Protocol Insecurity with a Finite Number of Sessions and
a Cost-Sensitive Guessing Intruder is NP-Complete

Pedro Adao®!, Paulo Mateus®!, Luca ViganoP2*

*SQIG-IT and IST-TU Lisbon, Portugal
b Dipartimento di Informatica, Universita di Verona, Ttaly

Abstract

Guessing attacks in security protocols arise when honest agents make use
of data easily guessable by an intruder, such as passwords generated from
a small dictionary. A way to model such attacks is to formalize a Dolev-
Yao style model with inference rules that capture the additional capabilities
of the intruder concerning guessable data. In this paper, we formalize a
cost-sensitive intruder deduction system where information is available at a
cost. The intruder may apply standard operations to deduce new messages
from his current knowledge, or invoke an oracle rule that allows him to get
hold of data that was previously unknown to him. Our system manipulates
data items by means of inference rules and uses labels to keeps track of the
costs associated to the application of each rule. This allows us to answer the
question of what is the cost of deducing a particular data that was meant to
remain a secret between honest protocol participants. We also investigate
the complexity of this quantitative insecurity problem and show that it is
NP-complete in the case of a finite number of protocol sessions.

Keywords: Security, Protocols, Guessing, Verification, Complexity

*Corresponding author
Email addresses: pedro.adao@ist.utl.pt (Pedro Addo), pmat@math.ist.utl.pt

(Paulo Mateus), luca.vigano@univr.it (Luca Vigano)

!Partially supported by FCT projects ComFormCrypt PTDC/EIA-CCO/113033,/2009
and PEst-OE/EEI/LA0008/2013.

ZPartially supported by the FP7-ICT-2009-5 Project no. 257876, “SPaCloS: Secure
Provision and Consumption in the Internet of Services”, and by the PRIN 2010-2011
project “Security Horizons”.

Preprint submitted to Elsevier July 29, 2013

1. Introduction

A Dolev-Yao (DY) intruder [13] is an agent who completely controls the
network over which security protocols are executed. He can impersonate
other agents, prevent messages from reaching their destination, or reroute
them to other agents. He can also generate messages from the knowledge
he has acquired and send them to any agent, or decrypt messages using his
knowledge. However, he cannot break cryptography, which is assumed to
be perfect, i.e., the intruder cannot break an encryption unless he knows the
corresponding key and cannot compute the content of a hashed message.
One of the core problems of security protocol analysis is thus the so-called
intruder deduction problem: given a state of the protocol execution, can the
intruder deduce a given message, e.g., one that is intended to be secret such
as a key shared between two honest agents? Deduction here is relative to
the terms currently in the intruder knowledge, i.e., relative to the closure
under a set of deduction rules of his initial knowledge augmented with the
messages that he has observed so far during the protocol execution.

Since the DY model abstracts away from cryptography, complexity, and
probability, it reduces attacks to unexpected protocol interleavings that
“leak” information to the intruder. Hence, following the terminology of [3,
13, 14, 15, 23], protocol security is reduced to checking a safety condition;
roughly speaking, is it true that the intruder never obtains some private
data? In general, for the case of an arbitrary number of protocol sessions
that can be executed in an interleaved way, the problem is undecidable since
the halting problem can be reduced to it (see, e.g., [15]). However, restrict-
ing it to a finite number of sessions, the problem of searching for such an
attack in the DY model is an NP-complete problem [23] and checking if a
protocol is secure is co-NP complete.

Guessing (or dictionary) attacks arise when an intruder exploits the fact
that honest agents executing a security protocol make use of certain data like
passwords that may have low entropy, e.g., stem from a small set of values,
and thus may be easily guessable by the intruder. One way to model such
attacks is to formalize a DY-style model with inference rules that capture
the additional capabilities of the intruder concerning guessable data, e.g.,
decrypting a message that is encrypted with a guessable password. Several
approaches (e.g., [2, 7, 8, 10, 11, 18, 19, 27]) have been given for formal
protocol analysis in the presence of an intruder who can perform off-line
guessing, i.e., an intruder that employs guesses when analyzing observed
messages.

In this paper, we follow an approach that differs from the previous ones

in that we extend the classical DY intruder model by formalizing a cost-
sensitive intruder deduction system where information is available at a cost:
to get hold of data he does not know, the intruder may invoke an Oracle rule,
which associates a cost to each data the intruder deduces in this way. As a
consequence, we effectively drop the perfect cryptography assumption as the
intruder is able to break cryptography, by guessing any message with the
help of the oracle, but in a traceable and controlled way. This is achieved by
our system manipulating data items (message terms) by means of inference
rules that keep track of the associated costs by using labels, so that we can
answer the question of what is the cost of deducing a particular data that
was meant to remain a secret between honest protocol participants. In other
words, in our approach the intruder deduction problem as formulated above
is not relevant anymore since any term can now be deduced via the oracle
rule. However, we can now focus on a different question: is it possible for
the intruder to deduce a message given a fixed budget? We also investigate
the complexity of this quantitative insecurity problem and show that it is
NP-complete in the case of a finite number of protocol sessions (i.e., for a
fixed number of interleaved protocol runs).

We proceed as follows. In §2, we define the language of our cost-sensitive
guessing intruder, introduce the rules of the proposed deduction system
based on rewriting, and discuss in detail the Oracle rule. In §3, we prove that
all deductions in our system can be reduced to a normal form that satisfies
a subterm principle, which characterizes the messages that may occur in a
deduction. In §4, we define protocol executions and attacks to protocols, and
in §5, we show that the resulting quantitative protocol insecurity problem
is NP-complete in the case of a finite number of protocol sessions. In §6,
we draw conclusions, discuss related work (§6.1) and compare the approach
that we chose to follow with some possible alternatives (§6.2), and close the
paper with some ideas for future work. Further examples and all proofs can
be found in the appendix.

2. Modeling Security Protocols and the Dolev-Yao Intruder

We define a deduction system, based on rewriting, that formalizes how
the intruder can manipulate the messages he knows in order to generate
new ones. We extend the classical DY intruder model by introducing an
Oracle rule that allows the intruder to guess any message in a deduction,
but at a cost. To keep track of the costs the intruder is incurring into in a
deduction, we let the rules manipulate not only the messages but also the
cost of generating new messages. The main aim of this deduction system is

not to increase the number of messages the intruder can deduce, as he can
obtain any message by an oracle call, but rather we are interested in how
to manipulate and minimize the costs of deducing these messages. Costs
thus represent a way to keep the use of the “omniscient” Oracle rule under
control (and thus to interpret the behavior of this new intruder).

2.1. Language

Let V be a set of variables and ¥ a set of function symbols, which is the
union of disjoint sets (J,,cyy Xn, Where ¥g is the set of atomic messages (or
Atoms, for short) and ¥, for n > 0 is the set of n-ary function symbols.

Definition 2.1 (Message terms). The set Mx (V') of message terms (or mes-
sages, for short) is defined inductively as follows: Atoms C Mx(V); V C
Mx(V); op(ma,...,my) € Ms(V)ifop € Ey, and {m1,...,mp} C Mx(V).

We assume given a set of atomic keys Keys C Atomssuch that if k € Keys
is a public key (respectively, private key), then k~! € Keys and k=1 denotes
the corresponding private key (respectively, public key).

Our results are general and independent of the particular language but,
for brevity, in the following we will focus on the operators usually consid-
ered in protocol analysis and thus consider messages that are atomic or are
composed (i) using pairing, denoted by (mj,mg) or, when there is no risk of
confusion simply “mj,mo”, or (ii) using the cryptographic operators {mi }m,
for the asymmetric encryption of my with ma, {{mq[},, for the symmetric
encryption of my with mg, or mq(mse) for the application of the (possibly
composed) function m; to the message mo, representing a hash-function or
keytable. Any message m can be used as a key for symmetric encryption
but only messages from Keys can be used for public-key encryption.

Other operators can be added in a straightforward way. Moreover, we
consider the distinguished finite subset Names C Atoms to represent agent
names, including the name of the intruder Charlie; we could also consider,
as is often done, a distinguished subset Fresh, used for the generation of
fresh data, but this is not required for our results.

We can adapt the standard notions of ground term, subterm, and degree.
Let vars(m) be the set of all the variables in a message m. A message m
is ground if it has no variables, i.e., vars(m) = {}, and the set of ground
messages is represented by Myx. The set st(m) of subterms of a message
is the set of message terms that are subterms of m, including m itself. A
toplevel subterm is an immediate subterm of a term, e.g., mj(mz) and ms are
the toplevel subterms of {mj(m2)}m,. The degree of a message m is defined

Gpair({m1,m2)) : mi, ma — mi, ma, (m1,mz)
Gerypt({mitm,) « my, ma = m1, ma, {M1}m,
Gserypt({malm,) - my, ma = m1,ma, {{miltm,
G appiy(mi(maz)) : mi, ma — m1, ma, mi(ms2)
Apairjie(1,2y((m1,m2)) : (m1,m2) - (m1,ma), m;
Acrypt({ma}ms,) - {m1tmy myt = {mamy, my ! ma
Apifmad,, 1) {mi},1ome2 = {ma},mam
Aserypt({malbm.,) - {miltms, m2 = {milm,, ma2, ma

-1

crypt We have that ma, mgl € Keys.

where in Acrype and A

Figure 1: Deduction Rules for the Classical DY Intruder

recursively as deg(Charlie) = 0, deg(m) = 1 for all m € Atoms\ { Charlie},
and for an op € X, deg(op(mi,...,my)) =1+ deg(mq) + - -+ deg(my). A
(ground) substitution o assigns to each variable a (ground) message, where
the application of a substitution ¢ to a message m is denoted by mo. We
extend these notions to sets of messages in the expected way, e.g., Mo =
{mo | m e M}.

Definition 2.2 (Interpretation of Terms). Let us consider a function v
that provides the interpretation of the terms of our language. Messages
are then simply interpreted in the free algebra of messages: v(m) = m and
(M) ={v(my),..., v(imy)} =M for M ={mq,...,mu}.

2.2. Deduction Rules

In Figure 1, we show the standard (e.g., [4, 23]) rewriting rules for a
classical DY intruder, which are divided into two groups: (i) Generation
rules (or G-rules), which express that the intruder can compose messages
from known messages using pairing, asymmetric and symmetric encryption,
and function application, and (ii) Analysis rules (or A-rules), which describe
how the intruder can decompose messages.

We name rules accordingly, e.g., Gserypt and Ageryps are the G-rule and
A-rule associated with the symmetric encryption operation, respectively.
Note that no rules are given that allow the intruder to analyze function
applications, e.g., to recover my from mj(msz). Note also that each of our
A-rules is such that the conclusion is always a subterm of the premise that
is decomposed, that the other premise or its inverse is also a subterm of
the premise that is decomposed, and that each of our G-rules is such that
its premises are subterms of the conclusion and all toplevel subterms of the
conclusion are premises of the rule; this will be exploited in several of the
results below (e.g., Theorems 3.3 and 3.6).

Although we have not yet defined deductions (which we will do in Def-
inition 2.5), the following example should be understandable enough to il-
lustrate the main ideas underlying our approach.

Example 2.3. Assume that the intruder knows the messages Sy = {Np,
{{m1, Na)[}x} and wishes to build the message (Nq, Ny). Clearly, a classical
DY intruder cannot do that, as can be formally shown by considering that the
only possible deduction from Sy aiming to obtain (N,, Ny) in this deduction
system is the following one:

N, {{m1, Na)[}x

—2 Ny, {|{m1, Na)lti, 7k

= Ayergpt (D (m1 . N) Noo 1{ma, Na)lte, 7k, (ma, Na)

= Apair,2((m1,Na)) Ny, {{{m1, Na) &, 7k, (m1, Na), Na

= Gpain((Na, Np)) Ny, {{{m1, Na) ks 2k, {m1, Na), Na,(Na, Np)

This deduction s, however, incomplete, in the sense that the key k is not
known and thus remains as an open assumption (as highlighted by the “?” in
front of the term and in the inference rule). But our cost-sensitive intruder
has the possibility of asking for the help of an oracle and we can thus complete
the deduction as follows:

Ny, {l{m1, Na)lhx
— Oracle(£1:k) Ny, {Kml:NaH}k’ k
= Aergpr(la:{l(m1 N) Noo {(m1s Na) iy by (ma, Na)
= Apair,2 (€3:(m1,Na)) N, {{m1, Na) b, k; (m1, Na), Na
= Gpair (£4:(Na, Np)) Ny, {{m1, Na) [k, k, (m1, Na), Na,{Na, Np)

where we justify the intruder’s use of the key k for message decryption by
means of the Oracle rule and keep track of the costs of the inference by
adding labeled messages as parameters of the rules. So, in order to capture
situations like this, we just need to explain how to deal with the Oracle rule
and with the labeled messages.

The deductive power of our cost-sensitive intruder is in all similar to
that of the classical DY intruder, since the way the message terms are ma-
nipulated remains the same. The crucial difference is the possibility that
the intruder has to increase his knowledge at any point in a deduction, if
he is willing to pay a price for the added information, which we formalize

3In fact, to show that no other deduction is possible, one should exploit formal results
on the normalization of the deductions in the classical DY setting, which are widely
available, e.g., [23]; we return to this below.

Gpdir(prmr (ml,mg) : (m1,m2>) : mi, ma — mi, m2, (m1,m2>
GC?'yﬁt(chrypz(mth) t{mi}m,) ¢ mi, M2 — m1, m2, {M1}m,
G serypt(fGaerypr (M1, m2) ¢ {IM[bmy) - mi, ma = m1,ma, {{m1ltm,
Gu‘pply(fcapply (ml,mz) : ml(mg)) : mi, m2 — mi, ma, ml(mg)
Apair,i (fA g, (M1, m2)) © (M1, m2)) : (m1,ma) — {(m1,ma2), m;
ACTyPt(fAcwpt({ml}mzvmgl) t{mitm,) {m1}m, 7m51 = {mi}m,, m;l, mi
Ay ar (i cvoma) s b,)5 {mad,cme = {ma, oo, ma,m
Aserypt(FAgerpe (M1 ltmg, m2) : {malme) 0 {malme, m2 = {milmy, mo, ma
Oracle(foracte(m, M) : m) : — m

where in Acrypt and Ac_épt we have that ma, m2_1 € Keys and the Oracle rule has the side condition

that m is ground, i.e., m € My.

Figure 2: Deduction Rules for the Cost-Sensitive Intruder

by exploiting the labels in the parameters of the rules. The rules of our
cost-sensitive intruder, deducing messages and keeping track of the costs via
labels, are given in Figure 2, where for simplicity we have used the same
names as in Figure 1. In this case, rules have the form

/
XU:m): mi,...,mp —>mi, ..., Mp, M

and tell us that with rule X we can deduce the conclusion m/, with cost
¢, from the premises my, ..., m,, where m is either the conclusion of the
rule (G-rules and Oracle) or the decomposed premise of the rule (A-rules).
To each rule X, we associate a function fx that assigns a cost £ to the
conclusion of X.

We will use X (£:m), G(¢ : m), and A(¢ : m) to refer respectively to an
arbitrary rule, an arbitrary G-rule, and an arbitrary A-rule. We may also
omit the parameter ¢ : m when not necessary for the discussion.

At each step during the execution of a protocol, the intruder increases
his initial knowledge (consisting of his own public, private, and shared keys,
his own name and the names and public keys of agents, hash functions,
etc.) with the messages that he observes during the execution, as well as
with the messages that he deduces from his current knowledge, and with
the messages obtained via oracle calls. Formally, every time the intruder
deduces a new message, he has to pay a price for the new information. Hence,
our inference rules manipulate messages (as premises and conclusions) and
labeled messages (¢, m) that are composed of the message term m, that is
either the conclusion of the rule (G-rules and Oracle) or the decomposed
premise of the rule (A-rules), and of a label term ¢, which represents the

cost of deducing that message. For brevity, we will often refer to label terms
and labeled message terms just as labels and labeled messages.

To generate the label terms, we consider a set of function symbols, one
function fx for each rule X of the system, where the arity of fx is the
number of premises of X, except for the function fo,qce(m, M) of the oracle
rule, which takes as argument the guessed message and the current intruder
knowledge (we will return to this in §2.3 in more detail). The intuition is
that fx = ¢ represents the cost of deducing m when applying the rule X .4

Definition 2.4 (Rules: Principal Terms, Minor and Major Premises). Each
rewriting rule X (¢ : m) : lhs — rhs has an argument m, also called the
principal term of the rule, and a parameter £ : m that associates, via the
function fx, a cost £ to the application of this rule, and has on the left-hand
side (lhs) its premises and on the right-hand side (rhs) its conclusions. We
call the premises of an A-rule minor premises except for its principal term,
which we call its major premise.

For simplicity, we may also use X (¢ : m) : my,...,m, — lhs,m’ or even
X (€ :m) : lhs — lhs,m’ to avoid (re-)writing the lhs of the rule. We may
also call m’ the conclusion of the rule ignoring the conclusions that are also
premises.

We adapt some standard definitions and results. Having labeled mes-
sages instead of simply messages, albeit only as parameters of the rules,
requires us to define how we interpret the labels (message terms are inter-
preted in the free algebra of messages, as we defined above). We thus assume
that the interpretation v also assigns values to labels.

Definition 2.5 (Deductions). Given a set M of messages, we write M —x
M’ if there exist sets lhs and rhs of messages and a rule X : lhs — rhs such
that ths C M and M' = M U rhs.

A deduction II of a message m from the set of messages M, denoted by
M m, is a sequence My —x, M1 —x, ... =x, M, such that m € M,
and where Mo = M. We say in this case that I1 has length n, goal m, and
(abusively) that each X; € 1.

If, for some i, X; = A(: m), then we say that m is decomposed in II;
if X; = Oracle(foracie(mi, M;—1) : m;), then we call M;_y the support-set

4 Alternatively, but at the cost of additional technical complexity, we could also consider
a set of introduction functions, which tell us the initial cost of a message, and propagation
functions, which tell us how costs are propagated from hypothesis to conclusions of rules.

of Xi. We also define msg(Il) = U} M, and the total cost of deduction
o(II) =300 {v(4) | Xi(€; - m;) € I} to be the sum of all cost labels.

Note that in our rules, [hs(X) C rhs(X) so, given a deduction II =
My —=x, My —x, ... =X, My, we have, for all i, that M; C M;; and
msg(Il) = M,,.

In this paper, we give an abstract presentation and do not commit our-
selves to particular cost functions nor to a fixed interpretation function v,
whose choice largely depends on the case study under consideration. We just
generically require that the oracle function forqce is interpreted as a cost
function that satisfies forqce : (Msx) x P(Msx) — R, and that every other
function fy is interpreted as a cost function that satisfies fy : (Mx)" Rar,
where n is the number of premises of X. We also require that all cost func-
tions are computable in polynomial time.

Example 2.6. For example, we could consider the cost of pairing, fa, ..
simply to be the sum of the sizes of messages mi1 and mo. That is, we could
refine the Gpair Tule of Fig. 2 to

G’pa"((sum(size(mﬂ,size(mz)) i {mi,me)): mi,me — mi, ma, (M1, ma)
assuming that v(sum) = + and v(size) =|...|, where |m| computes the size

of a message m. Similarly, we could have the cost of symmetric encryption
be a multiplication

Glorypt ((times(size(ma), size(mz2)) : {milbmy) 1 M1, m2 = ma, ma, {miltm,
with v(times) = x.5
For concreteness, using the rules of the cost-sensitive intruder, we can
rewrite the deduction of Fxample 2.3 as

Ny, {{{m1, Na) bk
= Oracte(foracte (ks {Ny, {1 (m1,Na) i }): k) Np, {{(m1, Na)lpr, k
= Aserypt(Fa oy (U m1, Nad e, k): 1(ma Nad i) Voo 14m1, Na) Bk, K, (ma, Na)
= Apair 2 (Fayy ((m1,Na)): (m1,Na)) Np, {{{m1, Na)x, k, (m1, Na), Na
= Crair (G (NasNo): (NayNp)) Ny, {l{m1, Na)[tx, k, {m1, Na), Na,(Na, Np)

5We could even add special rules for the case when ms = m; so that the result of
pairing and encryption is just the size of mq, i.e.,

Glp’alr(‘gize(ml) : <m17m1>) : mi — mzi, (m1,m1>

Gloypr(size(ma) : {maltmo) 0 m1 = ma, {maftm,
We believe that, in this context, it will be particularly interesting to consider possible
connections to, and synergies with, [5], in which Baudet extends existing Dolev-Yao models
with systems with computation times and probabilities to account for random polynomial-
time computability. We leave this investigation for future work.

and if the cost of pairing and of symmetric decryption is given by addition
and multiplication, respectively, and the cost of projection is 0, then the cost
of deducing (Ng, Np) is

foracte(k; {No, {|{ma; Na)[tx}) + (I(ma, Na)i| < [K[) + 0+ (|Na| + | Ny|)

Given that the Oracle rule is at the core of our approach, we discuss in
detail the requirements for its cost function in the following subsection.

2.3. The Oracle Rule

The idea behind the Oracle rule is to allow the intruder to make use of
any ground message m € My (cf. the rule’s side condition) at any point in a
deduction. We do not restrict the use of this rule and so the intruder is free
to make as many Oracle calls as he needs to proceed with a given deduction.
It is clear that this is a very powerful rule and provides an unrealistic solution
to the intruder deduction problem: can a given message be deduced from the
current intruder knowledge?® For this rule to make sense, we thus need a
way to control its application and consider the costs the intruder incurs into
when applying it, and at the same time to reformulate the problem itself.
The interesting question is not what message can be deduced with the Oracle
rule—as all ground messages are—but rather what is the cost of deducing
it. Each application of the rule incurs into a cost and it is our goal to see
what can be deduced within a certain budget. This amounts to the following
optimization problem:

Problem 2.7 (Quantitative Intruder Deduction Problem). Given a set of
messages M, a goal m € Msx, and a budget v € R, is there a deduction
M Fm such that v(M Fm) <~?

In §5, we study the complexity of this problem and show that is NP-
complete. To that end, let us formalize the properties we require of the
Oracle rule. For any set M of messages and goal m € My, we require the
cost function foreere to satisfy the following condition:

mecle(mv M) > Card(St(Ma m)) (1)

SFor instance, returning to Example 2.3, another possible deduction of (N, Np) is just
OTaCle(fOracle(<Naa Nb)7 {Nlﬂ {‘<m17 Na)l}k}) : <Na7 Nb)) : — (Na7 Nb>

since it is always possible to deduce any ground message in one step using the Oracle rule.

10

The rationale behind this condition is that to apply the Oracle rule the
intruder needs at least to “read” the messages in the support set M and
to “write” the result. In §6.2, we present alternatives to this condition
discussing the advantages and disadvantages of the different solutions.

Having justified and explained the Oracle rule, we can take stock and
describe our approach in more detail. In a nutshell, the deduction system
we introduced amounts to extending the classical DY intruder model by
allowing attacks on cryptography. This is so since in the classical model
the intruder can only decrypt messages if he knows the corresponding key,
but with the Oracle rule we have given the intruder access to any message,
in particular any key, at a cost to be determined by the oracle (e.g., it is
not unreasonable to assume that passwords or weak keys can be broken in
feasible time, if enough resources are allocated to the task). Our work is
thus motivated by questions such as: Can focused brute-force attack expose
a vulnerability in a security protocol, if it is performed against the right
key in the right moment? And, assuming that the intruder has access to an
unusual amount of computational resources for a limited time, which is the
best way for him to use these resources to attack a protocol?

By assuming that cryptography can be subjected to an attack and al-
lowing the intruder, through the Oracle rule, to make use of any message
and quantifying the effort necessary to obtain it, we thus provide a formal
system to reason about protocol attacks triggered by the use of poorly pro-
tected data, i.e., data that is retrievable by investing an acceptable amount
of resources.

3. Normal Forms and Subterm Principle

Results on the normalization of deductions in the classical DY setting
are widely available, e.g., [23]. Deductions are transformed and shaped in a
canonical way, its normal form, by removing unnecessary rule applications
and eliminating redundancies. In our case, we prove a normalization result
for our labeled deductions by extending the results applied in the classical
case. This extension is, however, not trivial as we must take into account
the labels and thus, ultimately, the cost of the original deduction and the
normalized one.

3.1. Normalization

In general, normalization is based on the observation that the A-rules
are, in a sense, the inverse of the corresponding G-rules: applying an A-
rule to the conclusion of a G-rule essentially restores what had already been

11

established. This relationship between A-rules and G-rules is called the
tnwversion principle. If this principle is not taken into account, then it is
possible to have arbitrarily long deductions simply by combining G-rules
and A-rules. However, by taking the principle into account, we can reduce
a deduction to some normal form, provided that we take care of the labels
and of the possible detours introduced by the Oracle rule.

Definition 3.1 (Non-Optimal Application of Rules, Normal Deductions).
Given a deduction II of m, of the form My —x, M1 —x, ... —x, My, we
say that X; € 11 is applied non-optimally if one of the following holds:

(i) m € M;_1; or
(11) Ml = Mifl,‘ or
(iii) i <mn, m; € M; \ M;—1 and for alli < j,5' < n, X; is not an Oracle
rule and m; & lhs(Xj).

A deduction M F m is normal if does not contain non-optimal application
of rules.

A deduction is “compressed” if one can remove all its non-optimal appli-
cations of rules. Condition (i) ensures that we do not perform any further
step as soon as our goal is reached, whereas (ii) ensures that each rule appli-
cation increases the intruder knowledge by adding at least one new message.
Condition (iii) ensures that we do not deduce unnecessary messages unless
an Oracle rule is applied in the future, in which case the deduced message
is needed as it may reduce the cost of the Oracle deduction.

As a consequence of Definition 3.1, we can show in Proposition 3.2 that
we never apply an A-rule to a message that resulted from a previous appli-
cation of a G-rule, and vice-versa, as this would restore what had already
been established.

Proposition 3.2. Let Il be a normal deduction My —x, M1 —x, ... =x
M,,. Then

n

(i) if Xi = A(¢; - m;), then there is no j < i such that X; = G({; : m;);
(i) of Xy = G(4; : my), then there is no j < i such that X; = A({; : m;).

Contrary to the classical case where finding a normalization procedure is
enough, in our case we also need the normalized deduction to not increase the
cost of the deduction. This is because we want to study minimal attacks and
so normalized deductions should be at most as costly as the original ones.
We can now extend standard results of proof theory and give a normalization

12

procedure that yields a normalized reduction by removing redundancies and
unnecessary rule applications from the deductions.

Theorem 3.3 (Normalization). If II is a deduction M + m, then there
exists a normal deduction M + m, denoted by IT', such that v(I") < v(II).

3.2. Subterm Principle

In this subsection, we show that the messages in any normal deduction
that does not use the oracle rule are subterms of its premises or of its con-
clusion. This is especially important since it bounds the number of terms
that need to be deduced and the number of rules that need to be applied in
a deduction, a fact that is fundamental to establish decidability and com-
plexity bounds for our cost-sensitive intruder. The number of applications
of the Oracle rule is then bounded via a complexity argument.

Proposition 3.4. Let II be normal deduction M +m. If m; is decomposed
in I, i.e., is a major premise of an A-rule, and there are no previous ap-
plications of the Oracle rule, then m; is a subterm of a labeled message in
My = M.

We can exploit Proposition 3.4 to show a property about subterms and
then the subterm principle theorem.

Proposition 3.5. Let Il be a normal deduction M = m with no applications
of the Oracle rule. Then, for any m; € msg(Il), either (i) m; is a subterm
of a message in My or (ii) m; is not decomposed in I1 and is the conclusion
of a G-rule in II.

Theorem 3.6 (Subterm Principle). Let II be normal deduction M + m with
no applications of the Oracle rule. Then, every message in msg(Il) is either
(i) a subterm of the conclusion m or (ii) a subterm of a message in M.

Remark 3.7. Throughout the rest of this paper we will assume, without loss
of generality, that all deductions are normal.

4. Protocol Specifications and Protocol Attacks

To focus our attention on the problem of protocol (in)security, we first
need to formalize what protocol specification and execution are. We will be
brief, as these definitions are quite standard.

A security protocol can be defined as an ordered sequence of steps for each
principal, i.e., as a finite partially-ordered set of execution steps (W4, <4)

13

for each protocol agent A. An execution step is a pair of terms R = S that
represents that whenever message R is received by the agent, it replies with
message S. A protocol specification is then given by

{(z,RZ:>Sz) |i€I},

where the set Z = {(A,w) | A € Names and w € W4} is the execution
order. We denote by |Z| the size of the protocol. We use dummy messages
Init and End to initiate and close a protocol session. We also require that
the variables occurring in S; were already instantiated in a previous step
(of the principal), i.e., that, for all A € Names, we have vars(S(4.,)) C
legAw vars(R(AM/)).

A correct execution order is a one-to-one mapping w : Z — {1,...,|Z|}
that respects the partial order of each agent, i.e., for all A € Names and
Jj <aj we have w(A,j) < w(A,j"). We can also consider the partial order
(Wjj, g’;l) to specify k protocol sessions of an agent A where (wy, ..., wy) gﬁ
(wy, .. wy) ifwy <qwjforallj € 1...k,ie., each of the k sessions respects
the agent’s partial order.

An execution environment for a protocol is a set of messages E. A ground
substitution o, a correct execution order w, and a sequence of execution
environments Ey, ..., Fj7) define a protocol evecution if (i) Init € Ey, (ii)
End € E‘I|, and (iii) forall1 < k < |I’, wal(k)(f € Fr_1 and Swfl(k)O' € Ey

Note that, as we are considering a finite number of sessions, we may
assume that all nonces generated by the agents are already in their initial
knowledge.

Let us now consider attacks. An attack to a protocol is no more than
a correct execution of the protocol where the attacker interacts with the
protocol, collects information, and from that information is able to retrieve
some secret term. In our case, in addition to the standard monotonicity
property of the deduction, we also need to consider that, if a term was
deduced (and consequently payed for) in an earlier step of the attack, the
cost of deducing it again should be 0. To account for this, we explicitly add
those terms to the intruder knowledge after each step of the attack. We
show, however, that with these extra hypothesis the deductive power of the
intruder is the same and only the cost of deduction decreases.

Proposition 4.1. We have a sequence of deductions II; = { Moy, ..., M;_1}U
msg(Il1)U---Umsg(ILj_1) = m;j, for j > 1, if and only if we have a sequence
of deductions 1L, = {My, ..., M;_1} = m;. Moreover msg(Il;) = msg(IL;").

Definition 4.2 (Protocol attack). Let P = {(i,R, = S.) | i € I} be a
protocol specification, m € My, a secret term, and Sy 2 { Charlie} a set of

14

messages that constitutes the initial intruder knowledge. Moreover, assume
that there exists a ground substitution o and an execution order w : LT —
1,...,k, such that for allj € 1,. ..k, I1; is the deduction {Syo, ..., Sj_10}U
msg(Il1) U -+ - Umsg(Ilj_1) = Rjo and II is the deduction {Syo,...,Sxo} U
msg(Il) U - - - U msg(Ily) = m, where R; = R:J_l(j) and Sj = Salu—l(j)'

We say that o and w constitute an attack on protocol P that exposes
the secret m when the initial intruder knowledge is So. Further, the cost of
this attack is computed by adding the intermediate costs of each deduction
plus the cost of deducing the secret, i.e., attackCost = 2?21 v(I;) + v(II).

To simplify our notation, when in the presence of a protocol attack (o,w),
we will use Hyp; to denote {Spo,...,Sj—10} U msg(Ily) U -+ U msg(Il;_1)
and Hyp; to denote {Syo,...,Sj-10}.

Note that in fact a protocol attack also depends on the II; as attackCost
depends on that. However, and in order to simplify our discussion, we will
consider an attack to be composed of just (o, w) rather than (o, w, {II;};,II).

We can now define the Quantitative Protocol Insecurity Problem.

Problem 4.3 (Quantitative Protocol Insecurity (QPI) Problem). Given a
protocol specification P, initial intruder knowledge Sy, a goal m € My, and
a budget v, is there a ground substitution o and an execution order w such
that (o,w) is an attack to P and attackCost < ~?

5. The Quantitative Protocol Insecurity Problem is in NP

In this section, we give our main result by proceeding as follows. We
start with the definition of normal attack and with the introduction of the
relevant complexity notions and restrictions that our cost functions need
to satisfy. Then, we show that for deductions that do not use the Oracle
rule, o(z), for all x € V, is unifiable with some term already in the protocol
description. This allows us to bound the size of the substitutions and we
do that reusing a result from [23]. We can then bound the size of attacks
(for deductions that do not use Oracle) in terms of the number of messages
and length and, using a complexity argument, we extend these to arbitrary
deductions. We conclude this section proving that the QPI Problem is NP-
complete. Let us start with some preliminary definitions.

A finite multiset over natural numbers is a function ms : N -+ N with a
finite domain. We will denote by {1,1,2,2,2,4} the function ms such that
ms(1) = 2, ms(2) = 3, ms(4) = 1 and ms(z) is undefined for all other x € N.
We extend the ordering in N to multisets as ms; <;,s mso if (1) ms; # msa,

15

and (ii) if for some x, msi(x) > msa(z) then there exists y > x such that
ms1(y) < msa(y). As an example {2,2,2,2,4} <,,s {1,5}.
We can then define normal attacks as the “simplest” and “cheapest”.

Definition 5.1 (Normal Attack). Given a protocol specification P = {(i, R}
= S)) | i € I}, an attack (o,w) is normal if there is no other attack (o*,w*)
such that {deg(Ric*),...,deg(R;0*)} <ms {deg(Ri0),...,deg(Ryo)} and

attackCost™ < attackCost, where R; = R;_l(j) and S; = SZJ_1(]-), and R} =
Rc/u*_l(j) and S = S:J*_l(j).

By well-foundedness of <,,s over non-negative integers, if there is an
attack, there is also a normal attack. Note, however, that the existence of a
normal attack is not unique and that two attacks may be incomparable.

5.1. Cost after Substitution by a Simpler Message

In order to prove our results, the cost-functions need to satisfy one extra
property that requires that if one replaces a message by another one with
a smaller degree, then the cost of the new deduction should be at most the
same as the cost of the original one. So, let II be a deduction M F m
that does not use the Oracle rule, messages mi,my € Msx be such that
deg(ma) < deg(my), and td be the message obtained from ¢ after replacing
m1 by ma. We require that if II° is the deduction M F mé then

o(I1%) < v(I0). (2)

We show in Lemma 5.3 that a sufficient condition for the existence of
M F mé is that my is never decomposed in II.

We can easily see that if the rules used in II° are the same as the ones
used in IT (up to §), a sufficient condition that enforces (2) is to require each
of the resulting rules to cost less than the original one, that is,

,U(pra,z'r,i (m/(s)) S U(prair,i (m,)) Y
v(fop(m'8,m"8)) < w(fop(m',m")) for all the other operators.

While these latter restrictions are point-wise and not over a deduction, hence
easier to check, they are more restrictive as there are cost-functions that
could satisfy (2) and not satisfy them. For that reason, we leave (2) as the
required property.

16

5.2. Bounding the Size of Messages used in Attacks

We can now bound the size of normal attacks. Suppose that there exists
an attack (o,w) against P and let as usual R; = R;,l(i) and S; = S:U,l(i)
for all ¢ € {1,...,k}. Define st(P) as the set of subterms of the terms in
SoU{R;,S; | j =1,...,k}, and st<;(P) as the set of subterms in Spo U
{Rjo,Sjo | j = 1,...,i}. Recall that we also assumed Charlie € Sy and
deg(Charlie) = 0. By definition of (o,w) being an attack, we have that
(i) for all 1 < j <k, Hyp,; - Rjo, and (ii) Hypy 1 = m. Let us call II; each
such deduction. By Remark 3.7, we may assume without loss of generality
that each 1I; is normal.

Definition 5.2. Lett andt' be two terms and 6 a ground substitution. Then
t is a B-match of t’, denoted by t Co t', if t is not a variable and t0 = t'.

The next lemma is one of the fundamental results as it bounds the size
of the substitutions in normal attacks. In particular, we show that substi-
tutions in normal attacks, also called normal substitutions, only use terms
already in the protocol specification, hence bounded by the size of the speci-
fication of the protocol. The proof is adapted from the one in [23] considering
both the costs of deductions and the size of its conclusions. The proof strat-
egy is the following. We assume, for the sake of contradiction, that given a
normal attack (o,w), there is a variable = such that o(x) is not unifiable with
any subterm (different from a variable) of the protocol specification. We first
show that x € st(R;) for some i and that o(x) € msg(Il;) (Claims Appendix
A.1 and Appendix A.2). We then show that o(z) is never decomposed in
the deductions IT; (Claim Appendix A.3), and finally that replacing o(x) by
a “simpler” message yields a “simpler” attack contradicting the normality
of the attack (o,w).

Lemma 5.3. If (0,w) is a normal attack that does not use the Oracle rule,
then, for all variables x € V, there exists t € st(P) such that t C, o(x).

Consider now the Directed Acyclic Graph (DAG) representation of mes-
sages as in [23], where the nodes of the graph are the subterms of the
message, and the edges are defined from terms to their subterms, i.e.,
op(my,ma) —; my.

We can remark immediately that the DAG-representation of a message
is unique, and that if n = card(st(m)), then the DAG-representation has at
most n nodes and 2n edges. We write |m|pag to denote the DAG-size of m
and extend it to sets in the trivial way. We have that the DAG-size of a set
is the number of (distinct) subterms of E, i.e., |[E|pag = card(st(E)).

17

Theorem 5.4. If (o,w) is a normal attack that does not use the Oracle
rule, then we have for all x € Var, |o(x)|pac < |P|pac-

5.83. Bounding the Size of Attacks

We can now compute the maximum number of messages, and their re-
spective size, that an intruder needs to deduce when creating an attack.

Throughout the rest of the paper, we will assume that P = {(i, R} =
S!) |4 € I} is a protocol specification with a finite set of variables V', and
that (o,w) and deductions IIy, ..., II, IT form a normal attack with initial
intruder knowledge Sy that exposes m € My. Recall also that each II; is a
deduction Hyp; - Rjo and Il is a deduction Hypy, F m.

The next proposition follows straightforwardly from Theorem 5.4 know-
ing that |R;,S!|pac < |P|pac for all i = 1,... k. For this proposition, it
is essential to use DAGs in order to compress the representation of sets of
terms.

Proposition 5.5. There exists a polynomial ppmsg(-) such that if (o,w) is a
normal attack against P that does not use the Oracle rule, then the mazximum
number of messages that the intruder needs to deduce is bounded by ppsq(n),
where n. = |P, Sy, m|pag, that is, |msg(Ily),..., msg(Ilx), msg(Il)|pac €
O(Pmsg(n))-

We can now limit the number of rewrite rules used in a deduction.

Proposition 5.6. There ezists a polynomial pryes(-) such that if (o,w) is a
normal attack against P that does not use the Oracle rule, then the number
of rewrite rules applied is bounded by pryes(n), where n = |P, Sy, m|pac-

The motivation for the next theorem is that if an attack has some cost 7,
then the number of usages of the Oracle rule cannot be exponential in ~.
This results from the fact that the cost of using an Oracle rule is at least
the cost of “reading” all terms in the hypothesis plus the cost of “writing”
the conclusion and so, if the Oracle rule is used very often, then the cost
will grow too much and so cannot be limited by ~.

Theorem 5.7. There exist polynomials py(-), pr(-) and ps(-) such that if
(o,w) is a normal attack against P and attackCost < =y, then the num-
ber of messages in the intruder knowledge, the number of rules used, and
lo(x)|pag, for all x € V, are bounded respectively by pm(n), pr(n) and
po(n), where n = |P, So,m|pag + 7.

18

Proof. Recall that, since (o,w) is an attack, we have for all 1 < j < k,
Hyp; = Rjo, and Hypy,, - m. If there are no applications of the Oracle rule,
then, by Proposition 5.5, we know that the maximum number of terms that
the intruder needs to deduce is bounded by pyse(n); by Proposition 5.6, the
number of rewrite rules needed is bounded by p,yes(n); and by Theorem 5.4,
we can choose a DAG-representation of o(z) in O(n) for each z € Var.

Now suppose that there are applications of Oracle rules and let us divide
our attack into two parts IIy,...,II; (with final set M;) and H:r, Migq,.. .,
IIj, IT where: (i) there are no occurrences of the Oracle rule in H;r, iy, ...,
Iy, IT; (i) II; corresponds to the initial part of II; up to the point where
the last Oracle rule is applied; and (iii) II] is the remaining deduction of
I1;.

Note that if we consider the protocol P; corresponding to the first i — 1
steps of P and P>; the protocol corresponding to the other steps, then we
have that (o, w<;) is an attack against protocol P; with initial knowledge Sy
that exposes all messages in set M; with cost v-; (note that we can extend
without loss of generality attacks to sets of messages), and (o,w>;) is an
attack against protocol P>; with initial knowledge M; that exposes m with
cost ¥ — Y<i (w<; and w>; are the relevant execution orders).

Let n>; = |P>i, M;,m|pag. Since, by construction, P>; does not use
Oracle rules, we can apply the same reasoning as above and show that the
maximum number of terms that the intruder needs to deduce is bounded
by Pmsg(n>;), the number of rewrite rules needed is bounded by pryies(n>i),
and that we can choose a DAG-representation of o(z) in O(n>;) for each
x € vars(P>;). We will show next that |M;|pag is polynomial in n, which
imply that n>; is also polynomial in n, and so there exist p/,(-), p/.(-) and
pl(+) such that the previous polynomials are bounded by p/ (n), pl(n) and
pl(n) and consequently everything in Ps; is polynomial in n. Let us now
look at P;.

We first observe that since the cost of the application of an Oracle with
support-set M and conclusion m is at least |M, m|pag (1) and each step of
a deduction adds one element to the set, if the attack cost is less than -+,
then the number of applications of the Oracle rule has to be polynomial in
n (otherwise its cost would be greater than). In fact, the number of all
rules has to be polynomial in n, otherwise the support-set of the last Oracle
call in II;” would be too “big” and this call would be too expensive.

For a similar reason (and msg(Il;) U--- U msg(Il;—1) € msg(Il;") = M;),
we also have that |msg(Ily), ..., msg(Il;)|pac = |Mi|pag has to be polyno-
mial in n; otherwise producing such a “big” set would cost more than ~.
It is then left to show that |o(x)|pag is polynomial for each v € vars(P<;)

19

but this follows easily from the fact that |M;|pac is polynomial in n and
Rio,...,R;_10 € M;.

So, there exist p,(n), pr(n) and ps(n) that bound the number of mes-
sages, rule applications and |o(z)|pag for the attack (o,w) against P with
budget v, where n = |P, Sy, m|pac + - O

5.4. The QPI Problem is in NP

NP problems can be characterized as those for which, given a witness y
for the problem, it is possible to check in polynomial-time that y is indeed
a witness. Rigorously, a language L is in NP if and only if there exist
polynomials p and ¢, and a deterministic Turing machine M, such that (i)
for all x and y, machine M runs in time p(x) on input (x,y); (i) for all
x € L there exists a witness y of length at most ¢(z) such that M (z,y) = 1;
and (iii) for all z ¢ L and all strings y of length at most ¢(x), M(z,y) = 0.

In our case, L is the language of tuples (P, Sp, m,) such that there exists
an attack to P, with initial knowledge Sy, that reveals m with a cost less
than v, and y are instances of attacks.

We define M as follows: given an attack (o,w) with IIj,... I, II (a
witness), we apply the following procedure, where we let R; = R:J —1(7) and

3

Si = S’;,l(i) foralli e {1,...,k}:

1. Check that o(z) is a ground substitution for all x € V.

2. For each i € {1,...,k}, check that II; is a deduction Hyp, - R;o and
compute cost c;.
Check that II is a deduction Hyp; | = m and compute cost cj41.
Compute the sum ¢ = Zfill Ci.
If all checks are successful and ¢ < -, then answer 1, else answer 0.
M returns 0 once executed p(n) + 1 steps (the polynomial p is made

precise in the proof below to avoid repeating the same arguments).

AN e

Theorem 5.8. The Quantitative Protocol Insecurity Problem is in NP for
a fized number of sessions.

Proof. Consider a protocol specification P = {(i, R, = S}) | i € T} with a
finite set of variables V', a secret m, an initial intruder knowledge set Sy and
a budget v, and let n = | P, Sp, m|pac + 7-

It is clear that if there is no attack (z ¢ L) then the procedure M above
always returns 0 as there is no witness to pass the test (condition (iii) of NP
definition).

If there is an attack (z € L) we recall that, by Theorem 3.3, we can
restrict ourselves to normal attacks as we can always normalize any attack

20

to obtain one with smaller cost. Now, by Theorem 5.7, we know that there
exist polynomials p,,(+), pr(:) and p,(-) that bound the number of messages,
the number of rules used, and |o(z)|pag for all x € V, for any normal attack
(0,w) with cost less than . So, there exists a polynomial-time witness (in
n) for which M will return 1 (condition (ii) of NP definition). The only
“problem” is that, in order to enforce M to run in polynomial-time for
every (x,y), we required M to stop after p(n) 4+ 1 steps. What we are going
to show next is that these p(n) + 1 steps are enough to verify our witness.

We first convert P,Sy; to DAG-representation which can be done in
polynomial-time pj(n).

Step 1. By Theorem 5.7, checking that o(x) is ground can be done in
po(n) and for o in (p,(n))?.

Steps 2 and 3. Checking if a rewrite rule lhs — lhs, rhs is applicable to
a set F and computing the DAG-representation of E' = E, rhs can be done
in ph(|E|pac) provided we have a DAG-representation of E, lhs, rhs (we just
need to check that all terms in lhs are in E). Since the maximum number
of messages that the intruder needs to learn is bounded by p,,(n), we know
that checking the applicability of each rule is bounded by pa(n) = ph(pm(n)).
Finally, the number of rewrite rules needed in each II; is bounded by p,(n)
as well as the degree of principal terms and so, checking each II; of Step 2
takes at most p,(n) X p2(n), and for all j takes at most n x p.(n) x pa(n).
Idem for Step 3.

Step 4. Finally, the cost of this attack reduces to summing a polyno-
mial number of terms (Definition 4.2), where each term can be computed
in polynomial-time p4(n), as required in the definition of cost-functions in
Section 2.

So, there is a polynomial-time witness verification algorithm that, given
the trace of the attack (a witness), can check in polynomial-time p(n) =
p1(n) + (ps(n))?2 4+ (n + 1) x p.(n) x pa(n) + pa(n) whether this attack is
possible with cost less than v, and so return 1 whenever = € L.”

Since p is a polynomial, the last step of definition of M immediately
enforces condition (i) of the NP definition. We can thus conclude that the
QPI Problem is in NP for a fixed number of sessions. O

"Note that the polynomial p defined here does not depend on the input (P, So,m,"y)
nor on the attack witness y. We defined it within this proof just to avoid repeating the
same argument. We could instead have presented this discussion before defining M and
show (repeatedly) in this proof that the given p is sufficient to perform the verification.

21

Theorem 5.9. The Quantitative Protocol Insecurity Problem is NP-complete
for a fired number of sessions.

Proof. To show NP-hardness, we just need to see that, considering all cost
functions to be 0 and v = 0, we can reduce the standard Protocol Insecurity
Problem that is known to be NP-complete [23] to the QPI Problem. O

6. Conclusions

We have given an abstract presentation of a cost-sensitive guessing DY
intruder and established the complexity of the corresponding insecurity
problem for a finite number of sessions. We extended the standard DY-
intruder with an Oracle rule that allows the adversary to deduce any mes-
sage, and proposed a deduction system where rules are decorated with a
label that represents the cost of applying such rule. Since in our framework
any message can be deduced using the Oracle rule, we extended the stan-
dard Protocol Insecurity Problem proposing a quantitative approach that
aims at deciding whether there is an attack against some protocol P with
a cost at most . In order to show that this problem is also NP, we have
given a series of conditions that these cost function need to satisfy.

6.1. Related Work

We have based our results on the work of Rusinowitch and Turuani [23],
who have shown that the protocol insecurity problem with a finite number
of sessions and composed keys is NP-complete. We have extended this by
allowing the intruder to guess information at a cost and shown that the
complexity of the resulting quantitative protocol insecurity problem is also
NP-complete. The extension is in itself quite intuitive—we have introduced
an inference rule called Oracle and decorated inference rules with labeled
parameters that keep track of the associated costs—but the proofs of the
corresponding results, in particular those concerning complexity associated
with the Oracle rule, are actually quite intricate as we have to deal with
this additional information and, ultimately, show that the costs can be kept
under control.

Delaune and Jacquemard [11, 12] have also considered a guessing DY
intruder by introducing a probabilistic encryption operator and guessing
abilities for the intruder, and provided NP-complete decision procedures
for the resulting protocol insecurity problem. (Several other approaches
have been given for formal protocol analysis in the presence of an intruder
who can perform off-line guessing, e.g., [2, 7, 8, 10, 11, 18, 19, 27].) The

22

main difference with respect to this work lies in our use of labels so as to
consider explicitly the cost of guessing. A similar, albeit for now unrelated,
use of costs has been proposed by Meadows for the analysis of denial of
service (DoS) in computer networks: in [21], she formalized a framework in
which the capabilities of the intruder are extended to include the cost of
intruder actions, which allows her to model and compare the costs of the
possible DoS attacks and defenses. Several researchers have extended this
approach, e.g., Groza and Minea, who in [16] give a framework for the formal
modeling and automatic detection of resource exhaustion attacks. Such a
use of costs is different from our approach, and for a different purpose, but
we actually believe that there might be interesting synergies to consider,
e.g., to include guessing among the capabilities of the DoS intruder of [21].
As we remarked in §2, we plan to carry out a similar investigation also
for the work of Baudet [5], in which Dolev-Yao models are extended with
systems with computation times and probabilities to account for random
polynomial-time computability.

Time plays a crucial role also in [6, 9]. Corin et al. [9] propose an intruder
model in which, in a nutshell, temporal constraints allow one to model the
time spent deducing messages, whereas Benerecetti and Peron [6] extend
the DY intruder model by decorating protocol steps with time constraints
to model time-dependent protocol executions and attacks. Like we did, they
also extend [23] and show that the resulting protocol insecurity problem,
under the assumption of a finite number of sessions, remains NP-complete.
Both of these works thus aim at modeling time as a quantitative measure
that explicitly influences protocol attacks, as opposed to the abstract cost
measure that we have considered. One could indeed take time as a possible
concrete cost but other kinds of cost could be considered as well (e.g., the
size of the dictionary or even the complexity of the guessed passwords or
keys). Although not simple, as the formalisms are quite different, it would be
interesting to combine these approaches with ours to reason explicitly about
timing costs, both when deducing messages and when protocols explicitly
depend on timing issues, e.g., in the case of timestamps.

Another work that is close to ours is that of Zunino and Degano [27],
who consider secrecy and authentication in a process calculus with crypto-
graphic primitives, where the Dolev-Yao intruder is extended with a rule to
guess a secret key that decrypts an intercepted message. They assume that
guessing succeeds with a given negligible probability and that the resources
available to the intruder are polynomially bounded. Although the complex-
ity analysis they perform is different from ours, they reach a similar result,
namely that their extended Dolev-Yao intruder is as powerful as the stan-

23

dard one. Similar approaches and results are presented in [22, 25]. Finally,
the present paper extends and actually supersedes our previous exploratory
publication [2] as the formalization that we present here is at the same time
conceptually simpler and more expressive.

6.2. Discussion and Possible Extensions

The solution proposed in this paper relies on the intuitive fact that the
usage of the Oracle rule is a costly operation and should be minimized. We
added this explicitly in the properties of the cost functions, cf. (1), and
this was extensively used in Theorem 5.7 to limit both the number of Oracle
calls and the size of the generated terms. As mentioned, the rationale behind
this hypothesis is that the attacker needs at least to “read” the messages
in his knowledge and “write” the result. We could however have considered
different alternatives and we discuss some of them in this subsection.

A similar assumption would have been to require the cost of Oracle
to depend on the conclusion of the rule and on a subset of the intruder’s
knowledge (that we could call oracle-relevant) rather than on the whole set.
This can be accomplished changing the definition of deduction in order to
consider a support-set M’ C M;_4 for the Oracle rule rather than the whole
set M;_1. To follow this approach, one has to keep track of these oracle-
relevant messages and (i) change the definition of normalization removing
the messages that were not used as premises of any rule nor are relevant for
any Oracle call; and (ii) show in Theorem 5.7 that the number of oracle-
relevant messages, the number of calls to the Oracle rule, as well as the
size of generated messages, has to be bounded. To prove case (ii), we can
use an argument similar to the one used in Theorem 5.7 to show that after
each Oracle call the resulting set is polynomial in the original n. Since the
attack has a given cost v, since calling the Oracle rule costs at least the
size of the relevant messages and its conclusion, and since the messages
on the deduction are either used as hypothesis of a rule or are relevant to
some oracle, we can see that the number of oracle-relevant messages has
to be small as expected. Although quite intuitive, the proof above would
have been more complex as we would have to “break” the deduction into
several smaller deductions and apply to each of them the argument used
in Theorem 5.7. And so, since our assumption over the Oracle function
is a realistic one, we decided not follow this alternative as it would add
unnecessary complexity to the paper without a significant improvement to
our main result.

Another alternative approach would be to limit the size and cost of
Oracle calls through normalization discarding condition (1). We can do

24

this in two different ways: the first is to require Oracle to generate only
atomic messages; whereas the second is to require normalization to substi-
tute Oracle calls with conclusion op(mi,mg) by Oracle calls that generate
both m; and mg, and then compose them using the respective G,,. Both
these solutions are, however, quite restrictive: the first limits the applica-
bility of guessing, disallowing, for instance, to guess composed passwords,
whereas the second only preserves the cost of deductions if the cost func-
tions are such that deducing components m; and ms and composing them
is “cheaper” than guessing directly op(mi, me) (which is not the case for
instance with malleable cryptographic schemes). Anyway, even if one is
comfortable with the above restrictions, the number of oracle-relevant mes-
sages would still be unbounded. The only way to limit these messages is to
disallow them and restrict all deduced messages to be used as premises of
some rule. This would, however, be a serious limitation as it would amount
to assuming that it does not make sense to deduce messages that simplify
the usage of Oracle, which is something that cannot be done beforehand.
And although one could argue that it is possible to incorporate the cost of
deducing an oracle-relevant message m in the cost of the Oracle call that
uses such message, this would become problematic if m is relevant for two
Oracle calls as then one would have to pay twice the cost of m while in our
approach it is just paid once.

Weighing all the factors, we opted for a set of restrictions that were
reasonable to accept and natural to justify and, most importantly, were
sufficient to enforce our result.

In addition to what we already mentioned above, as future work, we are
considering a number of significant case studies in order to come up with a
characterization of appropriate cost functions for the different cryptographic
operators, with the ultimate goal of devising a library of costs that mimic
the realistic complexity of guessing.

References

[1] P. Adao, P. Mateus, and L. Vigano. Protocol Insecurity with a Fi-
nite Number of Sessions and a Cost-Sensitive Guessing Intruder is NP-
Complete (Extended Version). Technical Report. SQIG-IT and IST-TU
Lisbon, Portugal, 2013. Available at http://sqig.math.ist.utl.pt/
pub/AdaoPM/13-AMV-quantana.pdf

[2] P. Adao, P. Mateus, T. Reis, and L. Vigano. Towards a quantitative
analysis of security protocols. QAPL 2006, ENTCS, 164(3):3-25, 2006.

25

3]

[4]

[12]

[13]

[14]

[15]

R. Amadio and D. Lugiez. On the reachability problem in cryptographic
protocols. In Concur, LNCS 1877. Springer, 2000.

D. Basin, S. Mdédersheim, and L. Vigano. OFMC: A symbolic model
checker for security protocols. International Journal of Information
Security, 4(3):181-208, June 2005.

M. Baudet. Random polynomial-time attacks and Dolev-Yao models.
Journal of Automata, Languages and Combinatorics, 11(1):7-21, 2006.

M. Benerecetti and A. Peron. Timed protocol insecurity problem is
NP-complete. Future Generation Computer Systems, 29(3):843-862,
2011.

E. Cohen. Proving cryptographic protocols safe from guessing attacks.
In Foundations of Computer Security’02, pages 85-92, 2002.

R. Corin, J. Doumen, and S. Etalle. Analysing password protocol se-
curity against off-line dictionary attacks. In WISP’04, 2004.

R. Corin, S. Etalle, P.H. Hartel, and A. Mader. Timed analysis of
security protocols. Journal of Computer Security, 15(6):619-645, 2007.

R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? here is
a new tool that finds some new guessing attacks (extended abstract).
In WITS’03, 2003.

S. Delaune and F. Jacquemard. A theory of guessing attacks and its
complexity. Technical report, Research Report LSV-04-1, Lab. Specifi-
cation and Verification, ENS de Cachan, France, 2004.

S. Delaune and F. Jacquemard. Decision procedures for the security
of protocols with probabilistic encryption against offline dictionary at-
tacks. Journal of Automated Reasoning, 36(1-2):85-124, Jan. 2006.

D. Dolev and A. Yao. On the security of public key protocols. IFEFE
Transactions on Information Theory, 29(2):198-208, 1983.

N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability
of bounded security protocols. In Workshop on Formal Methods and
Security Protocols, 1999.

S. Even and O. Goldreich. On the security of multi-party ping pong
protocols, 1983. Technical Report 285, Israel Institute of Technology.

26

[16]

[17]

[18]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

B. Groza and M. Minea. Formal modelling and automatic detection of
resource exhaustion attacks. In Proceedings of the 6th ASIACCS, pages
326-333, ACM Press, 2011.

K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn.
RFC 2637: Point-to-Point Tunneling Protocol, July 1999. Status: In-
formational.

P. Hankes Drielsma, S. Médersheim, and L. Vigano. A Formalization of
Off-Line Guessing for Security Protocol Analysis. In LPAR’04, LNAI
3452, pages 363-379. Springer, 2005.

G. Lowe. Analysing protocols subject to guessing attacks. Journal of
Computer Security, 12(1), 2004.

D. A. McAllester. Automatic recognition of tractability in inference
relations. Journal of the ACM, 40(2):284-303, 1993.

C. Meadows. A Cost-Based Framework for Analysis of Denial of Service
in Networks. Journal of Computer Security, 9(1/2):143-164, 2001.

J.C. Mitchell, A. Ramanathan, A. Scedrov and V. Teague. A probabilis-
tic polynomial-time process calculus for the analysis of cryptographic
protocols. Theor. Comput. Sci., 353(1-3):118-164, 2006.

M. Rusinowitch and M. Turuani. Protocol insecurity with a finite num-
ber of sessions and composed keys is NP-complete. Theor. Comput.
Sei., 299(1-3):451-475, 2003.

B. Schneier, Mudge, and D. Wagner. Cryptanalysis of microsoft’s PPTP
authentication extensions (MS-CHAPv2). In CQRE, 1999.

A. Troina, A. Aldini, and R. Gorrieri. Towards a formal treatment
of secrecy against computational adversaries. In Post-Proceedings of
GC’04, LNCS 3267, pages 77-92, Springer, 2005.

G. Zorn. RFC 2759: Microsoft PPP CHAP Extensions, Version 2, Jan.
2000. Status: Informational.

R. Zunino and P. Degano. Weakening the perfect encryption assump-
tion in Dolev-Yao adversaries. Theor. Comput. Sci., 340(1):154-178,
2005.

27

Appendix A. Proofs of the Propositions and Lemmas

In this appendix, we present the proofs of the Propositions, Lemmas,
and Theorems stated in the main body of the paper.

Restatement of Proposition 3.2. Let II be a normal deduction My — x,
M1 Xy - 77X, Mn- Then

(i) if X5 = A(¢; - my), then there is no j < i such that X; = G(¢; : my);
(ii) if X; = G(4; : my), then there is no j < i such that X; = A(¢; : m;).

Proof. The result follows from the definition of normal deductions. Note
that if a G rule is applied at step j, it is because its components are in
M;_q. If an A-rule is applied to the same term in a step 7 > j, then one
recovers in M; the component that is already in M;_,. Hence, M;_1 = M;
and so II' cannot be normal. The other case is similar. O

Restatement of Theorem 3.3. IfII is a deduction M F m, then there
exists a normal deduction M + m, denoted by IT', such that v(Il") < v(II).

Proof. Consider II, the deduction M + m, to be My —=x, M; —x, ... =X,
M,,. We will provide an algorithm that eliminates all non-optimal applica-
tion of rules from II. This normalization algorithm consists in traversing the
deduction sequence II from the end to the beginning and inspecting each
rule application. When a non-optimal application is found, the appropriate
transformation is applied to the sequence removing the application of such
rule. After each elimination, the algorithm resumes from the place where it
stopped and terminates when there are no more non-optimal application of
rules. The resulting deduction is the normal deduction IT'. Let us analyze all
possible cases from Definition 3.1, recalling first that the cost of a deduction
is the sum of all costs v(¥¢;) such that X; = X (¢; : m;), and all these costs
are positive.
Case (i): suppose that m € M;_; and I’ is

My Xy - T7X; 1 M;_4.

Trivially, the resulting II’ is a deduction of m from M that do not have
non-optimal applications of rules beyond step i and v(II') < v(II).
Case (ii): suppose that M; = M;_; and II' is

MO —X; M1 Xy - X1 Mi—l _>Xz'+1 Mi—i—l _>Xi+2 D¢ Mn.

28

Clearly, II' is also a deduction of m as the message obtained as conclusion
of rule X; was already obtained in an earlier step and so we do not need to
deduce it again as the intruder knowledge will be the same. Removing the
cost of applying X; results in a smaller overall cost.

Case (iii): suppose that i < n, m; € M; \ M;_1 and for all i < j,j’ <n,
X; is not an Oracle rule and m; & lhs(X ;). We may assume without loss of
generality that for all j > 4, m; is not the conclusion of X; (otherwise, we
would have that m; € M; C M;_; = M; and we would have applied case (ii)
above). Suppose then that IT" is

MO —)Xl M1 —>X2 . _>Xi71 Mi—l —>X7l+1 Mi—i—l \ {mz} _>Xi+2 . —)Xn Mn\{ml}

Contrary to the previous cases, here we are in fact removing a message m;
from the deduction. However, since m; does not appear on the lhs of any
subsequent rule X, its only use may be to help on the application of the
Oracle rule. But we also assumed that there is no subsequent Oracle rule
and so m; is really useless in the deduction and hence does not need to be
deduced. As for the costs, v(IT') < v(II) since we are removing the cost of
X;, a positive term, from the sum.]

Restatement of Proposition 3.4. Let II be normal deduction M = m.
If m; is decomposed in 11, i.e., is a major premise of an A-rule, and there
are no previous applications of the Oracle rule, then m; is a subterm of a
labeled message in My = M.

Proof. Let II be My —x, ... —x, M, and let m; be a major premise of an
A-rule, that is, X; = A(¢; : m;) for some i. By normality, it cannot be the
conclusion of a G-rule, otherwise there exists j < i such that X; = G(¢; : m;)
(Proposition 3.2) and also, by hypothesis, it cannot be the conclusion of an
Oracle rule. So, it has to be the conclusion of an A-rule X; with j < ¢, and
hence a subterm of X;’s major premise. Iterating this, we infer that m; is a
subterm of a message in Mp. O

Restatement of Proposition 3.5. Let Il be a normal deduction M +m
with no applications of the Oracle rule. Then, for any m; € msg(1l), either
(i) m; is a subterm of a message in My or (ii) m; is not decomposed in 11
and is the conclusion of a G-rule in II.

Proof. If m; is decomposed in II, (i) follows immediately by Proposition 3.4.
Suppose now that m; is not decomposed in II. If it is the conclusion of an
A-rule, then it is a subterm of its major premise and, by transitivity of the

29

subterm relation and Proposition 3.4, a subterm of a labeled message in M.
If it is the conclusion of a G-rule, then (ii) follows. O

Restatement of Theorem 3.6. Let II be normal deduction M = m with
no applications of the Oracle rule. Then, every message in msg(Il) is either
(i) a subterm of the conclusion m or (ii) a subterm of a message in M.

Proof. Let II be My —x, ... —x, M, and let us analyze all possible cases
for m; € M;\ M;—1. The case m; € My immediately holds by (ii). If m; = m
then (i) immediately holds. Let us consider all the other intermediate cases.

If m; is the conclusion of an A-rule, then it is a subterm of its major
premise and, by Proposition 3.4, satisfies (ii).

If m; is the conclusion of a G-rule (and different from m), then, by
normality, it is the premise of some future rule. Hence, it has to be the
minor premise of an A-rule or the premise of a G-rule. Note also that by
being the conclusion of a G-rule, m; # my, L for all ms, and so cannot be a
minor premise of Acpyps. So, if it is a minor premise of an A-rule (Ac_rbpt or
Agerypt), then m; is a subterm of its major premise that, by Proposition 3.4,
satisfies (ii); if it is the premise of a G-rule X; with ¢ < j < n, then it is a
subterm of its conclusion and so iterating this, we obtain the result.

Finally, by hypothesis m; cannot be the conclusion of an Oracle rule. O

Restatement of Proposition 4.1. We have a sequence of deductions
II; = {Mo,...,.M;_1} Umsg(Il}) U --- Umsg(Ilj_1) = my, for j > 1, if
and only if we have a sequence of deductions Hj_ ={Mo,...,.M;_1} F m;.
Moreover msg(Il;) = msg(I1;).

Proof. The (<) direction follows immediately by monotonicity. For the
(=) direction, we start by stating two facts.
Consider first the following: if II defined as No —x, N1 —x, ... —Xx,,
Np, is a deduction of m, then II(N) defined as No UN —x; N1 UN —y;
. —=x: Ny UN, where X[= X; except the support-sets of Oracle rules
that become N;_1 UN instead of N;_1, is also a deduction of m. This is true
as all the messages needed in the lhs of the rules X; (m € N;_1) are also on
the lhs on the rules X! (m € N,_1 UN). If X; = Oracle(foracie(mi, Ni—1) :
m;), then, by construction, X; = Oracle(foracie(mi, Ni—1 UN) : m;) and so
the rule is also well applied.
Now the second fact: let II be Ny —x, N1 —x, ... —Xx,, Np, I be
Nm —x; Ny —xj ... =x;, Ny, and define “concatenation” of deductions
ITeIl as N[) X3 N X9 o+ 7 Xm Nm _>X1 N{ _>X§ —)X;L N1/1 It easy

30

to see that this construction is well-defined and that IT e II’ and IT' deduce
exactly the same messages.

Let us now prove our result by induction. Define II;” =TI and II; ;| =
II; (M;) ®I1;1 1. We show that II; deduces exactly the same messages as 1I;.
The base case, i = 1, follows by construction as II; = II;.

For the induction step, 7 + 1, note that, by induction hypothesis, II;
deduces exactly the same messages as II;, i.e., {My, ..., M;—1} Umsg(Il;) U
-~ -Umsg(Il;—1) Umsg(I1;). By the first fact, II; (M;) deduces all messages in
{My, ..., M;—1, M;} Umsg(Il1) U---Umsg(Il;_1) Umsg(Il;), which is exactly
the initial set for II;11. By the second fact, II;, | = IT; (M;) e II; 1 deduces
exactly the same messages as I1;1. O

Restatement of Lemma 5.3. If (o,w) is a normal attack that does not
use the Oracle rule, then, for all variables x € V', there exists t € st(P) such
that t C, o(x).

Proof. For the sake of contradiction, suppose that there exists x € V such
that for all ¢ that satisfy ¢t =, o(x) we have t ¢ st(P). Let N, be the first step
of the protocol that contains o(z), i.e., N, = min{j | o(x) € st<;(P)}. We
know then that o(z) € st(Rn,0,Sn,0) and o(x) € st(Rjo, Sjo) for j < N,.
Note also that o(z) & st(msg(Il;)) for j < N, as, by Proposition 4.1 and
Theorem 3.6, it would imply o(z) € st({R;jo, Soo,...,Sj—10}). This implies
that o(x) ¢ st(Hypy,)-

Claim Appendix A.l. There exists t € st(Ry,) with vars such that
to =o(z).

Proof. For the benefit of the exposition, the proofs of the claims are pre-
sented after the proof of the Lemma. O

It follows from Claim Appendix A.l that o(z) € st(Rn,0). Since, by
hypothesis, there exists a deduction Iy, = Hypy, F Rn,0, we can show
that o(x) € msg(Ily,).

Claim Appendix A.2. Ifo(z) € st(Rn,0), then o(z) € msg(Iln,).

We will now show that we can construct another attack (0 w) that is
simpler than (o, w) and does not cost more, hence contradicting the normal-
ity of (¢,w). We do this in the following way: we define a substitution o¢
that is equal to o except that o%(x) = Charlie, and a transformation from
I1; to Hjc where o ¢ is applied. We show that (¢¢, w) is also an attack to P
with at most the same cost as (o,w) but with simpler terms.

31

Define Hjc as II; except that o(z) is substituted by Charlie and M jc =
{Soo ..., Sj_10 Y Uumsg(II¥)U- - -Umsg(Hijl). Let t0 be the term obtained
from t after replacing o(x) by Charlie. Note that, since by hypothesis there
is no t € st(P) \ Var such that to = o (), we have that for all j, R;0¢ =
Rj(06) = (Rjo)d, and similarly for Hyp;.

We will show that the above transformation is well-defined and that the
HjC obtained above are deductions M jc F Rjac. There are 2 possible cases:

(a) If j < Ng, then by definition of Ny, o(x) & st({R;o, Soo, ..., Sj—10}U
msg(Il1) U -+~ U msg(Il;_1)) and so Rjo = R;oc" and S;c = S;0¢ and
msg(I1;) = msg(I1Y) for all i < j. Hence, Mjc = Hyp; and since Hyp; - R;o,
we have MJ-C - R;jo¢ and U(HJ.C) = v(II;).

(b) If j > N,, then we analyze each rule X that is applied in the deduc-
tion IT; and verify that if o(x) is replaced by Charlie, then this same rule
X is also applicable in the deduction HJ(.J (although with different principal

terms), or this rule is not needed in Hjo and so can be removed from the
deduction. We first consider the following claim:

Claim Appendix A.3. For j > N,, o(z) is never decomposed in I1; and
so cannot be the major premise of any A-rule.

We analyze now the possible rule applications in 1I; for j > N;.

(i) Oracle is never applied in II;.
(71) Suppose that G g is used in I, i.e.,

Gpair(fG s (M1, Mm2) 1 (M1, Mm2)) : M1, ma — lhs, (M1, m2)

If o(x) # (m1,ma), then replace the usage of this rule in II; by the
following rule in Hjc:

Gpm‘r(me" (mlé, mQ(S) : <m1,m2>5) : m1(5, mod — lhs, <’m1,m2>5

Since o(x) # (m1, ma), we have (mi,mg)d = (m1d, mad) and this is a
valid application of rule G in qu

If o(x) = (m1,mg) then ignore this rule in Hjc since we do not need
to deduce (my,m2)d = o(x)é = Charlie as Charlie € Sy C Hyp;.
The same reasoning applies for the rules G erypt, Gserypt and G gppiy-

(1it) Suppose that Apq; is used in II;, i.e.,

Apairi(f Ay s ((M1,m2)) = (M1, ma)) @ (m1, ma) — lhs, m;

32

Replace then the usage of this rule in II; by the following rule in HjC:
Apairvi(fAWm((ml,m2>5) 1 {my,ma)d) : (my,ma)d — lhs, m;6

Since we know by Claim Appendix A.3 that o(z) is not the ma-
jor premise of an A-rule, it follows that (mi,mo) # o(x), hence
(m1,m2)0 = (m1d, mad), and so this is a valid application of rule
Apair,i in HJC

(iv) Suppose that Agseryp is used in IIj, i.e.,

Ascrypt(fAscrypt(ﬂml ‘}m27m2) : {‘ml‘}mg) : {|m1 ‘}mg, mo — lhs, ma

Replace the usage of this rule in II; by the following rule in HjC:

Aserypt(fAserype (M1 Fmz 0, m20) 2 Ima[tmy6) 2 {maltm, 6, mad — lhs, m1d

Similarly to the previous case, {|m1 [}, # o(z), hence we have {{m[};,d =
{m16[}m,s, and so this is a valid application of rule Agcpyp; in Hjc.

-1

The same reasoning applies for the rules Acpyp and A; .

We thus obtained for all j a deduction HjC of {Spc%,...,8;-10°} U
msg(Y) U -+ U msg(Hﬁl) F Rjo ¢, thus (0% w) is also an attack against
P. Considering now M = Hyp;,m; = o(z),mg = Charlie and m = Rjo,
and since Hyp; b Rjo and Hyp;j6 = Mjo F Rjoc = Rjod, we have by
condition (2) that U(Hjc) < v(II;). We then obtain by transitivity that

v(I19) + X;0(I0F) < o(IT) + 2;0(1L).

By Claim Appendix A.1, we know that o(x) occurs at least once in the
deduction. On the other hand, o is obtained from o by replacing the value
of z with one that is strictly smaller according to deg(-). This implies that the
multiset {deg(R109),..., deg(Rro®)} <ms {deg(R10),...,deg(Rro)} and,
since attackCost® < attackCost, we have a contradiction of the hypothesis
of (o,w) being a normal attack. This concludes the proof of the lemma. [J

Restatement of Claim Appendix A.1l. There exists t € st(Ry,) with
vars such that to = o(x).

Proof. By hypothesis, we know that o(x) € st(Rn,0,Sn,0), so there exists
t € st(Rn,,Sn,) such that to = o(x). Suppose that ¢ is not a variable.
Then, to = o(x) implies that t C, o(z) for some ¢ € st(Rn,,Sn,) C st(P),
which contradicts our hypothesis. So, t is a variable and the result follows
because vars(Sy,) C vars(Rn,). O

33

Restatement of Claim Appendix A.2. Ifo(z) € st(Rn,0), then o(z) €
msg(Ily,).

Proof. Suppose that o(z) ¢ msg(Ily,). We will show by induction that in
this case o(x) is a subterm of every m; € msg(Ily,). Let us analyze all
possible cases:

(i) This is true at the end of the deduction as o(z) € st(Rn,0).
(i) Let m; be the conclusion of a G or an A-rule and suppose o(z) €
st(m;). Since o(x) # m;, it has to be a subterm of one of its premises.
(i4i) m; cannot be the conclusion of an Oracle rule as we assumed that
there are no Oracle calls in the attack.

Iterating the process above, we get that o(x) € st(m;) for some m; € Hypy .
In this case, o(x) € st(Hypy,), which is a contradiction with the definition
of N. So, o(z) € msg(lln,). O

Restatement of Claim Appendix A.3. For j > N,, o(z) is never
decomposed in I1; and so cannot be the major premise of any A-rule.

Proof. Let us start by stating the following four facts: (i) by Claim Ap-
pendix A.2, o(x) € msg(Ily,), hence Iy, is a deduction Hypy_ I+ o(x); (ii)
by construction, o(x) ¢ st(Hypy,); (i) since (o,w) is an attack, II; is a
normal deduction Hyp, - Rjo, and for j > N, Hypy, Umsg(lly,) C Hyp;;
and (iv) by hypothesis, the Oracle rule is not used in Ily, .

If j = N,, then o(x) cannot be decomposed in Ily,. If it was decom-
posed, then, by normality of IIy, and Proposition 3.4, we have o(z) €
st(Hypy,), which contradicts (7).

Then, for j > N, we can select Iy, M1,m; as ly,, Hypy,,o(z), and
Iy, My, my as I, Hyp;, Rjo for Proposition Appendix A.4 because of (i),
(i), (i), and (iii). O

Proposition Appendix A.4. Let1l; be a deduction My = mq, where my &
st(My) and the Oracle rule is not applied. Let Il be a normal deduction
My = mgo with My U msg(Ily) € My. Then, my is never decomposed in Ils.

Proof. Suppose that my is decomposed in IIs. Then, m; = (mp,mpg), or
m1 = {mr}mp, Or m; = {mL}mgl, or my = {{mg[}my. Note immediately
that, since m; ¢ st(Mp), we have, by Proposition 3.5, that m; can only be
the conclusion of a G-rule in 11y, ie., M; 1 —x, M; for

Xi = G(fa(mp,mg) : m1) : mp, mgr — mp, mg, mi

34

Now, in Iy we have at step j that X; is one of the following:

Apair, 1 (fAyas 1 (ML, mR)) : (mp, mR)) : (mp, mRg) — (mp,mg), mr,
Apair2(f Ay o (ML, mR)) : (ML, mR)) : (mr,mg) — (mr,mg), mg
Acrypt(FAcrye (LY mpmp") AmpYmp) o Amp}mp,mz' = {mi}mg, my' my
A;';pt(fA:mfm({mL}mgl’mR) : {mL}mI—zl) : {mL}mz_zl’mR — {mL}m}—%l,mR,mL

Aserypt(fAgemyp, AMLEmp:mR) : ImLlmg) : AmLlmeg,mr = {milmg, mr,mi

We will show that none of the previous rules is applied in IIs. Suppose
it is case Apgir,1 in IIp. By hypothesis, we have that my € msg(Ily) C Mo,
and so M;_1 = Mj, which is impossible by normality of IIy. Case Apgr2 is
similar, replacing mz, by mg and Apeir1 by Apair2. Cases Acrypr, Ac_rzpt and
Agerypt are also analogous to Apgr 1. O

Restatement of Theorem 5.4. If (o,w) is a normal attack that does not
use the Oracle rule, then we have for all x € Var, |o(x)|pac < |P|pac-

Proof. Proof equal to Theorem 1 of [23] using our Lemma 5.3 (instead of
Lemma 4 of [23]). O

Restatement of Proposition 5.5. There exists a polynomial ppq(-) such
that if (o,w) is a normal attack against P that does not use the Oracle rule,
then the mazimum number of messages that the intruder needs to deduce is
bounded by pmsg(n), where n = |P, Sy, m|pag, that is, [msg(Ily), ..., msg(Ily),
mSQ(H)’DAG € O(pmsg(n))'

Proof. By Theorem 5.4, we know that |o(x)|pag € O(n) and, consequently,
|R;0, S;o|pag € O(n?). Since, for a finite number of sessions u, the attack
cannot be longer than u x |Z| € O(n), it follows that |R;o,. .., Ryo,m, Syo,
..., Sko|pac € O(n3). Since, by Theorem 3.6, we know that every node in
a deduction is a subterm of the hypothesis, or of the conclusion, we have
that |msg(Ily), ..., msg(Ily), msg(Il)|pac € O(n?). O

Restatement of Proposition 5.6. There exists a polynomial ppyes(-)
such that if (o,w) is a normal attack against P that does not use the Oracle
rule, then the number of rewrite rules applied is bounded by pryes(n), where
n = ‘P, S(), m‘DAg.

Proof. We know, by the definition of normal deductions, that each applied
rule increases the intruder knowledge with at least one message. By Propo-
sition 5.5, we know that the maximum number of messages learned by an
intruder is bounded by a polynomial py,s(-) so the number of applied rules
is also bound by pimsq(n). O

35

A—S: A

S—A: Ns

A—S: Na,H(Pw,Na, Ns, A)
S—A: H(Pw,Na)

W=

Figure B.3: The MS-CHAPv2 Protocol

Appendix B. Some Further Examples

Let us consider some further examples. To illustrate a double guess,
consider the same deduction of Examples 2.3 and 2.6, but with Sy = {{|{(m,
No)[tr}; then Ny is also obtained by an Oracle, so that the result depends
on both guesses:

{{m1, Na)lbi
= Oracte(foracte (N, {4 (m1,Na) [} }): k) {(m1, Na) ke, No
= Oracte(foracte (b, {(m1 . Na) b, Ny }): k) {im1, Na) bk, No, k
= Aserypt(Fa oy (U m1, Nad e k): 1(ma,Nad i) 1m0, Na) iy No, K, (ma, Na)
= Apair,2(F 4, ((M1,Na)): (m1,Na)) 1{m1, Na)lb, No, k, (m1, Na), Na
= Guir(FG sy (Na»No): (Na,Np)) {(m1, Na)}&, No, k, (m1,Na), Na, (Na, Np)

As a final example, let us consider a concrete protocol, namely MS-
CHAPv2, Microsoft’s Challenge/Response Authentication Protocol, version
2 [26]. MS-CHAPv?2 is the authentication mechanism for the Point-to-Point
Tunneling Protocol (PPTP [17]), which itself is used to secure PPP con-
nections over TCP/IP. Figure B.3 shows an abstracted version of the MS-
CHAPv2 Protocol in the standard Alice&Bob-style notation. Note that,
for simplicity, we refrain here from explicitly displaying the pairing operator
and simply use commas. The protocol should achieve mutual authentication
between a client A and server S based on an initially shared password Pw,
which we of course assume to be guessable.

It is well known that this protocol is vulnerable to off-line guessing at-
tacks [18, 24]. Here, we illustrate how our approach provides a basis for
reasoning about on-line guessing, where the intruder employs guesses when
interacting with other agents, e.g., trying to log into a system using a guessed
password. Consider, for example, an intruder who intercepts message 1 from
A to S, replies pretending to be S, and intercepts again message 3. Since the
intruder does not possess Pw, in order to conclude the protocol attack and
have A erroneously authenticate S, the intruder should guess Pw and then
build and send H(Pw, Na), which he can do since he possesses Na (and, by
assumption, initially knows the hash function H):

36

H, A, Na, H(Pw, Na, Ns, A

)
= Oracle(foraeie (Pw, {H, A, Na,H(Pw,Na,Ns,A)}): Pw) H, A, Na, H(Pw7 Na, Ns, A)v Pw
_>Gpam‘(fGZ)aW(P7U7Na>: (Pw,Ng)) H7 A7 N(l, H(Pwa N(l, NS, A)) Pw) <Pw’ Na>
)

_>Gapply(H7 (Pw,Ng)): H(Pw,Ng)) H, A, NavH(Pwv Na, Ns, A), Pw, (Pw7Na>7 H(Pvaa)

Alternatively, the intruder may guess directly H(Pw, Na), but the cost
of this is possibly greater than guessing Pw.

37

