COMPUTATIONAL APPROACHES TO SINGULAR FREE BOUNDARY PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS
 P.M. Lima ${ }^{1}$, M.L. Morgado ${ }^{2}$, S. Schirnhoffer ${ }^{3}$, M. Schöbinger ${ }^{3}$, E. Weinmüller ${ }^{3}$

INTRODUCTION

Free boundary problem: find a real $M>0$ and a positive $y \in C^{2}((0, M)) \cap C^{1}([0, M])$:

$$
\begin{gathered}
\left(\left|y^{\prime}\right|^{m-2} y^{\prime}\right)^{\prime}+\frac{N-1}{x}\left|y^{\prime}\right|^{m-2} y^{\prime}+f(y)=0, \quad 0<x<M, \\
y^{\prime}(0)=0, \quad y(M)=y^{\prime}(M)=0, \quad M>0 .
\end{gathered}
$$

N is the space dimension $(N \geqslant 2), m>1, f(y)=a y^{q}-b y^{p}, p<q, \quad a, b>0$.

FIRST VARIABLE SUBSTITUTION

$z=x / M \longrightarrow y^{\prime \prime}(z)+\frac{1}{m-1} \frac{N-1}{z} y^{\prime}(z)+\frac{1}{m-1} \lambda f(y) /|y|^{m-2}=0, \quad 0<z<1$, $y^{\prime}(0)=0, \quad y(1)=y^{\prime}(1)=0, \quad \lambda=M^{m}$ is an eigenvalue

DIFFERENT TYPES OF SINGULARITIES

- A. If $m \leqslant 2$ and $p \geqslant m / 2-1$: the solution is smooth at both endpoints;
- B. If $m \leqslant 2$ and $p<m / 2-1$: the solution is smooth at $z=0$ and singular at $z=1$
- C. If $m>2$ and $p \geqslant m / 2-1$: the solution is singular at $z=0$ and smooth at $z=1$;
- D. If $m>2$ and $p<m / 2-1$, the solution is singular at both endpoints.

SECOND VARIABLE SUBSTITUTION

For each case, there is a variable substitution which transforms the solution of the problem into a smooth functio
(see [2]): $t=\left(1-(1-z)^{\frac{1}{2}}\right)^{\frac{n_{1}}{2}}$
For case $B: k_{1}=2, k_{2}=\frac{m}{m-1-p}$
For case $C: k_{1}=\frac{m}{m-1}, k_{2}=2$.
For case $D: k_{1}=\frac{m}{m-1}$ and $k_{2}=\frac{m}{m-1-p}$.

NUMERICAL EXAMPLE 1

ORIGINAL PROBLEM
$y^{\prime \prime}(z)+\frac{4}{z} y^{\prime}(z)+2 \lambda\left(y(z)-\frac{1}{\sqrt{y(z)}}\right) \sqrt{\left|y^{\prime}(z)\right|}=0, \quad y^{\prime}(0)=y^{\prime}(1)=y(1)=0$. MODIFIED PROBLEM
Applying the smoothing transformation $t=1-(1-z)^{\frac{1}{4}}$ yields
$\frac{3 \sqrt{3}}{16 \sqrt{1-t}} y^{\prime \prime}(t)+\left(\frac{\sqrt{3}}{16(1-t)^{\frac{3}{2}}}+\frac{\sqrt{3}}{(1-t)^{\frac{1}{6}}\left(1-(1-t)^{\frac{4}{3}}\right)}\right) y^{\prime}(t)+\lambda \sqrt{\left|y^{\prime}(t)\right|}\left(y(z)-\frac{1}{\sqrt{y(t)}}\right)=0$ $y^{\prime}(0)=y^{\prime}(1)=y(1)=0$.
The solution of the new equation is smooth in the whole interval.

intervals	error	rate	error λ	rate λ
101	$1.4159 e-3$	-	$7.7077 e-4$	-
201	$3.7705 e-4$	1.9089	$2.0018 e-4$	1.9450
401	$9.8751 e-5$	1.9329	$5.1658 e-5$	1.9542
801	$2.5568 e-5$	1.9608	$1.3163 e-5$	1.9725
1601	$6.2294 e-6$	2.0258	$3.2199 e-6$	2.0315

Errors and convergence rate of the collocation method with one
\qquad

NUMERICAL EXAMPLE 2

ORIGINAL PROBLEM

$$
y^{\prime \prime}(z)+\frac{1}{z} y^{\prime}(z)+\frac{\lambda}{2} \frac{y(z)-\sqrt{y(z)}}{\left|y^{\prime}(z)\right|}=0, \quad y^{\prime}(0)=y^{\prime}(1)=y(1)=0 .
$$

Anal. solution: $y(z)=\left(2-2 z^{\frac{3}{2}}\right)^{2}, \quad \lambda=216, \quad y \in C^{2}(0,1] .($ non-smooth at $z=0)$ MODIFIED PROBLEM Applying the smoothing transformation $t=z^{\frac{3}{4}}$ $\frac{27}{32 t} y^{\prime \prime}(t)+\frac{27}{32 t^{2}} y^{\prime}(t)+\lambda \frac{y(t)-\sqrt{y(t)}}{\left|y^{\prime}(t)\right|}=0, \quad y^{\prime}(0)=y^{\prime}(1)=y(1)=0$,
Anal. solution: $y(t)=\left(2-2 t^{2}\right)^{2}, \quad \lambda=216, \quad y \in C^{\infty}[0,1]$.

Legend for figures:
errorg1-1 Gaussian point, $\mu=2$;
errorg2-2 Gaussian points, $\mu=3$
errorg3-3 Gaussian points, $\mu=4$
errora2 -2 equid. points, $\mu=3$;
errora3-3 equid. points, $\mu=4$

Numerical solutions of the original
and modified problem (the two functions depend
on different independent variables).

NUMERICAL EXAMPLE 3

ORIGINAL PROBLEM

$$
y^{\prime \prime}(z)+\lambda\left(y(z)-\frac{2}{3 \sqrt{y(z)}}\right)=0, \quad y^{\prime}(0)=y^{\prime}(1)=y(1)=0 .
$$

Anal. Solution: $y(z)=\left(\frac{8}{3}\right)^{\frac{2}{3}}\left(\cos \left(\frac{\pi}{2} z\right)\right)^{\frac{4}{3}}, \lambda=\left(\frac{2 \pi}{3}\right)^{2}, y \in C^{2}(0,1]$. non-smooth at $z=0$ MODIFIED PROBLEM Applying the smoothing transformation $t=1-(1-z)^{2}$:
$\frac{4}{9(1-t)} y^{\prime \prime}(t)+\frac{2}{9(t-1)^{2}} y^{\prime}(t)+\lambda\left(y(t)-\frac{2}{3 \sqrt{y(t)}}\right)=0, \quad y^{\prime}(0)=y^{\prime}(1)=y(1)=0$,
Anal. sol.: $y(t)=\left(\frac{8}{3}\right)^{\frac{2}{3}}\left(\cos \left(\frac{\pi}{2}\left(1-(1-t)^{\frac{3}{2}}\right)\right)\right)^{\frac{4}{3}}, \lambda=\left(\frac{2 \pi}{3}\right)^{2}, y \in C^{\infty}[0,1]$.

Numerical solutions of the original and modified problem (the two functions
depend on different independent variables).

NUMERICAL EXAMPLE 4

ORIGINAL PROBLEM

 $z=1$)

MODIFIED PROBLEM Applying the smoothing transformation $t=\left(1-(1-z)^{\frac{3}{4}}\right)^{\frac{3}{4}}$
$\frac{729}{2048 t\left(1-t^{\frac{4}{3}}\right)} y^{\prime \prime}(z)+\left(\frac{81}{512 t^{\frac{2}{3}}\left(1-t^{\frac{4}{3}}\right)^{2}}-\frac{243}{2048 t^{2}\left(1-t^{\frac{4}{3}}\right)}+\frac{81}{128 t^{\frac{2}{3}}\left(1-t^{\frac{4}{3}}\right)^{\frac{2}{3}}\left(1-\left(1-t^{\frac{4}{3}}\right)^{\frac{4}{3}}\right)}\right) y^{\prime}(z)+$

$$
+\lambda \frac{y(z)-1}{\left|y^{\prime}(z)\right|}=0, \quad y^{\prime}(0)=y^{\prime}(1)=y(1)=0,
$$

which has a smooth solution on $[0,1]$

Numerical solution of the modified problem.

SUMMARY OF NUMERICAL RESULTS

Estimates of the convergence order for various examples with different methods.					
	Example 1	Example 2	Example 3	Example 4	
o.p., g., $\mu=0$	no conv.	1.92-1.93	0.87-0.92	no conv.	μ - degree of polynomial collocation;
m.p., g., $\mu=2$	2	1.7	2	2	o.p. - original problem; m.p. - modified problem
m.p., g., $\mu=3$	no conv.	3	3.8	2.5	g. -Gaussian points; e. - equidistant points
m.p., g., $\mu=4$	no conv.	??	5	2.7	?? means that there is a large dispersion between the estim
m.p., e., $\mu=3$	no conv.	2	2	2	(effect of rounding-off errors)
m.p., e., $\mu=4$	no conv.	??	3.8	??	

CONCLUSIONS AND FUTURE WORK

open domain MATLAB code bvpsuite

- Our nume

Our numerical approach is based on smoothing variable
problem, whose solution is smooth in the whole interval.
As liustrated by the numerical examples, when solving the modified problem the performance of the collocation method is always better than if it is
applied to the original one Even after applying the variable transformation

- As shown by the numerical results, the approximations obtained using the collocation method have convergence order not less than two, both for the solutions and the eigenvalues. However, it is not always possible to recover the optimal convergence order of the collocation method, as it was previously observed in the case of boundary value problems with the p-laplacian [3].
- When the collocation method is used with 1 Gaussian point, $\mu=2$, or 2 equidistant points, $\mu=3$, the numerical results suggest second order convergence, the same which is obtained when the finite differences method is applied (see [2]).
- By increasing the degree of the collocation polynomial μ, the accuracy of the approximations is significantly improved in most of the numerical examples. However, it is not always clear from the numerical results what is the convergence order of the method
In the future, we intend to carry out a detailed numerical analysis of the method to better understand its convergence behaviour.

References

[1] G. Kitzhofer, O. Koch, G. Pulverer, Ch. Simon, and E. Weinmüller, The new Matab code bupsuite for the solution of singular implicit svps, J. Numer. Anal. Indust. Appl. Math. 5 (2010), 113-134.
${ }^{[2]}$ P.M. LIMA AND M. L. MORGADO, Efficient computational methods for singular free boundary problems using smoothing varibble substitutions, J. Comp. Appl. Math. 236 (2012), $2981-2889$
[3] G. Hastermann, P.M. Lima, M.L. Morgado, and E. WeinmüLler density profile equation with p-Laplacian: analysis and numerical simulation Applied Mathematics and Computation 225 (2013) $550-561$.

Further Reading

- H. CHEN, Analysis of blow-up for a nonlinear degenerate parabolic equation, J. Math. Anal. Appl. 192 (1995), 180-193
- H. CHEN, on a singular nonlinear elliptic equation, Nonlin. Anal., TMA 29 (1997), 337-345.
\wedge F. Gazzola, J. Serrin, and M. TANG, Existence of ground states and free boundary problems for quasilinear elliptic operators, Advances in Differential Equations 5 (1-3) (2000), 1-30.

