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In this paper we are concerned with the numerical solution of the discrete FitzHugh-Nagumo equation. This

equation describes the propagation of impulses across a myelinated axon. We analyse the asymptotic be-
haviour of the solutions of the considered equation and numerical approximations are computed by a new
algorithm, based on a finite difference scheme and on the Newton method. The efficiency of the method is
discussed and its performance is illustrated by a set of numerical examples.

1 INTRODUCTION

In the present work we analyse a functional-
differential equation, sometimes known as the dis-
crete FitzHugh-Nagumo equation, arising in nerve
conduction theory. The history of this equation began
in 1952, when A. Hodgkin and A. Huxley (Hodgkin
and Huxley, 1952) introduced a mathematical model
that describes the excitation and flow of electrical cur-
rent through the surface of a giant nerve fibre from a
squid. This investigation was continued in the works
of FitzHugh (FitzHugh, 1960), (FitzHugh, 1962) and
Nagumo (Nagumo et al., 1962).

During its evolution the FitzHugh-Nagumo equa-
tion has taken different forms. The case of myelinated
axons deserves special attention.

In a myelinated nerve axon the myelin completely
insulates the membrane, so that the potential change
jumps from node to node (pure saltatory condition).

According to Bell (Bell, 1984) two basic proper-
ties of the myelinated axon are the following:

e it possesses threshold behaviour; this means that
there are conditions which guarantee either the de-
cay of a solution (subthreshold response) or non-
decay of a solution (suprathreshold response);

e it is able to conduct pulses.

On the other hand, with the purpose of obtaining
a mathematical model that can be analysed and lead
to numerical solutions, some theoretical assumptions
have been imposed: a) the axon is infinite in extent, b)

the Ranvier nodes are identical and uniformly spaced;
c) the electric signals propagate with constant speed.
These assumptions make sense when considering the
propagation of signals not at the central, but at the
peripheral nervous system.

The mathematical model for myelinated axons de-
velopped in (Chi et al., 1986), based on these assump-
tions, leads to the discrete FitzHugh-Nagumo equa-
tions:

V() =v(t+1)—2v() +v(t—1)+ )
bv(t)(v(1) = 1) (o= (1)),

where v(¢) represents the potential at a Ranvier node
of the axon at the moment ¢ (in this case, the poten-
tial at the neighbouring nodes is denoted by v(¢ — 1)
and v(r + 7); the constant T is the time that a signal
takes to be transmitted from a node to the neighbour-
ing one (in other words, T is inversely proportional
to the propagation speed of the signal). The constant
b reflects the resistance and the conductance in the
nerve axon, while a is the threshold potential.

From a mathematical point of view, an impor-
tant feature of equation (1) is that it contains both
negative and positive deviations of the argument (de-
layed and advanced terms); this is the reason why it
is called a mixed type functional differential equation
(or an advance-delay-differential equation). Impor-
tant contributions to the analysis of this type of equa-
tion have been introduced in the literature in the last
two decades of the past century, by Rustichini (Rusti-
chini, 1989a), (Rustichini, 1989b), Mallet-Paret and



Verduyn-Lunel (Mallet-Paret, 1999), (Mallet-Paret
and Verduyn-Lunel, 2003). More recently, Hupkes
and Verduyn-Lunel studied the behaviour of solu-
tions to nonlinear autonomous MTFDEs in the neigh-
bourhood of an equilibrium solution (Hupkes and
Verduyn-Lunel, 2007). Based on existing insights
into the qualitative behaviour of MTFDEs, the au-
thors of (Ford and Lumb, 2009) developed a new
approach to the analysis of these equations in the
autonomous case. More precisely, they analysed
MTFDEs as boundary value problems, that is, for a
linear MTFDE they considered the problem of find-
ing a differentiable solution on a certain real inter-
val [—1,k], k € N, given its values on the intervals
[-1,0] and (k — 1,k]. This approach was developed
further in (Teodoro et al., 2009), where new numer-
ical methods were proposed for the solution of such
boundary value problems. In (Lima et al., 2010) and
(Ford et al., 2010), these methods were extended to
the non-autonomous case and new results were ob-
tained about their numerical analysis. Once efficient
computational methods had been created for the nu-
merical treatment of linear MTFDEs, the next step
was to extend these methods to the case of nonlin-
ear ones, which includes equations of the form (1).
This was done by Abell et al. (Abell et al., 2005)
and then by the authors of the present paper in (Lima
et al., 2013) and (Ford et al., 2014). The outline of
this paper is as follows. In section 2 we investigate
the asymptotic behaviour of solutions at infinity and,
based on this, we replace the boundary conditions at
infinity by equivalent conditions on a bounded inter-
val. In section 3 we describe some computational
methods used for numerical approximation. In sec-
tion 4 we provide some numerical results and we fin-
ish with some conclusions in section 5.

2 BOUNDARY CONDITIONS AND
ASYMPTOTIC ANALYSIS

Let us rewrite equation (1) in the following form:
V()= fOo@) +v(E—1) = 2v(t) +v(t+71), (2)
where
Sy =bv(v—o)(l—v); 3)
this function is the nonlinear part of (2) and is called
the current voltage function. Due to the form of f,
given by (3), equation (2) has two stable equilibrium
points: v = 0 (resting potential) and v = 1 (fully ac-
tivated potential). Therefore, we are interested in a
solution of (2), increasing on ] — oo, o[, which satis-
fies the boundary conditions
lim v(r) = 1. 4)

tll)r_nmv(t) =90 t—+oo

These conditions will be satisfied by the potential at
any node. In order to guarantee uniqueness of solu-
tion, we add the condition

v(0) =1/2. 5)

We are interested in a monotone solution of problem
(2)-(5), that is, we assume that once the signal starts
propagating, the potential will increase at every node,
tending to its maximal value (v(¢) = 1). Such a so-
lution exists for a certain value of T, which must be
computed.

Since in the next section we describe computa-
tional methods for the numerical solution of the given
problem, it is desirable to study the asymptotic be-
haviour of the required solution at infinity, so that we
can truncate the domain where this solution needs to
be computed.

An extensive analysis of this behaviour has been
provided in (Chi et al., 1986), so here we will just
recall the main results from that paper.

Let us first consider the case where t — —co. Ac-
cording to the conditions (4), v(—ee) = 0, so that in or-
der to linearise equation (2) about this point, we first
use the Taylor expansion for the function f:

f0)=FO) +vf (0)+ 51" (0) +o(?) = o
vf'(0) + 5 f"(0) +0(?),

where f is given by (3).

As usual, in order to obtain a characteristic equa-
tion for (2) at —oo we replace f by the main term of
its Taylor expansion and assume that v has the form

v_(t) =e_eM+D) (7

where L is a sufficiently large parameter and €_ is
an estimate for v_(—L). In this way we obtain the
equation

A-+2— f'(0) —2cosh(At) = 0. (8)

This equation has two real roots; since we are inter-
ested in a function v_ that tends to 0 at —oo, we choose
the positive one, which we denote by A..

The case where t — oo can be handled in an anal-
ogous way. In this case, we have the following Taylor
expansion for f:

(v—1)?

L p () +o((v—17)
©)

Moreover, since v(e0) = 1, as f — oo, we assume that
v has the form

fO) =fM+E-1f 1)+

vi(t)=1—g. 0, (10)

where €, is an estimate of 1 — v (L). In this way we
obtain the characteristic equation

A+2— f'(1) — 2cosh(At) = 0 (11)



In this case we choose the negative root of the char-
acteristic equation, which we will denote by A_, in
order to have v; (1) — 1, as t — 0.

Now we have obtained two representations for the
solution of our problem, (7) and (10), which we shall
use to approximate the solution, fort < —Land ¢ > L,
respectively, where L is a sufficiently large number.
According to the form of equation (2), L must be a
multiple of the delay T; in our computations we have
used L = kT, where 2 < k <9, depending on the spe-
cific problem (as discussed in Sec. 4).

These representations of the solution are used in
the computational methods to replace the boundary
conditions (4). In the next section we will show how
this can be achieved.

3 COMPUTATIONAL METHODS

In this section we will describe and compare some
computational methods that can be applied to obtain
approximate solutions of the problem (2), (4), (5).
Since the problem is nonlinear, some of the consid-
ered methods require initial approximations, which
must be sufficiently close to the true solution, to
guarantee the convergence of the iterative process.
Thus we begin by presenting some preliminary re-
sults, which can help us to build a rough approxima-
tion of the solution.

3.1 Finding an Initial Approximation

We now present an approach that results from ap-
proximating the solution by a piecewise differentiable
function. In this case, we search for an approximate
solution of the considered problem in the form

g M) f < 0
ao+a1t+a2t2, if —21<t<—1,
volt) = %Tb1t+b2t2jb3t3,3 .if —1<t<0;
5 teitt+et +c3t’ if O<t<m,
do+dit + dat?, if 1<t<2t;
1 —g (720, if t>2m
(12)

From the form of vy if follows that this function
satisfies the boundary conditions (4) and (5). We
easily see that vy depends on 17 parameters: T.£_,
£+,7\._,7\.+, ao,al,az,bl,bg,b3,cl,02,03,d0,d1, dz. These
coefficients are computed from a system of 17 equa-
tions, which include

e the two characteristic equations (8) and (11);

e two equations that nsure the continuity of vy and
vy at —21;

e two equations that ensure the continuity of vy and
/ .
vy at —T;

e two equations that ensures the continuity of v{, and
! .
vy at 0;

e two equations that ensure the continuity of v and
/ .
Vg at T;

e two equations that ensure the continuity of vy and
v, at 27;

e five equations that ensure that vy satisfies (2) at
t=-21t=—-1,t=0,f =tand ¢t =21.

The nonlinear system of equations can be solved by
the Newton method. Note that in this case the num-
ber of equations in the system is not so high as when
we apply the finite difference method, and therefore
it is not so difficult to find an initial approximation
for the Newton method. For example, if we know
the solution for a cetain set of values a,b, we can use
this soution as initial approximation to solve the sys-
tem and find the solution for close values of a,b. The
estimates for A_,A; and T from above can be used
as initial approximations. As follows easily from the
construction, vo € C!(IR). Some examples of applica-
tion of this approximation will also be given in sec-
tion 4. As we shall see, though these results have rel-
ative errors which may attain 0.1, the corresponding
approximate solutions have the correct qualitative be-
haviour and this explains that they provide good ini-
tial approximations for the more refined method we
describe in the next subsection.

3.2 A Finite Difference Approach

In this section we describe a finite difference scheme
for the solution of problem (2), (4), (5). This scheme
has some common features with the one described
in (Chi et al., 1986), but it has the advantage that it
can be easily solved by the Newton iterative method,
without using the continuation algorithm. As an ini-
tial approximation for the Newton method we have
used the function vg, defined by (12).

In order to approximate the solution we introduce
on [—K7,K7| a uniform mesh with stepsize 2 = t/N.
Lett;j=—Kt+ih,i=0,...,2KN be the nodes of this
mesh. Here K is a sufficiently large integer so that
€; = v(—K7) is comparable with 4? (the reason for
this choice will be explained below). As in (Chi et al.,
1986), the first derivative is approximated by a 4-th
order finite difference:

V() ~ Ly
% (%(V(ti-&-l) — V([i—l)) !

—~

V)i =

(v(ti12) = v(1i2))) -
(13)

m"—



By using this approximation at each node #; we obtain
2KN + 1 equations of the form:

Ly(v)i = v(ti +7) +v(1i— 1) = 2v(1:) + f(v(8:)) + 17,

(14)
where ||rf || = O(h*) . Note that for ; > (K — 1)t and
f; < —(K — 1)t equation (14) involves the value of v at
one or more points that do not belong to the interval
[-KT,K7]. In this case the boundary conditions (4)
are applied, by considering the fact that v satisfies (7)
or (10), when v < —K7T or v > K7, respectively. In this
way, we write

V(—KT—x) = v(—KT)e M, (x>0), (15
1—v(Kt+x)=(1—v(KT))e ™™,  (x>0).
(16)

Finally, by ignoring r/ in (14), we obtain (2K —2)N
finite difference equations of the form:

Ly(v)i = vign +vien — 2vi+ f(vi), )

i=N+1,..,2K—1)N+1.

Here as usual v; represents the approximate value
of v(t;). For 0<i<N+1and 2K—1)N+1<
i <2KN + 1, we have modifications of equation (17)
which result from applying formulae (15) or (16), re-
spectively. This gives a system of 2KN + 1 equations,
which is then completed with the equation vgy = 1/2,
resulting from (5). Moreover, we have the char-
acteristic equations (8) and (11), making a total of
2KN + 4 equations. Note that the number of un-
knowns is also 2KN 4-4: 2KN + 1 entries of the vector
v=(vg,...,vakn) » A—, A4 and T.

This nonlinear system is then solved by the New-
ton method. The Jacobian matrix for the Newton
method has at most 8 nonzero entries at each row:
7 corresponding to the unknowns v;_y, vi_2, Vi_1, V;,
Vitls Vi+2, Vi+N; one corresponding to T.

Although the condition number of the Jacobian
matrices increases with the the number of gridpoints
in the scheme (as could be expected), it is remarkable
that even for the finest meshes it doesn’t become very
large. Even in the case of n = 28 and K =9, the condi-
tion numbers do not get higher than 10°. As we shall
see below, this enables us to obtain accurate results,
within a large range of values of a and b.

It is well known that the Newton method is very
sensitive to the choice of initial approximation, espe-
cially in the case of large dimensional systems. In our
case, as stated above, we have overcome this problem
by using as initial approximation to v the function vy,
described in the previous section, and the correspond-
ing approximations to A_, A, and 7.

Table 1: Estimates of T, A_ and A for different values of
a, with b = 15.

a To T A Ar

0 |[0.3101 | 0.38029 | —6.22752 | 5.1007
0.05 | 0.3461 | 0.43511 | —5.44866 | 4.5111
0.1 10.3910 | 0.5056 | —4.6909 | 3.9297
0.15 | 0.4485 | 0.5993 | —3.95523 | 3.3586
0.2 |0.5250 | 0.73001 | —3.32594 | 2.6073
0.25 | 0.6318 | 0.92525 | —2.55197 | 2.2691
0.3 10.7916 | 1.2515 | —1.88069 | 1.66568
0.35 | 1.0575 | 1.9371 —1.2111 | 1.08772

Table 2: Estimates of T, A_ and A, for different values of
b, with a = 0.05.

b To T1 A 7»+

1 | 1.652 | 1.6250 | —0.4333 | 0.4096
5 10.6639 | 0.7229 | —2.0677 | 1.8678
11 ] 0.4325 | 0.5008 | —4.1869 | 3.5574
16 | 0.3296 | 0.4227 | —5.7499 | 4.7354
21 1 0.2656 | 0.3744 | —7.1795 | 5.7840
51| 0.1216 | 0.1200 | —14.0692 | 10.6338

4 NUMERICAL RESULTS

We first compare the estimates of T, A_, and A,
obtained by the two methods described in Sec. 3. In
both cases we consider the problem (2), (4), (5). We
denote by Ty the estimate of T obtained when using the
approximating function vg, defined by (12); t; stands
for the value obtained by the finite difference method
with N = 64. Table 1 contains the values of Ty and 1,
for b = 15, with different values of a. The values of
To and Ty, obtained in the case a = 0.05, for different
values of b, are displayed in Table 2.

The errors of Typ can be obtained by comparing
these estimates with T, which can be considered as
the most accurate value for this purpose. Notice that
the presented values of T; coincide with those ob-
tained in (Chi et al., 1986), within the given precision.

The approximate values of A_ and A obtained by
the finite difference method, with N = 64, are given
in the two last columns of the mentioned tables.

All the estimates preserve the main characteristics
of T, as a function of @ and b: they increase with a and
decrease as b increases. This behaviour agrees with
the physical meaning of the variables. Since a is the
threshold potential, the propagation speed is supposed
to decrease as a increases, and therefore we observe T
increasing. On the other hand, increasing b means a
higher potential at the nodes and this leads to a greater
propagation speed and the decreasing of .



Table 3: Estimates of v/(0) for different values of b, with
a=0.05

b | %0 | v(9)

I [ 0.1224 [ 0.112695
5 | 0.6045 | 0.58339
11| 1.2821 | 1.2774
16 | 1.83603 | 1.84116
21 | 2.39174 | 2.40116
51| 57504 | 5.76174

It is worth remarking that for values of a, greater
than 0.3 large discrepancies between the different es-
timates arise. This is connected with the numerical
instability of the different methods which is observed
for the values of a we considered. In particular, in
the case a > 0.3, the value T obtained by the finite
difference method seems to have a larger error than
the other approximations (and this does not arise else-
where). The explanation for this may be the instabil-
ity which is also visible in the graphs of Figures 4 and
5. Note that according to the available theoretical re-
sults, existence of a solution can be proved only for
a < 0.5. The accuracy of the results is also reduced
for values of b, greater than 21.

According to Keener (Keener, 1987), the discrete
Nagumo equation has a “propagation failure” for suf-
ficiently small coupling coefficient. When the equa-
tion is written in the form (2), a small coupling cor-
responds to high values of b. Thus when b is large
the problem (2),(4),(5) becomes unsolvable. This ex-
plains why for high values of b estimates obtained by
different methods differ signifficantly.

In Tables 3 and 4 numerical approximations for
V/(0), obtained by the two considered methods, are
given for a set of values of @ and b. In agreement
with the notation used in Tables 1 and 2, we denote
by v;(0) (resp. v{(0)) the estimate obtained by the
method, corresponding to To (resp. 7). In this case
the differences between the estimates obtained by dif-
ferent methods are not so large as in the case of the
evaluation of T. Even for a > 0.3 or b > 21, these dif-
ferences are not greater than 5 per cent. This suggests
that the gradient of the solution at the origin is not so
sensitive to computational errors as the value of 7.

In Figure 1 the absolute error of the approximate
solution vy is plotted, in the case a = 0.05, b = 15; by
absolute error of vy, we mean the difference |vo —vi|,
where vy is the finite difference approximation of the
solution, obtained with N = 256. Note that, for all the
approximations, the largest errors occur close to t =0,
where the solution changes faster. In this region the
error can reach about 10 per cent of the solution value.

We remark that by differentiating vy we obtain a

Table 4: Estimates of v/(0) for different values of a, with
b=15.

a v,(0) v (0)
0 1.9171 1.9181
0.05 | 1.72515 | 1.72889
0.1 | 1.53326 | 1.53918
0.15 | 1.34141 1.34891
0.2 1.1496 1.1580
0.25 | 0.957907 | 0.96647
0.3 | 0.76624 | 0.774237
0.35 | 0.57463 | 0.58131

reasonable approximations of v/. The derivatives of
vo and v are plotted in Figure 2.
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Figure 1: Absolute error of vy with respect to the finite dif-
ference approximation.

I
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Figure 2: Approximation of the solution derivative: by the
finite difference method (thick line); using vy (thin line).

We will now focus on the numerical results for
the problem (2)-(5), obtained by the finite difference
method. We have tested numerically the convergence
order of the method. When the exact solution is not
known, an estimate of the convergence order can be
obtained from three finite difference solutions, ob-
tained with different stepsizes: vopu,vp, vy /25 where
h > 0. The estimate of the convergence order is then
given by
o vl
p=logy ——,

Vi =vipall



Table 5: Estimates of convergence order in the case a =
0.05,b =5, with K =9.

h | llvi—vanll | P
/2% | 1.51E-5 | 6.22
t/25 | 2.03E—7 |3.981
1/2° | 1.29E —8 | 3.994
t/27 | 0.07E —10 | 3.998
t/28 | 5.05E — 11

Table 6: Estimates of convergence order in the case a =
0.05,b =15, with K = 6.

h | vi—vall | p
/2% 0015 [7.42
t/2° | 8.80E -5 | 5.11
1/20 | 2.55E—6 | 3.97
t/27 | 1.63E—7 | 3.99
t/28 | 1.02E -8

where the maximum norm is used. The numerical re-
sults displayed in Tables 5,6,7 suggest that the method
has 4-th order of convergence, as could be expected.
The value of K, which determines the interval length,
depends on the value of € = max(e_, €, ) (see (7,10)).
More precisely, we choose such value of K that €’
has the same order as hfm»n, where h,,;, is the minimal
stepsize. In this way,the error resulting from ignor-
ing the remainder in the Taylor’s expansions (6,9) has
the same order as the discretization error of the finite
difference scheme.

In order to illustrate the application of this crite-
rion, in Table 8 we display the values of €, for the
three considered examples, with different values of
K. Note, that when the chosen value of K is not large
enough, there is a drop in the estimated convergence
order, which is due to the error resulting from the trun-
cation of the interval. On the other hand, the use of
too large a value of K makes the method less efficient,
requiring the use of large matrices, without improving
the accuracy.

The large differences between the estimates of T,
obtained by the two methods, for certain values of a
and b, suggest that some of the computational meth-

Table 7: Estimates of convergence order in the case a =
0.05,6 =21, withK =6

h | lvi—vall | P
t/2* | 0.00041 [6.518
t/2° | 448E—6 | 3.973
t/20 | 2.85E —17 | 3.992
t/27 | 1.79E —8 | 3.998
t/28 | 1.1I2E—9

Table 8: Values of €, for different K, in the three examples
considered above. The value corresponding to the chosen K

is written in boldface.

K b=5 b=15 b=21
31129E—-2|180E—-3 |2.50E—-3
6 |230E—4|498E—-6 | 191E—6
9139E—-6 | 1.37E—8 | 2.63E—-9
10+
08
0.6+
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Figure 3: Graph of the numerical solution obtained by the fi-
nite difference method with N = 64, in the case a =0.1,b =
15. Here the numerical solution preserves the smoothness
of the true solution.

ods may become unstable for such values, in particu-
lar, when a is close to 0.5 or b is large. This is true, in
particular, in the case of the finite difference method,
as is shown by the graphs of the approximate solu-
tions plotted in Figures 3,4, and 5.

As mentioned in subsection 3.2, the finite differ-
ence method developed in this work was inspired by
the method described in (Chi et al., 1986) . However,
the algorithm described in that work relies on the con-
tinuation method, that is, a numerical solution is first
computed for a test problem and then, by a contin-
uous change of a parameter, a sequence of auxiliary
equations is solved, until reaching the target problem.
Possibly following on from this, the results reported
in (Chi et al., 1986) are limited to the cases where
a <0.2 and b <20. In our numerical experiments, the
initial approximations for the Newton method were
obtained by the numerical method described in sub-
section 3.1; this enabled us to solve the problem for a
wider range of values of a and b. Moreover, our algo-
rithm worked with stepsizes as small as 0.001, while
in the case of the numerical results reported in (Chi
et al., 1986) the typical stepsize was h = 0.05.

S CONCLUSIONS

We have applied two computational approaches
to the solution of the problem (2)-(4), analysed and
compared the numerical results. The more accurate
results are obtained by the finite difference method,
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Figure 4: Graph of numerical solutions obtained by the
finite difference method with N = 64, in the cases a =
0.3,b = 15. Here the effect of numerical instability is visi-
ble .
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Figure 5: Graph of numerical solutions obtained by the
finite difference method with N = 64, in the cases a =
0.35,b = 15 (right side). Here the effect of numerical in-
stability is even mor evident than in the previous figure.

described in Sec. 3.2. The numerical results sug-
gest that this method has fourth order of convergence,
as it could be expected. Highly acurate results can
be obtained, within a reasonable computational ef-
fort, when the parameters satisfy 0 < a < 0.3 and
5 <b < 51. However, for other values of the parame-
ters computational instability arises.

Another approximation method was discussed in
Sec. 3.1 . The computational effort required by this
method is very small and the algorithms are very sim-
ple. Although its accuracy is reduced, it can provide
good initial approximations for the finite difference
method.

The numerical results obtained in our paper con-
firm the main features of the considerd mathematical
model. In particular, it was observed that the propa-
gation speed (1/7) increases as the threshold poten-
tial a decreases (see table 1) and as the intensity of
the ionic currents (represented by b) increases (see
table 2). The typical S-shaped form of the solution
graphic (illustrated by fig. 7, for example) means that
the potential value changes slowly when it is close to
its resting or fully activated value; and changes fast,
when it is close to the average value. As a conse-
quence, the solution derivative takes its highest values
when ¢ is close to 0, and these values are particularly

high when a is small and b is large (as it follows from
tables 3 and 4). Finally, the fact that the method fails
to produce an acceptable solution approximation for
a > 0.3 is not surprising, since it is known that prop-
agation failures may occur for high values of a.
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