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The main idea of the neural field models in Mathematical Neu-
roscience is to treat the cortical space as continuous. Since
the number of neurons and synapses is extremely high even
in a small piece of cortex, this idea appears naturally as a first
approximation to model the neural activity. This approach was
first developped in 70’s by Wilson and Cowan [5] and Amari [1];
it leads to integro-differential equations (or systems of them),
which may be written in the form:

c
∂

∂t
V (x̄ , t) = I(x̄ , t)−V (x̄ , t) +

∫
Ω

K (‖x̄− ȳ‖2)S(V (ȳ , t))dȳ , (1)

t ∈ [0,T ], x̄ ∈ Ω ⊂ R2;

I V (x̄ , t) - the membrane potential in point x at time t ;
I I - external sources of excitation;
I S - dependence between the firing rate of the neurons and

their membrane potentials (sigmoidal or Heaviside function);
I K (‖x̄ − ȳ‖2) - connectivity between neurons at x̄ and ȳ .
Initial Condition: V (x̄ ,0) = V0(x̄), x̄ ∈ Ω.
Numerical algorithms for the approximation of the Neural Field
Equation in two dimensions have been proposed by Faye and
Faugeras [3] , Hutt and Rougier [4]. Here we propose a new
numerical approach, based on the use of an implicit second
order scheme and Gaussian quadrature.

Time Discretisation

We begin by rewriting equation (1) in the form

c
∂

∂t
V (x̄ , t) = I(x̄ , t)− V (x̄ , t) + κ(V (x̄ , t)) (2)

t ∈ [0,T ], x̄ ∈ Ω ⊂ R2,

where
κ(V (x̄ , t)) =

∫
Ω

K (|x̄ − ȳ |)S(V (ȳ , t))dȳ . (3)

Let ht be the stepsize in time. We define

ti = iht, i = 0, ...,M, T = htM.

Moreover, let Vi(x̄) = V (ti, x̄), ∀x̄ ∈ Ω, i = 0, ...,M. We
shall approximate the partial derivative in time by the
backward difference

∂

∂t
V (x̄ , ti) ≈

3Vi(x̄)− 4Vi−1(x̄) + Vi−2(x̄)

2ht
, (4)

which gives a discretisation error of the order O(h2
t ), for

sufficiently smooth V . By substituting (4) into (2) we obtain
the implicit scheme

c
3Ui − 4Ui−1 + Ui−2

2ht
= Ii − Ui + κ(Ui), i = 2, ...,M, (5)

where Ui approximates the solution of (2).

Space Discretisation

Assume that Ω is a rectangle: Ω = [−1,1]× [−1,1]. Introduce
a uniform grid of points (xi, xj), such that xi = −1 + ih,
i = 0, ...,n, where h is the discretisation step in space. In
each subinterval [xi, xi+1] we introduce k Gaussian nodes:
xi ,s = xi + h

2(1 + ξs), i = 0,1, . . .n − 1, where ξs are the roots
of the k -th degree Legendre polynomial, s = 1, ..., k . Using a
Gaussian quadrature formula to evaluate the integral, we
obtain the finite-dimensional approximation of κ(U). This
discretisation provides an accuracy order of O(h2k).

(κh(Uh))mu,lv =
∑n1

i=0
∑n2

j=0
∑k

s=1
∑k

t=1 w̃sw̃t

×K (‖(xmu, xlv)− (yis, yjt)‖2)S((Uh)is,jt).
(6)

After discretization we obtain the following system of
nonlinear equations:

Uh − λκh(Uh) = f h, (7)

where κh(Uh) is defined by (6) and (f h)is,jt = f (xis, xjt). To
solve (7), which is a system of N2 nonlinear equations, we
use the fixed point method

Efficiency and Rank Reduction

In order to improve the efficiency of the numerical method,
we apply the following technique, proposed in [6]. Assuming
that the function V is sufficiently smooth, we can
approximate it by an interpolating polynomial of a certain
degree. Our approach for reducing the matrices rank in our
method consists in replacing the solution Vi by its m-th
degree interpolating polynomial at the Chebyshev nodes in
Ω. If Vi is sufficiently smooth, this produces a very small
error and yields a very significant reduction of computational
cost. Actually, when computing the vector κh(Uh) (see
formula (6)) we have only to compute m2 << N2

components, one for each Chebyshev node.

Neural Field Equation with Delay

According to many authors (see for example [3]), realistic
models of neural fields must take into account that the
propagation speed of neuronal interactions is finite, which
leads to NFE with delays of the form

c
∂

∂t
V (x̄ , t) = I(x̄ , t)−V (x̄ , t)+

∫
Ω

K (|x̄−ȳ |)S(V (y , t−τ (x̄ , ȳ))dȳ ,

(8)
t ∈ [0,T ], x̄ ∈ Ω ⊂ R2, where τ (x̄ , ȳ) > 0 is a delay,
depending on the spatial variables. Assuming that the
electrical signals propagate with a constant speed v , uniform
in space, we set τ (x̄ , ȳ) = ‖x̄ − ȳ‖2/v . In the delay case, the
initial condition has the form
V (x̄ , t) = V0(x̄ , t), x̄ ∈ Ω, t ∈ [−τmax ,0], where
τmax = maxx̄ ,ȳ∈Ω τ (x̄ , ȳ). The numerical algorithm used to
solve equation (8) is essentially the same as described in the
previous sections. The main difference results from the fact
that when computing the integral on the right-hand side of (8)
at instant ti we must use the approximate solution at all
instants ti−k , k = 1, ..., kmax , where kmax is the integer part of
τmax/ht.

Numerical Example 1

In this example we consider a kind of neural field with
spatially localized oscillations which occur in excitable neural
media with short-range excitation and long-range inhibition
(mexican hat connectivity), in the case of a spatially localized
input. Such neural fields are known as breathers due to their
oscillatory behaviour and their dynamics are analysed in [2].
A similar example was described and computed in [4]. In this
case the connectivity kernel has the form:

K (r ) = 20
exp(−r )

18π
− 14

exp
(
−−r

3

)
18π

. (9)

The firing rate function has the the sigmoidal form

S(x) =
2

1 + exp(−10000(x − 0.005))

and the external input is given by

I(x̄ , t) = 5
exp(−x2/32− y2/32)

32π
.
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Figure: 1. Plots of the solution in the case v = 50 at different moments of
time: t = 0.08,0.16,0.24,0.32,0.40 .
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Figure: 2. Plots of the solution in the case v = 50 at different moments of
time: t = 0.48,0.56,0.64,0.72,0.80 .
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Figure: 3. Evolution of the solution maximum and minimum for the breather
with v = 50.

Numerical Example 2

In this example (described in [3]),the firing rate function has the
form

S(x) =
2

1 + e−µx , x ∈ R.

where µ ∈ R+, and the connectivity function is given by

K (r ) =
1√

2πξ2
1

exp

(
− r2

2πξ2
1

)
− A√

2πξ2
2

exp

(
− r2

2πξ2
2

)
,

where r = ‖x − y‖2 =
√

(x1 − y1)2 + (x2 − y2)2 and ξ1, ξ2,A ∈ R+.
We consider c = 1 and the external input I(x , t) is 0 . Our aim is
to investigate how the behaviour of the solutions depends on the
equation parameters. We set the initial condition V (0, x) ≡ 0.01
and check whether the solution tends or not to the trivial steady
state. In Fig. 4 (left and right) a 3D-plot and a contour plot of the
corresponding solution are displayed, respectively, for t = 3, in
the case A = 1, ξ1 = 0.4, ξ2 = 0.2, µ = 10, with no delay. The
computations were carried on the time interval [0,3] with
stepsize ht = 0.1. The parameters of the space discretisation are
m = 12,N = 48. Let x1 be a point close to the center of Ω and x2
be a point in the boundary of the domain. In Fig. 5 the graphs of
V (x1, t) (left) and V (x2, t) (right), as functions of time, are
displayed.The behaviour of the solution depends strongly on µ.
For µ = 10, for example, we see that after a certain time the
solution becomes decreasing, both in x1 and x2. But for µ = 15, if
t is sufficiently high, the solution increases in both points. This
suggests that for some value of µ, between 10 and 15, there
should be a bifurcation (the zero solution becomes unstable).
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Figure: 4.3D-plot and contour plot of the solution
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Figure: 5. Evolution of the solution at the middle (left) and at the boundary (right)
of the domain, for different values of µ.

Conclusion and Future Work

I A remarkable feature of our method is that we use use an implicit
second order scheme for the time discretisation, which improves
its accuracy and stability, when compared with the available
algorithms.

I To reduce the computational complexity of our method and
improve its efficiency we have used an interpolation procedure
which allows a drastic reduction of matrix dimensions, without a
significant loss of accuracy.

I Our numerical results confirm the theoretical predictions and are
in agreement with the expected behaviour of the solutions.

I As future work, we intend to analyse a stochastic version of the
neural field equations, to take into account the effect of noise.
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