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INTRODUCTION

Free boundary problem: find a real M > 0 and a positive y ∈ C 2((0,M)) ∩ C 1([0,M ]):
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x
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y ′ + f (y) = 0, 0 < x < M ,

y ′(0) = 0, y(M) = y ′(M) = 0, M > 0.

N is the space dimension (N > 2), m > 1, f (y) = ayq − byp, p < q, a, b > 0.

FIRST VARIABLE SUBSTITUTION

z = x/M −→
y ′′(z) + 1

m−1
N−1
z
y ′(z) + 1

m−1λf (y)/|y |
m−2 = 0, 0 < z < 1,

y ′(0) = 0, y(1) = y ′(1) = 0, λ = Mm is an eigenvalue

DIFFERENT TYPES OF SINGULARITIES

◮A. If m 6 2 and p > m/2− 1: the solution is smooth at both endpoints;

◮B. If m 6 2 and p < m/2− 1: the solution is smooth at z = 0 and singular at z = 1;

◮C. If m > 2 and p > m/2− 1: the solution is singular at z = 0 and smooth at z = 1;

◮D. If m > 2 and p < m/2− 1, the solution is singular at both endpoints.

SECOND VARIABLE SUBSTITUTION

For each case, there is a variable substitution which transforms the solution of the problem into a smooth function

(see [2]): t =
(

1− (1− z)
k2
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)
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2

:

For case B : k1 = 2,k2 =
m

m−1−p
.

For case C : k1 =
m

m−1
, k2 = 2.

For case D: k1 =
m

m−1
and k2 =

m

m−1−p
.

NUMERICAL EXAMPLE 1

ORIGINAL PROBLEM
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|y ′(z)| = 0, y ′(0) = y ′(1) = y(1) = 0.

The solution is singular at z = 1. When solving the problem in this formulation, the algorithm does not converge.

MODIFIED PROBLEM
Applying the smoothing transformation t = 1− (1− z)
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4 yields

3
√
3

16
√
1−t

y ′′(t) +

(

√
3

16(1−t)
3
2

+
√
3

(1−t)
1
6

(

1−(1−t)
4
3

)

)

y ′(t) + λ
√

|y ′(t)|

(

y(z) − 1√
y(t)

)

= 0,

y ′(0) = y ′(1) = y(1) = 0.
The solution of the new equation is smooth in the whole interval.

intervals error rate error λ rate λ

101 1.4159e-3 - 7.7077e-4 -

201 3.7705e-4 1.9089 2.0018e-4 1.9450

401 9.8751e-5 1.9329 5.1658e-5 1.9542

801 2.5368e-5 1.9608 1.3163e-5 1.9725

1601 6.2294e-6 2.0258 3.2199e-6 2.0315

Errors and convergence rate of the collocation method with one

Gaussian point in each subinterval.
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Numerical solution of the modified problem.

NUMERICAL EXAMPLE 2

ORIGINAL PROBLEM

y ′′(z) + 1
z
y ′(z) + λ

2

y(z)−
√

y(z)

|y ′(z)|
= 0, y ′(0) = y ′(1) = y(1) = 0.

Anal. solution: y(z) =
(

2− 2z
3

2

)2

, λ = 216, y ∈ C 2(0, 1]. (non-smooth at z = 0)

MODIFIED PROBLEM Applying the smoothing transformation t = z
3

4 :

27
32ty

′′(t) + 27
32t2 y

′(t) + λ
y(t)−

√
y(t)

|y ′(t)|
= 0, y ′(0) = y ′(1) = y(1) = 0,

Anal. solution: y(t) =
(

2− 2t2
)2
, λ = 216, y ∈ C∞[0, 1].
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Numerical solutions of the original

and modified problem (the two functions depend

on different independent variables).
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Errors of the numerical results for λ

(against the stepsize)

Legend for figures:

errorg1 - 1 Gaussian point, µ = 2;
errorg2 - 2 Gaussian points, µ = 3;

errorg3 - 3 Gaussian points, µ = 4;

errora2 -2 equid. points, µ = 3;

errora3 - 3 equid. points, µ = 4

NUMERICAL EXAMPLE 3

ORIGINAL PROBLEM
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= 0, y ′(0) = y ′(1) = y(1) = 0.
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3 , λ =
(
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)2
, y ∈ C 2(0, 1]. non-smooth at z = 0

MODIFIED PROBLEM Applying the smoothing transformation t = 1− (1− z)
2
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, λ =
(
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)2
, y ∈ C∞[0, 1].
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unsmooth solution
smooth solution

Numerical solutions of the original and modified problem (the two functions

depend on different independent variables).
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Errors of the numerical results for λ (against the stepsize).

NUMERICAL EXAMPLE 4

ORIGINAL PROBLEM
y ′′(z) + 1

z
y ′(z) + λ

2
y(z)−1
|y ′(z)|

= 0, y ′(0) = y ′(1) = y(1) = 0. (Sol. non-smooth at z = 0 and

z = 1)

When solving the problem in this formulation, the algorithm does not converge.

MODIFIED PROBLEM Applying the smoothing transformation t =
(

1− (1− z)
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= 0, y ′(0) = y ′(1) = y(1) = 0,

which has a smooth solution on [0,1]
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Numerical solution of the modified problem.
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Errors of the numerical results for λ (against the stepsize.)

SUMMARY OF NUMERICAL RESULTS

Estimates of the convergence order for various examples with

different methods.
Example 1 Example 2 Example 3 Example 4

o.p., g., µ = 0 no conv. 1.92–1.93 0.87 – 0.92 no conv.

m.p., g., µ = 2 2 1.7 2 2

m.p., g., µ = 3 no conv. 3 3.8 2.5

m.p., g., µ = 4 no conv. ?? 5 2.7

m.p., e., µ = 3 no conv. 2 2 2

m.p., e., µ = 4 no conv. ?? 3.8 ??

µ - degree of polynomial collocation;

o.p. - original problem; m.p. - modified problem

g. -Gaussian points; e. - equidistant points

?? means that there is a large dispersion between the estimates

(effect of rounding-off errors)

CONCLUSIONS AND FUTURE WORK

◮ We have implemented a new numerical method for the computation of approximate solutions to singular free boundary problems in ODEs, using the

open domainMatlab code bvpsuite.

◮ Our numerical approach is based on smoothing variable transformations which reduce the original problem (with endpoint singularities) into a new

problem, whose solution is smooth in the whole interval.

◮ As illustrated by the numerical examples, when solving the modified problem the performance of the collocation method is always better than if it is

applied to the original one. Even in the cases in which the numerical method fails to approximate the original problem, accurate results are obtained

after applying the variable transformation.

◮ As shown by the numerical results, the approximations obtained using the collocation method have convergence order not less than two, both for the

solutions and the eigenvalues. However, it is not always possible to recover the optimal convergence order of the collocation method, as it was

previously observed in the case of boundary value problems with the p-laplacian [3].

◮ When the collocation method is used with 1 Gaussian point, µ = 2, or 2 equidistant points, µ = 3, the numerical results suggest second order

convergence, the same which is obtained when the finite differences method is applied (see [2]).

◮ By increasing the degree of the collocation polynomial µ, the accuracy of the approximations is significantly improved in most of the numerical

examples. However, it is not always clear from the numerical results what is the convergence order of the method.

◮ In the future, we intend to carry out a detailed numerical analysis of the method to better understand its convergence behaviour.
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