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INTRODUCTION

Physical interpretation: The behavior of mixtures of fluids (for
example: liquid-gas) is described by the Cahn-Hillard theory.
Free volume energy:

2
E(p, |Vpl?) = Bop) + 5 [Vel*, v >0,
where p- density of the fluid.

Eo(p) - classical volume free energy
7 - surface tension coefficient (independent from |Vp|).
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Generalized Model

If we allow that the surface tension depends on Vp, the free volume
energy takes the form

C
E(po.|Vp|) = Eo(p) + ;IVPI”, v>0,p>1;

in this case we obtain the following PDE:

cdiv(|Vp|P"2Vp) = u(p) — po:

The operator in the left-hand side is the p-laplacian, where p > 1 (if p =2
we obtain the classical laplacian).
In the case of spherical bubbles, we obtain the radial ODE:

AN (M P ) = i) (0<r <)

where f, is a function with three real roots, whose specific form depends
on p.
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Right-Hand Side

In the classical laplacian case (p = 2), f, is a third degree polynomial

(o) =4A%(p— &) (p+ 1p,

where ¢ is a real parameter;
In the degenerate laplacian case (p # 2), f, has the form

fo(0) = 2pA%(0 — &) (0 + L)plo — &|“lp + 1%,

where & = 0 in the case p = 2; for p # 2 the value of a will be discussed
later.
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Boundary Conditions

frg, ()] < oo lig, re'(n) =0
. o . ! _
lim p(r) = ¢, lim p'(r) = 0.

In the bubble case (if { > 0) , we search for a strictly increasing solution.
In the droplet case (if < —1), we search for a strictly decreasing solution.
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Existence and Uniqueness of Solution
Existence and uniqueness results for problems of this type can be found in:

B. Franchi, E. Lanconelli, and J. Serrin, Existence and uniqueness of
nonnegative solutions of quasilinear equations in R., Adv. Math., 118,
177-243 (1996)

From this work, it follows that, when p < 2, for 0 < ¢ < 1, the considered
problem (choosing &« = 0) has a unique bubble-type solution.

For p > 2,existence and uniqueness of solution is guaranteed only if we
choose & = p — 2 in the right hand side function.

This topic was investigated in detail in a separate work:

G. Hastermann, P. Lima, L. Morgado, E. Weinmiiller, Density Profile
Equation with p-Laplacian: Analysis and Numerical Simulation, Applied
Mathematics and Computation 225 (2013) 550-561.
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The Singularity at r =0

Initial conditions:

lim o(r) =po lim rp’(r) =0. (1)

r—0+ r—0+

We assume that in the neighborhood of r = 0 the solution can be
represented as

o(r) =po+ Crf(140(1)), as r—0", (2)
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Asymptotic approximation close to the origin

Proposition 3.1. Let N > 1 and p > 1. For each pg, the considered
singular Cauhy problem has, in the neighborhood of r = 0, a unique
holomorphic solution that can be represented by

1
_1 f p-1 P P P
p (x, po) :Po—i-pT <p<l\’f))> re-1 {1 +yirePt+o (xﬁ)} )

where y1 can be determined analytically.
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Singularity at Infinity
As r — oo we introduce the variable substitution

plr) = &+ P22 (r) )

In the new variable z we obtain an asymptotically autonomous equation.

In order to analyse the asymptotic behavior of the solutions, we can
consider the autonomous equation:

(p—1)22(r) = 2pA> Z°°(r)pz, (é:;,,_(f t) (5)

We search for a solution of (5) in the form

Zeo(r) = c exp(Tr), (6)

where ¢ and T are constants.
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Asymptotic Expansion at Infinity

Subsituting in the equation, we obtain:

Zeo(r) = c exp —(/2p)\2(1—;€_)§p1r : (7)

Then, the solution of the non-autonomous equation can be expressed in
the form of a Lyapunov series:

i Ck (r)e ™, (8)

where the functions Cy can be determined by solving a set of linear ODEs.

Pedro Lima ( JOHANNES KEPLER UNIVER An Algorithm with Global Error Control for



Asymptotic Expansion at Infinity

We have obtained an asypmptotic expression of the solutions which satisfy
the condition

lim z(r) = lim Z/(r) = 0. (9)

r—o0 r—o0

In the old variable p, we obtain the asymptotic expression
p(r) =¢—bCi(r)rie ™ (14 0(1)), r — oo. (10)

We must compute the value of b for which the solution satisfies the
prescribed boundary condition close to 0.
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Numerical Approximation - Shooting Method

R - bubble radius (o(R) = 0).
rp - initial approximation of R.

First Auxiliary Problem p_(r) - monotone solution on [4, rp], which
satisfies the boundary conditions

1

p-(0) =po+ P (fp(,(,’°)>“ 5 [1enett], (@)

o—(r) = 0. (12)

Second Auxiliary Problem p.(r) - monotone solution on [ry, fe], which
satisfies the boundary conditions

pi(1) =0, pi(re) = &~ br2Ci(r)e ™. (13)
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Numerical Approximation - Shooting Method

For a given value of ry, each of the auxiliary problems can be solved
numerically. Then we construct the global solution:

| op=(r), ifd<r<r;
plr) = { p+(r), ifro <r < re.

Let A(ro) = p’y(r0) — p(r0).

The true value of ry is computed from the condition that A(ry) = 0.
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Numerical Solution of Initial Value Problems
The above described algorithm has been implemented in the form of a
MATLAB code.

All the arising initial value problems (IVP) were solved by means of a ODE
solver with the following properties :

@ Nested implicit Runge-Kutta method of order 4;

@ Automatic stepsize selection based on local error estimation
(embedded Runge-Kutta pair approach).

@ Cheap global error estimation.
References:

@ G. Yu. Kulikov, Cheap global error estimation in some Runge-Kutta
pairs, IMA J. Numer. Anal., 33 (2013), pp. 136-163.

@ G. Yu. Kulikov, S. K. Shindin, Adaptive nested implicit Runge-Kutta

formulas of Gauss type, Appl. Numer. Math., 59 (2009),
pp. 707-722.
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Variational Formulation- Energy Integral

The considered BVP can be considered as a variational problem. In this
case, we consider the minimization of the energy integral:

Ji=do)i= [ (0P o)) M ar (19)

The convergence of this integral is a necessary condition for the solvability
of the considered BVP.

J(p) was computed numericallly, along with the solution, and the obtained
approximations are displayed in the next slides.
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Numerical Results - Density

(b) Density profiles for £=0.2 and various p (d) Density profiles for £=0.4 and various p

density p(r)
density p(r)
I3
Y

I
°
by

-0,

°

density p(r)
density p(r)

-0.4

Pedro Lima (



Numerical Results - Energy Integral

(a) Energy integrals for various  and p
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Figure: Energy Integral for various ¢ and p.
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Numerical Results - Interface Thickness

(b) Interface thickness for various & and p
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Figure: Inferface Thickness for various ¢ and p.
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Numerical Results - Bubble Radius

(a) Bubble radiuses for various & and p=1.5 (b) Bubble radiuses for various & and p=2.0
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(c) Bubble radiuses for various € and p=2.5
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Figure: Bubble Radius (by different definitions) for p = 1.5,2,2.5, 3 and various ¢.
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Numerical Results - Surface Tension

(2) Surface tension for various € and p=1.5
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(¢) Surface tension for various & and p=2.5
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Figure: Surface tension (by different definitions) for p = 1.5,2,2.5, 3 and various
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Conclusions about the Problem

o By analysing the associate singular Cauchy problems we were
able to describe the behavior of the solutions near the
singularities.

@ The results obtained for the p-laplacian confirm that many of
the properties of the original model can be extended to the
general one.

@ In particular, for each value of p there is a minimal bubble
radius, which is attained for a certain value of ¢.

o The density of the gas at the bubble centre (o) tends to —1 as
Ctendsto 1.
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Conclusions about the Numerical Methods

@ Numerical algorithms based on the shooting method are simple
and work efficiently for 0.1 < ¢ <09 and 1.5 < p < 4.

e For values of ¢, close to 0 or to 1, it is difficult to find a good
initial guess for the parameter py (small variations of this
parameter may lead to nonmonotone or blow-up solutions).

o Comparing with collocation methods, an advantage of this
method is that avoids solving large systems of equations, where
strong ill-conditioning may arise.

@ The present method has a good potential for solving many
important problems not only in fluid mechanics, but also in
other areas of application where similar differential equations
may arise.
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Integral Formulation of the Problem

r +n—1
o) = [ Srhlp()dr

h(p) = (o —¢plp+1).

Problem : find such p(0), that lim, e p(r) = ¢;
The integral equation can be solved by the implicit Euler method or
trapezoidal method.
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