
Submitted to Entropy. Pages 1 - 22.
OPEN ACCESS

entropy

ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Efficient approximation of the conditional relative entropy with
applications to discriminative learning of Bayesian network
classifiers

Alexandra M. Carvalho1,4,?, Pedro Adão 2,5 and Paulo Mateus 3,5

1 Department of Electrical Engineering, IST, Technical University of Lisbon, Portugal
2 Department of Computer Science, IST, Technical University of Lisbon, Portugal
3 Department of Mathematics, IST, Technical University of Lisbon, Portugal
4 PIA, Instituto de Telecomunicações, 1049-001 Lisbon, Portugal
5 SQIG, Instituto de Telecomunicações, 1049-001 Lisbon, Portugal

? Author to whom correspondence should be addressed; E-Mail, Tel. and Fax number of the

corresponding author.

Version April 2, 2013 submitted to Entropy. Typeset by LATEX using class file mdpi.cls

Abstract: We propose a minimum variance unbiased approximation to the conditional1

relative entropy, of the distribution induced by the observed frequency estimates, for multi-2

classification tasks. Such approximation is an extesion of a decomposable scoring crite-3

rion, named approximate conditional log-likelihood (aCLL), primarily used for discrimina-4

tive learning of augmented Bayesian network classifiers. Our contribution is twofold: (i) it5

addresses multi-classification tasks, and not only binary-classification ones; and (ii) it covers6

broader stochastic assumptions than uniform distribution over the parameters. Specifically,7

we considered a Dirichlet distribution over the parameters, which experimentally showed8

to be a very good approximation to CLL. In addition, for Bayesian network classifiers, a9

closed-form equation is found for the parameters that maximize the scoring criterion.10
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network classifiers.12

1. Introduction13

Bayesian networks [24] are probabilistic graphical models that represent the joint probability distri-14

bution of a set of random variables. They encode specific conditional independence properties pertaining15

to the joint distribution via a directed acyclic graph (DAG). To achieve this, each vertex (aka node) in16

the DAG contains a random variable, and edges between them represent the dependencies between the17

variables. Specifically, given a DAG, a node is conditional independent of its non-descendants given its18

parents. Besides serving as a representation of a set of independences, the DAG also aids as a skeleton for19

factorizing a distribution via the chain rule of probability. The chief advantage of Bayesian networks is20

that they can specify dependencies only when necessary, providing compact representations of complex21

domains that leads to a significant reduction in the cost of learning and inference.22

Bayesian networks have been widely used for classification [16,18,27], being known in this con-23

text as Bayesian network classifiers (BNC). The use of generative learning methods in choosing the24

Bayesian network structure as been pointed out as the likely cause for their poor performance when25

compared to much simpler methods [14,16]. In contrast to generative learning, where the goal is to be26

able to describe (or generate) the entire data, discriminative learning focuses on the capacity of a model27

to discriminate between different classes. To achieve this end generative methods usually maximize28

the log-likelihood (LL), or a score thereof, whereas discriminative methods focus in maximizing the29

conditional log-likelihood (CLL). Unfortunately, maximizing the CLL of a BNC turns out to be compu-30

tationally much more challenging than maximizing LL. For this reason, the community has resorted to31

decomposing the learning procedure into generative-discriminative subtasks [17,18,28]. More recently,32

Carvalho et al. proposed a new scoring criterion, called approximate conditional log-likelihood (aCLL),33

for fully-discriminative learning of BNCs, exhibiting good performance both in terms of accuracy and34

computational cost [5]. The proposed scoring criterion showed to be the minimum variance unbiased35

(MVU) approximation to CLL.36

Despite the aCLL good performance, the initial proposal has three significant restrictions. First, it37

was only devised for binary-classification tasks. Second, it was derived under the assumption of uniform38

distribution over the parameters. Third, the parameters of the network structure that maximize the score39

resorted unknown. In this paper we address all these shortcomings, which makes possible to apply aCLL40
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in a broader setup while maintaining the desired property of a MVU approximation to CLL. In order41

to solve the first two restrictions, we start by deriving the approximation for multi-classification tasks42

under much more relaxed stochastic assumptions. In this context, we considered multivariate symmetric43

distributions over the parameters, and detailed the pertinent cases of uniform and Dirichlet distributions.44

The constants required by the approximation are computed analytically for binary and ternary uniform45

distributions. In addition, a Monte Carlo method is proposed to compute these constants numerically46

for other distributions, including the Dirichlet. In addressing the third shortcoming, the parameters of47

the BNC that maximize the proposed approximation to the conditional log-likelihood (CLL) are derived.48

Finally, maximizing CLL is shown to be equivalent to minimizing the conditional relative entropy of49

the (conditional) distribution (of the class given the other variables) induced by the observed frequency50

estimates and the one induced by the learned BNC model.51

To gauge the performance of the proposed approximation, we conducted a set of experiments over52

89 biologically relevant datasets already used in previous works [1,4]. The results show that the models53

that maximized aCLL under a symmetric Dirichlet assumption attain a higher CLL, with great statistical54

significance, in comparison with the generative models that maximized LL and the discriminative models55

that maximized aCLL under a symmetric uniform distribution. In addition, aCLL under a symmetric56

uniform distribution also significantly outperforms LL in obtaining models with higher CLL.57

The paper is organized as follows. In Section 2 we review the essentials of BNCs and revise the aCLL58

approximation. In Section 3 we present the main contribution of this paper, namely, we extend aCLL to59

multi-classification tasks under general stochastic assumptions, and derive the parameters that maximize60

aCLL for BNCs. Additionally, in Section 4 we relate the proposed scoring criterion with the conditional61

relative entropy, and in Section 5 we provide experimental results. Finally, we draw some conclusions62

and future work in Section 6.63

2. Background64

In this section we review basic concepts of BNCs required to understand the proposed methods. We65

then discuss the difference between generative and discriminative learning of BNCs and present the66

aCLL scoring criterion [5].67

2.1. Bayesian network classifers68

Let X be a discrete random variable taking values in a countable set X ⊂ R. In all that follows,69

the domain X is finite. We denote an (n + 1)-dimensional random vector by X = (X1, . . . , Xn, C)70
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where each component Xi is a random variable over Xi and C is a random variable over C = {1, . . . , s}.71

The variables X1, . . . , Xn are called attributes, or features, and C is called the class variable. For each72

variable Xi, we denote the elements of Xi by xi1, . . . , xiri where ri is the number of values that Xi can73

take. We say that xik is the k-th value of Xi, with k ∈ {1, . . . , ri}. The probability that X takes value x74

is denoted by P (x), conditional probabilities P (x | z) being defined correspondingly.75

A Bayesian network classifier (BNC) is a triple B = (X, G,Θ) where X = (X1, . . . , Xn, C) is a76

random vector. The network structure G = (X, E) is a directed acyclic graph (DAG) with nodes in X77

and edges E representing direct dependencies between the variables. We denote by ΠXi
the (possibly78

empty) set of parents of Xi in G. For efficiency purposes it is common to restrict the dependencies79

between the attributes and the class variable, imposing all attributes to have the class variable as parent;80

rigorously, these are called augmented naive Bayes classifiers but it is common to refer to them abusively81

as BNCs. In addition, the parents of Xi without the class variable are denoted by Π∗Xi
= ΠXi

\ {C}. We82

denote the number of possible configurations of the parent set Π∗Xi
by q∗i . The actual parent configurations83

are ordered (arbitrarily) and denoted by w∗i1, . . . , w
∗
iq∗i

and we say that w∗ij is the j-th configuration of84

Π∗Xi
, with j ∈ {1, . . . , q∗i }. Taking into account this notation, the third element of the BNC triple denotes85

the parameters Θ given by the families {θijck}i∈{1...n}, j∈{1,...,q∗i }, c∈{1,...,s},k∈{1,...,ri} and {θc}c∈{1,...,s} that86

encode the local distributions of the network via87

PB(C = c) = θc and (1)

PB(Xi = xik | Π∗Xi
= w∗ij, C = c) = θijck. (2)

A BNC B defines a unique joint probability distribution over X given by

PB(X1, . . . , Xn, C) = PB(C)
n∏
i=1

PB(Xi | ΠXi
). (3)

The conditional independence properties pertaining to the joint distribution are essentially determined88

by the network structure. Specifically, Xi is conditionally independent of its non-descendants given its89

parents ΠXi
in G [24]; and so, C depends on all attributes (as desired).90

The problem of learning a BNC given data D consists in finding the BNC that best fits D. This91

can be achieved by a score-based learning algorithm, where a scoring criterion is considered in order92

to quantify the fitting of a BNC. Contributions in this area of research are typically divided in two93

different problems: scoring and searching. The scoring problem focus on devising new scoring criteria94

to measure the goodness of a certain network structure given the data. On the other hand, the searching95

problem concentrates on identifying one or more network structures that yield a high value for the scoring96
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criterion in mind. If the search is conducted with respect to a neighborhood structure defined on the space97

of possible solutions then we are in the presence of local score-based learning.98

Local score-based learning algorithms can be extremely efficient if the scoring criterion employed is99

decomposable, that is, if the scoring criterion can be expressed as a sum of local scores associated to100

each network node and its parents. In this case, any change over the network structure carried out during101

the search procedure is evaluated by considering only the difference to the score of the previous assessed102

network. The most common scoring criteria employed in BNC learning are reviewed in [3,19,31]. We103

refer the interested reader in newly developed scoring criteria to the works of Carvalho et al. [5], de104

Campos [12] and Silander et al. [26].105

Unfortunately, even performing local score-based learning, searching for unrestricted BNC structures106

from data is NP-hard [8]. Worse than that, finding for unrestricted approximate solutions is also NP-hard107

[11]. These results led the community to search for the largest subclass of BNCs for which there is an108

optimal and efficient learning algorithm. First attempts confined the network to tree augmented naive109

(TAN) structures [16] and used Edmonds [15] and Chow-Liu [9] optimal branching algorithms to learn110

the network. More general classes of BNCs have eluded efforts to develop optimal and efficient learning111

algorithms. Indeed, Chickering [6] showed that learning networks constrained to have in-degree at most112

2 is already NP-hard.113

2.2. Generative versus discriminative learning of Bayesian network classifiers114

For convenience, we introduce a few additional notation. Let data D be given by115

D = {y1, . . . ,yN}, where yt = (y1t , . . . , y
n
t , ct).116

Generative learning reduces to maximizing the likelihood of the data, by using the log-likelihood scoring117

criterion or a score thereof (for instance, [12,26]). The log-likelihood scoring criterion can be written as:118

LL(B | D) =
N∑
t=1

logPB(y1t , . . . , y
n
t , ct). (4)

On the other hand, discriminative learning concerns maximizing the conditional likelihood of the

data. The reason why this is a form of discriminative learning is that it focus on correctly discriminating

between classes by maximizing the probability of obtaining the correct classification. The conditional

log-likelihood (CLL) scoring criterion can be written as:

CLL(B | D) =
N∑
t=1

logPB(ct|y1t , . . . , ynt ). (5)



Version April 2, 2013 submitted to Entropy 6 of 22

Unlike LL, CLL does not decompose over the network structure, and therefore, there is no closed-119

form equation for optimal parameter estimates for the CLL scoring criterion. This issue was first ap-120

proached by spliting the problem into two distinct tasks: find optimal-CLL parameters [17,28] and find121

optimal-CLL structures [2,18]. Although showing promising results, these approaches still present a122

problem of computational nature. Indeed, optimal-CLL parameters have been achieved by resorting to123

gradient descent methods, and optimal-CLL structures have been found only with global search meth-124

ods, which turn both approaches very inefficient. Recently, a least-squares approximation to CLL, called125

approximate conditional log-likelihood (aCLL), was proposed which enables full discriminative learning126

of BNCs in a very efficient way [5]. The aCLL scoring criterion is presented in detail in the next section.127

2.3. A first approximation to the conditional log-likelihood128

In this section we present the approximation to the conditional log-likelihood proposed in [5]. Therein129

it was assumed that the class variable was binary, that is, C = {0, 1}. For the binary case the conditional130

probability of the class variable can then be written as131

PB(ct | y1t , . . . , ynt ) =
PB(y1t , . . . , y

n
t , ct)

PB(y1t , . . . , y
n
t , ct) + PB(y1t , . . . , y

n
t , 1− ct)

. (6)

For convenience, the two terms in the denominator were denoted by132

Ut = PB(y1t , . . . , y
n
t , ct) and

Vt = PB(y1t , . . . , y
n
t , 1− ct), (7)

so that Eq. (6) becomes simply133

PB(ct | y1t , . . . , ynt ) =
Ut

Ut + Vt
. (8)

The BNC B was omitted from the notation of both Ut and Vt for the sake of readability.134

The log-likelihood (LL), and the conditional log-likelihood (CLL) now take the form135

LL(B | D) =
N∑
t=1

logUt, and (9)

CLL(B | D) =
N∑
t=1

logUt − log(Ut + Vt). (10)

As mentioned in Section 2.1, an efficient scoring criterion must be decomposable. The LL score decom-

poses over the network structure. To better see why this is the case, substitute the expression for the joint

probability distribution, in Eqs. (1)–(3), into the LL criterion, in Eq. (9), to obtain

LL(B | D) =
n∑
i=1

qi∑
j=1

ri∑
k=1

s∑
c=1

Nijck log θijck +
s∑
c=1

Nc log θc, (11)
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where Nijck is the number of instances in D where Xi takes its k-th value, its parents (excluding the136

class variable) take their j-th value, and C takes its c-th value, and Nc is the number of instances where137

C takes its c-th value.138

Unfortunately, CLL does not decompose over the network structure because log(Ut + Vt) cannot be

expressed as a sum of local contributions. To achieve decomposability of CLL an approximation

f̂(Ut, Vt) = α logUt + β log Vt + γ (12)

of the original function

f(Ut, Vt) = logUt − log(Ut + Vt)

was proposed in [5], where α, β, and γ are real numbers to be chosen so as to minimize the approximation

error. To determine suitable values of α, β and γ, uniformity assumptions about Ut and Vt were made.

To this end, let ∆2 = {(x, y) : x+ y ≤ 1 and x, y ≥ 0} be the 2-simplex set. As Ut and Vt are expected

to become exponentially small as the number of attributes grows, it was assumed that

Ut, Vt ≤ p <
1

2

for some 0 < p < 1
2
. Combining this constraint with

(Ut, Vt) ∼ Uniform(∆2)

yielded the following assumption.139

Assumption 2.1 There exists a small positive p < 1
2

such that

(Ut, Vt) ∼ Uniform(∆2)|Ut,Vt≤p = Uniform([0, p]× [0, p]).

In [5] it was shown that under Assumption 2.1, the values of α, β and γ that minimize the mean square

error (MSE) of f̂ w.r.t. f are given by:

α =
π2 + 6

24
, β =

π2 − 18

24
and γ =

π2

12 ln(2)
−
(

2 +
(π2 − 6) log p

12

)
. (13)

This resulted in a decomposable approximation for the CLL, called approximate CLL, defined as

aCLL(B | D) =
1∑
c=0

(αNc+βN1−c) log θc+
n∑
i=1

qi∑
j=1

ri∑
k=1

1∑
c=0

(αNijck+βNij(1−c)k) log θijck+Nγ. (14)

This decomposable approximation has some desirable properties. It is unbiased, that is, the mean140

difference between f̂ and f is zero for all values of p. In addition, f̂ is the approximation with the141

lowest variance amongst unbiased ones, leading to a minimum variance unbiased (MVU) approximation142
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of f . Moreover, since the goal is to maximize CLL(B | D), the constant γ from Eq. (14) can be143

dropped, yielding an approximation that disregards the value p (used in Assumption 2.1). For this reason,144

p needs not to be known to maximize aCLL. Despite these advantageous properties, the parameters145

that maximize aCLL resorted unknown. In addition, the aCLL score is not directly applied to multi-146

classification tasks and no other stochastic assumptions rather that uniformity of Ut and Vt were studied.147

3. Extending the approximation to CLL148

The shortcomings of the initial aCLL proposal make it natural to explore a variety of extensions.149

Specifically, in this section, we derive a general closed-form expression for aCLL grounding in regres-150

sion theory. This yields a new scoring criterion for multi-classification tasks, with broader stochastic151

assumptions than the uniform one, while maintaining the desirable property of a MVU approximation to152

CLL. In addition, we also provide the parameters that maximize this new general form in the context of153

BNCs.154

3.1. Generalizing aCLL to multi-classification tasks155

We now set out to consider multi-classification tasks under a generalization of the Assumption 2.1. In

this case, let

Ut,ct = PB(y1t , . . . , y
n
t , ct)

so that the conditional probability PB(ct|y1t , . . . , ynt ) in Eq. (8) becomes now

PB(ct | y1t , . . . , ynt ) =
Ut,ct
s∑
c=1

Ut,c

,

where Ut,c = PB(y1t , . . . , y
n
t , c), for all 1 ≤ c ≤ s. Observe that the vectors (y1t , . . . , y

n
t , c), for all

1 ≤ c ≤ s with c 6= ct, called the complement samples, may or may not occur in D. Hence, for

multi-classification tasks, the conditional log-likelihood in Eq. (10) can be rewritten as

CLL(B | D) =
N∑
t=1

logUt,ct − log

(
s∑
c=1

Ut,c

)
.

In this case, the approximation f̂ in Eq. (12) consists now in approximating

f(Ut,1, . . . , Ut,s) = logUt,ct − log

(
s∑
c=1

Ut,c

)
by a function of the form

f̂(Ut,1, . . . , Ut,s) = α logUt,ct +
∑
c 6=ct

βc logUt,c + γ. (15)
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By taking βct = α− 1, the approximation in Eq. (15) is equivalent to the following linear approxima-156

tion157

− log

(
s∑
c=1

Ut,c

)
= f(Ut,1, . . . , Ut,s)− logUt,ct

≈ f̂(Ut,1, . . . , Ut,s)− logUt,ct

= (α− 1) logUt,ct +
∑
c 6=ct

βc logUt,c + γ

=
s∑
c=1

βc logUt,c + γ. (16)

Therefore, we aim at minimizing the expected squared error for the approximation in Eq. (16). We are158

able to achieve this if we assume that the joint distribution (Ut,1, . . . , Ut,s) is symmetric.159

Assumption 3.1 For all permutations (π1, . . . , πs) we have that (Ut,1, . . . , Ut,s) ∼ (Ut,π1 , . . . , Ut,πs).160

Assumption 3.1 imposes that Ut,c and Ut,c′ are identically distributed, for all 1 ≤ c, c′ ≤ s, that is,161

Ut,c ∼ Ut,c′ . This is clearly much more general than the symmetric uniformity imposed in Assump-162

tion 2.1 for binary classification.163

Under Assumption 3.1 the approximation in Eq. (16) is such that β1 = · · · = βs. Let β denote the

common value and consider that

A = − log

(
s∑
c=1

Ut,c

)
and B =

s∑
c=1

logUt,c. (17)

Our goal is to find β and γ that minimize the following expected value

E[(A− (βB + γ))2]. (18)

Let σ2
A and σ2

B denote the variance of A and B, respectively, and let σAB denote the covariance164

between A and B. Standard regression allow us to derive the next result [21].165

Theorem 3.2 Assume that σ2
B > 0. The unique values of β and γ that minimize Eq. (18) are given by

β =
σAB
σ2
B

and γ = E[A− βB]. (19)

Moreover, it follows that166

E[A− (βB + γ)] = 0, and (20)

E[(A− (βB + γ))2] = σ2
A −

σ2
AB

σ2
B

. (21)
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Proof: Let167

h(β, γ) = E[(A− (βB + γ))2]

= E[A2]− 2βE[AB] + β2E[B2]− 2γE[A] + 2βγE[B] + γ2.

Then, the solution for ∂h
∂γ

= 0 is γ = E[A] − βE[B]. By replacing γ in h with the solution and solving
∂h
∂β

= 0 on β we get

β =
E[A]E[B]− E[AB]

E[B]2 − E[B2]
=
σAB
σ2
B

.

Moreover, since the Hessian of h is

2

 E[B2] E[B]

E[B] 1

 ,

which is positive-definite if σ2
B > 0, we conclude that h has a unique minimum. Finally, Eq. (20) and168

Eq. (21) are easily derived by plugging in the solution accordingly. �169

From Eq. (20) we conclude that the approximation in Eq. (16) is unbiased, and since it minimizes170

Eq. (18) it is a MVU approximation. As in [5], we are adopting estimation terminology for approxima-171

tions. In this case, by taking Â = (βB + γ), Eq. (18) is precisely E[(A− Â)2] = MSE(Â) where MSE172

is the mean squared error of the approximation/estimation. The MSE coincides with the variance when173

the approximation/estimator is unbiased, and so the approximation in Theorem 3.2 is MVU. In addition,174

the standard error of the approximation in Eq. (16) is given by square root of Eq. (21).175

The previous result allow us to generalize the aCLL scoring criterion for multi-classification tasks.

The values of β and γ needed by the approximation in Eq.(16) are given by Eq.(19). This results in a

decomposable approximation of CLL, and a generalization of aCLL for multi-classification as

aCLL(B | D) =
N∑
t=1

(
logUt,ct +

s∑
c=1

β logUt,s + γ

)
. (22)

3.1.1 Symmetric uniform assumption for multi-classification tasks176

Herein, we analyze aCLL under the symmetric uniform assumption. We start by providing a general177

explanation on why aCLL approximation is robust to the choice of p, which was already noticed for the178

binary case. In addition, we confirm that the analysis in Section 2.3 for the binary case coincides with179

that given in Section 3.1 when s = 2. Finally, we provide the constants β and γ for ternary-classification180

tasks, under the symmetric uniform assumption of (Ut,1, Ut,2, Ut,3).181

Assumption 3.3 Let (Ut,1, . . . , Ut,s) ∼ Uniform([0, p]s).182
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Start by noticing that under Assumption 3.3, changes in p correspond to multiplying the random183

vector (Ut,1, . . . , Ut,s) by a scale factor. Indeed, if each random variable is multiplied by a common scale184

factor κ it results in the addition of constant values to A and B. To this end note that185

− log

(
s∑
c=1

κUt,c

)
= − log

(
κ

s∑
c=1

Ut,c

)
= − log(κ)− log

(
s∑
c=1

Ut,c

)
and186

s∑
c=1

log(κUt,c) =
s∑
c=1

log κ+ logUt,c = s log(κ) +
s∑
c=1

logUt,c.

Since these additive terms have no effect on variances and covariances, it follows that β is not affected187

with changes in p. Therefore, the choice of p is irrelevant for maximizing aCLL when a uniform distri-188

bution is chosen. Moreover, it is enough to obtain the parameter β as aCLL maximization is insensitive189

to the constant factor γ.190

We also stress out that for the binary case, with (Ut,1, Ut,2) ∼ Uniform([0, p]2), the values of β and γ191

given by Eq. (19), with α = 1 + β, coincide with those given by Eq. (13).192

Finally, by using Mathematica 9.0, we were able to obtain an analytical expression of β for ternary193

classification tasks.194

Example 3.4 For the ternary case where (Ut,1, Ut,2, Ut,3) ∼ Uniform([0, p]3) the constant β that mini-

mizes Eq. (18) is

1

36

(
−15π2 − 2

(
−11 + 9 ln(3)− 12 ln(2) + 60 ln2(2) + 72Li2(−2) + 24Li2(1/4)

))
,

where Lin(z) is the polylogarithm function of order n.195

3.1.2 Symmetric Dirichlet assumption for multi-classification tasks196

In this section we provide an alternative assumption which will lead us to a very good approximation197

of CLL. Instead of a symmetric uniform distribution, we assume that the random vector (Ut,1, . . . , Ut,s)198

follows a symmetric Dirichlet distribution. The use of the Dirichlet distribution is attributed to the fact199

that it is a conjugate family of the distribution for multinomial sample; this ties perfectly with the fact200

that data is assumed to be a multinomial sample when learning BNCs [20].201

In order to take profit of Theorem 3.2, we consider the following symmetric Dirichlet assumption.202

Assumption 3.5 Let (Ut,1, . . . , Ut,s) ∼ Dir(a1, . . . , as, b) where ac = a for all c = 1, . . . , s.203

Assumption 3.5 implies that the tuple (y1t , . . . , y
n
t , c) occurs in the data exactly a − 1 times, for all

c = 1, . . . , s. Moreover, there are b − 1 instances in the data different from (y1t , . . . , y
n
t , c), for all
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c = 1, . . . , s. Given a dataset of size N , it is reasonable to assume a = 1 and b = N . Indeed,

probabilities Ut,c are expected to be very low, becoming exponentially smaller as the number of attributes

n grows; therefore, it is reasonable to assume that (y1t , . . . , y
n
t , ct) occurs only once in the data and that

its complement instances (y1t , . . . , y
n
t , c) with c 6= ct do not even occur in the data. Thus, by starting

with an uninformitive prior, that is, with distribution Dir(1, . . . , 1, 1) over the simplex of dimension s,

and then condition this distribution over the multinomial observation of the data of size N we obtain the

prior

(Ut,1, . . . , Ut,s) ∼ Dir(a1, . . . , as, N) (23)

where ac = 1 for c 6= ct and act = 2. However, such distribution is asymmetric and it is not in the

conditions of Theorem 3.2. We address this problem by considering the symmetric distribution

(Ut,1, . . . , Ut,s) ∼ Dir(1, . . . , 1, N) (24)

which is very close to the distribution in Eq. (23). We stress that the goal of any assumption is to find204

good approximations for the constants β and γ and that, the conditions upon which such approximations205

were performed need not to hold true exactly.206

We now focus our attention in finding the values of β and γ numerically, via a Monte-Carlo method.207

To this end, several random vectors (u1, . . . , us) are generated with the envisaged Dirichlet distribution208

in order to define a set S of pairs (B, A) given by A = − log(
∑s

c=1 uc) and B =
∑s

c=1 log(uc). In this209

way, we are sampling the random variablesA andB as defined in Eq. (17). Given S, it is straightforward210

to find the best linear fit of the form A = β̂B + γ̂, and moreover, by the strong law of large numbers β̂ and211

γ̂ converge in probability to β and γ, respectively, as the set S grows. The general method is described212

in Algorithm 1.213

Algorithm 1 General Monte-Carlo method to estimate β and γ

Input: number of samples m

1. For i = 1 to m

2. For c = 1 to s

3. Generate a sample uc=CDF−1
X (Uniform([0,1])) where P (X = x) = P (Ut,c = x|Ut,1 = u1, . . . , Ut,c−1 = uc−1).

4. Add the point (
∑s

c=1 log(uc),− log(
∑s

c=1 uc)) to S.

5. Perform simple linear regression to S obtaining A = β̂B + γ̂.

Algorithm 1 works for any distribution (even for non-symmetric ones). The idea in Step 3 is to use214

the standard simulation technique of using the cumulative distribution function (CDF) of the univariate215

marginal for Ut,1 to generate a sample for the first component u1 of the vector and, afterwards, apply216
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the CDF of the univariate conditional distributions, to generate samples for the remaining components217

u2, . . . , us.218

We used Algorithm 1 to cross-check the values of β and γ for the case of a symmetric uniform219

distribution obtained analytically in Eq. (13) and Example 3.4, for binary and ternary classification tasks,220

respectively.221

Example 3.6 For binary classification under Assumption 3.3 and for m = 20000 we obtained an exact222

approximation of the analytical expression in Eq. (13) up to 4 decimal places. For ternary classifica-223

tion we required 80000 samples to achieve the same precision for the analytical expression given in224

Example 3.4.225

Although Algorithm 1 works well for Dirichlet distributions, we note that there are simpler and more226

efficient ways to generate samples for a distribution Dir(a1, . . . , as, as+1). Consider s + 1 independent227

Gamma random variables Yi ∼ Gamma(ai, 1) for i = 1, . . . , s + 1 and let Y0 =
∑s+1

i=1 Yi. Then, it is228

well known that (Y1/Y0, . . . , Ys/Y0) ∼ Dir(a1, . . . , as, as+1). Clearly, it is much more simple to sample229

s+ 1 independent random variables than sampling marginal and conditional distributions. The modified230

algorithm is presented in Algorithm 2.231

Algorithm 2 Monte-Carlo method to estimate β and γ for Dir(a, . . . , a, b)

Input: number of samples m and hyperparameters a and b

1. For i = 1 to m

2. For c = 1 to s

3. Generate a sample yc=CDF−1
X (Uniform([0,1])) where X ∼ Gamma(a, 1).

4. Generate a sample ys+1 = CDF−1
X (Uniform([0,1])) where X ∼ Gamma(b, 1).

5. Set uc = yc∑s+1
`=1

y`
for c = 1, . . . , s.

6. Add the point (
∑s

c=1 log(uc),− log(
∑s

c=1 uc)) to S.

7. Perform simple linear regression to S obtaining A = β̂B + γ̂.

Next we illustrate the use of the Algorithm 2 in the conditions discussed in Eq. (24).232

Example 3.7 For binary classification under Assumption 3.5 and with a1 = a2 = 1 , b = 1000 and233

m = 100000, the estimated values for β and γ are β̂ = −0.39291 and γ̂ = 0.61698, respectively.234

3.2. Parameter maximization for aCLL235
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The main goal for devising an approximation to CLL is to obtain an expression that decomposes over
the BNC structure. By plugging in the probability expansion of Eq. (3) in the general aCLL scoring
criterion for multi-classification given in Eq. (22) we obtain

aCLL(B|D) =

s∑
c=1

αNc + β
∑
c′ 6=c

Nc′

 log(θc) +

n∑
i=1

q∗i∑
j=1

ri∑
k=1

s∑
c=1

αNijck + β
∑
c′ 6=c

Nijc′k

 log(θijck) +Nγ, (25)

where α = 1 + β. This score is decomposable as it allows to compute independently the contribution236

of each node (and its parents) to the global score. However, the values of the parameters θijck and θc that237

maximize the aCLL score in Eq. (25) remain unknown. This problem was left open in [5] and a further238

approximation was required to obtain optimal BNC parameters.239

We are able to obtain the optimal values of θijck and θc by assuming that they are lower-bounded. This240

lower bound follows naturally by adopting pseudo-counts, commonly used in BNCs to smooth observed241

frequencies with Dirichlet priors and increase the quality of the classifier [16]. Pseudo-counts attend to242

impose the common sense assumption that there are no situations with probability zero. Indeed, it is243

a common mistake to assign probability zero to an event that is extremely unlikely, but not impossible244

[22].245

Theorem 3.8 LetN ′ > 0 be the number of pseudo-counts. The parameters θijck that maximize the aCLL

scoring criterion in Eq. (25) are given by

θijck =
Nij+ck

Nij+c

and θc =
N+c

N+

(26)

where

Nij+ck =

αNijck + β
∑

c′ 6=cNijc′k if αNijck + β
∑

c′ 6=cNijc′k ≥ N ′

N ′ otherwise,

N+c =

αNc + β
∑

c′ 6=cNc′ if αNc + β
∑

c′ 6=cNc′ ≥ N ′

N ′ otherwise,

Nij+c =

ri∑
k=1

Nij+ck and N+ =
s∑
c=1

N+c,

constrained to θijck ≥ N ′

Nij+c
and θc ≥ N ′

N+
for all i, j, c and k.246

Proof: We only show the maximization for the parameters θijck, as the maximization for θc is similar.247

Then, by taking the summand of Eq. (25) that depends only on the parameters θijck we have248

n∑
i=1

q∗i∑
j=1

ri∑
k=1

s∑
c=1

(αNijck + β
∑
c′ 6=c

Nijc′k) log (θijck)

=

n∑
i=1

q∗i∑
j=1

ri∑
k=1

s∑
c=1

Nij+ck log (θijck)︸ ︷︷ ︸
(a)

+((αNijck + β
∑
c′ 6=c

Nijc′k)−Nij+ck) log (θijck)︸ ︷︷ ︸
(b)

. (27)
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249

Observe that if Nij+ck ≥ N ′ then Nij+ck = αNijck + β
∑

c′ 6=cNijc′k. Thus the summand (b) in250

Eq. (27) is only different from zero when αNij+ck + β
∑

c′ 6=cNijc′k < N ′. In this case Nij+ck = N ′251

which implies that (αNijck + β
∑

c′ 6=cNijc′k) − N ′ < 0. So, the value for θijck that maximizes the252

summand (b) is the minimal value for θijck, that is, N ′

Nij+c
=

Nij+ck

Nij+c
. Finally, by Gibb’s inequality, we253

derive that the distribution for θijck that maximizes the summand (a) in Eq. (27) is θijck =
Nij+ck

Nij+c
. Since254

the maximality of the summands (a) and (b) is obtained with the same values for θijck, we have that the255

values for θijck that maximize Eq. (25) are given by θijck =
Nij+ck

Nij+c
. �256

The role of the pseudo-counts is to guarantee that the values Nij+ck or N+c cannot be smaller than257

N ′. By plugging in the parameters given in Theorem 3.8 in Eq. (26) into the aCLL criterion in Eq. (25),258

we obtain259

âCLL(G|D) =

s∑
c=1

αNc + β
∑
c′ 6=c

Nc′

 log

(
N+c

N+

)
+

n∑
i=1

q∗i∑
j=1

ri∑
k=1

s∑
c=1

αNijck + β
∑
c′ 6=c

Nijc′k

 log

(
Nij+ck

Nij+c

)
+Nγ (28)

The notation using G as argument instead of B emphasizes that once the parameters Θ are decided260

upon, the criterion is a function of the network structure G only.261

Finally, we show that âCLL is not score equivalent. Two BNCs are said to be equivalent if they can262

represent precisely the same set of distributions. Verma and Pearl [29] showed that this is equivalent263

to check if the underlying DAG of the two BNCs have the same skeleton and the same v-structures.264

A score-equivalent scoring criterion is one that assigns the same score to equivalent BNC structures265

[7,12,31].266

Theorem 3.9 The âCLL scoring criterion is decomposable and non-score equivalent.267

Proof: Decomposability follows directly from the definition in Eq. (28). Concerning non-score equiva-268

lence, it suffices to provide a counter-example where two equivalent structures do not score the same. To269

this purpose consider a BNC with two attributes (n = 2) and D = {(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)}270

as the training set. The structures G ≡ X1 → X2 and H ≡ X2 → X1 (we omitted the node representing271

the class variable C pointing to X1 and X2) for B are equivalent, but it is straightforward to check that272

âCLL(G | D) 6= âCLL(H | D). �273

Interesting scoring criteria in the literature are decomposable, since it is unfeasible to learn undecom-274

posable scores. On the other hand, both score-equivalent and non-score-equivalent decomposable scores275

can be learned efficiently, although the algorithms to learn them are different. In general, the score-276

equivalence property does not seem to be important, as non-score-equivalent scores typically perform277

better than score-equivalent ones [12,31].278
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4. Information-theoretic interpretation of the conditional log-likelihood279

Herein, we provide some insights about information-theoretic concepts and how they relate with the280

CLL. These results are well known in the literature [16,23], nonetheless, they are presented here in281

detail to provide a clear understanding that approximating the CLL is equivalent to approximating the282

conditional relative entropy. We refer the interested reader to the textbook of Cover and Thomas [10] for283

further details.284

The relative entropy is a measure of the distance between two distributions. The relative entropy,

also known as Kullback-Leibler divergence, between two probability mass functions p(x) and q(x) for a

random variable X is defined as

DKL(p(x) || q(x)) =
∑
x

p(x) log
p(x)

q(x)
.

This quantity is always non-negative and is zero if and only if p = q. Although interpreted as a distance

between distributions, it is not a true distance as it is not symmetric and it does not satisfy the triangle

inequality. However, it is a measure of the inefficiency of assuming that the distribution is q when the

true distribution is p. In terms of encoding, this means that if instead of using the true distribution p to

encode X , we used the code for a distribution q, we would need Hp(X) +DKL(p(x) || q(x)) bits on the

average to describeX . In addition, the conditional relative entropy is the average of the relative entropies

between the conditional probability mass functions p(y|x) and q(y|x) averaged over the probability mass

function p(x), that is,

DKL(p(y|x) || q(y|x)) = EX [DKL(p(y|X) || q(y|X)] =
∑
x

p(x)
∑
y

p(y|x) log
p(y|x)

q(y|x)
.

The relationship between log-likelihood and entropy is well established. Lewis had already shown285

that maximizing the log-likelihood is equivalent to minimizing the entropy [23]. In addition, Friedman286

et al. [16] came into the same conclusion and related it with the relative entropy. They concluded that287

minimizing the Kullback-Leibler divergence between the distribution P̂D induced by the observed fre-288

quency estimates (OFE) and the distribution PB given by the Bayesian network classifier B is equivalent289

to minimizing the entropy HPB
, and thus maximizing LL(B | D). In detail we have:290

LL(B | D) =
N∑
t=1

logPB(yt)

= N
∑
yt

P̂D(yt) logPB(yt)

= N
∑
yt

P̂D(yt) logPB(yt) +NHP̂D
(X)−NHP̂D

(X)
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= N
∑
yt

P̂D(yt) logPB(yt)−N
∑
yt

P̂D(yt) log P̂D(yt)−NHP̂D
(X)

= −N
∑
yt

P̂D(yt) log
P̂D(yt)

PB(yt)
−NHP̂D

(X)

= −NDKL(P̂D(X) || PB(X))−NHP̂D
(X). (29)

The second term NHP̂D
(X) in Eq. (29) is not affected by the choice of B, therefore maximizing LL(B |291

D) is equivalent to minimizing the relative entropy DKL(P̂D(X) || PB(X)).292

Friedman et al. [16] also hinted that maximizing the conditional log-likelihood is equivalent to min-293

imizing the conditional relative entropy. Assuming that A = X \ {C}, and for the case of BNCs, this294

fact can be taken from295

CLL(B | D) =
N∑
t=1

logPB(ct | y−t )

= N
∑
y−t

∑
ct

P̂D(y−t , ct) logPB(ct | y−t )

= N
∑
y−t

∑
ct

P̂D(y−t , ct) logPB(ct | y−t ) +NHP̂D
(C | A)−NHP̂D

(C | A)

= N
∑
y−t

∑
ct

P̂D(y−t , ct) logPB(ct | y−t )−N
∑
y−t

∑
ct

PP̂D
(y−t , ct) logPP̂D

(ct | y−t )

−NHP̂D
(C | A)

= −N
∑
y−t

∑
ct

P̂D(y−t , ct) log
P̂D(ct | y−t )

PB(ct | y−t )
−NHP̂D

(C | A)

= −N
∑
y−t

∑
ct

P̂D(y−t )P̂D(ct | y−t ) log
P̂D(ct | y−t )

PB(ct | y−t )
−NHP̂D

(C | A)

= −N
∑
y−t

P̂D(y−t )
∑
ct

P̂D(ct | y−t ) log
P̂D(ct | y−t )

PB(ct | y−t )
−NHP̂D

(C | A)

= −NDKL(P̂D(C | A) || PB(C | A))−NHP̂D
(C | A). (30)

Indeed, the main goal in classification is to learn the model that best approximates the conditional prob-296

ability, induced by the OFE, of C given A. It follows from Eq. (30) that by maximizing CLL(B | D)297

such goal is achieved since we are minimizing DKL(P̂D(C | A) || PB(C | A)) which is the conditional298

relative entropy between the conditional distribution induced by the OFE and the conditional distribution299

given by the target model B.300

In conclusion, since aCLL is a MVU approximation of CLL, by finding the model B that maximizes301

aCLL(B | D) we expect to minimize the conditional relative entropy between P̂D(C | A) and PB(C |302

A).303
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5. Experimental results304

We implemented the TAN learning algorithm (c.f. Section 2.1), endowed with the aCLL scoring305

criterion, in Mathematica 7.0 on top of the Combinatorica package [25]. For the experimental results,306

we considered optimal TAN structures learned with LL and aCLL under both (symmetric) uniform and307

Dirichlet assumptions. The main goal of this empirical assessment is to compare the CLL attained with308

these optimal structures, in order to unravel which one better approximates CLL. To this end, only the309

scoring criteria vary, and the searching procedure is fixed to yield an optimal TAN structure; this ensures310

that only the choice of the scoring criterion affects the learned model. To avoid overfitting, that arises311

naturally when complex structures are searched, we improved the performance of all BNCs by smoothing312

parameter estimates according to a Dirichlet prior [19]. The smoothing parameter N ′ was set to 5, as313

suggested in [16].314

We performed our evaluation on 89 benchmark datasets used by Barash et al. [1]. These datasets315

constitute biologically validated data retrieved from the TRANSFAC database [30] for binary classifi-316

cation tasks. The aCLL constants considered for the uniform assumption are those given in Eq. (13).317

The constants considered under the Dirichlet assumption are those given in Example 3.7, since all the318

datasets have size around 1000.319

The CLL of the optimal TAN learned by each scoring criterion was computed and it is depicted in320

Figure 1. From the figure is clear that the scoring criterion that obtained the highest CLL was aCLL321

under Dir(1,1,1000), followed by aCLL under Unif([0, p]2). To evaluate the statistical significance of322

these results we used Wilcoxon signed-rank tests. This test is applicable when paired scoring differences,323

along the datasets, are independent and not necessarily normally distributed [13]. Results are presented in324

Table 1. Each entry of the table gives the Z-test and p-value of the significance test for the corresponding325

pairs of BNCs. The arrow points to the superior scoring criterion, in terms of higher CLL. From Table 1

Table 1. Wilcoxon signed-rank tests for the CLL score obtained by optimal TANs.

Searching TAN TAN
Score LL aCLL

Assumption Unif[0, p]2

TAN 7.08 6.84
aCLL 7.21× 10−13 3.96× 10−12

Dir(1,1,1000) ⇐ ⇐

TAN 3.52
aCLL 2.15× 10−4

Unif[0, p]2 ⇐

326

it is clear that aCLL is significantly better than LL for obtaining a model with higher CLL. In addition,327

the Dirichlet assumption is more suitable than the uniform one for learning BNCs.328
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Figure 1. CLL score achieved by optimal TANs with different scoring criteria.
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6. Conclusions329

In this work we explored three major shortcomings of the initial proposal of the aCLL scoring criterion330

[5]: (i) it addressed only binary-classification tasks; (ii) it assumed only a uniform distribution over331

the parameters; (iii) in the context of discriminative learning of BNCs, it did not provide the optimal332

parameters that maximize it. The effort of exploring the aforementioned limitations culminated with333

the proposal of a non-trivial extension of aCLL for multi-classification tasks under diverse stochastic334

assumptions. Whenever possible, the approximation constants were computed analytically; this included335

binary and ternary classification tasks under a symmetric uniform assumption. In addition, a Monte-336

Carlo method was proposed to compute the constants required for the approximation under a symmetric337

Dirichlet assumption. In the context of discriminative learning of BNCs, we showed that the extended338

score is decomposable over the BNC structure and provided the parameters that maximize it. This339

decomposition allows score-based learning procedures to be employed locally, turning full (structure and340

parameters) discriminative learning of BNCs very efficient. Such discriminative learning is equivalent341

to minimizing the conditional relative entropy between the conditional distribution of the class given the342

attributes induced by the OFE and the one given by the learned discriminative model.343

The merits of the devised scoring criteria under two different assumptions were evaluated in real344

biological data. These assumptions adopted a symmetric uniform and a symmetric Dirichlet distribution345

over the parameters. Optimal discriminative models learned with aCLL both with symmetric uniform346
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and symmetric Dirichlet assumptions, showed higher CLL than those learned generatively with LL.347

Moreover, among the proposed criteria, the symmetric Dirichlet assumption also showed to approximate348

CLL better than the symmetric uniform one. This was expected as the Dirichlet is a conjugate distribution349

for multinomial sample, which ties perfectly with the fact that data is assumed to be a multinomial sample350

when learning BNCs.351

Directions for future work include extending aCLL to unsupervised learning and to deal with missing352

data.353
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