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Abstract

We propose a scoring criterion, named mixture-based factorized conditional log-

likelihood (mfCLL), which allows for e�cient hybrid learning of mixtures of Bayesian

networks in binary classification tasks. The learning procedure is decoupled in fore-

ground and background learning, being the foreground the single concept of interest

that we want to distinguish from a highly complex background. The overall proce-

dure is hybrid as the foreground is discriminatively learned, whereas the background

is generatively learned. The learning algorithm is shown to run in polynomial time

for network structures such as trees and consistent -graphs. To gauge the perfor-

mance of the mfCLL scoring criterion, we carry out an evaluation with state-of-the-

art classifiers. Results obtained with a large suite of benchmark datasets show that

mfCLL-trained classifiers are a competitive alternative and should be taken into

consideration.
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1 Introduction

Bayesian networks [33] are probabilistic graphical models that represent the

joint probability distribution of a set of random variables. They encode spe-

cific conditional independence properties pertaining to the joint distribution

via a directed acyclic graph (DAG). To achieve this, each vertex (aka node)

in the DAG contains a random variable, and edges between them represent

the dependencies between the variables. Besides serving as a representation of

a set of dependences, the DAG also allows to factorize the joint probability

distribution via the chain rule of probability. The main advantage of Bayesian

networks is that they can specify dependencies only when necessary, provid-

ing compact representations of complex domains which leads to a significant

reduction in the cost of learning and inference.

Bayesian networks have been widely used for classification [18,21,40], being

known in this context as Bayesian network classifiers (BNC). However, they

are often outperformed by much simpler methods [15,18]. One of the most

likely causes for this seems to be the use of so called generative learning meth-

ods in choosing the Bayesian network structure. In contrast to generative

learning, where the goal is to be able to describe (or generate) the entire data,

discriminative learning focuses on the capacity of a model to discriminate be-

tween di↵erent classes. Unfortunately, discriminative learning of BNCs turns

out to be computationally much more challenging than generative learning.

For this reason, the community has resorted to decomposing the learning pro-

cedure into generative-discriminative subtasks. In this context, Greiner and

Zhou [20] proposed to generatively learn the network structure and to discrim-

inatively learn the parameters, whereas in [21,41] the opposite is suggested.

More recently, Carvalho et al. proposed an approximate approach for fully-

discriminative learning of BNCs, exhibiting good performance both in terms

of accuracy and computational cost [8].
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A great e↵ort has been done to understand the advantages and disadvan-

tages of generative versus discriminative learning [35,31]. From this endeavor

two regimes of performance, depending on the size of the training data, were

elicited. For large datasets discriminative learning is preferred as it attains a

lower asymptotic error. On the other hand, generative learning performs bet-

ter with small datasets as it achieves its asymptotic error much faster. These

empirical results motivated the development of hybrid approaches with in-

termediate regimes in between generative and discriminative limits, trying to

get the best of both worlds. To this end, some approaches considered a con-

vex combination of generative and discriminative likelihood functions [24,4].

Another work modified the naive Bayes model to learn a large subset of pa-

rameters based on the likelihood and a small subset of parameters based on

the conditional likelihood [36]. In contrast, Bishop and Lasserre [3] blend gen-

erative and discriminative learning by introducing priors with constraints over

the parameters which govern the balance between the two learning regimes.

Mixtures of Bayesian networks further generalize BNCs. Bayesian networks

classifiers constrain the relations among the variables to be the same for all val-

ues of the class variable. A mixture of Bayesian networks, also called Bayesian

multinet [19], can be thought as a Bayesian network where edges can appear

and disappear depending on the values of certain nodes in the graph. In par-

ticular, Bayesian multinets as classifiers allow edges to appear and disappear

depending on the value of the class variable [18]. This property is called asym-

metric independence assumption [19]. Contrarily to BNCs, Bayesian multinets

have only been learned generatively. In this paper we propose a decomposable

scoring criterion for hybrid learning of multinets by extending the work of Car-

valho et al. [8] and capitalizing on the results on generative, discriminative and

hybrid learning [35,31].

The proposed learning procedure is decoupled in foreground and background

learning. The foreground consists in the concept of interest, for instance, a
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disease under study from a set of other diseases and healthy patient data.

The background consists of a possible miscellaneous of concepts, for instance,

one or more diseases that are not under study and/or healthy patient data.

In this context, we propose to learn the background generatively since gen-

erative learning achieves its asymptotic error faster, which is an advantage

to learn highly complex data with a moderate size. On the other hand, the

foreground is proposed to be learned discriminatively as discriminative learn-

ing achieves lower asymptotic error and the foreground has low-complexity,

thus being accurately learned with little data. This is achieved through a

new scoring criterion named mixture-based factorized conditional log-likelihood

(mfCLL). The Bayesian multinet provides an extra benefit in this setup allow-

ing us to describe the foreground and the background in two separate regimes

with context-specific independences. The overall learning procedure is there-

fore hybrid, and it can be achieved in linear and polynomial time for network

structures like trees [12,16] and consistent -graphs [6], respectively.

We applied the new hybrid procedure to distinguish transcription factor bind-

ing sites (TFBS) from non-binding DNA sequences. TFBSs are small strings of

DNA where specific proteins bind to start the transcription of a gene. Tran-

scription is the first step in gene expression and it is essential to protein

biosynthesis which regulates the biochemical reactions inside the cell of liv-

ing organisms. To evaluate the performance of mfCLL we assess its ability in

representing TFBSs from 89 benchmark datasets used in previous works [1,7].

We first provide a comparison with existing TFBS models and then proceed

to a broad examination with state-of-the-art classifiers, namely, support vec-

tor machine (SVM), logistic regression (LogR), decision tree (DT), k-nearest

neighbor (k-NN) and tree augmented naive Bayes with factorized conditional

log-likelihood (TAN-fCLL) classifiers. On the above mentioned 89 datasets,

a specific mfCLL-based mixture provided a higher discriminative power than

previous TFBS models. Moreover, such mfCLL-trained mixture outperformed,
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with high significance level, SVMs with linear and Gaussian kernels, LogR,

DT, 3-NN, 5-NN, and TAN-fCLL classifiers. In addition, it showed to be com-

parable with polynomial SVMs. Notwithstanding, mfCLL-based mixtures are

computationally more e�cient than polynomial SVMs, taking 2 to 3 orders of

magnitude less time for the 89 considered datasets.

The elicited mfCLL-trained mixture was also evaluated over eight UCI diagno-

sis datasets [30]. The results confirmed its superior power since it outperformed

with statistical significance all other classifiers.

The paper is organized as follows. In Section 2 we review the essentials of

Bayesian networks, as well as generative, discriminative and hybrid learning.

In Section 3 we start by providing background material in Bayesian multinets

and proceed to present our scoring criterion for discriminatively learning the

mixture foreground. Given the model selection criterion we derive the optimal

parameters and present the hybrid procedure to learn the mixture structure. In

Section 4 we assess the developed techniques against state-of-the-art classifiers.

Finally, we draw some conclusions and future work in Section 5.

2 Background

In this section we review the basic concepts of Bayesian networks required to

understand the proposed methods, and discuss the di↵erences between gener-

ative and discriminative learning of BNCs.

2.1 Bayesian networks

Let X be a discrete random variable taking values in a countable set X . In

all that follows, the domain X is finite. We denote an n-dimensional random

vector by X = (X
1

, . . . , Xn) where each component Xi is a random variable

5



over Xi. For each variable Xi, we denote the elements of Xi by xi1, . . . , xiri

where ri is the number of values that Xi may take. We say that xik is the

k-th value of Xi, with k 2 {1, . . . , ri}. The probability that X takes value x is

denoted by P (x), being conditional probabilities P (x | z) defined accordingly.

The random vector X is said to be conditionally independent of random vector

Y given random vector Z if P (x | y, z) = P (x | z), for all x,y, and z.

A Bayesian network (BN) is a triple B = (X, G,⇥) where X = (X
1

, . . . , Xn)

is a random vector. The network structure G = (X, E) is a directed acyclic

graph (DAG) with nodes in X and edges E representing direct dependencies

between the variables. For the sake of simplicity we do not distinguish the ran-

dom vector X = (X
1

, . . . , Xn) from the set of random variables {X
1

, . . . , Xn}.

Moreover, we denote by ⇧Xi the (possibly empty) set of parents of Xi in G.

For each node Xi, the number of possible vectors of parents’ values, called the

parent configurations, is denoted by qi. The actual parent configurations are

ordered (arbitrarily) and denoted by wi1, . . . , wiqi . For j 2 {1, . . . , qi}, we say

that wij is the j-th configuration of ⇧Xi . Using this notation, the third element

of the BN triple denotes the parameters ⇥ = {✓ijk}i2{1...n}, j2{1,...,qi}, k2{1,...,ri}
that encode the local distributions of the network via

PB(Xi = xik | ⇧Xi = wij) = ✓ijk.

A BN B induces a joint probability distribution over X given by

PB(X1

, . . . , Xn) =
nY

i=1

PB(Xi | ⇧Xi). (1)

The conditional independence properties pertaining to the joint distribution

are essentially determined by the network structure. Specifically, Xi is condi-

tionally independent of its non-descendants given its parents ⇧Xi in G [33].

The problem of learning a BN, given some data, consists of finding the BN that

best fits the underlying distribution generating the data. This can be achieved

by a score-based learning algorithm, where a scoring criterion is considered in
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order to quantify the fitting of a BN.

Contributions in this area of research are typically divided in two di↵erent

problems: scoring and searching. The scoring problem focus on devising new

scoring criteria to measure the goodness of a certain network structure given

the data. On the other hand, the searching problem concentrates on identifying

one or more network structures that yield a high value for the scoring criterion

in mind. If the search is conducted with respect to a neighborhood structure

defined on the space of possible solutions then we are in the presence of local

score-based learning. Local score-based learning algorithms can be extremely

e�cient if the scoring criterion employed is decomposable, that is, if the scoring

criterion can be expressed as a sum of local scores associated to each network

node and its parents. In this case, whenever the network structure changes

during the search procedure, the score of the new network is re-evaluated just

by modifying the local contribution of the changed part.

The most common scoring criteria employed in BN learning are reviewed in

[5,44,23]. We refer the interested reader in newly developed scoring criteria to

the works of Carvalho et al. [8], de Campos [13] and Silander et al. [39].

2.2 Generative, discriminative and hybrid learning of Bayesian networks

In classification tasks BNs are used as Bayesian network classifiers. Rigorously,

a Bayesian network classifier (BNC) is a BN where X = (X
1

, . . . , Xn, C). The

variables X
1

, . . . , Xn are called attributes, or features, and C is called the class

variable. For e�ciency purposes it is common to restrict the dependencies

between the attributes and the class variable, imposing all attributes to have

the class variable as parent. Rigorously, an augmented naive Bayes classifier

is a BNC where the graph structure G is such that the class variable has no

parents, that is, ⇧C = ;, and all attributes have at least the class variable as
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parent, that is, C 2 ⇧Xi for all 1  i  n. In this work we focus our attention

on augmented naive Bayes classifiers, referring abusively to them as BNCs.

For convenience, we introduce additional notation. Let data T with size N

be given by T = {x
1

, . . . ,xN}, where: (i) xt = (x1

t , . . . , x
n
t , ct) denotes the

t-th instance of the data; (ii) x1

t , . . . , x
n
t are the values that the attributes

X
1

, . . . , Xn take in the t-th instance; and (iii) ct is the corresponding value for

the class variable C.

Generative learning aims at maximizing the likelihood of the data, by using

the log-likelihood scoring criterion or a score thereof (for instance, [39,13]).

The log-likelihood scoring criterion can be written as:

LL(B | T ) =
NX

t=1

log(PB(x
1

t , . . . , x
n
t , ct)). (2)

Discriminative learning, on the other hand, aims at maximizing the condi-

tional likelihood of the data. The reason why this is a form of discriminative

learning is that it focuses on correctly discriminating between classes by max-

imizing the probability of obtaining the correct classification. The conditional

log-likelihood (CLL) scoring criterion can be written as:

CLL(B | T ) =
NX

t=1

log(PB(ct|x1

t , . . . , x
n
t )). (3)

Friedman et al. [18] noticed that, in the context of classification learning prob-

lems, the log-likelihood of T for B can be rewritten as:

LL(B | T ) = CLL(B | T ) +
NX

t=1

log(PB(x
1

t , . . . , x
n
t )). (4)

Interestingly, the objective of generative learning is precisely to maximize the

whole sum, whereas the goal of discriminative learning consists of maximiz-

ing only the first term of the sum in (4). Friedman et al. [18] attributed the

underperformance of learning methods based on LL to the term CLL(B | T )

being potentially much smaller than the second term in (4). Unfortunately,
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CLL does not decompose over the network structure, and therefore there is

no closed-form equation for optimal parameter estimates for the CLL scoring

criterion. The first works in this line of research split the problem into two

distinct generative-discriminative tasks: (i) find optimal-CLL parameters and

optimal LL-structure [20,41] and; (ii) find optimal-CLL structure and opti-

mal LL-parameters [2,21]. Although showing promising results, these hybrid

approaches present a problem of computational nature. Indeed, optimal-CLL

parameters have been achieved by resorting to gradient descent methods, and

optimal-CLL structures have been found only with global search methods,

making both methods very ine�cient. Recently, a least-squares approxima-

tion to CLL that enables full discriminative learning of BNCs in a very e�-

cient way has been proposed [8]. This paper extends further this work dealing

with mixtures of BNs where the components of the mixtures are learned with

distinct regimes.

3 Hybrid learning of a two-component multinet

Herein, we present the concepts related to two-component mixtures of BNs

and motivate the hybrid procedure to learn them. Then, we establish our

decomposable scoring criterion for learning the mixture foreground. Finally, we

provide methods for parameter and structure learning based on the proposed

model selection criterion.

3.1 Two-component multinets

Probabilistic mixtures of general graphical models were introduced by Geiger

and Heckerman [19] and since then they have been utterly applied in sev-

eral domains [29,18]. Mixtures of arbitrary graphical models are also called

Bayesian multinets (BM). The main advantage of BMs is that they allow to
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represent context-specific independences. We find these context-specific inde-

pendences when a subset of variables exhibit certain conditional independences

for some, but not all, values of a conditional variable.

For convenience, we introduce some additional notation for BMs intended to

be learned from data T = {x
1

, . . . ,xN}, where xt = (x1

t , . . . , x
n
t , ct). The last

component of each instance in T is the value of the class variable C, that

is, ct is the value of the class variable C in the t-th instance of T . In binary

classification tasks, this variable ranges over the set C = {0, 1}. It is also

useful to associate to each index of an instance of T its corresponding class

value. More precisely, consider the map ⌘ : {1, . . . , N} ! C, where ⌘(t) = ct.

Moreover, for xt = (x1

t , . . . , x
n
t , ct) and c 2 {0, 1} we set the following notation:

x�t = (x1

t , . . . , x
n
t ), Ic = ⌘�1(c) and Tc = {x�t : t 2 Ic}.

Loosely speaking, Ic is the set of indexes of the instances in T where the class

variable takes the value c and Tc is the set of instances, excluding the class

variable, for which the class variable takes the value c.

A two-component Bayesian multinet, or two-component mixture of Bayesian

networks, is a triple M = h{�c}c=0,1, B0

, B
1

i where �c = P (C = c) is called

themixing proportion and each Bc is a BN over {X
1

, . . . , Xn}. The BN for each

value c is called the local Bayesian network for c. For the sake of simplicity, we

omit �
1

from the two-component mixture model M as �
1

= 1� �
0

, referring

abusively to it as

M = h�
0

, B
0

, B
1

i.

Without loss of generality, we henceforth call class 0 the background and class

1 the foreground; that is, B
0

is the mixture background model and B
1

is the

mixture foreground model.

A BM defines a unique joint probability distribution given by:

PM(X
1

, . . . , Xn, C) = �CPBC (X1

, . . . , Xn).
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The standard procedure to learn BMs is to compute from data

�̂c = P̂T (C = c) =
Nc

N
, (5)

where Nc is the number of instances in the data T where the class variable C

takes the value c and P̂T is the distribution induced by the observed frequency

estimates (OFE). Each local BN Bc is then learned independently over the

subset Tc. Predictions are made by choosing the class variable that maximizes

the posterior probability PM(C | X
1

, . . . , Xn).

3.2 Learning approach

Before establishing the discriminative scoring criterion for learning the fore-

ground of a two-component BM we motivate the proposed learning approach.

As mentioned before, the envisaged learning procedure will be decoupled in

foreground and background learning. The rationale for this approach is that

we want to distinguish some particular concept (the foreground) from a miscel-

laneous of other concepts forming the background. This is common in many

real-word applications. For instance, in medicine, a physician may want to

distinguish a given disease (under study) from a set of other diseases and/or

healthy patient data. Several other examples arise from computational molec-

ular biology where, for instance, detecting special signals from the DNA se-

quence is of the utmost importance. A DNA sequence comprises both cod-

ing and non-coding regions, possibly containing special regulation signals and

noise, respectively. In this context, one may want to elicit a certain signal

and distinguish it from the remaining background signals and/or noise (see

Section 4.1 for a detailed example in this setting).

Although the envisaged hybrid approach is intuitive per se, there is also a

strong motivation for decoupling the learning in a generative-discriminative
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procedure. Undoubtedly, understanding the pros and cons of generative and

discriminative learning is crucial to devise hybrid approaches that enjoy the

best properties of both worlds [31]. In our framework, background data is

usually noisy, highly-complex and may have multiple and overlapping con-

cepts. Generative learning seems to deal with this type of data better as it

approaches its asymptotic error much faster than discriminative learning. In

order to be able to use discriminative methods to learn the background the

amount of data needed would be much larger, posing two di↵erent problems:

(i) this data may not be available; (ii) the learning might become imbalanced

producing classifiers with a huge bias to the majority class. On the other

hand, since the foreground class is usually less complex with very well de-

fined patterns, a small amount of data is enough for accurate predictions. As

discriminative methods have lower asymptotic error than generative ones [31]

they seem more suitable for foreground learning.

Before proceeding, it is worthwhile pointing out the di↵erences between pure

generative and the proposed hybrid learning of BMs. In pure generative learn-

ing each local BN Bc is learned using only the data Tc (disregarding T
1�c)

[19]. In the proposed hybrid procedure, B
0

is learned generatively whereas B
1

is learned discriminatively. Thus, while T
0

is su�cient to learn B
0

, both T
0

and T
1

are required to learn B
1

. Indeed, in order to distinguish the foreground

from the background, information from both classes is needed and therefore

both the observations from T
0

and T
1

are relevant. In what follows, we will

provide a discriminative scoring criterion to learn B
1

from the full dataset

T . We henceforth assume that B
0

was already learned with some generative

learning procedure in the literature and that �
0

and �
1

were computed as in

(5).
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3.3 Model selection

Herein, we present the new discriminative scoring criterion to learn the fore-

ground of a two-component BM. This new score will be used to select the

foreground model that best fits the (conditional) distribution underlying the

data.

It is convenient to extend the notation introduced in the previous sections to

cope with the discriminative learning ofB
1

within a mixtureM = h�
0

, B
0

, B
1

i.

Henceforth, the usage of the superscript 1 means that we are referring to the

BN B
1

only. We denote by ⇧1

Xi
the parents of Xi in B

1

and by q1i the number

of parent configurations of ⇧1

Xi
. Moreover, we denote by N1

ij1k the number

of instances in the data T where the variable Xi takes its k-th value, the

attributes in ⇧1

Xi
take their j-th configuration w1

ij, and the class variable C

takes the value 1; N1

ij0k is defined similarly as the number of instances in

the data T where the variable Xi takes its k-th value, the attributes in ⇧1

Xi

take their j-th configuration w1

ij, and the class variable C takes the value 0.

Finally, ✓1ijk denotes the probability PB
1

(Xi = xik | ⇧1

Xi
= w1

ij), representing

the parameters of B
1

.

In the context of a BM M = h�
0

, B
0

, B
1

i for binary classification tasks, we

have that

PM(ct | y1t , . . . , ynt )=
�ctPBct

(y1t , . . . , y
n
t )

�ctPBct
(y1t , . . . , y

n
t ) + �

(1�ct)PB
(1�ct)

(y1t , . . . , y
n
t )
. (6)

To simplify notation, let

Ut = �ctPBct
(y1t , . . . , y

n
t ) and Vt = �

(1�ct)PB
(1�ct)

(y1t , . . . , y
n
t ),

hence, expression (6) can be rewritten as

PM(ct | y1t , . . . , ynt ) =
Ut

Ut + Vt
.
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In this case, the conditional log-likelihood of T for M has the following form:

CLL(M | T ) =
NX

t=1

log
✓

Ut

Ut + Vt

◆
.

To e�ciently discriminate between the foreground and the background we

need to derive a decomposable scoring criterion. Unfortunately, log(Ut + Vt)

does not decompose over the mixture components B
0

and B
1

, but log(Ut) and

log(Vt) do. In order to achieve decomposability we need to determine which

expressions involving the logarithm of Ut and Vt would result in a decompos-

able scoring criterion with a closed-form expression. Despite the overwhelm-

ing number of possibilities the properties of the logarithm highly constrain

the number of candidate expressions which would result in a decomposable

score. Therefore, in order to decompose CLL(M | T ) over the two-component

network structures, the function

f(Ut, Vt) = log
✓

Ut

Ut + Vt

◆
,

needs to be approximated by

f̂(Ut, Vt) = ↵ log(Ut) + � log(Vt) + �,

where Ut and Vt are probabilities.

To analytically obtain the real numbers ↵, � and � that best approximate f̂

to f we need to make some reasonable stochastic assumptions about Ut and

Vt, even if they do not hold true exactly. As Ut and Vt correspond to joint

probabilities that are very small, we follow the reasoning of Carvalho et al. [8]

and assume that (Ut, Vt) ⇠ Unif([0, p]2), for some small probability p. In this

case, the values for the constants ↵, � and � that minimize the mean square

error were computed analytically in [8] and are given by:

↵ =
⇡2 + 6

24
, � =

⇡2 � 18

24
and � =

⇡2

12 ln(2)
�
 

2 +
(⇡2 � 6) log(p)

12

!

.

This results in the following decomposable approximation for the CLL
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CLL(M | T ) =
NX

t=1

log
✓

Ut

Ut + Vt

◆
⇡

NX

t=1

(↵ log(Ut) + � log(Vt) + �) . (7)

In [8] it is shown that this approximation is unbiased, i.e., E[f̂(Ut, Vt) �

f(Ut, Vt)] = 0, and that it minimizes the variance, i.e., E[(f̂(Ut, Vt)�f(Ut, Vt))2]

is minimal. As we shall see later in this paper, the dependence of � on p is

irrelevant as � will be included in a constant that will be discarded, since it

has no role in model selection.

As the sum over t in (7) is ranging over all the dataset T we can decouple the

sum in two parts, one accounting for the contribution of T
0

and another for

the contribution of T
1

. In this way, we have that

CLL(M | T ) = CLL(M | T
0

) + CLL(M | T
1

).

Moreover, assuming that both the mixing proportion �
0

and the background

model B
0

were (previously) generatively learned (and so are fixed), and know-

ing that �
1

= 1� �
0

, we only need to learn the foreground model B
1

. In this

case, we have that

CLL(B
1

| T
0

)⇡
X

t2T
0

(↵ log(Ut) + � log(Vt) + �)

=
X

t2I
0

⇣
↵ log(�

0

PB
0

(x�t )) + � log(�
1

PB
1

(x�t )) + �
⌘

=

0

@
X

t2I
0

� log(PB
1

(x�t ))

1

A+
X

t2I
0

⇣
↵ log(�

0

PB
0

(x�t )) + � log(�
1

) + �
⌘

=

0

@
X

t2I
0

� log(PB
1

(x�t ))

1

A+K
0

,

where K
0

accounts for the (fixed) contribution of B
0

,�
0

,�
1

and � to CLL(B
1

|

T
0

). The notation with B
1

as argument instead of M = h�
0

, B
0

, B
1

i in CLL

emphasizes that the criterion is a function of the foreground model B
1

only,

since B
0

, �
0

and �
1

are fixed. Similarly,
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CLL(B
1

| T
1

)⇡
X

t2T
1

(↵ log(Ut) + � log(Vt) + �)

=
X

t2I
1

⇣
↵ log(�

1

PB
1

(x�t )) + � log(�
0

PB
0

(x�t )) + �
⌘

=

0

@
X

t2I
1

↵ log(PB
1

(x�t ))

1

A+
X

t2I
1

⇣
↵ log(�

1

) + � log(�
0

PB
0

(x�t )) + �
⌘

=

0

@
X

t2I
1

↵ log(PB
1

(x�t ))

1

A+K
1

,

where K
1

accounts for the (fixed) contribution of B
0

,�
0

,�
1

and � to CLL(B
1

|

T
1

). Since the constantsK
0

andK
1

are irrelevant for maximizing CLL(B
1

| T
0

)

and CLL(B
1

| T
1

), respectively, we can drop them. Therefore, we define the

mixture-based factorized conditional log-likelihood (mfCLL) scoring criterion

as

mfCLL(B
1

| T )=
0

@
X

t2I
0

� log(PB
1

(x�t ))

1

A+

0

@
X

t2I
1

↵ log(PB
1

(x�t ))

1

A

=

0

@
nX

i=1

q1iX

j=1

riX

k=1

�N1

ij0k log(✓
1

ijk)

1

A+

0

@
nX

i=1

q1iX

j=1

riX

k=1

↵N1

ij1k log(✓
1

ijk)

1

A

=
nX

i=1

q1iX

j=1

riX

k=1

(↵N1

ij1k + �N1

ij0k) log
⇣
✓1ijk

⌘
. (8)

The choice of the scoring criterion to use is particularly relevant when the

complexity of the BN structure grows. For instance, the LL scoring criterion

in (2) tends to favor complete network structures since adding an edge never

decreases the likelihood on the training data. This phenomenon leads to over-

fitting which is usually avoided by adding a complexity penalty to the LL.

Most common penalties are information-theoretic and so based on compres-

sion. In this case, the score of a BN B is related to the compression that can

be achieved over the data with an optimal code induced by B. The overall

idea is to choose a representation of the data which permits to express it with

the shortest possible length (usually measured in bits).

Rissanen proposed to assume that only integers are used to encode the param-
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eters of a BN B and to use the optimal (universal) code for integer to encode

them [37,38]. In this case, the number of bits required to represent B is

K(B) =
1

2
log(N)|B|,

where |B| is the total number of parameters of B. This approach led to the de-

velopment of the minimum description length (MDL) scoring criterion defined

as:

MDL(B | T ) = LL(B | T )�K(B).

The MDL criterion has also been used in the context of multinets [18] and

discriminative learning [26]. For multinets, the MDL penalty of M is given by

K(M) =
X

c

K(Bc) +
1

2
log(N)(|C|� 1),

which is the sum of the MDL penalties of each local BN Bc jointly with the

multinomial for the class. Usually, the MDL penalty of the multinomial of the

class is not considered as it is irrelevant for maximizing the score (because

it is constant given the dataset). As in generative learning of multinets, in

our hybrid procedure the (generative) background B
0

does not depend on

the foreground network B
1

, and the (discriminative) foreground B
1

considers

the background network B
0

fixed. Therefore, a MDL penalized version of the

mfCLL score should only take into account the foreground structure B
1

. Such

penalized version, called mfCLLMDL, can be straightforwardly obtained by

subtracting the MDL penalty to (8) resulting in the following decomposable

score:

mfCLLMDL(B
1

| T ) = mfCLL(B
1

| T )� 1

2
ln(N)

nX

i=1

(ri � 1)⇥ q1i . (9)

3.4 Parameter learning

It this section we derive the values of the parameters ✓1ijk that maximize mfCLL

in (8); the same parameters maximize (9). We are able to obtain the optimal
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values of ✓1ijk by assuming that they are lower-bounded. This lower bound

on ✓1ijk follows from adopting pseudo-counts, commonly used in BNCs and

BMs to smooth observed frequencies with Dirichlet priors and increase the

quality of the classifier [18]. Pseudo-counts attend to impose the common

sense assumption that there are no situations with probability zero. Indeed, it

is a common mistake to assign probability zero to an event that is extremely

unlikely, but not impossible [28].

Theorem 3.1 Let N 0 > 0 be the number of pseudo-counts. The parameters

✓1ijk that maximize (8) are given by

✓1ijk =
N1

ij+k

N1

ij+

(10)

where

N1

ij+k =

8
>><

>>:

↵N1

ij1k + �N1

ij0k if ↵N1

ij1k + �N1

ij0k � N 0

N 0 otherwise

and

N1

ij+ =
riX

k=1

N1

ij+k,

constrained to ✓1ijk � N 0

N1

ij+
for all i, j and k.

Proof: Note that

mfCLL(B
1

| T ) =
nX

i=1

qiX

j=1

riX

k=1

(↵N1

ij1k + �N1

ij0k) log
�
✓1ijk
�

=
nX

i=1

qiX

j=1

riX

k=1

0

B@N1

ij+k log
�
✓1ijk
�

| {z }
(a)

+((↵N1

ij1k + �N1

ij0k)�N1

ij+k) log
�
✓1ijk
�

| {z }
(b)

1

CA. (11)

Observe that if N1

ij+k � N 0 then N1

ij+k = (↵N1

ij1k + �N1

ij0k). Thus the sum-

mand (b) in (11) is only di↵erent from zero when (↵N1

ij1k + �N1

ij0k) < N 0. In

this case N1

ij+k = N 0 which implies that

(↵N1

ij1k + �N1

ij0k)�N1

ij+k < 0.
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So, the value for ✓1ijk that maximizes the summand (b) is the minimal value

for ✓1ijk, that is,
N 0

N1

ij+
=

N1

ij+k

N1

ij+
. Finally, by Gibb’s inequality, we derive that the

distribution for ✓1ijk that maximizes the summand (a) in (11) is ✓1ijk =
N1

ij+k

N1

ij+
.

Since the maximality of the summands (a) and (b) is obtained with the same

distribution, we have that the values for ✓1ijk that maximize (8) are given by

✓1ijk =
N1

ij+k

N1

ij+
. ⇤

The role of the pseudo-counts N 0 is to guarantee that no counting N1

ij+k can

be below it. By plugging the parameters obtained in (10) into the mfCLL

criterion in (8), we obtain

\mfCLL(G
1

| T ) =
nX

i=1

q1iX

j=1

riX

k=1

(↵N1

ij1k + �N1

ij0k) log

 
N1

ij+k

N1

ij+

!

. (12)

The notation with G
1

has argument instead of B
1

= (X, G
1

,⇥
1

) emphasizes

that once the parameters ⇥
1

are decided upon, the criterion is a function of

the network structure G
1

only. The MDL penalized version of (12) is given

straightforwardly by

\mfCLL
MDL

(G
1

| T ) = \mfCLL(G
1

| T )� 1

2
ln(N)

nX

i=1

(ri � 1)⇥ q1i . (13)

Next, we show that mfCLL in (12) is not score equivalent; and consequently the

same applies for (13). Two BNs are said to be equivalent if they can represent

precisely the same set of distributions. Verma and Pearl [42] showed that this

is equivalent to check if the underlying DAGs of the two BNs have the same

skeleton and the same v-structures. A score-equivalent scoring criterion is one

that assigns the same score to equivalent BN structures [10,44,13].

Theorem 3.2 The \mfCLL scoring criterion is decomposable and non-score

equivalent.

Proof: Decomposability follows directly from the definition in (12). Concern-

ing non-score equivalence, it su�ces to provide a counter-example where two
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equivalent structures do not score the same. To this purpose consider a two-

node multinet (n = 2) and T = {(0, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)} as the

training set. The structures G ⌘ X
1

! X
2

and H ⌘ X
2

! X
1

for B
1

are

equivalent, but it is easy to check that \mfCLL(G | T ) 6= \mfCLL(H | T ). ⇤

Since learning using undecomposable scores is, in general, an expensive task,

most of the interesting scoring criteria in the literature are decomposable. It

is however possible to employ undecomposable scores avoiding this compu-

tational expensiveness considering prior assumptions on the possible network

structures [9]. In addition, both score-equivalent and non-score-equivalent de-

composable scores can be learned e�ciently, although the algorithms to learn

them are di↵erent. Non-score-equivalent scores typically perform better than

score-equivalent ones [13,44].

3.5 Structure learning

In this section we briefly discuss two well-known algorithms for local score-

based learning. The algorithm for hybrid learning of the foreground and the

background is then presented, profiting from these discussions.

For decomposable scores, optimal networks can be learned locally being the

global score of the network taken as a sum or a product of the local contribu-

tions of the score. Notwithstanding, local score-based learning is e�cient only

if restricted to certain structures, like trees [12,16] and consistent -graphs

(CG) [6]. Unrestricted BN structure learning is known to be NP-hard [11],

even for decomposable scores. Thus, to achieve e�cient hybrid learning of

BMs we restrict our attention to trees and CG networks.

Tree BNs are learned using the Chow-Liu’s [12] or Edmonds’ [16] algorithms.

The first is used with score-equivalent scoring criteria and the latter with non

score-equivalent ones. The Chow-Liu’s algorithm simply finds the maximum
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spanning tree from a complete weighted graph. Edmonds’ algorithm finds the

maximum directed spanning tree from a directed weighted graph, where edges

from A to B and B to A might weight di↵erently. In both algorithms, each

edge of the complete graph is weighted with the local contribution of the edge

for the global score. Because of this, only decomposable scores can be applied.

The optimal tree is found in O(Nn2) time for both Chow-Liu’s and Edmonds’

algorithms.

Although very e�cient, tree networks significantly restrict the possible depen-

dencies between variables since it only allows one parent per node. Consistent

-graphs overcome this shortcoming, allowing for dependencies that are con-

sistent with a topological order of the optimal tree [6]. In detail, after obtaining

the optimal tree the breadth-first search (BFS) order of this tree is considered.

Then, each node may have at most  parents, provided that the parents are

smaller than the node in the BFS order. For a fixed , CG networks can

be learned in polynomial-time. Moreover, the optimal CG network always

scores better than the optimal tree.

We are now able to present the algorithm for learning two-component mix-

tures of BNs for binary classification tasks. The learning procedure, presented

in Algorithm 1, relies on two other algorithms that learn each mixture compo-

nent B
0

and B
1

. It starts by computing the mixing proportions � = h�
0

,�
1

i

as in (5). Then, it generatively learns the background model B
0

, and discrim-

inatively learns the foreground model B
1

. The overall procedure is therefore

hybrid.

Algorithm 1 Hybrid learning of two-component multinets
(1) Compute the mixing proportions �

0

=

N0
N and �

1

= 1� �
0

.

(2) Learn generatively from T
0

the BN B
0

.

(3) Learn discriminatively from T , with the

\
mfCLL score or a score thereof, the BN B

1

.

It is important to notice that any BN learning algorithm that copes with
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decomposable scores can be used in Step 3 of Algorithm 1. For instance, Chow-

Liu’s [12] or Edmonds’ [16] algorithms can be used to learn tree-like structures.

Moreover, CG network structures [6] can also be learned. Although trees and

CGs are usually good candidates, as they o↵er e�cient and optimal solutions,

heuristic algorithms like greedy Hill climber can also be employed. The only

premise is that the algorithm should be based on local score optimization, in

order to be able to employ in Step 3 the mfCLL scoring criterion in (12), or

a penalized version of it as in (13). Concerning Step 2, only T
0

is considered

to learn the background model B
0

and any generative learning algorithm can

be employed.

The time complexity of Algorithm 1 only depends on the time complexity of

the algorithms employed to learn B
0

and B
1

in steps 2 and 3. For instance,

if tree-like structures are learned in both steps then the resulting algorithm

is linear in the size of the data T , that is, O(Nn2). However, if CG-like

structures are learned in any (or both) of the steps then the algorithm is

polynomial in , that is, O(Nn+1).

4 Experimental results

In this section we present the experimental methodology along with the results

and their interpretation. We start by presenting a particular setting in the field

of computational biology where discriminative learning of mixtures of BNs

plays an important role. We then compare our results with previous works in

this same core, mainly focusing in BN-based models. Moreover, we perform

a deep comparison with state-of-the-art classifiers. The best mixture elicited

from these results is then evaluated with UCI medical diagnosis datasets.

We implemented the CG-mixture model and mfCLL scoring criterion in

Mathematica 7.0 on top of the Combinatorica package [34]; plain CG mod-
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els were already implemented on top of this package by the authors [7]. Both

plain and penalized versions of mfCLL, given by equations (12) and (13), were

implemented. In our experiments we used  = 2 since it showed to be a good

tradeo↵ between e�ciency and expressiveness [6].

4.1 Modeling transcription factor binding sites

An important part of gene regulation is mediated by specific proteins, called

transcription factors (TF), which influence the transcription of a particular

gene by binding to specific sites on DNA sequences, called transcription fac-

tor binding sites (TFBS). Such binding sites are relatively short strings of

DNA, normally 5 to 25 nucleotides long. A nucleotide is a letter of the DNA

alphabet, given by ⌃ = {A, C, G, T}. Usually, these binding sites are moderately

conserved strings so that they are recognized by the TF as sites to bind and

start transcription of a particular gene.

When dealing with the TFBS representation one needs a collection of known

binding sites, which in practice constitutes a collection of moderately con-

served DNA substrings. These strings are then aligned and trimmed to have

the same size. The size of the binding sites corresponds to the number of

features of the probabilistic models used to represent them. Each feature is

nominal and ranges over by the DNA alphabet. TFBS models are ultimately

needed to discriminate binding regions from non-binding ones. This is a clas-

sification task. To this end, the collection of known binding sites are labelled

as “binding”, and joined to a collection of non-binding sites that are labelled

as “non-binding”, and a classification task is performed. As DNA is a single

sequence, “non-binding” instances correspond to subsequences of DNA that

are not TFBSs. These non-binding sequences are usually retrieved from sur-

rounding regions of TFBSs, typically from upstream regions of genes, and then

trimmed to have the same size as binding instances.
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A commonly used representation of TFBSs is a position-specific scoring matrix

(PSSM). It is defined by a matrix where each entry (i, b) is the probability

of nucleotide b being at the i-th position in the collection of binding sites.

This representation assumes independence of nucleotides in the binding sites.

Although popular, this simplistic independence assumption paved the way for

more complex models that account for nucleotide interactions [32]. Barash

et al. [1] already obtained good results modeling TFBSs with generatively

learned tree BNs and mixtures of trees. More recently Carvalho et al. [7] also

contributed in this direction by proposing pure generative C2G models to

represent TFBSs. Herein, we evaluate the extent to which the hybrid C2G-

mixture models are beneficial in representing TFBSs.

In TFBS representation there is no reason to think that a unique BN is suit-

able to represent the co-regulated DNA sequences (the background) and, at

the same time, a TFBS within such region (the foreground). Indeed, the back-

ground contains several signals along with noise, as it might contain both

coding and non-coding DNA regions, whereas the foreground contains a col-

lection of binding sites moderately conserved. These two separate regimes are,

almost certainly, the reason why tree-mixture models have shown to be better

suited than plain tree models for TFBS representation [1]. When compared

with tree mixtures [1], CG-mixture models allow important nucleotide inter-

actions to be captured. In this context, CG models allow for  dependencies

between nucleotides whereas tree models allow only for one interaction (and

PSSM models for none). Due to this fact, CG allows for v-structures in its

underlying DAG and so exhibits the so called induced dependencies, where to-

tally unrelated propositions become relevant to each other when new facts are

learned. In the case of TFBSs these dependencies may capture, for instance,

that the first position of a TFBS is independent from the second one, unless

in the third position there is a certain nucleotide. PSSM and tree models are

unable to provide such dependencies.
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4.1.1 Evaluating Bayesian network-based models

We evaluated the performance of hybrid C2G-models in TFBS representation

comparing them with state-of-the-art BN-based models. We performed our

evaluation on the same 89 benchmark datasets used by Barash et al. [1]. These

datasets were taken from the TRANSFAC database [43], containing hundreds

of biologically validated TFBSs.

These 89 sequence-sets, constituting each one a foreground data T
1

, were ex-

tracted from aligned binding sites of Saccharomyces cerevisiae for which there

were 20 or more sites. Therefore, the minimum number of instances in T
1

is 20,

whereas the largest T
1

contains 80 instances. Each feature in T
1

corresponds

to a specific position of the binding sites (first feature is the first position,

second feature is the second position, and so on). In each of these positions

there is a letter of the DNA alphabet, so features are nominal and contain

the letters A, C, G or T. The number of features in the 89 sequence-sets ranges

from 6 to 24, corresponding to the size of the binding sites.

The background data T
0

was gathered from the upstream regions of genes of

the same organism (in this case, Saccharomyces cerevisiae). This corresponds

to non-binding sites in the DNA. In practice, 1000 non-binding sequences were

collected for each dataset T
0

. The goal of classification is to distinguish binding

sites in T
1

from non-binding sites in T
0

. The resulting 89 datasets comprise

both the foreground and the background data. Moreover, in each of these 89

datasets a new additional feature was added representing the respective class

variable, that is, instances in T
0

were labelled with 0, whereas instances in T
1

were labelled with 1. Thus, the number of instances of the final 89 datasets

varies from 1020 to 1080, and the number of features varies from 7 to 25,

including the class variable.

For each dataset we evaluated some relevant two-component mixtures pairs

B
0

–B
1

, namely, tree–tree, tree–C2G, C2G–tree and C2G–C2G. These mix-
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tures were tested with the mfCLL scoring criterion, with and without the

MDL penalty. In order to provide a baseline for comparison of the proposed

hybrid models, we also evaluated them with (generative) LL and MDL scoring

criteria, as firstly proposed by Barash et al. [1]. These resulted in the sixteen

candidate models, presented in Table 1, eight of them hybrid and the other

eight generatively learned. We improved the performance of BNs by smooth-

ing the parameter estimates according to a Dirichlet prior [23], which in prac-

tice corresponds to adding a certain amount of pseudo-counts uniformly. The

smoothing parameter was set to 0.5 as it is common practice.

The accuracy of each mixture is defined as the percentage of successful pre-

dictions on the test sets of each dataset. Accuracy was measured via strat-

ified five-fold cross-validation, using the methods described by Kohavi [27].

Throughout the experiments, we used the same cross-validation folds for ev-

ery classifier. Scatter plots of the accuracies of the proposed methods against

the others are depicted in Figure 1. Points above the diagonal line represent

cases where the method shown in the vertical axis performs better than the

one on the horizontal axis. For space considerations, only eight (one against

seven) out of the sixteen models tested are depicted and compared with the

best mixture, C2G–C2G–mfCLLMDL. Nonetheless, the results for the remain-

ing models are discussed along this section.

As suggested in [14], we also compared the performance of the classifiers using

Wilcoxon signed-rank tests. This test is applicable when paired classification

accuracy di↵erences, along the datasets, are independent and non-normally

distributed. Alternatively, a paired t-test could have been used but we applied

the former as the Wilcoxon signed-rank test is more conservative than the

paired t-test. We concluded that hybrid mixtures of C2G models significantly

outperformed the remaining mixtures. However, as expected, the MDL penalty

was needed in order to control the complexity of the resulting C2G local mod-

els. Results comparing the mixtures analyzed in Figure 1 with the four most
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Backgorund Foreground

Learning Abbreviation Model Score Model Score

hybrid

tree–tree–mfCLL tree

LL

tree

mfCLL

tree–C2G–mfCLL tree C2G

C2G–tree–mfCLL C2G tree

C2G–C2G–mfCLL C2G C2G

tree–tree–mfCLL

MDL

tree

MDL

tree

mfCLL

MDL

tree–C2G–mfCLL

MDL

tree C2G

C2G–tree–mfCLL

MDL

C2G tree

C2G–C2G–mfCLL

MDL

C2G C2G

generative

tree–tree–LL tree

LL

tree

LL

tree–C2G–LL tree C2G

C2G–tree–LL C2G tree

C2G–C2G–LL C2G C2G

tree–tree–MDL tree

MDL

tree

MDL

tree–C2G–MDL tree C2G

C2G–tree–MDL C2G tree

C2G–C2G–MDL C2G C2G

Table 1

A total of sixteen multinets were used in the experiments. In the abbreviated name

the first word is the model employed in the background learning whereas the second

concerns the foreground. The third word indicates the score used for learning the

foreground model. The background model uses the same score as the foreground if

the model is generative, and the corresponding generative version when the model

is hybrid.

promising hybrid mixtures are depicted in Table 2. Each entry in the table has

the p-value of the significance test for the corresponding pairs of classifiers.

The double arrow points to the best classifier, in terms of classification rate,

with p-value smaller than 0.05.
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Figure 1. Scatter plots of the accuracy of di↵erent multinet classifiers compared

with the penalized hybrid mixture C2G–C2G–mfCLLMDL over 89 datasets with

biologically validated TFBSs. The first two plots correspond to other penalized

hybrid mixtures, the following three correspond to non-penalized hybrid mixtures,

and the last two to generative mixtures. Points above the diagonal line represent

the cases where the method shown on the vertical axis performs better than the

one on the horizontal axis. C2G–C2G–mfCLLMDL was the classifier with the best

performance.

From Table 2 it is clear that C2G�C2G�mfCLL is overfitting whereas the

same is not true, at least at the same scale, with tree–C2G–mfCLL. This

points out that overfitting is mainly occurring in the background model B
0

.

However, despite the fact that tree–C2G–mfCLL performed better than C2G–
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C2G–mfCLL, Table 2 also shows that higher accuracies are achieved with

the same two-component mixture models but with the penalized versions of

mfCLL. Actually, the combination of mfCLLMDL scoring criterion with two-

component mixtures of C2G models (first line of Table 2) performs better than

all the other considered classifiers. We conclude that hybrid learning of two-

component mixtures of C2G Bayesian networks is beneficial, specially when

the richness of the structure is controlled using MDL to avoid overfitting.

Although not depicted in Figure 1 nor presented in Table 2, we also di-

rectly compared tree–tree–mfCLL with tree–tree–LL classifiers, and tree–tree–

mfCLLMDL with tree–tree–MDL, in order to understand the benefits of using

the mfCLL score without the degree of freedom introduced by the C2G model.

In this way, we performed a comparison with previous results on using BN

mixtures to model TFBSs [1]. Results showed that tree–tree–mfCLL signif-

icantly outperformed tree–tree–LL with a p-value of 2.08 ⇥ 10�6 and that

tree–tree–mfCLLMDL also performed significantly better than tree–tree–MDL

with a p-value of 1.37⇥ 10�6. Furthermore, the hybrid mixture that provided

the best results, C2G–C2G–mfCLLMDL, outperformed with statistical signifi-

cance both tree–tree–mfCLL, tree–tree–mfCLLMDL, and mixtures of PSSMs.

We conclude then that a discriminative scoring criterion such as mfCLL, with

or without MDL penalty, is advantageous in classification tasks when com-

pared to their generative counterparts (LL and MDL).

Our results support that hybrid multinets are suitable for TFBS discrimi-

nation, and confirm those of Barash et al. [1] that had already noticed that

generative multinets outperform plain BN models when modeling TFBSs.

4.1.2 Evaluating other state-of-the-art models

The usage of BNs to model TFBS is linked to the fact that they provide an in-

tuitive and humane readable model. Nevertheless, discriminating TFBSs from
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background is mainly a classification task and so any classifier can be used,

independently of providing or not a TFBS model capable of being interpreted

or biologically validated. Therefore, we also compared hybrid CG-mixtures

with state-of-the-art classifiers, namely, support vector machines (SVM), lo-

gistic regression (LogR), decision trees (DT) and k-nearest neighbor (k-NN).

All aforementioned state-of-the-art classifiers were tested in WEKA java pack-

age [22] and are summarized in Table 3. Concerning SVM models, we used

three di↵erent kernels: (i) a linear kernel (SMO implementation in WEKA),

which we henceforward denote by SVM; (ii) a polynomial kernel (SMO imple-

mentation in WEKA with PolyKernel and exponent parameter E=2), denoted

by SVM2; and (iii) a radial basis function (RBF) kernel also known as Gaus-

sian kernel (SMO implementation in WEKA with RBFKernel), which we denote

by SVMG. Following the canon in the literature [25], we used a grid-search

to find the optimal penalty parameter C and the optimal RBF kernel param-

eter �, using cross-validation. More specifically, for linear, polynomial, and

RBF kernels, we selected C from [10�1, 1, 10, 102] by using 5-fold cross valida-

tion on the training set. For the RBF kernel we additionally selected � from

[10�3, 10�2, 10�1, 1, 10] in a similar manner.

In what concerns logistic regression and decision trees, Logistic and J48 im-

plementations from WEKA were used, respectively, with default parameters.

Concerning k-NN classifier, we used k = 3 (IBk implementation in WEKA

with parameter K = 3) and k = 5 (IBk implementation in WEKA with pa-

rameter K = 5). Finally, for TAN-fCLL, we improved its performance using

Dirichlet priors (see [23]) to smooth the network parameters. We achieve this

purpose by setting the alpha parameter to 0.5. In practice, this is the default

value for this parameter, and the value for which we obtained the highest av-

erage accuracy among all classifiers. The rest of the experimental procedure

was similar to the one described in the previous section. Results are illustrated

in Figure 2 and Table 4.
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Abbreviation Classifier Implementation

DT Decision tree J48 implementation from WEKA

3-NN 3-Nearest neighbor IBk (K=3) implementation from WEKA

5-NN 5-Nearest neighbor IBk (K=5) implementation from WEKA

SVM

Support vector machine SMO implementation from WEKA

with linear lernel

SVM2

Support vector machine SMO with PolyKernel (E=2)

with polynimial kernel implementation from WEKA

SVMG

Support vector machine SMO with RBFKernel

with Guassin kernel implementation from WEKA

LogR Logistic regression Logistic implementation from WEKA

TAN-fCLL

Tree augmented naive BN classifier TAN implementation from [8]

with fCLL scoring criterion (score=fCLL)

Table 3

Discriminative state-of-the-art classifiers used in the experiments. Parameters, if

di↵erent from their defaults, are given parenthetically in the last column of the table.

Concerning SVMs, a grid-search was used to find the optimal penalty parameter C,

and the optimal RBF kernel parameter � using cross-validation. More specifically,

for linear, polynomial, and RBF kernels, C was selected from [10�1, 1, 10, 102] by

using 5-fold cross validation on the training set. For the RBF kernel � was also

selected from [10�3, 10�2, 10�1, 1, 10] in a similar manner.

From the analysis of Figure 2 and Table 4 it is clear that C2G–C2G–mfCLLMDL

and SVM2 significantly outperformed all other state-of-the-art classifiers. C2G–

C2G–mfCLLMDL also performed better than SVM2 although the di↵erence

was not statistical significant. The main advantage of C2G–C2G–mfCLLMDL

over SVM2 is its computational cost, as SVM2 needs to tune its parameters

with a time-consuming grid-search procedure, taking 2 to 3 orders of magni-

tude more time than C2G–C2G–mfCLLMDL.

The other classifiers behaved somewhat as expected. Gaussian SVMs signifi-

cantly outperformed all other classifiers, with the exception of mfCLLMDL and
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Figure 2. Scatter plots of the accuracy of di↵erent state-of-the-art classifiers com-

pared with C2G–C2G–mfCLLMDL, that was the mixture that performed better

than all other mixtures (in Table 1) over the 89 datasets with biologically validated

TFBSs (see Table 2). Points above the diagonal line represent the cases where the

method shown on the vertical axis performs better than the one on the horizontal

axis. The C2G–C2G–mfCLLMDL was the best classifier.

polynomial SVMs. Among linear SVMs, logistic regression, k-nearest neigh-

bors and decision trees, the 5-NN was the one that performed the best, followed

by linear SVM, 3-NN and DT. Surprisingly, LogR attained the worst results

in this setup.
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4.2 Clinical data

We also tested the proposed hybrid classifier C2G–C2G–mfCLLMDL over eight

datasets from the UCI repository [30]. We chose eight diagnosis datasets

that were within the scope of application of the proposed method—a back-

ground characterizing the values of the attributes for healthy individuals, and

a foreground with the attributes for patients with a particular disease. These

datasets are described in Table 5.

Dataset Features Train Test

1 breast 10 683 CV-5

2 cleve 14 296 CV-5

3 diabetes 9 768 CV-5

4 echo 12 132 CV-5

5 hepatitis 20 80 CV-5

6 mammo 6 961 CV-5

7 pima 9 768 CV-5

8 thyroid 5 215 CV-5

Table 5

Description of UCI datasets used in the experiments. All of these eight datasets

were collected from clinical data: 1) breast cancer; 2) heart disease from Cleveland

patiens; 3) diabetes patient records retrieved from automatic electronic recording

device and paper records; 4) echocardiogram from patients that su↵ered heart at-

tacks; 5) hepatitis disease; 6) mammographic masses from breast cancer screening;

7) Pima Indians diabetes; and 8) thyroid disease.

The continuous-valued attributes in the datasets were discretized in a su-
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pervised manner using the entropy-based method proposed in [17]. For this

task we used the WEKA package. Supervised discretization was performed

via weka.filters.supervised.attribute.Discretize, with default param-

eters. Moreover, instances with missing values were removed from the datasets.

The accuracy of each classifier was measured via stratified 5-fold cross-validation.

Throughout the experiments, we used exactly the same folds, hence, the same

information was available for training and testing all classifiers. The accuracy

results are presented in Table 6. Similarly to the previous section, we compared

the performance of the classifiers using Wilcoxon signed-rank tests (Table 7).

Dataset

C2G–C2G

mfCLL

MDL

DT 3-NN 5-NN SVM SVM2 SVMG LogR TAN-fCLL

breast 97.66 95.90 96.93 96.93 97.51 96.05 96.63 96.63 97.66

cleve 82.77 76.69 80.41 82.77 82.09 72.97 78.38 81.42 82.77

diabetes 79.17 77.60 77.86 77.73 77.47 76.56 77.86 78.65 78.91

echo 79.03 79.03 74.19 79.03 75.81 79.03 79.03 70.97 72.58

hepatitis 93.75 85.00 91.25 92.50 83.75 87.50 87.50 78.75 90.00

mammo 83.86 83.37 78.31 80.36 81.69 85.06 84.46 82.41 82.89

pima 78.39 77.21 76.82 76.69 78.91 76.95 77.08 78.26 78.52

thyroid 94.88 94.42 93.49 92.56 94.88 94.88 94.88 88.84 94.42

Table 6

Accuracy attained by each classifier over the eight datasets described in Table 5.

The best classifier was the C2G–C2G–mfCLLMDL followed by TAN-fCLL.

From the analysis of tables 6 and 7 it is clear that the hybrid mixture C2G–

C2G–mfCLLMDL outperformed significantly all the other classifiers. The TAN-

fCLL classifier also performed well however, it only attained statistical signif-

icant outperformance against LogR.
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Classifier DT 3-NN 5-NN SVM SVM2 SVMG LogR TAN-fCLL

C2G–C2G–mfCLL

MDL

0.011 0.007 0.018 0.021 0.029 0.029 0.007 0.030

( ( ( ( ( ( ( (

DT 0.500 0.336 0.417 0.417 0.015 0.264 0.176

⌘ " " " *  "

3-NN 0.102 0.117 0.500 0.336 0.363 0.117

" " ⌘ "  "

5-NN 0.472 0.312 0.500 0.181 0.400

  ⌘  "

SVM 0.466 0.336 0.092 0.221

" "  "

SVM2 0.140 0.264 0.221

"  "

SVMG 0.136 0.312

 "

LogR 0.007

*

Table 7

Wilcoxon signed-rank tests for the results obtained by state-of-the-art classifiers over

the datasets in Table 5. Each entry of the table has the p-value of the significance

test for the corresponding pair of classifiers. The arrow points to the best of the two

learning algorithms, in terms of classification rate. A double arrow is used when the

di↵erence is significant with p-value smaller than 0.05. The symbol ⌘ means that

the models attained equivalent results. The C2G–C2G–mfCLLMDL was the best

strategy.
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5 Conclusions

In this paper we proposed a new scoring criterion, which we called mfCLL,

for learning two-component mixtures of BNs. The new score is used to dis-

criminatively learn the concepts in one of the components of the mixture—the

foreground. On the other hand, background concepts are learned generatively,

providing an overall hybrid procedure for binary classification tasks. This new

score is decomposable and the parameters that maximize it are known, allow-

ing for score-based learning procedures to be employed very e�ciently.

The benefits of this new scoring criterion were evaluated on a large suite

of 89 benchmark datasets from computational biology for the task of TFBS

representation. Results showed that among all candidate multinets, the hy-

brid C2G–C2G–mfCLLMDL mixture, was the one that provided a superior

discriminant power to distinguish TFBSs from non-binding regions in com-

parison with the existing generative models. In addition, a comparison with

other state-of-the-art classifiers, showed that C2G–C2G–mfCLLMDL signifi-

cantly outperforms SVMs with linear and Guassian kernels, logistic regression,

decision trees, and k-nearest neighbors for k = 3 and k = 5. Moreover, C2G–

C2G–mfCLLMDL showed to behave similarly to polynomial SVMs. Notwith-

standing, learning mfCLL-based mixtures is considerably more time-e�cient

than learning SVMs, taking 2 to 3 orders of magnitude less time for the 89

considered datasets.

In addition, we also gauged the merits of C2G–C2G–mfCLLMDL with eight

UCI diagnosis datasets within the scope of application of the proposed method.

The results showed that C2G–C2G–mfCLLMDL outperformed significantly all

other classifiers.

We conclude that the hybrid C2G–C2G–mfCLLMDL classifier constitutes a

good choice when the data is split in foreground and background, where
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the background is noisy and consists of a possible miscellaneous of concepts

whereas the foreground contains a single and well defined concept.

Directions for future work include the study of the asymptotic behavior of

mfCLL and the usage of mfCLL in unsupervised learning.
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