
A Type System for Flexible Role Assignment in
Multiparty Communicating Systems

Pedro Baltazar1, Luís Caires3, Vasco T. Vasconcelos2, and Hugo T. Vieira3

1 Instituto de Telecomunicações, IST, Universidade Técnica de Lisboa
2 LaSIGE, Faculdade de Ciências, Universidade de Lisboa

3 CITI-DI, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Abstract. Communication protocols in distributed systems often spec-
ify the roles of the parties involved in the communications, namely for
enforcing security policies or task assignment purposes. Ensuring that
implementations follow role-based protocol specifications is challenging,
especially in scenarios found, e.g., in business processes and web ap-
plications, where multiple peers are involved, single peers impersonate
several roles, or single roles are carried out by several peers. We present a
type-based analysis for statically verifying role-based multi-party interac-
tions, based on a simple π-calculus model and prior work on conversation
types. Our main result ensures that well-typed systems follow the role-
based protocols prescribed by the types, including systems where roles
are flexibly assigned to processes.

1 Introduction

Communication is a central feature of nowadays software systems, as more and
more often systems are built using computational resources that are concur-
rently available and distributed in the web. Examples range from operating sys-
tems where functionality is distributed between distinct threads in the system,
to services available on the Internet, which rely on third-party (remote) service
providers to carry out subsidiary tasks, following the emerging model of SaaS
(software as a service) and cloud computing. Building software from the compo-
sition of communicating interacting pieces is very flexible, at least in principle,
since resources can be dynamically discovered and chosen according to criteria
such as declared functionality, availability and work load. In such a setting, all
interacting parties must agree on communication protocols without relying on
centralized control. Verification mechanisms that automatically check whether
the code meets some common protocol specification become then of crucial im-
portance.

A protocol specification describes a set of message exchanges, recording when
these should occur as well as the parties involved in the interaction. A party
involved in a protocol may have a spatial meaning, for instance denoting a dis-
tinguished site or process, or, more generally, a party may have a behavioral
meaning, a role in the interaction that may be realized by one or more processes
or sites. Conversely, a process may impersonate different roles throughout its

execution. Such flexibility is essential to address systems, e.g., where a leader
role is impersonated by different sites at different stages of the protocol, and the
role of each site changes accordingly.

A challenge that arises is then to devise techniques to verify whether a sys-
tem complies to a protocol specification, given such dynamic and distributed
implementation of roles, just by inspecting the source code. A particular situa-
tion where roles must be traced is when checking conformance against security
policies like, for example, those involving separation of duties.

In this paper we present a type-based analysis for verifying whether sys-
tems defined in a model programming language follow the role-based protocol
descriptions as prescribed by types. Our development is based on conversation
type theory [4], extending it with the ability to specify and analyze the roles
involved in the interactions. The underlying model of our analysis is an ex-
tremely parsimonious extension of the π-calculus [13, 15], where communication
actions specify a message label and the role performing the action, inspired by
TyCO [16]. Conversations generalize sessions [10, 12] with support to multiparty
interaction, addressing dynamically established collaborations between an unan-
ticipated number of partners. A distinguishing feature of the conversation types
approach is that multiple parties interact using labeled messages in a single
medium of communication, while other works support multiparty communica-
tion via message queues [11] and indexed communication channels [2]. We choose
to adopt the simplest possible setting where session-like multiparty interaction
may be studied, and extend it in a minimal way so as to support general rea-
soning about roles. So, apart from retaining the simplicity of conversation types,
our theory addresses systems where a single role may be realized by several par-
ties and where processes may dynamically change the role on behalf of which
they are interacting, as needed to model communicating workflows as present in
actual business processes. This contrasts with related approaches (see, e.g., [7,
11]) where roles have a “spatial” meaning, as they are mapped into the structure
of systems or sites in a static way.

In the remainder of this section we informally describe our type analysis by
going through some examples. Consider the protocol specification given by type

Sender → Receiver hello().Sender → Receiver bye()

which captures a binary interaction where messages hello and bye are sequen-
tially exchanged, and the communicating partners are identified by Sender and
Receiver, which send and receive the messages, respectively (read → as “sends
to”). A non surprising implementation of this interaction is given by process

chat "Sender hello().chat "Sender bye() | chat #Receiver hello().chat #Receiver bye()

where two concurrent processes interact on channel chat following the proto-
col above. The process on the left sends the two messages under role Sender
("Sender), as described by type !Sender hello(). !Sender bye(), while the process on
the right receives the two messages under role Receiver (#Receiver), described by
type ?Receiver hello(). ?Receiver bye().

In this first example there is a perfect match between processes and the roles
under which the processes interact. However, this does not need to be the case.
Consider a different implementation of the same protocol

chat "Sender hello().chat #Receiver bye() | chat #Receiver hello().chat "Sender bye()

where the process on the left sends message hello as Sender and then receives
message bye as Receiver, described by type !Sender hello(). ?Receiver bye(), and
the process on the right first acts as Receiver and then as Sender, described by
type ?Receiverhello().!Senderbye(). Notice each role is carried out by two distinct
processes and each process implements two distinct roles.

Our type analysis ensures that both implementations follow the prescribed
protocol, since the protocol Sender → Receiver hello().Sender → Receiver bye() is
decomposed in “complementary” types that describe the behavior of the indi-
vidual processes (for instance, in type !Sender hello(). ?Receiver bye() and type
?Receiver hello(). !Sender bye()). Although very simple, this example already dis-
tinguishes our approach from previous works, since the ability to specify roles
is absent in [4] while [7, 11] do not support such role distribution. Conceivably
channel delegation (channel-passing) supported by previous works may be used
to represent a similar notion but, to model this example in particular, two chan-
nel delegations would be necessary, which implies it would not be possible to
directly observe that the two interactions take place in a related medium (in
our case the chat channel) and the ability to audit role participation locally
would be lost (as the personification of a different role would be a consequence
of channel-passing).

Now consider a more realistic scenario (adapted from [4]) described by type

Buyer → Seller buy(). Seller → Buyer price().
Seller → Shipper product(). Shipper → Buyer details() (1)

which captures the interactions in a purchase system involving three parties.
Messages buy , price, product and details are exchanged between a Buyer, a Seller,
and a Shipper. First, the buyer sends the seller a buy request, then the seller
replies the price back to the buyer. After that, the seller informs the shipper of
the chosen product and the shipper sends the buyer the delivery details.

Fig. 1 shows a possible implementation of the purchase interaction system.
Using the new construct, process Buyer creates a fresh channel chat that will
host the purchase interaction described by (1). This newly created name is passed
to a shop, via message buyService. Code shop "Buyer buyService(chat) represents
the output of message buyService on channel shop, passing name chat under role
Buyer. The Buyer process then sends message buy , after which it is simultane-
ously active to receive price and to send name chat on mailBox storeService.

The Shop process starts by receiving a channel name (that instantiates vari-
able x) in message buyService. Then, in this received channel the Shop imper-
sonates the Seller role and receives message buy , after which it sends message
price. At this point, process Shop simultaneously impersonates Seller and Shipper,

Buyer ! (new chat)
shop "Buyer buyService(chat).

chat "Buyer buy().
(chat #Buyer price() |mailBox "Buyer storeService(chat))

Shop ! shop #Shop buyService(x).
x #Seller buy().

x "Seller price().
(x "Seller product() | x #Shipper product().x "Shipper details())

Mail ! mailBox #Mail storeService(x).
x #Buyer details()

System ! (∗Buyer | ∗ Mail | ∗ Shop)

Fig. 1. Code for the Purchase System.

which exchanges message product , after which message details is sent. Notice that
this particular Shop carries out both the role of the Seller and the role of the
Shipper, allowing to represent a shop equipped with its own shipping service.

The Mail process defines a message storage service that impersonates the
buyer in receiving the shipping delivery details. Notice that the buyer passes
name chat to the mailbox, allowing in this way a third party to dynamically
join the ongoing interaction, while still interacting on the delegated channel (via
message price). Hence, in this system the Buyer role is actually carried out by
two distinct processes (Buyer and Mail), which can be simultaneously active.

The implementation shown in Fig. 1 involves three distinguished processes
that carry out the three roles identified in the protocol, albeit not in a one-to-
one-correspondence. The type given in (1) captures the interaction in channel
chat , which is passed from the buyer to the shop and to the mailbox in mes-
sages buyService and storeService, respectively. In order to analyze the protocol
distribution between the three parties, we must consider the “slices” of protocol
that are delegated in messages. Namely, the overall protocol is split in the type
that captures the behavior that is sent to the shop (via message buyService)

?Seller buy(). !Seller price(). Seller → Shipper product(). !Shipper details()

and in the type that captures the behavior retained by the buyer

!Buyer buy().?Buyer price().!?Buyer details()

The ! type expresses the fact that the input of message details occurs “some-
time in the future”, i.e., it does not necessarily occur exactly after the input of
message price. In fact the Buyer process illustrated in Fig. 1 does not guarantee
that the input is active only after the reception of message price. However, the
sequentiality of the message exchanges is ensured by the Shop process, since the
output of message details only occurs after the output of message price. A type
!B denotes a behavior that must occur sometime, but not necessarily “now” —
!B types obey the basic laws of the eventually temporal logic operator.

When typing the buyer process there is a further type decomposition, at
the level of messages price and details, resulting in types ?Buyer price() and
!?Buyer details(), the former being retained by the buyer process and the latter
delegated to the mailbox. When typing the shop process there is another type
decomposition, at the level of message product , resulting in types !Sellerproduct()
and ?Shipperproduct().!Shipperdetails(), which explain the behaviors of the par-
allel processes in the shop code. All decompositions sketched above are captured
by a type split, ◦, relation that explains how protocols may be split in two com-
plementary slices, along with subtyping. !B types are crucial to the definition
of type split, as they provide algebraic support to the flexibility required to
sequentially order message exchanges among multiple parties.

In the previous example, the fact that message details is exchanged af-
ter message price is not observable just by looking at the source code of the
buyer and mail. However, such ordering is guaranteed by the shop. If we spec-
ify that the buyer, in general, exhibits such behaviors concurrently (for exam-
ple, ?Buyer price() | ?Buyer details()) we would require (order preserving) de-
compositions of protocols into multiple threads of behavior. The flexibility in-
troduced by !B types solves this problem as they support the specification
of orderings that are guaranteed via synchronization. For example, the type
?Buyer price().!?Buyer details() says that the reception of message details takes
place (sometime) after the reception of message price. On the other hand, the
type !Sellerprice().Seller → Shipperproduct(). !Shipperdetails() says that the out-
put of details necessarily occurs immediately after the output of message price.
The combination of the two typed guarantees the overall ordering: first message
price, then product and finally details.

The purchase interaction of the system shown in Fig. 1 follows the protocol
specification given in (1). Notice that the Buyer role is distributed between two
processes (Buyer and Mail), and that roles Seller and Shipper are carried out by
a single process (Shop). From the point of view of our type analysis the system
follows the prescribed protocols, regardless of the spatial configuration of the
processes that implement the roles.

2 Process Language

In this section we present the process model, first by introducing the syntax
and second by defining the operational semantics. Our process language is the
π-calculus [13, 15] extended with labeled communication and role-based anno-
tations. The syntax, inspired in TyCO [16], is illustrated in Fig. 2, where we
consider given an infinite sets of labels L, of channel names N and of roles R.
Labels, used to index communication, are identifiers that may neither be created
nor communicated (e.g., XML tags). Names are used to identify mediums of com-
munication. For typing purposes, we distinguish two distinct usages of channels:
public (shared) communication mediums (e.g., gateways to service providers, like
the shop and mailBox channels in the example) and private (linear) mediums,
where a set of related interactions among several parties may take place (cap-

P ::= 0 ! (new x)P ! P1 |P2 ! ∗P ! x #r {li(xi).Pi}i∈I ! x "r l(y).P

l ∈ L(abels) x, y ∈ N (ames) r, s ∈ R(oles)

Fig. 2. Process Syntax.

P | 0 ≡ P P1 |P2 ≡ P2 |P1 (P1 |P2) |P3 ≡ P1 | (P2 |P3)

(new x)(new y)P ≡ (new y)(new x)P

P1 | (new x)P2 ≡ (new x)(P1 |P2) (if x $∈ fn(P1))

(new x)0 ≡ 0 ∗ P ≡ ∗P |P P1 ≡ P2 (if P1 ≡α P2)

Fig. 3. Structural Congruence.

turing, e.g., service instance interactions, like the chat channel in the example).
Roles are used to identify the parties involved in communications.

A process is either an inactive process 0, a name restriction (new x)P where
name x is known only to process P , a parallel composition P1 |P2 where P1 and
P2 are simultaneously active, or a replication ∗P where unlimited copies of P are
simultaneously active. Process constructs described up to here (the static frag-
ment) correspond exactly to the ones found in π-calculus. As for communication
primitives, we extend the (monadic) π-calculus output and input primitives with
labeled communication and role annotations. Process x "r l(y).P is able to send
a message on channel x, under role r, labeled by l. Upon synchronization the
name y is sent and the continuation P activated. Notice that the r annotation
identifies the role in which the emission is performed. The input summation pro-
cess x #r {li(xi).Pi}i∈I is able to receive one message in name x, under role r,
labeled by any of the li labels, where i ranges over index set I (we assume that
all labels li in an input prefix are distinct). Upon synchronization with an lj
labeled message, the respective parameter xj is instantiated and the respective
continuation Pj activated. In (new x)P all occurrences of x are bound in P ,
and in x #r {li(xi).Pi}i∈I all occurrences of xi are bound in Pi, for each i ∈ I.

We introduce some auxiliary notions: we use fn(P) to denote the set of free
names of process P , defined as expected, and P [x ← y] to denote the process
obtained by replacing all free occurrences of x by y in P . As usual, we omit
inactive continuations (e.g., x "r l(y) stands for x "r l(y).0).

The operational semantics is given by a reduction relation and by a struc-
tural congruence. We consider the standard definition of structural congruence,
denoted by ≡, defined as the least congruence that satisfies the rules in Fig. 3.
Structural congruence is used in the definition of the reduction relation to syn-
tactically rearrange the process, in order to allow reduction to be defined, as
usual, by capturing the basic case for synchronization and identifying the active
contexts in which a synchronization may take place.

k ∈ I

x #r {li(xi).Pi}i∈I | x "s lk(y).P
x:s→rlk−→ Pk[xk ← y] |P

(Red-Comm)

P
λ−→ P ′ λ ∈ {τ, x : s → rl}

(new x)P
τ−→ (new x)P ′

P
x:s→rl−→ P ′ y $= x

(new y)P
x:s→rl−→ (new y)P ′

(Red-New1,Red-New2)

P1
λ−→ P ′

1

P1 |P2
λ−→ P ′

1 |P2

P1 ≡ P ′
1 P ′

1
λ−→ P ′

2 P ′
2 ≡ P2

P1
λ−→ P2

(Red-Par,Red-Struct)

Fig. 4. Reduction Relation.

For typing purposes, and since we intend to match process behaviors against
type specifications, our reduction relation records (public) synchronization infor-
mation in labels. Reduction labels (ranged over by λ) are of two forms: a τ label
captures a private internal interaction, whereas an x : s → rl label captures an
l-labeled message exchange on channel x, between roles s(ender) and r(eceiver).

We may now present the reduction relation, defined by the rules given in
Fig. 4, where we use P1

λ−→ P2 to represent that process P1 reduces to P2 with
label λ. Rule (Red-Comm) says that two parallel input and output processes
may exchange message lk on channel x, the interaction being captured by la-
bel x : s → rlk, where also the roles involved in the interaction are recorded. As
the result of the synchronization, name y activates the continuation (respective
to lk) instantiating parameter xk. The continuation of the output process is
also activated as a consequence of the synchronization. Rule (Red-Par) closes
reduction under parallel contexts, while rules (Red-New1) and (Red-New2)
close reduction under name restriction. (Red-New1) captures synchronization
in private names in the scope of the name restriction, either by “hiding” a public
synchronization in the restricted name or by allowing private synchronizations.
(Red-New2) captures public synchronizations in the scope of the name restric-
tion, not involving the restricted name. (Red-Struct) closes reduction under
structural congruence.

3 Type System

In this section we present our type system. The type language is given in Fig. 5,
where we distinguish between behavioral types that describe linear interactions
(B) from types that describe shared interactions (T) (cf. conversation [4] or
session [12] initiation primitives). We also use message (argument) types (M)
that specify either a linear protocol or a shared message type, and communication
prefixes (ρ) that describe role-based communication actions.

A behavioral type B specifies the inactive behavior end, the parallel compo-
sition B1 |B2 of two independent behaviors B1 and B2, the sometime !B, which
says that behavior B may occur at any point in time, or a menu of labeled ac-
tions ρ{li(Mi).Bi}i∈I , each one specifying the type of the name communicated

B ::= end ! B |B ! !B ! ρ{li(Mi).Bi}i∈I

T ::= l(B) M ::= B ! T ρ ::= !s ! ?r ! s → r

Fig. 5. Conversation Types Syntax.

(end
B1#B2 (B1 (B2

(B1 |B2

∀i ∈ I (Bi ρ{li(Mi).end}#Bi

(ρ{li(Mi).Bi}i∈I

(!end
(B1 |B2 (!B1 (!B2

(!(B1 |B2)
∀i ∈ I (ρ{li(Mi).Bi} ρ ∈ {!s, ?r}

(!ρ{li(Mi).Bi}i∈I

Fig. 6. Well-Formed Type Predicate.

in the message Mi, and the respective continuation behavior Bi. Depending on
the communication prefix ρ, an action menu represents either an input branching
(when ρ is ?r), an output choice (when ρ is !s)—cf. branch and choice session
types [12]—or an internal choice s → r, i.e., a matched communication between
an output and an input. Notice that the communication roles are identified in
the communication prefixes: the sender role in !s, the receiver role in ?r, and
the two roles involved in the interaction in s → r (s sends to r). Notice also that
input and output actions (interface types that capture interactions with the en-
vironment) are mixed with matched actions (capturing internal interactions) at
the same level in the type language.

The conversation type language is extended with role-based annotations and
sometime types (!B). Although a specification is not expected to use !B types,
these are crucial to allow the decomposition of protocols into slices, some of which
related to interactions that occur later in the protocol.

A message argument type M either specifies a behavioral linear type B, in
case a linear name is communicated in the message, or a shared type T , in case
a shared name is communicated in the message. A shared type T abbreviates
l(B), identifying the label of the message exchanged and the (linear) type of the
name sent in the message — to simplify the presentation we consider that only
linear names can be communicated in shared messages (communicating shared
names can be easily encoded).

We now introduce some auxiliary notions, namely the type apartness, well-
formed types, and matched types, all defined as predicates. Type apartness is
used to identify non-interfering concurrent behaviors that may be safely com-
posed in a linear interaction. To define type-apartness we use lab(B) to denote
the set of labels occurring in type B, defined as expected. We say that two types
B1 and B2 are apart, and we write B1#B2, if the set of labels of B1 is disjoint
from the set of labels of B2 (lab(B1) ∩ lab(B2) = ∅). Building on apartness, we
introduce well-formed type predicate, noted * B, given by the rules in Fig. 6.
Informally, in a well-formed type labels do not appear repeatedly in parallel (to

B1 <: B′
1

B1 |B2 <: B′
1 |B2

∀i ∈ I Bi <: B′
i

ρ{li(Mi).Bi}i∈I <: ρ{li(Mi).B′
i}i∈I

(!B
B <: !B

(B1 |B2) |B3 ≡ B1 | (B2 |B3) B1 |B2 ≡ B2 |B1 B | end ≡ B

!(B1 |B2) ≡ !B1 |!B2 !end ≡ end

Fig. 7. Subtyping Relation.

(B
B = end ◦B

B1 = B′
1 ◦B′′

1 B2 = B′
2 ◦B′′

2 (B1 |B2

B1 |B2 = B′
1 |B′

2 ◦B′′
1 |B′′

2

(S-END,S-PAR)

∀i ∈ I Bi = B′
i ◦B′′

i {ρ1, ρ2} = {!r1, ?r2} (r1 → r2{li(Mi).Bi}i∈I

r1 → r2{li(Mi).Bi}i∈I = ρ1{li(Mi).B′
i}i∈I ◦!ρ2{li(Mi).B′′

i }i∈I
(S-TAU)

∀i ∈ I Bi = B′
i ◦!B (ρ{li(Mi).Bi}i∈I

ρ{li(Mi).Bi}i∈I = ρ{li(Mi).B′
i}i∈I ◦!B

(S-BRK)

∀i ∈ I Bi = B′
i ◦!B (!ρ{li(Mi).Bi}i∈I

!ρ{li(Mi).Bi}i∈I = !ρ{li(Mi).B′
i}i∈I ◦!B

(S-BRKS)

B = B2 ◦B1

B = B1 ◦B2

B′
1 = B′

2 ◦B′
3 B1 ≡ B′

1 B2 ≡ B′
2 B3 ≡ B′

3

B1 = B2 ◦B3

(S-SYM,S-EQU)

Fig. 8. Type Split Relation.

ensure race-free behavior) or in sequence (useful to simplify presentation). Also
well-formed ! types are not applied directly to message exchanges (s → r), since
we are interested in specifying message exchanges that happen exactly at some
point in the protocol. Also used by our typing is the notion of matched types,
which captures systems where all input actions have a matching output. We say
that type B is matched, noted matched(B), if all communication prefixes in B
are of the form s → r.

The subtyping relation between behavioral types, noted B1 <: B2, is the
least reflexive and transitive relation satisfying the rules in Fig. 7, where we write
B1 ≡ B2 when B1 <: B2 and B2 <: B1. We remark on the use of subtyping
to introduce flexibility at the level of ! types: type B is a subtype of !B,
which, intuitively, means that carrying out behavior B immediately is a safe
implementation of eventually carrying out behavior B.

We may now introduce type split, a ternary relation that explains how a
behavioral type may be safely decomposed in two slices of behavior, capturing,
in a compositional way, the behavioral contribution of distinct processes to the
overall interaction. The split relation is defined by the rules given in Fig. 8, where
B = B1 ◦B2 denotes that type B may be decomposed in parts B1 and B2.

We briefly discuss the splitting rules. Rule (S-END) specifies that a be-
havioral type may be decomposed in itself and the inactive behavior, typing

processes that contribute “all or nothing” to the interaction. Rule (S-PAR) ex-
plains the decomposition of two independent behaviors in two slices of behaviors
each, capturing the decomposition of a system in two processes that contribute
both to independent interactions.

Rule (S-TAU) separates a matched communication, between roles r1 and r2,
in the respective output by role r1 and input by role r2, given a splitting of the
continuation behaviors. The rule captures the decomposition of a system in two
processes that synchronize in a message, each with a given role in the interaction,
where one of them carries out the behavior immediately, while the other may
carry out the behavior at some point in time (!). In such way, since one of the
behaviors occurs immediately we ensure that also the message exchange takes
place immediately. Notice that a rule to separate the message exchange in two
immediate behaviors is not necessary since the sometime behavior may also take
place immediately (via subtyping).

Rule (S-BRK) separates a ! (sometime) distinguished slice of behavior from
a communication prefixed type, provided this behavior can be split from the
continuations in all branches. The rule thus captures the decomposition of a
system in two parts, where one retains the (entire) interaction capability speci-
fied by the communication prefixed type while the other contributes to ensuing
interactions—singled out by the !. Notice that (S-BRK) allows to split be-
haviors such that the same slice is shared between all branches, useful when
addressing, e.g., a branching protocol where every branch terminates with an
ok or ack message. Rule (S-BRKS) expresses the same principle as (S-BRK)
but for ! prefixed types. Rule (S-SYM) closes the relation under symmetry and
rule (S-EQU) closes the relation under type equivalence.

To simplify the presentation, we sometimes write B1 ◦B2 to represent a type
B such that B = B1 ◦ B2 (if any such B exists). Notice that B1 ◦ B2 does not
uniquely identify a type, as B1 and B2 may be the result of splitting distinct
types. Notice also that a type may be split in several ways. In prior work on
conversation types [4], we use “merge” instead of “split”, in the sense that if
B = B1 ◦B2 then we may see B as the result of merging the behaviors B1 and
B2. The merge was originally inspired in the (non-algebraic) end-point projection
introduced in [5]. We can show that split is an associative relation, which is a
crucial property to our type system since we rely on the flexibility of the type
decomposition to address the behavioral contributions of multiple parties.

We may now present the type system. A typing judgment is of the form
∆;Γ * P where ∆ is the typing environment that describes the interactions on
linear channels, and Γ is the typing environment that describes the interactions
on shared channels. We write ∆;Γ only when the domains of ∆ and Γ are
disjoint. A typing environment ∆ is an assignment of identifiers to behavioral
types (∆ ! x1 : B1, . . . , xk : Bk) and a typing environment Γ is an assignment
of identifiers to shared types (Γ ! x1 : T1, . . . , xk : Tk). We introduce some
auxiliary notation to simplify presentation: we use (x1 : B′

1, . . . , xk : B′
k,∆1) ◦

(x1 : B′′
1 , . . . , xk : B′′

k ,∆2) to denote x1 : B1, . . . , xk : Bk,∆1,∆2 such that
Bi = B′

i ◦ B′′
i , for all i in 1, . . . , k and the domains of ∆1 and ∆2 are disjoint.

∆end; Γ (0
∆1; Γ (P1 ∆2; Γ (P2

∆1 ◦∆2; Γ (P1 |P2
(T-END,T-PAR)

∆, x : B; Γ (P matched(B)
∆; Γ ((new x)P

∆; Γ, x : l(B) (P
∆; Γ ((new x)P

(T-NEW,T-SNEW)

∆, y : B; Γ, x : l(B) (P
∆; Γ, x : l(B) (x #r {l(y).P}

∆; Γ, x : l(B) (P
∆ ◦ y : B; Γ, x : l(B) (x"rl(y).P

(T-SIN,T-SOUT)

∀i ∈ I ∆ ◦ x : Bi, yi : B′
i; Γ (Pi ?r{li(B′

i).Bi}i∈I <: B
∆ ◦ x : B; Γ (x #r {li(yi).Pi}i∈I

(T-IN)

k ∈ I ∆ ◦ x : Bk; Γ (P !r{li(B′
i).Bi}i∈I <: B

∆ ◦ x : B ◦ y : B′
k; Γ (x "r lk(y).P

(T-OUT)

∀i ∈ I ∆ ◦ x : B′
i; Γ, yi : Ti (Pi ?r{li(Ti).B

′
i}i∈I <: B

∆ ◦ x : B; Γ (x #r {li(yi).Pi}i∈I
(T-LSIN)

∆ ◦ x : B′
k; Γ, y : Tk (P !r{li(Ti).B

′
i}i∈I <: B

∆ ◦ x : B; Γ, y : Tk (x "r lk(y).P
(T-LSOUT)

∆1; Γ (P ∆1 <: ∆2

∆2; Γ (P
∆end; Γ (P
∆end; Γ (∗P (T-SUB,T-REP)

Fig. 9. Typing Rules.

Also, we use x1 : B1, . . . , xk : Bk <: x1 : B′
1, . . . , xk : B′

k when Bi <: B′
i, for all i

in 1, . . . , k, and ∆end to denote x1 : end, . . . , xk : end.
We say process P is well-typed if ∆;Γ * P may be derived using the rules

given in Fig. 9. We discuss the key features of the typing rules. Rule (T-END)
says the inactive process has no linear behavior (but complies to any shared
behavior specification). Rule (T-PAR) types the parallel composition process
with the linear types that are split in the behaviors of the two parallel branches,
while ensuring both branches comply to the same usage of shared types. Rule
(T-NEW) types a restricted linear name provided its usage is matched, i.e., it
has no outstanding unmatched (? or !) communications. Rule (T-SNEW) types
a restricted shared name, if it is used according to a shared type.

Rules for communication prefixes are divided in three groups, depending on
the shared or linear usage of both communication subject and object. Rules
(T-SIN) and (T-SOUT) address the case when the communication subject has
shared usage while the object has linear usage. Notice that the behavioral type
B, specified in the argument type of the shared type l(B) of x, captures the slice
of behavior that is delegated in the communication. Type B describes the linear
usage of the input parameter in the premise of (T-SIN). Argument type B is
also used in the conclusion of (T-SOUT), singled out via splitting so as to take
into account the usage of y (the sent name) by the continuation (crucial to type
processes that delegate a name and continue to interact in it).

Rules (T-IN) and (T-OUT) address the cases when both the communication
subject and object have linear usage, and follow the lines above. Both rules record
the prefixed type ρ{li(B′

i).Bi}i∈I in the conclusions, where ρ is either ?r or !r for

k ∈ I

s → r{li(Mi).Bi}i∈I
s→rlk−→ Bk

B1
s→rl−→ B2

B1 |B s→rl−→ B2 |B
B1

s→rl−→ B2

B |B1
s→rl−→ B |B2

Fig. 10. Type Reduction.

∆; Γ
τ−→ ∆; Γ ∆; Γ, x : l(B)

x:s→rl−→ ∆; Γ, x : l(B)
B1

s→rl−→ B2

∆, x : B1; Γ
x:s→rl−→ ∆, x : B2; Γ

Fig. 11. Typing Environment Reduction.

input and output, respectively. A single output is typed with a communication
menu (containing the label of the emitted message) so as to directly match input
menus. Notice that the prefixed type is taken up to subtyping, so as to allow to
introduce ! types that may be necessary for the split in the conclusion. Notice
also that the prefixed type is singled out via splitting, so as to take into account
behaviors of x originally assigned to other threads (due to name delegation).
Rules (T-LSIN) and (T-LSOUT) follow similar lines, addressing the case when
the communication subject/object have linear/shared use. The last two rules are
(T-REP), which types the replicated process, provided it uses no linear names,
and the subsumption rule (T-SUB).

We can show that typing is preserved by substitution and by structural con-
gruence. Given that our main result involves relating process actions and type
specifications, we introduce type reduction, defined by the rules given in Fig. 10.
In this way, we are able to precisely describe process reductions via the corre-
sponding type reductions. Type reduction specifies how matched types reduce,
explaining a message exchange that activates the respective continuation. Type
reduction relies on reduction labels of the form s → rl, identifying the roles in-
volved in the communication and the label of the exchanged message.

Type reduction provides the expected semantics of behavioral types. Build-
ing on type reduction and in order to simplify the presentation of the results we
introduce typing environment reduction, given by the rules in Fig. 11. Typing
environment reduction specifies that environments seamlessly mimic internal τ
(non public) reductions as well as synchronizations on shared channels. Also,
typing environments exhibit linear reductions provided the reduction is observ-
able at the level of the type of the respective channel. We may now state our
main result that explains process reduction via typing environment reduction.

Theorem 1 (Type Preservation).
If ∆;Γ * P and P

λ−→ P ′ then ∆;Γ λ−→ ∆′;Γ and ∆′;Γ * P ′.

The proof follows by induction on the length of the derivation of P
λ−→ P ′ (full

details can be found in the supporting technical report [1]). Theorem 1 states

that any reduction of a well-typed process is explained by the corresponding
type reduction, thus ensuring that processes interact according to the protocols
prescribed by the types. Notice that this compliance entails that the protocols
are actually carried out by the roles accordingly to the type specifications. We
provide a precise characterization of this property as follows.

We now define role-based protocol fidelity. Let P be a process and ∆, Γ typing
environments. We say P follows the role-based protocols prescribed by ∆, Γ if for
any reduction sequence of the process P λ1−→ P1

λ2−→ . . . λk−→ Pk there is a matching
reduction sequence of the typing environments ∆;Γ λ1−→ ∆1;Γ λ2−→ . . . λk−→ ∆k;Γ .
We have that well-typed processes satisfy role-based protocol fidelity as a direct
consequence of Theorem 1.

Corollary 1 (Role-Based Protocol Fidelity).
If ∆;Γ * P then P follows the role-based protocols prescribed by ∆, Γ .

In order to provide further intuition on our type system we show part of
the typing of the running example (see Fig. 1). The type of name chat , as
described in (1), is checked by successively splitting and matching resulting types
with subprocesses. For example, in the typing of the Buyer process, after the
first delegation, the type of chat can be decomposed by using rules (S-END),
(S-BRK) and (S-BRK) (b abbreviates Buyer).

!?b{details().end} = end ◦!?b{details().end}
?b{price().!?b{details().end}}= ?b{price().end} ◦!?b{details().end}

!b{buy().?b{price().!?b{details().end}}}= !b{buy().?b{price().end}} ◦!?b{details().end}

Now, the split given above appears when typing the subprocess

chat "Buyer buy().(chat #Buyer price() |mailBox "Buyer storeService(chat))

Here, the delegation of name chat , on message storeService, requires that the
behavior of chat is split between the two processes. Using (T-SUB), (T-SOUT)
and (T-END) we have the following derivation.

chat : end;mailBox : storeService(?b{details().end}) (0

chat :?b{details().end};mailBox : storeService(· · ·) (mailBox "Buyer storeService(chat)

chat : !?b{details().end};mailBox : storeService(· · ·) (mailBox "Buyer storeService(chat)

The example shows that the sometime operator behaves as a delayed choice
between a dot, which expresses the sequentiality of behaviors, and a parallel
composition, which types concurrent actions. These alternatives are introduced
by rules (S-TAU), in only one of the branches of the split types, and in order to
preserve, globally, the specified order of labels. Conceivably, the same flexibility
would be achieved by a different (S-TAU) rule, which would immediately select
between dot and parallel. Nevertheless, such rule would need to “look inside”
the types and pull parallels to the top level. Therefore, this extension of session
types with a new modality for breaking sequentiality, enriches the languages of
types with an operator that enables us to perform choices locally and as needed.
Such innovation supports a simple algebraic definition of the split operation.

4 Concluding Remarks

Our development is based on previous work on conversation types [4], extended
so as to address assignment of dynamic roles to the several parties involved in a
concurrent system. Technically, we identified a minimal set of ingredients to add
to a core process specification language (the π-calculus [13, 15], TyCO [16] more
precisely) so as to address role-based protocol verification (labeled channels and
role annotations) and extended the type analysis accordingly. Noticeably, the
split relation defined in this paper is much more readable and also more expres-
sive than the merge relation in [4] — in particular, it allows for splitting (the
same) behavior out of the continuations of a branching behavior. Crucial to our
development is the introduction of the ! type to control behavior interleaving.

We discuss some possible extensions to our work. A necessary further devel-
opment is the extension of the model to consider infinite behavior. An essential
feature of any type analysis is a verification procedure. We are yet to implement
such a procedure, but we may already assert there exists such a procedure in
a setting where all bound names are type annotated. Another crucial property
left out of this paper is progress. However, we expect that the progress analysis
introduced in [4] for a labeled π-calculus, combined with our typing analysis,
may be used to single-out systems that enjoy progress. An interesting further
development to be addressed is the dynamic delegation of roles. In our setting
roles are statically annotated in processes. Extending the language with role
delegation would allow parties to dynamically assume unanticipated roles.

Several works address role-based type specifications to enforce security con-
cerns (for example [8] introduces a type analysis to discipline role-based access
control to data). We focus on communication protocol assignment and leave
security to be handled orthogonally. Our approach builds on conversation type
theory, introduced as a generalization of session types [10, 12] to discipline multi-
party interaction, including dynamically established conversations with an unan-
ticipated number of participants. Other works share the goal to address multi-
party interaction [2, 3, 6, 11, 14]. In particular with respect to the works more
closely related to ours [2, 11], we single out the approach of conversation types
since it addresses multiparty interaction where the number of participants is not
fixed a priori, while considering a simpler underlying model. We remark that
in [2, 6, 11] a notion of role assignment is explicit, unlike in [4] where types do
not mention identities of communicating partners. However, such role assign-
ment is achieved via a structural projection, forcing single roles to be carried
out by single threads. A different notion of dynamic roles is also considered in
the approaches described in [7, 9], allowing for several processes, much like a
thread pool, to simultaneously carry out a single role.

In this work we have presented a type-based analysis that ensures that sys-
tems follow the prescribed role-based protocol specifications. Novel to our ap-
proach is the flexibility of role assignment, allowing us to address dynamic dis-
tributed implementations of role specifications, where a single role can be dis-
tributed among several processes and a single process can dynamically switch
between roles. To the best of our knowledge, ours is the only (session-type like)

approach that addresses such configurations, that are actually found in, e.g.,
real world business protocols. Our development extends conversation types with
role-based protocol specifications, retaining the simplicity of the approach, sim-
plifying and generalizing the underlying technical framework, and contrasting
with related approaches in the dynamic and flexible nature of roles.

Acknowledgments Work partially supported by FCT Pest UI527 2011 and
projects PTDC/EIA-CCO/113033/2009 ComFormCrypt, PTDC/EIA-CCO/
104583/2008 StreamLine, PTDC/EIA-CCO/117513/2010 Liveness, Statically,
PTDC/EIA-CCO/122547/2010 Multicore, and CMU-PT NGN-44A Interfaces.

References

1. Baltazar, P., Caires, L., Vasconcelos, V.T., Vieira, H.: Dynamic Roles in Multiparty
Communicating Systems. UNL-DI-1–2012, Universidade Nova de Lisboa (2012)

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In:
CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer (2008)

3. Bravetti, M., Zavattaro, G.: A Foundational Theory of Contracts for Multi-party
Service Composition. Fundamenta Informaticae 89(4), 451–478 (2008)

4. Caires, L., Vieira, H.: Conversation Types. Theoretical Computer Science 411(51-
52), 4399–4440 (2010)

5. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer
(2007)

6. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On Global Types and Multi-
party Sessions. In: FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 1–28. Springer
(2011)

7. Deniélou, P.M., Yoshida, N.: Dynamic Multirole Session Types. In: POPL 2011.
pp. 435–446. ACM (2011)

8. Ghilezan, S., Jaksic, S., Pantovic, J., Dezani-Ciancaglini, M.: Types and Roles for
Web Security. Transactions on Advanced Research 8(2), 16–21 (2012)

9. Giachino, E., Sackman, M., Drossopoulou, S., Eisenbach, S.: Softly Safely Spoken:
Role Playing for Session Types. In: PLACES 2009 (2009)

10. Honda, K.: Types for Dyadic Interaction. In: CONCUR 1993. LNCS, vol. 715, pp.
509–523. Springer (1993)

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
In: POPL 2008. pp. 273–284. ACM (2008)

12. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: ESOP 1998. LNCS, vol.
1381, pp. 122–138. Springer (1998)

13. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I and II.
Information and Computation 100(1), 1–77 (1992)

14. Padovani, L.: On Projecting Processes into Session Types. Mathematical Structures
Computer Science 22, 237–289 (2012)

15. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press (2001)

16. Vasconcelos, V.T., Tokoro, M.: A typing system for a calculus of objects. In: ISO-
TAS 1993. LNCS, vol. 472, pp. 460–474. Springer (1993)

