
Symbolic Probabilistic Analysis of Off-line Guessing

Bruno Conchinha and David Basin
Information Security Institute

ETH Zürich
Zürich, Switzerland

{bruno.conchinha, basin}@inf.ethz.ch

Carlos Caleiro
Security and Quantum Information Group

Instituto Superior Técnico
Lisbon, Portugal

ccal@math.ist.utl.pt

Abstract—We introduce a probabilistic framework for ana-
lyzing security protocols. Our framework provides a general
method for expressing properties of cryptographic primitives
that is capable of formalizing weaknesses of the primitives
such as leaking partial information about a message or the
use of weak algorithms for random number generation. These
properties can be used to find attacks and estimate their
probability of success. Under assumptions about the accuracy
of the properties considered, we show that our estimates differ
negligibly from the real-world probability of success.

We illustrate the usefulness of our approach by modeling
non-trivial properties of RSA encryption and using them to
estimate the success probability of off-line guessing attacks on
the EKE [1] protocol. These attacks were previously outside
the scope of symbolic methods.

Keywords-probability; off-line guessing; equational theories;
computational soundness;

I. INTRODUCTION

Cryptographic protocols play an important role in se-
curing distributed computation and it is crucial that they
work correctly. Symbolic verification approaches are usually
based on the Dolev-Yao model: messages are represented
by terms in a term algebra, cryptography is assumed to
be perfect, and properties of cryptographic operators are
formalized equationally [2]. This strong abstraction eases
analysis, and numerous successful verification tools rely on
it [3]. However, it may not accurately represent an attacker’s
capabilities. As a consequence, broad classes of attacks
that rely on cryptanalysis or weaknesses of cryptographic
primitives may fall outside the scope of such methods.

Proving security by reasoning more directly about prob-
abilities, as in so-called computational approaches [4], [5],
yields much stronger security guarantees. However, it re-
quires long and error-prone hand-written proofs to establish
the security of given protocols, using specific cryptographic
primitives.

Given the limitations of each of these approaches, much
effort has been devoted to get the best of both worlds:
strong security guarantees that can automatically proved,
or at least whose proofs can be machine-checked. One can
distinguish between two distinct lines of research in this
direction: (1) obtaining computational soundness results for
symbolic methods, or (2) developing techniques that reason

directly with the computational models. A good survey of
such results is provided in [6].

Computational soundness results have been much sought
after since Abadi and Rogaway’s seminal paper [7]. They
aim at proving that, under certain assumptions, symbolic
security implies computational security, whereby protocols
that are secure against a Dolev-Yao attacker are also se-
cure against the much more powerful adversary of the
computational world. Such results now exist for length
revealing and same-key revealing encryption systems [8],
active attackers [9], encryption with composed keys [10] and
hash functions [11], to name but a few. The limitations of
these results include the typically very strong assumptions
on the cryptographic primitives, the often-made assumption
that messages are tagged so that their structure is known
to any observer, and the difficulty of extending the results
to new cryptographic primitives, which usually involves re-
doing most of the work.

The second line of research aims to obtain, automatically
where possible, a sequence of property-preserving transfor-
mations between game-theoretic problem formulations, as
is often done in computational security proofs. The original
ideas in this direction [12], [13] have been developed into
tools like CryptoVerif [14] and CertiCrypt [15]. These tools
can be used to prove protocols correct in the computational
world. Moreover, when they succeed, they can provide upper
bounds on the probability of a successful attack, based on
the probabilities of the attacker winning each of the games
used to express security properties of the cryptographic
primitives.

In this paper we present a fundamentally new approach
to strenghtening the guarantees provided by symbolic meth-
ods. Building upon the ideas first presented in [16], we
incorporate probabilistic reasoning directly into a symbolic
method, by associating each term (representing a message)
in the term algebra to a random variable whose values
are bitstrings. We express properties of the cryptographic
primitives used by using an equational theory, as is standard
in symbolic methods. Moreover, we also formalize typing
information, which associates terms with bitstrings and
operators with functions over bitstrings. Our bitstring types
are used to represent random data generation, properties

of cryptographic operators, and attacker capabilities: For
instance, in our example we will use name types to represent
the random generation of an RSA public-key. While it is
unfeasible for an attacker to check the validity of an RSA
public-key, he can at least check that the exponent is odd
and that the modulus has no small prime factors. These
capabilities will be expressed by using test types. However,
unlike most computational soundness results, we do not
assume any explicit tagging in messages. 1

This approach thus allows us to reason about an attacker
that is more powerful than that considered in the standard
Dolev-Yao model. In contrast to [16], we focus on efficiency
rather than expressiveness: our framework is thus better
suited to represent properties of cryptographic primitives that
are useful in real-world attacks, while greatly reducing both
the theoretical and computational difficulty of computing
probabilities.

Our approach is in a sense dual to the two lines of formal-
methods research described above: Rather than assuming
very strong security properties of cryptographic primitives
and using them to prove security, we explicitly describe
an attacker’s knowledge about the cryptographic primitives
and the random number generation algorithms being used.
This knowledge (or these properties of the cryptographic
primitives) can then be used both to find attacks and to
estimate their probability.

As one might expect, there is a tradeoff between efficiency
and accuracy when computing a probability distribution for
the random variables associated to terms in our framework.
The probability distribution we proposed is computed from
the equational theory and the type properties of crypto-
graphic functions described in the model. It should there-
fore be understood as an approximation of the real world
intended to represent an attacker’s capabilities, while still
being efficiently computable. We show that, under strong
but reasonable assumptions on the cryptographic primitives
used, our estimates of the probability of success of the
attacks we describe are negligibly different from those of
the real world. Perhaps unsurprisingly, our assumptions
resemble computational soundness results for (symbolic)
static equivalence, such as those discussed, e.g., in [17]–
[19]. However, our notions are flexible enough to take
into account the properties of cryptographic primitives that
we express. In other models, such properties can typically
violate the security properties required for computational
soundness. 2

We illustrate the usefulness of our approach3 by showing
how to use it to analyze the security of protocols against
off-line guessing attacks. Given the pervasive use of human-

1(FLAG: Please check this!!)
2(FLAG: Please check this!!)
3(FLAG: approach versus method versus framework. Do you need

all 3? I believe you introduced framework in the last day or two.
Maybe approach with a method is enough?)

picked (and often weak) passwords, off-line guessing attacks
are a major concern in security protocol analysis and have
been the subject of much research, using symbolic [20]–[22]
and computational approaches [23], or relating the two via
computational soundness results [19], [24]. We show that
our framework can be used to straightforwardly represent
non-trivial properties of cryptographic primitives like the
redundancy of RSA keys We will use these properties to
find off-line guessing attacks on the EKE protocol [1] and
estimate their success probabilities. Although these problems
are well-known, their analysis was previously outside the
scope of symbolic methods. Further applications of this
approach may well include modeling and reasoning about
differential cryptanalysis or side-channel attacks [25] as
well as short-string authentication and distance-bounding
protocols.

We proceed as follows. In Section II we introduce terms
and their probabilistic interpretation. In Section III we
introduce the building blocks of our attacker model: equa-
tional theories, type interpretation functions, and property
statements about the cryptographic functions. In Section IV
we formalize and illustrate off-line guessing in our attacker
model. In Section V we establish properties of our approx-
imate probabilistic model, leading up to the proof of our
soundness theorem in Section VI. We make comparisons
and draw conclusions in Section VII.

II. BASIC DEFINITIONS

A. Syntax.

A signature Σ =
⊎
n∈N Σn is a finite set of function

symbols, where Σi contains the functions symbols of arity
i. For each f ∈ Σ, the function ar : Σ→ N returns the arity
ar(f) of f . Given a set X , TΣ(X) is the set of Σ-terms
over X , i.e., the smallest set such that X ⊆ TΣ(X) and
f(t1, . . . , tn) ∈ TΣ(X) for all t1, . . . , tn ∈ TΣ(X) and all
f ∈ Σn.

Although we consider an untyped signature, we shall also
model relevant type information. To this end, we assume
given a fixed a set NT of name types and, for each T ∈
NT , a countably infinite set NT of names of type T . The
set of names is given by N =

⊎
T∈NT NT . Given a name

a ∈ N , we denote by type(a) the unique T ∈ NT such that
a ∈ NT . Intuitively a name stands for a random value that is
sampled from its type type(a) by a probabilistic algorithm.

Example II.1. The signature ΣDY is used to represent
the cryptographic primitives present in simple Dolev-Yao
models containing a hash function h, a pairing function pair,
projection functions π1 and π2, and symmetric encryption
and decryption. It is given by ΣDY = ΣDY1 ∪ ΣDY2 , where
ΣDY1 = {h, π1, π2} and ΣDY2 =

{
{|·|}· , {|·|}

−1
· , 〈·, ·〉

}
.

We consider the following name types: pw, representing
weak passwords (e.g., a human-chosen password); sym key,

representing symmetric keys; and text, representing plain-
texts. The set of names is then given by N = Npw]
Nsym key] Ntext, and the set of terms we consider in this
model is TΣDY (N).

We define the set sub(t) of subterms of a term t ∈ TΣ(X)
as usual: sub(t) = {t} if t ∈ X and sub(t) = {t} ∪
(
⋃n
i=1 sub(ti)) if t = f(t1, . . . , tn). The set names(t) =

sub(t) ∩ N is the set of names occurring in a term t ∈
TΣ(N). We extend these definitions naturally to sets of
terms: for S ⊆ TΣ(N), we define sub(S) =

⋃
t∈S sub(t)

and names(S) =
⋃
t∈S names(t). Given a term t and

p ∈ N∗, we denote the subterm of t at position p by t|p,
where t|ε = t and, for t = f(t1, . . . , tn), t|i.p = ti|p for
i ∈ {1, . . . , n}. Here i.p denotes the sequence of integers
obtained by prepending i to the sequence p.

Let V be a countably infinite set of variables, disjoint from
N . We use the standard notion of substitution as a partial
function σ : X 9 TΣ(N). We will use both substitutions
on names and substitutions on variables. We abuse notation
by using the same symbol σ for a substitution and its
homomorphic extension to TΣ(N). As usual, we write tσ
instead of σ(t).

We will represent the concrete knowledge of an attacker
using the notion of frame [26]. A frame is a pair (ñ, σ),
written υñ.σ, where ñ ⊆ N is a finite set of names and
σ : V 9 TΣ(N) is a substitution with finite domain. Given
a frame φ = υñ.σ, we define Tφ = TΣ((N \ ñ)∪ dom(σ)).
We say that terms in Tφ are φ-recipes. Intuitively, the names
in ñ represent randomly generated nonces unknown to the
attacker, and the terms in the range of σ represent the mes-
sages learned by the attacker, for instance by eavesdropping
on the network. A term t can be constructed from φ if there
is a φ-recipe ζ such that ζσ = t. Thus, the set of terms
constructible from φ is σ[Tφ].

B. Term interpretation.

As usual in computational scenarios, we will consider
models based on bitstrings. Let B = {0, 1}∗ and B∅ = ∅.
For n,m ∈ N, let Bn = {0, 1}n, B≤n =

⋃
i≤n Bi, and

B≥n,≤m) =
⋃
n≤i≤m Bi. Given S ⊆ B, we write S⊥ for the

set S∪{⊥}. The symbol ⊥ represents an undefinedness/error
value.

A model is a probability space (Ω,F , µ), where:
• Ω is the set of all functions ω : TΣ(N)→ B⊥;
• F ⊆ P(Ω) is the σ-algebra of sets generated by

{{ω ∈ Ω | ω(t) = b} | t ∈ TΣ(N), b ∈ B⊥} ;

• µ : F → [0, 1] is a probability measure.
As the sample space Ω and the set of events F are
determined by the signature under consideration, we will
often identify a model with its probability measure µ.

If t ∈ TΣ(N), we represent by t : Ω → B⊥ the random
variable on Ω defined by t(ω) = ω(t).

We adopt standard (abuses of) notation in probability
theory. if C(b1, . . . , bn) is some condition who satisfaction
depends on the bitstring values b1, . . . , bn, we will write

Pµ[C(t1, . . . , tn)]

to mean

µ({ω ∈ Ω | C(t1(ω), . . . , tn(ω))}),

provided that

{ω ∈ Ω | C(t1(ω), . . . , tn(ω))} ∈ F .

If Ω ∈ F , we will also write Pµ[ΩC] instead of µ(ΩC). We
use standard notation for conditional probability: namely, if
Pµ[B] > 0, then we define Pµ[A | B] = Pµ[A,B]/Pµ[B].
For instance, if t, t′ ∈ TΣ(N) and Ω ∈ F , we have

Pµ[t = t′ | Ω] = fracµ ({ω ∈ Ω | ω(t) = ω(t′)})µ(Ω).

...4

Note that this general notion of model does not require
that terms are interpreted homomorphically; that is, if t =
f(t1, . . . , tn), and t′ = f(t′1, . . . , t

′
n) it is not necessarily the

case that

Pµ[t 6= t′, t1 = t′1, . . . , tn = t′n] = 0.

This ought to be the case, though, for models representing
any actual implementation of the cryptographic primitives.
Our analysis will assume that such a real world model is
fixed. In particular, we assume that we are given a probabilis-
tic algorithm ĴT K for each T ∈ NT , and an implementation
ĴfK : Bn → B⊥ of each function symbol f ∈ Σn. We assume
that the inputs to the algorithm ĴfK are outside the domain
of the function computed by ĴfK precisely when ĴfK outputs
⊥. Together, these two ingredients canonically determine an
homomorphic model, as described below.

An assignment ρ : N → B is a map from names to bit-
strings. If ρ is an assignment, we define Ĵ·K

ρ
: TΣ(N)→ B⊥

inductively by:

ĴtK
ρ

=


ρ(t) if t ∈ N
ĴfK(Ĵt1K

ρ
, . . . , ĴtnK

ρ
) if t = f(t1, . . . , tn) and

ĴtiK
ρ
6= ⊥ for 1 ≤ i ≤ n

⊥ otherwise

.

Writing b← A to denote that the bitstring b is randomly
sampled from the probabilistic algorithm A, the real world
model is now easily defined to correspond to the unique
probability measure µ̂ such that, whenever bi ∈ B⊥ and
ai ∈ N are distinct names for all i ∈ {1, . . . , n}, we have

Pµ̂[a1 = b1, . . . ,an = bn] =

n∏
i=1

P [bi ← ̂Jtype(ai)K]

4(FLAG: Please check this!!)

and

Pµ̂

[
f(t1, . . . , tn) 6= ĴfK(t1, . . . , tn)

]
= 0

for all terms f ∈ Σn and t1, . . . , tn ∈ TΣ(N).
We say that an assignment ρ is samplable (from J·K) if,

for each name a ∈ N , we have P [ρ(a) ← ̂Jtype(a)K] > 0.
If we set

Ω̂ =
{

Ĵ·K
ρ
| ρ is samplable

}
,

we have that µ̂(Ω̂) = 1. Equivalently, the set Ω \ Ω̂ of all
functions ω : TΣ(N) → B⊥ that are non-homomorphic or
homomorphic over non-samplable assignments (under the
type interpretation function J·K) has zero µ̂-measure.

Example II.2. Example II.1 introduces the set of name
types NT = {pw, sym key, text}, and the signature ΣDY ={
h, π1, π2, {|·|}· , {|·|}

−1
· , 〈·, ·〉

}
.

5 As the basis for a concrete real world model, we shall
consider the set up of a common block cipher. Thus, we
may take ĴpwK to be a random generator of weak passwords
easy for a human to memorize (e.g., short passwords, or
passwords based on dictionary words), ̂Jsym keyK a random
generator of symmetric keys (e.g., with 256 bits), and
ĴtextK a random generator of text messages (namely, of
block size 256). Furthermore, we may take ĴhK to be some
concrete 256-bit hashing algorithm, Ĵ〈·, ·〉K, Ĵπ1K, Ĵπ2K to
provide concrete block concatenation and projection algo-
rithms, and take Ĵ{|·|}·K to implement the envisaged block

cipher algorithm, with deciphering given by ̂J{|·|}−1
· K.

In this setting, suppose that ̂J{|·|}−1
· K is used to decrypt

a bitstring b with key k. If b’s length is not a multiple of
k’s length, this decryption is not a valid operation and the

corresponding random variable should evaluate ̂J{|b|}−1
k K to

⊥.

The probability distribution induced by the example above
accurately represents the generation of messages using real-
world random generation algorithms and functions. Unfortu-
nately, as one might expect, computing probabilities in such
a model is impractical — in this case, studying a security
property amounts to computing the exact probability of a
successful attack to the property given the limited resources
of the attacker.

In general, there is a tradeoff between accuracy and
feasibility when choosing a probability distribution for our
model. However, simpler probability distributions may not
take into account all the knowledge that an attacker can pos-
sibly obtain by observing messages and reasoning about the
properties of the cryptographic primitives used, ultimately
reducing our framework to modeling a standard Dolev-Yao
attacker dealing with perfect encryption.

5check, please

Much of this paper will be devoted to describing how to
express relevant properties of the functions used and using
them to compute an approximate, yet meaningful and practi-
cal, probability distribution. Put another way, we seek to ob-
tain a feasible way of estimating the real world probabilities
by carefully framing the resources that a potential attacker
may use. In Section V, we propose a simple probability
distribution that is easy to define and compute. We show in
Section VI that this probability distribution is rich enough to
provide meaningful estimates of the probability of successful
off-line guessing attacks.

III. MODELING FUNCTIONS

A. Equational theories.

In our approach, the attacker can take advantage of
equational properties of the real model, as is standard in
symbolic models [2]. Recall that an equational theory ≈ is
a congruence relation on TΣ(N); that is, ≈ is a reflexive,
symmetric and transitive binary relation on TΣ(N), closed
under the application of function symbols. As usual, we
write t ≈ t′ instead of (t, t′) ∈ ≈.

Let ω : TΣ(N) → B⊥. We say that ω (weakly) satisfies
≈, and write ω |= ≈, if whenever t ≈ t′ then either ω(t) =
ω(t′), or ω(t) = ⊥, or ω(t′) = ⊥. We say that a model µ
satisfies ≈, and write µ |= ≈, if µ({ω | ω 6|= ≈}) = 0.

A rewrite rule is a pair (l, r), written as l → r, where
l, r ∈ TΣ(V). A rewriting system R over Σ is a finite set
of rewrite rules. Given a rewriting system R, the relation
→R ⊆ TΣ(N)×TΣ(N) is, as usual, as the smallest relation
such that, if (l → r) ∈ R and σ : vars(l) → TΣ(N), then
lσ →R rσ, and if t1, . . . , tn, t′i ∈ TΣ(N), ti →R t′i, and
f ∈ Σn, then f(t1, . . . , ti, . . . , tn)→R f(t1, . . . , t

′
i, . . . , tn).

If the rewriting system→R is convergent6, then each term
t has a unique normal form t↓R ∈ TΣ(N). In this case, we
define ≈R ⊆ TΣ(N)× TΣ(N) by

≈R = {(t, t′) | t↓R= t′↓R} .

We will assume given a convergent rewriting system R
whose equational theory ≈R is satisfied by the real world
model µ̂, or equivalently, that if ĴtK

ρ
6= ⊥ and Ĵt′K

ρ
6= ⊥

then ĴtK
ρ

= Ĵt′K
ρ
, for every samplable assignment ρ.

Example III.1. The capabilities of a Dolev-Yao intruder
(without asymmetric encryption) can be represented by a
rewriting system RDY over ΣDY , given by

RDY = {π1(〈x, y〉)→ x, π2(〈x, y〉)→ y,{∣∣∣{|x|}y∣∣∣}−1

y
→ x } .

It is simple to check that this rewriting system is convergent.
Furthermore, it is expectedly satisfied by any reasonable real
world model.

6(FLAG: cite?)

B. Describing name generation and cryptographic func-
tions.

To represent random generation of data, we will consider
a type interpretation function J.K that associate each name
type T ∈ NT to a set JT K ⊆ B of bitstrings (distinct from
⊥). Intuitively, each name a of type T represents the random
generation of a bitstring in JT K, independent from any other
random generation of data.

Let ω : TΣ(N) → B⊥. We say that ω satisfies J.K, and
write ω |= J.K, if ω(a) ∈ Jtype(a)K for every a ∈ N .
We say that a model µ satisfies J.K, and write µ |= J·K,
if µ({ω | ω 6|= J·K}) = 0.

As before, we will assume that the type interpretation
function considered is satisfied by the real world model µ̂.
This amounts to the reasonable assumption that the attacker
knows the targets of the real world sampling algorithms for
the corresponding types.

Example III.2. In our running example, we now make
concrete assumptions about the real world model previously
described and assign a set JT K to each type T ∈ NT as
follows:

• JpwK is a subset of B256 with cardinality |JpwK| = 224,
• Jsym keyK = B256;
• JtextK =

⋃
n∈N B256n.

To express an attacker’s knowledge of the real world func-
tion implementations, we must consider additional subsets of
bitstrings. These allow us to model the attacker’s knowledge
about the domain of definition of each of the algorithms, as
well as about the range of their outputs when given inputs
in specific subsets.

To represent such properties, we use a set PT of property
types, not necessarily disjoint from NT along with the set
PT =

{
T | T ∈ PT

}
of complement property types. We

extend our interpretation function J·K to PT ∪ PT so that,
for each T ∈ PT , JT K is a finite set of bitstrings and, for
each T ∈ PT , JT K = JT K.

A property statement is a tuple (f, T1, . . . , Tn, Tr), writ-
ten f [T1, . . . , Tn] ⊆ Tr, where f ∈ Σn is a function
symbol and T1, . . . , Tn ∈ PT ∪ PT and Tr ∈ PT are
property types. Property statements express properties of the
functions represented by the symbols in Σ.

If ps = (f [T1, . . . , Tn] ⊆ Tr), we define:

• the head symbol of ps is head(ps) = f ;
• the range type of ps is ran(ps) = Tr;
• if J·K is a domain interpretation function, then the J·K-

domain of ps is

JdomK(ps) = JT1K× . . .× JTnK.

If PS is a set of property statements, we will denote by PS f
the set of property statements ps ∈ PS whose head symbol
is f , that is, head(ps) = f .

Let ω : TΣ(N)→ B⊥ and ps be a probabilistic statement.
We say that ω satisfies ps, and write ω |= ps, if whenever
(ω(t1), . . . , ω(tn)) ∈ JdomK(ps) then ω(f(t1, . . . , tn)) ∈
Jran(ps)K. If PS is a set of property statements, we say
that ω satisfies PS , and write ω |= PS , if µ satisfies every
property statement in PS . Further, we say that a model µ
satisfies PS , and write µ |= PS , if µ({ω | ω 6|= PS}) = 0.

Two property statements ps and ps′ are said to be disjoint
if either head(ps) 6= head(ps′) or dom(ps) ∩ dom(ps′) =
∅. We assume fixed a set PS of pairwise disjoint property
statements sufficient for determining the domain of each f ∈
Σn, that is, for each f ∈ Σn, we can partition the set PS f
into two sets PS f = PSd

⊎
PSd such that:

• if ps ∈ PSd, then Jran(ps)K = {⊥};
• if ps ∈ PSd, then ⊥ /∈ Jran(ps)K and dom(ps) ⊆ Bn;
• Bn⊥ =

⊎
ps∈PSf

dom(PS).

Intuitively, if ps ∈ PSd, then dom(PS) is a subset of the
domain of the function represented by f . The condition that
dom(PS) ⊆ Bn reflects our requirement that the application
of functions to ⊥ yields ⊥. If ps ∈ PSd, then dom(PS)
does not intersect the domain of f . Together, PSd and
PSd uniquely determine the domain of f (for any suitable
interpretation function J·K).

As before, we will assume that the set PS of prop-
erty statements to be considered is satisfied by the real
world model µ̂. Intuitively, for each property statement
f [T1, . . . , Tn] ⊆ Tr, this means that applying the algorithm
ĴfK to inputs in JT1K× . . .× JTnK yields a bitstring in JTrK.

Support: Given a term t ∈ TΣ(N), we will be inter-
ested in considering the support suppµ(t) of the random
variable t, defined by

suppµ(t) = {b ∈ B⊥ | Pµ[t = b] > 0} .

The following lemma states that this support is finite for any
term t and any probability measure µ satisfying PS .

Lemma III.3. Let t ∈ TΣ(N). There exists a finite set
JsuppPS K(t) such that, for any probability measure µ �
PS , J·K satisfying PS and J·K, we have

suppµ(t) ⊆ JsuppPS K(t).

If t = f(t1, . . . , tn) is a term, we define the set

PS t = {(f [T1 . . . , Tn] ⊆ Tr) ∈ PS |
Ti ∩ JsuppPS K(ti) 6= ∅ for all i ∈ {1, . . . , n}}.

Lemma III.3 ensures that PS t is always finite.
Compatibility condition: In order to ensure the compat-

ibility between the property statements in PS and the equa-
tional theory ≈R, we want to relate the property statements
relevant for each term t with those that relate to its normal
form t↓. To formally define our compatibility condition, we
will first need the notion of selection function for a set of
terms.

Definition III.4. Let K ⊆ TΣ(N) be a set of terms. A
selection function for K is a function ι : K → PS such
that, for each t ∈ K \ N , ι(t) ∈ PS t. We denote by I(K)
the set of selection functions for K.

If ι is a selection function for K, we say that ω ∈ Ω is
a model of ι, and write ω |= ι, if for all t = f(t1, . . . , tn),
we have (ω(t1), . . . , ω(tn)) ∈ JdomK(ι(t)) and ω(t) ∈
Jran(ι(t))K.

Note that, by Lemma III.3, if K is finite, then so is I(K).
We say that J·K and ≈R satisfy our compatibility condition

if whenever (l → r) ∈ R is a rewrite rule, σ : vars(l) →
TΣ(N) is a substitution, K = sub(lσ) ∪ sub(rσ), and ι
is a selection function for K, then either Jran(ι(rσ))K ⊆
Jran(ι(lσ))K, or ran(ι(lσ)) = B∅⊥, or there is no ω ∈ ω such
that ω |= ι. Note that, if ran(ι(lσ)) 6= B∅⊥, our assumptions
on the property statements imply that ⊥ /∈ Jran(ι(lσ))K, and
thus ⊥ /∈ Jran(ι(rσ))K, so that ω(lσ) 6= ⊥ ⇒ ω(rσ) 6= ⊥.
In order words, if lσ is defined, then so is rσ.

We restrict ourselves to considering domain interpretation
function J·K and equational theories ≈R that satisfy our
compatibility condition.

Example III.5. We continue our running example by pre-
senting a set of property types PT and a set of property
statements PS , which we use to describe properties of the
primitives in ΣDY .

We let PT =
{
B∅, B∅⊥

}
∪
(⋃

i∈N

{
Bi, B≤i, Bi⊥, B

≤i
⊥

})
,

and we extend the function J·K to PT by letting JBvuK = Bvu.
Recall that J·K is extended to PT by JT K = JT K.

For readability, we will write: 〈S1, S2〉 for 〈·, ·〉[S1, S2];
{|S1|}S2

for {|·|}· [S1, S2]; and {|S1|}−1
S2

for {|·|}−1
· [S1, S2].

PS = {⋃
n∈N

{
h[Bi] ⊆ B256 | 256n < i ≤ 256(n+ 1)

}
∪
{
〈Bn, Bm〉 ⊆ Bn+m+dlog(n+m)e | n,m > 0

}
∪
{
π1[Bn] ⊆ B≤n−1 | n ≥ 2

}
∪
{
π2[Bn] ⊆ B≤n−1 | n ≥ 2

}
∪
{{∣∣B≥256n+1,≤256(n+1)

∣∣}
B256 ⊆ B256(n+1) | n ∈ N

}
∪
{{∣∣∣B∅∣∣∣}

B256
⊆ B∅⊥

}
∪
{{∣∣B256(n+1)

∣∣}−1

B256 ⊆ B≥256n+1,≤256(n+1) | n ∈ N
}

∪
{{∣∣B≥256n+1,≤256n+255

∣∣}−1

B∅
⊆ B∅⊥

}
∪
{{∣∣∣B∅∣∣∣}−1

B256
⊆ B∅⊥

}
}

This set of probabilistic statements models a hash function
h that can hash any bitstring into a bitstring of length
256, a pairing function that accepts any pair of bitstrings
and returns its labeled concatenation, and a symmetric
encryption scheme that uses a block cipher together with
some reversible padding technique.

Example III.6. We use our framework to formalize RSA
encryption taking into account properties of the key gener-
ation algorithm. To generate an RSA public key one first
generates two large primes p and q, typically of around 512
bits. The public key is a pair (n, e), where n = p · q and e
(the exponent) is relatively coprime to ϕ(n) = (p−1)(q−1).
The private key d is the multiplicative inverse of e modulo
ϕ(n), i.e., the only d ∈ {1, . . . , ϕ(n)} such that (d · e)
mod ϕ(n) = 1.

To model RSA encryption we add the name type random
to the set NT that we have been using in our running
example. The name type random represents the random
values used to generate an RSA public-private key pair.
This involves generating two 512-bits prime numbers and
the 1024-bits exponent. Thus JrandomK ⊆ B2048. By the
prime number theorem, the probability of a 512-bit bitstring
representing a prime number is approximately 1/ ln 2512.
Thus, |JrandomK| ≈ (2512

ln 2512)2 · 21024 ≈ 22032, where we
approximate by 1 the probability that a random 1024-bits
bitstrings is coprime with p · q.

For our purposes it is sufficient to extend the signature
ΣDY by adding the following five primitives:
• mod ∈ ΣDY1 , representing the extraction from a name

of type random of the modulo n = p · q used in an
RSA public key;

• expn, inv ∈ ΣDY1 , representing the extraction from
a name of type random of, respectively, the public
exponent and its inverse used for RSA encryption and
decryption.

• {·}· , {·}
−1
· ∈ ΣDY2 , representing, respectively, encryp-

tion and decryption using RSA.
To model properties of these functions we use equations

and probabilistic statements. The only property of RSA
asymmetric encryption that will interest us can be expressed
in our framework by adding to the rewriting system RDY
the rewrite rule{

{M}〈mod(k),expn(k)〉

}−1

inv(k)
→M,

where M,k ∈ V are variables.
For describing probabilistic statements that can model the

relevant properties of these functions, we need to add to PT
the following types:
• random, already in NT , representing the random data

used for generating an RSA key pair;
• prodprime, representing the set of bitstrings that corre-

spond to the product of two 512-bits prime numbers;
• odd, representing the set of bitstrings whose rightmost

bit is 1.
We thus have JprodprimeK ⊆ B1024, with |JprodprimeK| ≈

21008, and JoddK ⊆ B1024, with |JoddK| = 21023. Our new
probabilistic statements are then simply

mod[random] ⊆ prodprime, expn[random] ⊆ odd.

For the sake of simplicity, we merely require in this exam-
ple that the public-key exponent is odd, rather than requiring
it to be coprime with the modulo. Also for simplicity and
brevity, we omit here the additional statements specifying
the domain and range of each of these functions. These will
not play a role in our case-study examples.

C. Tests.

In our approach, we allow the attacker to test the messages
they see in two ways: he can check whether two messages
correspond to the same bitstring, and he can test whether
a message is a bitstring in a given set. To represent these
tests, we introduce yet another set T T of test types, and we
extend our type interpretation function J·K to T T , so that,
for each T ∈ T T , JT K is a set of bitstrings. Again, T T ,
PT and NT need not be disjoint.

We assume that, for each test type TT ∈ T T , there
exists an algorithm ĴTT K that an attacker can use to test
whether a given bitstring b is in JTT K or not — that is, for
any b ∈ B⊥, ĴTT K(b)is 1 if b ∈ JTT K and 0 otherwise.
An attacker’s capability to perform such tests may be used
to mount attacks. The computational feasibility of attacks
involving such tests naturally depends on the computational
feasibility of the algorithm ĴTT K. Therefore, it is important
to choose test types that accurately model the capabilities of
a realistic attacker. 7

Example III.7. Continuing the RSA example, observe that
RSA public keys consist of a modulo n = p · q, where p
and q are two large primes, and an exponent e coprime with
(p−1)(q−1). While it may be unfeasible to check whether
a modulo n is indeed the product of two large prime factors,
an attacker can nevertheless check whether the modulo has
small prime factors, and at least check whether the exponent
e is odd.

To describe these capabilities, we consider the set of test
types T T = {odd, nspf}, where odd is also a member of
PT and is as described above, and nspf represents a set of
1024-bits bitstrings without prime factors smaller than 106.
We have |JnspfK| ≈ 21024/24.

In Section IV, we show how this redundancy of RSA
public keys can be used by an attacker to mount off-line
guessing attacks.

IV. OFF-LINE GUESSING

Our analysis depends on an equational theory ≈R, a type
interpretation function J·K, and a set of property statements
PS . Properties of the encryption scheme are represented by
the equational theory ≈R and the property statements PS ,
adequately interpreted by the type interpretation function J·K.
Test types in T T are used to represent the attacker’s capabil-
ities of checking whether bitstrings have certain properties.

7(FLAG: Please check. I wanted to avoid here words like ”efficiency”
or ”feasibility”, but that is the intuition behind our test types...)

In this section we describe how these ingredients can be used
to find and estimate the probability of success of non-trivial
off-line guessing attacks.

Throughout this section we assume that R is a convergent
rewriting system, φ = υñ.σ is a frame, µ is a probability
measure on Ω, and s ∈ NT ∩ ñ is a secret name.

Suppose that the set JT K is small enough that an attacker
can feasibly enumerate all bitstrings in this set. In an off-
line guessing attack of s, the attacker tries each possible
bistring b ∈ JT K and tries to use his knowledge to rule out
the possibility that s is b. The attacker’s goal is to ultimately
learn s by excluding all but one bitstring of the set JT K. In
the rest of this section we assume that the attacker is trying
to off-line guess s.

We represent an attacker’s guess by a fresh name w ∈
NT \names(ran(σ)). We equip the attacker with two ways
of verifying whether a guess w of s is correct. First, he
can use his guess to construct a pair of terms (t, t′) that
are equal under ≈R if w = s, but different if w 6= s. This
is the usual definition in symbolic methods and has been
studied by using the standard notion of static equivalence
[19], [20], [26]. Second, he can use his guess to construct a
term t and choose some test type T ∈ T T such that t is in
JT K if w = s, and not necessarily otherwise.

We first define the sets eqv(φ, s) and tv(φ, s) of equa-
tional verifiers and type verifiers that an attacker may use to
verify his guess.

Definition IV.1. Let w ∈ NT be a fixed fresh name (i.e., a
name that does not occur in φ), and x /∈ dom(σ) be a fresh
variable. Define φs = υñx.σs and φw = υñx.σw, where
ñx = ñ∪{x}, σs = σ ∪{x 7→ s}, and σw = σ ∪{x 7→ w}.

The set eqv(φ, s) of equational verifiers of s (under φ) is
defined by

eqv(φ, s) = {(t, t′) ∈ TΣ(N)× TΣ(N) |
tσs ≈R t′σs, tσw 6≈Rt′σw,
t|pσs ≈R t′|pσs, p 6= ε⇒ t|p = t′|p}.

The set tv(φ, s) of type verifiers of s (under φ) is defined
by

tv(φ, s) = {(t, TT) ∈ TΣ(N)× T T |
JsuppPS K(tσs) ⊆ JTT K, JsuppPS K(tσw) 6⊆ JTT K,
p 6= ε⇒ JsuppPS K((tσw)|p) ⊆ JsuppPS K((tσs)|p)},

where JsuppPS K is as given by Lemma III.3.8 Given a set
of equational verifiers eqv(φ, s) and a set of type verifiers
tv(φ, s), we let

Ωeqv(φ,s) = {ω ∈ Ω | (t, t′) ∈ eqv(φ, s)⇒ ω(tσw) = ω(t′σw)}

and

Ωtv(φ,s) = {ω ∈ Ω | (t, TT) ∈ tv(φ, s)⇒ ω(tσw) ∈ JTT K}

8(FLAG: are you ok with this?!)

be the subsets of Ω in which all the equational verifiers in
eqv(φ, s) (respectively, all the type verifiers in tv(φ, s)) are
satisfied.

Note that the sets of equational and type verifiers may be
infinite.

Using µ, the expected number of guesses w that satisfy
these tests is given by

|JT K| · Pµ[Ωeqv(φ,s) ∩ Ωtv(φ,s)].

Note that this value should be at least 1. Suppose that an
attacker tests all possible guesses w and randomly chooses
one that satisfies all equational verifiers and type verifiers.
Our estimate of the probability success of such an off-line
guessing attack is then

1

|JT K| · Pµ[Ωeqv(φ,s) ∩ Ωtv(φ,s)]
.

Relating symbolic and real-world attacks: The sym-
bolic attacks found in our model can be naturally translated
into attacks in the real world. Suppose that, in our model,
the attacker’s knowledge is described by a frame φ = νñ.σ,
and we consider off-line guessing attack of a name s ∈ NT
of type T , obtaining eqv(φ, s) and tv(φ, s) as sets of
equational and type verifiers. The corresponding scenario
in the real world is an attacker that learns the messages
represented by the terms in ran(σ), either by eavesdropping
on a network or taking active part in the communication.
The attacker then enumerates all bitstrings w ∈ JT K. Each
such bitstring constitutes a guess, and the attackes uses it to
constructs the messages represented by the terms eqv(φ, s)
and tv(φ, s). If the attacer’s guess is correct, then, for
each (t, t′) ∈ eqv(φ, s), the attacker expects the messages
represented by the terms t and t′ to represent the same
bitstring and, for each (t, TT) ∈ tv(φ, s), the attacker
expects the message represented by the term t to correspond
to a bitstring in the set JTT K — which the attacker can test
by using the algorithm ĴTT K. The attacker then takes the
set of guesses that satisfied all properties that he expects
to be satisfied by the right guess and randomly picks one.
He is successful if his final pick indeed corresponds to the
bitstring represented by the name s. Theorem VI.3 relates
the probability of success estimated by our model with the
real probability of success of the corresponding attack in the
real world. 9

We now present several examples of off-line guessing
attacks. These examples illustrate that such attacks can result
from implementation details that are outside the scope of
traditional symbolic methods and how such details can be
modeled in our framework and used to discover attacks.

9(FLAG: this is new, please check...)

A. Attack on a stored password hash.

Example IV.2. For privacy and security reasons, authenti-
cation servers commonly store password hashes instead of
the user’s passwords themselves. Suppose that an attacker
compromises such a server and obtains the hash of a weak
password. The attacker may attempt to use this hash to off-
line guess the password.

Using the same name types and property statements of our
previous examples, suppose that this password is represented
by a name s ∈ Npw, and the hash obtained by the attacker
is represented by h(s). The knowledge of such an attacker
is represented by the frame

φ = νñ.σ = ν {s} . {x1 7→ h(s)} .

To study off-line guessing, one considers the frames obtained
by extending φ with either the password s or an arbitrary
guess w; that is,

φs = υ {s, w} . {x1 7→ h(s), x 7→ s}
φw = υ {s, w} . {x1 7→ h(s), x 7→ w} .

Here, the set of type verifiers is empty (tv(φ, s) = ∅), and
the set of equational verifiers is given by

eqv(φ, s) = {(x1, h(x)} .

Let us consider the expected number of guesses w for
which this equational verifier is satisfied, that is, for which
h(w) = h(s). Clearly, the correct guess always satisfies this
equation. Recall that JpwK ⊆ B256 and

(h[B256] ⊆ B256) ∈ PS .

We therefore expect that each wrong guess satisfies the
equation h(s) = h(w) with probability 2−256. Since we
assumed that |JpwK| ≈ 224, we have 224−1 wrong guesses to
consider. We conclude that the expected number of guesses
w satisfying h(w) = h(s) is

1 +
224 − 1

2256
,

and we obtain an estimated probability of success of
1

1 + 224−1
2256

≈ 1

1 + 1
2232

.

B. Attacks on the EKE protocol using RSA.

The EKE (Encrypted Key Exchange) protocol is designed
to allow two parties to exchange authenticated information
using a weak symmetric key without allowing off-line
guessing attacks [1]. In Alice&Bob notation, the protocol
is described by

1. A→ B : {|pub(c1)|}s
2. B→ A :

{∣∣∣{k1}pub(c1)

∣∣∣}
s

3. A→ B : {|m1|}k1

4. B→ A : {|〈m1,m2〉|}k1

5. A→ B : {|m2|}k1

where {|M |}K (respectively {M}K) represents the symmet-
ric (respectively asymmetric encryption) of M with key
(respectively public key) K and pub(M) represents the
generation of a public key from some random data M .

EKE is known to be vulnerable to off-line guessing attacks
when implemented using the RSA asymmetric encryption
scheme [1]. This is due to the redundancy of RSA public
keys: an RSA public key is a pair (p · q, n), where p, q are
two large primes and n is coprime with (p−1)(q−1). Thus,
an attacker that sees the first message {|pub(c1)|}s can try
to decrypt it using his multiple guesses and check whether
a valid RSA public key results from each decryption.

In the next examples we show how our methods can
be used to estimate the probability of a successful off-line
guessing attack.

Example IV.3. Let s ∈ Npw be a name representing the
weak password shared between A and B that the attacker
tries to guess. Suppose that A generates an RSA key pair,
represented as a name r ∈ Nrandom of type random. A then
computes from r his public key and sends it to B, encrypted
with the weak password s, as prescribed by the protocol.

After observing this message in the network, the attacker’s
knowledge is described by the the frame

φ = υ {r} . {x1 7→ {|〈mod(r), expn(r)〉|}s} .

To study off-line guessing attacks, one uses the frames φs
and φw given by:

φs = υ {k,w} . {x1 7→ {|〈mod(r), expn(r)〉|}s , x2 7→ s} ,
φw = υ {k,w} . {x1 7→ {|〈mod(r), expn(r)〉|}s , x2 7→ w} .

For φ and s there are no equational verifiers: eqv(φ, s) =
∅. However, the attacker can try to decrypt the message sent
by A with his guess w for the secret and check whether it
yields a valid RSA public key. One thus obtains the set of
type verifiers

tv(φ, s) =
{

(π1({|x1|}−1
x2

), nspf), (π2({|x1|}−1
x2

), odd)
}
.

The attacker tries all 224 possible bitstrings for the weak
password s and checks, for each of them, whether all con-
ditions in tv(φ, s) are satisfied. He then chooses a random
bitstring among those that satisfy all those conditions. The
right bitstring always satisfies tv(φ, s); each wrong one
satisfies these conditions with probability

Pµ

[
π1({|x1|}−1

x2
) ∈ JnspfK,π2({|x1|}−1

x2
) ∈ JoddK

]
≈ 1

24 ·
1
2 .

We thus obtain
1 +

224 − 1

48
as an estimate for the total number of passwords satisfying
the conditions in tv(φ, s), and an estimated probability of
success of

1

1 + 224−1
48

≈ 1

218.5

for this off-line guessing attack.
In Section V we present a simple and general way to

compute a probability distribution µ from the equational
theory ≈R, the set of property statements PS , and the type
intepretation function J·K that yields precisely this estimate
for the probability of success of this off-line guessing attack.

Example IV.4. Suppose that, to prevent the previous attack,
only the exponent of the RSA public key is encrypted in
the first message. The authors of EKE note [1] that this
variant is still vulnerable to off-line guessing attacks if more
sessions of the protocol are executed: Since the exponent
of an RSA key is always odd, one can try to decrypt
each encryption of a public key with each guess. For the
right guess, decrypting each of the encryptions will always
yield an odd exponent. The probability that a wrong guess
achieves this decreases exponentially with the number of
encryptions, and the attacker gets one such encryption per
session.

To formalize this in our setting, we let φ = υñ.σ be the
frame representing the attacker’s knowledge, where

ñ = {r1, . . . , rn, s} ,
σ = {xi 7→ 〈mod(ri), {|expn(ri)|}s〉 | i ∈ {1, . . . , n}} .

The frames φs and φw used are as expected: φs = υñ ∪
{w} .σs and φw = υñ∪{w} .σw, and σs = σ∪{xn+1 7→ s},
σw = σ ∪ {xn+1 7→ w}.

As before, there are no equational verifiers: eqv(φ, s) = ∅.
The set of type verifiers is given by

tv(φ, s) = {({|π2(x1)|}−1
xn+1

, odd),

. . . ,

({|π2(xn)|}−1
xn+1

, odd)}.

By a reasoning similar to that employed in IV.3, we obtain

1

Pµ[tv(φ, s)]
=

1

1 + 224−1
2n

=
2n

2n + 224 − 1

as an estimate for the probability of success of this off-line
guessing attack.

Again, the probability distribution that we will present
in Section V yields precisely the same estimate for the
probability of success of this off-line guessing attack.

V. PROBABILITY DISTRIBUTIONS

Recall that the ingredients to our analysis are an equa-
tional theory ≈R, a type interpretation function J·K, and
a set PS of property statements. In this section we use
these elements to define the probability distribution that
determines our model. This probability distribution to obtain
our estimates of the probability of success of attacks, as
already illustrated by the examples in the previous section.

A. The probability measure µw.

Let

Ω(PS ,J·K) = {ω ∈ Ω | ω � PS , ω � J·K}

be the subset of functions ω ∈ Ω that satisfy PS , J·K, and

Ω(PS ,J·K,≈R) =
{
ω ∈ Ω(PS ,J·K) | ω � ≈R

}
be the subset of functions ω ∈ Ω that also satisfy ≈R.

Let R ⊆ P(Ω) be the set10 of sets of the form

{ω ∈ Ω | ω(ti) ∈ Bi, i ∈ {1, . . . , n}}

for some terms t1, . . . , tn ∈ TΣ(N) and some sets
B1, . . . , Bn ⊆ B⊥. Below, we will use rni=1(ti, Bi) to denote
the set

rni=1(ti, Bi) = {ω ∈ Ω | ω(ti) ∈ Bi, i ∈ {1, . . . , n}} ,

and define terms(rni=1(ti, Bi)) = {ti | 1 ≤ i ≤ n} and
names(rni=1(ti, Bi)) = sub({ti | 1 ≤ i ≤ n})∩N . Clearly,
rni=1(ti, Bi) ∈ R.

Definition V.1. If r = rni=1(ti, Bi) is a set in r, K =
sub(terms(r)) ∪ {t↓| t ∈ terms(r)} and ι ∈ I(K) is a
selection function for K, we define ι(r) as the set of all
ω ∈ Ω satisfying:
• ω ∈ r and ω |= ι(r);
• if t ∈ K ∩NT , then ω(t) ∈ JT K;
• if i ∈ {1, . . . , n} and ran(ι(ti)) 6= B∅⊥, then ω(ti↓) ∈
Bi.

Definition V.2. Let r ∈ R, K = sub(terms(r)) ∪
{t↓| t ∈ terms(r)}, and ι ∈ I(K).

For t ∈ K, we define the r-support suppι(r)(t) of t by

suppι(r)(t) = {b ∈ B⊥ | ω(t) = b for some ω ∈ ι(r)} .

If t ∈ K∩ ∈ NT , we define the ι(r),PS -support of the
random variable a by

Jsuppι(r),PS K(a) = JT K.

If t = f(t1, . . . , tn) ∈ K, we define

Jsuppι(r),PS K(f(t1, . . . , tn)) = Jran(ι(t))K.

Lemma V.3. Let r = rni=1(ti, Bi) and ι be a selection
function for K = sub(terms(r)) ∪ {t↓| t ∈ terms(r)}.

We have that
ι(r) ∈ R,

and

(
r ∩ Ω(PS ,J·K,≈R)

)
=

 ⊎
ι∈I(K)

ι(r)

 ∩ Ω(PS ,J·K,≈R)

 .

10(FLAG: it is very important to change letter!!)

We finally define µw : R → [0, 1] for sets r =
rni=1(ti, Bi) ∈ R by

µw(r) =
∑

ι∈I(K(r))

∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣ ,

where K(r) = sub(terms(r)) ∪ {t↓| t ∈ sub(terms(r))}.

Lemma V.4. There exists a unique extension of µw to F
that is a probability measure.

We will abuse notation by using the same symbol µw for
the function in R defined above and its unique extension to
F that is a probability measure. Note that the definition µw
depends only on the equational theory ≈R, the set of prop-
erty statement PS and the type interpretation function J·K.
As such, we write µw(≈R,PS , J·K) and for the probability
measure µw thus defined.

Lemma V.5. µw(≈R,PS , J·K) satisfies the following prop-
erties.
• If a1, . . . , an ∈ N are distinct names, T1, . . . , Tn are

types, B1, . . . , Bn are sets of bitstrings, and ai ∈ Ti
for i ∈ {1, . . . , n}, then

Pµw [

n∧
i=1

(ai ∈ Bi)] =

n∏
i=1

|Bi ∩ JTiK|
|JTiK|

.

• µw(ΩJ·K,PS ,≈R) = 1.

Note that µw makes perfect sense as a probability measure
for our model, but only as long as we assume that all the
names in our signature are strong. In order to model weak
names, we need to consider the possibility that distinct weak
names may possibly take the same value.

Example V.6. 11

B. The probability measure µ.

Let r ∈ R, and let Nw(r) = names(r)∩Nw be the (finite)
set of weak names occurring in r. We will consider the set
P (Nw(r)) of partitions of Nw(r). Let p = {p1, . . . , pm}
be one such partition, so that Nw(r) =

⊎m
j=1 pj , and, for

each a ∈ Nw(r), denote by j(a) the only index such that
a ∈ pj(a). We define the set Ωp ⊆ Ω by

Ωp = {ω ∈ Ω | a ∈ Nw(r)⇒ ω(a) ∈ type(a),
j(a) = j(a′)⇒ ω(a) = ω(a′),
j(a) 6= j(a′)⇒ ω(a) 6= ω(a′)}.

For each set pj ∈ p, we choose a representative aj ∈ pj ,
and we define a substitution θp : Nw(r)→ Nw(r) given by
aθp = aj(a). Note that different choices of representantives
aj lead to sets rθp that are equal up to renaming of weak
names. We say that such a partition θp is a p-substitution
(for Nw(r)).

11(FLAG:)

Finally, assuming that r = rni=1(ti, Bi) ∈ R, we define

rθp = {ω ∈ Ω | ω(tiθp) ∈ Bi for all i ∈ {1, . . . , n}} ,

and

Ω∗p = {ω ∈ Ω |
j ∈ {1, . . . ,m} ⇒ ω(aj) ∈

⋂
a∈pj Jtype(a)K,

i 6= j ⇒ ω(ai) 6= ω(aj)}.

It is simple to check that rθp ∈ R, and Ωp,Ω
∗
p ∈ F .

We define µ(r) by

µ(r) =
∑

p∈P (Nw(r))

Pµw [rθp | Ω∗p] · µw(Ωp).

Lemma V.7. There exists a unique extension of µ to F that
is a probability measure.

As above, we abuse notation by using the symbol µ also
for the unique extension of µ to F that is a probability
measure. This probability measure is our intended model.
As for µw, µ depends only on ≈R, PS and J·K. As such, we
write µ(≈R,PS , J·K) for the probability measures µ defined
as above, and use the term model also for the tuple (≈R
,PS , J·K).

Lemma V.8. µ(≈R,PS , J·K) satisfies the following proper-
ties.
• µ(ΩJ·K,PS ,≈R) = 1.
• If a1, . . . , an ∈ N are distinct names, T1, . . . , Tn are

types, B1, . . . , Bn are sets of bitstrings, and ai ∈ Ti
for i ∈ {1, . . . , n}, then

Pµ[

n∧
i=1

ai = bi] =

n∏
i=1

|Bi ∩ JTiK|
|JTiK|

.

• If a1, a2 ∈ Nw are weak names, θ = {a1 7→ a2},
t1, t2 ∈ TΣ(N) are such that t1θ ≈R t2θ, and
Pµ[a1 = a2] > 0, then

Pµ[t1 6= t2, t1 6= ⊥, t2 6= ⊥ | a1 = a2] = 0.

Example V.9. 12

C. Computing probabilities.
13

VI. SOUNDNESS

One is often interested in studying asymptotic properties
of the results yielded by symbolic methods; for instance,
computational soundness results guarantee that, when the
cryptographic primitives being used satisfy certain security
properties and the frames representing the attacker’s knowl-
edge satisfy certain “well-formedness” conditions, a proof
of security in a symbolic model implies that the probability

12(FLAG:)
13(FLAG:)

of a successful attack in the real world is negligible as a
function of a security parameter.

In this section we provide a different result: namely, we
prove that, under certain assumptions on the cryptographic
primitives being used and the adequacy of our model (as
expressed by (PS , J·K,≈R)), then the attacks described by
our framework correspond to attacks in the real world whose
probability of success differs negligibly from our estimated
probability.

In order to obtain such results, we need two countably
infinite sequences of models, each indexed by a security
parameter η. One is the sequence (Ω̂η)η∈N, representing
the real world model with its name generation algorithms
and cryptographic primitives. We assume that, for security
parameter η, Ω̂η = (Ω,F , µ̂η) is the real world model
obtained (as described in Section II-B) if the random gen-
eration algorithm associated to each name type T ∈ NT is
ĴT Kη and the function associated to each function symbol
f ∈ Σn is ĴfKη . The second is the sequence (Ωη)η∈N, where
Ωη == (Ω,F , µη) for each η ∈ N. As before, we identify
our models with their associated probability distribution µ,
and our framework uses an equational theory ≈R, a domain
interpretation function J·K, and a set of property statements
PS to estimate this probability distribution. We assume that
the equational theory ≈R and the set of property statements
PS is the same regardless of the security parameter, but
that we have a countably infinite family (J·Kη)η of domain
interpretation functions. Thus, we have

Ωη = (Ω,F , µη),

where

µη = µ(≈R, J·Kη,PS).

Recall that a function k : N → R is negligible if, for all
c ∈ N, k ∈ o(n−c).

Assumptions on name generation: We assume that, for
each T ∈ NT and each η ∈ N, ĴT Kη outputs a random
bitstring in JT Kη with uniform probability distribution, that
is, we assume that

P [b← ĴT Kη] =

{
1/ |JT Kη| if b ∈ JT Kη
0 otherwise ,

and that different samples are independent.
We assume further that, for all strong name types T ∈

NT s, 1/ |JT Kη| is negligible as a function of η, and, for all
weak name types T ∈ NT w, we have |JT Kη| ∈ O(ηk) for
some k ∈ N.

Finally, we assume that if W ⊆ NT w is a set of weak
name types, then there is some TW ∈ NT w such that⋂

T∈W
JT K = JTW K.

Assumptions on functions: Let t, t′ ∈ TΣ(N) be terms
such that t 6≈R t′, and

p = {a | a ∈ (names(t) ∪ names(t′)) ∩Nw}

be the trivial discrete partition of the weak names of t and
t′. We assume that the probabilities

Pµ̂η [t = t′, t 6= ⊥, t′ 6= ⊥ | Ωp]

and
Pµη [t = t′, t 6= ⊥, t′ 6= ⊥ | Ωp]

are negligible as functions of η. Intuitively, this means
that if two terms are not equationally equal and distinct
weak names occurring in those terms are mapped to distinct
bitstrings, then the probability (under either µ̂ or µ) that
the two terms are equal is negligible unless one of them is
mapped to ⊥).

A. Admissible models.

Definition VI.1. Let σ = {x1 7→ t1, . . . , xn 7→ tn} and φ =
νñ.σ be a frame, and let a1, . . . , an ∈ N be fresh names
(i.e., {a1, . . . , an} ∩ names(ran(σ)) = ∅.

Consider the frames

φ′ = ν(ñ ∪ {a1, . . . , an}).σ

and
φa = ν(ñ ∪ {a1, . . . , an}).σa,

where σa = {xi 7→ ai | i ∈ {1, . . . , n}}.
We say that φ has no non-trivial equations (with respect

to ≈R) if, for all ζ, ζ ′ ∈ Tφ′ , we have

ζσ = ζ ′σ iff ζσa = ζ ′σa.

If the above condition is not satisfied, we say that φ has
non-trivial equations (with respect to ≈R).

The above condition is a static equivalence property:
a frame has no non-trivial conditions if it is statically
equivalent to a frame that maps all variables to fresh names.

Let T = {t1, . . . , tn} ∈ TΣ(N) be a finite set of terms,
and let {w1, . . . , wm} be the set of weak names occurring
in {t1, . . . , tn}, so that

names({t1, . . . , tn}) ∩Nw = {w1, . . . , wm} .

We let φ∗(T) denote the frame φ∗(T) = νñT .σT , where
ñT =

⋃
t∈T names(t) and

σT = {xi 7→ ti | 1 ≤ i ≤ n} ∪ {xn+i 7→ wi | 1 ≤ i ≤ m} .

Definition VI.2. Consider the following experiment for each
security parameter η ∈ N:

1. An adversary A chooses a finite set T ⊂ TΣ(N).
2. If φ∗(T) = νñT .σT has non-trivial equations with

respect to ≈R, then ⊥ is output to the adversary;
otherwise, a bit b is selected at random.

3. If b = 0, then (x1σ, . . . ,xnσ) is sampled from µη and
output to the adversary.

4. If b = 1, then (x1σ, . . . ,xnσ) is repeatedly sampled
from µ̂η, and the first sample satisfying

wi, wj ∈ Nw ∩ ran(σT), wi 6= wj ⇒ wi 6= wj

is output to the adversary.
5. The adversary outputs a bit b′.

The advantage of A is defined by

AdvA≈R,Ωη,Ω̂η = P [b = b′]− 1/2.

We say that (≈R,PS , (J·Kη)η∈N) is an admissible model of
(Ω̂η)η∈N if the function AdvA≈R,Ω(·),Ω̂(·)

is negligible (in η)
for any probabilistic polynomial-time adversary A.

B. Soundness theorem.

Theorem VI.3. Suppose that:

(1) ≈ is generated by a subterm convergent rewriting
system R such that, for each rewrite rule (l→ r) ∈ R,
if l = f(l1, . . . , ln), then f does not occur in any other
rewrite rule or any strict subterm of l — that is,

(l′ → r′) ∈ R \ {l→ r} ⇒ l′ ∈ TΣ\{f}(N)

and

l1, . . . , ln ∈ TΣ\{f}(N).

(2) (≈,PS , (J·Kη)η∈N) is an admissible model of (Ĵ·Kη)η∈N.
(3) Our assumptions on names and functions are satisfied.
(4) φ = νñ.σ is such that names(ran(σ)) ∩ Nw = {s}

and, for all equational verifiers (t, t′) ∈ eqv(φ, s),

Pµη [t = ⊥], Pµη [t′ = ⊥], Pµ̂η [t = ⊥], Pµ̂η [t′ = ⊥]

are all negligible as functions of η.

Let

Ωφ,η = {ω | ω(t) = ω(t′) for all (t, t′) ∈ eqv(φ, s),
ω(t) ∈ JTT Kη for all (t, TT) ∈ tv(φ, s)}

Then, ∣∣Pµη [Ωφ,η | Ωφ,⊥]− Pµ̂η [Ωφ,η | Ωφ,⊥]
∣∣

is negligible (as a function of η).
Furthermore, the probability of success of the attack

described in our model differs at most negligibly from the
probability of success of the corresponding attack in the
real-world as described in Section IV.

Example VI.4. Applicability to examples...

C. Discussion.

About the soundness result
• its meaning and limitations
• on real world names

– from weak names to weak terms, and the login
example

– further on names: the uniformity assumption is
essential for computing the probabilities (seems
reasonable, ultimately all probabilistic algorithms
rely on some good enough uniform random gener-
ator), drawback is that we cannot accurately reason
about attacks that explore weaknesses of real world
pseudo-random generation

• on real world functions (and names, still)
– uniformity of real world cryptographic functions

versus the weak/strong name splitting
– why is this relevant, and where?
– what it excludes
– problems with pairing

• on our model, and its soundness (admissibility?)
– soundness/admissibility of our model is closely

related to the typical indistinguishability-like as-
sumptions on cryptographic functions that underly
computational reasoning and computational sound-
ness results; no obvious way to prove this directly;
but should be possible to show that, in concrete
situations, our property is implied by the indistin-
guishability assumptions on which the actual cryp-
tographic functions and random generators rely on
– it would be awesome to include such a case
explicitly, with a sketch of proof :)

• on the ingredients to our model, attacker resources
– subterm convergency makes things simpler but

should be easily generalizable, explain; it can be
trivially checked; still it is not more limitative than
the average result in the literature

– the head-of-rules condition is also easily check-
able, but quite restrictive, though it covers many
interesting examples; why we need it; generaliza-
tion?

About our approach
• how completely do we cover the capabilities of actual

attackers (much better than in the rest of the automat-
able literature, anyway)

Whatever else I may have forgotten ...

VII. CONCLUSION AND FUTURE WORK

We presented a symbolic probabilistic framework for
security protocol analysis. Our framework allows one to ex-
press type properties of cryptographic primitives, in addition
to standard equational properties; one can thereby model a
much stronger attacker than the standard Dolev-Yao model.

We illustrated the usefulness of this approach by modeling
non-trivial properties of RSA encryption and using them
to describe off-line guessing attacks on the EKE protocol,
currently outside the scope of other symbolic methods.

Our work is also the only existing symbolic model capable
of estimating the probability of success of the attacks found.
Under adequate14 assumptions about the accuracy of the
properties expressed, our estimate can be shown to differ
negligibly from the probability of success in the real world.

There are many interesting and practically relevant contin-
uations of this research. In the context of off-line guessing,
it should be possible to both specialize and generalize the
conditions in our soundness theorem. The recent work on
the computational soundness of static equivalence [17], [18],
for example, introduces new notions of security that could
perhaps be adapted to obtain sharper sufficient conditions for
our soundness theorem. Another relevant research question
that has received surprisingly little attention is the modeling
of weak hash functions and the analysis of off-line guessing
of non-atomic secrets. This could be useful, for instance, in
scenarios like the one described in Section IV-A.

More generally, we believe that our approach can be
used to analyze a broad range of attacks and weaknesses
of cryptographic primitives that could not previously be
analyzed by symbolic models. These include some forms of
cryptanalysis (such as differential cryptanalysis to AES, DES
or hash functions, as illustrated in [16]) and side-channel
attacks [25]. Short-string authentication protocols, used for
example in device pairing [27], are also interesting appli-
cations: short strings are a natural source of cryptographic
weakness, and the analysis of such protocols is intrinsically
probabilistic. Finally, distance-bounding protocols that rely
on rapid-bit exchange, such as [28], are notoriously ill-suited
for analysis with existing symbolic methods; these may well
be amenable to analysis using our framework.

An important goal for our future research is the integration
of this approach with a symbolic protocol model-checker
capable of generating protocol execution traces. Since our
probabilistic analysis can be performed automatically, as
discussed in V-C, this would provide a means for fully
automating our analysis.

REFERENCES

[1] S. M. Bellovin and M. Merritt, “Encrypted Key Exchange:
Password-based protocols secure against dictionary attacks,”
in IEEE SYMPOSIUM ON RESEARCH IN SECURITY AND
PRIVACY, 1992, pp. 72–84.

[2] V. Cortier, S. Delaune, and P. Lafourcade, “A survey of alge-
braic properties used in cryptographic protocols,” J. Comput.
Secur., vol. 14, pp. 1–43, January 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1239376.1239377

14(FLAG: delete this word? Is it clear?)

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier,
L. Compagna, J. Cuellar, P. Hankes Drielsma, P.-C.
Heám, J. Mantovani, S. Mödersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò,
and L. Vigneron, “The AVISPA Tool for the Automated
Validation of Internet Security Protocols and Applications,”
in Proceedings of the 17th International Conference
on Computer Aided Verification (CAV’05), ser. LNCS,
K. Etessami and S. K. Rajamani, Eds. Springer,
2005, vol. 3576. [Online]. Available: http://www.avispa-
project.org/publications.html

[4] S. Goldwasser and S. Micali, “Probabilistic encryption,” J.
Comput. Syst. Sci., vol. 28, no. 2, pp. 270–299, 1984.

[5] M. Bellare and P. Rogaway, “Entity authentication and key
distribution,” in CRYPTO, ser. Lecture Notes in Computer
Science, D. R. Stinson, Ed., vol. 773. Springer, 1993, pp.
232–249.

[6] V. Cortier, S. Kremer, and B. Warinschi, “A survey of
symbolic methods in computational analysis of cryptographic
systems,” J. Autom. Reasoning, vol. 46, no. 3-4, pp. 225–259,
2011.

[7] M. Abadi and P. Rogaway, “Reconciling two views of cryp-
tography (the computational soundness of formal encryp-
tion),” J. Cryptology, vol. 20, no. 3, p. 395, 2007.

[8] P. Adão, G. Bana, and A. Scedrov, “Computational and
information-theoretic soundness and completeness of formal
encryption,” in CSFW. IEEE Computer Society, 2005, pp.
170–184.

[9] M. Backes, B. Pfitzmann, and M. Waidner, “A composable
cryptographic library with nested operations,” in ACM Con-
ference on Computer and Communications Security, S. Jajo-
dia, V. Atluri, and T. Jaeger, Eds. ACM, 2003, pp. 220–230.

[10] P. Laud and R. Corin, “Sound computational interpretation
of formal encryption with composed keys,” in ICISC, ser.
Lecture Notes in Computer Science, J. I. Lim and D. H. Lee,
Eds., vol. 2971. Springer, 2003, pp. 55–66.

[11] V. Cortier, S. Kremer, R. Küsters, and B. Warinschi, “Com-
putationally sound symbolic secrecy in the presence of hash
functions,” IACR Cryptology ePrint Archive, vol. 2006, p.
218, 2006.

[12] M. Backes and P. Laud, “Computationally sound secrecy
proofs by mechanized flow analysis,” in ACM Conference
on Computer and Communications Security, A. Juels, R. N.
Wright, and S. D. C. di Vimercati, Eds. ACM, 2006, pp.
370–379.

[13] B. Blanchet and D. Pointcheval, “Automated security proofs
with sequences of games,” in CRYPTO, ser. Lecture Notes
in Computer Science, C. Dwork, Ed., vol. 4117. Springer,
2006, pp. 537–554.

[14] B. Blanchet, “A computationally sound mechanized prover for
security protocols,” IEEE Trans. Dependable Sec. Comput.,
vol. 5, no. 4, pp. 193–207, 2008.

[15] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certifica-
tion of code-based cryptographic proofs,” in POPL, Z. Shao
and B. C. Pierce, Eds. ACM, 2009, pp. 90–101.

[16] B. Montalto and C. Caleiro, “Modeling and reasoning about
an attacker with cryptanalytical capabilities,” Electr. Notes
Theor. Comput. Sci., vol. 253, no. 3, pp. 143–165, 2009.

[17] S. Kremer and L. Mazaré, “Adaptive soundness of static
equivalence,” in ESORICS, ser. Lecture Notes in Computer
Science, J. Biskup and J. Lopez, Eds., vol. 4734. Springer,
2007, pp. 610–625.

[18] M. Baudet, V. Cortier, and S. Kremer, “Computa-
tionally sound implementations of equational theories
against passive adversaries,” Inf. Comput., vol.
207, pp. 496–520, April 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1512988.1513047

[19] M. Abadi, M. Baudet, and B. Warinschi, “Guessing attacks
and the computational soundness of static equivalence,” Jour-
nal of Computer Security, pp. 909–968, December 2010.

[20] M. Baudet, “Deciding security of protocols against off-line
guessing attacks,” in Proceedings of the 12th ACM conference
on Computer and communications security, ser. CCS ’05.
New York, NY, USA: ACM, 2005, pp. 16–25. [Online].
Available: http://doi.acm.org/10.1145/1102120.1102125

[21] R. Corin, J. Doumen, and S. Etalle, “Analysing
password protocol security against off-line dictionary
attacks,” Electron. Notes Theor. Comput. Sci., vol.
121, pp. 47–63, February 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2004.10.007

[22] Z. Li and W. Wang, “Rethinking about guessing attacks,” in
ASIACCS, B. S. N. Cheung, L. C. K. Hui, R. S. Sandhu, and
D. S. Wong, Eds. ACM, 2011, pp. 316–325.

[23] S. Halevi and H. Krawczyk, “Public-key cryptography and
password protocols,” ACM Trans. Inf. Syst. Secur., vol. 2,
no. 3, pp. 230–268, 1999.

[24] M. Abadi and B. Warinschi, “Password-based encryption
analyzed,” in ICALP, ser. Lecture Notes in Computer Science,
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung, Eds., vol. 3580. Springer, 2005, pp. 664–676.

[25] B. Köpf and D. A. Basin, “An information-theoretic model
for adaptive side-channel attacks,” in ACM Conference on
Computer and Communications Security, P. Ning, S. D. C.
di Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp.
286–296.

[26] M. Abadi and C. Fournet, “Mobile values, new names, and
secure communication,” in Proc. of the 28th ACM Symp.
on Principles of Programming Languages, ser. POPL ’01.
New York, NY, USA: ACM, 2001, pp. 104–115. [Online].
Available: http://doi.acm.org/10.1145/360204.360213

[27] S. Laur and K. Nyberg, “Efficient mutual data authentication
using manually authenticated strings,” in CANS, ser. Lecture
Notes in Computer Science, D. Pointcheval, Y. Mu, and
K. Chen, Eds., vol. 4301. Springer, 2006, pp. 90–107.

[28] J. Munilla and A. Peinado, “Distance bounding protocols for
rfid enhanced by using void-challenges and analysis in noisy
channels,” Wireless Communications and Mobile Computing,
vol. 8, no. 9, pp. 1227–1232, 2008.

APPENDIX

Proof (of Lemma III.3): 15 The proof is by induction on
t. If t ∈ NT for some name type T ∈ NT and µ � PS , J·K,
then we choose

JsuppPS K(t) = JT K,

and the result is proved.
Our assumptions on our set of probabilistic statements PS

imply that, for each (b1, . . . , bn) ∈ Bn⊥, there is exactly one
property statement f [T1, . . . , Tn] ⊆ Tr such that

(b1, . . . , bn) ∈ JT1K× . . .× JTnK.

Let Tr(b1, . . . , bn) ∈ PT denote the range type in this
probabilistic statement.

Since µ satisfies PS , we have

Pµ[f(t1, . . . , tn) ∈ JTr(b1, . . . , bn)K
| t1 ∈ {b1} , . . . , tn ∈ {bn}] = 1.

Observe also that

suppµ(f(t1, . . . , tn)) ⊆
⋃

(b1,...,bn)∈B

Tr(b1, . . . , bn),

where B = suppµ(t1) × . . . × suppµ(tn). Now, the set
B is finite by the induction hypothesis, and so are the sets
Tr(b1, . . . , bn) for each n-uple (b1, . . . , bn). Thus, the result
follows by taking

JsuppPS K(f(t1, . . . , tn)) =
⋃

(b1,...,bn)∈B

Tr(b1, . . . , bn).

Lemma VII.1. Let r = rni=1(ti, Bi) and ι be a selection
function for K = {sub(t↓) | t ∈ terms(r)}.

We have that
ι(r) ∈ R,

and

(
r ∩ Ω(PS ,J·K,≈R)

)
=

 ⊎
ι∈I(K)

ι(r)

 ∩ Ω(PS ,J·K,≈R)

 .

Proof: To see that ι(r) ∈ R, we note that the conditions
on ω that define the set ι(r) only depend on the bitstrings
ω(t) for t ∈ K. Thus, we have

ι(r) =
⋂
t∈K
{ω ∈ Ω | ω(t) ∈ Bt}

for some sets Bt ⊆ B⊥, and the result follows from the
finiteness of K.

If ω ∈ ι(r)∩ΩPS ,J·K,≈R , then ω ∈ r by definition of ι(r),
and thus ω ∈ r ∩ ΩPS ,J·K,≈R .

Now, suppose that ω ∈ r ∩ ΩPS ,J·K,≈R , and define
iω ∈ I(K) such that, for each t = f(t1, . . . , tn) ∈

15(FLAG: Revise this proof to be better suited for using in the
soundness theorem, using ι...)

K, iω(t) is the only probabilistic statement ps such that
(ω(t1), . . . , ω(tn)) ∈ JdomK(ι(t)). We show that ω ∈
ιω(r) ∩ ΩPS ,J·K,≈R .
• We have ω ∈ r by hypothesis. If t = f(t1, . . . , tn),

then (ω(t1), . . . , ω(tn)) ∈ JdomK(ι(t)) by definition of
ιω , and ω(t) ∈ Jran(ι(t))K because ω |= PS . Thus,
ω |= ι.

• If t ∈ K ∩N , then ω(t) ∈ JT K, since ω |= J·K.
• If i ∈ {1, . . . , n} and ran(ι(ti)) 6= B∅⊥, then ⊥ /∈

Jran(ι(ti))K (from our assumptions on property state-
ments). We have two cases.

– If ti ∈ N , then ti = ti↓ and, since ω ∈ r, we have
ω(ti) = ω(ti↓) ∈ Bi;

– If ti = f(ti,1, . . . , ti,n), then

(ω(ti,1), . . . , ω(ti,n)) ∈ JdomK(ι(ti)),

and we get ω(ti) 6= ⊥ because ω |= PS . Since
ω |=≈R, we conclude that ω(ti↓) ∈ Bi.

This concludes the proof.

Lemma VII.2. Let r = rni=1(ti, Bi) be a set in R, and
define

dec(r) = {rni=1(ti, {bi}) | bi ∈ Bi ∩ JsuppPS K(ti) for each i ∈ {1, . . . , n}} .

Then, we have ⊎
r′∈dec(r)

r′ ⊆ r

and
µw(r) =

∑
r′∈dec(r)

µw(r′).

We say that dec(r) is the canonical decomposition of r.

Proof: 16

Corollary VII.3. Let r1, . . . , rn ∈ R be disjoint sets in R
such that r =

⋃n
i=1 ri is a set in R. Then,

µw(r) =

n∑
i=1

µw(ri).

Proof: 17

Lemma VII.4. There exists a unique extension of µw to F
that is a probability measure.

Proof: We first prove that R is a semi-ring of sets. To
prove that ∅ ∈ R, we note that r1

i=1(t1, ∅) = ∅ is in R for
any term t1. Now let r = rni=1(ti, Bi) and r′ = rn

′

i=1(t′i, B
′
i)

be two arbitrary sets in R. Let

terms(r) ∪ terms(r′) = {t′′1 , . . . , t′′n′′} .

16(FLAG:)
17(FLAG:)

There are sets B1, . . . , Bn′′ , B
′
1, . . . , B

′
n′′ such that r =

rn
′′

i=1(t′′i , Bi) and r′ = rn
′′

i=1(t′′i , B
′
i). These sets can be

obtained by simply choosing Bi to be set associated to t′′i in
the definition of r if t′′i ∈ terms(r), and Bi = B⊥ otherwise,
and doing similar choices for the sets B′i. We then have that

r ∩ r′ = rn
′′

i=1(t′′i , Bi ∩B′i).

Thus, R is closed for intersections.
Now, consider the set of functions

Ψ = {ψ : {1, . . . , n′′} → {0, 1}} ,

and let ψ0 ∈ Ψ be the function given by ψ0(i) = 0 for all
i ∈ {1, . . . , n′′}. For each function ψ ∈ Ψ, consider the set

rψ = rn
′′

i=1(ti, B
ψ(i)
i ,

where Bbi = Bi ∩ B′i if b = 0 and Bbi = Bi \ B′i if b = 1.
The following properties are easy to verify.
• rψ ∈ R for all ψ ∈ Ψ.
• If ψ1, ψ2 ∈ Ψ are distinct functions, then rψ1

∩ rψ2
.

•

r =
⊎
ψ∈Ψ

rψ.

•

r ∩ r′ = rψ0
.

We conclude that

r \ r′ =
⊎

ψ∈Ψ\{ψ0}

rψ

is a finite, disjoint union of elements in R. Thus, R is a
semi-ring.

It is simple to check that F is the σ-algebra generated
by R: On one hand, all the generators of F are in R, so
that the σ-algebra generated by R contains F . On the other
hand, any set in R is generated by a finite intersection of
sets of the form

{ω ∈ Ω | ω(t) ∈ B}

for some term t and some set of bitstrings B ⊆ B⊥. These
sets are countable unions of sets of the form

{ω ∈ Ω | ω(t) = b} ,

which by definition are the generators of F . Thus, F also
contains the σ-algebra generated by R.

By Caratheodory’s extension theorem, to complete our
proof that µw is a probability measure we only need to show
that, whenever {

rj = rn
j

i=1(tji , B
j
i) | j ∈ N

}
is a set of pairwise disjoint sets in R such that their (disjoint)
union

r =
⊎
j∈N

rj = rni=1(ti, Bi)

is also in R, then

µw(r) =
∑
j∈N

µw(rj).

We first note that, since

µ(rj) = µ(rn
j

i=1(tji , B
j
i ∩ JsuppPS K(tji))

and
µ(r) = µ(rni=1(ti, Bi ∩ JsuppPS K(ti)),

we may assume without loss of generality that all the sets
Bji are such that

Bji ⊆ JsuppPS K(tji).

For each t ∈ TΣ(N), consider the topological space
JsuppPS K(t), where all the subsets are open. This space is
finite and, therefore, it is trivially compact. Now, consider
the topological space

F = {omega : TΣ(N)→ B⊥ | f(t) ∈ JsuppPS K(t) for all t} .

F is the cartesian product of the topological spaces associ-
ated to each term t. The open sets in this topological space
with the product topology are precisely the sets of the form

rni=1(ti, Bi)

where Bi ⊆ JsuppPS K(ti) for all i ∈ {1, . . . , n} . By
Tychonoff’s theorem, F with the product topology is also a
compact space.

Because the open sets of F form a semi-ring (by an
argument entirely analogous to the one we used to prove that
R is a semi-ring), we know that F \r is a finite union of open
sets, and thus is also open. We conclude that r is closed.
Because F is compact, it follows that r is also compact.
Since {rj | j ∈ N} is a open cover of r, there must be a
finite sub-cover — that is, there must be indexes j1, . . . , jm
such that

r =

m⊎
k=1

rjk .

And because the rj are disjoint, it follows that rj = ∅ for
all j /∈ {j1, . . . , jm}.

Thus, we only need to prove that

µw(r) =

m∑
k=1

µw(rjk).

This follows from Corollary VII.3.

Lemma VII.5. µw(≈R,PS , J·K) satisfies the following
properties.
(1) If a1, . . . , an ∈ N are distinct names, T1, . . . , Tn are

types, B1, . . . , Bn are sets of bitstrings, and ai ∈ Ti
for i ∈ {1, . . . , n}, then

Pµw [

n∧
i=1

(ai ∈ Bi)] =

n∏
i=1

|Bi ∩ JTiK|
|JTiK|

.

(2) µw(ΩJ·K,PS ,≈R) = 1.

Proof:
(1): This is a direct consequence of the definition of

µw. We have

Pµw [

n∧
i=1

(ai ∈ Bi)] = µw(rni=1(ai, Bi)).

Now, if r = rni=1(ai, Bi), we have K(rni=1(ai, Bi)) = ∅
and, for all ι ∈ I(K(r)):

• ι = ∅;
• Jsuppι(r)K(ai) = Bi ∩ JTiK for all i ∈ {1, . . . , n};
• Jsuppι(r),PS K(ai) = JTiK for all i ∈ {1, . . . , n}.
Thus,

µw(r) =
∑

ι∈I(K(r))

 ∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣


=

n∏
i=1

|Bi ∩ JTiK|
|JTiK|

.

(2): Let a ∈ N and r = r1
i=1(a,B⊥ \ Jtype(a)K). By

(1), we know that

µw(r) = Pµw [a ∈ B⊥ \ JT K] = 0.

Thus,

µw({ω | ω 6|= J·K})
= µw(

⋃
a∈N r

1
i=1(a,B⊥ \ Jtype(a)K))

=
∑
a∈N µw(r1

i=1(a,B⊥ \ Jtype(a)K))
= 0.

(1)

Let ps = (f [T1, . . . , Tn] ⊆ Tr), and tn+1 =
f(t1, . . . , tn). Let r = rn+1

i=1 (ti, Bi), where Bi = JTiK for
i ∈ {1, . . . , n}, and Bn+1 = B⊥ \ JTrK.

We have t1, . . . , tn+1 ∈ K(r). Let ι ∈ I(K(r)) and
ι(tn+1) = (f [T ′1, . . . , T

′
n] ⊆ T ′r). For all ω ∈ ι(r) and all

i ∈ {1, . . . , n}, we have ω(ti) ∈ JT ′i K; since ω(ti) ∈ JTiK
for all ω ∈ r, we also have ω(ti) ∈ JTiK for all ω ∈ ι(r).
If ι(tn+1) 6= PS , then, by our disjointness assumption on
property statements, we have

(JT1K× . . .× JTnK) ∩ (JT ′1K× . . .× JT ′nK) = ∅,

from which we conclude that JTiK ∩ JT ′i K = ∅ for some
i ∈ {1, . . . , n}. We conclude that suppι(r)(t) = ∅ for all ι
such that ι(tn+1) 6= ps. Thus,

∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣ = 0,

since the product contains a factor equal to 0.

On the other hand, if ι(tn+1) = ps, then, by a similar
reasoning, we have, for all ω ∈ ι(r), that ω(tn+1) ∈ JTrK
and ω(tn+1) /∈ JTrK, and we conclude that

∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣ = 0

also for all ι such that ι(tn+1) = ps.
We conclude that

µw(r) =
∑

ι∈I(K(r))

 ∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣
 = 0.

Now, if ω 6|= PS , we must have

ω(t1) ∈ JT1K, . . . , ω(tn) ∈ JTnK, ω(f(t1, . . . , tn)) /∈ JTrK

for some property statement (f [T1, . . . , Tn] ⊆ Tr) ∈
PS . For each f(t1, . . . , tn) ∈ TΣ(N) and each ps =
(f [T1, . . . , Tn] ⊆ Tr) ∈ PS f , define

r(f(t1, . . . , tn), ps) = rn+1
i=1 (ti, Bi),

where again tn+1 = f(t1, . . . , tn), Bi = JTiK for i ∈
{1, . . . , n}, and Bn+1 = B⊥ \ JTrK. We have

{ω | ω 6|= PS} =
⋃

f(t1,...,tn)∈TΣ(N)
ps∈PSf

r(f(t1, . . . , tn), ps).

By the reasoning above, we know that
µ(r(f(t1, . . . , tn), ps)) = 0 for all f(t1, . . . , tn) ∈ TΣ(N)
and all ps ∈ PS f , and we conclude that

µw({ω | ω 6|= PS})

= µw

(⋃
f(t1,...,tn)∈TΣ(N)

ps∈PSf

r(f(t1, . . . , tn), ps)

)
=
∑
f(t1,...,tn)∈TΣ(N),

ps∈PSf

µw(r(f(t1, . . . , tn), ps))

= 0.

(2)

Let t1, t2 ∈ TΣ(N) be terms such that t1 ≈R t2, b2, b2 ∈
B be distinct non-⊥ bitstrings, and r = r2

i=1(ti, {bi}). Let
ι ∈ I(K(r)) and ω ∈ ι(r). Since ω ∈ r, we always have
ω(ti) ⊆ {bi} for i ∈ {1, 2}. Now, if ran(ι(ti)) = B∅⊥ for
some i ∈ {1, 2}, we also have ω ∈ {⊥} for all ω ∈ ι(r).
Thus, we have

∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣ = 0

for all ι ∈ I(K(r)) such that ι(ti) = B∅⊥ for some i ∈
{1, 2}. Now suppose that ran(ι(ti)) 6= B∅⊥ for i ∈ {1, 2}.
Then, we have ω(ti ↓) ∈ {bi} for i ∈ {1, 2}, and since

t1↓= t2↓, we conclude that ω(t1↓) ∈ {b1}∩{b2} = ∅ for all
ω ∈ ι(r). We conclude that Jsuppι(r)K(t1↓) = ∅, and thus

∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣ = 0

for all ι ∈ I(K(r)) such that ι(ti) 6= B∅⊥ for i ∈ {1, 2}.
Thus, we have

µw(r) =
∑

ι∈I(K(r))

 ∏
t∈K(r)

∣∣∣Jsuppι(r)K(t)∣∣∣∣∣∣Jsuppι(r),PS K(t)
∣∣∣
 = 0.

Now, if ω 6|=≈R, we must have ω(t1) = b1 and ω(t2) = b2
for some terms t1, t2 such that t1 ≈R t2 and some distinct
bitstrings b1, b2 ∈ B. Thus, we have

{ω | ω 6|=≈R} =
⋃

t1≈Rt2
b1,b2∈B,b1 6=b2

r2
i=1(ti, {bi}).

By the reasoning above, we know that µ(r2
i=1(ti, {bi})) = 0

for all such t1, t2, b1, b2, and we conclude that

µw({ω | ω 6|= ≈R})

= µw

(⋃
t1≈Rt2

b1,b2∈B,b1 6=b2
r2
i=1(ti, {bi})

)
=
∑

t1≈Rt2
b1,b2∈B,b1 6=b2

µw(r2
i=1(ti, {bi}))

= 0.

(3)

From (1), (2) and (3), we conclude our result.

Lemma VII.6. There exists a unique extension of µ to F
that is a probability measure.

Lemma VII.7. µ(≈R,PS , J·K) satisfies the following prop-
erties.

(1) If a1, . . . , an ∈ N are distinct names, T1, . . . , Tn are
types, B1, . . . , Bn are sets of bitstrings, and ai ∈ Ti
for i ∈ {1, . . . , n}, then

Pµ[

n∧
i=1

(ai ∈ Bi)] =

n∏
i=1

|Bi ∩ JTiK|
|JTiK|

.

(2) µ(ΩJ·K,PS ,≈R) = 1.
(3) If a1, a2 ∈ Nw are weak names, θ = {a1 7→ a2},

t1, t2 ∈ TΣ(N) are such that t1θ ≈R t2θ, and
Pµ[a1 = a2] > 0, then

Pµ[t1 6= t2, t1 6= ⊥, t2 6= ⊥ | a1 = a2] = 0.

Proof:

(1): Suppose that r = rni=1(ai, Bi). Let

Nw(r) = {w1, . . . , wk}

be the set of weak names in terms(r) =
{ai | i ∈ {i, . . . , n}}, and

{s1, . . . , sn−k} = terms(r) \Nw(r)

be the set of strong names. Let
Bw,1, . . . , Bw,k, Bs,1, . . . , Bs,n−k be the sets of bitstrings
such that

r = (rki=1(wi, Bw,i)) ∩ (rn−ki=1 (si, Bs,i).

Fix a partition p = {p1, . . . , pm} of Nw(r). For each w ∈
Nw(r), let j(w) be the only index such that w ∈ pj(a). For
each j ∈ {1, . . . ,m}, we let wj ∈ pj be the representative
of the class pj , so that wθ = wj for all w ∈ pj .

Define

Λ(r) = {λ : {1, . . . ,m} → B |
λ(j) ∈

(⋂
w∈pj Jtype(w)K

)
,

j 6= j′ ⇒ λ(j) 6= λ(j′)}

and, for each λ ∈ Λ(p), let

Ωλ = rki=1(wi, {λ(j(wi))}).

It is simple to check that

Ωp =
⊎

λ∈Λ(p)

Ωλ

and, by property (1) of Lemma V.5, we have

µw(Ωλ) =

k∏
i=1

1

|Jtype(wi)K|
.

It follows that, for all λ ∈ Λ(p), and any λ0 ∈ Λ(p),

µw(Ωp) =
∑

λ∈Λ(p)

µw(Ωλ) = |Λ(p)|µw(Ωλ0).

We now observe that

Pµw [r | Ωp] =
Pµw [r,Ωp]

P [Ωp]
=

∑
λ∈Λ(p) Pµw [r,Ωλ]

|Λ(p)|µw(Ωλ0
)

(4)

for any fixed λ0 ∈ Λ(p).
Similarly, for each λ ∈ Λ(p), define

Ω∗λ = rmj=1(wj , λ(j)).

Again, it is simple to check that

rθp ∩ Ω∗p =
⊎

λ∈Λ(p)

(rθp ∩ Ωλ)

and, by property (1) of Lemma V.5, we have

µw(Ωλ) =

m∏
j=1

1

|Jtype(wj)K|
.

As before, it follows that, for all λ ∈ Λ(p), and any λ0 ∈
Λ(p),

µw(Ω∗p) =
∑

λ∈Λ(p)

µw(Ωλ) = |Λ(p)|µw(Ωλ0
).

Analogously to Equation (4), we obtain

Pµw [rθp | Ω∗p] =
Pµw [rθp,Ω

∗
p]

P [Ω∗p]
=

∑
λ∈Λ(p) P [rθp,Ω

∗
λ]

|Λ(p)|µw(Ω∗λ0
)

(5)
for any fixed λ0 ∈ Λ(p).

For each j ∈ {1, . . . ,m}, let:

Bλ,j = {λ(j)} ∩

 ⋂
{i|wi∈pj}

Bw,i

 .

We then conclude that, for all λ ∈ Λ(p),

r ∩ Ωλ = rki=1(wi, Bλ,j(wi)) ∩ r
n−k
i=1 (si, Bs,i)

and

rθp ∩ Ω∗λ = rmj=1(aj , Bλ,j) ∩ rn−ki=1 (si, Bs,i).

For all λ ∈ Λ(p), we have

K(r ∩ Ωλ) = K(rθ ∩ Ω∗λ) = ∅,

and thus

I(K(r ∩ Ωλ)) = I(K(rθ ∩ Ω∗λ)) = {∅} .

Thus, for all ι ∈ I(K(r ∩ Ωλ)):
• if i ∈ {1, . . . , k}, then

Jsuppι(r∩Ωλ)K(wi) = Bλ,j(wi)

and
Jsuppι(r∩Ωλ),PS K(wi) = Jtype(wi)K;

• if i ∈ {1, . . . , n− k}, then

Jsuppι(r∩Ωλ)K(si) = Bs,iJtype(si)K

and
Jsuppι(r∩Ωλ),PS K(si) = Jtype(si)K.

Analogously, for ι ∈ I(K(rθp ∩ Ω∗λ)):
• if j ∈ {1, . . . ,m}, then

Jsuppι(rθp∩Ω∗λ)K(w
j) = Bλ,j)

and
Jsupprθp∩Ω∗λ),PS K(wj) = Jtype(wj)K;

• if i ∈ {1, . . . , n− k}, then

Jsuppι(rθp∩Ω∗λ)K(si) = Bs,i ∩ Jtype(si)K

and
Jsuppι(rθp∩Ω∗λ),PS K(si) = Jtype(si)K.

By letting

BS =

n−k∏
i=1

|Bs,i ∩ Jtype(si)K|
|Jtype(si)K|

and

1λ =

{
1 if λ(j) ∈

⋂
{i|wi∈pj}Bw,i

0 otherwise
,

we obtain, for any fixed λ0 ∈ Λ(p),

µw(r ∩ Ωλ)

= BS

(∏k
i=1
|Bλ,j(wi)|
|Jtype(wi)K|

)
= BS · µw(Ωλ0) · 1λ

(6)

and
µw(rθp ∩ Ω∗λ)

= BS

(∏m
j=1

|Bλ,j |
|Jtype(wj)K|

)
= BS · µw(Ω∗λ0

) · 1λ.
(7)

Combining Equations (4) and (6), we obtain

Pµw [r | Ωp] =
BS
|Λ(p)|

∑
λ∈Λ(p)

1λ.

Similarly, combining Equations (5) and (7),

Pµw [rθp | Ω∗p] =
BS
|Λ(p)|

∑
λ∈Λ(p)

1λ.

Thus,
Pµw [r | Ωp] = Pµw [rθp | Ω∗p].

Now (1) follows from the total probability theorem,
because

Pµ[
∧n
i=1(ai, Bi)]

=
∑
p∈Nw(r) Pµw [rθp | Ω∗p]µw(Ωp)

=
∑
p∈Nw(r) Pµw [r | Ωp]µw(Ωp)

= Pµw [r] =
∏n
i=1

|Bi∩JTiK|
|JTiK| ,

by Lemma V.5.
(2): The fact that

µ |= J·K (8)

follows trivially from property (1) of this lemma and prop-
erty (1) of Lemma V.5.

To see that µ satisfies PS , define, for each f(t1, . . . , tn) ∈
TΣ(N) and each ps ∈ PS f ,

r(f(t1, . . . , tn), ps) = rn+1
i=1 (ti, Bi),

where tn+1 = f(t1, . . . , tn), (B1, . . . , Bn) = Jdom(ps)K,
and Bn+1 = B⊥ \ Jran(ps)K, as in the corresponging proof
for µw.

Fix f(t1, . . . , tn) and ps, and let r = r(f(t1, . . . , tn)), ps.
We have:

µ(r) =
∑
p∈P (Nw(r)) Pµw [rθp | Ω∗p]µw(Ωp)

=
∑
p∈P (Nw(r)) Pµw [r(f(t1θp, . . . , tnθp), ps) | Ω∗p]µw(Ωp)

= 0.
(9)

Thus:

µ({ω | ω 6|= PS})

= µ

(⋃
f(t1,...,tn)∈TΣ(N)

ps∈PSf

r(f(t1, . . . , tn), ps)

)
=
∑
f(t1,...,tn)∈TΣ(N),

ps∈PSf

µ(r(f(t1, . . . , tn), ps))

= 0.

We conclude that
µ |= PS . (10)

To prove that µ satisfies ≈R, let t1, t2 ∈ TΣ(N) be such
that t1 ≈R t2, and b1, b2 ∈ B be two distinct bitstrings.
Letting r = r2

i=1(ti, {bi}), we have

µ(r) =
∑
p∈P (Nw(r)) Pµw [rθp | Ω∗p]µw(Ωp)

=
∑
p∈P (Nw(r)) Pµw [

(
r2
i=1(tiθp, {bi})

)
| Ω∗p]µw(Ωp)

= 0,
(11)

where the last equality holds because the the equivalence
t1 ≈R t2 is preserved by any substitution on names θ: that
is, for all θ : N → N , we have t1θ ≈R t2θ.

We conclude that

µ({ω | ω 6|= ≈R})

= µ

(⋃
t1≈Rt2

b1,b2∈B,b1 6=b2
r2
i=1(ti, {bi})

)
= 0.

(12)

Thus,
µ |=≈R, (13)

and (2) follows from Equations (8), (10) and (13).
(3): Let

Ωt1 6=t2 = {ω | ω(t1) 6= ω(t2), ω(t1) 6= ⊥, ω(t2) 6= ⊥} .

We have

Ωt1 6=t2 =
⋃
b1∈B

⋃
b2∈B\{b1}

r2
i=1(ti, {b1}).

Thus, it is sufficient to prove that

Pµ[r2
i=1(ti, {bi}) | a1 = a2] = 0

whenever b1, b2 are distinct non-⊥ bitstrings.
18

Theorem VII.8. Suppose that:

18(FLAG:)

(1) ≈ is generated by a subterm convergent rewriting
system R such that, for each rewrite rule (l→ r) ∈ R,
if l = f(l1, . . . , ln), then f does not occur in any other
rewrite rule or any strict subterm of l — that is,

(l′ → r′) ∈ R \ {l→ r} ⇒ l′ ∈ TΣ\{f}(N)

and
l1, . . . , ln ∈ TΣ\{f}(N).

(2) (≈,PS , (J·Kη)η∈N) is an admissible model of (Ĵ·Kη)η∈N.
(3) Our assumptions on names and functions are satisfied.
(4) φ = νñ.σ is such that names(ran(σ)) ∩ Nw = {s}

and, for all equational verifiers (t, t′) ∈ eqv(φ, s),

Pµη [t = ⊥], Pµη [t′ = ⊥], Pµ̂η [t = ⊥], Pµ̂η [t′ = ⊥]

are negligible as a function of η. 19

Let

Ωφ,η = {ω | ω(t) = ω(t′) for all (t, t′) ∈ eqv(φ, s),
ω(t) ∈ JTT Kη for all (t, TT) ∈ tv(φ, s)}

Then, ∣∣Pµη [Ωφ,η]− Pµ̂η [Ωφ,η]
∣∣

is negligible (as a function of η).

Proof: As in the proof of Lemma V.8, let

Ωt=t′ = {ω ∈ Ω | ω(t) = ω(t′)}

and
Ωt∈B = {ω ∈ Ω | ω(t) ∈ B}

for all terms t, t′ ∈ TΣ(N) and all sets of bitstrings B ⊆ B⊥.
Let w be the fresh name used for generating the sets

eqv(φ, s) and tv(φ, s) as defined in Section IV, and define

Ωw = {ω | ω(w) 6= ω(s)}

and
Ωs = {ω | ω(w) = ω(s)} .

Clearly, Ω = Ωw] Ωs.
By Lemma V.8 and our assumptions on names, we also

have
Pµη [Ωw] =

|JT Kη|−1
|JT Kη| = Pµ̂η [Ωw],

Pµη [Ωs] = 1
|JT Kη| = Pµ̂η [Ωs].

(14)

For each η ∈ N, let

Ω̂η =
{
J·Kρη | ρ is samplable from J·Kη

}
19(FLAG: I wonder if, for marketing / beauty purposes, it would not

be better to simply require that all terms that occur in the verifiers have
negligible probability of being ⊥ in both measures. Such a condition
is prettier, agrees well with intuition, and I conjecture that it can have
the psychological effect of making people dismiss the whole ⊥ thing as
a ”technicality” (which is mostly what it is, anyway). Let me know...)

as in Section II-B. If ρ is an assignment samplable from
J·Kη such that JwKρη = JsKρη, then by definition of J·Kρη we
necessarily have

JtσsKρη = JtσwKρη

for all terms t. Because we assume that µ |=≈R, it follows
from condition (4) that

Pµ̂η [tσw = t′σw | Ωs] = 1

whenever (t, t′) ∈ eqv(φ, s), and so

Pµ̂η [Ωeqv(φ,s)] = Pµ̂η

 ⋂
(t,t′)∈eqv(φ,s)

Ωt=t′

 = 1.

Since each µ̂η is assumed to satisfy J·Kη and PS , we also
conclude that

Pµ̂η [tσw ∈ JTT Kη] ≥ Pµ̂η [tσw ∈ JsuppPS Kη] = 1,

whenever (t, TT) ∈ tv(φ, s). Thus,

Pµ̂η [Ωtv(φ,s)] = Pµ̂η

 ⋂
(t,TT)∈tv(φ,s)

Ωt∈JTT Kη

 = 1,

and we conclude

Pµ̂η [Ωφ,η | Ωs] = 1. (15)

We obtain a similar conclusion about the probability
distributions µη . If (t, t′) ∈ eqv(φ, s), then property (3) of
Lemma V.8 implies Pµη [t = t′ | Ωs] = 1, and we get

Pµ̂η [Ωeqv(φ,s)] = Pµ̂η

 ⋂
(t,t′)∈eqv(φ,s)

Ωt=t′

 = 1.

If (t, TT) ∈ tv(φ, s), then because µη satisfies J·Kη and PS ,
we have Pµη [tσw ∈ JTT Kη], from which it follows that

Pµη [Ωtv(φ,s)] = Pµη

 ⋂
(t,TT)∈tv(φ,s)

Ωt∈JTT Kη

 = 1.

Thus,
Pµη [Ωφ,η | Ωs] = 1. (16)

Now, if |JT K|η = 1, then Pµη [Ωs] = Pµ̂η [Ωs] = 1, and
equations (16) and (15) imply that∣∣Pµη [Ωφ,η]− Pµ̂η [Ωφ,η]

∣∣ = 0.

We thus assume, without loss of generality, that |JT K|η > 1
for all η. In this case, we have Pµη [Ωw] = Pµ̂η [Ωw] > 0,
and, by the total probability theorem,

Pµ̂η [Ωφ,s] = Pµ̂η [Ωφ,s | Ωw]Pµ̂η [Ωw]
+Pµ̂η [Ωφ,s | Ωs]Pµ̂η [Ωs],

Pµη [Ωφ,s] = Pµη [Ωφ,s | Ωw]Pµη [Ωw]
+Pµη [Ωφ,s | Ωs]Pµη [Ωs].

(17)

From equations (14), (15) (16) and (17), we conclude that∣∣Pµη [Ωφ,η]− Pµ̂η [Ωφ,η]
∣∣

=
∣∣Pµη [Ωφ,η | Ωw]Pµη [Ωw]− Pµ̂η [Ωφ,η | Ωw]Pµ̂η [Ωw]

∣∣
=
|JT Kη|−1
|JT Kη|

∣∣Pµη [Ωφ,η | Ωw]− Pµ̂η [Ωφ,η | Ωw]
∣∣ .

The above expression is negligible if and only if∣∣Pµη [Ωφ,η | Ωw]− Pµ̂η [Ωφ,η | Ωw]
∣∣ (18)

is negligible. We thus focus on proving this fact.
We first note that, by hypothesis (4) and our construction,

the only weak names occurring in our set of verifiers are
w and s. Suppose now that (t, t′) ∈ eqv(φ, s). In this case,
Ωw = Ωp, where p is the trivial discrete partition of the
weak names occurring in t and t′. Now, we note that

Pµη [t = t′ | Ωw]
≤ Pµη [t = t′, t 6= ⊥, t′ 6= ⊥ | Ωw]

+ Pµη [t = t′ and either t = ⊥ or t′ = ⊥ | Ωw].

The first of these parcels is negligible by our assumptions on
functions; the second is negligible by condition (4). Thus,
we conclude that

Pµη [Ωφ,η] ≤ Pµη [t = t′ | Ωw]

is negligible. An entirely analogous reasoning allows us to
conclude that

Pµ̂η [Ωφ,η] ≤ Pµ̂η [t = t′ | Ωw]

is also negligible. Thus, we conclude that if eqv(φ, s) 6= ∅,
then (18) is the difference of two negligile functions, and is
therefore also negligible.

Let us now consider the case that eqv(φ, s) = ∅. In-
specting the proof of Lemma III.3, it becomes clear that
the support JsuppPS K(t) of any term t only depends on
the structure of function application and the types of names
that occur in each position on the term t ↓. In particular,
if θ = {w 7→ s} and (tσs) ↓= ((tσw) ↓)theta — that is,
if the normal form of tσs is the same as the normal form
of tσw after replacing all occurrences of w by s —, then
JsuppPS K(tσs) = JsuppPS K(tσs).

Now, suppose that (t, TT) ∈ tv(φ, s).

