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INTRODUCTION

In the first models of nerve excitation and propagation of electronic impulses,
nerves were considered as electric cables, through which electric current flows.
This is the case for the squid nerve, studied by Hodgkin and Huxley [3], but in
other animals (like frogs, for example) nerve axons have a different structure.
The nerve membrane is insulated by a substance called myelin (see Fig. 1).
According to Bell [1], myelination of an axon allows it to conduct neuroelectric
signals by exciting only a small portion of membrane exposed to the extracellular
medium at the nodes of Ranvier. This permits transmission at greatly reduced
energy expenditure and higher speeds than comparably sized unmyelinated axons.
In models of myelinated axons, the following hypothesis is assumed: the myelin
has such high resistance and low capacitance that it completely insulates the
membrane (pure saltatory condition).

Fig.1 Neuron and myelinated axon

With the purpose of obtaining a mathematical model of myelinated axons that
can be analysed and lead to numerical solutions, some theoretical assumptions
have been imposed: a) the axon is infinite in extent, b) the Ranvier nodes are
identical and uniformly spaced; c) the electric signals propagate with constant
speed. These assumptions make sense when considering the propagation of
signals not at the central, but at the peripheral nervous system.
The mathematical model for myelinated axons developed in [2], based on these
assumptions, leads to the discrete FitzHugh-Nagumo equations:

v ′(t) = v(t + τ) − 2v(t) + v(t − τ)+
bv(t)(v(t) − 1)(α− v(t)),

(1)

where v(t) represents the potential at a Ranvier node of the axon at the moment
t (in this case, the potential at the neighbouring nodes is denoted by v(t − τ)
and v(t + τ); the constant τ is the time that a signal takes to be transmitted
from a node to the neighbouring one (in other words, τ is inversely proportional
to the propagation speed of the signal). The constant b reflects the resistance
and the conductance in the nerve axon, while α is the threshold potential.

BOUNDARY CONDITIONS AND ASYMPTOTIC ANALYSIS

Equation (1) has two stable equilibrium points: v = 0 (resting potential) and v = 1 (fully activated potential). We are interested in a
solution of (1), increasing on ] −∞,∞[, which satisfies the boundary conditions

lim
t→−∞ v(t) = 0, lim

t→+∞ v(t) = 1. (2)
In order to guarantee uniqueness of solution, we add the condition

v(0) = 1/2. (3)
We are interested in a monotone solution of problem (1)-(3), that is, we assume that once the signal starts propagating, the potential will

increase at every node, tending to its maximal value (v(t) = 1). Such a solution exists for a certain value of τ, which must be computed.
An extensive analysis of this behaviour has been provided in [2]. Based on the Taylor expansion of f , as v tends to 0, we assume that v has
the form

v−(t) = ε−e
λ(t+L), (4)

where L is a sufficiently large parameter and ε− is an estimate for v−(−L). In this way we obtain the characteristic equation

λ+ 2 − f ′(0) − 2 cosh(λτ) = 0. (5)
This equation has two real roots; since we are interested in a function v− that tends to 0 at −∞, we choose the positive one, which we

denote by λ+.
The case where t →∞ can be handled in an analogous way. In this case, we assume that v has the form

v+(t) = 1 − ε+e
λ(t−L), (6)

where ε+ is an estimate of 1 − v+(L). In this way we obtain the characteristic equation

λ+ 2 − f ′(1) − 2 cosh(λτ) = 0 (7)
Here we choose the negative root of the characteristic equation, which we will denote by λ−, in order to have v+(t)→ 1, as t → +∞.

Now we have obtained two representations for the solution of our problem, (4) and (6), which we shall use to approximate the solution, for

t < −L and t > L, respectively, where L is a sufficiently large number. According to the form of equation (1), L must be a multiple of the

delay τ; in our computations we have used L = kτ, where 2 6 k 6 9, depending on the specific problem. These representations of the

solution are used in the computational methods to replace the boundary conditions (2).

COMPUTATIONAL METHODS

Finding an Initial Approximation A rough approximation of the solution of problem (1)-(3) may be obtained

by representing it in the form of a piecewise differentiable function v0. More precisely, we split the real axis into 6 subsets :

I0 = [−∞,−2τ], I1 = [−2τ,−τ], I2 = [−τ, 0], I3 = [0, τ], I4 = [τ, 2τ], I5 = [2τ,∞]. In I0 and I5, according to (4) and (6), the solution is

sought in the form of an exponential function. In each of the intervals I1, I2,I3 and I4, it takes the form of a quadratic or cubic polynomial.

The coefficients of these polynomials are computed from a system of 17 nonlinear equations, resulting from equation (1);from the

characteristic equations (5) and (7); from the continuity of v0 and its first two derivatives. The approximation v0 can then be used as an

initial guess for the application of more sophisticated numerical methods.

Finite Difference Method In order to approximate the solution we introduce on [−Kτ,Kτ] a uniform mesh with
stepsize h = τ/N . Let ti = −Kτ+ ih, i = 0, ..., 2KN be the nodes of this mesh. Here K is a sufficiently large integer so that ε1 = v(−Kτ)
is comparable with h2. As in [2], the first derivative is approximated by a 4-th order finite difference:

v ′(ti) ≈ Lh(v)i =
1
h

(
2
3(v(ti+1) − v(ti−1)) −

1
12(v(ti+2) − v(ti−2))

)
.

(8)

By using this approximation at each node ti we obtain 2KN + 1 equations of the form:

Lh(v)i = v(ti + τ) + v(ti − τ) − 2v(ti) + f (v(ti)) + rhi , (9)
where ‖r ih‖ = O(h4) . Note that for ti > (K − 1)τ and ti < −(K − 1)τ equation (9) involves the value of v at one or more points that do

not belong to the interval [−Kτ,Kτ]. In this case the boundary conditions (2) are applied, by considering the fact that v satisfies (4) or (6),
when v < −Kτ or v > Kτ, respectively. This gives a system of 2KN + 1 equations, which is then completed with the equation vKN = 1/2,
resulting from (3). Moreover, we have the characteristic equations (5) and (7), making a total of 2KN + 4 equations. Note that the number
of unknowns is also 2KN + 4: 2KN + 1 entries of the vector v = (v0, ..., v2KN) , λ−, λ+ and τ.

This nonlinear system is then solved by the Newton method.

NUMERICAL RESULTS

In Tables 1 and 2 numerical approximations for v ′(0), obtained by the two
methods considered, are given for a set of values of a and b. Even for a > 0.3 or
b > 21, the differences between the two values are not greater than 5 per cent.

Table 1. Estimates of v ′(0) for different values of b, with a = 0.05.

b v ′0(0) v ′1(0)
1 0.1224 0.112695
5 0.6045 0.58339

11 1.2821 1.2774
16 1.83603 1.84116
21 2.39174 2.40116
51 5.7504 5.76174

Table 2. Estimates of v ′(0) for different values of a, with b = 15.

a v ′0(0) v ′1(0)
0 1.9171 1.9181

0.05 1.72515 1.72889
0.1 1.53326 1.53918

0.15 1.34141 1.34891
0.2 1.1496 1.1580

0.25 0.957907 0.96647
0.3 0.76624 0.774237

0.35 0.57463 0.58131

Note that, for all the approximations, the largest errors occur close to t = 0,
where the solution changes faster. In this region the error can reach about 10 per
cent of the solution value.
We remark that by differentiating v0 we obtain a reasonable approximations of v ′.
The derivatives of v0 and v1 are plotted in Fig. 2.
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Fig. 2: Approximation of v ′(t): by the finite difference method (thick line); using v0

(thin line).
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Fig. 3: Graphic of the numerical solution v(t) obtained by the finite difference method,
with N = 64, in the case a = 0.1, b = 15.

CONCLUSIONS AND FUTURE WORK

I The finite difference method has fourth order of convergence, as it could be expected.
Highly accurate results can be obtained, within a reasonable computational effort,
when the parameters satisfy 0 6 a < 0.3 and 5 6 b 6 51.

I Another simple method method was discussed, based on piecewise polynomial
approximation. Although its accuracy is reduced, it can provide good initial
approximations for the finite difference method.

I The numerical results obtained in our paper confirm the main features of the
mathematical model considered. In particular, it was observed that the propagation
speed (1/τ) increases as the threshold potential a decreases and as the intensity of
the ionic currents (represented by b) increases.

I The typical S-shaped form of the solution graphic (illustrated by Fig. 3) means that
the potential value changes slowly when it is close to its resting or fully activated
value; and changes fast, when it is close to the average value. As a consequence, the
solution derivative takes its highest values when t is close to 0, and these values are
particularly high when a is small and b is large (as it follows from Tables 1 and 2).

I In conclusion, we can see that the results of the simulations match the observed
behaviour from experiments, which means that predictions can be made using the
simulations through the numerical schemes and these can be reasonably reliable and
reduce experimental costs and delays.

I The proposed numerical techniques can be easily extended to more general forms of
the Fitzhugh-Nagumo equations, in particular, systems of differential-difference
equations describing other physical variables than the membrane potential
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