
Equações Diferenciais Ordinárias
LMAC, MMA

Exame - 08 de Janeiro de 2014

Apresentar todos os cálculos e justificar todas as afirmações

1. (2 valores) Show that a solution x(t) of the equation

ẍ− 4x = sin(2t),

is bounded for t > 0 if and only if

2x(0) + ẋ(0) +
1

4
= 0.

Solution The associated homogeneous equation is ẍ − 4x = 0,
with general solution

x(t) = ae2t + be−2t;

searchin a particular solution of the complete equation of the form
u(t) = c sin(2t) + d cos(2t), we get

sin(2t) = ü(t)− 4u(t) = −8c sin(2t)− 8d cos(2t),

and so u(t) = − sin(2t)
8

, and the general form for the solutions of the
equation is

x(t) = ae2t + be−2t − sin(2t)

8
,

which is bounded for t > 0 if and only if a = 0. As

x(0) = a+ b, ẋ(0) = 2a− 2b− 1

4
,

we have 2x(0) + ẋ(0) + 1
4

= 4a implying the equivalence stated.

2. (3 valores) Prove the following generalization of the diver-
gence criterion:

Dulac’s Criterion: Let D ⊂ R2 be a simply connected domain
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and F : D → R2 a C1 vector field. If there exists a C1 function
g : D → R such that div(gF ) is never zero in D, then D does not
contain any periodic orbit of the flow associated to F .

Solution The proof is identical to the one of the Divergence
Criterion:: if γ ⊂ D was a periodic orbit of the flow associated to
ẋ = F (x) and U the region bounded by γ, the Divergence Theorem
implies that ∫

U

div(gF ) =

∫
γ

gF ṅ,

where n represents a normal unit vector pointing to the exterior of U .
Now, Fṅ = 0, since γ is an orbit of the flow; buts

∫
U
div(gF ) = 0

leads to a contradiction, since the function under the integral is
continuous and allways different from zero: the integral of a (for
instance) positive function in an open domain is necessarily positive.

3. (5 valores) Consider the system

ẋ = −x(x2 + y2 − 2), ẏ = −y(x2 + y2 − 3x+ 1).

a) Use the function V (x, y) = x2+y2 to justify that, for any initial
condition (x0, y0), the corresponding solution is defined for all
t > 0, by finding a bounded region R containing the ω-limit of
every solution.

b) Determine and characterize the singularities of the system and
sketch the phase portrait.

c) Prove that the system has no periodic orbits.
Hint: Start by showing that a possible periodic orbit should
be contained in the first or fourth quadrant; apply Dulac’s Cri-
terion with g(x, y) = 1

xy
.

Solution: We have

∂tV (x, y) = −2(x2(x2 + y2 − 2) + y2(x2 + y2 − 3x+ 1)),

which is less than zero in the region defined by the conditions

x2 + y2 − 2 > 0, x2 + y2 − 3x+ 1 > 0.
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Choosing a sufficiently big R we have ∂tV (x, y) < 0 para x2+y2 > R.
Therefore, for an initial condition in that region, the distance to the
origin decreases along the orbit and so for t sufficiently large the orbit
is contained in the disc x2 + y2 ≤ R, while for an initial condition
in this disc, the orbit remains in it for all t > 0.
Thus we verify that all solutions are contained, for t sufficiently
large, in the disc x2 + y2 ≤ R (a compact), which implies that they
are defined for all t > 0 (there are no “explosions in finite time”)
and the ω-limit of any orbit is necessarily non empty.

The linearization of the vector field is

DF (x, y) =

 −(x2 + y2 − 2)− 2x2 −2xy

−(2x− 3)y −(x2 + y2 − 3x+ 1)− 2y2

 ;

The singularities of the system, with the corresponding lineariza-
tion and type, are

(0, 0)

 2 0

0 −1

; saddle.

(−
√

2, 0)

 −4 0

0 −3− 3
√

2

; sink.

(
√

2, 0)

 −4 0

0 −3 + 3
√

2

; saddle.

(1, 1)

 −2 −2

1 −2

; spiral sink.

(1,−1)

 −2 2

−1 −2

; spiral sink.

Since the coordinate axes are unions of orbits of the flow, a pe-
riodic orbit would have to be contained in one of the quadrants; in
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fact, since the region bounded by a periodic orbit would have to
contain a singularity, they could occur only in the first or fourth
quadrant.
However, using the hint, we find that

div(gF ) = div

(
−x

2 + y2 − 2

y
,−x

2 + y2 − 3x+ 1

x

)
= −2x

y
− 2y

x

which is never zero in those regions (it is negative in the first quad-
rant and positive in the fourth). So Dulac’s Criterion garanties that
there are no periodic orbits.

4. (5 valores Consider the system

ẋ = x− y − x(x2 +
3y2

2
), ẏ = x+ y − y(x2 +

y2

2
).

a) Determine the stability type of the singularity at (0, 0).

b) Apply Poincaré-Bendixon’s Theorem to justify the existence of
at least one periodic orbit; obtain estimates for the constants
0 < a < b such that the periodic orbits are contained in the
region {(x, y) : a2 < x2 + y2 < b2}.

c) Is the periodic orbit unique?
Hint: Compute the Divergence of the vector field.

Solution: The linearization of the vector field at the origin is 1 −1

1 1

 which has eigenvalues 1± i. So it it a spiral source.

Computing ∂t(x
2 + y2), we get

2x2(1− x2 − 3

2
y2) + 2y2(1− x2 − y2

2
);

this function may be written as

2(x2 + y2)(1− x2 − y2

2
)− 2x2y2
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which is less than zero in the region U = {(x, y) : x2 + y2

2
> 1}.

On the other hand, it may also be written as

2(x2 + y2)(1− x2 − 3y2

2
) + 2y4

which is positive in the region V = {(x, y) : x2 + 3y2

2
< 1} ⊂ R2 \U .

So, if we consider a circle C1 contained in U and another one C2

contained in V , both centered at the origin, the flow will cross the
first from the outside to the inside and the second from the inside
to the outside.
Assuming there are not other singularities (see note below), Poincaré-
Bendixon’s Theorem implies that the anular region between the two
circles contains a periodic orbit.

To verify uniqueness of the periodic orbit, we compute the diver-
gence of the field:

div(F ) = ∂xF1 + ∂yF2 = 2− 4x2 − 3y2.

If, in the region considered above, the divergence is negative, the
area is contracted by the flow, which implies uniqueness: if there
were two periodic orbits (with one of them necessarily contained in
the region bounded by the other, as the origin is the only singular-
ity) the anular region bounded by them, which has positive area, is
invariant under the flow.
But in the construction done before, we may take C2 as the circle
with radius

√
2/3; so in the region bounded by the two circles we

have div(F ) = 2− 3(x2 + y2)− x2 < 0.

Note: We may confirm the non existence of other singularities:
in the first place there are certainly no other singularities in the
coordinate axes, and we may assume that both x and y are differ-
ent from zero. The euations to determine the singularities may be
written as  x(1− x2 − 3y2

2
) = y

y(x2 + y2

2
− 1) = x

,

implying, under the given hypothesis,

xy(1−x2−3y2

2
)(x2+

y2

2
−1) = xy =⇒ (1−x2−3y2

2
)(1−x2−y

2

2
) = −1,
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This equality implies, in particular, that any other singularity would
be contained in the region R2 \ (U ∪ V ), bounded by two elipses; if

we locate the extreme values of g(x, y) = (1−x2− 3y2

2
)(1−x2− y2

2
),

we verify that they satisfy x(1− x2 − y2) = 0

y(4− 4x2 − 3y2) = 0
,

and we conclude that the minimum of g is attained at the points
(0,±

√
4/3), but g(0,±

√
4/3) = −1/3, and so, in the region under

consideration, g(x, y) > −1.

5. (5 valores) Consider the system

ẋ = x2 − y − 1, ẏ = (x− 2)y.

a) Determine and characterize the singularities and sketch the
phase portrait.

b) Identify the tangent space at (1, 0) to the stable manifoldof that
point. Justify that one of the components of that manifold is
bounded and find it’s α-limit.

c) Let Ψ(t, x) the flow of this equation and Φ(t, y) the flow of the
equation of problem 3.
Justify if there are neighborhoods U of (1, 0) and V of (0, 0)
such that the restrictions Ψ|U and Φ|V are topologically conju-
gated.

Solution: The singularities, with the corresponding lineariza-
tions of the vector field, are

(−1, 0)

(
−2 −1
0 −3

)
sink

(1, 0)

(
2 −1
0 −1

)
saddle

(2, 3)

(
4 −1
3 0

)
(source

;
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The negative eigenvalue of DF (1, 0) is −1 and an associated eigen-
vector is (1, 3); the tangent space to the stable manifold is thus the
space generated by this vector. In other words, the stable manifold
is tangent, at the point (1, 0) to the line y = 3(x− 1).
The sketch of the phase portrait suggests that, for any initial con-
dition (x0, y0) in the first quadrant, the orbit, for t < 0 is bounded;
this may be confirmed verifying, for instance that, choosing a > 2
sufficiently large, the triangle with vertices (0, 0), (b, 0) and (b, ab),
where b is the positive root of x2 − ax − 1, contains (x0, y0) and is
negatively invariant under the flow: the only computation needed
is to show that for x ∈]0, b[ the slope of the vector field, given by
(x−2)y
x2−y−1 is smaller than a, along the line y = ax.

In this way, we conclude that the α-limit of the branch of the
stable manifold of (1, 0) contained in the first quadrant is non-empty.
As (2, 3) is the only singularity in that region, we need only to
show that there are no periodic orbits there; but the phase portrait
shows that, if it existed, a periodic orbit would be contained in
{(x, y) : x > 1∧y > 0}; but in that domain div(F ) > 0 and so there
are no periodic orbits.
The α-limit of that orbit is then (2, 3).

The singularities refered to in c) are both saddles; so by the
Grobman-Hartman theorem, the flows are locally topologically con-
jugated to the corresponding linearizations

Ẋ =

(
2 −1

0,−1

)
X Ẋ =

 2 0

0 −1

X;

as these linear vector fields are both hyperbolic and have the same
stability index, thweir flows are conjugated.
Combining these conjugacies, we confirm that Ψ|U and Φ|V are topo-
logically conjugated.
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