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Abstract. Electronic voting promises the possibility of a convenient, ef-
ficient and safe way to capture and count votes in an election. Recently,
Clarkson et al. [4] proposed Civitas, a voting scheme that ensures both
security and privacy for the voter. In spite of its cryptographic robust-
ness, Civitas is not yet ready to be used in the real world as it still
has significant vulnerabilities, namely regarding the trust in the voting
client. In this paper we propose a solution based in the usage of smart
cards that is resilient against compromise of the voting client, maintains
all the security and privacy properties of Civitas, and allows the user
to have a confirmation of his cast vote at the expense of having another
trusted, but simple, central authority. With this proposal, we do not re-
quire the existence of code cards that need to be issued for each election,
contrary to what is common for solving this problem.
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1 Introduction

Electronic voting protocols are special cases of security protocols that
are run between voters and administrators. Security protocols have been
studied for a while but voting protocols present themselves as a special
case as the intended security goals, verifiability and privacy, may look
somewhat contradictory. The current state of secure electronic voting is
far from perfect as major commercial electronic voting systems fail to
offer strong privacy guarantees, a fact well known to the community.

Traditional Paper Voting All of us are very used to paper voting where
a ballot is a piece of paper used to record voters’ choices. Each voter
uses one ballot, ballots are not shared, therefore each ballot is unique. In
simple elections, a ballot may be a simple scrap paper in which each voter
writes or selects his candidate, but in real world usage, e.g., governmental
elections, pre-printed ballots are used to protect the privacy of the voters.
Humans have a profound affinity for that which they can see and touch.
This results in a deep reverence for the printed word, whether it is true
or false, and explains the comfort people derive from paper receipts [15].
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However, there are various problems inherent to paper-based elections.
Logistics, cost and resources involved, the time needed for all phases of
the electoral process (printing votes, tally votes), etc, are non-trivial and
electronic voting presents itself as a solution for many such problems.

Types of Electronic Voting Three approaches to the problem of electronic
voting have been proposed so far [12]:

– Poll-site voting commonly seen as direct recording electronic (DRE),
are special machines that are present in polling stations and have
dedicated hardware and software. Voters cast their votes interacting
with such a machine, and in some cases get a receipt for verification;

– Kiosk voting voting takes place through publicly available terminals;
– Voting via Internet performed by a client-server application, run

by voter’s PC, mobile phone or PDA, and on the server side, by
trusted authorities. Neither the terminal not the environment can
be controlled [13].

Internet voting systems are obviously the most appealing for several rea-
sons. One strong reason is convenience; it allows a voter to vote from
anywhere, which might be seen as a way to decrease abstention rates.
Also, people are getting used to perform sensitive operations such as shop-
ping and home banking from their home computers. However, Internet
voting systems face several problems that prevent their widespread use
today, that can be broadly divided in three main classes.
The first class deals with the problems that are specific to voting proto-
cols. These problems derive from the assumptions of the protocols about
the execution environment. The second class includes those difficulties
that may be created by specific attacks against a voting protocol or a
running election. Such attacks may try to get some useful outcome, by
subverting the voting protocol, or simply ruin an election using Denial of
Service attacks against the participating machines or applications. An-
other possible attack is the coercion of voters, which can happen if voters
can vote anywhere without supervision of electoral committees. Finally,
there is another class that includes security and fault tolerance issues in-
herited from the current Internet architecture. In this paper we address
the problems present in the first two classes. Building on top of Civitas,
that ensures both security and privacy of electronic voting, we propose a
solution that does not require trust in the voting client. [7]

Security Properties Electronic Voting System should fulfill some proper-
ties, in order to be secure and therefore usable in real-world [5,9]. These
are inspired in paper-based voting and defined in [5] as:

– Eligibility : only legitimate voters can vote;
– Fairness: no early results can be obtained as they could influence

the remaining voters;
– Individual Verifiability : a voter can verify that her vote was really

counted (at some point at the elections);
– Universal Verifiability : the published outcome of the tally can be

verified to be the sum of all the cast votes;
– Vote-Privacy : the fact that a particular voter voted in a particular

way is not revealed to anyone;



– Receipt-Freeness: a voter does not gain any information, a receipt,
that can be used to prove to a coercer the way she voted;

– Coercion-Resistance: a voter cannot cooperate with a coercer to
prove to him that she voted in a certain way.

Coercion-resistance is the strongest of the three privacy properties and,
naturally, should be the intended privacy goal of an e-voting scheme.

Our Work We propose a solution based in the usage of smart cards
and an external reader that is resilient against compromise of the voting
client, maintains all the security and privacy properties of Civitas such
as verifiability and coercion-resistance, and allows the user to have a
confirmation of his cast vote. This is done at the cost of those two simple
hardware devices and the need for one extra trusted party.

2 Related Work

End-to-end auditable or end-to-end voter verifiable (E2E) systems are
voting systems with stringent integrity properties and strong tamper-
resistance, that allows all voting phases to be verified at some point in
the election period.

Prêt à Voter Prêt à Voter [14] is a voting system that provides verification
of the ballot. It allows voters to verify that their votes have been included
in the count while ensuring their vote remains secret. Voters mark their
selection on a paper ballot form in the usual way against the candidates
available. The key novelty is that the candidates are listed in a random
order, which varies from ballot to ballot. After the elections’ closing,
the system publishes on a public web bulletin board the receipts of all
the votes it has accepted. Each stage that the votes go through in the
system can be independently verified. Prêt à Voter offers a weak form of
coercion resistance, if voting is supervised. In remote settings, it offers no
coercion resistance. The adversary, by observing the voter during voting,
will learn what vote was cast. [4]

SureVote SureVote [2] is a commercial, special-hardware enhancement
of the mixnet approach by Chaum which incorporates a "visual crypto"
voter-verifiable component. SureVote generates secret vote and reply codes
for each candidate and for each voter. The codes are delivered to the vot-
ers prior to the election day. On election day the voter sends the vote
code of her/his favorite candidate through the voting channel, e.g. Inter-
net. At server side, the reply code is computed by a set of trustees and
sent to the voter that confirms it – in this way it is verified that there was
no vote modification. If there is at least one corrupted trustee, SureVote
does not guarantee that in the counting phase the vote code is translated
to the right candidate. [6]

3 Civitas3

Our solution is based in Civitas [4] and we briefly describe it in here. We
refer the reader to [4] for full details and discussion. Civitas implements

3 Part of this Section is extracted from [4].



a voting scheme proposed by Juels, Catalano, and Jakobsson [8]. There
are seven different entities performing different roles in Civitas:
– The Supervisor administers the election. It specifies the ballot de-

sign, the election authorities, and is responsible for opening and clos-
ing the election;

– The Registrar decides eligible voters for the election;
– The Registration Tellers generate the credentials that allow voters

to cast their votes;
– Voters are the individuals that participate in the election; they reg-

ister themselves, get their credentials, and cast their votes;
– Ballot Boxes are instances of an insert-only log service. Are used by

voters to cast their votes, and report their results to the Tabulation
Tellers once the election is closed;

– Tabulation Tellers tally votes after the closing of the election and
compute the final outcome;

– Bulletin Board (BB) is a write-only service, readable by everyone,
where the electoral authorities post all the necessary information for
verifiability of the election.

Setup phase (1) The supervisor starts the election posting in the bulletin
board the ballot design, and the public key of every electoral author-
ity. These keys are used for authentication and encryption of exchanged
messages; (2) the registrar posts the electoral roll, containing identifiers
for all authorized voters, along with their registration and designation
(public) keys; (3) tabulation tellers generate a public key KTT for a dis-
tributed El Gamal encryption scheme and post it on the bulletin board.
Decryption of messages encrypted under this key requires the cooper-
ation of all tabulation tellers; and (4) registration tellers generate the
voting credentials that are used to (anonymously) cast votes.
Each registration teller i authenticates a voter using the voter’s regis-
tration key. Then the teller and the voter run the registration protocol,
using the voter’s designation key, to generate the voter’s private cre-
dential share si and posts on the bulletin board the public share of the
credential, Si = EncKTT (si). Private credential s =

∏
i si can only be

forged if all registration tellers collude. Due to the homomorphic prop-
erty of the encryption scheme, the public credential of each voter can be
publicly computed as the product of all her public shares as

S =
∏
i

Si =
∏
i

EncKTT (si) = EncKTT (
∏
i

si).

Voting phase After obtaining the private credentials, the voter is able to
cast her vote whenever she wants. The voter submits the tuple

Vote(s, v) = 〈EncKTT (s),EncKTT (v), Pw, Pk〉

to some or all of the ballot boxes containing her private credential s,
her choice of candidate v, along with a proof Pw that the vote is well-
formed, and a proof Pk that the voter knows both s and v. The presence
of proof Pw allows the verification of the correct construction of the vote



without the need to open it, and the proof Pk prevents an adversary from
resubmitting old credentials EncKTT (s) with new votes EncKTT (v

′).

Tabulation phase To compute the outcome of an election, all tabulation
tellers have to cooperate: (1) all tellers retrieve the public credentials of
each voter from the bulletin board and the votes from each ballot box; (2)
verify that the proof of well-formedness Pw is valid for each vote and dis-
card the ones with invalid proofs; (3) Votes with duplicate credentials are
identified performing PET 4 and are eliminated according to the revot-
ing policy; (4) the lists of submitted votes and of authorized credentials
in the bulletin board are anonymized using a mix network [3]; (5) the
credentials in the anonymized list of submitted votes are compared with
the anonymized list of authorized credentials using a PET and votes
with non-valid credentials are eliminated ; (6) final result of the election
is computed decrypting the voter’s choices, but not credentials.

3.1 Security Assumptions

To define the security of Civitas Clarkson et al. defined a set of assump-
tions about the trustworthiness of agents and system components.
– Assumption 1: The adversary cannot simulate a voter during reg-

istration. If the adversary may present himself as the voter at all
times, then there is no way to distinguish the two.

– Assumption 2: Each voter trusts at least one registration teller, and
the channel from the voter to that teller is untappable. To resist to
coercion the voters need to be able to create fake credentials that
look like real ones to the adversary and for that it is needed that at
least one is not known to the adversary.

– Assumption 3: Voters trust their voting client as a corrupted client
might reveal to the adversary the vote of the voter, or reveal all the
private credentials defeating coercion resistance, or simply not send
the vote to any ballot box causing the voter to abstain.

– Assumption 4: The channels on which voters cast their votes are
anonymous otherwise the adversary could perform traffic analysis to
know if a given voter has voted hence violating coercion resistance.

– Assumption 5: At least one of each kind of authority is honest. At
least one of the ballot boxes to which a voter submits her vote is
honest, otherwise could discard votes, and there exists at least one
honest tabulation teller as if all were corrupted by decryption of the
credentials and votes the adversary could violate coercion resistance.

– Assumption 6: The Decision Diffie-Hellman and RSA assumptions
hold, and SHA-256 implements a random oracle.

3.2 Security Properties

Resisting Coercion To resist to coercion (and vote selling), voters have
to be able to create fake credentials and provided them to the adversary

4 PET stands for Plaintext Equivalence Test and is a ZK protocol that given c and c′

reveals whether Dec(c) = Dec(c′) but nothing more about the plaintexts c and c′.



without him being able of distinguish them from valid ones. Then we
have two possible scenarios: (1) if the adversary asks the voter to vote in
a particular candidate then the voter casts her vote with a fake credential
that will look good to the adversary but will be discarded later in the
tabulation phase; (2) if adversary asks the voter to sell her credential the
voter just gives him a fake credential that, for all observable purposes,
is equal to a valid one.

Constructing a Fake Credential Fake credentials are created locally by
voters using the voter’s private designation key. This produces fake pri-
vate shares s′i that are indistinguishable from the real ones si to any
adversary. These are combined to create the private share s′ whose pub-
lic credential is the original S.

Revoting Each voter may submit more than one vote. Votes made with
fake credentials are eliminated but one still needs to decide what to do
with multiple votes with same credentials. In these cases the supervisor
may specify a policy on how to tally these votes. Either discards all or
he needs to know which one to accept. Recall that votes are anonymized
and mixed and so a proof of knowledge of the earlier votes has to be
included in the vote that the voter wants to be counted.

Verifying an Election Civitas provides both Universal and Individual
Verifiability. Universal verifiability is achieved requiring each tabulation
teller to post a publicly verifiable proof that he is following the tallying
protocol. Since everyone can check these proofs, honest tellers, and there
is at least one by Assumption 5, stop once they detect any deviation
from the tallying protocol. Individual Verifiability is achieved as voters
can check if their vote is in the final tally of the election.

4 Proposed Solution

One major concern when deploying a system that allows remote voting
is to be sure that the voting client does not behave erratically, and per-
forms indeed the tasks that he is assigned to. Clarkson et al. [4] had this
problem in mind when they created Civitas and solved it with a trust
assumption, that we intend to eliminate now. Allowing a rogue voting
client is the purpose of Joaquim et al. [6], that apply CodeVoting to have
a high level of trust in a voting client, with reduced impact on the trust
assumptions. One first try would be to integrate CodeVoting with Civi-
tas but this is not obvious, hence the need to find an alternative solution.
Other assumption in Civitas is that an adversary cannot simulate a
voter during registration. This assumption may be simple to satisfy but
we will remove it by assuming that registration is performed in-person
and, a smart-card is given to the voter.
Our goal is to alter the least components of Civitas while removing the
Assumption of trust in the voting client. Adding a smart-card may seem
a big change that defeats the purpose of a remote voting system however,
if one looks carefully, this does not disturb the process as this smart-card
could be the national identification card already present in countries like



Estonia [10] and Portugal. This way, there is no extra hassle for the
voters to obtain such card, hence the process is transparent.
This smart-card is an important piece of our architecture as one needs
some computations to be performed correctly. Removing the trust on
the voting client is not an easy task and several problems arouse. In
the worst case, we may assume the client to behave erratically and not
perform any of the intended tasks. Not even the expected computations
of the protocol. Having the smart-card as a thrustworthy platform of
computation helps us on this problem.

4.1 New Architecture

In our solution (Fig. 1) we add a new trusted entity to Civitas, the
VoteReplier, that is responsible for replying to each voter with the correct
reply-code, after reading the votes from the Ballot Boxes (Section 4.5).
We also introduce two physical components on the voter’s side that will
allow us to vote without the need to trust the voting client: a smart-card,
that can be the national identification card as one has in Portugal, and
a smart-card reader with a keypad and a screen. Only these two compo-
nents need to be certified. The keypad will be used to insert the intended
vote and the screen to show the expected confirmation code. All the com-
putations will be performed within the smart-card. The voting client is
only needed to perform communication with the voting authorities and
to show the confirmation code supplied by them. As one can see, these
extra components in spite of trusted, are much easier to be verified than
a whole operating system that is subject to worms and virus.

Fig. 1. New architecture based in Civitas.

The Supervisor, Tabulation Tellers, and Bulletin Board described in Sec-
tion 3 are not changed in this new Architecture. Voters will perform
the same tasks however votes will be cast differently (Section 4.4). The
other three entities will have minor changes to support the existence of
the VoteReplier and the issuing of the smart-card:
– Registrar performs in-person registration. It assigns a smart-card to

each voter;
– Registration Tellers generate the credentials that are used to cast

votes. The trusted credential, Assumption 2, will be placed inside
the smart card issued by the Registrar ;

– Ballot Boxes record the cast votes, and additionally report their
contents to the VoteReplier.



4.2 Registration Phase

Civitas uses a remote agent Registrar in the Setup Phase to authorize
voters. Authorized voters need to get their credentials from this agent
and doing this remotely can be dangerous, as an adversary can imper-
sonate a voter and steal his credential. The latter is what distinguishes a
voter from an adversary and therefore it must be kept private. In spite of
allowing this process to be done remotely, Civitas requires the impossi-
bility of an adversary simulating a voter in registration (Assumption 1).
In our solution, we change the remote agent Registrar by an in-person
Registrar and this problem disappears.
The in-person Registrar provides the voter with a PIN code that allows
the user to construct a valid or (intentionally) invalid credential, and a
smart-card containing one of the private shares of the private creden-
tial. The other shares, obtained later from remote Registration Tellers,
corrupted or not, can than be stored in and managed by the smart card
solving also the problem of credential management. Publication of public
credentials by the Tellers is done in the same way as in Civitas.
Much like in the Citizen’s card enrollment, the voter must prove his
identity, which is checked both by systems and humans. This reduces
greatly the probability of identity theft. All relevant personal data and
credentials are also stored inside the Citizen’s card and, similarly to
smart card’s application, both its hardware and software are certified.
Also, for the sake of transparency, its architecture is public. We consider
that this change does not introduce too much disturbance in Civitas as
it is a one time operation that the voter does not need to repeat.

4.3 New Hardware

Even using the smart-card to perform all computations, one could end
up casting a vote different from the intended. If one uses the keyboard
of the client, this could alter the introduced vote and provide a different
one to the smart-card. Similarly, if we rely on the screen of the voting
client, it could always present a default confirmation code that would
obviously match with the (fake) confirmation code sent by the server.
In order to be sure that the inserted values are not corrupted or changed
by any means, in particular an infected computer host, we require the
user to have a certified smart-card reader. Its architecture should be
public and both its hardware and software certified to ensure that no
tampering is possible. We require it to have:
– a Numeric keypad to allow numeric inputs for voter’s candidate

choice and input PIN;
– a Display to show the input from voters and the expected reply-code;

This certified smart card reader would be distributed when voters obtain
theirs Citizen card at the local authorities’ office and should be plug-and-
play. The assumptions on its security are that the numbers inserted in
the keypad are indeed transmitted to the smart-card and that results
shown in the display are the ones returned by the smart-card.



4.4 Voting Phase

Adding confirmation codes to the Civitas protocol allows the voter to
confirm that his vote was registered correctly in the ballot box. However,
it is still needed to convince the coercer, who could be right next to
the voter, that the vote is valid and that it has arrived correctly to its
destination. For that, we still need to maintain the credential faking
ability from Civitas, to allow the voter to resist coercion, while at the
same time use codes as a receipt confirmation. To cast a vote, the voter
chooses a candidate and type in his choice in the keypad of the reader.
The smart card asks for a PIN and computes the vote as

EncKV R(Vote(s, v)) = EncKV R(〈EncKTT (s),EncKTT (v), Pw, Pk〉)

that is exactly the same as in Civitas but with an extra outermost
encryption with the VoteReplier ’s key, and displays the value EncKTT (v)
in the display of the reader.
If the PIN is correctly inserted, then the vote is computed using the
correct share si that is inside the smart-card and was given at the reg-
istration phase; otherwise, the vote will be cast with an incorrect share
s′ generated by the smart-card using the voter’s private designation key.
This uses the Civitas’ ability to construct a fake credential, by making
the smart card running a local algorithm to produce a fake credential
in the vote. This is inline with what is required in Civitas to satisfy
coercion-resistance.
Note that the vote will appear real and valid to everyone as in Civitas,
except for the voter, who used the wrong PIN and consequently a wrong
private credential on purpose to cheat on the coercer. Both the coercer
and voter will receive the correct confirmation code from the VoteReplier,
that matches the code that is visible on the smart card’s display.

4.5 VoteReplier

As described in Section 3 the Ballot Boxes are insert-once and read-only
entities in Civitas, that are distributed and eventually compromised.
Since we do not want to change the Ballot Box properties from Civitas,
we introduce a new trustworthy entity with the only function of read-
ing the contents of the Ballot Boxes, recall from Civitas that the cast
votes are still encrypted, and reply to the voting client with the confir-
mation code. Given a vote EncKV R(〈EncKTT (s),EncKTT (v), Pw, Pk〉) the
VoteReplier decrypts the message and returns the value EncKTT (v) that
is the encrypted choice of the voter, as in Civitas, but in our case not
known to the voting client. If this code matches the one in the display of
the reader then the vote was correctly received by the Ballot Box. Oth-
erwise it was tampered and the voter knows that he has to vote again.
All Civitas assumptions regarding the ballot boxes remain intact.
The needed properties of the VoteReplier are that it does not reveal its
private key KV R to anyone and that it performs the decryption properly.
Comparing with [6] no printed CodeCards are needed and every time
a voter sends a vote, the reply-code is different. This saves time and



complexity in the voting process and is orthogonal to coercion resistance.
Recall that for this process it is irrelevant if the credential in the vote is
fake or not.

4.6 Tabulation

When the election closes, votes must be tallied by the tabulation tellers:
1. all Ballot Boxes commit received votes to the VoteReplier ;
2. Supervisor posts a signed copy of all Ballot Boxes commitments;
3. all received votes are decrypted by the VoteReplier and committed

to the Bulletin Board ;
4. Tabulation Tellers proceed as in Section 3.

5 Security and Availability Analysis

We will show that all the extra information available to the adversary in
our proposal could either be derived from Civitas or does not affect the
security of the protocol. We also discuss the availability and implications
of the new components and trusted parts of the architecture. We justify
the necessity of those and why these restrictions are not problematic.

5.1 Correctness of the VoteReplier

It is easy to see that an adversary that does not know sKV R, the secret
part of the key, cannot forge a correct reply-code. Suppose that upon
casting a correct vote

EncKV R(Vote(s, v)) = EncKV R(〈EncKTT (s),EncKTT (v), Pw, Pk〉),

there is an adversary A that is able to return the correct reply-code
EncKTT (v) without submitting the correct vote to the ballot boxes (if he
submits it correctly, then the vote was correctly cast, and he obviously
gets the correct reply-code from the VoteReplier). Then, one can use A
to create an adversary A′ that breaks CCA2 security of the encryption
scheme. Adversary A′ is defined as follows: given KV R,
1. construct m0 = Vote(s, v0) and m1 = Vote(s, v1),
2. submit it to the encryption oracle to obtain c = EncKV R(Vote(s, vi)),
3. give c to A to obtain EncKTT (vi),
4. return i.

Adversary A′ breaks CCA2 security hence there is no adversary A that
given EncKV R(Vote(s, v)) returns the correct reply-code EncKTT (v).

5.2 Security of the Trusted Civitas

With the changes introduced in our solution an adversary has access
to the value sent to the ballot boxes EncKV R(Vote(s, v)), and the value
shown in the display of the trusted hardware EncKTT (v).
These two pieces of information cannot violate the security of Trusted
Civitas as both Vote(s, v) and EncKTT (v) were already given to the
adversary in Civitas without compromising security nor coercion resis-
tance.



5.3 Availability of the System
An adversary can also perform attacks towards availability of the system.
One possible attack towards availability is a DDoS attack against the
VoteReplier as all votes have to pass through it. This attack is not a
security attack and we may protect from it by having multiple instances
as is the case for BallotBoxes. This requires these instances to have all
the same key that would have to be kept secret.
Another big family of attacks are the ones where the reply-code is not
correctly displayed to the user either because (i) it was not sent by the
VoteReplier, or (ii) because it was maliciously altered by the voting client.
For any of these cases there is no solution as we rely on the voting client to
perform all the communications however, our solution at least provides a
hint that something is wrong with the current voting client, information
that was completely absent in Civitas. Both these cases may generate
submission of repeated votes by the user in order to correct this error,
however a user may decide to change voting clients if these occur quite
often. Social attacks are also possible but out of the scope of this work.

5.4 Trust Assumptions of Our Architecture
We will now compare our Trust Assumptions with the ones of [4]. The
new trust assumptions are marked as X ′. The trust assumptions that
remain unchanged keep the same numbering as in Section 3.1.
⊕ Assumption 1′: Registration is performed in-person. This choice has

a downside as the system is no longer fully remote. The upside is
that credentials can be used in several elections.

	 Assumption 2 is dropped as with credentials are now inside the smart
card. We need however these credentials to be private.

⊕ Assumption 2′: Credentials (and computations performed) in the
smart card cannot be corrupted by any means in a useful timeline.

	 Assumption 3 is also dropped. No need to trust the voting client.
– Assumption 4: The channels on which voters cast their votes are

anonymous. (already in Civitas) Only necessary to hide from which
computers the votes are cast and this way avoid traffic analysis.

⊕ Assumption 5′: At least one of each kind of authority is honest. (al-
ready in Civitas) The VoteReplier also needs to be trusted otherwise
the reply-codes could be tampered.

– Assumption 6: The Decision Diffie-Hellman and RSA assumptions
hold, and SHA-256 implements a random oracle. (already in Civitas)

6 Conclusion

Automatic vote manipulation at client side is one of the biggest dan-
gers that prevents the widespread of Internet voting [6]. In this work we
proposed a new architecture that extends Civitas in order to make it re-
silient against compromise of the voting client maintaining its coercion-
resistance property. This new architecture adds three items to the origi-
nal Civitas which make trust in client voting not necessary: (i) a Smart-
card, to store credentials, compute and construct the vote; (ii) a certi-
fied Smart Card Reader with keypad and display to use the smart card



correctly and to display the expected confirmation code; and (iii) a
trusted entity VoteReplier that returns the confirmation codes.
This solution is a trade-off between trusting all voting-clients, with all the
diversity of voting clients/architectures/operating systems, and to trust
the VoteReplier, a smart card reader, and the smart card itself that can
be small certified components, simpler to verify, and easier to control. In
fact, the main security assumption is in the smart-card itself. It performs
all the computations and keeps the secret shares of the credentials.
We also introduce in-person registration that only needs to be performed
once, hence not disturbing as other solutions resilient to compromise of
voting client that need a new collection of code-cards for each election.
This registration is anyways present in most European countries with
the need for citizens to obtain some sort of identification card.
The security and privacy of our system is the same as in Civitas as all
our changes are reduced to it with the benefit of our assumptions being
much simpler. We consider this to be one more step towards a secure re-
mote voting system. The needed changes should not be costly as national
identity cards can be used as the smart-cards and the types of readers
needed are simple and hence cheaper to produce in large quantities.
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