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Abstract—Neural Field Equations (NFEs) are integro-
differential equations which describe the electric potential field
and the interaction between neurons, in certain regions of the
brain. They are becoming increasingly important for the inter-
pretation of EEG, fMRi and optical imaging data. In the present
article we describe a new efficient algorithm for the numerical
simulation of two-dimensional neural fields with delays. The main
features of this method are discussed and its performance is
illustrated by some numerical examples.

I. INTRODUCTION

The main idea of the neural field models in Mathematical
Neuroscience is to treat the cortical space as continuous. Since
the number of neurons and synapses is extremely high even in
a small piece of cortex, this idea appears naturally as a first
approximation to model the neural activity. As remarked by
Coombes [3], “neural fields provide a framework for unifying
data from dfferent imaging modalities”, which maybe explains
their increasing role in research. This approach was first
developped in 70’s by Wilson and Cohen [8], Amari [1], and
Nunez [7]; it leads to integro-differential equations (or systems
of them), which may be written in the form:

c
∂

∂t
V (x̄, t) = I(x̄, t)−V (x̄, t) +

∫
Ω

K(|x̄− ȳ|)S(V (ȳ, t))dȳ,

(1)
t ∈ [0, T ], x̄ ∈ Ω ⊂ R2,

where the unknown V (x̄, t) is a continuous function V :
Ω × [0, T ] → R, I , K and S are given functions; c is a
constant. In this article, by |x̄ − ȳ| we mean ‖x̄ − ȳ‖2. The
physical meaning of V (x̄, t) is the membrane potential in point
x at time t. The function I represents external sources of
excitation and S describes the dependence between the firing
rate of the neurons and their membrane potential. It can be
either a smooth function (typically of sigmoidal type) or a
Heaviside function. The kernel function K(|x̄− ȳ|) gives the
connectivity between neurons in positions x̄ and ȳ. By writing
the arguments of the function in this form we mean that we
consider the connectivity homogeneous, that is, it depends only
on the distance between neurons, and not on their specific
location. We search for a solution V of (1) which satisfies the
initial condition

V (x̄, 0) = V0(x̄), x̄ ∈ Ω. (2)

According to many authors (see for example [4]), realistic
models of neural fields must take into account that the propa-
gation speed of neuronal interactions is finite, which leads to

NFE with delays of the form

c
∂

∂t
V (x̄, t) = I(x̄, t)−V (x̄, t)+

∫
Ω

K(|x̄−ȳ|)S(V (y, t−τ(x̄, ȳ))dȳ,

(3)
t ∈ [0, T ], x̄ ∈ Ω ⊂ R2,

where τ(x̄, ȳ) > 0 is a delay, depending on the spatial
variables. In the last case, the initial condition has the form

V (x̄, t) = V0(x̄, t), x̄ ∈ Ω, t ∈ [−τmax, 0], (4)

where τmax = maxx̄,ȳ∈Ω τ(x̄, ȳ).

In the two-dimensional case, the required computational
effort to solve equations (1) and (3) grows very fast as the
discretization step is reduced, and therefore special attention
has to be paid to the creation of effective methods. This can be
achieved by means of low-rank methods, as those discussed in
[9], when the kernel is approximated by polynomial interpola-
tion, which enables a significant reduction of the dimensions
of the matrices. In [2], the authors use an iterative method to
solve linear systems of equations which takes into account the
special form of the matrix to introduce parallel computation.

Concerning equation (3), besides the existence and stability
of solution, numerical approximations were obtained in [4].
The computational method applies quadrature rule in space to
reduce the problem to a system of delay differential equations,
which is then solved by a standard algorithm for this kind of
equations. A more efficient approach was recently proposed in
[5], where the authors introduce a new approach to deal with
the convolution kernel of the equation and use Fast Fourier
Transforms to reduce significantly the computational effort
required by numerical integration.

II. NUMERICAL METHOD FOR THE TWO-DIMENSIONAL
EQUATION WITHOUT DELAY

A. Time Discretization

We begin by rewriting equation (1) in the form

c
∂

∂t
V (x̄, t) = I(x̄, t)− V (x̄, t) + κ(V (x̄, t)) (5)

t ∈ [0, T ], x̄ ∈ Ω ⊂ R2,

where κ denotes the nonlinear integral operator defined by

κ(V (x̄, t)) =

∫
Ω

K(|x̄− ȳ|)S(V (ȳ, t))dȳ. (6)



We shall first deal with the time discretization in equation (5),
therefore we introduce the stepsize ht > 0 and define

ti = iht, i = 0, ...,M, T = htM.

Moreover, let

Vi(x̄) = V (ti, x̄), ∀x ∈ Ω, i = 0, ...,M.

We shall approximate the partial derivative in time by the
backward difference

∂

∂t
V (x̄, ti) ≈

3Vi(x̄)− 4Vi−1(x̄) + Vi−2(x̄)

2ht
, (7)

which gives a discretization error of the order O(h2
t ), for

sufficiently smooth V . By substituting (7) into (5) we obtain
the implicit scheme

c
3Ui − 4Ui−1 + Ui−2

2ht
= Ii−Ui+κ(Ui), i = 2, ...,M, (8)

where Ui approximates the solution of (5).

To start this scheme we need to know U0, which is defined
by the initial condition V0, and U1, which can be obtained by
a one-step method, for example, the explicit Euler method. It
can be easily shown that his scheme is zero-stable, since its
characteristic roots are not greater than one ant the root one
is not multiple.

Our next step is to investigate under which conditions
equation (8) has a unique solution, so that each step of the
iterative process is well defined. With this purpose we write
this equation in the form

Ui(x̄)− 1

1 + 3c
2ht

κ(Ui) = fi(x̄), x̄ ∈ Ω (9)

where

fi(x̄) =

(
1 +

2ht
3c

)−1(
Ii +

c

ht
2Ui−1(x̄)− c

2ht
Ui−2(x̄)

)
,

(10)
x̄ ∈ Ω. In order to prove the solvability of (9), (10), we define
the iterative process:

U
(ν)
i (x̄) = λκ

(
U

(ν−1)
i (x̄)

)
+fi(x̄) = G

(
U

(ν−1)
i (x̄)

)
, (11)

x̄ ∈ Ω, ν = 1, 2, ..., where

λ =
1

1 + 3c
2ht

=
2ht

2ht + 3c
. (12)

It can be shown that for a sufficiently small step size ht the
function G is contractive in a certain closed set X ⊂ F , such
that G(X) ⊂ X , therefore, by the Banach fixed point theorem
equation (9) has a unique solution in X and the sequence U (n)

i ,
defined by (11), converges to this solution, for any initial guess
U

(0)
i ∈ X . In our case, the solution is by construction the

iterate Ui, so it should be close to Ui−1 and Ui−2. Therefore
it makes sense to assume that X is a certain set containing
Ui−1 and Ui−2 and to choose U (0)

i = Ui−1.

The above construction not only shows that the equation
(9) has a unique solution in a certain set X , but it also suggests
that the iterative process (11), starting with U (0)

i = Ui−1, can
be effectively used to approximate this solution. Actually, the
convergence of the process will be faster and faster as ht tends
to zero.

B. Space Discretization

Since the equation (9) in general cannot be solved analyti-
cally, we need a computational method to compute a numerical
approximation of its solution. By other words, we need a space
discretization, which will be the subject of this subsection.

For the sake of simplicity, assume that Ω is a rectangle:
Ω = [−1, 1] × [−1, 1]. We now introduce a uniform grid of
points (xi, xj), such that xi = −1+ih, i = 0, ..., n, where h is
the discretization step in space. In each subinterval [xi, xi+1]
we introduce k Gaussian nodes: xi,s = xi + h

2 (1 + ξs),
i = 0, 1, . . . n − 1, where ξs are the roots of the k-th degree
Legendre polynomial, s = 1, ..., k. We shall denote Ωh the
set of all grid points (xis, xjt), i, j = 0, ..., n − 1,s, t =
1, ..., k. A Gaussian quadrature formula to evaluate the integral∫

Ω
f(u, v)dudv will have the form

Q(f) =

n−1∑
i=0

n−1∑
j=0

k∑
s=1

k∑
t=1

w̃sw̃tf(xis, xjt), (13)

with w̃s = h
2ws, where ws are the standard weights of a Gaus-

sian quadrature formula with k nodes on [−1, 1], s = 1, ..., k.
As it is well-known, a quadrature formula of this type has
degree 2k − 1 and therefore, assuming that f has at least 2k
continuous derivatives on Ω, the integration error of (13) is of
the order of h2k. Note that the total number of nodes in the
space discretization is k2n2 .

When we introduce the quadrature formula (13) to compute
κ(U) we define a finite-dimensional approximation of the
operator κ. Let us denote Uh a vector with N2 entries, where
N = nk, such that

(Uh)is,jt ≈ U(xis, xjt);

then the finite-dimensional approximation of κ(U) may be
given by

(κh(Uh))mu,lv =
∑n1

i=0

∑n2

j=0

∑k
s=1

∑k
t=1 w̃sw̃t×

K(‖(xmu, xlv)− (yis, yjt)‖2)S((Uh)is,jt).

(14)

By replacing κ with κh in equation (9) we obtain the following
system of nonlinear equations:

Uh − 1

1 + 2ht

3c

κh(Uh) = fh, (15)

where κh(Uh) is defined by (14) and

(fh)is,jt = f(xis, xjt),

with f defined by (10); in (15), for the sake of simplicity,
we have omitted the index i of Uhi . Note that for the the
computation of fh we have to evaluate the iterates Ui−1

and Ui−2 at all the points of Ωh. We denote the vectors
resulting from this evaluation by Uhi−1 and Uhi−2, respectively.
We conclude that at each time step of our numerical scheme we
must solve (15), which is a system of N2 nonlinear equations.

We can investigate the solvability of (15) in the same way
as we have studied the Fredholm integral equation (9). More
precisely, we can introduce the iterative procedure

Uh,(ν) = λκh(Uh,(ν−1)) + fh = Gh(Uh,(ν−1)), (16)



ν = 1, 2, . . . . As a starting point for this iterative process, we
take

Uh,(0) = Uhi−1

(similar to the case of the iteration (11) for the Fredholm equa-
tion). In this case, the convergence of the iterative procedure
(16) depends on the contractivity of the nonlinear function Gh.
Again it can be shown that under a certain restriction on ht
the iterative procedure (16) converges to the solution of (15).

We have also investigated the convergence of Uhi to Ui, as
h → 0. Knowing the properties of Gaussian quadratures, and
assuming that the functions K and S in (6) are sufficiently
smooth, one can show that

‖κ(Ui)− κh(Ui))‖∞ ≤Mh2k, (17)

where M is some constant independent from h. Based on
(17) and using again the fact that K is bounded and S is
continuously differentiable, we obtain that

‖Ui − Uh‖∞ = O(h2k), ash → 0. (18)

The proof of this error estimate can be found in [6].

C. Computational Implementation

The above numerical algorithm for the approximate solu-
tion of the neural field equation in the two-dimensional case
was implemented by means of a MATLAB code.

The code has the following structure. After introducing the
input data (step size in time and in space, initial condition U0,
error tolerance for the inner cycle, required number of steps in
time) , there is an outer cycle that computes each vector Uh ,
given Uhi−1 and Uhi−2, according to the multistep method (8).
In order to initialize this cycle, besides U0, we need Uh1 , which
is obtained by the explicit Euler method. More precisely, we
compute

Uh1 = U0 +
ht
c

(I0 − U0 + κh(U0)). (19)

We recall that at each step in time we must solve the nonlinear
system of equations (9), which as suggested above is obtained
by means of the fixed point method, that is, we iterate the
scheme (16), until the iterates satisfy

‖Uh,(ν) − Uh,(ν−1)‖∞ < ε,

for some given ε. This is the inner cycle of our scheme.
Typically, in all the examples we have computed the number of
iterations in the inner cycle is not very high (3-4, in general),
confirming that the fixed point method is an efficient way of
solving the system (15). To start the inner cycle we use an
initial guess which is obtained from Uhi−1 using again the Euler
method:

Uh,(0) = Ui−1 +
ht
c

(Ii − Uhi−1 + κh(Uhi−1)). (20)

Note that at each step of the inner cycle it is necessary
to compute the function κh at all the grid points. From
the computational point of view, this means that we must
evaluate N2 times a quadrature rule of the form (13) (with
N2 nodes). Of course, this requires a high computational
effort and the greatest part of the computing time of our
algorithm is spent in this process. Therefore, we pay special

attention to reducing the computational cost at this stage. In
order to improve the efficiency of the numerical method, we
apply the following technique, proposed in [9] for the solution
of two-dimensional Fredholm equations. Assuming that the
function V is sufficiently smooth, we can approximate it by an
interpolating polynomial of a certain degree. As it is known
from the theory of approximation, the best approximation of
a smooth function by an interpolating polynomial of degree
m is obtained if the interpolating points are the roots of the
Chebyshev polynomial of degree m:

pmi = cos

(
(2i− 1)π

m

)
, i = 1, ...,m (21)

Our approach for reducing the matrices rank in our method
consists in replacing the solution Vi by its interpolating polyno-
mial at the Chebyshev nodes in Ω. If Vi is sufficiently smooth,
this produces a very small error and yields a very significant
reduction of computational cost. Actually, when computing the
vector κ̃(Ui) (see formula (6)) we have only to compute m2

components, one for each Chebyshev node on [−1, 1]×[−1, 1].
Choosing m much smaller than n, we thus obtain a significant
computational advantage.

The procedure at each iteration is as follows. We compute
the matrix M such that

Mi,j = Q(V (pmi , p
m
j , t)), i = 1, ...,m, j = 1, ...,m,

where Q is the approximation of the integral κ, obtained
by means of the quadrature (13), pmi are the Chebyshev
nodes, defined by (21). Then we have to perform the matrix
multiplication

Λ = CMCT , (22)

where C is the matrix defined by

Cij = ci−1(pmj ), i = 1, ...,m, j = 1, ...,m;

here ck represents the scaled Chebyshev polynomial of degree
k,

ck(x) = δk cos(k arcos(x)), k = 0, 1, ..

with δ0 = 1/
√
n, δk =

√
2δ0, k = 1, ...,m− 1. The matrix Λ

contains the coefficients of the interpolating polynomial of the
solution (expanded in terms of scaled Chebyshev polynomials).
Finally, in order to obtain the interpolated values of the solution
at the Gaussian nodes, we have to compute

T = PTΛP, (23)

where P is the transformation matrix, given by

Pij = ci−1(x(j)), i = 1, ...,m, j = 1, ..., N.

Here x(j) represents each Gaussian node: x(j) = xi,s, if j =
ik + s. Finally, the vector Ui for the next time step (of size
N2 ) is obtained by copying T , row by row (note that T is a
matrix of dimension N ×N ).

D. Complexity Analysis

As remarked before, it is important to analyse the com-
plexity of the computations, since the computational effort
can be signifficantly reduced by the application of adequate
techniques. In the previous section, we have described an
algorithm for computing each iterate of the fixed point method,



which requires m2 applications of the quadrature formula (13).
Since this quadrature implies N2 evaluations of the integrand
function, we have a total of m2N2 function evaluations. Note
that if no polynomial interpolation would be applied, N4

evaluations of the integrand function would be required at each
iteration. It is easy to conclude that the number of arithmetic
operations required to apply the quadrature is also proportional
to m2N2.

Then, according to the described algorithm, we must
perform the matrix multiplication (22). Since the involved
matrices have dimension m×m, the total number of arithmetic
operations is O(m3) . Since, by construction, m << N , the
complexity of this part of the computations is much less than
the previous one.

Finally, we have the matrix product (23). Here the trans-
formation matrix P has dimensions m × N , as the resulting
matrix T has dimensions N ×N The resulting complexity is
therefore O(mN2).

In conclusion, the number of evaluations of the integrand
function in each iterate of the fixed point method is N2m2

and the complexity of each iteration is O(N2m2). Note that
the number of iterations of the fixed point method at each time
step is typically 2− 4.

E. Error Analysis

We start by analysing the error resulting from the time
discretization. Assuming that the partial derivatives ∂iV (x,t)

∂it ,
i = 1, 2, 3, are continuous on a certain domain Ω× [0, T ], the
local discretization error of the approximation, given by (7),
has the order of O(h2

t ).

Concerning the space discretization, the error has two com-
ponents: one resulting from the application of the discretization
scheme (15) , and the other resulting from the polynomial
interpolation. In both cases, the order of the approximation
depends on the smoothness of the solution. Therefore we must
choose the degree of the Gaussian quadrature according to the
smoothness of Ui.

The first component was analysed in Sec. 2.1.2. If the
functions S , K and Ui satisfy certain smoothness conditions,
the discretization scheme (15) has order 2k in space, where k
is the number of Gaussian nodes at each subinterval.

To analyse the interpolation error, we refer to Lemma 3
in [9]. According to this Lemma, if the partial derivatives
∂if(y1,y2)

∂iyj
of a certain function f are continuous, with j = 1, 2,

i = 1, 2, .., s then

‖f − Cmf‖ = O(m−s log2m), (24)

where Cmf represents the m-th degree interpolating polyno-
mial of f in the Chebyshev nodes.

In order to obtain an optimal precision of the method, we
require that the components of the error, given by (24) and
(18), are of the same order.

If s is large (which in our case means that the functions
K and S must have a high degree of smoothness), then the
error given by (24) can be as small as the error of the space
discretization, even if m is much smaller than N . This means

that we can drastically reduce the dimension of matrices
without loss of accuracy.

In conclusion, if the input functions K and S are sufficently
smooth, the proposed method has second order convergence on
ht and order 2k on h. A more detailed error analysis can be
found in [6].

III. DELAY EQUATION

We now focus our attention on equation (3), where the
argument of the solution inside the integral has a delay τ(x̄, ȳ).
This delay takes into account the fact that the propagation
speed of signals between neurons is finite and therefore the
post-synaptic potential generated at location x̄ in instant t by
action potentials arriving from connected neurons at location
ȳ actually depends on the potential of these neurons at instant
t − τ(x̄, ȳ), where τ(x̄, ȳ) is the time taken by the signal to
come from ȳ to x̄. Since we assume that the propagation speed
v is constant and uniform in space, we have

τ(x̄, ȳ) =
|ȳ − x̄|
v

.

Hence, the delay integro-differential equation that we must
solve has the form

c
∂

∂t
V (x̄, t) = I(x̄, t)−V (x̄, t)+

∫
Ω

K(|x̄−ȳ|)S(V (ȳ, t−|ȳ − x̄|
v

))dȳ.

(25)
Note that in this case the initial conditions satisfied by the
solution of our problem have the form (4), where

τmax = max
x̄,ȳ∈Ω

|ȳ − x̄|
v

.

The numerical algorithm used to solve equation (25) is
essentially the same as described in the previous sections. The
main difference results from the fact that when computing the
integral on the right-hand side of (25) at instant ti we must use
not only the approximate solution at instants ti−1 and ti−2, but
at all instants ti−k, k = 1, ..., kmax, where kmax is the integer
part of τmax/ht. Note also that the argument ti − |ȳ−x̄|v may
not be a multiple of ht. In general let j and δt be the integer
and the fractional part of |ȳ−x̄|vht

. In this case, we have

ti−j−1 ≤ ti −
|ȳ − x̄|
v

≤ ti−j

and
htδt =

(
ti −

|ȳ − x̄|
v

)
− ti−j−1.

The needed value of the solution V (ȳ, ti − |ȳ−x̄|v ) is then
approximated by linear interpolation:

V

(
ȳ, ti −

|ȳ − x̄|
v

)
≈ δtUi−j + (1− δt)Ui−j−1. (26)

Note that the error analysis that we have carried out in the
previous subsection may not apply to the delay equation.
What we can say in this case, assuming that V is a smooth
function of t, is that the error introduced each time we use the
approximation formula (26) has the order of O(h2

t ) (the same
as the error resulting from the time discretization). However,
the overall effect of this error in the computations requires a
more detailed analysis, which is left for a future work.



Concerning complexity, in the case of the delay equa-
tion, each time we compute the integrand function, we must
compute the delay τ(x̄, ȳ). As discussed above, this delay
is obtained dividing the distance ‖ȳ − x̄‖2 by v. Since this
distance is also required to compute the kernel connectivity
K(‖ȳ−x̄‖2), for an effective computation this quantity should
be evaluated only once and then kept in memory.

IV. NUMERICAL RESULTS

Here we present the results of some numerical tests we
have carried out, in order to check the convergence properties
of the described method (in the case where no delay is
considered). In this subsection our main purpose is to test
experimentally the convergence of the method and measure the
error; therefore we have chosen some cases where the exact
solution is known and do not arise from applications. However
the form of the connectivity kernels and firing rate functions
in these examples are close to the ones of neuroscience
problems. We first check the convergence order in time. With
this purpose, we consider the following example.

Example 1. In this example,

K(|x̄− ȳ|) = exp
(
−λ(x1 − y1)2 − λ(x2 − y2)2

)
,

where λ ∈ R+; S(x) = tanh(σx), σ ∈ R+. We set

I(x, y, t) = − tanh

(
σ exp

(
− t
c

))
b(λ, x, y),

where

b(λ, x1, x2) =
∫ 1

−1

∫ 1

−1
K(x1, x2, y1, y2)dy1dy2 =

= π
4λ

(
Erf(
√
λ(1− x1)) + Erf(

√
λ(1 + x1))

)
×(

Erf(
√
λ(1− x2)) + Erf(

√
λ(1 + x2))

)
,

where Erf represents the Gaussian error function.

In this case, it is easy to check that the exact solution is

V (x̄, t) = exp(− t
c
).

The initial condition is V0(x̄) ≡ 1.

For the space discretisation, we have used k = 4, that is, 4
Gaussian nodes in each subinterval. Since the discretisation
error in space must be O(h8), we consider it negligible,
compared with the discretisation error in time.

With the following tests, we want to check that the dis-
cretisation error in time satisfies the condition

ei = ‖Vi − Ui‖ = O(h2
t ).

The results are displayed in Table I. We have used two
different time steps, ht = 0.02 and ht = 0.01, and we have
approximated the solution over the time interval [0, 0.1]. For
the space discretisation, we have considered N = 24, m = 12.
The equation parameters are λ = σ = c = 1.

The discretisation errors ei(ht) = ‖Vi −Ui‖ are displayed
at different moments ti, for different stepsizes ht. We also
present the ratios ei(2ht)/ei(ht), which allow us check the
convergence order. The ratios are close to 4, which confirms
the second order convergence.

t ei(0.01) ei(0.02) ei(0.02)/ei(0.01)
0.02 6.66E − 5
0.03 7.24E − 5
0.04 7.46E − 5 2.66E − 4 3.57
0.05 7.56E − 5
0.06 7.61E − 5 2.91E − 4 3.82
0.07 7.65E − 5
0.08 7.69E − 5 3.01E − 4 3.91
0.09 7.72E − 5
0.10 7.76E − 5 3.06E − 4 3.94

TABLE I. NUMERICAL RESULTS FOR EXAMPLE 1

m N = 12 N = 24 e12/e24 N = 48 e24/e48
12 3.11E − 10 1.11E − 12 280 3.997E − 15 278
24 1.03E − 12 4.413E − 15 234

TABLE II. NUMERICAL RESULTS FOR EXAMPLE 2, WITH
λ = 1, σ = 1.

Now, in order to check the convergence of the space
discretisation, we choose an example, where the time discreti-
sation is exact (does not produce any error).

Example 2. In this example, the functions K and S are
the same as in example 1. We set

I(x, y, t) = c+ t− tanh(σt)b(λ, x, y).

As in example 1, c = 1. In this case, it is easy to check that
the exact solution is

V (x̄, t) = t.

The initial condition is V0(x̄) ≡ 0. The difference operator
(7) is exact for linear functions of t, and this is why the
scheme in this case does not have discretisation error in
time. Therefore, the observed errors result from the space
discretisation. In this case, we are only considering the norm
of the error at t = 0.1. To check the dependence of the error
on λ and σ, we consider 3 different cases: λ = 1, σ = 1 ;
λ = 1, σ = 5; and λ = 5, σ = 5, which are described in tables
II, III and IV, respectively.

Since we are using 4 Gaussian points in each subinterval,
we expect that the error of the space discretisation is O(h8) .
Therefore, when we duplicate the number N of gridpoints, the
error should decrease by a factor of approximately 28 = 256.

In order to check the influence of interpolation error,
for each N , we consider a set of different values of m
(interpolation polynomial degree).

When m increases from 12 to 24, the difference in accuracy
is not significant. This means that for values of N up to 96
it is enough to consider m = 12. When λ or σ increase we
observe that the errors (for the same discretisation step) also
increase. This could be expected, since the discretisation error
in space depends on the derivatives ∂iK(x̄,y1,y2)

∂iyj
and ∂iS(V )

∂iV ,
which increase with λ and σ, respectively.



m N = 24 N = 48 e24/e48 N = 96 e48/e96
12 1.62E − 10 5.52E − 13 293 2.36E − 15 234
24 1.69E − 10 5.33E − 13 317 2.22E − 15 240

TABLE III. NUMERICAL RESULTS FOR EXAMPLE 2, WITH
λ = 5, σ = 1.

m N = 24 N = 48 e24/e48 N = 96 e48/e96
12 7.31E − 10 2.48E − 12 295 9.38E − 15 264
24 7.65E − 10 2.40E − 12 319 8.94E − 15 268

TABLE IV. NUMERICAL RESULTS FOR EXAMPLE 2, WITH
λ = 5, σ = 5.

Example 3. We now test the performance of our algo-
rithm, when applied to a neural field described in [4], which
includes the neural field equation with delay (3) (the numerical
algorithm for this case is described in sec. III). As mentioned
above, equations of this form often arise in Neuroscience
applications.

In this example the firing rate function has the form

S(x) =
2

1 + e−µx
,

where µ ∈ R+, and the connectivity function is given by

K(r) =
1√
2πξ2

1

exp

(
− r2

2πξ2
1

)
− A√

2πξ2
2

exp

(
− r2

2πξ2
2

)
,

where r = ‖x − y‖2 =
√

(x1 − y1)2 + (x2 − y2)2 and
ξ1, ξ2, A ∈ R+. In this example we consider c = 1 and in
all the simulations we use the initial condition V0(x) ≡ 0.01.

It is known [4] that when there is no external input
(I(x, y, t) = 0), the stability of the trivial solution of this
equation depends on the value of µ, on the parameters of
the connectivity function and on the propagation speed. In
particular, for each set of values of these parameters, there
exists a bifurcation value µbif , such that if µ < µbif the zero
solution is asymptotically stable, and otherwise it isn’t.

Let x1 be a point in the boundary of Ω and x2 be a point
close to the center of the domain. In Fig. 1 (resp. Fig. 2) the
graph of V (x1, t) (resp. V (x2, t) ) is displayed, as a function
of time, in the case ξ1 = 0.4, ξ2 = 0.2, A = 1. The behaviour
of the solution may be quite different in the two points and
it also depends strongly on µ. For µ = 10, for example, we
see that after a certain time the solution becomes decreasing,
both in x1 and x2. But for µ = 15, if t is sufficiently high, the
solution increases in both points. This suggests that for some
value of µ, between 10 and 15, there should be a bifurcation
(the zero solution becomes unstable).

The graphs displayed in Fig.3 correspond to the case ξ1 =
0.1, ξ2 = 0.2, A = 1. In this figure the graphs on the left-
hand side are the surface plots of the solution at equidistant
moments in time (t = 30, 45, 60, 75), while the graphs on the
left-hand side are the corresponding contour plots. As time
tends to infinity, we observe that the solution tends to a certain
nontrivial stationary state.

All the numerical examples discussed so far are for the case
τ(x, y) = 0 (when no delay is considered). It is also interesting
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Fig. 1. Evolution of the solution at the boundary of the domain, for different
values of µ.
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Fig. 2. Evolution of the solution at the boundary of the domain, for different
values of µ.

to observe the effect of delay on the behaviour of the solutions.
We will now analyse a numerical example which illustrates this
effect. Let us consider the case A = 1, ξ1 = 0.5, ξ2 = 0.4,
µ = 27.5. We simulate this case over the time interval [0, 3],
with stepsize in time ht = 0.1. First we consider τ(x, y) = 0
(no delay). In this case, the graphs in Fig. 4 show that in the
middle of the domain there is an initial period in which the
solution grows and then it tends to zero. Knowing that the
solution attains its maximum at the middle, this indicates that
the zero solution is asymptotically stable.

In order to analyse the effect of delay in the behaviour
of solutions we have carried out computations for the same
case, but with delay, when the propagation speed is v = 1.
The numerical results are displayed in Fig. 5. In this case,
in the middle of the domain the period during which the
solution increases (before attaining its maximum) is much
longer, which is obviously an effect of the propagation delay.
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Fig. 3. 3D-graphs (left) and contour plots (right) of the solution at t =
30, 45, 60, 75 , in the case 1, with µ = 45, with no delay.
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Fig. 4. Graph of V (x2, t) in the case A = 1, ξ1 = 0.5, ξ2 = 0.4, µ = 27.5,
without delay.
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Fig. 5. Graph of V (x2, t) in the case A = 1, ξ1 = 0.5, ξ2 = 0.4, µ = 27.5,
with v = 1.

V. CONCLUSION

As other integro-differential equations in several dimen-
sions, the Neural Field Equation represents quite a challenge
for numerical computation. In the present paper we have
described a new numerical approach to this equation in the
two-dimensional case, including a space-dependent delay. A
remarkable feature of our method is that we use use a im-
plicit second order scheme for the time discretisation, which
improves its accuracy and stability, when compared with the
available algorithms. Moreover, to reduce the computational
complexity of our method and improve its efficiency we
have used an interpolation procedure which allows a drastic
reduction of matrix dimensions, without a significant loss of
accuracy. In the last section, we have presented three numerical
examples. In the first two of them we consider model cases
(where the exact solution is known) and we use them to obtain
numerical estimates of the convergence rate. These estimates
are in agreement with the theoretical results about the method.
In the last example we analyse a case which was previously
described by other authors [4]. Here we use our algorithm to
analyse how the behaviour of the solutions depends on the
equation parameters. Our numerical results are in agreement
with the expected behaviour of the solutions.
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