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1. February 2015The purpose of the present work is to describe a new efficient numerical method for Neural Field Equations (NFE),
targeted directly for the application in a Computational Neuroscience and Cognitive Robotics context. We consider
the NFE in the form

c
∂

∂t
V (x̄, t) = I(x̄, t)− V (x̄, t) +

∫
Ω

K(|x̄− ȳ|)S(V (y, t− τ(x̄, ȳ))dȳ, (1)

t ∈ [0, T ], x̄ ∈ Ω ⊂ R2,

where the unknown V (x̄, t) is a continuous function V : Ω× [0, T ]→ R, I, K and S are given functions; c is a constant.
We search for a solution V of this equation which satisfies the initial condition

V (x̄, t) = V0(x̄, t), x̄ ∈ Ω, t ∈ [−τmax, 0], (2)

where τmax = maxx̄,ȳ∈Ω τ(x̄, ȳ). Here τ is a delay depending on x̄ and ȳ (as a particular case, we also consider the
case τ ≡ 0).

Equation (1) without delay was introduced first by Wilson and Cowan [5], and then by Amari [1], to describe exci-
tatory and inhibitory interactions in populations of neurons. V (x̄, t) represents the post-synaptic neuronal membrane
potential at instant t and position x̄. The function I represents external sources of excitation and S describes the
dependence between the firing rate of the neurons and their membrane potential (typically, it is a function of sigmoidal
type). The kernel function K(|x̄− ȳ|) gives the connectivity between neurons in positions x̄ and ȳ. The delay τ(x̄, ȳ)
takes into consideration the time spent by an electrical signal to travel between positions x̄ and ȳ.

We introduce an implicit scheme with second order discretization in time. The scheme is shown to be stable under
mild restrictions on the stepsize.

The system of nonlinear equations arising at each time step is solved by the fixed point method, which converges
fast, for a sufficiently small stepsize.

In the two-dimensional case, the required computational effort to solve equations (1) grows very fast as the dis-
cretization stepsize in space is reduced, and therefore special attention has to be paid to the creation of effective
methods. In our work, we use Gaussian quadratures for the integration in space, and combine this with low-rank
methods, as those discussed in [6], when the kernel is approximated by polynomial interpolation. This enables a
significant reduction of the dimensions of the matrices, without affecting the final accuracy of the method.

Comparing with other computational methods, available in the literature (see [3] and [4]) , this algorithm has the
advantage that it uses an implicit method in time, which allows using larger time stepsizes, while preserving second
order convergence. This reduces the computational effort when considering large intervals in time. The algorithm was
extensively tested: first with examples where the exact solution is known (to test the convergence and accuracy); then
with real world examples from Neuroscience, like those considered in [3] and [4]. In a near future, we intend to apply
it to problems of Cognitive Robotics, where the neural field dynamics also play an important role (see [2]).
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