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1.7. Relation with group cohomology and Galois-Grothendieck cohomology 10
1.8. The RO(Z/2)-graded cohomology of the Brauer-Severi curve P(H) 12
2. The Z/2-homotopy type of zero-cycles 13
3. Quaternionic algebraic cycles and the join pairing 16
3.1. Equivariant homotopy type of algebraic cycles 17
3.2. Stabilizations of cycle spaces 19
4. Quaternionic K-theory 22
4.1. Classifying spaces and equivariant quaternionic K-theory spectrum 22
5. Characteristic Classes 25
5.1. Cohomology of (Z ×BU)H 25
5.2. Projective bundle formula 28
5.3. The quaternionic total Chern class map 29
5.4. The group struture on Z0

H
(X) 31

5.5. Remarks on the space (Z ×BU)H 33
References 34

Date: May 2001.
Partially supported by NSF.

1



2 DOS SANTOS AND LIMA-FILHO

Introduction

In [Ati66] Atiyah developed a K-theory for spaces (X,σ) with an involution σ, the Real spaces

in his terminology. The construction uses the notion of a Real bundle (E, τ) over (X,σ) which
consists of a complex vector bundle E over X, along with an anti-linear map τ : E → E covering
the involution σ and satisfying τ 2 = 1. The group KR(X) is then defined as the Grothendieck
group of the monoid of isomorphism classes of Real bundles over (X,σ), and the resulting theory
is called KR-theory.

In a similar fashion, J. Dupont developed in [Dup69] the symplectic K-theory KSp(X) for Real
spaces (X,σ). His construction is similar to Atiyah’s, in that KSp(X) is the Grothendieck group of
the monoid of isomorphism classes of symplectic bundles over (X,σ). In this context, a symplectic

bundle (E, τ) over (X,σ) consists of a complex vector bundle E over X, along with an anti-linear
map τ : E → E covering the involution σ and satisfying τ 2 = −1. Subsequently, R. M. Seymour
reintroduced this theory in [Sey73], where he called it quaternionic K-theory and denoted it by
KH(X). We adopt this terminology, for it avoids confusion with the non-equivariant notion of
symplectic K-theory.

A clear and conceptual reason for the existence of these two competing theories arises when one
tries to find their respective classifying spaces in the equivariant category. In fact, one can extend
these theories to RO(Z/2)-graded cohomology theories KR∗ and KH∗ in the sense of [Seg68] and
[May77]. To this purpose, one constructs Z/2-spaces (Z ×BU)C and (Z ×BU)H satisfying

[X+, (Z ×BU)C]Z/2 ∼= KR(X) and [X+, (Z ×BU)H]Z/2 ∼= KH(X);

cf. [LLFM98b] and Proposition 4.4, respectively. These spaces are shown to have the structure
of Z/2-equivariant infinite loop spaces in [LLFM98b, ] and Theorem 4.7, respectively, yielding the
spectra classifying the desired equivariant cohomology theories.

In order to construct such classifying spaces, we first identify Z/2 - the underlying group of the
equivariant category - with the Galois groupGal(C/R). Recall that the Brauer group [Gro57] Br(R)
of R is also isomorphic to Z/2. This will be shown to account for the two distinct K-theories in
Section 4. The argument is roughly the following. Let P(Cn) denote the projective space of complex
1-dimensional subspaces of C

n. In the language os schemes, this is the set of complex-valued points
of P

n−1, endowed with the analytic topology. The Galois group Z/2 = Gal(C/R) acts on P(Cn)
via complex conjugation. Similarly, let H = C ⊕ Cj denote the quaternions, and let P(Hn) be
the projective space of complex 1-dimensional subspaces of H

n. We give P(Hn) the Z/2-action
induced by multiplication by j on the left of H

n. As a space, P(Hn) is homeomorphic to P(C2n),
however the Z/2-actions on P(C2n) and P(Hn) are quite distinct. In fact, these spaces are the
complex-valued points of the two inequivalent Brauer-Severi schemes of rank 2n− 1 over R, under
the action of the Galois group. The aforementioned classifying spaces (Z ×BU)C and (Z ×BU)H

are then constructed using the usual equivariant stabilization of the Grassmannians of complex
linear subspaces of P(Cn) and P(Hn), respectively.

In order to develop a theory of characteristic classes for KR∗ and KH∗, one needs to introduce
the appropriate equivariant cohomology theories. In [Kah87] B. Kahn defined characteristic classes
for Real bundles, taking values in Galois-Grothendieck cohomology with coefficients in the Z/2-
modules Z(n). In the case of quaternionic bundles, Dupont poses in [Dup99] the question of which
equivariant cohomology theory would be the natural target of characteristic classes, but the question
was left unanswered.
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In this paper we provide an answer to this question by constructing a cohomology theory Z∗
H

in
which the characteristic classes for quaternionic bundles take its values. Furthermore, we extend
these characteristic classes to a natural transformation of RO(Z/2)-graded cohomology theories
KH∗ → Z∗

H
. A crucial aspect of our construction is the fact that the two distinct Brauer-Severi

varieties P(Cn) and P(Hn), used in the construction of the classifying spaces for KR∗ and KH∗,

are also used to construct classifying spaces for the corresponding cohomology theories. Under this
approach, the classifying maps for the characteristic classes have a similar description in both cases.

In order to place our constructions under the proper perspective, let us describe how the char-
acteristic classes for Real bundles were extended to KR∗ in [LLFM98b] and [dS00]. The main
constructions go back to [LM91], [BLLF+93] and [LLFM96].

Let Zq(P
(
C
n
)
) denote the group of algebraic cycles of codimension q in P

(
C
n
)
. This is an

abelian topological group on which Gal(C/R) acts via topological automorphisms. See [LLFM98a]
for details and additional references. The equivariant homotopy type of Zq(P

(
C
n
)
) was determined

in [dS00], and it turns out to be a product of classifying spaces for equivariant coohomology with
coefficients in the constant MacKey functor Z. More precisely, one has a canonical equivariant
homotopy equivalence

Z
q(P
(
C
n
)
) ∼= Z ×K(Z(1), 2) ×K(Z(2), 4) × · · · ×K(Z(q), 2q).

The associated equivariant cohomology theory is RO(Z/2)-graded (bigraded, in this case) and the
resulting invariants arise naturally in Z/2-homotopy theory. The functor represented byK(Z(q), 2q)
is denoted H2q,q(−; Z). See Section 1.3 for notation.

The situation in KR-theory follows a standard, albeit non-trivial, pattern. A canonical stabiliza-
tion lim

−→
Grq(Cn) in the Z/2-homotopy category, of Grassmannians as Gal(C/R)-spaces, produces

a classifying space BUC for KR-theory. It is easy to see that the Bredon cohomology of BUC with
coefficients in Z is a polynomial ring over Z on certain characteristic classes, the equivariant Chern
classes for KR-bundles. Furthermore, the inclusion of Grq(Cn) ↪→ Zq(P

(
C
n
)
) stabilizes to give a

map of equivariant infinite loop spaces

c : BUC → Z ∼=
∏

p

K(Z(p), 2p),

which classifies the total Chern class.
In this paper we provide the quaternionic counterpart of the constructions in KR∗-theory de-

scribed above. This turns out to be a more subtle issue, and our answer was inspired by the following
observation, made in [Ati66] and [Dup69]. If X be a Real space, then one has an isomorphism:

(1) KR(X × P(H)) ∼= KR(X) ⊕KH(X).

The first task is to determine the Z/2-homotopy type of Zq(P
(
H
n
)
), under the Z/2-action induced

by j, as explained above. This is the action induced by the Gal(C/R) action on the complex points
P(Hn) of the Brauer-Severi variety of rank n − 1 over R. This problem was first considered in
[LLFM98b], where it was proved that quaternionic suspension, Σ/ H : Zq(P

(
H
n
)
) → Zq(P

(
H
n+1
)
),

is a Z/2-homotopy equivalence. This reduced the problem to computing the Z/2-homotopy type
of cycle spaces of dimensions 0 and 1. Their homotopy type is quite distinct, and this somehow
reflects the sharp difference between quaternionic bundles of even and odd complex rank. Later, in
[LLFM98c] the homotopy type of the space of cycles Zq(P

(
H
n
)
)Z/2 was computed using suspension

to a real bundle other than O(1) (which corresponds to complex suspension).
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Based on the techniques of [LLFM98c], and on the Z/2-equivariant perspective of [dS99a], we
first establish the following splitting result.

Theorem 3.4. For k < n there are canonical equivariant homotopy equivalences:

(2) Z
2k−1(P

(
H
n
)
) ∼=

k∏

j=1

F (P(H)+, K(Z(2j − 1), 4j − 2) )

and

(3) Z
2k(P

(
H
n
)
) ∼=

k∏

j=1

F (P(H)+, K(Z(2j), 4j) )

where F (−,−) denotes based maps.

Note that the spaces F (P(H)+, K(Z(q), 2q)) are classifying spaces for the cohomology functors
H2q,q(−× P(H); Z). This result completely determines the Z/2-homotopy type of Zm(P

(
H
n
)
).

We then apply a suitable stabilization procedure using the spaces Zq(P
(
H
n
)
). The resulting

space ZH has the property that all of its connected components are products of classifying spaces
for the functors H2∗,∗(−× P(H); Z), according to the splitting of Theorem 3.4.

Theorem 3.9. The space ZH is written as a disjoint union of connected spaces

ZH =
∞∐

j=−∞

Z
j
H
,

where the equivariant homotopy type of Z
j
H

is totally determined by

(4) Z
j
H
∼=

{∏∞
k=1 F (P(H)+, K(Z(2k − 1), 4k − 2) ) , if j is odd∏∞
k=1 F (P(H)+, K(Z(2k), 4k) ) , if j is even.

Using standard results in equivariant homotopy theory (cf. [CW91]), we prove that the complex
join pairing on algebraic cycles induces an equivariant infinite loop space structure on ZH. We
denote by Z∗

H
the resulting equivariant cohomology theory. Note that for a compact Z/2-space X,

one has an identification

(5) Z0
H(X) = [X,ZH]Z/2 =

⊕

j∈Z

[
X,Zj

H

]
Z/2

=
⊕

j∈Z

∏

r≥1

H4r−2ε(j), 2r−ε(j)(X × P(H),Z),

where ε(j) is 0 if j is even and 1 if j is odd. The group structure on Z0
H
(X), coming from the

H-space structure on ZH induced by the algebraic join of cycles, has the following description.

Proposition 5.10. Let X be a Z/2-space, and let a ·b denote the product of elements a, b in Z0
H
(X).

Consider Z0
H
(X) included in ⊕

j∈Z

∏

r,s≥1

Hr,s(X × P(H),Z),

as in (60). Then, under this inclusion we have,

a · b = a ∪ b+ pr∗(a/z) ∪ pr∗(b/z),

where z ∈ H2,1(P(H); Z) is the fundamental class P(H), −/z denotes slant product with z and pr is

the projection onto the first factor in the product X × P(H).
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A similar stabilization procedure is then applied to the Grassmannians Gq(Hn) and the result

is an equivariant infinite loop space (Z × BU)H = qj∈Z BU j
H

which classifies KH∗, as described

above. The inclusion Grq(Hn) ⊂ Zq(P
(
H
n
)
) induces a total Chern class map c

H
: (Z×BU)H → ZH,

which turns out to be a map of equivariant infinite loop spaces; cf. (48).
In order to understand this Chern class map, we compute the equivariant cohomology group

Z0
H
((Z × BU)H) = [ (Z × BU)H, ZH ]Z/2. It follows from Proposition 5.10 that we first need to

compute the cohomology ring H∗,∗(BU j
H
× P(H),Z).

If E is a Real bundle over a Z/2-space X, denote by c̃k(E) ∈ H2k,k(X; Z) its k-th equivariant
Chern class, as described in [dS00]. Let ξ2n be the universal quotient bundle over BU 2n

H
, and observe

that ξ2n ⊗ O(1) is a real bundle over BU 2n
H

× P(H). Define classes dk ∈ H2k,k(BU2n
H × P(H); Z)

using the formulas

d2n−(2i+δ) := c̃2n−(2i∗δ)(ξ
2n ⊗ O(1)) − i c̃2n−(2i∗δ)−1(ξ

2n ⊗ O(1)) x,

for 0 ≤ δ ≤ 1 and 0 ≤ 2i+ δ ≤ 2n, and where x ∈ H2,1(P(H),Z) ∼= Z is the canonical generator; cf.
Section 1.8.

Theorem 5.5. Let dk be the classes defined above. Then we have ring isomorphisms

H∗,∗(BUev
H × P(H); Z) ∼= H∗,∗(BUodd

H × P(H); Z) ∼= H∗,∗(P(H); Z) [d1,d2, . . . ,dk, . . .].

The cohomology ring H∗,∗(P(H); Z) is computed in Section 1.8.

The total Chern class map cH : BU
H

= qj∈ZBU
j
H
→ ZH = qj∈ZZ

j
H

sends the component BU j
H

to the component Z
j
H
. Its equivariant homotopy type is determined by the following result.

Theorem 5.9. The equivariant cohomology classes determined by total quaternionic Chern class

map c
H

and the splitting (41) of Theorem 3.9 are given by

1 + d2 + d4 + · · · + d2n + · · · on BUev
H(6)

d1 + d3 + · · · + d2n+1 + · · · on BUodd
H(7)

In [dSLF01] we work in the category of real algebraic varieties, addressing the issue of replacing
continuous maps by morphisms of algebraic varieties. The K-theoretic constructions yield a semi-
topological quaternionic K-theory for real varieties. This is related to Friedlander-Walker’s semi-
topological K-theory for real varieties [FW01] in the same way as Seymour’s KH ∗ is related to
Atiyah’s KR∗. Furthermore, we establish relations to the algebraic K-theory of real varieties and
to Quillen’s computation of the K-theory of Brauer-Severi varieties in [Qui73]. In the level of
“morphism spaces” into algebraic cycles, the splittings of Theorem 3.4 still hold. Using them we
introduce the the quaternionic morphic cohomology for real varieties, and discuss Chern classes for
the quaternionic K-theory of real varieties.

This paper is organized as follows: in Section 1 we introduce the necessary background from Z/2-
homotopy theory needed to state our results. In Section 2 we establish a canonical splitting for the
space of zero cycles on P

(
H
n
)
. In Section 3 we compute theZ/2-homotopy type of Zq(P

(
H
n
)
) and

define the infinite loop space of stabilized cycles ZH. In Section 4 we apply the same stabilization
procedure to the Grassmannians Gq(Hn), obtaining an equivariant infinite loop space (Z ×BU)H.
We show that (Z × BU)H classifies Dupont’s quaternionic K-theory. Section 5 is dedicated to
computations involving the characteristic classes for quaternionic bundles defined in Section 4; a
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projective bundle formula is proved and the characteristic classes for the universal quaternionic
bundle over (Z ×BU)H are computed.

Acknowledgement. The authors would like to thank H. Blaine Lawson, Jr., for fruitful conver-
sations during the elaboration of this work. The first author thanks Texas A&M University and
the second author thanks the Instituto Técnico Superior (Lisbon) for their respective hospitality
during the ellaboration of this work.

1. Preliminary results from equivariant homotopy theory

In this section we review the definitions and results from equivariant homotopy theory needed
for the purposes of this paper. Throughout this section G will be an arbitrary finite group, and
later on we will specialize to the case G = Z/2.

Notation 1.1. If V is a representation of G, SV denotes the one point compactification of V and,
for a based G-space X, ΩVX denotes the space of based maps F (SV , X). The space F (SV , X) is
equipped with the its standard G-space structure. The set of equivariant homotopy classes [SV , X]G
is denoted by πV (X). Given a G-space X, we denote by X+ the pointed G-space X ∪ {+}, where
+ is a point fixed by G.

1.1. Coefficient systems and Mackey functors. Let FG be category of finite G-sets and G-
maps. The coefficients for ordinary equivariant (co)homology are (contravariant) covariant functors
from FG to the category Ab of abelian groups which send disjoint unions to direct sums.

Given a contravariant coefficient system M there are Bredon cohomology groups H ∗(−;M) with
coefficients in M . They satisfy G-homotopy invariance and the suspension axiom, and they are
classical cohomology theories in the sense that they satisfy the dimension axiom H 0(pt;M) = M
and Hn(pt;M) = 0, for n > 0.

There are certain coefficient systems – called Mackey functors – for which Bredon cohomology
can be extented to an RO(G)-graded theory. A Mackey functor M is a pair (M∗,M

∗) of functors
M∗ : FG → Ab and M ∗ : F

op
G → Ab with the same value on objects and which transform each

pull-back diagram

A
f

−−−−→ B

g

y
yh

C
k

−−−−→ D
in FG into a commutative diagram in Ab

M(A)
M∗(f)
−−−−→ M(B)

M∗(g)

x
xM∗(h)

M(C)
M∗(k)
−−−−→ M(D)

Example 1.2. In this paper we are interested in the case where M = Z is the Mackey functor
constant at Z. This Mackey functor is uniquely determined by the following conditions; cf. [May86,
Prop. 9.10].

(i) Z(G/H) = Z, for H ≤ G;
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(ii) if K ≤ H, the value of the contravariant functor Z
∗ on the projection ρ : G/K → G/H is the

identity.

The RO(G)-graded cohomology groups with coefficients in a Mackey functor M are denoted

H∗(−;M) and the corresponding reduced cohomology groups are denoted H̃∗(−;M). For each
real orthogonal representation V there is a classifying space K(M,V ) such that, for any G-space
X,

HV (X;M) ∼= [X+,K(M,V )]G.

The spaces K(M,V ) fit together to give an equivariant Eilenberg-Mac Lane spectrum HM , i.e.,
given G-representations V , W , there is a G-homotopy equivalence K(M,V ) ∼= ΩWK(M,V +W )
satisfying various compatibility properties; cf. [May96]. This implies that H ∗(−;M) satisfies the
suspension axiom in the direction of any representation:

H̃V+W (SV ∧X;M) ∼= H̃W (X;M).

1.2. Dold-Thom theorem. Our interest on the Mackey functor Z lies in the fact that just as the
spaces of zero cycles (of degree zero) on the sphere Sn is a model for the non-equivariant Eilenberg-
MacLane space K(Z, n), zero cycles on a representation sphere SV provide a model for K(Z, V ).
This is a consequence of the following equivariant version of the classical Dold-Thom theorem.

Notation 1.3. Let X be a G-space. The topological group of zero cycles on X is denoted by
Z0 (X). Its elements are formal sums

∑
i nixi, with ni ∈ Z and xi ∈ X. There is an augmentation

homomorphism deg : Z0 (X) → Z, whose kernel we denote by Z0 (X)o. Note that Z0 (X) is
isomorphic to Z0 (X+)o.

Theorem 1.4. [dS99b] Let G be a finite group, let X be a based G-CW-complex and let V be a

finite dimensional G-representation, then there is a natural equivalence

πVAG(X) ∼= H̃G
V (X; Z).

In particular, AG(SV ) is a K(Z, V ) space.

1.3. Motivic notation. From now on we restrict ourselves to the case of G = Z/2. We will use
motivic notation for Z/2-equivariant cohomology, for it is compatible with the invariants used in
algebraic geometry.

Notation 1.5. Let s be the one dimensional real sign representation of Z/2 and let 1 stand for
the one dimensional trivial representation. Then RO(Z/2) = Z · 1 + Z · s. With p ≥ q, we write

(1) R
p,q for (p− q) · 1 ⊕ q · s;

(2) Sp,q for R
p,q ∪ {∞};

(3) Hp,q(−; Z) for HRp,q
(−; Z);

(4) K(Z(q), p) for K(Z,Rp,q).

1.4. Real bundles and equivariant Chern classes. Recall that a real bundle over a Z/2-space
X, in the sense of [Ati66], is a complex bundle ξ → X with a bundle map τ : ξ → ξ which is an
anti-linear involution that covers the involution on X. Atiyah’s KR-theory of X is defined [Ati66]
as the Grothendieck group of isomorphism classes of real bundles over X.

It turns out thatKR(−) is a Z/2-equivariant cohomology theory in the sense that it is represented
by a Z/2-spectrum as defined above. In fact, Z×BU has a natural Z/2-action induced by complex
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conjugation, and we denote this Z/2-space by (Z × BU)C. This is the classifying space for KR-
theory, i.e., for a Z/2-space X,

KR(X) ∼= [X+, (Z ×BU)C]Z/2.

In [Ati66] it is proved that the usual periodicity of Z×BU is actually a (2, 1) periodicity, i.e., there
is an equivariant homotopy equivalence

Z ×BU ∼= Ω2,1(Z ×BU).

Hence (Z ×BU)C is the zero-th space of a periodic Z/2-spectrum and there are groups KRp,q(−),
for p, q ∈ Z, satisfying suspension, exact sequences and Z/2-homotopy invariance. One can define
Chern classes for real bundles with values in H ∗,∗(−; Z) as usual, by pulling back certain classes
from H∗,∗(BUC; Z).

Theorem 1.6. There exist unique classes c̃n ∈ H2n,n(BUC; Z) whose image under the forgetful

map to singular cohomology is the n-Chern class cn ∈ H2n(BUC; Z). Furthermore, we have the

following ring isomorphism

H∗,∗(BUC; Z) ∼= R[c̃1, . . . , c̃n, . . .],

where R is the cohomology ring of a point, H∗,∗(pt; Z).

Proof. This follows from the fact that BUC has an equivariant cell decomposition given by the
Schubert decomposition. �

Definition 1.7. For a virtual real bundle ξ over X, with a classifying map f : X → BUC the n-th
equivariant Chern class is

f∗(c̃n) ∈ H
2n,n(X; Z).

The equivariant Chern classes satisfy the Whitney sum and projective bundle formulas.

1.5. Thom isomorphism for real bundles. As in non-equivariant homotopy theory, the exis-
tence of a Thom-isomorphism for some cohomology theory is directly related to the existence of
orientations in that theory. We will see that real bundles are HZ-orientable and hence there is a
corresponding Thom isomorphism theorem for real bundles.

Definition 1.8 ([May96]). Let G be a finite group. Let ξ
p
−→ X be an n-plane G-bundle over a

G-space X. An HZ-orientation of ξ is an element µ of HZ
α(T (X)) for some α of virtual dimension

n, such that, for each inclusion i : G/H → X the restriction i∗µ to T (i∗ξ) is a generator of the free
HZ

∗(S0)-module HZ
∗
H(T (i∗ξ)).

Proposition 1.9. Let X be a real space and let ξ
p
−→ X be a real bundle. Then ξ is HZ-orientable.

Proof. It suffices to consider the case where ξ is a real line bundle. In this case we observe that
T (ξ) = P

(
ξ ⊕ C

)
/P
(
ξ
)

and set µ = c1(λ) where λ → P
(
ξ ⊕ C

)
is the tautological line bundle

and c1 denotes the real first Chern class. Since λ|
P

(
ξ
) is trivial, then µ descends to a class in the

cohomology of T (ξ), which is also denote by µ. Consider an equivariant map i : (Z/2)/H → X.
There are two possible cases.

(i) H = Z/2: In this case T (i∗ξ) = P
(
C

2
)

with the Z/2-action given by complex conjugation.

Then c1(λ)|
P

(
C2

) is the first Chern class of the tautological bundle over P
(
C

2
)
, which is a

generator for H∗,∗(P
(
C

2
)
,Z) over HZ

∗(S0) = H∗,∗(pt,Z).
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(ii) H = {0}. In this case T (ξ) = Z/2+ ∧ S2,0. We have H∗,∗(Z/2+ ∧ S2,0,Z) ∼= H∗(S2; Z) and

KR(Z/2+ ∧ S2,0) ∼= K(S2). It is easy to see that, under these isomorphisms, c1(λ) is the

usual Chern class and hence it generates H∗,∗(Z/2+ ∧ S2,0,Z).

�

Definition 1.10. Given a vector bundle ξ → X over X, the projection p : P
(
ξ ⊕ 1

)
→ X along

with the quotient map q : P
(
ξ⊕1

)
→ T(ξ) = P

(
ξ⊕1

)
/P
(
ξ
)

induce a map ∆ : T (ξ) → T(ξ)∧X+

called the Thom diagonal of ξ.

Proposition 1.11 (Thom isomorphism for real bundles). Let ξ
p
−→ X be a real n-bundle over a

real space X and let µ ∈ H2n,n(T (ξ) ,Z) be an orientation for ξ. Then

∪µ : Hp,q(X+,Z) −→ H̃2n+p,n+q(T (ξ) ,Z)

is an isomorphism for all p, q. Furthermore, there is an equivariant homotopy equivalence

φµ : Z0 (T (ξ))
o

∼=
−→ Z0

(
X+ ∧ S2n,n

)
o

which induces the Thom isomorphism in homology

H̃p,q(T (ξ) ,Z) ∼= Hp−2n,q−n(X,Z).

Proof. The existence of the Thom isomorphism is an immediate consequence of Proposition 1.9;
see [May96]. We proceed to construct an explicit map φµ at the classifying space level which
induces this isomorphism. Let fµ : T (ξ) → Z0

(
S2n,n

)
o

be a (based) classifying map for the

orientation class µ, hence fµ(∞) = 0. Consider the composition T (ξ)
∆
−→ T(ξ) ∧ X+

fµ∧id
−−−→

Z0

(
S2n,n

)
o
∧ X+ → Z0

(
S2n,n ∧X+

)
o
, where ∆ is the Thom diagonal, and the last map comes

from the structure of “functor with smash products” (FSP) for Z0 (−). This composition induces
a function φµ : Z0 (T (ξ))o → Z0

(
S2n,n ∧X+

)
o
.

We claim that φµ induces the Thom isomorphism in homology. Indeed, Z0 (Sp,q)o is a K(Z(q), p)-
space and so a model for HZ is given by (p, q) 7→ Z0 (Sp,q)o. Moreover ∧ induces a pairing

K(Z(q), p) ∧K(Z(q′), p′) −→ K(Z(q + q′), p+ p′)

which gives the usual ring spectrum structure on HZ, cf. [Dug01] and [dS99b]. It follows that the
map in homology represented by φµ is

H̃p,q(T (ξ) ,Z) 3 a
φµ∗−−→ p∗(µ ∩ a) ∈ Hp−2n,q−n(X,Z),

the usual definition of the Thom isomorphism. The proof that φµ∗ is in fact an isomorphism goes
exactly as in the non-equivariant case. Using the five lemma and the Mayer-Vietoris sequence it is

possible to reduce to the case where ξ
p
−→ X is the trivial bundle, in which case T (ξ) ∼= X+ ∧ S2n,n

and it is clear that φµ∗ is an isomorphism. �

1.6. Poincaré duality. A smooth manifold X is called a Real n-manifold if it has the structure
of a Real space (X,σ) whose tangent bundle becomes a Real n-bundle over (X,σ) under the action
induced by dσ.
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Proposition 1.12. Let X be a connected Real manifold of dimension n. Then, for each k ≥ 0,
there is an equivariant homotopy equivalence

(8) P : F (X+;Z0

(
S2(n+k),n+k

)
o

)
∼=
−→ Z0

(
S2k,k ∧X+

)
o

,

which on passage to homotopy groups induces the Poincaré duality isomorphism

(9) H2n−p,n−q(X,Z) ∼= Hp,q(X,Z).

Proof. By Proposition 1.11 the tangent bundle of X has an orientation, which is a cohomology
class in dimension (2n, n). It follows [CW92] that X satisfies Poincaré duality as in (9) and the
duality isomorphism is given by cap product with the fundamental class z ∈ H2n,n(X,Z) – which
corresponds to 1 ∈ H0,0(X,Z) = H0(XZ/2; Z); cf. [CW92].

We now define a homotopy equivalence at the classifying space level realizing the Poincaré duality
isomorphism. Let r = n+ k and let D denote the composition

Z0 (X) ∧ F (X+,Z0

(
S2r,r

)
o
)

∆∧id
−−−→ Z0 (X) ∧ Z0 (X) ∧ F (X+,Z0

(
S2r,r

)
o
)

id∧ε
−−−→ Z0 (X) ∧ Z0

(
S2r,r

)
o
→ Z0

(
S2r,r ∧X+

)
o
.

where ∆ is the diagonal map, ε is the group homomorphism induced by the evaluation map
X ∧ F (X+,Z0

(
S2r,r

)
o
) → Z0

(
S2r,r

)
o
, and the last arrow comes from the structure of “functor

with smash products” (FSP) for Z0 (−). Composing D with a classifying map S2r,r → Z0 (X)
for the fundamental class z we obtain a map S2n,n ∧ F (X+,Z0

(
S2r,r

)
o
) → Z0

(
S2r,r ∧X+

)
o
,

with adjoint F (X+,Z0

(
S2r,r

)
o
) → Ω2n,nZ0

(
S2r,r ∧X+

)
o
. Composing with the natural equivalence

Ω2n,nZ0

(
S2r,r ∧X+

)
o
∼= Z0

(
S2k,k ∧X+

)
o
, yields a map

P : F (X+,Z0

(
S2(n+k),n+k

)
o
) → Z0

(
S2k,k ∧X+

)
o

which induces the cap product with z. Hence P is an equivariant homotopy equivalence. �

1.7. Relation with group cohomology and Galois-Grothendieck cohomology. Cohomol-
ogy theories like the one represented by HZ are not what algebraic geometers usually mean by
equivariant cohomology. However, it is well known that for spaces which are free (under the action
of a finite group), the invariants given by H∗,∗(−; Z) are closely related to the equivariant cohomol-
ogy theories used in algebraic geometry. The goal of this section is to describe the relation between
the theory H∗,∗(−; Z), and Galois-Grothendieck cohomology, in the case of Z/2-actions.

Let G be a finite group. Recall that, in most geometrical contexts, the Borel cohomology of a
G-space X (with coefficients in a ring R) is just the ordinary cohomology of the Borel construction

XhG := X×GEG. We denote these groups by Ĥ∗
G(X;R). Galois-Grothendieck cohomology can be

thought of as Borel cohomology with twisted coefficients: if F is a G-sheaf over X, then F×GEG
is sheaf over XhG and we can define Ĥ∗

G(X;F) := H∗(XhG;F×GEG). These are the Galois-
Grothendieck cohomology groups of X with coefficients in F. Given any G-spectrum kG there is
also a Borel type cohomology theory associated with kG, defined as the cohomology represented by
the G-spectrum F (EG+, kG).

We now specialize to the case G = Z/2, and kG = HZ. Consider the Z/2-sheaves Z(n), which
denote the constant sheaf Z consider as a Z/2-sheaf with the Z/2-action of multiplication by (−1)n.
The following proposition relates Galois-Grothendieck cohomology with coefficients in the sheaves
Z(n) to the cohomology represented by F (EZ/2+,HZ).
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Proposition 1.13. Let p, q be non-negative integers such that p ≥ q. There are natural isomor-

phisms

(10) Ψ : Hp,q(−×EZ/2+; Z) → Ĥp
Z/2(−; Z(q)),

which assemble into a ring homomorphism

Ψ : H∗,∗(−×EZ/2+; Z) → Ĥ∗
Z/2(−; Z(∗)).

In particular, if X is a free Z/2-space, H∗,∗(X; Z) is periodic with period (0, 2), and the periodicity

isomorphism is given by multiplication with a generator of H 0,2(EZ/2; Z) ∼= Z.

Proof. The existence of periodicity in the equivariant cohomology spaces with free actions is a result
of Waner [Wan86]. Our proof uses Z0 (Sp,q)o as a model for the classifying space K(Z,Rp,q). We

start by observing that the cohomology groups Ĥp(X; Z(q)) can be expressed as Bredon cohomology

groups of X × EZ/2. In fact, we have Ĥp
Z/2(X; Z(q)) ∼= Hp(X × EZ/2; Z(q)), where right-hand

side denotes Bredon cohomology and Z(q) is the coefficient system determined by the Z/2-module

Z(q). Hence, Ĥp
Z/2(X; Z(q)) ∼= [X ×EZ/2+,Z0 (Sp)o ⊗ Z(q)]Z/2, where Z0 (Sp)o ⊗ Z(q) is Z0 (Sp)o

with the Z/2-action of multiplication by (−1)q.

A direct computation shows that there is a class αp,q in Ĥp
Z/2

(Sp,q; Z(q)), whose image under

the forgetful map to singular cohomology is the fundamental class of Sp,q. This implies that there
is an equivariant map Z0 (Sp,q)o ×EZ/2 → Z0 (Sp)o ⊗ Z(q), which is a non-equivariant homotopy
equivalence. Composition with this map induces an equivariant homotopy equivalence

F (EZ/2+,Z0 (Sp,q)o ×EZ/2) ∼= F (EZ/2+,Z0 (Sp)o ⊗ Z(q)).

Composing with the map EZ/2 → ∗ gives an equivariant homotopy equivalence

F (EZ/2+,Z0 (Sp,q)o ×EZ/2) ∼= F (EZ/2+,Z0 (Sp,q))o ,

which induces the isomorphism Ψ in (10).
The pairing Z(q) ⊗ Z(q′) → Z(q + q′) induces a pairing

Ĥp
Z/2(−; Z(q)) ⊗ Ĥp

Z/2(−; Z(q′)) → Ĥp
Z/2(−; Z(q + q′)),

which is easily seen to correspond, under the isomorphism (10), to the cup product in H ∗,∗(− ×
EZ/2+; Z) (because αp,q ∪ αp′,q′ = αp+p′,q+q′). Let t be a generator of H0,2(EZ/2; Z) ∼= Z and let
X be a free Z/2-space. Since X is Z/2-homotopy equivalent to X ×EZ/2, the cohomology of X
is a module over H∗,∗(EZ/2; Z). The compatibility of Ψ with products shows that the following
diagram commutes

Hp,q+2(X; Z)
Ψ

−−−−→ Ĥp
Z/2(X; Z(q + 2))

t∪−

x
xid

Hp,q(X; Z)
Ψ

−−−−→ Ĥp
Z/2(X; Z(q))

,

and hence t ∪ − is an isomorphism. �

Notation 1.14. As observed above, if X is a free Z/2, there is a natural homomorphism

H∗,∗(X ×EZ; Z) → H∗,∗(X; Z)
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making H∗,∗(X; Z) into a module over H∗,∗(EZ/2; Z). From now on we will use t to denote both a
generator of H0,2(EZ/2; Z) ∼= Z and its image under the homomorphism above. Multiplication by
t induces the (0, 2) periodicity in H∗,∗(X; Z).

Corollary 1.15. Let X be a space with a free Z/2-action. There is an E2 spectral sequence

Hs(BZ/2;Ht(X; Z(q))) =⇒ Hs+t,q(X; Z)

Proof. It is shown in [Gro57] that there is an E2 term spectral sequence

Hs(BZ/2;Ht(X; Z(q))) =⇒ Ĥs+t
Z/2(X; Z(q)).

�

1.8. The RO(Z/2)-graded cohomology of the Brauer-Severi curve P(H). Let P(H) denote
the complex points of the Brauer-Severi variety associated with the real algebra H. Here we describe
the cohomology ring H∗,∗(P(H); Z). The computations follow directly from the results above.

We start by computing H∗,q(P(H); Z), for q = 0, 1. For q = 0, we have

H∗,0(P(H); Z) = H∗(P(H)Z/2; Z) = H∗(RP2; Z).

For q = 1, the spectral sequence (1.15) gives

Hp,1(P(H); Z) ∼=





Z/2 p = 1

Z p = 2

0 otherwise

Moreover, H1,1(P(H); Z) and H2,0(P(H); Z) are generated by the image of the homomorphism

H∗,∗(EZ/2; Z) → H∗,∗(P(H); Z).

Let ε denote the generator of H1,1(P(H); Z) and let ε′ be its image in H1(P(H); Z(1)) under the ring

homomorphism Ψ of (10). One can check that ε′2 6= 0 hence ε2 is the generator of H2,2(P(H); Z).
The group H2,1(P(H); Z) is generated by the fundamental class of P(H), which we denote by x.

Note that x2 = 0, since, by (0, 2) periodicity,

x2 ∈ H4,2(P(H); Z) ∼= H4(RP2; Z) = 0.

The same argument shows that xε = x3 = 0.

Remark 1.16. The generator x is given by the first Chern class c̃1(O(2)) of the Real bundle O(2)
over P(H).

Putting all these facts together and using that fact that t ∪ − is an isomorphism, we obtain a
ring isomorphism

(11) H∗,∗(P(H); Z) ∼= Z[ε,x, t, t−1]/(2ε, ε3,xε,x2),

where ε, t and x have degrees (1, 1), (0, 2) and (2, 1), respectively.
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2. The Z/2-homotopy type of zero-cycles

A structure on a complex vector space V is a complex anti-linear map j : V → V that satisfies
either j2 = I or j2 = −I. In the first case, j is called a real structure and the pair (V, j) is a real

vector space, and in the latter case, j is called a quaternionic structure and the pair (V, j) is a
quaternionic vector space. A morphism f : (V, jV ) → (W, jW ) of vector spaces with structure is a
complex linear map from V to W commuting with the respective structures.

Any real vector space (V, j) of complex dimensin n is isomorphic as a vector space with structure
to (Cn, jo), where jo denotes the usual complex conjugation on C

n. Similarly, any quaternionic
vector space (V, j) of complex dimension 2n is isomorphic to (Hn, jo), where H = C ⊕ C denotes
the algebra of the quaternions and jo is induced by multiplication by  on the left of H

n.

Remark 2.1. It is clear that if (V, j) is a quaternionic vector space, then j naturally induces a
structure jd on the symmetric power Symd(V ) which is real if d is even and quaternionic if d is
odd. In particular, one has

(12) (Sym2k(H), j2k) ∼= (C2k+1, jo) and (Sym2k+1(H), j2k+1) ∼= (Hk+1, jo).

Let H
∨ denote the complex dual of H and let P(H) denote the projective space of 1-dimensional

complex subspaces of H, which we identify with the complex subspaces of codimension 1 in H
∨. In

particular, if f : H
∨ → C is a non-zero linear functional then we denote its zero locus by [f ] ∈ P(H).

The d-fold symmetric product SPd(P(H)) inherits an anti-holomorphic involution σ : SPd(P(H)) →
SPd(P(H)) induced by , hence it becomes a Real space in the sense of Atiyah [Ati66]. If one denotes
by [f1] · · · [fd] an element in SPd(P(H)), then the map sending [f1] · · · [fd] to [f1 · · · fd] induces the
classical isomorphism between SPd(P(H)) and P

(
Symd(H)

)
. This is an isomorphism of Real spaces.

The canonical inclusion in,q : P
(
H
n
)
↪→ P

(
H
q
)
, for n < q, given by setting the last coordinates

zero can be described (up to linear isomorphism) in terms of symmetric products as follows. Let
[fo] ∈ P(H) be some point and let [f σo ] denote its image under the quaternionic involution σ. Then
define

in,q : P
(
H
n
)

= SP2n−1(P(H)) → P
(
H
q
)

= SP2q−1(P(H))(13)

[f1] · · · [f2n−1] → ([fo][f
σ
o ])q−n · [f1] · · · [f2n−1].

Note that in,q is a morphism of Real spaces.
Following [LLFM98c] we define, for a < b, the map

rb,a : SPb(P(H)) → SP(b
a)

(SPa(P(H)))(14)

[f1] · · · [fb] 7→
∑

|I|=a

[fi1 ] · · · [fia ],

where the sum runs over all multi-indexes I = {1 ≤ i1 < · · · < ia ≤ b}. Notice that although a and
b can be even or odd, the maps rb,a are always morphisms of Real spaces.

To simplify notation, denote

(15) Mn = Z0 (SP2n−1(P(H))) = Z0

(
P
(
H
n
))
,

and let

(16) Ψn : Mn → Qn := Mn/Mn−1

denote the quotient map. We adopt the convention that M−1 = {0}.
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Now, use the morphisms rb,a to construct maps

(17) Rq,n : Mq →Mn

as follows. Given τ ∈ P
(
H
q
)
, define for n < q,

(18) Rq,n(τ) = r2q−1,2n−1(τ) +

2n−1∑

j=1

(−1)j
(
q − n+ j − 1

j

) (
[fo]

j + [fσo ]j
)
r2q−1,2n−1−j(τ).

The map Rq,n can then be extended by linearity to arbitrary 0-cycles on P
(
H
q
)
. Finally, for n < q,

define qq,n : Mq → Qn as the composition qq,n = Ψn ◦Rq,n and let qn,n = Ψn.

Proposition 2.2. Let {(Mn, Qn, qq,n, iq,n) | qq,n : Mq → Qn, in,q : Mn ↪→ Mq, 0 ≤ n ≤ q} be the

collection of groups and maps defined above. Then the following assertions hold:

a: The maps in,q and qq,n are equivariant homomorphisms for the Z/2 actions on Mn and Qn

induced by the quaternionic structure on H
n.

b: The sequence Mn−1
in−1,n
−−−−→Mn

qn,n
−−→ Qn is an equivariant principal fibration, for all n.

c: The following diagram commutes:

(19)

Mn −−−−→
in,q

Mq

qn,n

y
yqq,n

Qn −−−−→
id

Qn.

Proof. The first assertion is evident from the definitions.
Now, observe that the Z/2 involution on P(Hn) induced by the quaternionic structure on H

n is a
real analytic involution. Therefore, the pair (P(Hn),P(Hn−1)) becomes a Z/2-simplicial pair after
a suitable equivariant triangulation. Therefore, the second assertion follows from [LF97, Thm. 2.7]

In order to prove the last assertion, consider elements x1, . . . , x2q−1 ∈ P(H) as free variables and
let S denote the polynomial ring S := Z[x1, . . . , x2q−1]. It is then clear that r2q−1,2n−1(x1 · · · x2q−1) ∈
SP(2q−1

2n−1)
(SP2n−1(P(H))) can be seen as the coefficient of t2n−1 in the polynomial

(20) P 2q−1
t (x1, . . . , x2q−1) :=

2q−1∏

i=1

(1 + xit) ∈ S[t].

In particular,

r2q−1,2n−1−j ◦ in,q(x1 · · · x2n−1) = r2q−1,2n−1−j(x1 · · · x2n−1 (fof
σ
o )n−q)

is the coefficient of t2n−1−j in the polynomial P 2n−1
t (x1, . . . , x2n−1) (1 + fot)

q−n(1 + fσo t)
q−n.
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Using the above observations, and the definition of Rq,n, one concludes that Rq,n(in,q(x1 · · · x2n−1))
is the coefficient of t2n−1 in

(
2n−1∏

i=1

(1 + xit)

)
(1 + fot)

q−n(1 + fσo t)
q−n(21)

+

∞∑

j=1

(−1)j
(
q − n+ j − 1

j

)
{(fo)

j + (fσo )j} tj

(
2n−1∏

i=1

(1 + xit)

)
(1 + fot)

q−n(1 + fσo t)
q−n

=

(
2n−1∏

i=1

(1 + xit)

)
·



(1 + fot)

q−n(1 + fσo t)
q−n

+
∞∑

j=1

(−1)j
(
q − n+ j − 1

j

)
{(fo)

j + (fσo )j} tj (1 + fot)
q−n(1 + fσo t)

q−n





seen as an element in the ring Z[x1, . . . , x2n−1][[fo, f
σ
o , t]] of formal power series in the variables

fo, f
σ
o , t with coefficients in Z[x1, . . . x2n−1].

We now observe that the inverse of (1 + y)N in Z[[y]] is given by
∑∞

j=0 (−1)j
(N+j−1

j

)
yj and

hence, the element

(1 + fot)
q−n(1 + fσo t)

q−n +
∞∑

j=1

(−1)j
(
q − n+ j − 1

j

)
{(fo)

j + (fσo )j} tj (1 + fot)
q−n(1 + fσo t)

q−n

in Z[[fo, f
σ
o , t]] is seen to be equal to

(22) (1 + fot)
q−n(1 + fσo t)

q−n
{
(1 + fot)

n−q + (1 + fσo t)
n−q − 1

}

= (1 + fσo t)
q−n + (1 + fot)

q−n − (1 + fot)
q−n(1 + fσo t)

q−n.

If one writes (1 + yt)N = 1 + yαNt (y), then the right hand side of the formula (22) above can can
be written as

(1 + fσo t)
q−n + (1 + fot)

q−n − (1 + fot)
q−n(1 + fσo t)

q−n

=(1 + fσo t)
q−n + (1 + fot)

q−n − (1 + fσo αq−nt (fσo ))(1 + fo α
q−n
t (fo))

=(1 + fσo t)
q−n + (1 + fot)

q−n

−
{

1 + fσo αq−nt (fσo ) + fo α
q−n
t (fo)) + fσo fo αq−nt (fσo )αq−nt (fo)

}

=(1 + fσo t)
q−n + (1 + fot)

q−n

−
{

(1 + fσo t)
q−n + (1 + fot)

q−n − 1 + fσo fo αq−nt (fσo )αq−nt (fo)
}

=1 − fσo fo

{
αq−nt (fσo )αq−nt (fo)

}
.

We now apply the latter identity to equation (21) and obtain

Rq,n (in,q(x1 · · · x2n−1)) = x1 · · · x2n−1 − fσo fo(?),
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for some element ?. Therefore,

qq,n ◦ in,q(x1 · · · x2n−1) = Ψn (Rq,n(in,q(x1 · · · x2n−1))) = Ψn (x1 · · · x2n−1) ,

and this shows that the diagram (19) commutes, concluding the proof. �

Corollary 2.3. Let X be a based Z/2-space. The maps qn,j : Z0

(
P
(
H
n
))

→ Z0

(
P
(
H
j
))
/Z0

(
P
(
H
j−1
))

induce an equivariant homotopy equivalence

Z0

(
X ∧ P

(
H
n
)
+

)
q̃n,n×q̃n,n−1×···×q̃n,1

−−−−−−−−−−−−−−−→

n∏

j=1

Z0

(
X ∧

{
P
(
H
j
)
/P
(
H
j−1
)}

+

)
o

.

Proof. Define Mj = Z0

(
X ∧ P

(
H
j
)
+

)
and Qj = Z0

(
X ∧

{
P
(
H
j
)
/P
(
H
j−1
)}

+

)
o

and observe

that one has an equivariant isomorphism Mj/Mj−1
∼= Qj. Let Ψj : Mj → Qj denote the projection

and let ĩn,q : Mn ↪→Mq be the canonical inclusion induced by the inclusion of spaces when n < q.
The maps r2q−1,2n−1, described in (14), induce maps

(23) r̃2q−1,2n−1 : X ∧ P
(
H
q
)
+
→ SP(2q−1

2n−1)
(X ∧ P

(
H
n
)
+
)

defined as the composition

X ∧ P
(
H
q
)
+

id∧r2q−1,2n−1

−−−−−−−−−→ X ∧
{

SP(2q−1

2n−1)
(P
(
H
n
)
)
}

+

∧
−−−→ SP(2q−1

2n−1)
(X ∧ P

(
H
n
)
+
),

where the latter is the natural structural map when we see SP∗(−) as a functor with smash products.
Finally, define q̃q,n := Ψn ◦ r̃2q−1,2n−1.

It is immediate from the definitions that all the assertions in Proposition 2.2 hold for the new
collection (Mn, Qn, q̃q,n, ĩn,q) above. These assertions guarantee that the spaces and maps involved,
along with their restrictions to fixed point sets, satisfy the hypothesis of [FL92, Prop. 2.13]. The
corollary then follows. �

In order to fully understand the equivariant homotopy type of Z0

(
P
(
H
n
))

we are reduced to un-

derstanding Z0

(
P
(
H
j
)
/P
(
H
j−1
))

o
. However, P

(
H
j
)
/P
(
H
j−1
)

= T
(
OP(H)(1) ⊗ H

j−1
)

is the Thom

space of the Real bundle OP(H)(1) ⊗ H
j−1. It follows from Propositions 1.11 and 1.12 that the

Thom class of OP(H)(1), along with Poincaré duality, determines a unique equivariant homotopy
equivalence

(24) Z0

(
P
(
H
j
)
/P
(
H
j−1
))

o
∼= Z0

(
T
(
OP(H)(1) ⊗ H

j−1
))

o
∼= F (P(H)+,Z0

(
S4j−2,2j−1

)
o
).

This proves the following result:

Corollary 2.4. There is a canonical equivariant homotopy equivalence

Z0

(
P
(
H
n
))

∼=

n∏

j=1

F
(
P(H)+, Z0

(
S4j−1,2j−1

)
o

)
∼=

n∏

j=1

F (P(H)+, K(Z(2j − 1), 4j − 2)) .

The last equivalence follows from the equivariant Dold-Thom theorem proven in [dS99a]; cf.
(1.4).

3. Quaternionic algebraic cycles and the join pairing

In this section we study the equivariant topology of groups of algebraic cycles under quaternionic
involution, and construct stabilizations of such objects that yield equivariant Z/2-spectra.
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3.1. Equivariant homotopy type of algebraic cycles. Let (V, j) be a quaternionic vector

space. An algebraic cycle on P
(
V
)

of codimension q is a finite linear combination
∑k

i=0 miAi,

where mi ∈ Z and Ai ⊂ P
(
V
)

is an irreducible subvariety of codimension q in P
(
V
)
. The following

properties hold.

Facts 3.1.

a: The collection of algebraic cycles of codimension q in P
(
V
)

forms an abelian topological

group Zq(P
(
V
)
) under addition of cycles; cf. [LF94].

b: The quaternionic structure j on V induces a continuous involution j∗ : Zq(P
(
V
)
) →

Zq(P
(
V
)
) which is also a group homomorphism; cf. [LLFM98c]. This gives an action of

Z/2 on Zq(P
(
V
)
) via group automorphisms. We reserve the word equivariant in the present

context to mean Z/2-equivariant under this quaternionic action.
c: There is a continuous degree homomorphism deg : Zq(P

(
V
)
) → Z which assigns to a cycle∑

i niAi the integer
∑

i ni deg(Ai), where deg(Ai) is the degree of Ai as a subvariety of

P
(
V
)
. For each d ∈ Z, denote Zq(P

(
V
)
)d := deg−1(d) the subspace of cycles of degree d.

Each Zq(P
(
V
)
)d is a connected component of Zq(P

(
V
)
).

Given two quaternionic vector spaces (V, jV ) and (W, jW ), one has an equivariant external join

pairing

(25) # : Z
q(P
(
V
)
) × Z

q′(P
(
W
)
) → Z

q+q′(P
(
V ⊕W

)
)

given by the ruled join of cycles. Roughly speaking, # is the bilinear extension of the following
operation. Given an irreducible subvariety A ⊂ P

(
V
)

of codimension q, and an irreducible subvari-

ety B ⊂ P
(
W
)

of codimension q′, let A#B be the irreducible subvariety of P
(
V ⊕W

)
obtained by

taking the union of all projective lines in P
(
V ⊕W

)
joining points in A to points in B, after taking

the embeddings A ⊂ P
(
V
)

= P
(
V ⊕ 0

)
⊂ P

(
V ⊕W

)
and B ⊂ P

(
W
)

= P
(
0 ⊕W

)
⊂ P

(
V ⊕W

)
.

We refer the reader to [LLFM96] for more details.

Remark 3.2. The degree of cycles is additive with respect to addition of cycles and multiplicative
with respect to the join. In other words, given cycles σ1, σ2 ∈ Zq(P

(
V
)
) and τ1 ∈ Zq(P

(
W
)
), then

deg (σ1 + σ2) = deg σ1 + deg σ2 and deg (σ1#τ1) = deg σ1 deg τ1.

If one thinks of P(H) as an element in Z0(P(H)), one can use the join to define the quaternionic
suspension map:

Σ/H : Z
q(P
(
V
)
) → Z

q(P
(
V ⊕ H

)
)(26)

c 7→ c#P(H).

Remark 3.3. (1) This definition parallels the construction of the complex suspension map
Σ/ C : Zq(P

(
V
)
) → Zq(P

(
V ⊕ C

)
) for a real vector space (V, j), whose (non-equivariant)

homotopy properties were first studied in [Law89]. Equivariant properties for this map,
with respect to the complex conjugation involution, were studied in [Lam90], [LLFM98a],
[LLFM98b], [dS99a], [Mos98].

(2) Another useful description of the suspension map is the following. Consider a surjection

f : V → W of quaternionic vector spaces, and let C ⊂ V be a (quaternionic) complement
to the kernel K := ker f , so that V is the internal direct sum K ⊕ C with C ∼= W . The
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latter isomorphism induces a homomorphism Zq(P
(
W
)
) ∼= Zq(P

(
C
)
)

Σ/K
−−→ Zq(P

(
C ⊕K

)
) ∼=

Zq(P
(
V
)
), which is an equivariant homotopy equivalence. One can easily verify that the

resulting “pull-back map” f ∗ : Zq(P
(
W
)
) → Zq(P

(
V
)
) is independent of the choice of the

complement C.

We now proceed to determine the equivariant homotopy type of spaces of algebraic cycles
Zq(P(Hn)) of arbitrary codimension q on P(Hn). It is shown in [LLFM98a] that, given a quaternionic
vector space (V, j), the suspension homomorphism (26) Σ/ H : Zq(P

(
V
)
) → Zq(P

(
V ⊕ H

)
) gives

an equivariant homotopy equivalence. In particular, for k < n, one obtains equivariant homotopy
equivalences:

(27) Σ/ n−k
H

: Z
2k−1(P(Hk)) = Z0

(
P(Hk)

)
→ Z

2k−1(P(Hn))

and

(28) Σ/ n−k−1
H

: Z
2k(P(Hk+1)) = Z1(P(Hk+1) → Z

2k(P(Hn))

Now, let (V, j) be a quaternionic vector space, and recall that Sym2(V ) has a natural structure of
a real vector space; cf. Remark 2.1. It follows that the image of P

(
V
)

under the Veronese embedding

ν2 : P
(
V
)
↪→ P

(
Sym2(V )

)
given by O

P

(
V
)(2) becomes a real subvariety of P

(
Sym2(V )

)
. Define

(29) Q(V ) := T

(
O

P

(
V
)(2)

)
.

It is clear that Q(V ) can be identified with the complex suspension

Σ/ C(ν2(P
(
V
)
)) = ν2(P

(
V
)
)#p∞ ⊂ P

(
Sym2(V ) ⊕ C

)
,

where p∞ = P
(
0 ⊕ C

)
∈ P
(
Sym2(V ) ⊕ C

)
.

It is shown in [LLFM98c, Prop. 6.1] that the complex suspension Σ/ : Zq(P
(
V
)
) → Zq(Q(V ))

composed with the Veronese embedding P
(
V
)
↪→ P

(
Sym2(V )

)
induces an equivariant homotopy

equivalence Σ/ : Zq(P
(
V
)
) → Zq(Q(V )). This fact, together with the equivalence Zq(Q(Hk+1)) ∼=

Zq(Q(Hk)) proven in [LLFM98c] gives an equivalence

(30) Z
2k(P

(
H
k+1
)
) ∼= Z0

(
Q(Hk)

)
.

These observations imply the following result.

Theorem 3.4. For k < n there are canonical equivariant homotopy equivalences:

(31) Z
2k−1(P

(
H
n
)
) ∼=

k∏

j=1

F (P(H)+, K(Z(2j − 1), 4j − 2) )

and

(32) Z
2k(P

(
H
n
)
) ∼=

k∏

j=1

F (P(H)+, K(Z(2j), 4j) )
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Proof. The first equivalence follows from the equivalence Z2k−1(P
(
H
n
)
) ∼= Z0

(
P
(
H
k
))

given by (27)
and Corollary 2.4. To prove the second one, first consider the equivalences

(33) Z
2k(P

(
H
n
)
) ∼=

(28)
Z

2k(P
(
H
k+1
)
) = Z1(P

(
H
k+1
)
) ∼=

(30)
Z0

(
Q(Hk)

)

and

(34) Z0

(
Q(Hk)

)
= Z0

(
T

(
O

P

(
Hk
)(2)

))
∼= Z0

(
S2,1 ∧ P

(
H
k
)
+

)
;

cf. (27), (28), (30) and Propositions 1.11 and 1.12.
Using Corollary 2.3 one obtains

Z0

(
S2,1 ∧ P

(
H
k
)
+

)
∼=

n∏

j=1

Z0

(
S2,1 ∧

{
P
(
H
j
)
/P
(
H
j−1
)}

+

)
o

=
n∏

j=1

Z0

(
S2,1 ∧

{
T
(
OP(H)(1) ⊗ H

j−1
)}

+

)
o

(35)

=

n∏

j=1

Z0

(
T
({

OP(H)(1) ⊗ H
j−1
}
⊕ 1
))

o
.

Finally, the canonical equivalence Z0

(
T
({

OP(H)(1) ⊗ H
j−1
}
⊕ 1
))

o
∼= F

(
P(H)+, Z0

(
S4j,2j

)
o

)
es-

tablished in Propositions 1.11 and 1.12, along with (31), (32) and (33), proves the second assertion
of the proposition. �

3.2. Stabilizations of cycle spaces. Here we use the group of algebraic cycles, with the quater-
nionic Z/2 action defined above, to construct equivariant infinite loop spaces.

Consider a real vector space (V, σ), of complex dimension v, and let V ∗ denote its complex dual.
Denote by (VH, j) the quaternionic vector space VH := V ⊗C H with quaternionic structure induced
by multiplication by j on the right, and define

(36) Z(V ) :=

2v∐

j=−2v

Z
2v+j(V ∗

H ⊕ VH)1,

where Z2v+j(P
(
V ∗

H
⊕ VH

)
)1 denotes the spaces of algebraic cycles of codimension 2v+ j and degree

1 in P
(
V ∗

H
⊕ VH

)
. Here we see Z(V ) as a Z/2-space under the quaternionic action induced by j on

P
(
V ∗

H
⊕VH

)
. The spaces Z(V ) have a natural basepoint 1V := P

(
V ∗

H
⊕{0}

)
∈ Z2v(V ∗

H
⊕VH)1 ⊂ Z(V ).

Define Z(0) to be the one-point set {10}.
Given an inclusion of real vector spaces i : (V, σ) 7→ (W,σ ′), let i∗ : W ∗ → V ∗ denote the adjoint

surjection. The inclusion i induces maps

(id⊕ i)∗ : Z
2v+j(P

(
V ∗

H ⊕ VH

)
)1 → Z

2w+j(P
(
V ∗

H ⊕WH

)
)1,

given by the inclusion of cycles, and the surjection i∗ induces maps

(i∗ ⊕ id)∗ : Z
2w+j(P

(
V ∗

H ⊕WH

)
)1 → Z

2w+j(P
(
W ∗

H ⊕WH

)
)1,
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given by the appropriate pull-back of cycles; cf. Remark 3.3. Define

(37) i] :

2v∐

j=−2v

Z
2v+j(P

(
V ∗

H ⊕ VH

)
)1 →

2w∐

j=−2w

Z
2w+j(P

(
W ∗

H ⊕WH

)
)1

as the composition (i∗ ⊕ id)∗ ◦ (id⊕ i)∗. This makes Z(−) into a functor from the category of finite
dimensional real vector spaces and linear monomorphisms, to the category of pointed Z/2-spaces.

The functor Z(−) comes with an additional structure, an equivariant “Whitney sum” pairing,
defined as follows. Given real vector spaces (V, σ) and (W,σ ′), define

(38) #V,W : Z(V ) × Z(W ) → Z(V ⊕W )

as the map whose restriction to the components is the composition

(39) Z
2v+j(P

(
V ∗

H ⊕ VH

)
)1 × Z

2w+k(P
(
W ∗

H ⊕WH

)
)1

#
−→

Z
2(w+v)+j+k(P

(
V ∗

H ⊕ VH ⊕W ∗
H ⊕WH

)
)1

τ
−→ Z

2(w+v)+j+k(P
(
(V ⊕W )∗

H
⊕ (V ⊕W )H

)
)1,

where # is the join pairing (38). Here τ denotes the map on cycles induced by the composition of
linear isomorphisms V ∗

H
⊕ VH ⊕W ∗

H
⊕WH → (V ∗

H
⊕W ∗

H
) ⊕ (VH ⊕WH) → (V ⊕W )∗

H
⊕ (V ⊕W )H,

where the former map is a shuffle isomorphism and the latter is the usual natural identification.
Define #0,W to be the identity map, after the natural identification Z(P

(
0 ⊕ V

)
) ≡ Z(P

(
V
)
).

Proposition 3.5. The assignments V 7→ Z(V ) along with the pairings #V,W give Z(−) the struc-

ture of an equivariant (Z/2)I∗-functor, in the language of [May77]. See also [LLFM96].

Proof. This amounts to checking various coherence properties, and proceeds exactly as in the non-
equivariant case done in [BLLF+93], or in the equivariant study of real algebraic cycles, done in
[LLFM98b]. �

Now, consider (C∞, σ) as a real vector space under complex conjugation σ, and observe that it is
a complete Z/2-universe; cf. [May96]. In other words, it contains infinitely countably many copies
of each irreducible representation of Z/2. Define ZH as the colimit

(40) ZH := lim
−→

V⊂C∞

Z(V ),

where V runs over all real subspaces of C
∞.

Theorem 3.6. The space ZH is an equivariant Z/2-infinite loop space. In other words, for each

real Z/2-module V there is a Z/2-space ZH,V along with coherent equivariant homotopy equivalences

ZH = ZH,0
∼= ΩV

ZH,V .

Remark 3.7. Given any based Z/2-space X and Z/2-module V , the space ΩVX of V -fold loops in
X is the space F (SV , X) of based maps from the one-point compactification SV of V into X, with
its usual topology and the usul Z/2 action on function spaces. The coherence properties mentioned
in the statement above are the ones that define an equivariant infinite loop space; cf. [May96].

Definition 3.8. The infinite loop space structure on ZH determines an equivariant spectrum (cf.
[May96]) denoted ZH, satisfying ZH(0) ∼= ZH.
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Before proving the theorem, let us analyze the space ZH in detail. Since the increasing coordinate
flag {0} ⊂ C ⊂ C

2 ⊂ · · · ⊂ C
∞ is cofinal among the finite dimensional subspaces of C

∞, one observes
that

ZH = lim
−→
n

Z(Cn) = lim
−→
n

2n∐

j=−2n

Z
2n+j(P

(
H
n∗ ⊕ H

n
)
)1.

Here we are making the usual identification C
n
H

= C
n ⊗C H ≡ H

n. The maps i] in the colimit
above are compositions of algebraic suspensions and coordinatewise inclusions. Therefore, they are
compatible with the splittings given in Theorem 3.4.

Theorem 3.9. The space ZH is written as a disjoint union of connected spaces

ZH =
∞∐

j=−∞

Z
j
H
,

where the equivariant homotopy type of Z
j
H

is totally determined by

(41) Z
j
H
∼=

{∏∞
j=1 F (P(H)+, K(Z(2j − 1), 4j − 2) ) , if j is odd∏∞
j=1 F (P(H)+, K(Z(2j), 4j) ) , if j is even.

Proof. It is evident that if one defines

(42) Z
j
H

:= lim
−→
n

Z
j+2n(P

(
H
n∗ ⊕ H

n
)
),

then ZH =
∐∞
j=−∞ Z

j
H
. The result now follows from the remark preceding the Proposition together

with Theorem 3.4. �

Remark 3.10. Note the the equivariant homotopy type of Z
j
H

is completely determined by the
parity of j. Furthermore, a canonical inclusion of coordinate hyperplanes gives immediately an

equivariant homotopy equivalence Z
j
H
∼= Z

j+2
H

, for all j. For that reason we establish the notation

Z
ev
H := the equivariant homotopy type of Z

j
H
, for j even,

and
Z

odd
H := the equivariant homotopy type of Z

j
H
, for j odd.

We now proceed to prove Theorem 3.6.

Proof. The same arguments of [BLLF+93], [LLFM96], or [LLFM98b], together with Proposition
3.5, imply that the join operation induces an action of the equivariant Z/2-linear isometries operad

on ZH. In particular, both ZH and its fixed point set Z
Z/2
H

have an induced action of the usual
linear isometries operad.

It follows from (38) that the H-space structure on ZH given by the join induces a group isomor-

phism π0(ZH) ∼= Z. Furthermore, it is easy to see (cf. [LLFM98c]) that
{
Zj+2n(P

(
H
n∗ ⊕ H

n
)
)1
}Z/2

is empty if j is odd, and non-empty and connected if j is even. This implies, after passage to the
colimit, that

π0(Z
Z/2
H

) ∼= 2Z ⊂ Z ∼= π0(ZH).

Therefore, the H-space ZH is Z/2-group complete, in the language of [CW91]. It follows from
the equivariant “recognition principle” in [CW91] that ZH is an equivariant infinite loop space; see
also [dSLF01]. �
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Remark 3.11. We must point out that the construction of our I∗-functor Z(−), in Proposition
3.5, only uses embeddings V ↪→ W , not isometric embeddings of hermitian vector spaces. As a
consequence, we can replace the linear isometries operad L by the linear embeddings operad

{ E(n) := Emb(C∞ ⊕ · · · ⊕ C
∞ , C

∞) | n ∈ N }.

This operad has the advantage of being algebraic in nature and is more suitable for possible “mo-
tivic” generalizations and various other applications to algebraic geometry.

4. Quaternionic K-theory

Given a Z/2-space X, one can use its equivariant structure to study two classes of complex
bundles over X, namely the real and quaternionic bundles. This study yields two distinct, albeit
related, equivariant theories: the Real K-theory studied by Atiyah in [Ati66] and the (equivariant)
quaternionic K-theory studied by Dupont in [Dup69].

Let us recall the basic definitions.

Definition 4.1. Let (X,σ) be a Z/2-space and let p : E → X be a complex vector bundle over X.
Let τ : E → E be a continuous map covering σ, i.e. p ◦ τ = σ ◦ p, and such that for any x ∈ X the
resulting map τ : Ex → Eσx is anti-linear.

a: If τ2 = id then (E, τ) is a real bundle;
b: If τ2 = − id then (E, τ) is a quaternionic bundle.

The dimension of a real or quaternionic bundle is defined as its complex dimension, and morphisms
between such bundles are bundle morphisms that commute with the structure maps τ .

The isomorphism classes real bundles form a monoid under Whitney sum, whose Grothendieck
group is called the real K-theory KR0(X) of X. Similarly, the Grothendieck group of isomorphism
classes of quaternionic bundles gives the quaternionic K-theory groups KH0(X) of X.

In [LLFM98b] the connective version of KR-theory is studied from the equivariant point of
view, along with a suitable theory of equivariant Chern classes. In this section and the next, we
provide quaternionic analogues, along with a suitable theory of equivariant Chern classes and their
equivariant deloopings. We must point out that in [Dup99], Dupont conjectures the existence of
an appropriate theory of Chern classes for quaternionic bundles. Here we provide a quite natural
answer to his question.

4.1. Classifying spaces and equivariant quaternionic K-theory spectrum. In this section
we describe a classifying space for quaternionic K-theory in the equivariant category, and at the
same time we prove the existence of equivariant deloopings of this space.

Given a real vector space (V, σ) of complex dimension v, we follow (36) and define

(43) Gr(V ) :=
2v∐

j=−2v

Gr2v+j(V ∗
H ⊕ VH).

We make the assignment V 7→ Gr(V ) functorial as follows. Consider an inclusion i : W ↪→ V of
real vector spaces of dimensions w and v, respectively. As in the previous section, we observe that
i induces an inclusion (id ⊕ i)∗ : Gr2w+j(W ∗

H
⊕WH) → Gr2v+j(W ∗

H
⊕ VH) given by the inclusion

of linear subspaces, and that the surjection i∗ : V ∗ → W ∗ induces another inclusion (i∗ ⊕ id)−1 :
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Gr2v+j(W ∗
H
⊕ VH) → Gr2v+j(V ∗

H
⊕ VH), given by taking inverse images. Let i] : Gr(W ) → Gr(V )

be the map given, on each connected component, by the composition

(44) i] := (i∗ ⊕ id)−1 ◦ (id⊕ i)∗.

Given any space X, and any real vector space (V, σ), we denote by V H the quaternionic vector

bundle X × VH over X. Now, let ξjV denote the universal quotient bundle over Gr2v+j(V ∗
H
⊕ VH).

The proof of the following result is standard.

Lemma 4.2. The map on Grassmannians i] : Gr2w+j(W ∗
H
⊕WH) → Gr2v+j(V ∗

H
⊕ VH), induced by

an inclusion i : W ↪→ V , satisfies

(i])
∗ξjV = ξjW ⊕ (V/W )H.

Definition 4.3. Define the (Z/2)-space (Z ×BU)H as the colimit

(45) (Z ×BU)H := lim
−→

V⊂C∞

Gr(V ).

Observe that, in the same fashion as ZH (cf. Theorem 3.9), the space (Z×BU)H can be written

as a disjoint union
∐∞
j=−∞ BUj

H
of (Z/2)-spaces BUj

H
defined as BUj

H
:= lim

−→
V⊂C∞

Gr2v+j(V ∗
H
⊕ VH).

Furthermore, the coordinate-wise inclusion C
∞ ↪→ C

∞, given by setting the first coordinate zero,
induces equivariant homotopy equivalences

(46) BUj
H
∼= BUj+2

H
∼= · · · ∼= BUj+2r

H
∼= · · · .

Hence all connected components of (Z × BU)H are either equivalent to BU0
H or to BU1

H, and we

denote by BUev
H

and BUodd
H

their respective equivariant homotopy types.

Proposition 4.4. The space (Z×BU)H classifies quaternionic K-theory. In other words, given a

compact (Z/2)-space X one has a natural isomorphism

[X+, (Z ×BU)H ]Z/2
'
−→ KH0(X).

Proof. The proof follows standard arguments, as in [Seg68], and we only outline the details which
are particular to this case.

Let (X,σ) be a compact (Z/2)-space. Given an equivariant map f : X → (Z × BU)H, one can
find a real subspace W ⊂ C

∞, dimW = w, so that the map f factors as a composition

X
fW−−→ Gr(W )

iW−−→ q2w
j=−2wBUj

H
⊂ (Z ×BU)H,

where the iW ’s are the natural maps from the directed system defining (Z ×BU)H.
Now, assign to f the isomorphism class of the virtual bundle f ∗

W (ξW ) − WH, where ξW
is the bundle over Gr(W ) = q2w

j=−2w Gr2w+j(W ∗
H
⊕WH) whose restriction to the component

Gr2w+j(W ∗
H
⊕WH) is the universal quotient bundle ξjW . If i : W ↪→ V ⊂ C

∞ is an inclusion,

then it follows from the construction of BUj
H

that fV = i] ◦ fW , and hence one has equalities in

KH0(X):

f∗V (ξV ) − V H = f∗W (i∗] (ξV )) − V H =
(
f∗W (ξW ) ⊕ (V/W )

H

)
− V H

= f∗W (ξW ) + (V/W )
H

− V H = f∗W (ξW ) − WH,
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where the second equality comes from Lemma 4.2. This shows that the element in KH0(X) thus
obtained is independent of the factorization through a finite dimensional Grassmannian. Standard
arguments, e.g. [Seg68], show that this assignment only depends on the equivariant homotopy class
of f and that the resulting map Ψ : [X+, (Z ×BU)H ]Z/2 → KH0(X) is injective.

In order to prove surjectivity, let (E, τ) be a quaternionic bundle over (X,σ). One can find
sections si : X → E, i = 1, . . . , k generating E, i.e., for each x ∈ X the map ϕx : C

k → Ex sending

(λ1, . . . , λk) to
∑k

i=1 λi si(x) is surjective. Now, define

φ : H
n ×X → E

by sending (a1 + b1j, . . . , ak + bkj; x) to
∑k

i=1 aisi(x) +
∑k

i=1 biτ(si(σx)) ∈ Ex. It is clear that φ
is onto, by construction, and that φ is a map of quaternionic bundles for the diagonal quaternionic
structure on H

n ×X given by right multiplication by j on the first factor, and by σ on the second
factor. It follows that the map f : X → GrdimE(Hk) defined as f(x) = ker (φx) is equivariant and
satisfies f ∗Q ∼= E, where Q is the universal quotient bundle over GrdimE(Hk). A little manipulation
with f and the directed system giving (Z ×BU)H then shows that Ψ is onto. �

Definition 4.5. For each j ∈ Z, we denote by ξj the virtual universal quotient bundle over BUj
H
,

of virtual dimension j, whose restriction to Gr2v+j(V ∗
H
⊕ VH) is ξjV − VH.

One must notice that the construction of Gr(V ) here parallels (in fact it precedes) that of Z(V ),
given in (36). Furthermore, given real vector spaces (V, σ), (W,σ ′) one can define

(47) ⊕V,W : Gr(V ) × Gr(W ) → Gr(V ⊕W )

by sending L ⊂ V ∗
H
⊕VH and L′ ⊂W ∗

H
⊕WH to τ(L⊕L), where τ is the shuffle map which switches

coordinates from (V ∗
H
⊕VH) ⊕ (W ∗

H
⊕WH) to (VH ⊕WH)∗ ⊕ (VH ⊕WH). The following proposition

is analogous to Proposition 3.5 and is proven in a similar fashion.

Proposition 4.6. The assignments V 7→ Gr(V ) along with the pairings ⊕V,W give Gr(−) the

structure of an equivariant (Z/2)I∗-functor, in the language of [May77]. See also [LLFM96].

The proof of the following result is identical to the proof of Theorem 3.6.

Theorem 4.7. The direct sum operation induces an equivariant Z/2-infinite loop space structure

on the space (Z ×BU)H.

Definition 4.8. The infinite loop space structure on (Z×BU)H determines an equivariant spectrum
(cf. [May96]) denoted Ksp, satisfying Ksp(0) ∼= (Z × BU)H. This is the connective quaternionic

K-theory spectrum.

Remark 4.9. The same construction with VC replacing VH, and with the complex conjugation ac-
tion on VC, would give (Z×BU)C along with the equivariant infinite loop space structure classifying
KR()-theory.

Let (V, σ) be a real vector space. An important feature of our constructions is the fact that a
complex linear subspace L of codimension 2v + j in V ∗

H
⊕ VH is also an irreducible subvariety of

codimension 2v+ j and degree 1 in P
(
V ∗

H
⊕ VH

)
. Furthermore, the external direct sum of two such

subspaces corresponds to their algebraic join when seen as projective subvarieties. See [BLLF+93]
for more details. This gives a natural transformation c : Z(−) → Gr(−) of (Z/2)I∗-functors.
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Standard arguments, such as in [BLLF+93], show that the resulting map of colimits

(48) c
H

: (Z ×BU)H → ZH

is a map of equivariant infinite loop spaces. In other words, it induces a map of equivariant spectra
c

H
: Ksp → ZH.

Definition 4.10. The map c
H

: Ksp → ZH is called the total quaternionic Chern class map.

In order to analyze the quaternionic Chern class map in the level of classifying spaces, we first
need to understand the equivariant cohomology of (Z × BU)H × P(H). This computation and the
subsequent analysis form the content of our next section.

5. Characteristic Classes

In this section we introduce characteristic classes for quaternionic bundles and establish their
relation to the total quaternionic Chern class map c

H
: (Z×BU)H → ZH, in the level of classifying

spaces.
The characteristic classes dk(E) ∈ H2k,k(X × P(H); Z), associated to a quaternionic bundle

E → X are defined as follows.

Definition 5.1. Let E be a rank e quaternionic bundle over a Z/2-space X. For δ = 0, 1, and i
satisfying 0 ≤ 2i+ δ ≤ e, define

de−(2i+δ)(E) := c̃e−(2i+δ)(E ⊗ O(1)) − (i+ δ) c̃e−(2i+δ)−1(E ⊗ O(1)) x,

where c−1(−) = 0.

Note that, since X×P(H) is a free Z/2-space, the characteristic classes c̃k(E⊗O(1)) can also be
defined with values in Galois-Grothendieck cohomology as in [Kah87], according to the discussion
in Section 1.7.

In order to understand the meaning of this definition, and its relation to the total Chern class
map, we first compute the equivariant cohomology of (Z ×BU)H × P(H) in the next section.

5.1. Cohomology of (Z×BU)H. We start by observing that all the components of (Z×BU)H ×
P(H) have the same equivariant homotopy type, hence it suffices to compute H ∗,∗(BUev

H
×P(H); Z).

In fact, an equivariant homotopy equivalence Ψ : BUev
H ×P(H) → BUodd

H ×P(H) can be constructed
as follows. Given a real vector space (V, σ), let

ψj,j+1
V : Gr2v+j(V ∗

H ⊕ VH) × P(H) → Gr2v+j+1((V ⊕ C)∗H ⊕ (V ⊕ C)H)

denote the composition

(49) Gr2v+j(V ∗
H ⊕ VH) × P(H)

id×ι
−−−→ Gr2v+j(V ∗

H ⊕ VH) × Gr1(H∗ ⊕ H)
⊕V,C
−−−→

Gr2v+j+1((V ⊕ C)∗H ⊕ (V ⊕ C)H),

where ι : P(H) → Gr1(H∗ ⊕ H) is the linear embedding sending L to L⊕H, and ⊕V,C is the Whitney
sum map (47) after one identifies H ≡ CH.

It is easy to see that

(ψj,j+1
V )∗(ξj+1

V⊕C
) = π∗1(ξ

j
V ) ⊕ H ⊕ π∗2(O(1)),

where the πi’s are the projections from Gr2v+j(V ∗
H
⊕ VH)×P(H) to the respective factors, ξjV is the

universal quotient bundle over the Grassmannian, and O(1) is the hyperplane bundle over P(H).
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Note that O(1) is also a quaternionic bundle. Furthermore, the maps ψj,j+1
V assemble to give a

morphism of directed systems inducing a (Z/2)-equivariant map ψj,j+1 : BUj
H
× P(H) → BUj+1

H

having the property that (ψj,j+1)∗(ξj+1) = ξj×O(1). Here we denote π∗
1(ξ

j)⊕π∗2(O(1)) as a product
ξj × O(1).

It follows that one obtains a Z/2-map ψ : BUev
H × P(H) → BUodd

H . Now, define

(50) Ψ := ψ × id : BUev
H × P(H) → BUodd

H × P(H),

and observe that Ψ is a Z/2-map which is a non-equivariant homotopy equivalence. Since BUev
H ×

P(H) and BUodd
H × P(H) are free (Z/2)-spaces, it then follows that Ψ is an equivariant homotopy

equivalence.

Remark 5.2. The same procedure used to construct Ψ can be applied to produce an equivariant
homotopy equivalence Φ : Zev

H
× P(H) → Zodd

H
× P(H). Indeed, given a real vector space (V, σ), let

φj,j+1
V : Z

2v+j(V ∗
H ⊕ VH) × P(H) → Z

2v+j+1((V ⊕ C)∗H ⊕ (V ⊕ C)H)

denote the composition

(51) Z
2v+j(V ∗

H ⊕ VH) × P(H)
id×ι
−−−→ Z

2v+j(V ∗
H ⊕ VH) × Z

1(H∗ ⊕ H)
#V,C
−−−→

Z
2v+j+1((V ⊕ C)∗H ⊕ (V ⊕ C)H),

As before, one can check that the maps φj,j+1
V assemble to give a morphism of directed systems

inducing a (Z/2)-equivariant map φj,j+1 : Z
j
H
× P(H) → Z

j+1
H

. Finally, define

Φ := φ× id : Z
ev
H × P(H) → Z

odd
H × P(H).

Non-equivariantly, one can fix a point t ∈ P(H), and observe that the map Φ(−, t) is just suspension
to t. It follows that Φ is a non-equivariant homotopy equivalence. Since Zev

H
×P(H) and Zodd

H
×P(H)

are free (Z/2)-spaces, it then follows that Φ is also an equivariant homotopy equivalence.

Before we compute the equivariant cohomology of BUev
H

× P(H) some notation is needed.

Notation 5.3. Given a real bundle E over a Z/2-space X, its k-th equivariant Chern class is
denoted by c̃k(E) ∈ H2k,k(X; Z). The generator of H2,1(P(H); Z) ∼= Z is denoted by x, as before.
We denote the line bundle O(m) over P(Hn) by On(m). In the case n = 1 we write O(m) instead
of O1(m). Notice that On(m) is real, if m is even, and quaternionic if m is odd. Also, note that
x = c̃1(O(2)). The fact that a tensor product of two quaternionic bundles is a real bundle will also
be used throughout.

Remark 5.4. Let ξjV denote the universal quotient bundle over Gr2v+j(V ∗
H
⊕ VH), cf. Lemma 4.2,

and let i] : Gr2w+j(W ∗
H
⊕WH) → Gr2v+j(V ∗

H
⊕ VH) be the maps defined in (44). It is easy to see that

one has i∗] (dk(ξ
j
V )) = dk(ξ

j
W ). Hence, these classes yield elements dk ∈ H2k,k(BUj

H
× P(H); Z) that

are compatible with the equivalences BUj
H
∼= BUj+2

H
, described in (46). It follows that we obtain

well-defined classes inH2k,k(BUev
H ×P(H); Z) . Using the homotopy equivalence Ψ : BUev

H ×P(H) →

BUodd
H

× P(H), we define the corresponding classes in BUev
H

× P(H), and also denote these classes
by dk. The following facts are easily verified:

a: Let f : X → (Z ×BU)H be a classifying map for a quaternionic bundle E over X. Then:

dk(E) := (f × id)∗(dk).
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b: Let E → X be a quaternionic bundle of rank e, and let ρ denote the forgetful functor
from equivariant cohomology to singular cohomology. Then, denoting the fundamental
cohomology class of P(H) by β, we have

ρ(dk(E)) =

{
ck(E) × 1 + ck−1(E) × β , k ≡ e mod 2

ck(E) × 1 , k 6≡e mod 2.

In particular, considering the universal bundles ξjk over Gr2k+j(Hk∗ ⊕ H
k), we see that the

classes ρ(dk) generate the singular cohomology of (Z ×BU)H × P(H) over H∗(P(H); Z).

We now compute the equivariant cohomology of (Z ×BU)H.

Theorem 5.5. Let dk be the classes defined in (5.1). Then we have the following ring isomorphism

H∗,∗(BUev
H × P(H); Z) ∼= H∗,∗(P(H); Z) [d1,d2, . . . ,dk, . . .]

Proof. Since BUev
H

×P(H) is free, it suffices to compute the Galois-Grothendieck cohomology groups
with Z(n) coefficients. For this we use the spectral sequence (cf. Section 1.7)

Er,s2 (n) := Hr(BZ/2;H(BUev
H × P(H); Z(n))) ⇒ Ĥr+s

Z/2 (BUev
H × P(H); Z(n)),

and the pairing of spectral sequences Ep,q
r (n)⊗Ep′,q′

r (n′) → Ep+p′,q+q′
r (n+ n′), induced by the cup

product. This pairing makes E∗,∗
r (∗) into a spectral sequence of Z

2 × Z/2-graded rings.
Set

F p,q2 (n) := Hr(BZ/2;H(P(H); Z(n))),

and note that E∗,∗
2 (∗) is a module over F ∗,∗

2 (∗). Corresponding to each of the classes dk there are

elements in E0,2k
2 (k) which are universal cycles. These cycles are denoted d̃k. The correspondence

dk 7→ d̃k defines a ring homomorphism Θ : F ∗,∗
2 (∗) [d1,d2, . . . ,dn, . . .] → E∗,∗

2 (∗).
Observe that the action of j∗ in H2q(BUev

H × P(H); Z) is multiplication by (−1)q, hence

E0,q(n) =

{
Hq(BUev

H × P(H); Z) , q = 2q′ , n = q′ mod 2

0 , otherwise

As noted in remark 5.4 , the image of the dk’s, under the forgetful functor to singular cohomology,
generates the cohomology of BUev

H × P(H) over H∗(P(H); Z). This implies that Θ0,2q(q) is an
isomorphism. Since, Ep,0(n) = Hp(BZ/2; Z(n)), we see that Θp,0(n) is also an isomorphism. By
Zeeman’s comparison theorem, it follows that

E∗,∗
∞ (∗) ∼= F ∗,∗

∞ (∗)[d1,d2, . . . ,dn, . . .].

A standard argument can be used to show that there is actually a ring isomorphism

Ĥ∗
Z/2(BUev

H × P(H); Z(∗)) ∼= Ĥ∗
Z/2(P(H); Z(∗)) [d1,d2, . . . ,dk, . . .].

By Proposition 1.13, we conclude that

H∗,∗(BUev
H × P(H); Z) ∼= H∗,∗(P(H); Z) [d1,d2, . . . ,dk, . . .].

�

The following result will be used subsequently.
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Lemma 5.6. Let E → X be a quaternionic bundle of dimension e, and let z ∈ H2,1(P(H); Z) be

the fundamental homology class. Then we have

pr∗(de−2k(E)/z) = de−2k−1(E), k = 0, . . . , b
e− 2

2
c,

where −/z denotes slant product with z and pr is projection to the first factor of X × P(H).

Proof. We will prove the case where e is even. The other case is proven similarly. Recall from
Theorem 5.5 that the equivariant cohomology of BUev

H × P(H) is generated over H∗,∗(P(H); Z) by
the classes dk, k ≥ 1. The result will follow once we prove the identity

pr∗(d2k/z) = d2k−1,

where pr : BUev
H × P(H) is the projection onto the first factor. Observe that, by construction,

the restriction of d2k to Gr2k−2(Hr∗ ⊕ H
s) is zero. Hence, by Theorem 5.5, pr∗(d2k/z) must be a

multiple of d2k−1. Since
ρ(pr∗(d2k/z)) = ρ(d2k−1) = c2k−1 × 1,

it follows that pr∗(d2k/z) = d2k−1. �

5.2. Projective bundle formula. In the previous section we defined characteristic classes, dk(E),
for a quaternionic bundle E over X, with values in the cohomology theory H ∗,∗(X × P(H); Z). By
analogy with Chern classes, it is natural to look for a relation between the classes dk(E) and the
structure of H∗,∗(P(E) × P(H); Z), as module over H∗,∗(X × P(H); Z). The next result addresses
this question.

Proposition 5.7. Let P
(
E
) p
−→ X be the projectivization of a rank e quaternionic bundle E

p
−→ X.

Let ξ in KH(P
(
E
)
) be the universal quotient bundle over P

(
E
)
. Then H∗,∗(P

(
E
)
×P(H); Z) is a free

H∗,∗(X×P(H); Z)-module generated by dk(ξ), k = 0, . . . , e−1. Moreover, the classes d0(ξ), . . . , de(ξ)
satisfy the following relation

(52)

e∑

k=0

(−1)kdk(ξ)de−k(p
∗E) = 0.

Proof. Let p1 : X × P(H) → X and p2 : X × P(H) → P(H) be the projections. Then G :=
p∗1(E) ⊗ p∗2(OP(H)(1)) is a real bundle, and there is an equivariant homeomorphism

P
(
G
)

= P
(
p∗1(E) ⊗ p∗2(OP(H)(1))

)
∼= P

(
p∗1(E)

)
∼= P

(
E
)
× P(H).

It follows from the projective bundle formula for real bundles that, if OG(1) is the dual of the
tautological line bundle over P

(
E
)

and t = c̃1(OG(1)), then H∗,∗(P
(
E
)
×P(H); Z) is a free H∗,∗(X×

P(H); Z)-module generated by 1, t, . . . , te−1. Moreover, the classes c̃0(p
∗G), . . . , c̃e(p

∗G) satisfy the
relation

(53)
∑

0≤δ≤1

0≤2i+δ≤e

(−1)2i+δ t2i+δ c̃e−2i+δ(q
∗G) = 0,

where q : P
(
G
)
→ X × P(H) is the bundle projection.

A simple computation shows that the classes tk can be expressed in terms of the classes dk(ξ).
In fact, denoting the first Chern class of the real bundle O(2) by x as before, we have

(54) t2i+δ = d2i+δ(ξ) + i d2i+δ−1(ξ)x,
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for 0 ≤ δ ≤ 1 and 0 ≤ 2i+ δ ≤ e.
Hence H∗,∗(P

(
E
)
×P(H); Z) is also generated by 1, d1(ξ), . . . , de(ξ). It remains to show that (52)

holds. Now,

de−(2i−δ)(p
∗E) = ce−(2i−δ)(q

∗G) − i ce−(2i−δ)−1(q
∗G)x,

for 0 ≤ δ ≤ 1 and 0 ≤ 2i + δ ≤ e (where we’ve set c−1(G) := 0). Hence from (53), (54) and the
equality x2 = 0, we get

(55)
e∑

k=0

(−1)k dk (ξ) de−k(p
∗E) =

∑

0≤δ≤1

0≤2i+δ≤e

(−1)2i+δ d2i+δ (ξ) de−(2i+δ)(p
∗E)

=
∑

0≤δ≤1

0≤2i+δ≤e

(−1)2i+δ
(
t2i+δ − i t2i+δ−1 x

) (
ce−(2i+δ)(q

∗G) − i ce−(2i+δ)−1(q
∗G) x

)

=
∑

0≤δ≤1

0≤2i+δ≤e

(−1)2i+δ−1 i
(
t2i+δ ce−(2i+δ)−1(q

∗G) − t2i+δ−1ce−(2i+δ)(q
∗G) x

)
= 0.

�

5.3. The quaternionic total Chern class map. Recall from Theorem 3.9 that the space ZH

splits equivariantly as a product of classifying spaces for the functors H ∗,∗(− × P(H); Z). Given
any equivariant map, X → ZH, such a splitting determines a set of classes in H ∗,∗(X × P(H); Z).

We have seen in Definition 4.10 that the inclusion of linear spaces in the space of all algebraic
cycles induces an equivariant map c

H
: (Z × BU)H → ZH. In this section we will compute the

cohomology classes determined by the map c
H

and the splitting (41) of Theorem 3.9.

Proposition 5.8. Let ξn ∈ KH(P
(
H
n
)
) be the universal quotient bundle over P

(
H
)
, and let

(56) ψn : Z0

(
P
(
H
n
))

→
n∏

i=1

F (P(H)+, K(Z(2i− 1), 4i − 2))

be the equivariant homotopy equivalence of corollary 2.4, and let jn : P
(
H
n
)
↪→ Z0

(
P
(
H
n
))

denote

the natural inclusion. Then the composition

φn := ψn ◦ jn : P
(
H
n
)
→

n∏

i=1

F (P(H)+, K(Z(2i− 1), 4i − 2))

classifies d1(ξ
n), d3(ξ

n), . . . , d2n−1(ξ
n).

Proof. For n = 1, we need to identify the element α of H 2,1(P(H) × P(H); Z) classified by the

composition P(H)
j
−→ Z0 (P(H))

ψ
−→ F (P(H)+,K(Z(1), 2). Since ψ is the map that realizes Poincaré

duality, α is the Poincaré dual of the diagonal ∆ ⊂ P(H) × P(H). From the projective bundle
formula (Proposition 5.7) it is easy to see that

α = P(∆) = c1 (pr∗1O(1) ⊗ pr∗2O(1)) = d1(ξ
1).

Assume that the proposition holds for k < n, and note that Proposition 2.2(c) implies that φn
restricts to φk on P

(
H
k
)
, for k < n. The projective bundle formula shows that d2i−1(ξ

n) is the only
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class whose restriction to P
(
H
k
)

is d2i−1(ξ
k), for all i = 1, . . . , k. Hence it suffices to show that

pn ◦ φn classifies dn(ξ
n), where pn denotes the projection onto the last factor in (56).

Observe that pn ◦ φn is given by the composition

P
(
H
n
)
+

π
−→ P

(
H
n
)
/P
(
H
n−1
) j
−→ Z0

(
P
(
H
n
)
/P
(
H
n−1
))

o

θ
−→ F (P(H)+,K(Z(2n− 1), 4n − 2)),

where π is the projection, j is the natural inclusion and θ is the equivalence given in (8). The

adjoint map (θ ◦ j)∨ :
P

(
Hn
)
×P(H)

P

(
Hn−1

)
×P(H)

→ K(Z(2n− 1), 4n− 2), can be described as the composition

(57) T
(
O(1) ⊗ H

n−1
)
∧ P(H)+

∆∧id
−−−→

(
T
(
O(1) ⊗ H

n−1
)
∧ P(H)+

)
∧ P(H)+ = T

(
O(1) ⊗ H

n−1
)
∧ (P(H) ∧ P(H))+

fµ∧d1
−−−−→ Z0

(
S4(n−1),2(n−1)

)
o
∧ Z0

(
S2,1

)
o
→ Z0

(
S4n−2,2n−1

)
o

= K(Z(2n− 1), 4n− 2),

where fµ classifies the Thom class of O(1) ⊗ H
n−1. One can easily check that the pull-back of

[fµ] under the projection π : P
(
H
n
)
→ T

(
O(1) ⊗ H

n−1
)

coincides with d2n−2(ξ
n). Therefore,

[pn ◦ φn] = d2n−2(ξ
n)d1(ξ

n) = d2n−1(ξ
n), and this completes the proof of the Proposition. �

We can now compute the classes determined by total quaternionic Chern class map c
H

Theorem 5.9. The equivariant cohomology classes determined by total quaternionic Chern class

map c
H

: (Z ×BU)H → ZH and the splitting (41) of Theorem 3.9 are

1 + d2 + d4 + · · · + d2n + · · · on BUev
H(58)

d1 + d3 + · · · + d2n+1 + · · · on BUodd
H(59)

Proof. Recall that there are natural equivalences BUj
H
∼= BUj+2

H
and Z

j
H
∼= Z

j+2
H

and, moreover, the
map c

H
: (Z ×BU)H → ZH is compatible with these equivalences. Thus c

H
induces maps

cev
H

: BUev
H → Z

ev
H and codd

H
: BUodd

H → Z
odd
H

and it suffices to compute the equivariant cohomology classes they classify.
The map codd

H
: BUodd

H
→ Zodd

H
classifies an element D1 +D3 + · · · +D2n−1 + · · · with

D2i−1 ∈ H4i−2,2i−1(BUodd
H × P(H); Z) , i ≥ 1.

Note that by construction, we have c
H
(Gr2q−3(Hk∗ ⊕ H

k)) ⊂ Z
2q−3
H

(Hk∗ ⊕ H
k) hence

(D2q−1)|Gr2q−3(Hk∗⊕Hk) = 0, k ≥ 0.

It follows from Theorem 5.5 that there are constants λ1, λ2 such that

D2q−1 = λ1d2q−1 + λ2 x · d2q,

where x ∈ H2,1(P(H); Z) is the fundamental class of P(H). To compute λ1, λ2 we observe that, by
Proposition 5.8, the restriction of D2q−1 to P

(
H
q
)

is d2q−1(ξ
q), where ξq is the universal quotient

bundle over P
(
H
q
)
. Since the inclusion

P
(
H
q
)
⊂ Gr2q−1(Hq∗)Gr2q−1(Hq∗) ⊂ Gr2q−1(Hq∗ ⊕ H

q) ⊂ BU2q−1
H

classifies ξq, it follows that D2q−1|P
(

Hq
) = d2q−1(ξ

q). Thus λ1 = 1, λ2 = 0 and D2q−1 = d2q−1.
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Now, consider the map cev
H

: BUev
H

→ Zev
H

. It classifies an element 1 +D2 +D4 + · · ·+D2n + · · ·

with D2i ∈ H4i,2i(BUev
H

× P(H); Z) i ≥ 1. Once again, we observe that c
H
(Gr2q−2(Hk∗ ⊕ H

k)) ⊂

Z
2q−2
H

(Hk∗ ⊕ H
k), implying

(D2q−2)|Gr2q−2(Hk∗⊕Hk) = 0, k ≥ 0.

As before, we conclude that there are constants λ1, λ2 such that D2q = λ1d2q + λ2 x · d2q−1.
To compute λ1, λ2 it suffices to compute the image of D2q under the forgetful map to singular
cohomology. In [LM88] it is shown that, non-equivariantly, Z1(P

(
H
n
)
1
∼= K(Z, 2)×· · ·×K(Z, 4n−

2), and that under this equivalence cH classifies the total Chern class. One can show that the
decomposition (34) is compatible with this non-equivariant splitting. It follows that ρ(D2k) =
ck + ck−1β, hence λ1 = 1 and λ2 = 0. �

5.4. The group struture on Z0
H
(X). In this section we compute the group structure induced by

the algebraic join of cycles on ZH. Recall from Proposition 3.5 that the algebraic join # induces a
pairing

# : ZH × ZH → ZH

satisfying

# : Z
j
H
× Z

j
H
→ Z

j+j′

H
.

For a Z/2-space X, one has an identification

(60) Z0
H(X) = [X,ZH]Z/2 =

⊕

j∈Z

[
X,Zj

H

]
Z/2

=
⊕

j∈Z

∏

r≥1

H4r−2ε(j), 2r−ε(j)(X × P(H),Z),

where ε(j) is 0 if j is even and 1 if J is odd. Given the splitting above one might conjecture that
the group structure induced by # is induced by the cup on H ∗,∗(X × P(H); Z), however this is not
the case as we will show. From (60) it follows that the group structure on Z0

H
(X) is completely

determined by the cohomology class represented by the map # under the equivalences

[Zj
H
× Z

j′

H
,Zj+j

′

H
]Z/2 ∼=

∏

r≥1

H4r−2ε(j+j′), 2r−ε(j+j′)(Zj
H
× Z

j′

H
× P(H),Z).

Also recall that BUj
H

maps to Z
j
H

by cH and that the following diagram commutes

BUj
H
× BUj′

H

⊕ //

cH×cH

��

BUj+j′

H

cH

��

Z
j
H
× Z

j′

H

# // Z
j+j′

H

We claim that the maps cH above induce injective maps

H∗,∗(Zj
H
× P(H); Z) → H∗,∗(Z0

(
BUj

H

)
1
× P(H); Z)

and hence the pairing on Z0
H
(−) is completely determined by the formula for the quaternionic Chern

class of a Whitney sum.
Let us start with the case j = 1. Let ι : P(H∞) → BU1

H
be the map induced by the inclusions

ιn : P(Hn) → Gr1(Hn∗ ⊕ H
n) that send L to L ⊕ H

n. Composing with cH gives a map from
P(H∞) to Z1

H
. The linear extension Z0 (P(Hn)) → Z1

H
of this composition is, by the quaternionic
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suspension theorem, an equivariant homotopy equivalence when restricted to the component of 1.

This map factors as Z0 (P(Hn))1
ι̃
−→ Z0

(
BU1

H

)
1

c̃H−→ Z1
H
, where ι̃ and c̃H denote the linear extension

of ι and cH, respectively. It follows that, for any cohomology theory H∗, the map H(c̃H) : H∗(Z1
H
) →

H∗(Z0

(
BU1

H

)
1
) is injective. For 1 6= j odd it suffices to observe that c̃H is compatible the canonical

equivariant homotopy equivalence Z
j
H
∼= Z

j+2
H

, given by inclusion of hyperplanes.
Suppose now that j is even. We need to show that c̃H induces an injective map

(id×c̃H)∗ : H∗,∗(Zj
H
× P(H); Z) → H∗,∗(Z0

(
BUj

H

)
1
) × P(H); Z).

The same argument as before shows that we may replace BUj
H

by BUev
H

. Recall from Remark 5.2

that there are equivariant homotopy equivalences Ψ : BUev
H × P(H) → BUodd

H × P(H) and Ψ :
Zev

H
×P(H) → Zodd

H
×P(H). By construction Ψ and Φ are compatible with cH so that the following

diagram commutes

H∗,∗(Zev
H

× P(H); Z)
(id×cH)∗

// H∗,∗(Z0 (BUev
H )1 × P(H); Z)

H∗,∗(Zodd
H

× P(H); Z)
(id×cH)∗

//

Φ∗

OO

H∗,∗(Z0

(
BUodd

H

)
1
× P(H); Z).

Ψ∗

OO

It follows that the map on top is injective, as desired.

Proposition 5.10. Let X be a Z/2-space, and let a·b denote the product of elements a, b in Z0
H
(X).

Consider Z0
H
(X) included in

⊕

j∈Z

∏

r,s≥1

Hr,s(X × P(H),Z),

as in (60). Then, under this inclusion we have,

a · b = a ∪ b+ pr∗(a/z) ∪ pr∗(b/z),

where z ∈ H2,1(P(H); Z) is the fundamental class P(H), −/z denotes slant product with z and pr is

the projection onto the first factor in the product X × P(H).

Proof. By the preceeding remarks it suffices to show the following formula for the quaternionic
Chern class of a Whitney sum holds

cH(E ⊕ F ) = cH(E) ∪ cH(F ) + pr∗(cH(E)/z) ∪ pr∗(cH(F )/z).

Recall that cH(E) is defined as a combination of Chern classes of the real bundle E ⊗ O(1), where
O(1) is the hyperplane bundle over P(H). To simplify notation we will use Ē and F̄ to denote
E ⊗ O(1) and F ⊗ O(1), respectively. Let e , f be the dimensions of E and F , respectively. We
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have,

(61) cH(E) ∪ cH(F ) =

b e
2
c∑

i=0

[
c̃e−2i(Ē) − ic̃e−2i−1(Ē)x

]
∪

b f
2
c∑

j=0

[
c̃f−2j(F̄ ) − jc̃f−2j−1(F̄ )x

]

=

b e+f
2

c∑

r=0

r∑

s=0

c̃e−2s(Ē) ∪ c̃f−2(r−s)(F̄ )

−
[
sc̃e−2s−1(Ē) ∪ c̃f−2(r−s)(F̄ ) + (r − s)c̃e−2s(Ē) ∪ c̃f−2(r−s)−1(F̄ )

]
x,

where we’ve set c̃k(−) equal to 1 if k is zero and c̃k(−) equal to zero if k < 0. By Lemma 5.6 we
have

(62) pr∗(cH(E)/z) ∪ pr∗(cH(F )/z) =

b e
2
c∑

i=0

de−2i−1(E) ∪

b f
2
c∑

j=0

df−2j−1(F )

=

b e+f
2

c∑

r=0

r∑

s=0

c̃e−2s−1(Ē) ∪ c̃f−2(r−s)−1(F̄ )

−
[
sc̃e−2s−2(Ē) ∪ c̃f−2(r−s)−1(F̄ ) + (r − s)c̃e−2s−1(Ē) ∪ c̃f−2(r−s)−2(F̄ )

]
x.

Thus, we get

(63) cH(E) ∪ cH(F ) + pr∗(cH(E)/z) ∪ pr∗(cH(F )/z)

=

b e+f
2

c∑

r=0

2r∑

s=0

c̃e−s(Ē) ∪ c̃f−2r+s(F̄ ) −
[
rc̃e−2s−1(Ē) ∪ c̃f−2r+s(F̄ ) + rc̃e−2s(Ē) ∪ c̃f−2r+s−1(F̄ )

]
x

=

b e+f
2

c∑

r=0

c̃e+f−2r(Ē ⊕ F̄ ) − rc̃e+f−2r−1(Ē ⊕ F̄ )x = cH(E ⊕ F ).

The Proposition follows. �

5.5. Remarks on the space (Z×BU)H. Here are two facts about (Z×BU)H which seem to be
quite interesting. Both of them are particular cases of results of Karoubi [Kar00].

Remark 5.11. In [Kar00] , Karoubi observes that there is an involution on BU such that BUhZ/2 =
BSp. We claim that the involution on BUev

H satisfies this. It is clear that BUev
H is homotopy

equivalent to BU and that {BUev
H }Z/2 = BSp. We now proceed to show that {BUev

H }Z/2 =

{BUev
H

}hZ/2.

The proof mimics one of the proofs of the well known fact BO = BUhZ/2, using Dupont’s
quaternionic K-theory instead of KR-theory. Let X be a Z/2-space. From [Dup69], we know that
there is a natural splitting

KH(X × P(H)) ∼= KH(X) ⊕KR(X).
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This implies that there is a natural equivariant homotopy equivalence

F (X × P(H)+, (Z ×BU)H) ∼= F (X+,Z × BU) ∨ F (X+, (Z ×BU)H).

Applying this equivalence toX×EZ/2 instead ofX and using the equivariant homotopy equivalence

X × P(H) ×EZ/2 ∼= X × P(H),

we obtain an equivariant homotopy equivalence

F (X ×EZ/2+, (Z ×BU)H) ∼= F (X+, (Z ×BU)H).

Remark 5.12. Another interesting fact about (Z ×BU)H is that

(Z ×BU)H
∼= Ω4,0(Z × BU).

To see this, consider a map f : S4 → BSp which represents a generator of π4(BSp). The tensor
product induces an equivariant map

S4,0 ∧ (Z ×BU)H → Z × BU.

Its adjoint (Z×BU)H → Ω4,0(Z×BU) is an equivariant map which is a non-equivariant homotopy
equivalence, and whose restriction to the fixed points induces the homotopy equivalence

Z × BSp ∼= Ω4 BO;

see [Bot59].
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