ be `-consistent . Then ϕ

belongs to some Subϕ maximal consistent set V . From Lemma 3.1.8 we have (MC , sV) ϕ,

so ϕ is satisfiable in MC . Then we just need to prove MC ∈ Mn, i.e., MC belongs to the

class of Kripke structures whose relations Ki are equivalence relations.

Lemma 3.1.9 MC ∈Mn.

Proof: Clearly every maximal `-consistent set V contains every instance of axioms K3,

K4 and K5.

We begin proving axiom K3 corresponds to reflexivity:

Let V be a maximal `-consistent set. Since every instance of axiom K3 are true at sV , we

have V/Ki ⊆ V , so the relations Ki are reflexive.

Now we prove K4 corresponds to transitivity:

Let (sV , sW), (sW , sX) ∈ Ki. Since all instances of K4 are true at sV , we have that if

22

Kiϕ ∈ V then KiKiϕ ∈ V , so Kiϕ ∈ W and ϕ ∈ X. Thus V/Ki ⊆ X and therefore

(sV , sX) ∈ Ki, so Ki is a transitive relation.

We see now that axiom K5 corresponds to the Euclidean property:

Let (sV , sW), (sV , sX) ∈ Ki. We want to prove

W/Ki ⊆ X,

which is exactly the same as proving LKn \ X ⊆ W/¬Ki where W/¬Ki is defined in the

natural way, W/¬Ki = {ϕ ∈ LKn : ¬Kiϕ ∈ W}. Let ϕ ∈ LKn \ X i.e. ϕ 6∈ X. Since

(sV , sX) ∈ Ki, we have V/Ki ⊆ X, then Kiϕ 6∈ V and so ¬Kiϕ ∈ V . But all instances of

K5 are contained on V so Ki¬Kiϕ ∈ V . Since (sV , sW) ∈ Ki, we have ¬Kiϕ ∈ W , as we

wanted.

We just proved Ki are reflexive, transitive and Euclidean relations. By Lemma 3.0.23,

we have Ki are equivalence relations and then MC ∈ Mn (recall Mn is the class of

Kripke structures where the relations Ki are equivalence relations), which ends the proofs

of Lemma 3.1.9 and of Theorem 3.1.7. ��

Definition 3.1.10 Let M = (S, π,K1, . . . ,Kn) be a Kripke structure for knowledge. We

define the size of M , ||M || to be the number of states in S.

Theorem 3.1.11 If ϕ is a `K-consistent formula then ϕ is satisfiable in a Kripke struc-

ture for knowledge M with size at most 2|Subϕ|.

Proof: We just need to show that the canonical structure we constructed on the proof

of Theorem 3.1.7 has size at most 2|Subϕ|.

Since a subformula of ϕ and its negation can not both belong to a maximal consistent subset

of Subϕ, the maximum number of elements which are contained in a maximal consistent

subset of Subϕ is |Subϕ| and so the number of states in the canonical Kripke structure

MC is at most 2|Subϕ|. �

3.2 Probabilistic Epistemic Logic

We want to be able to talk about the truth of formulas such as Pi(ϕ) ≥ b, which is supposed

to say that “according to agent i, formula ϕ holds with probability at least b”. We are

even interested in analyzing linear formulas such as a1Pi(ϕ1) + . . . + akPi(ϕk) ≥ b, where

23

a1, . . . , ak, b ∈ Q and k ≥ 1. With this purpose we do now an overview of the probabilistic

epistemic logic presented in [5] and [15].

In this study we will not admit formulas such as Pi(ϕ)−Pj(ϕ) ≥ b. Comparing probabilities

of several agents over a given formula would be interesting but it turns decidability a hard

task.

For simplicity, we will use some abbreviations with which we are familiar: we will use

Pi(ϕ) ≥ Pi(ψ) to represent Pi(ϕ) − Pi(ψ) ≥ 0, Pi(ϕ) ≤ b will represent −Pi(ϕ) ≥ −b,
Pi(ϕ) < b is an abbreviation of ¬(Pi(ϕ) ≥ b) and Pi(ϕ) = b will be used instead of

(Pi(ϕ) ≥ b) ∧ (Pi(ϕ) ≤ b).

Definition 3.2.1 Consider n agents 1, . . . , n. The probabilistic epistemic language LKPn
has the following inductive syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kiϕ | a1Pi(ϕ1) + · · ·+ akPi(ϕk) ≥ b

where p ∈ Φ, i ∈ {1, . . . , n}, a1, . . . , ak, b ∈ Q.

Definition 3.2.2 A Kripke structure for knowledge and probability for n agents 1, . . . , n

over Φ is a tuple (S, π,K1, . . . ,Kn,P) where (S, π,K1, . . . ,Kn) is a Kripke structure for

knowledge over Φ and P is a probability assignment, which assigns to each agent i ∈
{1, . . . , n} and state s ∈ S a probability function P(i, s) : Si,s −→ [0, 1], where Si,s :=

dom(P(i, s)) ⊆ S is countable.

Notation: Consider M = (S, π,K1, . . . ,Kn,P) to be a Kripke structure for knowledge

and probability. We define α(M) to denote the unique Kripke structure for knowledge

(S, π,K1, . . . ,Kn) which corresponds to M .

Remark 3.2.3 In a more general setting P(i, s) is defined to be a probability space

P(i, s) = (Si,s,Ai,s, µi,s), where Si,s ⊆ S, Ai,s is a σ-algebra of subsets of Si,s and µi,s

is a probability measure defined on the elements of Ai,s.

In this generalized approach we are able to reason about uncountable sets of states. Being

in fact a wider approach, it complexifies the logic, in particular when we proceed to the

introduction of the dynamic component, below. Eventually, the generalization will be part

of the future work we propose to develop, for the construction of security logics.

Now we extend Definition 3.1.4 to formulas involving probabilities.

24

Definition 3.2.4 Let LKPn the probabilistic epistemic language and M = (S, π,K1 . . . ,Kn,P)

a Kripke structure for knowledge and probability over Φ. Let s ∈ S be a state and ϕ ∈ LKPn
be a formula.

If ϕ is an epistemic formula, we define

(M, s) ϕ if and only if (α(M), s) ϕ.

If ϕ is of the form (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b), for some formulas ϕ1, . . . , ϕk, and ra-

tional numbers a1, . . . , ak, b, we define

(M, s) a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b if and only if (3.9)

a1P(i, s)(ϕ1) + . . .+ akP(i, s)(ϕk) ≥ b,

where, for each l ∈ {1, . . . , n}, defining Λli,s = {u ∈ dom(P(i, s))|(M,u) ϕl}, we consider

P(i, s)(ϕl) =
∑
v∈Λli,s

P(i, s)(v).

If ϕ is of the form Ki (a1Pj(ϕ1) + . . .+ akPj(ϕk) ≥ b), for some formulas ϕ1, . . . , ϕk, ra-

tional numbers a1, . . . , ak, b and j ∈ {1, . . . , n}, we define

(M, s) Ki (a1Pj(ϕ1) + . . .+ akPj(ϕk) ≥ b) if and only if (3.10)

for all t ∈ S s.t. (t, s) ∈ Ki, (M, t) a1Pj(ϕ1) + . . .+ akPj(ϕk) ≥ b.

(3.9) tells that Pi(ϕ) ≥ b denotes the probability of ϕ to be at least b according to agents

i’s probability function in state s.

Now think for a few seconds about the sets Si,s, the domain of the probability function

P(i, s), for a given agent i and state s. It seems reasonable to assume that Si,s ⊆ Ki(s),
recall that Ki(s) := {t ∈ S : (s, t) ∈ Ki}. If this condition does not hold we are allowing

agent i to place positive probability on a formula he knows to be false.

It thus appears reasonable to assume

C1. For all i ∈ {1, . . . , n} and s ∈ S, Si,s ⊆ Ki(s).

25

The reader may even question himself why do we not assume that Si,s = Ki(s). In fact

we could assume so, but this condition would be too restrictive and even unintuitive. The

agent may consider a situation plausible but do not care with assigning to it any probability

and can even consider another situation which is not even plausible and so he does not

want to assign any probability to it.

There are two other interesting conditions, but since it complexify the logic too much we

choose not to assume it, but we do not ignore its existence and gains.

We might well consider that all agents have the same probabilistic assignment at each state

C2. For all i, j ∈ {1, . . . , n} and s ∈ S, Pi,s = Pj,s.

Or even a condition over the agent’s probability assignment at different states,

C3. For all i ∈ {1, . . . , n} and s, t ∈ S if t ∈ Si,s then Pi,s = Pi,t.

Note that this third condition seems quite reasonable. At condition C1 we assumed Si,s

to be included on Ki(s). Moreover, we defined the set Ki(s) to be the set of worlds indis-

tinguishable from s for agent i. It seems very acceptable to assign the same probabilities

for two states which are indistinguishable. Summarizing, the condition C3 would help us

to clarify the idea of indistinguishability of states.

In this text we will assume C1 and will not assume C2 nor C3. However, depending on the

example we can assume some of the latter conditions on the studied model. Let us check

the three conditions on our bus trip.

Example 3.2.1 The bus trip example presented before has a probabilistic component.

For each agent i ∈ {1, 2, 3, 4} and state s ∈ S, we define the probability assignment of the

26

Kripke structure for knowledge and probability M = (S, π,K1,K2,K3,K4,P) as follows:

P(i, s) : Ki(s) −→ [0, 1]

t 7−→ 1
|Ki(s)|

Since passenger 4 knows w2 to be false, he does not assign positive probability to worlds

where w2 holds, for this reason C1 holds, moreover we have the equality Si,s = Ki(s).
The definition of the probability assignment implies that C3 is also true. However C2

clearly does not hold: passengers have different information. �

Now we provide a sound and complete axiomatization for the logic of knowledge and

probability.

To the inference system for knowledge we add some axioms that allow us to reason about

linear inequalities:

I1. (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b)↔ (a1Pi(ϕ1) + . . .+ akPi(ϕk) + 0Pi(ϕk+1) ≥ b);

I2. (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b)→ (al1Pi(ϕl1) + . . .+ alkPi(ϕlk)) ≥ b),

for all (l1 · · · lk) permutation of (1 · · · k);

I3. (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b) ∧ (a′1Pi(ϕ1) + . . .+ a′kPi(ϕk) ≥ b′)→

→ (a1 + a′1)Pi(ϕi) + . . .+ (ak + a′k)Pi(ϕk)) ≥ (b+ b′);

I4. (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b)↔ (da1Pi(ϕ1) + . . .+ dakPi(ϕk)) ≥ db), for all d > 0;

I5. (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b) ∨ (a1Pi(ϕ1) + . . .+ akPi(ϕk)) ≤ b);

I6. (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b)→ (a1Pi(ϕ1) + . . .+ akPi(ϕk)) > c if b > c

with k ≥ 1, i ∈ {1, . . . , n}, a1, . . . , an, b, c ∈ Q.

27

Some other axioms that allows us to reason about probability:

P1. Pi(ϕ) ≥ 0;

P2. Pi(true) = 1;

P3. Pi(ϕ ∧ ψ) + Pi(ϕ ∧ ¬ψ) = Pi(ϕ)

P4. Pi(ϕ) = Pi(ψ) if ϕ↔ ψ is a proposition tautology.

Finally the axiomatization for C1, C2 and C3 are respectively

P5. Kiϕ→ (Pi(ϕ) = 1).

P6. (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b)→ (a1Pj(ϕ1) + . . .+ akPj(ϕk) ≥ b).

P7. ϕ→ Pi(ϕ) = 1, where ϕ is of the form a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b or its negation.

Axioms I1− I6 are quite intuitive if we think about the corresponding expressions on the

real numbers.

true was defined as denoting p∨¬p for some primitive proposition p. Since we are dealing

with a classical based language, we should expect that P2 holds. For the same reason, from

our intuition of probabilities P3 follows. P4 is a consequence of the indistinguishability

that agent i should assign to equivalent formulas ϕ and ψ. P5 covers our intuition that

if an agent knows a formula, he should be able to assign probability 1 to it. Condition

C2 assumes that different agents have the same probability assignments and P6 follows.

Axiom P7 results from the fact that each formula of the form a1Pi(ϕ1)+ . . .+akPi(ϕk) ≥ b
has the same truth value on all states in the domain of each probability function, which is

a consequence of condition C3.

Remark 3.2.5 From P2 and P3, taking ϕ = ψ = true follows that Pi(false) = 0.

Remark 3.2.6 P (ϕ ∨ ψ) = P (ϕ) + P (ψ)− P (ϕ ∧ ψ) is provable from P3.

Recall that we will not assume C2 nor C3 in this text.

Notation: Let MKP
n denote the collection of Kripke structures for knowledge and prob-

ability for agents 1, . . . , n over Φ satisfying the assumption C1.

28

Definition 3.2.7 Let HKP be the inference system for knowledge and probability obtained

by joining HK together with axioms I1-I6 and P1-P5 and `Kn be the corresponding deductive

system.

We present now some results that will enable us to prove completeness of HKP .

Lemma 3.2.8 The inference system H∗ resulting of joining HKP together with

I0′. x ≥ x

I1′. (a1x1 + . . .+ akxk ≥ c)↔ (a1x1 + . . .+ akxk + 0xk+1 ≥ c)

I2′. (a1x1 + . . .+ akxk ≥ c)→ (aj1xj1 + . . .+ ajkxjk ≥ c),
if (j1 · · · jk) is a permutation of (1 · · · k)

I3′. (a1x1 + . . .+ akxk ≥ c) ∧ (a′1x1 + . . .+ a′kxk ≥ c′)→
→ ((a1 + a′1)x1 + . . .+ (ak + a′k)xk ≥ (c+ c′))

I4′. (a1x1 + . . .+ akxk ≥ c)↔ (da1x1 + . . .+ dakxk ≥ dc), if d > 0

I5′. (a1x1 + . . .+ akxk ≥ c) ∨ (a1x1 + . . .+ akxk ≤ c)
I6′. (a1x1 + . . .+ akxk ≥ c)→ (a1x1 + . . .+ akxk > d), if c > d.

is complete.

Afterwards axioms I1 − I6 result from axioms I1′ − I6′ replacing each xj by Pi(ϕj) and

I0′ is replaced by P4.

Sketch of the Proof of Lemma 3.2.8: Soundness results from the extension of the

model with an assignment to statements of the form a1x1 + . . .+ akxk ≥ c.

Now we sketch the proof of completeness performed in Theorem 4.3 of Fagin et al. (1990).

We will use a general procedure, which will be recalled at Lemma 3.2.18. Consider a `-

consistent formula ϕ and reduce it to a canonical form.

Once proved the formula

a1x1 + a′1x1 + a2x2 + . . .+ anxn ≥ c↔ ((a1 + a′1)x1 + a2x2 + . . .+ anxn ≥ c),

we can assume any variable is repeated and proving then that

0x1 + . . .+ 0xn ≥ 0

29

we still assume variables are presented in the same order. Hence, we assume ϕ to be the

conjunction of the following standard formulas

a1,1x1 + . . .+ a1,nxn ≥ c1

...

ar,1x1 + . . .+ ar,nxn ≥ cr

a′1,1x1 + . . .+ a′1,nxn < c′1
...

a′t,1x1 + . . .+ a′t,n < c′t

Lemma 3.2.8 follows with some results of linear programming, making a distinction between

case t = 0 and t > 0 and assuming, as usual, the system is unsatisfiable (and so is ϕ) and

achieving a contradiction. �

Definition 3.2.9 Consider Λ ⊆ Φ to be a set of primitive propositions and let m ≥ 1.

We define ψ to be a m-atom with respect to (wrt) Λ if ψ is of the from ψ = A1 ∧ . . .∧Am,

where for each j ∈ {1, . . . ,m} either Aj ∈ Λ or ¬Aj ∈ Λ. The set of m-atoms wrt Λ will

be denoted by AtΛm.

When Λ = Φ we only say ψ is a m-atom.

Remark 3.2.10
∣∣∣At{p1,...,pm}

m

∣∣∣ = 2m.

Lemma 3.2.11 Let i ∈ {1, . . . , n} be an agent and ϕ be a propositional formula. Let

{p1, . . . , pu} include all the primitive propositions that appear in ϕ. Consider the set

Au(ϕ) =
{
ψ ∈ At{p1,...,pu}

u | ψ → ϕ is a propositional tautology
}
.

Then Pi(ϕ) =
∑

ψ∈Au(ϕ)

Pi(ψ) is provable in the deductive system `KPn .

Proof: Assume At
p1···pj
j = {ψ1, . . . , ψ2j} are all the j-atoms wrt {p1 · · · pj}.

We will prove that

Pi(ϕ) = Pi(ϕ ∧ ψ1) + . . .+ Pi(ϕ ∧ ψ2j)

by induction on j.

For j = 1, it immediately follows from P3, and eventually from I2 and propositional

reasoning, which enable us to rearrange terms.

Let j ∈ N. Assume that Pi(ϕ) = Pi(ϕ ∧ ψ1) + . . .+ Pi(ϕ ∧ ψ2j). (IH)

By P3, for each l ∈ {1, . . . , 2j}, Pi(ϕ ∧ ψl ∧ pj+1) + Pi(ϕ ∧ ψl ∧ ¬pj+1) = Pi(ϕ ∧ ψl) is

30

provable. Using the same argument as for the case j = 1, we can replace each Pi(ϕ ∧ ψl)
by Pi(ϕ ∧ ψl ∧ pj+1) + Pi(ϕ ∧ ψl ∧ ¬pj+1), which concludes the proof that for each j,

Pi(ϕ) = Pi(ϕ ∧ ψ1) + . . . + Pi(ϕ ∧ ψ2j).

In particular it follows that

Pi(ϕ) = Pi(ϕ ∧ ω1) + . . .+ Pi(ϕ ∧ ω2u),

where At
{p1,...,pu}
u = {ω1, . . . , ω2u}.

Since {p1, . . . , pu} includes all primitive propositions that appear in ϕ, it is now clear that

if ωl ∈ Au(ϕ) then ϕ∧ωl is equivalent to ωl and so the term Pi(ϕ∧ωl) can be replaced by

Pi(ωl), if ωl 6∈ Au(ϕ) then ϕ∧ωl is equivalent to false and in this case the term Pi(ϕ∧ωl)
can be replaced by Pi(false) which is provably equal to 0.

Hence, Pi(ϕ) =
∑

ψ∈Au(ϕ)

Pi(ψ) is provable. �

Theorem 3.2.12 HKP is a sound and (weakly) complete axiomatization for probabilistic

epistemic logics with respect to MKP
n .

Proof: This proof will be done just as [15], but we will prove most of the technical issues

which are dropped in [15].

We prove soundness verifying that each axiom in HKP is valid in LKPn . Axioms in HK are

already proved to be valid in LKPn , so let us begin by I1.

Let ϕ1, . . . , ϕn ∈ LKPn , we have the following equivalences,

(M,w) a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b iff

a1P(i, w)(ϕ1) + . . .+ akP(i, w)(ϕk) ≥ b iff

a1P(i, w)(ϕ1) + . . .+ akP(i, w)(ϕk) + 0P(i, w)(ϕk+1) ≥ b iff

(M,w) a1Pi(ϕ1) + . . .+ akPi(ϕk) + 0Pi(ϕk+1) ≥ b

Hence I1 follows. Analogously we see axioms I2− I6 are valid in MKP
n . We just need to

note that, for any formulas ϕ1, . . . , ϕk ∈ LKPn , agent i and a1, . . . , ak, b ∈ Q, a1P(i, s)(ϕ1)+

. . . + akP(i, s)(ϕk) ∈ R, so all the axioms become from the properties of addition and

multiplication on the real numbers.

P1 is immediate: for every state w ∈ S,

(M,w) Pi(ϕ) ≥ 0 iff P(i, w)(ϕ) ≥ 0.

Indeed, by definition of P(i, w), we have P(i, w)(ϕ) ≥ 0.

31

For P2, let w ∈ S be any state,

(M,w) Pi(true) = 1 iff P(i, w)(true) = 1 iff
∑

v∈Λtruei,w
P(i, w)(v) = 1,

where Λtruei,w = {u ∈ Si,w | (M,u) true} = {u ∈ Si,w | (M,u) p ∨ ¬p} = Si,w.

So,
∑
v∈Si,w

P(i, w)(v) = 1, which is true because P(i, w) is a probability function and Si,w :=

dom(P(i, w)).

Axiom P3 also follows from the fact that for all w ∈ S, P(i, w) is a probability function,

note that

P(i, w)(ϕ) = P(i, w)(ϕ ∧ true) = P(i, w)(ϕ ∧ (ψ ∨ ¬ψ)) = P(i, w)((ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)).

Since the events ϕ ∧ ψ and ϕ ∧ ¬ψ are mutually exclusive we have

P(i, w)((ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)) =
∑

v∈Λ1∨2
i,w

P(i, w)(v) =
∑

v∈Λ1
i,w

P(i, w)(v) +
∑

u∈Λ2
i,w

P(i, w)(u) =

= P(i, w)(ϕ ∧ ψ) + P(i, w)(ϕ ∧ ¬ψ)

where Λ1∨2
i,w = {t ∈ Si,w | (M, t) (ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)}, Λ1

i,w = {t ∈ Si,w | (M, t) ϕ ∧ ψ}
and Λ2

i,w = {t ∈ Si,w | (M, t) ϕ ∧ ¬ψ}.

So, (M,w) Pi(ϕ) = Pi(ϕ ∧ ψ) + Pi(ϕ ∧ ¬ψ).

For P4, suppose ϕ↔ ψ is a propositional tautology. For all state w ∈ S

(M,w) Pi(ϕ) = Pi(ψ) iff

P(i, w)(ϕ) = P(i, w)(ψ) iff∑
v∈Λϕi,w

P(i, w)(v) =
∑
t∈Λψi,w

P(i, w)(t), (3.11)

where Λϕi,w = {s ∈ Si,w | (M, s) ϕ} and Λψi,w = {s ∈ Si,w | (M, s) ψ}.
Since ϕ↔ ψ, it follows that Λϕi,w = Λψi,w and so (3.11) holds.

For P5, suppose M Kiϕ.

For all states s ∈ S, (M, s) Kiϕ. Fix s ∈ S, for all states t ∈ Ki(s), we have (M, t) ϕ.

P(i, s)(ϕ) =
∑

t∈Si,s, (M,t)ϕ

P(i, s)(t).

32

Since Si,s ⊆ Ki(s), all states w ∈ Si,s verify (M,w) ϕ. Then

Pi(ϕ) =
∑
t∈Si,s

P(i, s)(t) = 1.

Since s ∈ S is any state, it follows that M Pi(ϕ) = 1.

For completeness, we need to show that if a formula ϕ is `KP -consistent then ϕ is satisfiable

in a Kripke structure for knowledge and probability.

Suppose ϕ is `KP -consistent . We will perform the construction of the canonical model

MC = (S, π,K1,Kn,P) as we did in the epistemic case:

S =
{
sV | V is Subϕ maximal consistent

}
π(sV)(p) =

{
true if p ∈ V
false if p 6∈ V

for each state sV ∈ S and primitive proposition p ∈ Φ

Ki =
{

(sV , sw) ∈ S2 | V/Ki ⊆W
}

, for each i ∈ {1, . . . , n}

The probability assignment is a new feature and we have to define it carefully.

Notation: Given a finite set Z define ϕZ to be the conjunction of elements in Z.

Lemma 3.2.13 Let sV , sW ∈ S. If sV 6= sW then ` ϕV → ¬ϕW .

Proof: Let sV , sW ∈ S with sV 6= sW and where V =
{
ψ1, . . . , ψ|Subϕ|

}
and W ={

ξ1, . . . , ξ|Subϕ|
}

. Since V 6= W and by construction of maximal consistent sets of Subϕ,

there is some i ∈ {1, . . . , |Subϕ|} such that ψi ∈ V and ¬ψi ∈W , say ¬ψi = ξi.

Suppose ` ϕV , i.e., ` ψ1 ∧ . . . ∧ ψ|Subϕ|. In particular, ψi holds. Since ¬ϕW = ¬ξ1 ∨ · · · ∨
¬ξi ∨ · · · ¬ξ|Subϕ| and ψi = ¬ξi holds. we have ¬ϕW holds. �

Lemma 3.2.14 ` ψ ↔
∨

{sV |ψ∈V }

ϕV , for all ψ ∈ Subϕ.

Proof of Lemma 3.2.14: Let ψ ∈ Subϕ.

Since for every Subϕ maximal consistent set V and for every subformula ϕ′ of ϕ, either

ϕ′ ∈ V or ¬ϕ′ ∈ V , then denoting Subϕ =
{
ϕ1, . . . , ϕ|Subϕ|−1, ∗ψ

}
(note that either

ψ ∈ Subϕ or ¬ψ ∈ Subϕ), we have

∨
{sV ∈S|ψ∈V }

ϕV ↔

|Subϕ|−1∧
i=1

(ϕi ∨ ¬ϕi)

 ∧ ψ ↔ ψ,

33

as we wanted. �

The following Lemma is immediate from Lemma 3.2.13, Lemma 3.2.14 and axiom P4.

Lemma 3.2.15 If ψ ∈ Subϕ then Pi(ψ) =
∑

{sV ∈S|ψ∈V }

Pi(ϕV)

Lemma 3.2.16 A formula

(
k∑
l=1

alPi(ψl) ≥ b

)
∈ Subϕ is provably equivalent to a for-

mula ∑
sV ∈S

cV Pi(ϕV) ≥ b,

for some coefficients cV .

Proof of Lemma 3.2.16: By Lemma 3.2.15 and by axiom I1, for each l ∈ {1, . . . , k}.

Pi(ψl) =
∑

{sV |ψl∈V }

Pi(ϕV) =
∑

{sV ∈S|ψl∈V }

Pi(ϕV) +
∑

{sV ∈S|ψl 6∈V }

0 · Pi(ϕV) =
∑
sV ∈S

γlV Pi(ϕV),

with γlV =

{
1 if ψl ∈ V
0 if ψl 6∈ V

.

Therefore,
k∑
l=1

alPi(ψl) ≥ b iff

k∑
l=1

al ∑
sV ∈S

γlV Pi(ϕV)

 ≥ b iff
∑
sV ∈S

(
k∑
l=1

alγ
l
V

)
Pi(ϕV) ≥ b.,

which ends the proof of Lemma 3.2.16. �

Lemma 3.2.17 Let sV , sV ′ ∈ S. If sV ′ 6∈ Ki(sV) then ϕV → (Pi(ϕV ′) = 0) is provable.

Proof of Lemma 3.2.17: Let sV ∈ S and sV ′ 6∈ Ki(sV).

We begin proving ϕV → Ki(¬ϕV ′).
Since sV ′ 6∈ Ki(sV), V/Ki 6⊆ V ′, which means there is a formula Kiω ∈ V such that ω 6∈ V ′,
so ¬ω ∈ V ′.
Since ¬ϕV ′ ↔

(∨
ψ∈V ′\{¬ω} ¬ψ

)
∨ ω, by property (3.7), it follows that

ϕV → Ki¬ϕV ′ .

Applying P5, ϕV → (Pi(¬ϕV ′) = 1) is provable.

By P2 and P3,

34

Pi(true ∧ ϕV ′) + Pi(true ∧ ¬ϕV ′) = Pi(true) iff Pi(ϕV ′) + Pi(¬ϕV ′) = 1.

Then, ϕV → (Pi(ϕV ′) = 0) is provable, and we are done in the proof of Lemma 3.2.17. �

Let i ∈ {1, . . . , n} be an agent and sW ∈ S be a state. Let us construct one inequality

corresponding to every formula ψ =

(
k∑
l=1

alPi(ϕl) ≥ b

)
∈ Subϕ.

Let ψ =

(
k∑
l=1

alPi(ϕl) ≥ b

)
be a formula in Subϕ, which by Lemma 3.2.16 is equivalent to∑

sV ′∈S
cV ′Pi(ϕV ′) ≥ b. We have either ψ ∈ sW or ¬ψ ∈ sW . If ψ ∈ sW then the inequality

corresponding to ψ is ∑
sV ′∈S

cV ′P(i, sW)(sV ′) ≥ b. (3.12)

If ¬ψ ∈ sW , since ψ ↔
∑
sV ′∈S

cV ′Pi(ϕV ′) ≥ b we have ¬ψ ↔
∑
sV ′∈S

cV ′Pi(ϕV ′) < b so the

corresponding inequality is ∑
sV ′∈S

cV ′P(i, sW)(sV ′) < b. (3.13)

On the other side, we have ∑
sV ′∈S

P(i, sW)(sV ′) = 1. (3.14)

Moreover, P(i, sW)(sV ′) = 0 when sV ′ 6∈ Ki(sW).

Let us associate to agent i and state sW , Si,W , the system of equalities and inequalities

composed by equality (3.14), (inequalities 3.12) or (3.13) for each ψ ∈ Subϕ, equations

P(i, sW)(sV ′) = 0 for each sV ′ ∈ S \ Ki(sW) and inequalities P(i, sW)(sV ′) ≥ 0 for each

sV ′ ∈ Ki(sW).

Observation: Notice that since ϕV ’s are mutually exclusive, we can indifferently refer

to Pi(sV) or Pi(ϕV).

Lemma 3.2.18 Let sW ∈ S be a state and i ∈ {1, . . . , n} denote an agent. If ϕW

is `-consistent then the system of linear equalities and inequalities Si,W has a solution

P∗(i, sW)(sV), for each sV ∈ S.

Proof: We begin by reducing ϕW to a canonical form.

ϕW is provably equivalent to a disjunction ξ1 ∨ . . . ∨ ξs, where each ξj is a conjunction

35

of basic probability formulas such as a1Pi(A1) + . . . + akPi(Ak) ≥ c and their negations,

where a1, . . . , ak, c are integers, k ≥ 1 and A1, . . . , Ak are propositional formulas. Since

ϕW is `-consistent , then so is some ξj : suppose for all j, ¬ξj is provable, then so is

¬(ξ1 ∨ . . . ∨ ξs), therefore ϕW is `-inconsistent . On the other hand, if ξj is satisfied in

some Kripke structure, then so is ϕW .

So we reduce our study to the case where ϕW is a conjunction of basic probability formulas

and their negations.

Now let {p1, . . . , pu} represent all the primitive propositions that appear on ϕW . By Lemma

3.2.11 we can replace in ϕW each term of the form Pi(Al) by an expression of the form∑
ψ∈Au(ϕ)

Pi(ψ)+
∑

ψ∈At{p1,...,pu}u \Au(ϕ)

0Pi(ψ). Moreover, replacing each term in ϕW of the form

a1Pi(A1) + . . . + akPi(Ak) by the corresponding term b1Pi(ψ1) + . . . + b2uPi(ψ2u), where

At
{p1,...,pu}
u = {ψ1, . . . , ψ2u}, we get a provably equivalent formula ϕW .

Let ϕW be a formula which consists on adding by conjunction to ϕW the following proba-

bility formulas:

• Pi(ψj) = 0 for those n-atoms ψj ∈ Υ, where

Υ =
{
ψ ∈ At{p1,...,pu}

u | the set U whose conjunction of all elements is ψj

is a Subϕ maximal set and does not verify W/Ki ⊆ U
}
.

Note that these equations are a consequence of Lemma 3.2.17.

• Pi(ψl) ≥ 0 for each n-atoms ψj 6∈ Υ.

• the probability formula Pi(ψ1)+ . . .+Pi(ψ2u) = 1 which is provable provided Lemma

3.2.11 taking ϕ = true, and resumes to the inequalities Pi(ψ1) + . . . Pi(ψ2u) ≥ 1 and

Pi(ψ1) + . . .+ Pi(ψ2u) ≤ 1.

Then we get ϕW provably equivalent to ϕW and so provably equivalent to ϕW .

36

Note that ϕW results from the conjunction of the following equalities and inequalities:

Pi(ψ1) + . . .+ Pi(ψ2u) ≥ 1

Pi(ψ1) + . . .+ Pi(ψ2u) ≤ 1

Pi(ψj) = 0 if ψj ∈ Υ

Pi(ψk) ≥ 0 if ψk 6∈ Υ

b1,1Pi(ψ1) + . . .+ b1,2uPi(ψ2u) ≥ d1

...

br,1Pi(ψ1) + . . .+ br,2uPi(ψ2u) ≥ dr

b′1,1Pi(ψ1) + . . .+ b′1,2uPi(ψ2u) < d′1
...

b′t,1Pi(ψ1) + . . .+ b′t,2uPi(ψ2u) < d′t

where bl,j , dl, b
′
k,j and d′k are integers.

Since the number of u-atoms wrt {p1, . . . , pu} is finite and the probability can be assigned

independently to each u-atom wrt {p1 . . . , pu}, ϕW is satisfiable if and only if the following

system of linear equalities and inequalities is satisfiable:

x1 + . . .+ x2u ≥ 1

x1 + . . .+ x2u ≤ 1

xj = 0 if ψj ∈ Υ

xk ≥ 0 if ψk 6∈ Υ

b1,1x1 + . . .+ b1,2ux2u ≥ d1

...

br,1x1 + . . .+ br,2ux2u ≥ dr

b′1,1x1 + . . .+ b′1,2ux2u < d′1
...

b′t,1x1 + . . .+ b′t,2ux2u < d′t

(3.15)

If we show (3.15) is satisfiable, for each sV ′ ∈ S and the corresponding ϕV ′ ∈ At
{p1,...,pn}
u ,

say ϕV ′ = ψl, we define P(i, sW)(sV ′) = P(i, sW)(ϕV ′) = xl. Then just remains to show

3.15 is satisfiable.

Assume 3.15 is unsatisfiable (which is equivalent to say ϕW is unsatisfiable), then by Lemma

3.2.8, ¬ϕW is provable. Since ϕW is provably equivalent to ϕW , it follows that ¬ϕW is

37

provable, which is a contradiction with the initial assumptions that ϕW is consistent and

it ends the proof of Lemma 3.2.18. �

For each i ∈ {1, . . . , n} and sW ∈ S, we solve the set of equalities and inequalities separately

and get the solution P∗(i, sW) by Lemma 3.2.18. Now, for each i ∈ {1, . . . , n} and sW ∈ S,

define P as P(i, sW) : S −→ [0, 1] where

P(i, sW)(sV) = P∗(i, sW)(sV).

Since
∑
sV ′∈S

P∗(i, sW)(sV ′) = 1, P(i, sW) is a probability function.

Now we just need to readjust the domain of our probability function P(i, s) for each agent

i and state s.

For each i ∈ {1, . . . , n} and sW ∈ S, the probability function was defined for all values of

S. By condition C1, it should verify Si,sW ⊆ Ki(sW). Indeed, in our definition of P(i, sW),

when sV 6∈ Ki(sW) it follows that P(i, sW)(sV) = 0, so we can conclude the construction

by considering Si,sW = Ki(sW) for each agent i and state sW .

Analogously to the proof of Theorem 3.1.7, we now need to prove that given a formula

ψ ∈ Subϕ and the state sV ∈ S,

(M, sV) ψ iff ψ ∈ V.

The proof proceed by induction.

If ψ is a primitive proposition, it follows from definition of π(sV).

Now assume the claim holds for all subformulas of ψ. (IH).

The case where ψ is an epistemic formula was analyzed in Theorem 3.1.7.

Let ψ =

k∑
l=1

alPi(ϕl) ≥ b be a probability formula, then

(M, sV) ψ iff (M, sV)
∑
sV ′∈S

cV ′Pi(ϕV ′) ≥ b iff
∑
sV ′∈S

cV ′P(i, sV)(ϕV ′) ≥ b.

By the arguments used for (3.12), this is equivalent to ψ ∈ V .

If ϕ is `KP -consistent it should belong to one of the maximal consistent subsets of Subϕ.

Therefore, if ϕ is `KP -consistent it is satisfiable in the structure MC , and we are done in

the proof of Theorem 3.2.12. �

Theorem 3.2.19 If ϕ is a `KP -consistent formula then ϕ is satisfiable in a Kripke struc-

ture for knowledge and probability M with size at most 2|Subϕ|.

38

Proof: Since the canonical structure we constructed in Theorem 3.2.12 has the same

states of the one we used to prove Theorem 3.1.7, the result is immediate. �

3.2.1 Single Agent Case

In this subsection we call the reader’s attention for relevant results in the single agent case,

which results on a huge simplification of our logic under the assumption of some of the

conditions C1, C2 and C3.

We are interested in studying problems related to information security, so the single agent

case will be important. We will not assume all the conditions C1, C2 and C3 in this text,

however depending on the examples it could be quite interesting to assume them. In doing

so we may greatly simplify the logic.

Theorem 3.2.20 HKP joint together with axioms P6 and P7 is a sound and complete

axiomatization for the probabilistic epistemic logics with respect to the collection of Kripke

structures for knowledge and probability over Φ satisfying the assumptions C2 and C3.

Observation: HKP already incorporates axiom P5. Note that C1 is a previous assump-

tion.

Proof: We begin proving soundness by showing validity of P6.

Let i, j be any agents and s ∈ S be a state. Suppose (M, s) a1Pi(ϕ1)+ . . .+akPi(ϕk) ≥ b
i.e.

a1P(i, s)(ϕ1) + . . .+ akP(i, s)(ϕk) ≥ b.

Since condition C2 holds we have

a1P(j, s)(ϕ1) + . . .+ akP(j, s)(ϕk) ≥ b

then (M, s) a1Pj(ϕ1) + . . .+ akPj(ϕk) ≥ b.

For P7, let ψ be of the form a1Pi(ϕ1) + . . . + akPi(ϕk) ≥ b or its negation and s ∈ S

be a state.

Suppose (M, s) ψ.

We want to show (M, s) Pi(ψ) = 1, i.e.

P(i, s)(ψ) = 1.

39

By definition of probability of a formula,

P(i, s)(ψ) =
∑

v∈Si,s st (M,v)ψ

P(i, s)(v).

Since condition C3 holds and ψ is of the form we referred before, for each state v ∈ Si,s, ψ
holds on state v and since P(i, s) is a probability function it follows that P(i, s)(ψ) = 1 as

we wanted.

For completeness we need to adapt the construction in the proof of Theorem 3.2.12 for the

new conditions.

Since P6 is an axiom of our new inference system it follows immediately that we do not

care with the agent that corresponds to each probability assignment. We can consider a

new construction of the canonical model assuming P(i, s) = P(j, s) for different agents i

and j and it follows that condition C2 holds.

Consider Ti(s) to be the set of states that contain all the formulas of the form a1Pi(ϕ1) +

. . .+ akPi(ϕk) ≥ b, or negations of it, that hold in s.

Lemma 3.2.21 Assume P7 is a valid axiom and let sV , sV ′ ∈ S be any states.

If sV ′ 6∈ Ti(sV) then

ϕV −→ (Pi(ϕV ′ = 0)

is provable.

Proof: Suppose sV ′ 6∈ Ti(sV).

There is some probability formula a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b that holds in sV and does

not hold in sV ′ ,

(M, sV) a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b

and

(M, sV ′) ¬ (a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b) .

By P7, since (M, sV) a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b,

(M, sV) Pi(a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b) = 1.

40

Then

Pi(sV)(ϕV ′) =
∑

s∈Si,sV st (M,s)ϕV ′

Pi(sV)(s) ≤
∑

s∈Si,sV st (M,s)¬(a1Pi(ϕ1)+...+akPi(ϕk)≥b

Pi(sV)(s) =

= Pi(sV)(¬(a1Pi(ϕ1) + . . .+ akPi(ϕk) ≥ b)) = 0.

It follows then that ϕV −→ Pi(ϕV ′) = 0 is provable. �

Since P7 is valid we can construct our model in such a way that Si,s ⊆ Ti(s). With this

purpose we should introduce some new equations in the system (3.15): for each agent i

consider the equations

xl = 0, if ψl 6∈ Ti(s).

P7 is valid then it is also easy to see that Ti(s) is a subset of Si,s and that whenever t ∈ Si,s
then we should have Ti(s) = Ti(t) (for otherwise, in P7 Pi(ϕ) could not sum 1), so we can

now take P(i, s) = P(i, t) whatever the t ∈ Ti(s), and so C3 holds. �

Theorem 3.2.22 Let M∗ be a Kripke structure for knowledge and probability in the

single-agent case which verifies C1 and C3 and consider ϕ ∈ LKP1 to be a formula. Then

ϕ is satisfiable in a Kripke structure for knowledge and probability in the single-agent case

of size polynomial in |Sub(ϕ)|.

Sketch of the proof: Let M = (S, π,K,P) be a structure where ϕ is satisfiable.

Notice that we are on the single agent case, so, for instance, we denote P to be defined by

P(1, s) : Ss −→ [0, 1], for each s ∈ S.

Since C1 holds, Ss ⊆ K(s) for each state s.

We then assume without loss of generality that K is a single equivalent class, i.e. of the

form S × S: suppose (M, s) ϕ, then construct a model M0 = (S0, π0,K0,P0) where S0

is the equivalence class of K which includes s and π0, K0 and P0 be the restriction of π, K
and P to S0. It is straightforward to conclude that (M0, s) ϕ and indeed, K0 is a single

equivalence class.

Since C3 holds it is easy to see that for distinct functions Ps and Pt, for states s 6= t the

domains do not intersect each other: let Ps 6= Pt and v ∈ Ss∩St then, by C3, Ps = Pv = Pt
which is a contradiction.

We want to construct a model M ′ = (S′, π′,K′,P ′) which satisfies ϕ and has size polynomial

in |Subϕ|. For this, using some results of linear programming, it is shown the existence of

P ′s : S′s −→ [0, 1] for each state s ∈ S, where |S′s| ≤ |Subϕ|.

41

Now only remains to introduce some more states on S′ (note that S′s ⊆ S′). Let w ∈ S be

a state such that (M,w) ϕ. For each formula ξ = ¬Kψ ∈ Subϕ such that (M,w) ξ,

collect on F ⊆ S the state vξ where (M,vξ) ¬ψ. To this set F add also the state w.

Notice that |F | ≤ 1 + |Subϕ|.
Finally define S′ to be S′ =

⋃
s∈F S

′
s, π

′ to be the restriction of π to S′, K = S′ × S′ and

P ′(1, s) = P ′s.
Then it is easy to show M ′ verifies C1 and C3, (M ′, v) ϕ and it is obvious that M ′ has

size polynomial in |Subϕ|. �

3.3 Dynamic Probabilistic Epistemic Logic

We want our logic to be able to deal with communication between agents or even better,

we want our logic to deal with updates of the information available to the agents. With

this purpose, it is time to introduce a dynamical component in the logic, which allows us

to reason about information changes. This section pretends to make an overview of the

work in [3].

We return now to the n agents case.

3.3.1 Public Announcement Model

We begin introducing a kind of deterministic updates. In this subsection the updates are

done in terms of public announcements of some true proposition A, !A. Intuitively, [!A]ϕ

means that “ϕ holds after the announcement that A holds”.

Definition 3.3.1 Consider n agents 1, . . . , n. The language for public announcements

LKP [!]
n has the following inductive syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kiϕ | a1Pi(ϕ1) + · · ·+ anPi(ϕn) ≥ b | [!ϕ]ψ,

where p ∈ Φ, i ∈ {1, . . . , n} and a1, . . . , an, b ∈ Q.

Definition 3.3.2 Let LKP [!]
n the language for public announcements and M = (S, π,K1, . . . ,

Kn,P) a Kripke structure for knowledge and probability over Φ. Let s ∈ S be a state and

ϕ ∈ LKP [!]
n a formula.

42

If ϕ is a probabilistic epistemic formula, then ϕ ∈ LKPn and the validity follows from

Definition 3.2.4.

If ϕ is of the form [!A]ξ, for some formulas A and ξ, we define

(M, s) [!A]ξ if and only if (M, s) A implies (M |A, s) ξ, (3.16)

where the updated model M |A = (SA, πA,KA1 , . . . ,KAn ,PA) is defined as follows:

SA = {t ∈ S | (M, t) A}
πA = π|SA
KAj =

{
(u, v) ∈ (SA)2 | (u, v) ∈ Kj

}
dom(PA(j, t)) = {v ∈ dom(P(j, t)) | (M,v) A}

PA(j, t)(v) =

P(j,t)(v)
P(j,t)(A) if P(j, t)(A) > 0

0 otherwise

Intuitively, update with a given sentence A, !A, results on removing all the worlds where

A does not hold. We restrict our attention to these worlds.

Moreover, we should concern ourselves with the possibility of updating with a sentence

which has zero probability. In this case we define the probabilities of all the worlds to be

equal to zero. There are other ways, no less controversial, to define these probabilities. It

is still possible to let it undefined, however in a strictly formal point of view this issue can

not be considered a real problem, as can be read in [3] and [2].

Notation: Let MKP [!]
n denote the collection of Kripke structures for knowledge and

probability for agents 1, . . . , n over Φ and with the interpretation of validity for public

announcements given by Definition 3.3.2.

Example 3.3.1 Let us return to the bus trip. In the middle of the journey, the driver

asks: “Do you know the color of your seat?”.

Immediately all of them answer “No!”. The public announcement of passenger 4 saying he

does not know the color of his seat makes passenger 3 immediately update his information

and be sure his color is different from 2’s color. Therefore, we should have

[!(¬K4w4 ∧ ¬K4¬w4)](K3w3).

43

Let us see:

Note that when passenger 4 announces he does not know the color of his seat, all the pas-

sengers become to know 2 and 3 have different colors, so ¬K4w4∧¬K4¬w4 is equivalent to

the disjunction of the following conjunctions of primitive propositions and their negations:

w1 ∧ w2 ∧ ¬w3 ∧ ¬w4

¬w1 ∧ w2 ∧ ¬w3 ∧ w4

w1 ∧ ¬w2 ∧ w3 ∧ ¬w4

¬w1 ∧ ¬w2 ∧ w3 ∧ w4

(3.17)

Since agent 3 knows 2’s color is black, agent 3 immediately considers just two worlds

possible: the world labeled by w1∧¬w2∧w3∧¬w4 and the world labeled by ¬w1∧¬w2∧w3∧w4.

Then,

for all t ∈ K3(s∗), (M, t) w3, so (M, s∗) K3w3.

On the other hand, besides the fact that passengers 1 and 2 do not become to know their

colors, their information also changes: when passenger 4 announces he does not know his

color, the probability that each passenger 1 and 2 assigns to the real world s∗ becomes 1
4

instead of 1
6 as before. Let us present this easy calculation using the probability expression

for public announcements:

Since ¬K4w4 ∧ ¬K4¬w4 holds in all the worlds in (3.17),

P(1, s∗)(¬K4w4 ∧ ¬K4¬w4) =
∑

s∈S st (M,s)¬K4w4∧¬K4¬w4

P(1, s∗)(s) =
4(
4
2

) =
4

6
.

44

Before the public announcements we still have

P(1, s∗)(s∗) =
1

6
,

so we have the following probabilities after the public announcement of ¬K4w4 ∧¬K4¬w4:

P¬K4w4∧¬K4¬w4(1, s∗)(s∗) =
1
6
4
6

=
1

4
.

The same way, P¬K4w4∧¬K4¬w4(2, s∗)(s∗) = 1
4 holds.

Note that passenger 4 does not change the information he had, he did not learn anything

from his public announcement.

Moreover, all passengers become to know what the other passengers know. �

Remark 3.3.3 The reader should be aware that when a public announcement [!A] is

made, A must be true. However, it may be the case that after that A can turn to be

false. A classical example is the public announcement of “you do not know that p, but p is

true”, this proposition become false after its public announcement.

Let us introduce a dynamic component with public announcements in the inference system

HKP .

U1. [!A]p ↔ (A→ p), where p is a primitive proposition;

U2. [!A]¬ϕ ↔ (A→ ¬[!A]ϕ);

U3. [!A](ϕ ∧ ψ) ↔ ([!A]ϕ ∧ [!A]ψ);

U4. [!A]Kiϕ ↔ (A→ Ki(A→ [!A]ϕ));

U5. Pi(A) > 0→ ([!A] (
∑n

l=1 alPi(ϕl) ≥ b)↔ (
∑n

l=1 alPi(A ∧ [!A]ϕl) ≥ bPi(A))) ;

U6. Pi(A) = 0→ ([!A] (
∑n

l=1 alPi(ϕl) ≥ b)↔ 0 ≥ b) .

Definition 3.3.4 Let HKP [!] be the inference system obtained by joining HKP together

with axioms U1-U6 and let `KP [!]
n be the corresponding deductive system.

45

Axioms U1−U6 are recursive, the reader should note that each logical operator is moved

from the dynamical language to the outside of the formulas involving [!A].

U1 tells that A is a necessary precondition for !A to occur, so we say that p is valid after

the public announcement of A if whenever A holds, p holds. U2 and U3 are quite intuitive

and follow from our notion of negation and conjunction. U4 is exactly what we expect to

occur when after the public announcement of A, agent i knows ϕ: we should be careful

with the precondition A and then ensure agent knows that whenever A holds, the public

announcement of A turns ϕ valid.

U5 and U6 follows immediately from the expression of probability for public announce-

ments: we restrict our attention to worlds where A is valid and therefore we need to require

that A is valid and we must normalize the expression. Whenever P (A) = 0, probability 0

is assigned to all worlds.

Proposition 3.3.1 Consider the deductive system `KP [!]
n . Then:

If ϕ is a Boolean formula, then

[!A]ϕ↔ (A→ ϕ) (3.18)

If ϕ is an epistemic formula and B is a Boolean formula, then

[!A][!B]ϕ←→ [!(A ∧ [!A]B)]ϕ (3.19)

If A is a Boolean formula, then [!A]KiA (3.20)

If A and B are Boolean formulas then [!(A ∧B)]KiA (3.21)

Proof:

(3.18) The proof is done recursively on the structure of ϕ.

If ϕ is a primitive proposition it resumes to U1.

Suppose (3.18) holds for any subformula of ϕ. (IH)

Let ϕ = ¬ψ.

Using U2, [!A](¬ψ) iff (A→ ¬[!A]ψ). By (IH) this is equivalent to

(A→ ¬(A→ ψ)) iff (A→ ¬(¬A ∨ ψ)) iff (A→ A ∧ ¬ψ) iff

(¬A ∨ (A ∧ ¬ψ)) iff (¬A ∨A) ∧ (¬A ∨ ¬ψ) iff ¬A ∨ ¬ψ iff (A→ ¬ψ)).

Now consider ϕ = ψ ∧ χ,

46

By U3 [!A](ψ ∧ χ) iff ([!A]ψ ∧ [!A]χ).

Using again (IH), we equivalently have

(A→ ψ) ∧ (A→ χ) iff (¬A ∨ ψ) ∧ (¬A ∨ χ) iff ¬A ∨ (ψ ∧ χ) iff A→ ψ ∧ χ.

(3.19) If ϕ is a Boolean formula, using (3.18) we have:

[!A][!B]ϕ iff [!A](B → ϕ) iff (A→ (B → ϕ)) iff ¬A ∨ (B → ϕ) iff

¬A ∨ (¬B ∨ ϕ) iff ¬A ∨ ¬B ∨ ϕ.

On the other hand we have

[!(A ∧ [!A]B)]ϕ iff ((A ∧ [!A]B)→ ϕ) iff ((A ∧ (A→ B))→ ϕ) iff

((A ∧ (¬A ∨B))→ ϕ) iff (((A ∧ ¬A) ∨ (A ∧B))→ ϕ) iff ((A ∧B)→ ϕ) iff

¬(A ∧B) ∨ ϕ iff ¬A ∨ ¬B ∨ ϕ

If ϕ = Kψ we use induction and obtain the following equivalences:

[!A][!B]Kψ

iff [!A]([!B]Kψ)

iff [!A](B → K(B → [!B]ψ))

iff [!A](B → K(B → ψ)

iff [!A](¬B ∨K(B → ψ))

iff [!A]¬(B ∧ ¬K(B → ψ))

iff A→ ¬[!A](B ∧ ¬K(B → ψ))

iff A→ ¬((A→ B) ∧ (A→ ¬[!A]K(B → ψ)))

iff A→ (¬(A→ B) ∨ ¬(A→ ¬(A→ K(A→ (B → ψ)))))

iff ¬A ∨ ¬(A→ B) ∨ (A ∧ (A→ K(A→ (B → ψ))))

iff ¬A ∨ ¬(A→ B) ∨ (A ∧K(A→ (B → ψ)))

On the other side we have

iff [!(A ∧ [!A]B)]Kψ)

iff [!(A ∧ (A→ B))]Kψ)

iff (A ∧ (A→ B))→ K((A ∧ (A→ B))→ ψ)

iff (A ∧ (A→ B))→ A ∧K((A ∧ (A→ B))→ ψ)

iff (A ∧ (A→ B))→ A ∧K(¬A ∨ ¬(A→ B) ∨ ψ)

iff (A ∧ (A→ B))→ A ∧K(¬A ∨ (A ∧ ¬B) ∨ ψ)

iff (A ∧ (A→ B))→ A ∧K(¬A ∨ ¬B ∨ ψ)

47

(3.20) From U4 we have

[!A]KiA iff (A→ Ki(A→ [!A]A) iff A→ Ki(A→ A) iff A→ Ki(true) iff true.

So [!A]KiA holds.

(3.21) The equivalences follow easily:

[!(A ∧B)]KiA iff (A ∧B → Ki[!(A ∧B)]A) iff (A ∧B → Ki(A ∧B → A) iff

(A ∧B → Ki true) iff true �

Theorem 3.3.5 HKP [!] is a sound axiomatization for the dynamic probabilistic epistemic

logic for public announcements with respect to MKP [!]
n .

Proof: We begin proving the validity of U1. Let p be a primitive proposition, we have the

following equivalent steps:

(M,w) [!A]p iff (M,w) A implies (M | A,w) p.

Denoting the interpretation function of M | A as πA as in Definition 3.3.2, since πA = π,

we have (M | A,w) p iff (M,w) p and it follows that

(M,w) A implies (M,w) p, i.e.,

(M,w) (A→ p).

Let us go on with U2,

(M,w) (A→ ¬[!A]ϕ) iff

(M,w) A implies (M,w) ¬[!A]ϕ iff

(M,w) A implies (M,w) 6 [!A]ϕ iff

(M,w) A implies ((M,w) A and (M | A,w) 6 ϕ)

From propositional calculus, it can easily be shown the expression (a→ a ∧ b)↔ (a→ b)

is valid, so we have

(M,w) A implies (M | A,w) 6 ϕ iff

(M,w) A implies (M | A,w) ¬ϕ iff

(M,w) [!A]¬ϕ.

Axiom U3 also follows from the propositional calculus,

(M,w) [!A](ϕ ∧ ψ) iff

48

(M,w) A implies (M | A,w) ϕ ∧ ψ iff

(M,w) A implies ((M | A,w) ϕ and (M | A,w) ψ)

From propositional calculus we can still prove the following expression is valid: (a →
b ∧ c)↔ (a→ b ∧ a→ c), so we have

((M,w) A implies (M | A,w) ϕ) and ((M,w) A implies (M | A,w) ψ) iff

(M,w) [!A]ϕ ∧ [!A]ψ.

Let us now verify validity of U4,

(M,w) A→ Ki(A→ [!A]ϕ) iff

(M,w) A implies (M,w) Ki(A→ [!A]ϕ) iff

(M,w) A implies for all state t such that (w, t) ∈ Ki, (M, t) A implies (M, t) [!A]ϕ

(M,w) A implies for all state t such that (w, t) ∈ Ki, (M, t) A implies ((M, t) A

implies (M | A, t) ϕ) iff

(M,w) A implies for all state t st (w, t) ∈ Ki, (M, t) A implies (M | A, t) ϕ iff

(M,w) A implies for all state t such that (w, t) ∈ KAi , (M | A, t) ϕ iff

(M,w) [!A]Kiϕ.

For U5, let s ∈ S be a state. Suppose (M, s) Pi(A) > 0 i.e. P(i, s)(A) > 0, then, for

each formula ϕ, we have

PA(i, s)(ϕ) =
∑

v∈dom(PA(i,s)) st (M |A,v)ϕ

PA(i, s)(v) =

=

∑
v∈dom(PA(i,s)) st (M |A,v)ϕ

P(i, s)(v)

P(i,s)(A) =

∑
v∈dom(P(i,s)) st (M,v)A and (M,v)[!A]ϕ

P(i, s)(v)

P(i,s)(A) =

= P(i,s)(A∧[!A]ϕ)
P(i,s)(A)

It follows that

(M, s) [!A] (
∑n

l=1 alPi(ϕl) ≥ b) iff (M, s) (
∑n

l=1 alPi(A ∧ [!A]ϕl) ≥ bPi(A)).

For U6, let s ∈ S be a state and suppose (M, s) Pi(A) = 0 i.e. P(i, s)(A) = 0, then for

each formula ϕ,

PA(i, s)(ϕ) =
∑

u∈dom(PA(i,s)) st (M |A,u)ϕ

PA(i, s)(v) =
∑

u∈dom(PA(i,s)) st (M |A,u)ϕ

0 = 0.

So we have

(M, s) [!A] (
∑n

l=1 alPi(ϕl) ≥ b) iff (M, s) 0 ≥ b. �

49

To prove completeness we need to move a formula from the dynamic system for the static

one. Let us define a translation function which will take us from dynamic probabilistic

epistemic logic to probabilistic epistemic logic. Since HKP is complete for the probabilistic

epistemic logic, we just need to prove that a formula is provably equivalent in HKP [!] to its

translation.

Definition 3.3.6 Let Φ be the set of primitive propositions and LKP [!]
n and LKPn denote

the language for public announcements and probabilistic epistemic language, respectively.

We define the translation function τ : LKP [!]
n −→ LKPn recursively as follows:

i. τ(p) = p

ii. τ(¬ϕ) = ¬τ(ϕ)

iii. τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ)

iv. τ(Kiϕ) = Kiτ(ϕ)

v. τ (
∑n

l=1 alPi(ϕl) ≥ b) = (
∑n

l=1 alPi(τ(ϕl)) ≥ b)

vi. τ([!A]p) = (τ(A)→ p)

vii. τ([!A]¬ϕ) = (τ(A)→ ¬τ([!A]ϕ))

viii. τ([!A](ϕ ∧ ψ)) = τ([!A]ϕ) ∧ τ([!A]ψ)

ix. τ([!A]Kiϕ) = (τ(A)→ Ki(τ(A)→ τ([!A]ϕ)))

x. τ ([!A]
∑n
l=1 alPi(ϕl) ≥ b) = (Pi(τ(A)) > 0 ∧ (

∑n
l=1 alPi(τ(A) ∧ τ([!A]ϕl)) ≥ bPi(τ(A)))∨

∨ (Pi(τ(A)) = 0 ∧ 0 ≥ b))

Lemma 3.3.7 For every formula ξ ∈ LKP [!]
n , ξ is provably equivalent in `KP [!]

n to the

sentence τ(ξ) ∈ LKPn .

Proof: The proof is done by induction.

If ξ is a primitive proposition, obviously ξ is provably equivalent to τ(ξ).

Now assume the claim holds for all subformulas of ξ. (IH)

If ξ is of the form ξ = ¬ϕ, by (IH), ϕ is provably equivalent to τ(ϕ), then ξ is provably

equivalent to

¬τ(ϕ).

50

The proofs for iii.,iv. and v. are analogous.

Now suppose ξ = [!A]p. By U1, [!A]p ↔ A → p, therefore [!A]p is provably equivalent to

τ(A) → p if and only if A → p is provably equivalent to τ(A) → p, which is provided by

(IH).

The proofs for vii, viii, ix and x result from the same arguments. Note that all of them are

the instance of an axiom. �

Theorem 3.3.8 HKP [!] is a weakly complete axiomatization for the dynamic probabilistic

epistemic logic for public announcements with respect to MKP [!]
n .

Proof: We already saw HKP is a complete axiomatization with respect to the semantics of

probabilistic epistemic language. By Lemma 3.3.7, every sentence ϕ ∈ LKP [!]
n is provably

equivalent to τ(ϕ) ∈ LKPn in HKP [!]. Since any sentence ψ ∈ LKPn can be proved using

the inference system HKP , we have HKP [!] is a complete axiomatization for the dynamic

probabilistic epistemic logic with respect to MKP [!]
n .

The weakness follows from the weak completeness of HKP . �

Corollary 3.3.9 The language for public announcements is just as expressive as the prob-

abilistic epistemic language.

3.3.2 Product Update Logic

In the logic with public announcements the updates are deterministic. Now we improve

the logic for updates that have an associated uncertainty. Now the updates are represented

by the occurrence of events. See the next definition.

Definition 3.3.10 A probabilistic event model for n agents 1, . . . , n is defined to be a

structure E = (E,Ψ, P re,PE), where E is a non-empty set of events, Ψ is a set of pairwise

inconsistent sentences, the function Pre : Ψ×E −→ [0, 1] is such that for each fixed ψ ∈ Ψ,

Pre(ψ, ·) is a probability function and PE is a probability assignment which assigns to each

agent i ∈ {1, . . . , n} and event e ∈ E a probability function PE(i, e) : E −→ [0, 1].

A probabilistic event model contains information about the allowed updates. There is a

set of possible events E, a set Ψ which includes the preconditions for each event to occur

and we associate to each ψ ∈ Ψ the probability Pre(ψ, e) of ψ to be a condition for e to

occur, for any event e ∈ E.

51

Finally, since there is a chance of being unable to distinguish events, we associate a prob-

abilistic assignment PE that for every agent i and event e assigns a probability function

PE(i, e) that for each e′ ∈ E represents the probability PE(i, e)(e′) that agent i assigns to

event e′ to occur given that actually e is the occurred event.

Notation: Let M be a probabilistic epistemic model and s ∈ S be a state, we denote by

Pre(s, e) the value of Pre(ϕ, e), where ϕ is the unique element of Ψ which is true at the

state s. If no such ϕ exists, we assume Pre(s, e) = 0.

Definition 3.3.11 Let E a set of events and consider n agents 1, . . . , n. The language

for product update LKP []
n has the following inductive syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kiϕ | a1Pi(ϕ1) + · · ·+ anPi(ϕn) ≥ b | [e]ϕ ,

where p ∈ Φ, i ∈ {1, . . . , n}, a1, . . . , an, b ∈ Q and e ∈ E is an event.

Definition 3.3.12 Let LKP []
n the language for product update, M = (S, π,K1, . . . ,Kn,P)

a Kripke structure for knowledge and probability over Φ and E = (E,Ψ, P re,PE) a proba-

bilistic event model. Let s ∈ S be a state and ϕ ∈ LKP []
n a formula.

If ϕ is a probabilistic epistemic formula, then ϕ ∈ LKPn and the validity follows from

Definition 3.2.4.

If ϕ is of the form [e]ψ, for some formula ψ and event e, we define

(M, s) [e]ψ if and only if for all ξ ∈ Ψ, (M, s) ξ implies (M×E, (s, e)) ψ, (3.22)

where the product update model M × E is defined by M × E = (S′, π′,K′1, . . . ,K′n,P ′) with

S′ = {(s, e) ∈ S × E | Pre(s, e) > 0}
π′(s, e) = π(s), for all (s, e) ∈ S′

K′i =
{

((s, e), (s′, e)) ∈ (S′)2 | (s, s′) ∈ Ki
}

dom(P ′(i, (s, e))) = {(s′, e′) ∈ dom(P(i, s))× E | Pre(s′, e′) > 0}

P ′(i, (s, e))(s′, e′) =

Pre(s′,e′)P(i,s)(s′)PE(i,e)(e′)∑

s′′∈S,e′′∈E Pre(s
′′,e′′)P(i,s)(s′′)PE(i,e)(e′′)

if denominator > 0

0 otherwise

The states of the product update model are pairs (s, e) where the event e occurs at state

s with positive probability. Since the events are non-deterministic, the expression of prob-

52

ability is now the product of all the probabilistic components involved in our model: the

probability that agent i assigns for s′ to occur given his information at state s, the chance

of e′ to occur at state s′ and finally the probability of agent i to observe e′ instead of e. To

get a probability function in the end, we normalize the expression.

The degenerated case, i.e. when denominator = 0, is a problem similar to that mentioned

for the public announcements case. And again in a strictly formal point of view this is not

actually a real problem. We refer the reader to [3] and [2].

Remark 3.3.13 Note that, except for the degenerated case, this product model is a prob-

abilistic model and therefore we can take the same assumption as in the static case, for

instance the condition C1.

Notation: Let MKP []
n denote the collection of Kripke structures for knowledge and

probability for agents 1, . . . , n over Φ and with the interpretation of validity for updates

with events given by Definition 3.3.12.

Example 3.3.2 Suppose that the driver, instead of asking if any of the passengers know

the color of their own seat, asked the passengers to name the color of any seat they could

see.

Let us analyze the behavior of passenger 4.

The action of passenger 4 is not deterministic. He can possibly answer he knows w3 or

either he knows ¬w2.

First of all, we need to clarify what the probabilistic event model is for this case. Let

E = (E,Ψ, P re,PE), where

{!K4w3, !K4w2, !K4¬w2, !K4¬w3} ⊆ E.

Since we just worry with the case of agent 4, we let the other events undefined. Notice that

53

“!” here means again the act of publicly announce, but now this public announcement is

probabilistic.

We abuse of notation and do not distinguish Ψ from the set of states S. Note that we

usually denote the states by the values of its primitive propositions.

We define Pre : Ψ× E −→ [0, 1] as

Pre(ϕ, !K4wk) =

{
1
2 if ϕ→ wk

0 otherwise

Pre(ϕ, !K4¬wk) =

{
1
2 if ϕ→ ¬wk
0 otherwise

,

for k ∈ {1, 2}.
And finally, since there is no chance of confusion about the event which takes place, PE is

defined trivially,

PE(i, e)(e′) =

{
1 if e = e′

0 otherwise

Assume passenger 4 choose to answer he knows that w3 holds. We should expect that, after

that, the probability that agent 3 assigns to w3 should be 1, as we will see right now.

Recall that at the beginning the set K3(s∗) = dom(P(3, s∗)) has 3 states, i.e. passenger 3

at the beginning consider 3 possible states: he just know that (M, s∗) ¬w2. Moreover,

note that PE being degenerated implies a huge simplification on the expression of product

probability.

P ′(3, (s∗, !K4w3))(w3) =
∑

(s′,!K4w3)∈Γ3,w3

P ′(3, (s∗, !K4w3))(s′,K4w3)∑
s′′∈S

Pre(s′′, !K4w3)P(3, s∗)(s′′)
=

=

∑
(s′,!K4w3)∈Γ3,w3

Pre(s′, !K4w3) · P(3, s∗)(s′)

2· 1
2
· 1
3

=
2· 1

2
· 1
3

2· 1
2
· 1
3

= 1,

where Γk,ϕ = {(s, !K4w3) | s ∈ dom(P ′(k, (s∗, !K4w3)))and (M, (s, !K4w3)) ϕ}, which means

(M, s∗) [!K4w3] (P3(w3) = 1) .

Moreover, the probability that agent 2 assigns to ¬w2 changes with the statement of pas-

senger 4.

54

P ′(2, (s∗, !K4w3))(¬w2) =
∑

(s′,!K4w3)∈Γ2,¬w2

P ′(2, (s∗, !K4w3))(s′, !K4w3)∑
s′′∈S

Pre(s′′, !K4w3)P(2, s∗)(s′′)
= 2

1
2 ·

1
6

3 · 1
2

1
6

=
2

3
,

i.e. (M, s∗) [!K4w3]
(
P2(¬w2) = 2

3

)
. �

Notation: Let E be a probabilistic event model, and e ∈ E an event. We say

(M, (s, e)) PE(i, e)(e′) = a iff PE(i, e)(e′) = a.

To the inference system HKP we add some axioms that allow us to reason about product

update.

PM1. [e]p ↔ (
∨
ξ∈Ψ,P re(ξ,e)>0 ξ → p), where p is a primitive proposition;

PM2. [e]¬ϕ ↔ (
∨
ξ∈Ψ,P re(ξ,e)>0 ξ → ¬[e]ϕ);

PM3. [e](ϕ ∧ ψ) ↔ ([e]ϕ ∧ [e]ψ);

PM4. [e]Kiϕ ↔ (
∨
ξ∈Ψ,P re(ξ,e)>0 ξ → Ki(

∨
ξ∈Ψ,P re(ξ,e)>0 ξ → [e]ϕ));

PM5.
∑

ξ∈Ψ,e′∈E Pre(ξ, e
′)Pi(ξ)P

E(i, e)(e′) > 0→
(

[e]
∑k

l=1 alPi(ϕl) ≥ b↔

↔
(∑

ξ∈Ψ,e′∈E
1≤l≤k

alPre(ξ, e
′)Pi(ξ ∧ [e′]ϕl)P

E(i, e)(e′) ≥ b
∑

ξ∈Ψ
e′∈E

Pre(ξ, e′)Pi(ξ)P
E(i, e)(e′)

))

PM6.
∑

ξ∈Ψ,e′∈E Pre(ξ, e
′)Pi(ξ)P

E(i, e)(e′) = 0→

(
[e]

k∑
l=1

alPi(ϕl) ≥ b↔ 0 ≥ b

)
Definition 3.3.14 Let HKP [] be the inference system obtained by joining HKP together

with axioms PM1− PM6 and let `KP []
n be the corresponding deductive system.

Remark 3.3.15 The public announcement approach is a particular case of the product

update approach. Note that in the dynamical model with public announcements the dis-

junction
∨
ξ∈Ψ,P re(ξ,!A)>0 ξ reduces to A and PE is degenerated.

The motivation for axioms PM1− PM6 is a kind of generalization of the one we gave for

U1−U6. As remarked before, we just need to keep in mind what the preconditions are on

each approach.

55

Theorem 3.3.16 HKP [] is a sound axiomatization for the dynamic probabilistic epis-

temic logic with product update with respect to MKP []
n .

Proof: The proof of soundness for product update is very similar to the one with public

announcements, we just need to rename “A” just as the Remark 3.3.15 tells us.

Let us begin proving validity of PM1. Let p be a primitive proposition and w ∈ S be any

state. By definition of semantics,

(M,w) [e]p iff for all ξ ∈ Ψ (M,w) ξ implies (M × E, (w, e)) p.

Denoting the interpretation function of M × E as π′, we have π′(w, e) = π(w). Moreover,

(w, e) ∈ S′ only if Pre(ξ, e) > 0 where ξ is the unique element of Ψ such that (M,w) ξ.

Then we can write equivalently

(M,w) [e]p iff for all ξ ∈ Ψ st Pre(ξ, e) > 0 if (M,w) ξ implies (M,w) p, i.e.

(M,w) [e]p iff (M,w)

 ∨
ξ∈Ψ,P re(ξ,e)>0

ξ → p

 .

For PM2, PM3 and PM4 the trick is the same.

Now let us prove validity of PM5: let s ∈ S be a state.

Suppose (M, s)
∑

ξ∈Ψ,e′∈E
Pre(ξ, e′)Pi(ξ)P

E(i, e)(e′) > 0, i.e.,

∑
ξ∈Ψ,e′∈E

Pre(ξ, e′)P(i, s)(ξ)PE(i, e)(e′) > 0,

then for each formula ϕ and denoting the probability assignment of M × E to be P ′, we

have

P ′(i, (s, e))(ϕ) =
∑

(v,e′)∈dom(P ′(i,(s,e))) st (M×E,(v,e′))ϕ

P ′(i, (s, e))(v, e′) =

=

∑
(v,e′)∈dom(P ′(i,(s,e))) st (M×E,(v,e′))ϕ

Pre(v, e′)P(i, s)(v)PE(i, e)(e′)∑
s′′∈S,e′′∈E

Pre(s′′, e′′)P(i, s)(s′′)PE(i, e)(e′′)
=

=

∑
e′∈E,v∈dom(P(i,s)) st Pre(v,e′)>0,(M×E,(v,e′))ϕ

Pre(v, e′)P(i, s)(v)PE(i, e)(e′)∑
s′′∈S,e′′∈E

Pre(s′′, e′′)P(i, s)(s′′)PE(i, e)(e′′)
=

56

Since Pre(v, e′) > 0, by the Notation introduced in the beginning of this section, there is

some ξ ∈ Ψ such that (M,v) ξ and Pre(ξ, e′) =: Pre(v, e′) > 0, so we still have∑
e′∈E,v∈dom(P(i,s)) st (M×E,(v,e′))ϕ and

for all ξ ∈ Ψ if ,(M,v)ξ then Pre(ξ,e′)>0

Pre(ξ, e′)P(i, s)(v)PE(i, e)(e′)

∑
s′′∈S,e′′∈E

Pre(s′′, e′′)P(i, s)(s′′)PE(i, e)(e′′)
=

=

∑
e′∈E,ξ∈Ψ

Pre(ξ, e′)P(i, s)(ξ ∧ [e′]ϕ)PE(i, e)(e′)∑
s′′∈S,e′′∈E

Pre(s′′, e′′)P(i, s)(s′′)PE(i, e)(e′′)
.

It follows that

(M, s) [e]

(
n∑
l=1

alPi(ϕl) ≥ b

)
iff

(M, s)
∑

e′∈E,ξ∈Ψ
1≥l≥n

alPre(ξ, e
′)Pi(ξ ∧ [e′]ϕ)PE(i, e)(e′) ≥ b

∑
ξ′′∈Ψ
e′′∈E

Pre(ξ, e′′)Pi(ξ)P
E(i, e)(e′′).

PM6 is immediate from the definition of the probability assignment for the product

update. �

For this product update approach, completeness also results from the completeness of the

static model. So let us construct our translation function in the same way as we did for

public announcements.

Definition 3.3.17 Let Φ be the set of primitive propositions, E a probabilistic event model

and LKP []
n and LKPn denote the language for product update and probabilistic epistemic

language, respectively. We define the translation function τ : LKP []
n −→ LKPn recursively

as follows:

i. τ(p) = p

ii. τ(¬ϕ) = ¬τ(ϕ)

iii. τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ)

iv. τ(Kiϕ) = Kiτ(ϕ)

57

v. τ (
∑n

l=1 alPi(ϕl) ≥ b) = (
∑n

l=1 alPi(τ(ϕl)) ≥ b)

vi. τ([e]p) = (τ(
∨
ϕ∈Ψ,P re(ϕ,e)>0 ϕ)→ p)

vii. τ([e]¬ϕ) = (τ(
∨
ϕ∈Ψ,P re(ϕ,e)>0 ϕ)→ ¬τ([e]ϕ))

viii. τ([e](ϕ ∧ ψ)) = τ([e]ϕ) ∧ τ([e]ψ)

ix. τ([e]Kiϕ) = (τ(
∨
ϕ∈Ψ,P re(ϕ,e)>0 ϕ)→ Ki(τ(

∨
ϕ∈Ψ,P re(ϕ,e)>0 ϕ)→ τ([e]ϕ)))

x. τ

(
[e]

n∑
l=1

alPi(ϕl) ≥ b

)
=
((∑

ξ∈Ψ,e′∈E Pre(ξ, e
′)Pi(τ(ξ))PE(i, e)(e′) > 0

)
∧

∧

 ∑
ξ∈Ψ,e′∈E

1≤l≤k

alPre(ξ, e
′)Pi(τ(ξ) ∧ τ([e′]ϕ))PE(i, e)(e′) ≥ b

∑
ξ∈Ψ
e′∈E

Pre(ξ, e′)Pi(τ(ξ))PE(i, e)(e′)

∨

∨
((∑

ξ∈Ψ
e′∈E

Pre(ξ, e′)Pi(τ(ξ))PE(i, e)(e′) = 0

)
∧ (0 ≥ b)

)
Lemma 3.3.18 For every formula ξ ∈ LKP []

n , ξ is provably equivalent in `KP []
n to the

sentence τ(ξ) ∈ LKPn .

Proof: Similar to Lemma 3.3.7.

Now completeness is immediate.

Theorem 3.3.19 HKP [] is a weakly complete axiomatization for the dynamic probabilis-

tic epistemic logic for product update with respect to MKP []
n .

Corollary 3.3.20 The language for product update is just as expressive as the probabilis-

tic epistemic language.

58

Chapter 4

Applications

We present two applications that represent important aspects of the information security

logics we wish to develop in the future. The first depicts a simplified approach of a typical

problem toward cryptanalysis. The second is developed around the notion of computational

indistinguishability.

4.1 Mastermind

In the first situation, we apply our logic to a problem which is similar to the usual problems

associated with cryptanalysis in information security - the Mastermind game.

Briefly, the game of Mastermind is developed with the aim of a player discover a secret.

This is a known game, but we decided to simplify it, here we do not allow the secret to be

any word but rather a binary word.

In the cryptanalytic point of view, most of the times, when there is a secret to discover and

an attacker who interacts with a system, we assume that we are in the presence of a single-

agent case because we rely on the analysis of the attacker’s behavior. This particularization

of such a cryptanalytic problem to a game will also take only one agent into account.

Let m = (m1, . . . ,ma) be the secret to save. To discover the secret the attacker is allowed

to make some bets on potential secrets. Bets are placed sequentially and for each bet

p1, · · · pa the attacker gets an answer s ∈ {1, . . . , a} representing the number of bits of the

59

bet that match with the secret, s = # {i | pi = mi, i ∈ {1, . . . , a}}. Note that if the answer

is a the player actually guessed the secret. We assume that the answer is obtained by the

agent through some mechanism of dealing with the secret message he can not access, but

from which he can obtain his answer.

Let us try to model this problem.

The set of primitive propositions of our model is Φ = {mn}n∈N. Nevertheless, for a secret

with length a we just care with {m1, . . . ,ma}, where a is the length of the secret and

mi ∈ {0, 1} is the ith bit of the secret. We pretend to construct a model M = (S, π,K,P)

that represents this game, and we make it as follows.

The set of states S should represent all possible combinations of bits of the secret, i.e. all

the combinations that the agent can consider to be possible

S = {0, 1}a.

Since we label the states with the values of the primitive propositions on each state, defining

the identification function π is straightforward.

In the beginning, our attacking agent is supposed not to know any bit of the secret, so he

should not be able to distinguish any two states. Thus the knowledge relation should be

defined by K = S2.

Observation: Defining the binary relation K = S2 implies that at the beginning we have

a∧
i=1

(¬Kmi ∧ ¬K¬mi) .

At the beginning, the attacker should assign the same probability to all worlds, so, for each

s ∈ S we define
P(s) : S −→ [0, 1]

s′ 7→ 1
2a

As a consequence of this construction we have, for each state s ∈ S and i ∈ {1, . . . , a},

(M, s)

(
P (mi) =

1

2

)
∧
(
P (¬mi) =

1

2

)
. (4.1)

The reader just need to note, for instance that

P(s)(mi) =
∑

s′∈S st (M,s′)mi

P(s)(s′) = 2a−1 · 1

2a
=

1

2
.

60

Notation: In the single agent case, instead of writing P(1, s) as denoted for the n agents

case, we write P(s).

Since we often are going to use the primitive propositions and their negations, let us define

a function D which helps us to represent the negation of a bit. If x is a Boolean formula,

D•(x) is defined as {
D1(x) = ¬x
D0(x) = x

(4.2)

Each state s of our set of states S has a corresponding combination Drs1
(m1) · · ·Drsn(ma)

of primitive propositions and their negations that characterizes the state uniquely. Let us

label each state s by such combination.

4.1.1 Smart Strategy

To guess the secret, the player must place bets. We model these bets as actions and denote

the bet of the sequence p1 · · · pa by [p1 · · · pa].

There are several ways of attacking the problem. In this subsection we assume that the

intruder is clever and will assimilate all the answers that arises from his bets.

So, whenever he makes a bet, the attacker should have autonomy to eliminate all the states

whose combination of bits does not match with the answer he got.

To the inference system presented for the dynamic probabilistic epistemic logic with public

announcements for the single-agent case we add an axiom that allows us to model the

transitions between states in this specific strategy.

M1. Ap1,...,pa
s −→ ([p1 · · · pa]ϕ↔ [!Ap1,...,pa

s]ϕ), s = 0, 1, . . . , a

where Ap1,...,pa
s characterizes exactly the states where the answer to p1, . . . , pa is s:

Ap1,...,pa
s =

∨
j1,...,js∈{1,...,a}

(s∧
k=1

¬Dpjk
(mjk)

)
∧

 ∧
l 6=j1,...,js

Dpl(ml)

 . (4.3)

In particular,

Ap1,...,pa
0 = Dp1(m1) ∧ . . . Dpa(mn)

61

and

Ap1,...,pa
a = ¬Dp1(m1) ∧ . . . ∧ ¬Dpa(ma).

Note that the last one represents the case where the bet p1, . . . , pa coincides exactly with

the secret: the answer s is equal to a.

Intuitively M1 tells us that betting p1, . . . , pn is the same as performing a public announce-

ment (defined just like in subsection 3.3.1) of the slice of states which coincides with the

bet s bits.

Using (3.20) the following Lemma is immediate.

Lemma 4.1.1 Axiom M1 implies that [p1, . . . , pa]

 ∨
s∈{0,1,...,a}

KAp1,...,pa
s

, i.e. when the

agent makes a bet and gets answer s he immediately becomes to know the slice of the states

corresponding to the answer s.

Remark 4.1.2 The result for the composition of bets follows easily from a simple induc-

tion argument:

A
p1

1,...,p
1
a

u1 ∧ . . . ∧Ap
l
1,...,p

l
a

ul −→
(

[p1
1, . . . , p

1
a] · · · [pl1, . . . , pla]ϕ↔ [!A

p1
1,...,p

1
a

u1] · · · [!Ap
l
1,...,p

l
a

ul]ϕ
)

For instance, let l = 2 and suppose A
p1

1,...,p
1
a

u1 ∧Ap
2
1,...,p

2
a

u2 . We have:

[p1
1, . . . , p

1
a][p

2
1, . . . , p

2
a]ϕ iff [p1

1, . . . , p
1
a]
([

[!A
p2

1,...,p
2
a

u2

]
ϕ
)

iff [!A
p1

1,...,p
1
a

u1][!A
p2

1,...,p
2
a

u2]ϕ.

We need now to define some standard bets.

Notation: For each i, k ∈ {1, . . . , a}, define (e0)i = 1 and (ek)i = δki .

The reader should recognize that when the agent bets e0, the answer he gets is the number

of elements of the set {i ∈ {1, . . . , a} | mi holds }, intuitively this is the number of ones in

the secret.

Now we prepare some results that we will use on a special strategy - the smart strategy -

that we will present later.

Lemma 4.1.3 Ae0u ←→ Aeka−u+1 ∨A
ek
a−u−1

Proof:

62

Ae0u = ¬Dek0
(mk)∧

(∨
j1,...,ju−1∈{1...n}\{k}

((∧
jr=j1,...,ju−1

¬Dejr0
(mjr)

)
∧
(∧

jl 6=j1...,ju−1
Djl
e0(mjl)

)))
∨Dek0

(mk) ∧
(∨

i1,...,iu∈{1,...,n}\{k}

((∧
ir=i1,...,iu

¬Dei0
(mir)

)
∧
(∧

il 6=i1,...,iu De
il
0

(mil)
)))

←→ ¬Dekk
(mk)∧

(∨
j1,...,ju−1∈{1,...,n}\{k}

((∧
jr=j1,...ju−1

Dejrk
(mjr

)
∧
(∧

jl 6=j1,...,ju−1
¬D

e
il
k

(mil)
)))

∨Dekk
(mk) ∧

(∨
i1,...,iu∈{1,...,n}\{k}

((∧
ir=i1,...iu

Deirk
(mir)

)
∧
(∧

il 6=i1,...,iu ¬De
il
k

(mil)
)))

←→ Aek(a−1)−(u−1)+1 ∨A
ek
(a−1)−u ←→ Aeka−u+1 ∨A

ek
a−u−1 �

Since ekk = 1, from the previous proof we have ¬Dekk
(mk) = mk and Dekk

(mk) = ¬mk. Therefore,

mk ←→ (Ae0u ↔ Aeka−u+1) (4.4)

¬mk ←→ (Ae0u ↔ Aeka−u−1) (4.5)

Remark 4.1.4 Under the assumptions of our Mastermind game, the semantics for the actions is

defined as:

(M, s) [p1, . . . , pa]ϕ if and only if (M, s) Ap1,...,pa
u implies (M |Ap1,...,pa

u) ϕ,

where s ∈ S is a state, ϕ ∈ LKP [!] is a formula, M is a Kripke structure for knowledge and

probability and Ap1,...,pa
u is defined by (4.3).

After we have modeled the problem and we have shown some basic preliminary results, we now

present a smart strategy, which is very particular but efficient. Then we prove if the attacker chooses

the smart strategy, he will discover the secret with a finite number of bets.

Definition 4.1.5 We define the smart strategy to be the following sequence of actions: [e0] [e1] . . . [ea].

We want to prove that if the agent adopts this smart strategy, he will discover the secret. With

this purpose, we will prove the following Lemma using both semantics and a formal proof.

Lemma 4.1.6 For each k ∈ {1, . . . , n} we have [e0][ek](Kmk ∨K¬mk).

Semantic Proof of Lemma 4.1.6: Let s ∈ S be a state and suppose (M, s) Ae0u .

By Lemma 4.1.3, only two cases can occur:

(M, s) Ae0u ∧A
ek
a−u+1

or

(M, s) Ae0u ∧A
ek
a−u−1.

63

Suppose (M, s) Ae0u ∧A
ek
a−u+1.

We have (M | Ae0u ∧ A
ek
a−u+1, s) Kmk if and only if for all state t such that (t, s) ∈ KA

e0
u ∧A

ek
a−u+1

i

we have

(M | Ae0u ∧A
ek
a−u+1, t) mk (4.6)

By (4.4) Ae0u ∧A
ek
a−u+1 → mk. Since (M, t) Ae0u ∧A

ek
a−u+1 we have (M, t) mk.

By the definition of the updated model M | Ae0u ∧A
ek
a−u+1,

πA
e0
u ∧A

ek
a−u+1 = π

therefore (4.6) holds.

And so (M | Ae0u ∧A
ek
a−u+1, s) Kmk, then (M | Ae0u ∧A

ek
a−u+1, s) (Kmk ∨K¬mk)

Analogously, (M | Ae0u ∧A
ek
a−u−1, s) (Kmk ∨K¬mk).

By Remark 4.1.4 we have [e0][ek](Kmk ∨K¬mk), which ends the semantic proof. �

Formal Proof of Lemma 4.1.6:

The following equivalences are valid

By Remark 4.1.2 Ae0u ∧Aeks −→ ([e0][ek]φ↔ [!Ae0u] [!Aeks]ϕ) iff (I)

(using (3.19)) Ae0u ∧Aeks −→ ([e0][ek]φ↔ [! (Ae0u ∧ [!Ae0u]Aeks)]ϕ) iff

(using (3.18)) Ae0u ∧Aeks −→ ([e0][ek]φ↔ [! (Ae0u ∧ (Ae0u → Aeks))]ϕ) .

Lemma 4.1.6 follows immediately from the following lemmas:

Lemma 4.1.7 Ae0u ∧A
ek
a−u+1 −→ [e0][ek]Kmk

Proof of Lemma 4.1.7: Suppose Ae0u ∧A
ek
a−u+1.

64

(using (3.21))
[

!
(
Ae0u ∧

(
Ae0u → Aeka−u+1

))]
KAe0u ∧

∧ [
[

!
(
Ae0u ∧

(
Ae0u → Aeka−u+1

))]
K
(
Ae0u → Aeka−u+1

)
iff

(using U3)
[

!
(
Ae0u ∧ Ae0u → Aeka−u+1

)] (
KAe0u ∧K

(
Ae0u → Aeka−u+1

))
then

(using K2)
[

!
(
Ae0u ∧ Ae0u → Aeka−u+1

)] (
KAe0u ∧KA

ek
a−u+1

)
iff

(using (3.18))
[

!
(
Ae0u ∧ [!Ae0u]Aeka−u+1

)] (
KAe0u ∧KA

ek
a−u+1

)
iff

(using (3.19)) [!Ae0u]
[
!Aeka−u+1

] (
KAe0u ∧KA

ek
a−u+1

)
iff

(using (3.6)) [!Ae0u]
[
!Aeka−u+1

]
K
(
Ae0u ∧A

ek
a−u+1

)
then

(using (4.4)) [!Ae0u]
[
Aeka−u+1

]
Kmk iff

(using (I)) [e0][ek]Kmk,

which ends the proof of Lemma 4.1.7. �

Similarly we can prove

Lemma 4.1.8 Ae0u ∧A
ek
a−u−1 −→ [e0][ek]K¬mk

From Lemmas 4.1.7 and 4.1.8, we still have

Ae0u ∧A
ek
a−u+1 → [e0][ek](Kmk ∨ ¬Kmk)

and

Ae0u ∧A
ek
a−u−1 → [e0][ek](Kmk ∨ ¬Kmk).

Since by Lemma 4.1.3, Ae0u ←→ Aeka−u+1 ∨A
ek
a−u−1 we get(

Ae0u ∧A
ek
a−u+1

)
∨
(
Ae0u ∧A

ek
a−u−1

)
−→ [e0][ek] (Kmk ∨K¬mk)

which concludes the formal proof of Lemma 4.1.6. �

The following theorem will also be proved with both the semantic and the formal approaches and

tells us that is a smart strategy.

Theorem 4.1.9 Performing the smart strategy the agent should discover the secret,

[e0] [e1] . . . [ea]

a∧
i=1

(Kmi ∨K¬mi).

65

Semantic Proof of 4.1.9:

To make this semantic proof, we need the following

Lemma 4.1.10 Let ϕ and ψ be epistemic formulas.

If

(M, s) A implies (M |A, s) ϕ

and

(M, s) B implies (M |B, s) ψ,

then (M, s) A ∧B implies (M | A ∧B, s) ϕ ∧ ψ.

Proof: Suppose (M, s) A ∧B. We just need to prove for ϕ.

If ϕ is a primitive proposition, it follows from the definition of updated model that πA∧B(s)(ϕ) =

πA(s)(ϕ) and so we are done in this case.

Assume that (M | A, s) ξ iff (M | (A ∧B), s) ξ for all subformulas ξ of ϕ. (IH)

If ϕ = ¬ϕ′, (M | A ∧B, s) ¬ϕ′ iff (M | A ∧B, s) 6 ϕ′.

Since (M | A, s) ¬ϕ′ i.e. (M | A, s) 6 ϕ′, the result follows applying (IH).

For ϕ = ϕ1 ∧ ϕ2 it is similar.

Now let ϕ be of the form Kiϕ
′ we have

(M | A ∧B, s) Kiϕ
′ iff for all t ∈ KA∧Bi (s), (M | A ∧B, t) ϕ′ (4.7)

We know that (M | A, s) Kiϕ
′ so, for all t ∈ KAi (s), (M | A, t) ϕ′.

Since KA∧Bi (s) ⊆ KAi (s), from (IH), (4.7) holds.

We proved that if ϕ is an epistemic formula, we have (M | A ∧ B, s) ϕ. Similarly we can prove

that (M | A ∧B, s) ψ.

By (3.3) we have (M | A ∧B, s) ϕ ∧ ψ, which ends the proof of Lemma 4.1.10. �

Now let us prove we have [e0][e1] · · · [ea]
∧n
i=1(Kmi ∨K¬mi).

By Remark 4.1.4, we want to prove that

(M, s)
a∧
i=1

(Ae0u ∧A
ei
Fmi (u)) implies

(
M |

a∧
i=1

(
Ae0u ∧A

ei
Fmi (u)

)
, s

)

a∧
i=1

(Kmi ∨K¬mi),

66

where F·(u) is defined as {
F1(u) = n− u+ 1

F0(u) = n− u− 1
(4.8)

Suppose (M, s)
∧a
i=1(Ae0u ∧A

ei
Fmi (u)).

Indeed, by Lemmas 4.1.6 and 4.1.10 and using an inductive argument,(
M |

a∧
i=1

(Ae0u ∧A
ei
Fmi (u)), s

)

a∧
i=1

(Kmi ∨K¬mi),

which concludes the semantic proof of Lemma 4.1.9. �

Formal Proof of 4.1.9:

Let {An}n∈N be Boolean formulas, we define formulas ∆n recursively as:

∆1 := A1

∆n := ∆n−1 ∧ (∆n−1 → An) for n > 1

Observation: Note that ∆n → ∆m for m ≤ n.

Lemma 4.1.11 If A1 . . . , An are Boolean formulas, then ∆n ←→ A1 ∧ . . . ∧An

Proof: Since A ∧B ←→ A ∧ (A→ B) is a tautology, the proof is immediate. �

Lemma 4.1.12 If A1, . . . , Am are Boolean formulas then

[!A1] . . . [!Am]ϕ iff (∆m → ϕ)

Proof: The proof is done by induction on m.

Let m = 1: [!A1]ϕ iff A1 −→ ϕ.

Let m = 2:
[!A1][!A2]ϕ iff [!(A1 ∧ [!A1]A2)]ϕ

iff (A1 ∧ [!A1]A2)→ ϕ

iff (A1 ∧ (A1 → A2))→ ϕ

iff ∆2 → ϕ.

Now let m ∈ N and suppose that

[!A1] · · · [!Am]ϕ iff ∆m → ϕ. (IH)

We have

[!A1] · · · [!Am][!Am+1]ϕ iff ([!A1] · · · [!Am]) [!Am+1]ϕ.

By (IH), equivalently we get

67

∆m → [!Am+1]ϕ

iff [!∆m][!Am+1]ϕ

iff [!(∆m ∧ [!∆m]Am+1)]ϕ

iff (∆m ∧∆m → Am+1)→ ϕ

iff ∆m+1 → ϕ. �

Lemma 4.1.13 Let A1 . . . , Am be Boolean formulas. Then ∆m −→ (A1 ∧ A1 → Am) .

Proof of Lemma 4.1.13:

Suppose ∆m holds.

By Lemma 4.1.11, it implies A1 ∧ . . . ∧Am is valid and it follows that:

(A1 ∧ . . . ∧Am) then (A1 ∧ Am) iff A1 ∧ (A1 ∧ A1 → Am) iff

iff (A1 ∧ A1) ∧ A1 → Am iff A1 ∧ A1 → Am �

Now is time to proof that the bets are commutative in this Mastermind game.

Lemma 4.1.14 Let Ae0l0 and Aeklk be defined by (4.3). Then

[!Ae0l0][!Aeklk]ϕ↔ [!Aeklk][!Ae0l0]ϕ.

Proof: Let ∆0k
2 denote the formula ∆2 defined recursively above adapted to Ae0l0 and Aeklk instead

of A1 and A2, and ∆k0
2 defined the same way but this time with Aeklk and Ae0l0 instead of A1 and

A2. By the previous results the equivalences follow:

[!Ae0l0][!Aeklk]ϕ iff [!(Ae0l0 ∧ [!Ae0l0]Aeklk)]ϕ iff [!(Ae0l0 ∧A
e0
l0
→ Aeklk)]ϕ iff [!∆0k

2]ϕ iff

[!(Ae0l0 ∧A
ek
lk

)]ϕ iff [!(Aeklk ∧A
e0
l0

)]ϕ iff [!∆k0
2]ϕ iff

[!(Aeklk ∧A
ek
lk
→ Ae0l0)]ϕ iff [!Aeklk][!Ae0l0]ϕ. �.

Lemma 4.1.15 Let A1, . . . , Am be Boolean formulas and ψ be any formula, then

[!A1][!Am]ψ → [!A1] . . . [!Am]ψ

Proof of Lemma 4.1.15: Suppose [!A1][!Am] ψ. By (3.18) this is equivalent to

(A1 ∧ A1 → Am)→ ψ.

Finally, by Lemma 4.1.13, ∆m implies (A1 ∧ A1 → Am), so ∆m → ψ. �

68

Assume Ae0l0 ∧A
e1
l1
∧ . . . ∧Aeala holds. Then we get:

[e0][e1] . . . [ea]

a∧
i=1

(Kmi ∨K¬mi) (by Remark 4.1.2)

iff [!Ae0l0][!Ae1l1] . . . [!Aeala]

a∧
i=1

(Kmi ∨K¬mi) (by U3)

iff

a∧
i=1

[!Ae0l0][!Ae1l1] · · · [!Aeala](Kmi ∨K¬mi) (by Lemma 4.1.15)

if

a∧
i=1

[!Ae0l0][!Aeili](Kmi ∨K¬mi) (by Remark 4.1.2)

iff

a∧
i=1

[e0][ei](Kmi ∨K¬mi)

By Lemma 4.1.6, [e0][ei](Kmi ∨K¬mi) holds for each i ∈ {1, . . . , a}, so

[e0][e1] · · · [ea]

a∧
i=1

(Kmi ∨K¬mi)

which concludes the formal proof of Theorem 4.1.9. �

4.1.2 Dumb strategy

Contrasting to the situation presented in the previous subsection, if the player is dumb and choose

to play a strategy completely random and blind then probably he will not find out the secret in a

polynomial number of bets.

The dumb strategy that the agent may be tempted to use consists of choosing a random combination

of a bits and betting. After that he is just concerned with the fact that the bet coincides with the

secret or not. If it does not match, being a blind strategy, the agent ignores completely the answer

he gets from the bet and proceed as before, choosing again a combination of a bits randomly.

The previous strategy was a very well defined strategy in the sense that it was a fixed sequence

of some specific bets that bring the attacker to the discovery of the secret. Nevertheless, in this

approach of the game the actions are not deterministic so we need to use the product update logic

to model it.

Define the probabilistic event model E to be E = (E,Ψ, P re,PE), where E denote all the relevant

bets E = {right bet,wrong bet} , where the right bet = Drs
∗

1
(m1) · · ·Drs∗a

(ma) with s∗ denoting the

real worlds and wrong bet represents the bet of any combination of primitive propositions and their

negations other than the secret.

69

We would think that E should be the set of all possible bets, but the idea should be to distinguish

the types of events that affect the system differently. Whenever the attacker makes a bet that is

not the secret he should take the same information, regardless of the specific bet he does at each

moment. However if he bets the secret, the behavior of the model should distinguish itself from the

other situations.

Ψ ≡ S is the set S. As we referred at Subsection 3.3.2 we will consider indifferently the state or

its corresponding formula on the set Ψ. Since the strategy is blind, we do not restrict any bet with

any precondition, hence Pre is defined uniformly and independent of s ∈ Ψ by

Pre(right bet) := Pre(s, right bet) = 1
2a ,

P re(wrong bet) := Pre(s,wrong bet) = 2a−1
2a , with s ∈ Ψ.

This means Pre is uniform over each state and realizes the idea that our strategy is completely

random and blind. Moreover captures the assumption that the agent makes a bet randomly chosen

from the set of all states, every time.

And finally, the probability function PE is degenerated, i.e., .

PE(i, e)(e′) =

1 if e = e′

0 otherwise

,

which means that there is no confusion about what event (bet) takes place each time. Whenever

the attacker makes a bet, it is well-defined to be the right bet or a wrong bet.

The epistemic model M = (S, π,K,P) was defined at the beginning of this section.

The way we defined the precondition function Pre results on an immediate corollary.

Corollary 4.1.16 At the first bet agent discovers the secret with probability 1
2a ,

Pre(right bet) =
1

2a
.

The reader should note that whenever we make a public announcement of a formula it must be

true. However, in the more general situation of the product model that is not necessarily true. The

attacker can bet a combination of bits that does not occur in the world where the attacker supposes

to be. Nevertheless note that when the attacker bets the combination corresponding to the secret

he is in the situation of a public announcement: he is betting a formula that is true. Moreover when

the attacker bets the secret, he should immediately forget all the other worlds and be sure that the

real world is s∗ and the secret is (m1, . . . ,ma). Our idea is that the attacker should eliminate all

the other worlds of his account and with this purpose, beyond the axioms for the product update

model we should also consider the axiom

70

M2. [right bet]ϕ←→
[
!
(
Drs

∗
1

(m1) ∧ . . . ∧Drs∗a
(ma)

)]
ϕ

On the other hand our model should cover the idea that when the bet is a wrong combination, the

attacker should not learn anything and should remain strictly in the product update model.

Remark 4.1.17 With this model, when the attacker makes a wrong bet he do not learn anything,

[wrong bet]Kϕ←→ Kϕ.

Actually when he makes a wrong bet the system stands on the product update model, so we have

((s′,wrong bet), (s,wrong bet)) ∈ K′ iff (s, s′) ∈ K,

which implies

[wrong bet]Kϕ←→ Kϕ.

Remark 4.1.18 On the other side, from the axiom M2 is immediate that when the attacker bets

the secret, he becomes to know it,

[right bet]K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)).

From the definition of the knowledge relation K for the public announcement is immediate that

K′(s∗, right bet) = {(s∗, right bet)} ,

following that (M, (s∗, right bet)) K(Drs
∗

1
(m1) ∧Drs∗a

(ma)). So,

for all (s, right bet) ∈ K′(s∗,right bet) = {(s∗, right bet)} , (M, s) Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma).

Theorem 4.1.19 After a polynomial number of bets, the attacker discovers the secret with a

negligible probability, i.e.

[bet 1] · · · [bet q(a)]P
(
K
(
Drs

∗
1

(m1) ∧ . . . ∧Drs∗a
(ma)

))
<

1

p(a)
,

for any polynomial p and for a large enough length a.

Semantic Proof:

(M, s∗) [bet 1] · · · [bet q(a)]P
(
K
(
Drs

∗
1

(m1) ∧ . . . ∧Drs∗a
(ma)

))
<

1

p(a)
iff

∑
((s,e1)...,eq(a))∈S×E×...×E st

(M×E×...×E,((s,e1)...,eq(a)))K(D
rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , bet q(a))((s, e1) . . . , eq(a)) <
1

p(a)

Since

71

dom(P((s∗, bet 1) . . . , bet q(a))) ⊆ K((s∗, bet 1) . . . , bet q(a)) = {((s, bet 1) . . . , bet q(a)) | s ∈ S},∑
((s,e1)...,eq(a))×E×...×E st

(M×E×...×E,((s,e1)...,eq(a)))K(D
rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , bet q(a))((s, e1) . . . , eq(a)) =

=
∑

((s,bet 1)...,bet q(a)) st (M×E×...×E,
((s,bet 1)...,bet q(a)))K(D

rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , bet q(a))((s, bet 1) . . . , bet q(a)).

But by Remark 4.1.17,

(M ′, s′) [bet]K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)) iff “bet” = “right bet”.

Moreover,

[wrong bet]Kϕ←→ Kϕ.

So when the intruder makes a sequence of q(a) bets and ends up discovering the secret, there must

be an i ∈ {1, . . . , q(a)} such that bet i = “right bet”, i.e. either the first bet is the right one, or the

second, or the third, ... , or the last one.

Suppose the ith bet is the right bet.

Let us compute P(((s∗, bet 1) . . . , right bet) . . . , bet q(a))(((s, bet 1) . . . , right bet) . . . , bet q(a)) :

P(((s∗, bet 1) . . . , right bet) . . . , bet q(a))(((s, bet 1) . . . , right bet) . . . , bet q(a)) =

=
Pre(bet q(a))P((s∗, bet 1) . . . , bet q(a)− 1)((s, bet 1) . . . , bet q(a)− 1)PE(bet q(a))(bet q(a))∑

s′∈S
e′∈E

Pre(e′)P((s∗, bet 1) . . . , bet q(a)− 1)((s′, bet 1) . . . , bet q(a)− 1)PE(bet q(a))(e′)
=

=
Pre(bet q(a))P((s∗, bet 1) . . . , bet q(a)− 1)((s, bet 1) . . . , bet q(a)− 1)

Pre(bet q(a)))
∑
s′∈S P((s∗, bet 1) . . . , bet q(a)− 1)((s′, bet 1) . . . , bet q(a)− 1)

=

= P((s∗, bet 1) . . . , bet q(a)− 1)((s, bet 1) . . . , bet q(a)− 1).

Going on inductively, after q(a)− i steps we get

P(((s∗, bet 1) . . . , right bet) . . . , bet q(a))(((s, bet 1) . . . , right bet) . . . , bet q(a)) =

= P((s∗, bet 1) . . . , right bet)((s, bet 1) . . . , right bet).

Notice that this should be expected to occur: the attacker does not gain any information when he

bets a wrong bet.

So we have ∑
((s,bet 1)...,bet q(a)) st (M×E×...×E,

((s,bet 1)...,bet q(a)))K(D
rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , bet q(a))((s, bet 1) . . . , bet q(a)) =

72

=
∑

((s,bet 1)...,right bet) st (M×E×...×E,
((s,bet 1)...,right bet))K(D

rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , right bet)((s, bet 1) . . . , right bet)

Now we need to use the formula for probabilities with public announcements.∑
((s,bet 1)...,right bet) st (M×E×...×E,

((s,bet 1)...,right bet))K(D
rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , right bet)((s, bet 1) . . . , right bet) =

∑
((s,bet 1)...,bet i−1) st (M×E×...×E,

((s,bet 1)...,bet i−1))[right bet]K(D
rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

Pright bet((s∗, bet 1) . . . , bet i−1)((s, bet 1) . . . , bet i−1) =

∑
((s,bet 1)...,bet i−1) st (M×E×...×E,

((s,bet 1)...,bet i−1))[right bet]K(D
rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , bet i− 1)((s, bet 1) . . . , bet i− 1)

P((s∗, bet 1) . . . , bet i− 1)(Drs
∗

1
(m1) ∧ · · · ∧Drs∗a

(ma))

The denominator is equal to∑
((s,bet 1)...,bet i−1) st

(M×E×...×E,((s,bet 1)...,bet i−1))D
rs
∗

1

(m1)∧···∧D
rs
∗
a

(ma)

P((s∗, bet 1) . . . , bet i− 1)((s, bet 1) . . . , bet i− 1),

But Drs
∗

1
(m1) ∧ · · · ∧Drs∗a

(ma) is a Boolean formula so

(M × E× . . .× E, ((s, bet 1) . . . , bet i− 1)) Drs
∗

1
(m1) ∧ · · · ∧Drs∗a

(ma) iff

(M, s) Drs
∗

1
(m1) ∧ · · · ∧Drs∗a

(ma).

So s must be equal to s∗ and we get∑
((s,bet 1)...,bet i−1) st (M×E×...×E,

((s,bet 1)...,bet i−1))D
rs
∗

1

(m1)∧···∧D
rs
∗
a

(ma)

P((s∗, bet 1) . . . , bet i− 1)((s, bet 1) . . . , bet i− 1) =

= P((s∗, bet 1) . . . , bet i− 1)((s∗, bet 1) . . . , bet i− 1).

Then we should compute both the denominator and the numerator just as in the beginning, using

the formula for probability in the product model repetitively. In the end we should get

P((s∗, bet 1) . . . , bet i− 1)((s, bet 1) . . . , bet i− 1) = P(s∗)(s), for each s ∈ S.

Observation: Note that, if some other bet was also the right bet, the quotient given by the formula

for public announcements had denominator equal 1: the probability of Drs
∗

1
(m1) ∧ · · · ∧Drs∗a

(ma)

should be 1 in the already updated model with that announcement.

73

Finally we get ∑
((s,bet 1)...,bet i−1) st (M×E×...×E,

((s,bet 1)...,bet i−1))[right bet]K(D
rs
∗

1

(m1)∧...∧D
rs
∗
a

(ma))

P((s∗, bet 1) . . . , bet i− 1)((s, bet 1) . . . , bet i− 1)

P((s∗, bet 1) . . . , bet i− 1)(Drs
∗

1
(m1) ∧ · · · ∧Drs∗a

(ma))
=

=
∑

s∈S st (M,s)[right bet]K(D
rs
∗

1
(m1)∧...∧D

rs
∗
a

(ma))

P(s∗)(s)

P(s∗)(s∗)
.

But

[right bet]ϕ←→ [!Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)]ϕ,

so in particular (M, s) Drs
∗

1
(m1) ∧ . . . ∧ Drs∗a

(ma). And effectively s∗ is the only state that

satisfies the condition over the sum, so

∑
s∈S st (M,s)[right bet]K(D

rs
∗

1
(m1)∧···∧D

rs
∗
a

(ma))

P(s∗)(s)

P(s∗)(s∗)
=
P(s∗)(s∗)

P(s∗)(s∗)
= 1.

So:

[bet 1] · · · [bet q(a)]P
(
K
(
Drs

∗
1

(m1) ∧ . . . ∧Drs∗a
(ma)

))
=

Pre(right bet)
∑

((s,right bet)...,bet q(a)) st
(M×E×...×E,((s,right bet)...,bet q(a)))

K(D
rs
∗

1
(m1)···D

rs
∗
a

(ma))

P((s∗, right bet) . . . , bet q(a))((s, right bet) . . . bet q(a))+

+ . . .+Pre(right bet)
∑

((s,bet 1)...,right bet) st
(M×E×...×E,((s,bet 1)...,right bet)

K(D
rs
∗

1
(m1)···D

rs
∗
a

(ma))

P((s∗, bet 1) . . . , right bet)((s, bet 1) . . . right bet) =

= q(a) · Pre(right bet) =
q(a)

2a
.

So, asymptotically, for any polynomial p,

[bet 1] · · · [bet q(a)]P
(
K
(
Drs

∗
1

(m1) ∧ . . . ∧Drs∗a
(ma)

))
=
q(a)

2a
<

1

p(a)
.

�

Formal Proof:

We pretend to prove formally that [bet 1] . . . [bet q(a)]P (K(Drs
∗

1
(m1)∧ . . .∧Drs∗a

(ma))) is negligible

we will analyse several cases.

74

1st case:

Suppose any bet is the right bet. We pretend to prove

[wrong bet] . . . [wrong bet]P (K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) = 0.

Applying repetitively PM5 we get

[wrong bet] . . . [wrong bet]P (K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) = 0 iff

Pre(wrong bet) . . . P re(wrong bet)P ([wrong bet] . . . [wrong bet]K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)) =

= 0 · Pre(wrong bet) . . . P re(wrong bet) iff

P ([wrong bet] . . . [wrong bet]K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)) = 0.

Applying repetitively the property of Remark 4.1.17 we get equivalently

P (K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) = 0.

But no state s on the static model verifies (M, s) K(Drs
∗

1
(m1)∧ . . .∧Drs∗a

(ma)) so we get a final

equivalence with

0 = 0.

ith case:

Then we should concern with the possibility of at least one of the bets be the right one. Let

bet i = right bet. We want to prove that

[bet 1] . . . [right bet] . . . [bet q(a)]P (K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) = 1

is provable.

Applying repetitively PM5 we get

[bet 1] . . . [right bet] . . . [bet q(a)]P (K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) = 1 iff

Pre(bet i+1) . . . P re(bet q(a))[bet 1] . . . [right bet]P ([bet i+1] . . . [bet q(a)]K(Drs
∗

1
(m1)∧ . . .∧Drs

∗
a
(ma))) =

= Pre(bet i+ 1) . . . P re(bet q(a)).

Using the property of Remark 4.1.17 we get equivalently

[bet 1] . . . [right bet]P (K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) = 1.

Using U5 this is equivalent to

[bet 1] . . . [bet i− 1]P (Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma) ∧ [right bet]K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) =

= P (Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)).

75

Now we proceed assuming without loss of generality that bet 1 = · · · = bet i − 1 = “wrong bet”.

However note that if this is not the case P (Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)) = 1 in the updated model.

Applying now repetitively PM5 we get equivalently

Pre(bet 1) . . . P re(bet i− 1)P (Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)∧

∧[bet 1] . . . [bet i− 1][right bet]K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)) =

= P (Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))Pre(bet 1) . . . P re(bet i− 1).

Using the property of Remark 4.1.18 we know that [right bet]K(Drs
∗

1
(m1)∧ . . .∧Drs∗a

(ma)) = true

so equivalently comes

P (Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)) = P (Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma)).

Which proves that

[bet 1] . . . [right bet] . . . [bet q(a)]P (K(Drs
∗

1
(m1) ∧ . . . ∧Drs∗a

(ma))) = 1.

Now using I4 we have Using I4,

Pre(right bet)[bet 1] . . . [right bet] . . . [bet q(a)]P (K(Drs
∗

1
(m1)∧. . .∧Drs∗a

(ma))) = Pre(right bet) =
1

2a

is provable.

Covering all the possibilities we finally get

[bet 1] . . . [bet q(a)]P (K(Drs
∗

1
(m1)∧. . .∧Dras

∗ (ma))) = 0+Pre(right bet)+. . .+Pre(right bet) =
q(a)

2a
.

So, asymptotically, for any polynomial p,

[bet 1] · · · [bet q(a)]P
(
K
(
Drs

∗
1

(m1) ∧ . . . ∧Dras
∗ (ma)

))
=
q(a)

2a
<

1

p(a)
.

�

76

4.2 Computational Indistinguishability

In this subsection we dedicate ourselves on applying the dynamic probabilistic epistemic logic to

computational indistinguishability. Computational indistinguishability is the base of many relevant

notions in information security, like in the semantic characterizations of asymmetric encryption

schemes such as chosen-plaintext attack or chosen-ciphertext attack.

Definition 4.2.1 Let I be a countable set. A collection of random variables indexed by I, {Xi}i∈I ,

is said to be a distribution ensemble.

Definition 4.2.2 Let {Xn}n∈N and {Yn}n∈N be distribution ensembles indexed by a security pa-

rameter n. {Xn}n∈N and {Yn}n∈N are computationally indistinguishable if for any probabilistic

polynomial time algorithm A and any positive polynomial p there is some m such that for all

n > m,

|P (A(Xn) = 1)− P (A(Yn) = 1)| < 1

p(n)
,

where P (A(Xn) = 1) =
∑
p∈Xn

P (Xn = p) · P (A(p) = 1).

Basically, we define two distribution ensembles to be computationally indistinguishable if there

is no efficient procedure to distinguish them. More specifically, if two distribution ensembles are

computationally indistinguishable, any efficient probabilistic algorithm should accept both of them

with probabilities whose difference is negligible.

The usual definition in literature for computational indistinguishability is the definition 4.2.2. If

the algorithmt is uniform we do not really know how to model it with our logic. Whereas if the

algorithm is non-uniform we can try to model it using the epistemic component of the logic, so this

is what we will assume.

As mentioned, it seems interesting to explore the approach that assumes the algorithm is non-

uniform. The variation of this definition with the non-uniform case is in fact much investigated.

In order to use the dynamical probabilistic epistemic logic to characterize computational indistin-

guishability of distribution ensembles we should begin by finding a way to rewrite this definition

with well defined objects in our logic. We are not able to compute the probability of an algorithm

to answer 1 or 0, so we use functional completeness to reduce it to the study of the probability of

a formula.

By functional completeness, for each Boolean function f : 2n −→ 2 exists a Boolean formula ϕ such

that

ϕ(p1, . . . , pn) = true iff f(p1, . . . , pn) = 1.

77

The algorithm that is described in Definition 4.2.2 is probabilistic, i.e. from time to time, before

getting the answer, the algorithm tosses a coin and the answer depends on the coin tosses, of course.

So let us readjust the input, making this include already the sequence of (say k) coin tosses the

algorithm will call. Now the inputs are of the form p1, . . . , pn, e1, . . . , ek and we do not care anymore

about the non-determinism of the algorithm.

Remark 4.2.3 Note that, to each algorithm corresponds an unknown distribution ensemble on

the coin tosses.

We can now use functional completeness to give a new look to the Definition 4.2.2.

Definition 4.2.4 Let {Xn}n∈N and {Yn}n∈N be distribution ensembles indexed by a security pa-

rameter n. {Xn}n and {Yn}n are computationally indistinguishable if for all Boolean formulas ϕ

with polynomial length and its corresponding distribution ensemble of coin tosses {Ek}k∈N, for any

positive polynomial p there is some m such that for all n > m,∣∣[e1 · · · ek]PXn(ϕ)− [e′1 · · · e′k]PYn(ϕ)
∣∣ < 1

p(n)
,

where e1, . . . , ek and e′1, . . . , e
′
k are samples of Ek.

(M, s) [e1 · · · ek]PXn(ϕ) has the value of the probability that after generated a sequence of coin

tosses e1 · · · ek, the Boolean circuit ϕ evaluated in (s, e1 · · · ek) holds. Further we will analyse this

definition in detail.

Now that we already approached this important notion of computational indistinguishability to

the dynamical probabilistic epistemic logic, we check the equivalence of the two variations, in the

non-uniform case

Proposition 4.2.1 Two distribution ensembles {Xn}n and {Yn}n are computationally indistin-

guishable in the sense of Definition 4.2.2 for non-uniform algorithms if and only if they are com-

putationally indistinguishable in the sense of Definition 4.2.4.

Proof: A non-uniform algorithm is a Boolean function. Functional completeness implies then that

computational indistinguishability in the sense of Definition 4.2.2 implies the approach of Definition

4.2.4.

Reciprocally, ∧,∨,¬ are computable functions, so (just as we saw in Remark 2.0.16) we can get all

the Boolean functions f : 2n −→ 2, from all the Boolean formulas with n inputs, for n ≥ 1, and the

equivalence follows. �

Remark 4.2.5 P/poly is the complexity class of languages decidable by deterministic circuits of

polynomial size. Whereas P is the complexity class of languages decidable by a deterministic Turing

machine using polynomial time.

78

In fact these are not the complexity classes associated with the problem we are studying. The

algorithm that the Definition 4.2.2 refers is not a function, i.e. being probabilistic, the algorithm can

return 1 or 0 to each input with a given probability distribution. Moreover, being non deterministic,

the algorithm does not necessarily answer the same to a given input in different tests. We should

then analyze the complexity classes of distributions in this sense.

The classes P and P/poly actually correspond to complexity classes analogous to the definitions

4.2.2 and 4.2.4 (respectively) in a deterministic approach. The complexity classes that we should

consider would be analogous to P and P/poly for the case of distributions rather than functions.

Maybe we can dare to postulate a relationship between such complexity classes by analyzing the

deterministic case.

P ⊆ P/poly

Since we opted for the variation of the Definition 4.2.2 that adopts the non-uniformity of the al-

gorithm, it seems credible to believe that if we restrict ourselves to this case, these classes should

coincide.

This is an important issue associated with this problem and constitutes one of the proposals for

future work.

Example 4.2.1 Let {Un}n be the uniform distribution ensemble and {1n}n be the constant dis-

tribution ensemble, 1n = 1 · · · 1, for all n ∈ N.

We should be able to distinguish these two distribution ensembles.

Let p1 · · · pn be a sample of Un and 1 · · · 1 be the sample of 1n.

Consider ϕ(ξ1, . . . , ξn) = ξ1 ∧ . . . ∧ ξn a Boolean circuit (without random inputs).

In this example we have no random component, so we simply ignore it from the definition and get∣∣PXn(ϕ)− PYn(ϕ)
∣∣ < 1

p(n)
.

For any polynomial p exists m ∈ N such that, for all n > m,

2n > p(n) > 2.

So it follows that 1− 1
2n > 1− 1

p(n) . Since p(n) > 2, we have, 1− 1
2n > 1− 1

p(n) >
1

p(n) . Hence,(
1− 1

2n

)
>

1

p(n)
.

Since

∣∣PXn(ϕ)− PYn(ϕ)
∣∣ =

∣∣∣∣∣∣∣
∑

p1···pn sample of Un st
p1 ∧ . . . ∧ pn holds

PUn(p1 · · · pn)−
∑

p1···pn sample of 1n st
p1 ∧ . . . ∧ pn holds

P1n(p1 · · · pn)

∣∣∣∣∣∣∣ =

79

=
∣∣PUn(1 · · · 1)− P1n(1 · · · 1)

∣∣ =

∣∣∣∣ 1

2n
− 1

∣∣∣∣ > 1

p(n)
,

the distribution ensembles {Un}n and {1n}n are computationally distinguishable. �

Now we dedicate on the construction of the model to reason about computational indistinguisha-

bility.

Let {Xn}n and {Yn}n be the distribution ensembles we want to (in)distinguish computationally.

Before we go on, we should emphasize that, in fact, the notion of indistinguishability analyzes two

ensembles simultaneously. Essentially, we want, say, in each iteration of indistinguishability to test

two samples simultaneously. Well, therefore we aim at modeling the joint distribution of Xn and

Yn.

We begin by constructing a model for each of the random variables. The probabilistic epistemic

model for Xn, MXn = (SXn , πXn ,KXn ,PXn) is defined as follows:

The space of states should contain all the samples of the random variable,

SXn = {(p1, . . . , pn) | p1, . . . , pn is a sample of Xn} .

Since we confuse a label of a state with the values of the primitive propositions, the identification

function is defined straightforward. Moreover all the samples should be equally plausible,

KXn =
(
SXn

)2
.

PXn is defined according to the probabilities of the distribution Xn and should be independent of

the world where the attacker thinks to be, i.e. PXn(s) =: PXn : S −→ [0, 1].

Similarly we can construct the probabilistic epistemic model for Yn.

For each Boolean formula ϕ in Definition 4.2.4 with k random inputs sampled from a random

variable Ek, we can consider a probabilistic event model E = (E,Ψ, P re,PE) which, of course,

depends on the Boolean circuit one considers. E should be defined as the set of all the samples of

Ek,

EEk = {(e1, . . . , ek) | e1, . . . , ek is a sample of Ek} .

The set Ψ and the probability function Pre : Ψ× E −→ [0, 1] should depend on the case in study,

nevertheless there are some typical assumptions such as taking the functions Pre : Ψ×E −→ [0, 1]

not depending on the parameter ψ ∈ Ψ, i.e. Pre : E −→ [0, 1].

Moreover, we assume from now that PE(e) : E −→ [0, 1] is a probability function defined without

depending on e: PE(e) =: PE : E −→ [0, 1]. In fact, the event e that appears in the Definition 4.2.4

is absolutely outside the control of the intruder. And, of course, this probabilistic function should

be defined according to the random variable Ek. Since it does not depend on the events e1 · · · ek,

[e1 · · · ek]PXn(ϕ) could be written as

[ϕ]PXn(ϕ),

80

where [ϕ]PXn(ϕ) would be interpreted in the model exactly the same way as [e1 · · · ek]PXn(ϕ).

However, this alternative notion lose the uniformity introduced in the product update model, with

the events.

This construction is very intuitive for each of the random variables. But recall that in this environ-

ment of computational indistinguishability, we intend to test two samples simultaneously, so this

is not our final model. Alternatively, we must construct a model for the joint distributions of both

Xn, Yn and Ek with itself.

So consider MXn,Yn = (S, π,K,P), the model for the joint distribution. So:

S = SXn × SYn = {(p, q) | p is a sample of Xn and q is a sample of Yn} ,
π(p, q) = true iff π(p) = true and π(q) = true

K = S2,

P = PXn,Yn , is the joint probability distribution of Xn and Yn

Note that, despite the fact that we need to refer the joint probability distribution, we will not

explicitly use it. We are interested in using strictly the marginal distributions, is what indeed

arises in the definition of indistinguishability. We then use the properties of the joint probability

distribution to reduce to the marginal probability distribution.

We can now define the event model of the joint distribution of Ek with itself essentially the same

way,

E
(Ek),(Ek) = (E,Ψ, P re,PE) can be defined as

E = EEk × EEk ,
Ψ =

(
ΨEk

)2
,

P re = PreEk,Ek is the joint probability distribution,

PE = PEEk,Ek is the joint probability distribution.

Finally we have a model for knowledge and probability and a probabilistic event model, so we are

able to define the product model as we did at subsection 3.3.2,

M = MXn,Yn × E(Ek),(Ek).

The expression which appears in the Definition 4.2.4 of computational indistinguishability should

be adapted formally to our model as

(M, (p∗, q∗))
∣∣[ē1]PXn(ϕ)− [ē2]PYn(ϕ)

∣∣ < 1

p(n)
iff

(M, (p∗, q∗))
∣∣[ē1, ē2]

(
PXn − PYn

)
(ϕ)
∣∣ < 1

p(n)
. (4.9)

81

Indeed, we now deal with pairs of samples and pairs of events, however symbolically we will keep

the notation of Definition 4.2.4 because it is more intuitive and more consistent with the original

definition of computational indistinguishability, however (4.9) is the correct formal expression and

should be interpreted as follows∣∣∣∣∣∣∣∣
∑

((p,q),(e1,e2))∈S×E st
(M×E,((p,q),(e1,e2)))ϕ

 Pre(p, e1)PXn(p)PE(e1)∑
(p′,q′)∈S
(e′1,e

′
2)∈E

Pre(p′, e′1)PXn(p′)PE(e′1)
− Pre(q, e2)PYn(q)PE(e2)∑

(p′,q′)∈S
(e′1,e

′
2)∈E

Pre(q′, e′2)PXn(q′)PE(e′2)

∣∣∣∣∣∣∣∣ <

1

p(n)

Remark 4.2.6 Notice the subtlety that exists in the joint probability distribution, PXn,Yn , of two

random variables Xn and Yn,∑
ξ∈ΨXn0

∑
ξ′∈ΨYn

PXn,Yn(ξ, ξ′) =
∑

ξ∈ΨXn0

PXn(ξ), where ΨXn
0 ⊆ ΨXn .

This is a basic property that we will use whenever we invoke axiom PM5 in this approach of

computational indistinguishability.

Example 4.2.2 Let {Xn}n = {Yn} be the same distribution ensemble.

We should trivially prove they are computationally indistinguishable.

Indeed in

∑
((p,q),(e1,e2))∈S×E st

(M×E,((p,q),(e1,e2)))ϕ

 Pre(p,e1)PXn (p)PE(e1)∑
(p′,q′)∈S
(e′1,e

′
2)∈E

Pre(p′,e′1)PXn (p′)PE(e′1)
− Pre(q,e2)PXn (q)PE(e2)∑

(p′,q′)∈S
(e′1,e

′
2)∈E

Pre(q′,e′2)PXn (q′)PE(e′2)

the terms will cancel with each other, hence∣∣[e1 · · · ek]PXn(ϕ)− [e′1 · · · e′k]PXn(ϕ)

∣∣ = 0 <
1

p(n)
,

for any polynomial p. Therefore, {Xn} and {Xn} are computationally indistinguishable. �

Example 4.2.3 Consider we now sample not the sequence but the bits and then join it together

to construct the sequence. So, consider {Un}n is a uniform distribution ensemble, i.e. a sample

p = p1 · · · pn results from sampling each of pi from the uniform distribution. At the end, of course,

PUn(p1, . . . , pn) = 1
2n .

And let {Yn}n be a distribution ensemble which is almost uniform, in the following sense: we

construct a sample q = q1 · · · qn of Yn, sampling all the q1, . . . , qn−1 from an uniform distribution

and qn from another distribution, where P (qn = 1) = δ and δ presents a negligible deviation from
1
2 , i.e. ∣∣∣∣δ − 1

2

∣∣∣∣ ∼ O(1

2n

)
.

Summarizing, we have a uniform distribution ensemble and a quasi uniform distribution ensemble

82

and so we should expect that we could not be able to distinguish them.

Moreover let us assume we define Pre(p1 · · · pn, e1 · · · ek) in such a way we get a fair coin. To get

a fair coin, actually Pre(p1 · · · pn, e1 · · · ek) =: Pre(e1 · · · ek) should not depend on p1 · · · pn.

We pretend to prove that

∣∣[e1, e2]
(
PUn − PYn

)
(ϕ)
∣∣ ≤ C 1

2n
,

for some constant C.

∣∣[e1, e2]
(
PUn − PYn

)
(ϕ)
∣∣ ≤ C 1

2n (using Remark 4.2.6 and PM5)

∣∣∣∣∣∣∣
∑

(e1,e2)∈E
ξ∈ΨUn

Pre(e1, e2)PUn(ξ ∧ [e1]ϕ)PE(e1, e2)−
∑

(e1,e2)∈E
ξ∈ΨYn

Pre(e1, e2)PYn(ξ ∧ [e2]ϕ)PE(e1, e2)

∣∣∣∣∣∣∣ ≤
≤ C 1

2n

∑
ξ∈Ψ

(e1,e2)∈E
Pre(e1, e2)P(ξ)PE(e1, e2)

∣∣∣∣∣∣
∑

(e1,e2)∈E
Pre(e1, e2)PUn

 ∨
ξ∈ΨUn

ξ

 ∧ [e1]ϕ

PE(e1, e2)−
∑

(e1,e2)∈E
Pre(e1, e2)PYn

 ∨
ξ∈ΨYn

ξ

 ∧ [e2]ϕ

PE(e1, e2)

∣∣∣∣∣∣ ≤
≤ C 1

2n
∑

(e1,e2)∈E Pre(e1, e2)PE(e1, e2)

∣∣∣∣∣∣
∑

(e1,e2)∈E

Pre(e1, e2)PUn ([e1]ϕ)PE(e1, e2)−
∑

(e1,e2)∈E

Pre(e1, e2)PYn ([e2]ϕ)PE(e1, e2)

∣∣∣∣∣∣ ≤
≤ C 1

2n

∑
(e1,e2)∈E Pre(e1, e2)PE(e1, e2)

∣∣∣∣∣∣∣∣
∑

(e1,e2)∈E
Pre(e1, e2)PE(e1, e2)

 ∑
p∈SUn

(M×E,(p,e1))`ϕ

PUn (p)

− ∑
(e1,e2)∈E

Pre(e1, e2)PE(e1, e2)

 ∑
p∈SYn

(M×E,(q,e2))`ϕ

PYn (q)

∣∣∣∣∣∣∣∣ ≤

≤ C
1

2n

∑
(e1,e2)∈E

Pre(e1, e2)PE(e1, e2) (4.10)

But note that, since the set of sequences sampled coincide in both Un and Yn (the distinction is just

in the probability of the sequences in each random variable),

83

1
2n−1

 ∑
(e1,e2)∈E

Pre(e1, e2)PE(e1, e2)

 ∑
p∈SUn

(M×E,(p,e1))`ϕ

1

2

− ∑
(e1,e2)∈E

Pre(e1, e2)PE(e1, e2)

 ∑
q∈SYn

(M×E,(q,e2))`ϕ

δqn + (1− δ)(1− qn)

 =

= 1
2n−1

∑
p∈SUn,e1∈E

(M×E,(p,e1))`ϕ

∑
e2∈E

Pre(e1, e2)PE(e1, e2)
1

2
−
∑
e2∈E

Pre(e2, e1)PE(e2, e1)(δqn + (1− δ)(1− qn))

.

Moreover, since Pre and PE represent the joint probability distribution of a random variable with

itself,

Pre(e1, e2)PE(e1, e2) = Pre(e2, e1)PE(e2, e1), so

1
2n−1

∑
p∈SUn,e1∈E

(M×E,(p,e1))`ϕ

(∑
e2∈E

Pre(e1, e2)PE(e1, e2)
1

2
−
∑
e2∈E

Pre(e2, e1)PE(e2, e1)(δqn + (1− δ)(1− qn))

)
=

1
2n−1

∑
p∈SUn,e1∈E

(M×E,(p,e1))`ϕ

(∑
e2∈E

Pre(e1, e2)PE(e1, e2)

)
(
1

2
− (δpn + (1− δ)(1− pn))).

And∣∣∣∣∣∣∣∣
1

2n−1

∑
p∈SUn,e1∈E

(M×E,(p,e1))`ϕ

(∑
e2∈E

Pre(e1, e2)PE(e1, e2)

)(
1

2
− (δpn + (1− δ)(1− pn))

)∣∣∣∣∣∣∣∣ ≤

≤ 1
2n−1

∑
p∈SUn,e1∈E

(M×E,(p,e1))`ϕ

(∑
e2∈E

Pre(e1, e2)PE(e1, e2)

)∣∣∣∣12 − δ
∣∣∣∣

Recalling that
∣∣ 1

2 − δ
∣∣ has order of 1

2n we have

1
2n−1

∑
(e1,e2)∈E

Pre(e1, e2)PE(e1, e2)
∑
p∈SUn

(M×E,(p,e1))`ϕ

∣∣∣∣12 − δ
∣∣∣∣
 ≤ 1

2n
C

∑
(e1,e2)∈E

Pre(e1, e2)PE(e1, e2),

for some constant C. Indeed this proves assertion (4.10).

Hence, Un and Yn are computationally indistinguishable. �

84

Chapter 5

Conclusion

We were looking for a logic in the literature with potentialities that allowed us to reason about

relevant aspects in information security. The dynamic probabilistic epistemic model allows us to

reason about knowledge and uncertainty and even allows updating of information, so it seemed

to be promising. We made an overview of dynamic probabilistic epistemic logic and tested it in

applications that seemed pertinent from the perspective of information security. It turns out that

this logic was expressive enough to model these simple, but meaningful, situations. Therefore, the

hope we placed in this logic was credible.

In the future we want to analyze alternative variations of this logic and one of the future ideas is

to make an approach of this logic with an equational base rather than propositional. That step

will allow us to express the properties of ciphers on top of an algebra of messages, a scenario much

closer to the usual security models. After we get an axiomatization and prove completeness we

intend to prove the correctness, even if bounded, of security protocols. Already Halpern, Pass and

Raman (in [Zero Knowledge]) used epistemic logic for the modeling zero-knowledge systems and

establish their correctness.

During the overview of the logic, namely in Definition 3.2.2, we opted for considering the proba-

bilistic assignments to be probability functions instead of probability spaces. Actually we lost some

expressiveness but we simplified significantly the logic and indeed this was all we needed for the

applications of the last chapter.

Throughout the text, a formal question has emerged with respect to the rigor with which we deal

with updates of events with probability 0. In fact, these particular cases should not be relevant in

practice, but is recommended further reading of the literature, namely [3] and [2].

The very last application of this work, the problem of computational indistinguishability, could have

85

been modeled using a modal logic with algorithmic knowledge. As we saw, our logic fits perfectly in

this example. However the approach which follows from the work of Halpern and Pucella [14] is an

interesting alternative. This latter approach consists on defining algorithmic knowledge and joining

this together with the probabilistic epistemic logic by introducing a new modal operator that repre-

sents the algorithmic knowledge and framing it in the probabilistic component. In fact, such a logic

distinguishes explicit knowledge from implicit knowledge and, indeed, in computational indistin-

guishability we want to model explicit knowledge. However, the logic with algorithmic knowledge

is far from being axiomatizable and, at once, our approach using dynamic probabilistic epistemic

logic appeared to be much more suitable and versatile. Still exist two alternative approaches to

explore in this context, [16] and [17].

This text proved that it is worth to devote closer attention to the dynamic probabilistic epistemic

logic in the context of information security.

86

Bibliography

[1] Abadi, M., Rogaway, P., 2002 ’Reconciling two views of Cryptography’, Journal of Cryptogra-

phy, 103-127.

[2] Bacchus, F., 1990, Representing and reasoning with probabilistic knowledge, MIT Press.

[3] van Benthem, J., Gerbrandy, J., Kooi, B., 2008, ’Dynamic update with probabilities’, Studia

Logica 93: 67-96.

[4] Enderton, H., 2001, A mathematical introduction to logic, Second edition, Harcourt / Academic

Press.

[5] Fagin, R. and Halpern, J., 1994, ’Reasoning about knowledge and probability’, Journal of the

Association for Computing Machinery 41, 340-367.

[6] Fagin, R., Halpern, J. and Megiddo, N., 1990, ’A logic for reasoning about probabilities’,

Information and Computation 87, 78-128.

[7] Fagin, R., Halpern, J., Moses, Y. and Vardi, M., 1995, Reasoning about knowledge, Cambridge,

MA: MIT Press.

[8] Gerbrandy, J., 1999, ’Bissinulations on Planet Kripke’, ILLC Dissertation Series, Amsterdam:

ILLC.

[9] Goldreich, O., 2008, Computational complexity - A conceptual perspective, Cambridge Univer-

sity Press.

[10] Goldreich, O., 2001, Foundations of cryptography: Volume I, Basic tools, Cambridge University

Press.

[11] Goldreich, O., 2004, Foundations of cryptography: Volume II, Basic applications, Cambridge

University Press.

[12] Goldreich, O., Meyer, B., 1996, ’Computational indistinguishability: algorithms vs. circuits’.

[13] Halpern, J., Pass, R. and Raman, V., 2009, ’An epistemic characterization of zero knowledge’.

87

[14] Halpern, J. and Pucella, R., 2003, ’Probabilistic algorithmic knowledge’, Proceedings of the

Ninth Conference on Theoretical Aspects of Rationality and Knowledge, 118-130.

[15] Kooi, B., 2003, ’Probabilistic dynamic epistemic logic’, Journal of Logic, Language and Infor-

mation 12: 381-408.

[16] den Hartog, J., 2008, ’Towards mechanized correctness proofs for cryptographic algorithms:

Axiomatization of a probabilistic Hoare style logic’, Sci. Comput. Program., 74(1-2): 52-63.

[17] Chadha, R., Cruz-Filipe, L., Mateus, P. and Sernadas, A., 2007, ’Reasoning about probabilistic

sequential programs’, Theoretical Computer Science, 379(1-2):142-165.

88

	Introduction
	Preliminary
	Dynamic Probabilistic Epistemic Logic
	Epistemic Logic
	Probabilistic Epistemic Logic
	Single Agent Case

	Dynamic Probabilistic Epistemic Logic
	Public Announcement Model
	Product Update Logic

	Applications
	Mastermind
	Smart Strategy
	Dumb strategy

	Computational Indistinguishability

	Conclusion
	Bibliography

