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Abstract—In this paper we continue to develop and to
illustrate the power of the recent technique of computationally
complete symbolic attackers proposed by Bana and Comon-
Lundh in [6] for computationally sound verification of security
protocols. We now focus on the situation when keys are
sent and then are used to encrypt ‘securely’. We define
predicates expressing ‘key usability’ meaning that a key has
been uncorrupted and is still unbreakable and/or unforgeable,
depending on what is desirable. We axiomatize our notions
such that they are suitable for (but not limited to) inductive
reasoning: if something is uncorrupted up-to a point, then
certain newly sent messages do not destroy this property. We
examine both IND-CCA2 and KDM-CCA2 encryptions, both
symmetric and asymmetric situations. For unforgeability, we
consider INT-CTXT encryptions. We illustrate how our notions
can be applied in protocol proofs, in particular, how they
handle key cycles.

I. INTRODUCTION

The aim of computational soundness of protocol verifica-
tion is that symbolic proofs imply computational security.
Approaches to computational soundness in case of active
adversaries can be divided into two groups. Works in one
[1], [18], [2], [16], [22] define symbolic adversaries, and
soundness theorems state that under certain circumstances,
if there is no successful symbolic attack, then there is no
successful computational attack. The other group aims to
work directly in the computational model [19], [7], [14],
[10], [11]. In this latter case, soundness means that the
properties on which symbolic manipulations are conditioned,
hold computationally.

The first group, where symbolic attacker is defined, gives
hope that already existing automated tools may be adopted
for computationally sound verification, but these soundness
theorems require a large set of assumptions. These assump-
tions, as well as reasons why they are not realistic are
discussed in [17]. Such assumptions are, for example, that bit
strings can be unambiguously parsed into symbolic terms,
or, that no key cycles occur, or, that all keys are honestly

generated, that there is no dynamic corruption, and so on.
Recently, Backes et al. in [3] showed a way to avoid some
of these problems, such as key-cycles and badly generated
keys, but they needed a very strong notion for the encryption
scheme called PROG-KDM security, and they still used
an entire page to list all the conditions needed to limit
the implementations of security predicates for soundness.
Unambiguous parsing of bit strings is also still necessary. So
PROG-KDM security and the other conditions are necessary
to receive computational guarantees with this analysis even
if computational security of the analyzed protocol holds
without these properties.

Recently, Bana and Comon-Lundh presented in [6] (and
in an improved version [5]) a new kind of symbolic at-
tacker. They called it computationally complete symbolic
adversary, as it is capable of doing everything that a
computational adversary is capable of. They observed that
the discrepancy between symbolic and computational proofs
emerges from the fact that while the usual computational
security assumptions on the primitives (such as IND-CCA2
security of the encryption) define what the adversary cannot
violate, and the security of the protocol is derived from the
security of the primitives, symbolic adversaries are defined
by listing all the adversarial capabilities (Dolev-Yao rules).
Hence, to adjust the viewpoint of the symbolic analysis to
that of the computational, instead of listing every kind of
move a symbolic adversary is allowed to do, Bana and
Comon-Lundh list a few rules (axioms) that the symbolic
adversary is not allowed to violate. Anything that does not
contradict these axioms is allowed for the adversary. Hence,
a successful symbolic attack in their case means that the
violation of the security property of the protocol is consistent
with the axioms. The axioms that are introduced must
be computationally sound with respect to a computational
interpretation that they defined. Their main result was that
once it is shown that no successful symbolic adversary
can exist complying some set of axioms, then for any



computational implementation satisfying that set of axioms,
successful computational attacks are impossible as long as
the number of sessions is bounded in the security parameter.

The difference between the the original Dolev-Yao tech-
nique and that of Bana and Comon-Lundh can be best
understood from the following pictures. In the Dolev-Yao
technique, as more and more rules are added, the symbolic
adversarial capabilities are increasing, the symbolic adver-
sary covers more and more of the computational capabilities.
However, so far no-one has been able to come up with rules
that properly cover all possible computational capabilities.
Hence, as Figure 1 shows, there are always some computa-

Figure 1. Computational Soundness of the Dolev-Yao Symbolic Adversary

tional capabilities that are uncovered by the symbolic ones.
All computational soundness results that use the Dolev-
Yao symbolic adversaries in the end have to impose some
significant limitations on the computational implementation.

On the other hand, in the approach of Bana and Comon-
Lundh, without axioms, the symbolic adversary is allowed to
do anything. As axioms are added, the symbolic adversary’s
capabilities are decreasing. The meaning of their main

Figure 2. Computational Soundness of the Symbolic Adversary of Bana
and Comon-Lundh

theorem is that as long as the axioms are computationally
sound, the symbolic adversarial capabilities cover all of the
computational adversarial capabilities. This is illustrated in
Figure 2. Clearly, if the symbolic adversary is too strong,
security of protocols cannot be proven. Therefore, the aim is,
to create a library of axioms that are sound and are sufficient
to prove actual protocols.

In the original work, Bana and Comon-Lundh only pre-
sented the general framework, and introduced some axioms
as a proof of concept, but did not show that the technique
can be used to verify actual protocols. This was done in a
more recent publication [9] by Bana et al. They introduced
some further modular, computationally sound axioms, and
with them verified secrecy and authentication of an actual
protocol, namely, the Needham-Schroeder-Lowe protocol.
For the proof, they also needed an additional property, that
is not sound in general but is necessary for the security of
the NSL protocol, as without it there is an attack. However,
as Backes et al. have pointed out in [3], the axioms in
[9] were not suitable (except for very simple situations)
when decryption keys were sent around in the course of the
protocol. The current work aims to address this problem.

In order to deal with key exchange, the necessary element
to incorporate in the framework is key usability, an idea
introduced in [20] (working directly in the computational
model). This notion is meant to express whether a properly
generated key, at a certain point of the protocol execution
is still usable for secure encryption or whether it has been
corrupted. Clearly, if a decryption key (or just a key in
the symmetric case) is sent in the clear, the encryption key
belonging to it cannot be used for secure encryption any
more. Furthermore, a key that was sent in a key cycle,
may also have lost its capability to encrypt securely if the
encryption scheme is only IND-CCA2 secure. On the other
hand, encrypting a fresh nonce with a key does not corrupt
its further usability in case of IND-CCA2 encryption. Or,
having a key-cycle within a secure encryption with some
other unsent key again does not corrupt the former key.

More precisely, for overall consistency of notation, instead
of key usability we introduce the negation it, namely key
corruption as a predicate. We define key corruption predi-
cates both for symmetric and asymmetric encryptions, and
both for IND-CCA2 [12] and KDM-CCA2 [4], [15] cases,
and also for INT-CTXT [13] unforgeability. There are some
essential differences from the way it was defined in [20],
which we will explain when we define the notion.

Further essential new feature of this paper is the introduc-
tion of predicates representing adversarial derivability with
oracle access. This makes the axioms quite a bit simpler than
just using derivability as in [9]. Depending on whether IND-
CCA2 or KDM-CCA2 oracles are used, and also depending
on whether the encryption is symmetric or asymmetric, we
define four such derivability with oracle access predicates.

Then, we introduce axioms and show that they are com-



putationally sound. The axioms we introduce are entirely
modular. Introducing further primitives will not destroy the
soundness of these axioms, they do not have to be proved
again. That is, if we want to prove a protocol that uses
more primitives such as signatures etc. besides encryption,
then we only have to introduce new axioms for the new
primitives. For encryption, the current axioms can still be
used unchanged. Hence, a library of axioms can be gradually
developed by adding more and more axioms.

It is worth noting that with the new predicates for key
usability and derivability with oracles, the axioms here
corresponding to the secrecy and non-malleability axioms of
[9] are now rather immediate consequences of the definitions
of these predicates and do not need secure implementations
of the encryption. The axioms that do need the security
of the implementation are those saying that fresh keys are
uncorrupted (i.e. securely encrypt).

We would like to emphasize that we introduce axioms
for KDM-CCA2 security to be able to analyze protocols for
which KDM security is computationally necessary. Unlike
the work presented in [3], in our case, for those protocols
that do not require KDM security for their computational
soundness, the use of our IND-CCA2 axioms sufficient.

After presenting the axioms and their soundness proofs,
we look at several simple examples to illustrate how to use
the axioms with special focus on how IND-CCA2 axioms
can be used if key cycles do not emerge. Finally, we present
the result of our proof of the Amended Symmetric Needham-
Schroeder Protocol. This protocol first distributes a session
key, and then uses the distributed key to share a secret. Using
the IND-CCA2 and INT-CTXT axioms, we proved that the
key is securely distributed, that the shared nonce remains
secret, and that agreement and authentication hold. The full
proof of the protocol done by hand is posted online [8].

The technique of [6] allows to avoid all restrictions men-
tioned before on the computational world. Once a protocol
is proven secure in our symbolic model with respect to a
set of axioms, then all properties that the computational
implementation has to satisfy for computational security
are included in the axioms. Any number of bad keys are
allowed to be generated by the adversary; any number of
corrupted, uncorrupted, or dynamically corrupted parties can
be present. As for parsing of bit strings into terms, previous
soundness results relied on unambiguous parsing. Within
this framework, we do not need such an assumption. We
do not even need the condition that encryptions, pairing etc
are length regular (i.e. encryption, pairing of inputs that have
the same length also have the same length).

The only significant restriction remains that the technique
is not capable to detect attacks for which unbounded number
of sessions are necessary. However, the usual Dolev-Yao
technique is not capable of doing this either. But we still
need to characterize situations when nevertheless elimina-
tion of successful symbolic adversaries the way we define

them means that there are no computational attacks even if
unbounded number of sessions are allowed. For example, if
only CCA2 encryptions and pairings are used to construct
messages, we believe that this statement holds. Analysis of
this problem is still left for future work.

The contributions of this paper include (i) syntax and
computational semantics of key corruption and derivability
with oracle access, (ii) a library of axioms for symmetric
and asymmetric IND-CCA2 and KDM-CCA2 encryptions
and INT-CTXT encryptions as well, (iii) soundness result of
the axioms, (iv) short examples to illustrate how the axioms
are used, (v) summary of the verification of the symmetric
Needham-Schroeder protocol with this tool as a proof of
concept. The NSL proof in [9] can also be done with the
current set of axioms the same way as it was done there.

This paper is organized as follows: we start by recalling
the framework of [6] (Section II) along with the new syntax
in II-B. Symbolic execution in II-C is the same as before. In
Section III, we first summarize the computational execution
and the interpretation of the original equality and derivability
predicates, and present the improved computational seman-
tics of compound formulas of [5]. Section IV is devoted
to the semantics of the new derivability predicates with
oracles and their axioms, and Section V is the same for
key usability. In Section VI we state the soundness theorem.
In Section VII, we show a few simple examples of how
inconsistency of certain formulas with the axioms can be
proven. Finally, in VIII, we state the result of the verification
of the amended symmetric NS protocol with our tool.

II. SYMBOLIC EXECUTION

The core of the framework used in this paper was in-
troduced by Bana and Comon-Lundh in [6]. However, we
have some major new additions here. Along with these new
innovations, we present a brief summary of the original
system.

The most important new aspect of the symbolic exe-
cution in [6] was to replace the Dolev-Yao technique’s
fixed definition of x1, ..., xn ` y with some derivability
predicate 1 x1, ..., xn� y for which the symbolic semantics
is not fixed. Namely, while in the Dolev-Yao technique,
x1, ..., xn ` y meant that using only the Dolev-Yao rules y
can be computed from x1, ..., xn, in our case x1, ..., xn � y
is given some unfixed symbolic interpretation in an abstract
modelM for which we only require to satisfy some axioms.
The axioms should be computationally sound, and instead
of expressing what the adversary is allowed to do, they
express what the adversary cannot violate. The axioms do
imply that from symbolic computability, satisfaction of the

1Note, that in [6] this predicate also was denoted as x1, ..., xn ` y
although ` is usually reserved for denoting deducibility in a proof system.
We find that somewhat confusing, so we use the notation x1, ..., xn � y
to emphasize that we do not mean some specific deducibility by it, it is a
predicate.



derivability predicate follows, for example, {y}K ,K � y.
But in our system these rules are not what the adversary
can at most do, but what it can certainly at least do (in
other words, the adversary is not allowed to be unable to do
it). The idea is that symbolic interpretation of x1, ..., xn� y
should be at least as powerful as computability of y from
x1, ..., xn by some polynomial time algorithm, and so the
only limitations that we want to put on symbolic satisfaction
of � are limitations that are derived from computational
computability.

One of the major innovations that we propose here is that
as it turns out, axioms and deductions become simpler if we
allow the use of some oracles for the adversary. When we
consider IND-CCA2 public key encryption, then it is better
to introduce a new derivability predicate, x1, ..., xn �aic2 y
with the computational semantics meaning that the inter-
pretation of y can be derived from the interpretation of
x1, ..., xn by a PPT adversary with the help of decryption
oracles, that decrypt everything that are not results of en-
cryptions on the left hand side. Similarly, for the symmetric
case, we can introduce x1, ..., xn �sic2 y meaning that y
can be derived from x1, ..., xn with the help of decryption
oracles and encryption oracles. The encryption oracles here
are needed, because the IND-CCA2 definition for symmetric
encryption allows the submission to the encryption oracle
several times. In fact, for uniformity, we allow it for the
public case too, as IND-CCA2 is equivalent for the case
of multiple submissions to encryption oracles. Similarly,
we will also define derivation with oracle accessibility for
KDM-CCA2 encryptions, which are a bit more tricky. But
encryption oracles using which keys? The answer is, keys
generated by the honest agents during the execution. We will
use the notation �O for such derivability with O being either
aic2, sic2, akc2 or skc2, depending on whether we want
asymmetric or symmetric IND-CCA2 oracles or asymmetric
or symmetric KDM-CCA2 oracles.

Our next innovation is key usability for the case when
keys are sent around. More precisely, to match the notation
of derivability, we consider key corruption, which is the
negation of key usability. We use the notation x1, ..., xn IO

K, where O again indexes whether we are talking about
IND-CCA2, KDM-CCA2, symmetric or asymmetric encryp-
tion. The intuitive meaning being that K is corrupted by the
messages x1, ..., xn with access to the given oracles. For
example, clearly, K,x2 IO K. Or, {K}K′ ,K ′ IO K. Or,
if x1, ..., xn�OK, then x1, ..., xn IO K. But, presumably,
if x1 is just the first half of K, then x1 IO K may still hold,
while x1 �O K does not. That is, while x1, ..., xn �O K
clearly implies x1, ..., xn IO K, the other way is not
necessarily true. Nevertheless the two properties, as we will
see, behave very similarly, so we chose similar notation
for them. We also consider key usability for INT-CTXT
unforgeability.

A. Terms and Frames

Terms are built out of a set of function symbols F that
contains an unbounded set of names N and an unbounded
set of handles H. Names and handles are zero-arity function
symbols. We will use names to denote items honestly
generated by agents, while handles will denote inputs of
the adversary. Let X be an unbounded set of input variables
(not the same as first-order variables). A ground term is
a term without variables. Frames are sequences of terms
together with name binders: a frame φ can be written
(νn).p1 7→ t1, . . . , pn 7→ tn where p1, . . . pn are place
holders that do not occur in t1, . . . , tn and n is a sequence
of names. The variables of φ are the variables of t1, . . . , tn.

B. Formulas

Let P be a set of predicate symbols over tems. We assume
here that P contains the binary predicate = and is used as
t1 = t2, a family of n+ 1 predicates �n, and the following
families of predicates meaning various sorts of derivability:
• t1, ..., tn �

aic2
n t for derivability of the rhs from the lhs

with access to IND-CCA2 oracles in asymmetric case
• t1, ..., tn �

sic2
n t for derivability of the rhs from the lhs

with access to IND-CCA2 oracles in symmetric case
• t1, ..., tn�

akc2
n t for derivability of the rhs from the lhs

with access to KDM-CCA2 oracles in asymmetric case
• t1, ..., tn�

skc2
n t for derivability of the rhs from the lhs

with access to KDM-CCA2 oracles in symmetric case
and the following key corruption predicates:
• t1, ..., tn Iaic2

n K meaning the lhs corrupts secure
asymmetric IND-CCA2 encryption with K

• t1, ..., tn Isic2
n K meaning the lhs corrupts secure

symmetric IND-CCA2 encryption with K
• t1, ..., tn Iakc2

n K meaning the lhs corrupts K with
access to KDM-CCA2 oracles in asymmetric case

• t1, ..., tn Iskc2
n K meaning the lhs corrupts K with

access to KDM-CCA2 oracles in symmetric case
• t1, ..., tn Iic

n K meaning the lhs corrupts INT-CTXT
unforgeability of encryptions with K.

For statements that are valid for all derivability or corruption,
we will just use �On and IOn . We will drop the index n and
just write t1, ..., tn �O t and t1, ..., tn IO K.

As for the symbolic interpretation of the predicates (in-
cluding =), we allow any that does not contradict our
axioms, which we will introduce later.

Let M be any first-order structure that interprets the
function and predicate symbols of the logic. We denote by
DM the domain of interpretation, and by �OM, IOM and
=M the relations on DM interpreting �O, IO, and =
respectively. Given an assigment σ of elements in DM to the
free variables of term t, we write [[t]]σM for the interpretation
of tσ in M ([[ ]]σM is the unique extension of σ into a
homomorphism of F-algebras). For any first order structure
M over the functions F and predicates P , the satisfaction



relation M, σ |= θ, where σ is an assignment of the free
variables of θ in the domain of M, is defined as usual in
first-order logic.

In this paper, we will use the notation {x}RdK and
dec(y, dK) for both symmetric and asymmetric encryptions
with random input R, where in the symmetric case, eK =
dK = K. We use {|x|}RK and sdec(y,K) for symmetric
encryption and decryption only.

C. Execution of a Protocol

Definition II.1. A symbolic state of the network consists of:
• a control state q ∈ Q together with a sequence of names

generated so far, n1, . . . , nk
• a sequence constants called handles h1, . . . , hn (record-

ing the attacker’s inputs)
• a ground frame φ (the agents outputs)
• a set of formulas Θ (all conditions that must be satisfied

in order to reach the state).

A symbolic transition sequence of a protocol Π is a
sequence

(q0(n0), ∅, φ0, ∅)→ ...→ (qm(nm), 〈h1, ..., hm〉 , φm,Θm)

if, for every m− 1 ≥ i ≥ 0, there is a transition rule

(qi(αi), qi+1(αi+1), 〈x1, . . . , xi〉 , x, ψ, s)

such that n = αi+1 \ αi, φi+1 = (νn).(φi · p 7→ sρiσi+1),
ni+1 = ni ] n, Θi+1 = Θi ∪ {φi � hi+1, ψρiσi+1} where
σi = {x1 7→ h1, . . . , xi 7→ hi} and ρi is a renaming of the
sequence αi into the sequence ni. We assume a renaming
that ensures the freshness of the names n: n ∩ ni = ∅.

Definition II.2. Given an interpretation M, a transition
sequence of Π

(q0(n0), ∅, φ0, ∅)→ ...→ (qm(nm), 〈h1, ..., hm〉 , φm,Θm)

is valid w.r.t. M if, for every m− 1 ≥ i ≥ 0, M |= Θi+1.

D. Satisfaction of Predicates, Constraints and First Order
Formulas in Executions

M modeled, among others, the predicate t1, ..., tn� t. In
executions however, instead of this predicate, we consider a
predicate that we write as φ̂, t1, ..., tn � t. This is also an
n + 1-arity predicate. φ̂ is just a symbol, not an argument,
and it represents the frame containing the messages that
protocol agents sent out, that is, the information available
from the protocol to the adversary. = refers to equality up
to negligible probability, and � means that the adversary
is able to compute (with a PPT algorithm) the right side
from the left. Similarly, we will use φ̂, t1, ..., tn �O t, the
meaning is derivability with the help of some oracles indexed
by O. We also use another predicate, W (x), which just
tells if x is the name of an agent. We also use a number
of different constraints: Handle(h) means h is a handle,
RanGen(x) means that x was honestly, randomly generated

(i.e. appearing under ν in the frame); x v φ̂ means that x
was subterm of a message sent out by an agent (i.e. listed
in the frame φ), x v ~x means x is subterm of ~x. dK vd φ̂
means dK occurs somewhere other than in a decryption
position dec( , dK) in φ, and dK vd ~x is analogous (dK
may also occur under a decryption, but it has to occur
elsewhere too). Similarly, let K ved φ̂ mean that symmetric
key K occurs somewhere other than in an encryption or
decryption position in φ, and K ved ~x is analogous (K
may also occur under an encryption or decryption, but it
has to occur elsewhere too). Let us introduce the following
abbreviations:
• x v φ̂, ~x ≡ x v φ̂ ∨ x v ~x
• fresh(x; φ̂, ~x) ≡ RanGen(x) ∧ x 6v φ̂, ~x
• keyfresh(K; φ̂, ~x)

– For asymmetric key:
keyfresh(K; φ̂, ~x) ≡ RanGen(K)∧ dK 6vd φ̂, ~x

– For symmetric key:
keyfresh(K; φ̂, ~x) ≡ RanGen(K) ∧K 6ved φ̂, ~x

• ~x 4 φ̂ ≡ h v ~x ∧ Handle(h)→ φ̂� h

If M is a first-order model as before, satisfaction of predi-
cates and constraints in a symbolic execution is defined as:
• Interpretation of predicates by
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), where σ is a
substitution as above, t1, ..., tm are closed terms, and
n1, ..., nk are names: (note the interpretation depends
on M) is defined as follows

– M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= t = t′ if
M, σ |= t = t′

– M,σ,〈t1, . . . , tm〉,n |= φ̂, s1, ..., sn � t if M, σ |=
s1, ..., sn, t1, ..., tm �O t.

– M,σ,〈t1, . . . , tm〉,n |= φ̂, s1, ..., sn I t ifM, σ |=
s1, ..., sn, t1, ..., tm IO t.

– M, σ, 〈t1, . . . , tm〉 , n |= W (x) if M, σ |= W (x)

• Interpretations of constraints by
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk), where σ is a
substitution as above, t1, ..., tm are closed terms, and
n1, ..., nk are names: (do not depend on the model
M):

– Handle(h) for h closed term:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= Handle(h) if
h ∈ H.

– RanGen(s) for s closed term:
M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) |= RanGen(s) if
s ∈ N and M,σ |= s=n1 ∨ . . . ∨ s=nk.

– t v φ̂, where t is closed term:
M, σ, 〈t1, . . . , tm〉 , n |= t v φ̂ if t is a subterm of
some ti

– t v s1, ..., sn, where s1, ..., sn, t are closed terms:
M, σ, 〈t1, . . . , tm〉 , n |= t v s1, ..., sn if t is a
subterm of some si

• Interpretation of any FOL formula in which
there are no free variables under constraints by



M, σ, 〈t1, . . . , tm〉 , (n1, . . . , nk) where σ is a
substitution as above, is defined recursively as:

– Interpretations of θ1 ∧ θ2, θ1 ∨ θ2, and ¬θ are
defined as usual in FOL

– If x is not under a constraint in θ, interpretations
of ∀xθ and ∃xθ are defined as usual in FOL.

– If x occurs under a constraint in θ, then
∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∀xθ iff for

every ground term t,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

∗ M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= ∃xθ iff
there is a ground term t,
M, σ, 〈t1, . . . , tn〉 , (n1, . . . , nk) |= θ{x 7→ t}

• Satisfaction at step m:
M, (q, 〈h1, . . . , hm〉 , n, φm,Θ) |= θ
iff M, φm, n |= θ.

III. COMPUTATIONAL EXECUTION AND
INTERPRETATION OF FORMULAS

We now summarize the computational semantics. Proofs
of Theorems 1 and 2 are in [5], however, as it is mentioned
there, they are actually rather easy consequences of Fitting’s
embedding of classical logic into S4 [21], a very interesting
relationship that we plan to detail elsewhere.

A. Computational Execution

We just briefly summarize the computational execution
here, for more details, consult [6].

We consider a familly computational algebras,
parametrized by a security parameter η, in which each
function symbol is interpreted as a polynomially computable
function on bitstrings (that may return an error message).
Given then a sample τ of names (for every name n, its
interpretation is a bitstring τ(n)), every ground term t is
interpreted as a bitstring [[t]]τ in such a way that [[ ]]τ is
a homomorphism of F-algebras. More generally, if σ is
an assignment of the variables of t to bitstrings [[t]]στ is the
(unique) extension of τ (on names) and σ (on variables) as
a homomorphism of F-algebras.

Definition III.1. Given a set of transition rules, a computa-
tional state consists of
• a symbolic state s (that is itself a tuple q(n, h, φ,Θ))
• a sequence of bitstrings 〈b1, . . . , bm〉 (attacker outputs)
• a sequence 〈b′1, . . . , b′n〉 of bitstrings (agents’ outputs)
• the configuration γ of the attacker.

Definition III.2. Given a PPT interactive
Turing machine M and a sample τ , a se-
quence of transitions (s0, ∅, ~b′0, γ0) → . . . →
(sm, 〈b1, . . . , bm〉 , 〈b′1, . . . , b′m〉 , γm) is (computationally)
valid w.r.t. M and τ if
• s0 → · · · → sm is a transition sequence of the protocol
• for all i = 0, ...m−1, si = (qi(ni), hi, φi,Θi), φi+1 =

(νn).φi · ui, [[ui]]τ = b′i+1

• for every i = 0, ...,m − 1, there is a configuration γ′i
of the machine M such that γi �∗M γ′i �

∗
M γi+1 and

γ′i is in a sending state, the sending tape containing
bi+1, γi+1 is in a receiving state, the receiving tape
containing b′i+1

• for every i = 0, ...,m − 1, τ, {x1 7→ b1, . . . , x 7→
bi+1} |=c Θi+1.

B. Computational satisfaction of formulas

We introduce the computational interpretation of the orig-
inal predicates, = and � here and the recursive semantics
of compound formulas. Interpretations of the new predicates
are presented later.

LetM be an interactive PPT Turing machine with a spe-
cial challenge control state qc. We may regard this machine
as an attacker, who moves to the state qc when he thinks
that he is ready to break the security property. As usual, the
machine takes the security parameter 1η as an initial input.
Since such an execution is probabilistic, for each security
parameter η, there is an underlying finite probability space,
(Ωη, pη), the elements of which are denoted by ωη . Without
loss of generality, we can assume that there is a common
random tape from which each participant is reading random
bits. Each ωη is one particular random string, and τ(ωη)
is the assignment of all fixed bit string evaluations τ(n) of
names given for ωη . For a given n name, we just use simply
n(ωη) for the bit string τ(ωη)(n).

By a non-negligible set of coins S, we mean S =
(Sη)η∈N, where for all η ∈ N, Sη ⊆ Ωη , and pη(Sη)
is non-negligible function of η. For S1 = (Sη1 )η∈N and
S2 = (Sη2 )η∈N, we use the notation S1 ⊆ S2 if for all η ∈ N,
Sη1 ⊆ S

η
2 . In what follows, S is any such non-negligible set.

We recall the interpretations of = and � from [6]: Let
σ be a sequence of PT machines (e.g. one for each free
variable xi of θ): Ax1

, . . . ,Axn
. Inputs of these are the the

pairs (η, ωη). For example, and Ax can be the evaluation
of any name (in which case Ax(η, ωη) = n(ωη), or any
value for a handle computed by the adversary, or some
more complex object. Let σ(ωη) denote the assignments
x1 7→ Ax1

(η, ωη), ..., xn 7→ Axn
(η, ωη). For a statement

statement(η, ωη), and a fixed S, instead of ”for all η ∈ N
and ωη ∈ Sη, statement(η, ωη)”, we will simply write ”for
all ω ∈ S, statement(ω).
• For the equality predicate, M,Π, S, σ |=c t1 = t2 iff

there is an overwhelming subset S′ ⊆ S such that, for
all ω ∈ S′, [[t1]]

σ(ω)
τ(ω) = [[t2]]

σ(ω)
τ(ω) .

• For the deducibility predicate, M,Π, S, σ |=c

φ̂, t1, . . . , tn � t if for all non-negligible S′ ⊆
S, there is a non-negligible S′′ ⊆ S′ and a
PT Turing machine A such that for all ω ∈
S′′, A([[φm(ω)]]

σ(ω)
τ(ω) ,[[t1]]

σ(ω)
τ(ω) , ...,[[tn]]

σ(ω)
τ(ω) ,a(ω),r(ω))=

[[t]]
σ(ω)
τ(ω) where m(ω) is the step at whichM reached the

challenge state, a(ω) stands for the protocol adversary’s



output and r(ω) is some random input from the random
string.

Compound formulas are computed by the following rules.
Note, that this interpretation of disjunction and existential
quantifiers are defined differently from [6], and so far has
only been published in eprint [5].
• M,Π, S, σ |=c θ1 ∧ θ2 iff M,Π, S, σ |=c θ1 and
M,Π, S, σ |=c θ2.

• M,Π, S, σ |=c θ1 ∨ θ2 iff for any S′ ⊆ S non-
negligible, there is a S′′ ⊆ S non-negligible such that
either M,Π, S′′, σ |=c θ1 or M,Π, S′′, σ |=c θ2.

• M,Π, S, σ |=c θ1 → θ2 iff for any S′ ⊆ S non-
negligible, M,Π, S′, σ |=c θ1 implies M,Π, S′, σ |=c

θ2
• M,Π, S, σ |=c ¬θ iff for any S′, M,Π, S′, σ 6|=c θ
• M,Π, S, σ |=c ∃x.θ iff for any S′ ⊆ S non-negligible,

there is a S′′ ⊆ S non-negligible and a PT machine Ax
such that M,Π, S′′, σ,Ax |=c θ

• M,Π, S, σ |=c ∀x.θ iff for any probabilistic polyno-
mial time machine Ax, M,Π, S, σ,Ax |=c θ

M,Π |=c θ iff M,Π,Ω |=c θ and Π |=c θ if M,Π |=c θ
for every M and qc.

Despite that semantics of the compound formulas is not
as usual in first-order logic, as a consequence of Fitting’s
embedding [21] of classical logic into S4 (explained in
[5]) we have the next theorem. In particular, De-Morgan
identities, double negation etc. hold.

Theorem III.3 (Consequence of Fitting’s Embedding of
Classical Logic into S4). With the above semantics, first-
order deduction rules are sound.

And then, as a consequence, the following trace mapping
and soundness theorems hold. Proofs are in [6] and [5].

Theorem III.4 (Trace Mapping). Let Π be a protocol, s1 →
. . .→ sm be a symbolic transition sequence of Π andM be
a probabilistic polynomial time interactive Turing machine.
If there is a non-negligible set of coins S such that, for any
τ ∈ S, there is a sequence of transitions (s0, ~b0, ~b′0, γ0) →
· · · → (sm, ~bm, ~b′m, γm) that is computationally valid w.r.t.
M, τ and γm is in the challenge state qc, then for any
formula θ,M,Π, S |=c θ implies there is a symbolic model
S such that s0 → · · · → sm is a valid symbolic execution
w.r.t. S and S |= θ.

Theorem III.5 (Soundness). For a bounded number of
sessions, if there is a computational attack, there is also a
symbolic attack.

C. Axioms

We recall the core axioms presented in [9]. As usual, un-
quantified variables are universally quantified. Unless noted
otherwise, they are always sound. Naturally, these axioms do
not depend at all on any security assumptions such as CCA2.

We remind the reader, that fresh(x; φ̂, ~x) means that x is
generated freshly, independently of the past of the protocol
and of ~x, and ~x 4 φ̂ means that all handles in ~x can be
computed from the past of the protocol; that is, ~x cannot
contain information from the future.
• Equality is a Congruence.

– x = x, and the substitutability (congruence) prop-
erty of equal terms holds for = and �.

• Core Axioms for the Derivability Predicate.
– Self derivability: φ̂, ~x, x� x
– Increasing capabilities: φ̂, ~x� y −→ φ̂, ~x, x� y
– Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x� y −→ φ̂, ~x′ � y

– Transitivity of derivability:
φ̂, ~x� ~y ∧ φ̂, ~x, ~y � ~z −→ φ̂, ~x� ~z

– Functions are derivable: φ̂, ~x� f(~x)
This axiom is sound as long as functions are
interpreted as PT computable algorithms.

• Axioms for Freshly Generated Items.
– No telepathy: fresh(x; φ̂) −→ φ̂ 6�x

This axiom is sound as long as RanGen() items
are generated so that they can only be guessed with
negligible probability.

– Fresh items do not help to compute:
fresh(x; φ̂, ~x, y) ∧ ~x, y 4 φ̂ ∧ φ̂, ~x, x� y
−→ φ̂, ~x� y

• Equations for the fixed function symbols. For ex-
ample, for symmetric encryption sdec({|x|}RK ,K) = x,
and for pairing, π1 (〈x, y〉) = x; π2 (〈x, y〉) = y.
Function of error is error f(...,⊥, ...) = ⊥, etc

IV. SEMANTICS OF DERIVABILITY WITH ORACLES AND
AXIOMS

A. Semantics of Derivability with Oracles

Here we define the semantics of our newly added deriv-
ability predicates.

Definition IV.1. Semantics of Derivability with Oracles: Let
M,Π, S, σ be as before.
• M,Π, S, σ |=c φ̂, ~x �aic2 x (or M,Π, S, σ |=c

φ̂, ~x �sic2 x) if for all non-negligible S′ ⊆ S, there
is a non-negligible S′′ ⊆ S′ and a PT Turing machine
AOaic2

(or AOsic2
) with access to oracles Oaic2 (or Osic2)

such that for all ω ∈ S′′,

AO
aic2

([[φm]]
σ(ω)
τ(ω) , [[~x]]

σ(ω)
τ(ω) , a(ω), r(ω)) = [[x]]

σ(ω)
τ(ω)

(or AOsic2
([[φm]]

σ(ω)
τ(ω) , [[~x]]

σ(ω)
τ(ω) , a(ω), r(ω)) = [[x]]

σ(ω)
τ(ω))

where a(ω) stands for the protocol adversary’s output
and r(ω) is some random input from the random string.
The oracles Oaic2 (or Osic2) are the same as those
for multi-user IND-CCA2 encryption and decryption
oracles. The oracles have all the honest keys from φ̂,



and decrypt everything except those bit strings that are
results of honest encryptions in φ̂, ~x.
We can shorten this as

M,Π, S′′, σ||=cAO(φ̂, ~x) = x,

implicitely assuming the algorithm has access to the
protocol adversary’s knowledge and to random bits.

• M,Π, S, σ |=c φ̂, ~x �akc2 x (or M,Π, S, σ |=c

φ̂, ~x�skc2 x) if for all non-negligible S′ ⊆ S, there is a
non-negligible S′′ ⊆ S′ and a ~y with M,Π, S′′, σ |=c

~y 4 φ̂, and a ~K list of honest keys (i.e. RanGen(Ki) for
all i), such that the lists ~y and ~K have the same length,
and a PT Turing machine AOakc2

(or AOskc2
) with access

to oracles Oakc2 (or Oskc2) such that, denoting by {~y}e ~K
the list of encryptions of ~y with the corresponding
honest encryption keys, for all ω∈S′′,

AOakc2
([[φm]]

σ(ω)

τ(ω) ,[[~x]]
σ(ω)

τ(ω) ,[[{~y}e ~K ]]
σ(ω)

τ(ω) ,a(ω),r(ω))=[[x]]
σ(ω)

τ(ω)

(orAOskc2
([[φm]]

σ(ω)
τ(ω) , [[~x]]

σ(ω)
τ(ω) , [[{|~y|} ~K ]]

σ(ω)
τ(ω) , a(ω), r(ω))=

[[x]]
σ(ω)
τ(ω)) where a(ω) stands for the protocol adversary’s

output and r(ω) is some random input from the random
string. The oracles Oakc2 (or Oskc2) are the same as
those for multi-user KDM-CCA2 encryption and
decryption oracles. The decryption oracles have all
the honest keys from φ̂, and decrypt everything except
those bit strings that are results of honest encryptions
in φ̂, ~x, {~y}e ~K . We can shorten this as

M,Π, S′′, σ||=cAO(φ̂, ~x, {~y}e ~K) = x,

We also assume, that the oracles use randomness from the
same base Ω to avoid the technical difficulty of extending
the random space.

Note that in the KDM case, besides allowing A to use
the usual KDM oracles, a list of encryptions, {~y}e ~K is also
provided to the algorithm. For example, A is allowed to
use the encryption of a nonce even if he does not know
the nonce. While through KDM oracles, it is possible for
A to receive encryptions of keys that A does not know, the
KDM oracles do not allow requests for encryptions of other
unknown items. This is necessary for receiving nice axioms
for the KDM case, and we explain the reason there.

B. Axioms for Derivability with Oracles

The following axioms (except for the second and last
entry of the core axioms for derivability predicates) are very
similar to the ones in the previous section, and are just as
trivial. The second entry of the core axioms for derivability
predicates with oracles is also trivially computationally
sound as if something is derivable with the help of some
oracles, then it is also derivable with more powerful oracles.
We explain the last entry when we introduce it:
• Core Axioms for the Derivability Predicate with

Oracles.

– Equal terms are substitutable on the right hand side
of �O. It is not true on the left hand side, because
the usability of the decryption oracles depends on
the encryptions on the left hand side.

– More oracles help more: If the oracles of O are
more powerful then the oracles of O′, then
φ̂, ~x�O

′
x −→ φ̂, ~x�O x.

In particular, φ̂, ~x � x −→ φ̂, ~x �O x. But KDM
oracles are also more powerful than IND oracles.

– Increasing capabilities: φ̂, ~x�Oy −→ φ̂, ~x, x�Oy
– Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x�O y −→ φ̂, ~x′ �O y

– Transitivity:
φ̂, ~x�O ~y ∧ φ̂, ~x, ~y �O ~z −→ φ̂, ~x�O ~z

– Decryptions of adversarial ciphers do not help: If
O is either IND or KDM CCA2, either symmetric
or asymmetric, then

RanGen(K) ∧ φ̂, ~x�Oy ∧ φ̂, ~x, dec(y, dK) �Oz

∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x)

−→ φ̂, ~x�O z

Here, in case of symmetric encryption, dK =
eK = K. This expresses the fact that for the
derivation in φ̂, ~x�O y, the algorithm can request
the decryption oracles as long as the submitted
message is not an honest encryption of φ̂, ~x. So
the decryption of a y cannot help as long as the
adversary can compute y and as long as y differs
from any encryption, because the decryption can
also be received from the decryption oracle. A little
more precisely, ifM,Π, S, σ satisfies the premise,
then it is easy to show by the rules of the semantics
that for all S′ ⊆ S, there is a S′′ ⊆ S′ and a A1

and A2 algorithems with access to O such that A1

computes y from φ̂, ~x and A2 computes z from
φ̂, ~x, dec(y, dK), but y is not an honest encryption
from φ̂, ~x. Then, we can combine A1 and A2 into
a single algorithm accessing the oracles computing
z from φ̂, ~x, because to get dec(y, dK) he can
just request the decryption oracle. That means
M,Π, S, σ satisfies the conclusion too.
Note, that this replaces the non-malleability axiom
of [9] for the derivability predicate. While in
[9], the non-malleability axiom was quite a bit
more complex, and the IND-CCA2 property was
necessary for the soundness of the axiom, here,
soundness of this axiom follows purely from the
definition of the semantics of �O, and it is not
necessary that the encryption is CCA2 secure. With
tiny modifications, it is possible to rewrite the NSL
proof presented in [9] for using the �O predicate
and this simpler axiom instead of the � predicate
with the non-malleability axiom there.



• Axioms for Freshly Generated Items.
– No telepathy: fresh(x; φ̂) −→ φ̂ 6�Ox

(implies no-telepathy axiom without oracles). This
is sound as long as RanGen() means generation
with negligible guessing probability only.

– Fresh items do not help to compute:
fresh(x; φ̂, ~x, y) ∧ ~x, y 4 φ̂ ∧ φ̂, ~x, x�O y
−→ φ̂, ~x�O y

These axioms are sound for the same reason as the
corresponding ones for � were.

Note that φ̂, ~x, x�O ~x is implied by the more oracles help
more axiom and the self-derivability axiom of derivability
predicate. Similarly, φ̂, ~x�O f(~x).

V. KEY USABILITY

A. Semantics of Key Usability for the CCA2 encryptions

The idea of key usability is that a key has been uncor-
rupted, that is, it can be used for safe encryption. To match
the computability predicate, we define the negation of it, that
is, key corruption. The intuitive meaning of φ̂, ~x IO K is
that φ̂, ~x corrupts the key (in the presence of oracles) and it
cannot be used for safe encryption any more.

Definition V.1 (Key Corruption of IND-CCA2 Encryption
Schemes). We say that M,Π, S, σ |=c φ̂, ~x IO K if either
M,Π, S, σ |=c ~x 64 φ̂ ∨ ¬RanGen(K), or for all S′ ⊆ S′′,
there are S′′ ⊆ S′, PT algorithms AO1 , AO2 , and y, R s.t.
• M,Π, S′′, σ |=c y 4 φ̂
• R is generated statistically independently of the inter-

pretations of φ̂, ~x, y and AO1 (φ̂, ~x)
• M,Π, S′′, σ||=cAO2 (φ̂, ~x, {AO1 (φ̂, ~x)}ReK)) = y but
M,Π, S′′, σ||=cAO2 (φ̂, ~x, {0|AO

1 (φ̂,~x)|}ReK)) 6= y or v.v.

As before, M,Π, S′′, σ||=cAO2 (φ̂, ~x, {AO1 (φ̂, ~x)}ReK)) = y
means that for all ω ∈ S′′, the algorithms A1 and A2

implied on the semantics of the terms as indicated (and on
the output of the protocol adversary and some additional
possible random input) give back the semantics of y. That
is, AO2 computes y with the help of encryption of AO1 (φ̂, ~x),
but is not computed with the encryption of a string of 0’s
with the same length as AO1 (φ̂, ~x). This is just another way
of saying that the adversary can create a string from the
past of the protocol and ~x, namely AO1 (φ̂, ~x), the encryption
of which is potentially distinguishable from the encryption
of 0’s. The adversary uses y for the distinguishing. y may
actually not be accessible for the attacker, but if such a y
can be potentially be given to the adversary computed from
the past of the protocol (i.e. y 4 φ̂), then the security of the
encryption is broken. y can for example be a secret nonce.
The above corruption condition in this case would mean
that with the encryption the attacker can compute the secret
nonce, but without the encryption it cannot.

The negation of our key corruption notion, that is, our key
usability is weaker from that of [20] in the sense that we do

not have indistinguishability here, but explicit computability
of y. On the other had, it is stronger in the sense that our
adversary is allowed to use something potentially unknown
to him, namely y for the distinguishing of the correct
encryption from the encryption of 0’s. We designed this
notion so that it results nice axioms in our setting.

Definition V.2 (Key Corruption of KDM-CCA2 Encryption
Schemes). We say that M,Π, S, σ |=c φ̂, ~x IO K if either
M,Π, S, σ |=c ~x 64 φ̂ ∨ ¬RanGen(K), or for all S′ ⊆ S′′,
there are S′′ ⊆ S′, a PT algorithm AO, and x, y, R s.t.
• M,Π, S′′, σ |=c x, y 4 φ̂ ∧ fresh(R; φ̂, ~x, x, y,K)
• and M,Π, S′′, σ |=c AO(φ̂, ~x, {x}ReK)) = y but
M,Π, S′′, σ |=c AO(φ̂, ~x, {0|x|}ReK)) 6= y or v.v.

Note the difference between the IND and KDM cases is
that in the latter, x does not have to be computed from φ̂, ~x.

B. Axioms for Key Corruption, Secrecy
We now present the axioms for key corruption. First the

core axioms. It may be surprising, but soundness of these
axioms do not need CCA2 security. All follow purely from
the definition of key corruption. Proofs are in Appendix A:
• Core Axioms for the Key Corruption Predicate.

– Equal terms are substitutable on the rhs of IO.
– Derivability implies corruption:
φ̂, ~x�O K −→ φ̂, ~x IO K
If K is computable for the adversary, then it is
corrupted. Note, this axiom and the self derivability
axiom (from IV-B) imply that φ̂, ~x,K IO K

– Increasing capabilities for key corruption:
φ̂, ~x IO K −→ φ̂, ~x, x IO K

– Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x IO K −→ φ̂, ~x′ IO K

– Transitivity:
φ̂, ~x�O ~y ∧ φ̂, ~x, ~y IO K −→ φ̂, ~x IO K
The intuitive reason is very clear: ~y just contains
extra information, that can be computed from φ̂, ~x,
so it is not actually needed in the corruption.
This, and the functions are derivable axiom imply
φ̂, ~x, f(~x) IO K −→ φ̂, ~x IO K. With
the increasing capabilities axiom, we also have
φ̂, f(~x) IO K −→ φ̂, ~x IO K. We will refer to
these as function application.

– Decryptions of adversarial ciphers do not help: If
O is either IND or KDM CCA2, either symmetric
or asymmetric, then

RanGen(K) ∧ RanGen(K ′) ∧ φ̂, ~x�Oy

∧ φ̂, ~x, dec(y, dK) IOK ′

∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x)

−→ φ̂, ~x IO K ′

This axiom is very similar to the one about the
derivability predicate, and the reason is again that



the adversary trying to break key usability is al-
lowed to use encryption and decryption oracles.

– Uncorrupted keys securely encrypt:
∗ If O is either aic2 or sic2, then

RanGen(K) ∧ fresh(R; φ̂, ~x, x, y,K)

∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK �O y

−→ φ̂, ~x, x IO K ∨ φ̂, ~x�O y

This formula means that if the key is uncor-
rupted, that is, φ̂, ~x, x 6IOK, then {x}ReK cannot
help in deriving y. In other words, if it is possi-
ble to derive y with {x}ReK , then it is also pos-
sible to derive it without {x}ReK . The freshness
and random generation conditions ensure that
{x}ReK is indeed a good encryption (e.g. {N}NeK
or {N}eKeK are not good), and also that y cannot
depend on {x}ReK (e.g. y = {x}ReK is not good).
Moreover, ~x, x, y 4 φ̂ ensures that handles in
these terms are given values the adversary can
compute (as some trivial examples taken x = h,
the handle h cannot be dK if dK was never
sent, or it cannot be R either).
This formula is completely analogous to the
secrecy axiom in [9] but dK v φ̂, ~x, x there
is replaced now with φ̂, ~x, x Iaic2 K as we
can now allow dK to appear inside a secure
encryption for example.

∗ If O is either akc2 or skc2, then

RanGen(K) ∧ fresh(R; φ̂, ~x, x, y,K)

∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK �O y

−→ φ̂, ~x IO K ∨ φ̂, ~x�O y

Notice, that the difference here from the axiom
for IND-CCA2 security is that in φ̂, ~x IO K
now there is no x. This corresponds to the
fact that the encrypted message may contain
the decryption key, or it may leak it somehow
together with φ̂, ~x. For more discussion, see
again Section VII.

It may be surprising however, that these axioms
do not require any security of the encryption.
It is purely a consequence of the definition of
key corruption and derivability predicates. (The
axiom that requires CCA2 security is the fresh
keys are uncorrupted axiom later.) Here it becomes
clear why we needed the additional encryptions
{~y} ~K in the computational semantics of KDM-
CCA2 key usability. Because the x may contain
elements besides the key that are inaccessible to
the adversary on the left hand side of φ̂, ~x IO K.

– Encryptions with uncorrupted keys do not corrupt:

∗ IND-CCA2 case. If O is either aic2 or sic2, then

RanGen(K) ∧ RanGen(K ′) ∧ fresh(R; φ̂, ~x, x,K,K ′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {x}ReK′ IO K

−→ φ̂, ~x, x IO K ′ ∨ φ̂, ~x IO K

That is, if φ̂, ~x, {x}ReK′ corrupted K, then either
K is already corrupted without {x}ReK′ , or K ′

was already corrupted by φ̂, ~x, x. Note that this
includes x, the encrypted term. This means that
x itself (with φ̂, ~x) should not corrupt K ′ if we
want {x}ReK′ to be safe. This is the general-
ization of that key cycles may corrupt CCA2
encryption. In Section VII we will see how this
axiom deals with key cycles.

∗ KDM-CCA2 case. If O is akc2 or skc2, then

RanGen(K) ∧ RanGen(K ′) ∧ fresh(R; φ̂, ~x, x,K,K ′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {x}ReK′ IO K

−→ φ̂, ~x IO K ′ ∨ φ̂, ~x IO K

This is basically the same as the previous one,
except again that φ̂, ~x I K ′ does not contain x.

Again, as it is clear from the soundness proofs in
Section A, the reason for soundness of these axioms
follows directly from the definition of key usability,
and it does not depend on what encryption is used.
In the above formulas, K and K ′ could be allowed to
encrypt different kinds of encryptions, not necessarily
the same, we just did not want to overload our formulas.

The next axioms express that freshly generated items have
not had the opportunity to corrupt or to become corrupted.
• Axioms for Freshly Generated Items.

– Fresh keys are not corrupted: The intuition of this
axiom is that if K is fresh, then it can be used for
secure encryption: keyfresh(K; φ̂) −→ φ̂ 6IOK
This axiom is sound if the encryption is CCA2
secure. Depending on which O is in the axiom, the
encryption needs to have the corresponding level of
security. This is the only axiom where the security
of the encryption is necessary. The reader may
wonder that proving the KDM case, what happens
to the {~y} ~K’s as the encryption oracles only fill
in the gaps of the keys, not other unknown items.
However, in a KDM attack created by the failure
of the axiom, the attacker simulates the protocol,
and all honestly generated items except for the key
in question are available to him.

– Fresh items do not corrupt: they were generated
independently and as they have not been sent out,
they have not had a chance to corrupt other items:
fresh(x; φ̂, ~x, y) ∧ ~x, y 4 φ̂ ∧ φ̂, ~x, x IO y
−→ φ̂, ~x IO y



C. Key Usability for Unforgeability

Definition V.3. We define INT-CTXT corruption as: We say
that M,Π, S, σ |=c φ̂, ~x Iic K, if M,Π, S, σ |=c ~x 64
φ̂ ∨ ¬RanGen(K), or for all S′ ⊆ S′′, there are S′′ ⊆ S′,
a PT algorithm AOsic2

, such that

M,Π, S′′, σ||=csdec(AO
sic2

(φ̂, ~x),K) 6= ⊥

∧ ∀zR(AO
sic2

(φ̂, ~x) = {|z|}RK → {|z|}RK 6v φ̂, ~x)

And on S′′, AOsic2
(φ̂, ~x) is not equal any of the outputs of

the encryption oracles.

The reason for using oracle Osic2 is that the definition of
INT-CTXT security [13] allows the use of encryption and
decryption oracles.

D. Axiom for Unforgeability Key Usability

• Equal terms are substitutable on the rhs of Iic.
• Derivability implies corruption:
φ̂, ~x�K −→ φ̂, ~x Iic K

• Increasing capabilities for key corruption:
φ̂, ~x Iic K −→ φ̂, ~x, x Iic K

• Commutativity: If ~x′ is a permutation of ~x, then
φ̂, ~x Iic K −→ φ̂, ~x′ Iic K.

• Transitivity: φ̂, ~x�~y ∧ φ̂, ~x, ~y Iic K −→ φ̂, ~x Iic K
• Decryptions of adversarial ciphers do not help: If O is

IND or KDM CCA2, symmetric or asymmetric, then

RanGen(K) ∧ RanGen(K ′) ∧ φ̂, ~x�Oy

∧ φ̂, ~x, sdec(y, dK) IicK ′

∧ ∀xR(y = {|x|}ReK → {|x|}ReK 6v φ̂, ~x)

−→ φ̂, ~x Iic K ′

• Uncorrupted key’s encryption cannot be faked:

RanGen(K) ∧ φ̂, ~x�y ∧ dec(y, dK) 6= ⊥
∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x)

−→ φ̂, ~x Iic K

This is means the adversary cannot compute a y which
decrypts to something meaningful. This is exactly what
we need from the INT-CTXT property, namely, that the
encryption cannot be faked. Again, soundness of this
axiom does not need INT-CTXT encryption.

• Encryptions with uncorrupted keys do not corrupt:
– For the IND case, we have

RanGen(K) ∧ RanGen(K ′) ∧ fresh(R; φ̂, ~x, x,K,K ′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {|x|}RK′ Iic K

−→ φ̂, ~x, x Isic2 K ′ ∨ φ̂, ~x Iic K

– For the KDM case, we have

RanGen(K) ∧ RanGen(K ′) ∧ fresh(R; φ̂, ~x, x,K,K ′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {|x|}RK′ Iic K

−→ φ̂, ~x Iskc2 K ′ ∨ φ̂, ~x Iic K

Again, soundness of these axioms follow directly from
the key corruption definitions.

• Fresh keys are not INT-CTXT corrupted if encryption
is INT-CTXT secure:

– keyfresh(K; φ̂) −→ φ̂ 6Iic K. The intuition of
this axiom is that if the encryption is INT-CTXT
secure and if K is fresh, then the adversary cannot
fake encryptions with this key.

• Fresh items do not corrupt: fresh(x; φ̂, ~x,K) ∧ ~x 4
φ̂ ∧ φ̂, ~x, x Iic K −→ φ̂, ~x Iic K

VI. SOUNDNESS

We have the following soundness theorem for the axioms
we introduced. Proof is included in the Appendix.

Theorem VI.1. With the computational interpretations of
derivability and key corruption predicates, the axioms are
computationally sound. For the ”fresh keys are not cor-
rupted”, it is necessary that the implementation of the
encryption satisfies the corresponding (symmetric or asym-
metric, IND or KDM-CCA2 security, or INT-CTXT unforge-
ability). Soundness of the other axioms do not require that.
Furthermore, no-telepathy axiom requires that freshly gen-
erated items are guessable only with negligible probability.

VII. SIMPLE EXAMPLES

Now let us see on a few simple examples how incon-
sistency can be shown with the above axioms. In [9], the
authors presented some of the most basic examples, so
the ones that we create here are a little more complex,
all are related to sending keys around. We use symmetric
encryption in these examples.

Example VII.1. Suppose the first messages in a frame are

φ3 ≡ νKKABNR1R2((A,B), {|K|}R1

KAB
, {|h2, N |}R2

K ),

where the symmetric encryption is CCA2 (or KDM) secure.
We want to show that φ3 � N is inconsistent with the
axioms, that is, N remains secret. Let now O denote either
symmetric IND-CCA2 or symmetric KDM-CCA2. Suppose
φ3 � N holds. Then φ3 �O N by the more oracles help
more axiom. That is the same as φ2, {|h2, N |}R2

K �O N .
By the no-telepathy axiom, φ2 6�ON as fresh(N,φ2) holds
(which follows directly from the definition of the freshness
constraint, not from axioms). By the ‘uncorrupted key se-
curely encrypts’ axiom for CCA2 symmetric case, with the
roles ~x ≡ 〈〉, x ≡ 〈h2, N〉, y ≡ N , since we assumed
φ2, {|h2, N |}R2

K �O N , we also have that either φ2 �O N
(already ruled out) or (depending on O) φ2, h2, N Isic2 K



or φ2 Iskc2 K . In the IND-CCA2 case, by the ‘fresh items
do not corrupt’ axiom, we then have φ2, h2 Isic2 K as N
does not appear in φ2. Since the handle is always derived
from the frame, φ2 �sic2 h2 holds, hence φ2 �sic2 h2 and
by the transitivity axiom applied for φ2, h2 Isic2 K and
φ2 �sic2 h2, we have φ2 Isic2 K, just as we had in the
KDM case earlier. But that is the same as (now for both IND
and KDM cases) φ1, {|K|}R1

KAB
IO K. By the ‘encryptions

with uncorrupted keys do not corrupt’ axiom, with roles
K ′ ≡ KAB , ~x ≡ 〈〉 and x ≡ K, we have that either
φ1 IO K, or φ1,K Isic2 KAB or φ1 Isic2 KAB . However,
φ1 6IO K because of the ‘fresh keys are not corrupted’
axiom, and the same is true for φ1 6IOKAB . So for the KDM
case we are done, and finally for the IND case, again by the
‘fresh items do not corrupt’ axiom, φ1,K 6Isic2KAB , and
we arrived at a contradiction in both IND and KDM cases.

Example VII.2. Now suppose

φ3 ≡ νKKABN ((A,B), {|K|}R1

KAB
, {|KAB , h2, N |}R2

K )

and that φ3 �O N holds. There is a key cycle in this
example. For IND-CCA2 security, from the ‘encryptions
with uncorrupted keys do not corrupt’ axiom we arrive at
φ2,KAB , h2, N Isic2 K if we follow the same steps as
we did in Example VII.1. Then the same way as before,
we can remove h2 and N , and since φ2 ≡ φ1, {|K|}R1

KAB
,

receive φ1, {|K|}R1

KAB
,KAB Isic2 K. But this does not

lead to a contradiction! According to the equational theory,
K = sdec({|K|}R1

KAB
,KAB), and by the ‘functions are

computable’ axiom, we get φ1, {|K|}R1

KAB
,KAB �sic2 K.

So we always have φ1, {|K|}R1

KAB
,KAB Isic2 K too by

the ‘derivability implies corruption’ axiom, there is no
contradiction. However, if we have KDM security, then
just as in the previous example, using the ‘encryption with
uncorrupted keys do not corrupt’ axiom, we immediately
arrive at φ2 Iskc2 K, and the rest of the derivation is the
same as in the previous example.

Example VII.3. Now consider

φ3 = νKKABN ((A,B), {|K|}R1

KAB
, {|{|KAB |}R2

K′ , h2, N |}R3

K ).

Strictly speaking, K and KAB are still in cycles, but
they do not disturb each other because of K ′. Again,
assuming IND-CCA2 security, from φ3 �sic2 N first
φ2, {|KAB |}R2

K′ , h2, N Isic2 K is derived using the ‘encryp-
tion with uncorrupted key does not corrupt’ axiom as in
Example VII.1. Then as in Example VII.1, h2 and N are
removed: φ2, {|KAB |}R2

K′ Isic2 K. At this point, the ‘encryp-
tions with uncorrupted keys do not corrupt’ axiom implies
that either φ2 Isic2 K or φ2,KAB Isic2 K ′. In the former
case, we are back in the situation of Example VII.1 and
we arrive at a contradiction. In the latter case, by function
(encryption) application on φ1, {|K|}R1

KAB
,KAB Isic2 K ′,

we receive that φ1,K,KAB , R1 Isic2 K ′, but by ‘the fresh

items do not corrupt’ axiom all of them can be removed,
and receive that φ1 Isic2 K ′ contradicting the ‘fresh keys
are uncorrupted’ axiom.

VIII. THE SYMMETRIC NEEDHAM-SCHROEDER
PROTOCOL

With the axioms that we presented, we have proven the
amended symmetric Needham-Schroeder protocol:

1. A→ B : A
2. B → A : {A,N1}KBT

3. A→ T : 〈A,B,N2, {A,N1}KBT 〉
4. T → A : {N2, B,K, {K,N1, A}KBT }KAT

5. A→ B : {K,N1, A}KBT

6. B → A : {N3}K
7. A→ B : {N3 − 1}K

This protocol first has a key distribution part, and then
the distributed key is used to securely encrypt a nonce.
We showed that no symbolic (hence computational) attacker
succeeds the following way (motivated by [23]). Using
IND-CCA2 and INT-CTXT axioms, we first showed by an
inductive technique that the key K from the trusted party
meant for honest A and B are never corrupted (corruption
is inconsistent with the axioms and agent checks). Then,
again with an inductive technique we showed that N3 is
not leaked. Finally, agreement and authentication are shown.
Besides the presented axioms, we also needed that adding 1
and subtracting 1 are inverses of each other, and x− 1 6= x.
We needed an additional property, namely, that applying
the first projection of a pairing on an honestly generated
nonce cannot be itself with more than negligible probability.
Finally, triples, quadruples were constructed out of pairs.
The detailed proof is available online [8]. We assumed that
A is running the initiator role in all his sessions, and B is
running the responder’s role. There is only one trusted party.
They all are allowed to run any number of multiple parallel
sessions with honest and corrupted agents.

On a note about dynamic corruption, the proof works even
if the protocol allows the release of the key K at a later time.
Secrecy can still be proven until that point, authentication
that was carried out earlier can still be verified.

IX. CONCLUSIONS

In this paper we further expanded the framework proposed
by Bana and Comon-Lundh [6], where one does not define
explicitly the Dolev-Yao adversarial capabilities but rather
the limitations on these capabilities. We have shown how key
distribution can be handled. The proofs with this technique
are computationally sound without the need of any further
assumptions such as no bad keys, etc that are assumed in
other literature. We presented a modular set of axioms that
are computationally sound for implementations using IND-
CCA2, KDM-CCA2 and INT-CTXT secure encryptions
respectively. We illustrated their power via simple examples
and the verification of an entire protocol.

Plans for future work include extension to unbounded
number of sessions, equivalence properties and automation.
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APPENDIX

We prove now Theorem VI.1.
Proof: As the soundness proofs of the axioms for

derivability with oracles is the same as the soundness proofs
below (and also as the proofs in [9] ), we skip that and focus
on key corruption.

First we prove Axioms in Section V-B about key corrup-
tion in the CCA2 cases.
• Substitutability of equal terms: The reason is that the

corruption of the item on the right hand side of IO



only depends on the bit string that is associated to the
term there, and not on the structure of the term. This
is in contrast with the left hand side. The notion that
anything can be submitted to the decryption oracle that
is not an honest encryption on the left clearly depends
on the term structure on the left, so there substitutability
does not hold.

• Derivability implies corruption: Soundness of this ax-
iom is rather trivial, but we write it out for clar-
ity. In order to show that in any protocol execution,
M,Π |= ∀~x,K(φ̂, ~x �O K −→ φ̂, ~x IO K),
by the computational semantics we have to show that
for any evaluation σ of the variables, and for any S
non-negligible set, M,Π, S, σ |= φ̂, ~x �O K implies
M,Π, S, σ |= φ̂, ~x IO K. So suppose M,Π, S, σ |=
φ̂, ~x �O K holds. To show M,Π, S, σ |= φ̂, ~x IO K,
let’s take any S′ ⊆ S. By M,Π, S, σ |= φ̂, ~x �O K,
there is a S′′ ⊆ S′ and an algorithm B such that
M,Π, S′′, σ||=cB(φ̂, ~x) = K. In the IND-CCA2 case,
we can chose A1 in the key corruption definition simply
to be some (only negligibly guessable) random bit
string r(ω), and y can also be the same. Then, A2

can simply take the key, do the decryption. If the
encryption is that of r(ω) then r(ω) is received back.
If not, then 0’s are received everywhere on S′′, which
is overwhelmingly different from our chosen y. KDM
case is exactly the same except that r in that case
becomes the interpretation of x, and A2 becomes A.

• Increasing capabilities for key corruption: Soundness of
this axiom is again easy. Assuming φ̂, ~x IO K, there
is an x, y, etc as in the definition of key corruption.
The same items will also be good for φ̂, ~x, x′ IO K.

• Commutativity: Completely trivial, the definition of key
corruption is invariant under the change of the order of
the list ~x.

• Transitivity: Assuming M,Π, S, σ |= φ̂, ~x �O ~y and
M,Π, S, σ |= φ̂, ~x, ~y IO K, to show M,Π, S, σ |=
φ̂, ~x IO K, take an arbitrary S′ ⊆ S. ByM,Π, S, σ |=
φ̂, ~x �O ~y, there is a S′′ ⊆ S′ and an AO such
that M,Π, S′′, σ||=AO(φ̂, ~x) = ~y. By M,Π, S, σ |=
φ̂, ~x, ~y IO K, there is a S′′′ ⊆ S′′ such that for this
S′′′, the conditions in the definition of key corruption
(in place of S′′) hold. Also,M,Π, S′′′, σ||=AO(φ̂, ~x) =
~y. So in the key corruption definition applied to
M,Π, S, σ |= φ̂, ~x, ~y IO K, AO1 and AO2 can run AO
as a subroutine to compute ~y, so they do not need it as
an input. Since there is such a S′′′ ⊆ S′ for all S′ ⊆ S,
we get M,Π, S, σ |= φ̂, ~x IO K.

• Decryptions of adversarial ciphers do not help: We
explained soundness of this axiom at its introduction
(more precisely at the similar axiom for �O, which is
completely analogous).

• Secrecy of CCA2 encryption: For the IND case, we

have

RanGen(K) ∧ fresh(R; φ̂, ~x, x, y,K)

∧ ~x, x, y 4 φ̂ ∧ φ̂, ~x, {x}ReK �O y

−→ φ̂, ~x, x IO K ∨ φ̂, ~x�O y

Soundness of this follows easily from our definition
of key corruption and derivability with oracle access.
Note, that CCA2 security of the encryption is not
needed. Let’s move φ̂, ~x, x IO K to the premise, it
becomes φ̂, ~x, x 6IOK. Let us denote by θ the premise
received this way. We have to show that for any σ
evaluation of free variables, and S non-negligible set,
if M,Π, S, σ |= θ, then M,Π, S, σ |= φ̂, ~x �O y. So
let us supposeM,Π, S, σ |= θ. To showM,Π, S, σ |=
φ̂, ~x �O y, take any non-negligible set S′ ⊆ S. As
M,Π, S, σ |= θ implies M,Π, S, σ |= φ̂, ~x, {x}ReK �O

y by the semantics of compound formulas, for such
an S′, by the definition of derivability, there is a
subset S′′ ⊆ S′ and an algorithm AO such that
M,Π, S′′, σ||=AO(φ̂, ~x, {x}ReK) = y. In the definition
of key corruption, taking AO1 to be the algorithm that
picks x from φ̂, ~x, x, and taking AO2 to be the same
as AO, by M,Π, S′′, σ |= φ̂, ~x, x 6IOK, we also have
that M,Π, S′′, σ||=AO(φ̂, ~x, {0|x|}ReK) = y. Since the
length of x can be polynomially guessed, there is an
algorithm BO and a non-negligible subset S′′′ ⊆ S′′

withM,Π, S′′′, σ||=BO(φ̂, ~x) = y. Since we have such
an S′′′ ⊆ S′ for any arbitrary S′ ⊆ S, by the definition
of derivability this means M,Π, S, σ |= φ̂, ~x�O y.
The argument for the KDM case is completely analo-
gous, except that we have M,Π, S′′, σ |= φ̂, ~x 6IOK
there. Note, that as in the axiom for the KDM case, we
only require about x that x 4 φ̂, such the encryption
of such an item is should not be indistinguishable from
the encryption of 0’s. That is why KDM oracles are
not sufficient in the definition of key usability for the
KDM case, we need the encryptions of ~y there.

• Finally, we have to show that encryptions with uncor-
rupted keys do not corrupt. Note again, that we do not
need CCA2 security of the encryption, we only need
the definition of key corruption.

RanGen(K) ∧ RanGen(K ′) ∧ fresh(R; φ̂, ~x, x,K,K ′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {x}ReK′ IO K

−→ φ̂, ~x, x IO K ′ ∨ φ̂, ~x IO K

Instead, just as in the previous entry, we show the
following:

RanGen(K) ∧ RanGen(K ′) ∧ fresh(R; φ̂, ~x, x,K,K ′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, x, {x}ReK′ IO K ′ ∧ φ̂, ~x 6IOK
−→ φ̂, ~x IO K.



Just as in the previous entry, we have to show that for
all S non-negligible sets and σ evaluations of variables,
if M,Π, S, σ satisfies the premise, then it satisfies the
conclusion as well. So let us suppose it satisfies the
premise. We want to show M,Π, S, σ |= φ̂, ~x IO K.
Following the definition of key corruption, take any
subset S′ ⊆ S. Take the IND-CCA2 case. By the
definition of key corruption applied for M,Π, S, σ |=
φ̂, ~x, x, {x}ReK′ IO K ′, there are S′′ ⊆ S′, y, R′ AO1 ,
AO2 with the appropriate conditions, in particular,

M,Π,S′′,σ||=cAO
2 (φ̂, ~x,{x}ReK′ ,{AO

1 (φ̂, ~x,{x}ReK′)}R
′

eK))=y

but

M,Π,S′′,σ||=cAO
2 (φ̂, ~x,{x}ReK′ ,{0|AO

1 (φ̂,~x,{x}R
eK′ )|}R

′
eK)) 6=y.

Now, we also have M,Π, S′′, σ |= φ̂, ~x, x 6IOK ′
from the satisfaction of the premise. Again, applying
the computational semantics of key corruption to this
situation, it gives us with the above that

M,Π, S′′, σ ||=c

AO2 (φ̂, ~x, {0|x|}ReK′ , {AO1 (φ̂, ~x, {0|x|}ReK′)}R
′

eK)) = y

and

M,Π, S′′, σ ||=c

AO2 (φ̂, ~x, {0|x|}ReK′ , {0|A
O
1 (φ̂,~x,{0

|x|}R
eK′ )|}R

′

eK)) 6= y

because we can apply the key usability condition to
Ax as AO1 in the definition of key corruption, and
the combination of the AO1 and AO2 above as AO2
in the definition of key corruption. Note also, that
R satisfies the appropriate freshness conditions. Note
further that as the encryption oracle can be called for,
the encryption {AO1 (φ̂, ~x, ...)}R′

eK can be computed by
AO2 even in the case of symmetric encryption as it
can compute AO1 (φ̂, ~x, ...) first, and then submit to the
encryption oracle. Since the length of x can be guessed,
denoting by BOi the algorithm that guesses it and then
uses AOi , we have that there is an S′′′ non-negligible
set (where the guessing of the length was correct) such
that

M,Π, S′′′, σ||=cBO2 (φ̂, ~x, {BO1 (φ̂, ~x)}R
′

eK)) = y

and

M,Π, S′′′, σ||=cBO2 (φ̂, ~x, {0|B
O
1 (φ̂,~x)|}R

′

eK)) 6= y.

Since there is such an S′′′ ⊆ S′ for each S′ ⊆ S, this
exactly means that

M,Π, S, σ |= φ̂, ~x IO K.

Again, the KDM case is proven entirely analogously.
• Fresh keys are not corrupted: Here is where IND-CCA2

and KDM-CCA2 security of the encryption is used.
If the key has not been sent out, it can be used for
safe encryption. The proof is very similar to the one

presented in [5], and goes as follows. What is proven
is that if M,Π, S, σ satisfies freshness of key K, then
M,Π, S, σ |= φ̂ IO K leads to a CCA2 attack to
the encryption. That is, for every S′ ⊆ S, there are
S′′ ⊆ S′, etc. such that, most importantly,

M,Π, S′′, σ||=cAO2 (φ̂, ~x, {AO1 (φ̂, ~x)}ReK)) = y (1)

but

M,Π, S′′, σ||=cAO2 (φ̂, ~x, {0|A
O
1 (φ̂,~x)|}ReK)) 6= y (2)

(or vice versa). Clearly, what the CCA2 attacker has to
do is to simulate the protocol execution such that

– except for K, the CCA2 attacker generates all
other keys

– encryptions (except for that of AO1 (φ̂, ~x)) with K
are done by submitting two identical requests to
the encryption oracle

– the attacker keeps a table records of what encryp-
tion belongs to what plaintext

– decryptions of ciphertexts provided by the encryp-
tion oracle are done by looking it up in the table

– decryptions of strings not provided by the oracle
are done by submitting to the decryption oracle

– when the challenge state is reached, the interpreta-
tion of ~x and y as well as AO1 (φ̂, ~x) are computed

– AO1 (φ̂, ~x) submitted to the encryption oracle along
with a string of 0’s of the same length

– apply AO2 to whatever is received back.
– the result given by AO2 is compared with the

interpretation of y.
Note that ~x, y 4 φ̂ ensures that ~x and y can be
computed by simulating the protocol. Now, because of
(1) and (2), on S′′ the result is identical with y if and
only if the encryption oracle encrypted the correct bit
string and not the 0’s. So on S′′, it is possible to tell
what the oracle encrypted. However, the attacker does
not know when he is inside S′′ and when outside. To
overcome this problem, the CCA2 attacker does either
of the following:

– encrypts a string of 0’s of the same length himself
either once (or twice, fixed at the beginning which)

– applies AO2 on this encryption (these ecryptions)
too

– if AO2 applied on the bit string received from
the encryption oracle gives y back, and if on the
encryption(s) of 0’s done by the adversary AO2
fails to give y, then the CCA2 attacker outputs 1,
meaning that his guess is that the oracle encrypted
the correct bit string.

– otherwise, that is, if AO2 applied on the bit string
received from the encryption oracle does not give y
back, or if on (at least one of) the encryption(s) of



0’s done by the adversary AO2 gives y the adversary
throws a coin and outputs the result.

According to our assumptions, on S′′, a non-negligible
set, if AO2 is applied on the correct encryption, it gives
y back, if it is applied on the encryption of 0’s, then
it does not give y back. Hence, conditioned on this
set, the CCA2 adversary always wins if the encryption
oracle encrypts the correct bit string (probability 1/2
conditioned on S′′), and it wins by 1/2 if the wrong bit
string was encrypted (again 1/2), because in this case a
coin is tossed. Hence, conditioned on S′′, the adversary
wins by probability 1/2 + 1/2× 1/2 = 3/4 This gives
a 1/4 advantage on S′′. As S′′ is non-negligible, 1/4
of it is also non-negligible. However, what he gained
inside S′′, he may lose outside S′′. To overcome this,
the adversary is doing his own encryption of 0’s once
or twice as defined above. Clearly, inside S′′, AO2 never
gives y back applied on this encryption. Outside S′′, it
is possible that for certain values of the random input
of the encryption of 0’s AO2 gives y back, while on
other values it does not give y back. In those cases,
when AO2 does not give y back on the encryption of 0’s
computed by the adversary and AO2 gives y back on the
encryption of 0’s computed by the oracle, the adversary
makes the wrong guess. Other than this, a coins is
tossed, so the probability of wrong guesses other then
this case is 1/2. So we have to focus on the case when
the mistake made in the above situation exactly cancels
the advantage on S′′, which is 1/4×p(S′′). This is why
we defined two different algorithms. If in one case, the
above mistake exactly cancels the gain on S′′, then in
the other case it does not cancel. The reason is, that in
the case when there is some non-negligible probability
both for getting the correct y on an encryption of 0’s
and something different, the double checking of the
encryption of 0’s by the adversary himself will pull
away the failure probability by a non-negligible factor
relative to the case when it is encrypted only once. So
either one of the two attacks will win, they cannot both
fail.
The proof for KDM-CCA2 is exactly analogous. The
only difference is, that instead of AO1 (φ̂, ~x), there is
an x there, that the attacker of the KDM encryption
may not be able to compute because it is a term that
can also contain the key K. Other than this (and the
encryption randomness), the rest is names, and handles,
the attacker can himself generate while simulating the
protocol. So when it comes to submitting it to the
encryption oracle, it will simply be submitted as a
function of the key. That is why it is enough to assume
x 4 φ̂. Note on the other hand that the protocol
adversary need not be able to compute x (that would
be φ̂�O x).

• Fresh items do not corrupt: The idea is exactly the same
as in case of the derivability predicate. A fresh item can
just as well be created by the adversary, it cannot help
him.

We now turn to the case of INT-CTXT key corruption.
Proofs of the first six axioms and the last one are

entirely identical to the proofs for CCA2 key corruption.
The soundness of the “encryptions with uncorrupted keys
do not corrupt” axiom is also analogous: We again show
the following:

RanGen(K) ∧ RanGen(K ′) ∧ fresh(R; φ̂, ~x, x,K,K ′)

∧ ~x, x 4 φ̂ ∧ φ̂, ~x, {|x|}RK′ Iic K ∧ φ̂, ~x, x 6Isic2K ′

−→ φ̂, ~x Iic K

Again, we have to show that for all S non-negligible
sets and σ evaluations of variables, if M,Π, S, σ satisfies
the premise, then it satisfies the conclusion as well. So
let us suppose it satisfies the premise. We want to show
M,Π, S, σ |= φ̂, ~x Iic K. Following the definition of key
corruption, take any subset S′ ⊆ S. By the definition of
key corruption applied to M,Π, S, σ |= φ̂, ~x, {|x|}RK′ Iic K

there is a S′′ ⊆ S, and a PT algorithm AOsic2
, such that

M,Π, S′′, σ||=csdec(AOsic2
(φ̂, ~x, {|x|}RK′),K) 6= ⊥

∧ ∀zR′(AOsic2
(φ̂, ~x, {|x|}RK′) = {|z|}R

′
K → {|z|}R

′
K 6v φ̂, ~x, {|x|}RK′)

and on S′′, AOsic2
(φ̂, ~x, , {|x|}RK′) is not equal any of the

outputs of the encryption oracles. Now, we also have
M,Π, S′′, σ |= φ̂, ~x, x 6Isic2K ′ from the satisfaction of the
premise. This gives us

M,Π, S′′, σ||=csdec(AOsic2
(φ̂, ~x, {|0|x||}RK′),K) 6= ⊥

∧ ∀zR′(AOsic2
(φ̂,~x,{|0|x||}RK′)={|z|}R

′
K → {|z|}R

′
K 6v φ̂,~x,{|0|x||}RK′)

and on S′′, AOsic2
(φ̂, ~x, , {|0|x||}RK′) is not equal any of the

outputs of the encryption oracles. Again, as the length of x
can be guessed, there is a non-negligible S′′′ ⊆ S′′ and a
BOsic2

such that

M,Π, S′′′, σ||=csdec(BO
sic2

(φ̂, ~x),K) 6= ⊥

∧ ∀zR′(BO
sic2

(φ̂, ~x) = {|z|}R
′

K → {|z|}R
′

K 6v φ̂, ~x)

and on S′′′, BOsic2
(φ̂, ~x) is not equal any of the outputs of the

encryption oracles. And that exactly means M,Π, S, σ |=
φ̂, ~x Iic K. Again, the KDM case is entirely analogous.

Proof of the uncorrupted key’s encryption cannot be faked
axiom is immediate from the semantics of Iic. If

M,Π, S, σ |=RanGen(K) ∧ φ̂, ~x�y ∧ dec(y, dK) 6= ⊥
∧ ∀xR(y = {x}ReK → {x}ReK 6v φ̂, ~x)

Then for all S′ ⊆ S, there is a S′′ ⊆ S′ and an algorithm
A such that M,Π, S′′′, σ||=cA(φ̂, ~x) = y. Furthermore, the
last conjunct means that the output of the algorithm is not
any of the encryptions in φ̂, ~x, and the third conjunct means



the decryption does not fail. This is exactly means that
M,Π, S, σ |= φ̂, ~x Iic K.

The only remaining axiom is the fresh keys are not cor-
rupted axiom for the INT-CTXT case. But that is rather easy.
Suppose, the encryption is INT-CTXT secure.M,Π, S, σ |=
φ̂ Iic K means there is a S′′ ⊆ S, and a PT algorithm
AOsic2

, such that

M,Π, S′′, σ||=csdec(AO
sic2

(φ̂),K) 6= ⊥

∧ ∀zR′(AO
sic2

(φ̂) = {|z|}R
′

K → {|z|}R
′

K 6v φ̂)

and on S′′, AOsic2
(φ̂) is not equal any of the outputs of the

encryption oracles. But that exactly means that there is a
non-negligible set (namely S′′), on which AOsic2

can produce
a ciphertext, contradicting the INT-CTXT property.


