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Abstract. We will present abrief study of the homology of cubical sets, with two main purposes.

First, this combinatorial structure is viewed as representing directed spaces, breaking the intrinsic
symmetries of topological spaces. Cubical sets have a directed homology, consisting of preordered
abelian groups where the positive cone comes from the structural cubes.

But cubical sets can a so express topological facts missed by ordinary topology. This happens, for
instance, in the study of group actions or foliations, where atopologically-trivial quotient (the orbit set
or the set of leaves) can be enriched with anatural cubical structure whose directed homology agrees
with Connes' analysis in nhoncommutative geometry [C1]. Thus, cubical sets can provide a sort of
'noncommuitative topology', without the metric information of C*-algebras [G1].

This similarity can be made stricter by introducing normed cubical sets and their normed directed
homology, formed of normed preordered abelian groups. The normed cubical sets associated with
irrational rotations have thus the same classification up to isomorphism as the well-known irrationa
rotation C*-algebras [G2].

Finally, we will seethat part of these results can also be abtained with a different approach, based
on D. Scott's equilogical spaces[Sc] and developed in [G3, G4].

Comments printed in gray characters can be omitted. Theindex o takesvauesO, 1, also written
as—, + (e.g. in superscripts).
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1. Singular homology by cubes [Mg]

1.0. Introduction

The singular homology of atopological space X can be equivaently defined as the homology of
the chain complex associated to the simplicial set AX (produced by all maps A" — X defined on
standard tetrahedra) or the homology of the chain complex associated to the cubical set o X
(produced by al maps I" — X defined on standard cubes).

The less usual cubical approach, followed in Massey's text [Mg], has various advantages, mainly
due to the fact that cubes are closed under products, while products of tetrahedra have to be ‘covered'
with tetrahedra; thus, the proof of homotopy invariance and the study of cartesian products or
fibrations are easier and more natural in the cubical setting. Here, a more specific motivation for this
choice is our use of the natural order on |", in the sequel. The equivalence with the simplicial
construction can be proved by atechnique called 'acyclic models [EM, HW].

In this section we give a brief outline of the cubical construction of singular homology, as a
preparation to abstracting cubical sets and their homology.

1.1. The singular cubical set of a space

- Top: the category of topological spaces and continuous mappings (= maps).

- 1 =[0, 1]: the standard interval, with euclidean topology.

- Basic structure: two faces (82, 81) and adegeneracy (¢), linking it with the singleton 10 = {*}

D 8*: {x} = I :e («=0,1),
() = 0, i(+) = 1, e(t) = *.

- Faces and degeneracies of the standard cubes I" (for « =0,1; i =1,...,n)

(2 % = Lg% [N =1 — 1, 0*(t1,eery the1) = (triee, tia, ayeesy thod),



gi = I Lyex|M: 0 — -1 gi(ty,..., th) = (t1,..., Ei,..., th).
- They satisfy the co-cubical relations (where o, p =0, 1)
(3) oboy =808l (i<, eigf = gire (i <j),
gj 8% = 801 ¢ (j <i), or id (j=i), or oeg (j>1).

- This produces, for every topological space X, acubical set o X

(4) oX = ((5pX), (89), (&), thesingular cubical set of X,
oX = Top(I", X), the set of singular n-cubes a 1" — X of the space X,
@ = 9% mpX — OpX, M@ = as I — X,
€ = € OpgX — O.X, g(@ = ag: 1" — X, (a=0,1; i=1,.,n).

- In general: acubical set K = ((Ky), (6%, (&) isasequence of sets K, (n=0), together with
mappings, called faces (df) and degeneracies (g)

(5) of = 9% Kn — Kp, g = &yi: Kot — Kp («=0,1; i =1,.,n).
satisfying the cubical relations
6 o¢ab = ab_, a¢ (i<, ge = eagq (i<j),

otg = gayy (<i), or id (j=1i), or g0y (j>1i).

A morphism of cubical sets f = (f;): K — L is a sequence of mappings fn: K, — Lj
commuting with faces and degeneracies. Cubical sets and their morphisms form a category Cub.

- Thesingular cubical set functor o: Top — Cub actsasfollowsonthemap f: X — Y
(7) of:oX — oY, (of)pa— feal"— Y.

1.2. The singular chain complex of a space

- Degenerate elements of acubica set K: al elements of type (a)

(1) DegnK =UjIm(g: Knx — Ky), DegoK = @.

- Because of the cubical relations, we have (for i =1,..., n)

(2) aeDeghK = (dfa€ DeghiK or o7a=d7a), e(Degn1K) C DegnK.

- The cubical set K determines a (normalised) chain complex C,(K), i.e. a sequence of abelian
groups and homomorphisms (called boundaries, or differentials)

On+1 In d1

(3) . — C1(K) — Cp(K) — Cpa(K) — ... — Cy(K) — Co(K) — 0

with dndn+1 = 0O, defined as follows:

(4) Cn(K) = (ZK,)/(ZDegK) = ZK, (Kn = Kn\ DegnK),
dn: Cn(K) = Cn-a(K), (@) = Ziq (C1)*e (9%a) (@€ Kp),

(ZS isthefree abelian group onthe set S; a isthe class of the n-cube a up to degenerate cubes; but
we will write the normalised class a as a, identifying all degenerate cubes with 0.)



- Toprovethat dndn+1 =0 one usesthe cubical relations for faces: ¢ 6? = a?_l o (i<j).

- In general: achain complex A = ((An), (95)) of abelian groupsis a sequence as above, with 9pdn+1
= 0. A morphism ¢: A — B of chain complexes is a sequence of homomorphisms ¢n: Ap — Bp
commuting with differentials: dnpn = pn19n. They form the category C,Ab of chain complexes of
abelian groups.

- Thefunctor C,: Cub — C,Ab actsonthe morphism f = (f,): K — L by Z-linear extension
(5) f# = C*(f) C*(K) - C*(L)1 f#n(a) = fn(a)-

- Composing with the functor o: Top — Cub, we get the singular chain complex of a space, or
complex of singular chains (with integral coefficients), written again C,

(6) C,.Top — C,Ab, C,(X) = C,(oX), fum(@ = fa (& I" — X).

1.3. Singular homology of spaces

- The homology functor of chain complexes: the group of n-cycles modulo the group of n-boundaries

(1) H,:C,Ab — Ab (n=0),
Hn(A) = Kerdn/Iman.1, Hn(@)[Z] = [¢nz].

- Composing with the previous functors, we have the singular homology of a space (with integral
coefficients)

o C« Hn
(2 Top — Cub — C,Ab — Ab
Hn: Top — Ab Hn(X) = Hp(C.(8 X)) (n=0),
Hn(f) = fin, fenlZi nia] = [Zi ni(fa)].

1.4. Exercises

- Hh(X) = @ig Hn(X;), where (X))ig isthefamily of path-connected components of the space X.

-Ho({*}) = Z, Hn({*}) = 0 (n>0).
- If X ispath-connected, non empty, thereis an isomorphism ¢: Ho(X) = Z, ¢[2 7i.X{] = 2 2.

Hint. Use the augmented chain complex ... — Cy(X) — Cg(X) — Z where 9g(2 Ai.Xi) = 2 Aj;
do issurjectiveand Ker(dg) =1m(dq). Then ¢: Hg(X) — Z istheinduced iso. o

1.5. Homotopy for topological spaces
- Two maps fo, f1: X — Y in Top are homotopic (fg =~ f1) if thereisamap F: IxX — Y such
that F(a, X) =f,(X), foral x&X (a=0, 1). Thisrelation isacongruence of categories.

- Two spaces X, Y are homotopy equivalent (X =~ Y) if therearemaps f: X = Y :g with ¢f ~
idX, fg =~ idY.

- A spaceis said to be contractibleif it is homotopy equivalent to {*}.



1.6. Homotopy for chain complexes of abelian groups

- Two maps ¢,y: A — B in C,Ab are homotopic (¢ =~ v) if there is a sequence of
homomorphisms ®,: A, — Bpi1 (n=0) suchthat 9p+1®n + ®Pr10n =—on + Yn.

- Thisrelation is a congruence of categories, in C,Ab.

Proposition (Homotopy Invariance of algebraic homology). The functors H,: C,Ab — Ab are
homotopy invariant: if ¢ =~ y: A — B then Hp(¢) = Hn(y): Ha(A) — Hp(B) (foral n=0).

1.7. Homotopy Invariance of singular homology

Theorem. The functors Hn: Top — Ab are homotopy invariant: if f ~ g: X — Y then Hy(f) =
Hn(g): HA(X) — Hn(Y) (foral n=0).

Hint. Given ahomotopy F: IxX — Y between f, g: X — Y, one constructs a homotopy between
the associated chain morphisms C,(X) — C.(Y)

(1) @n: Cy(X) — Crea(Y), ®n(a) = F.(1xa) (aI" — X),
On+1Pn + Pn19n = — Cp(f) + Cn(Q). =

Corollary. If the spaces X, Y are homotopy equivaent, then Hn(X) = Hy(Y) (for al n=0).

Coroallary. If the space X is contractible, then Hn(X) = Hn({*}) (foral n=0) and X is path-
connected.

2. Cubical sets [G1, Section 1; Ka; BH]

We shift now our interest from topological spaces to cubical sets. An abstract cubical set will
generaly be denoted as X and viewed as a 'virtual directed space', with privileged directions in
every dimension. If X isthe cubical singular set of atopological space T, then its direction is
undistinguished.

2.1. Remarks on Directed Algebraic Topology

We shall use cubical sets as a setting for developing directed homology. Directed Algebraic
Topology is a recent subject, whose present applications deal mainly with concurrency. Its domain
should be distinguished from classical Algebraic Topology by the principle that directed spaces have
privileged directions and their paths need not be reversible. Its homotopical and homological tools are
similarly 'non-reversible': directed homotopies, fundamental categories, directed homology. Its
applications can deal with domains where privileged directions appear, like concurrent processes,
traffic networks, space-time models, etc. See [GX, GY] and references there.

A topological space T hasintrinsic symmetries, appearing - at the lowest level - in the reversion
of its paths. In higher dimension, theset o ,T = Top([0,1]", T) of its singular cubes has an obvious
action of the hyperoctahedral group (the group of symmetries of the n-cube).

Now, bypassing topological spaces, an abstract cubical set X = ((Xy), (0¢), (&)) is a merely
combinatorial structure (see 1.1.5-6, or below). This structure will be used in two ways: to break the



symmetries considered above and to perform constructions, namely quotients, which would be
uselessin ordinary topology.

(a) For the first aspect, note that an 'edge’ in X1 need not have any counterpart with reversed
vertices, nor a'square’ in X, any counterpart with horizontal and vertical faces interchanged. Thus,
our structure has 'privileged directions), in any dimension, and the (usual) combinatorial homology of
X can be given a preorder, generated by taking the given cubes as positive. Now, the cubical set X
has ageometric realisation RX asatopological space, obtained - loosely speaking - by pasting a copy
of the standard cube I" for each n-cube x&X,, along faces and degeneracies (see 3.3); but let us
note from now that this construction loses any information on 'directions we had in X: the homol-
ogy groupsof RX have no useful preorder and only coincide algebraically with the ones of X.

Thus, the obvious cubical model 1s" of the n-dimensional sphere, with one non-degenerate cube
indimension n (whose geometric realisation is the usual, topological sphere S"), will have directed
homology tHp(1s") = 1Z, i.e. the group of integers with the natural order. Similarly, the model
112 = 1sl@rs! of the torus has 1H1(1t2) = 1Z2, with the product order (4.6) and two obvious
positive generators (coming from each copy of 1sb); this example also shows that direction should
not be confused with arientation, which plainly cannot select privileged generatorsin the 1-homology
group of atorus. We shall also see that our preorder on tH1(X) becomes trivia (coarse) for a
'symmetric' cubical set, like the singular cubical set of atopological space (4.1).

(b) Secondly, it may happen that aquotient T/~ of atopological space has atrivial topology, while
the corresponding quotient of its singular cubical set o T keeps arelevant topological information,
detected by its homology and agreeing with the interpretation of such a'virtual space' in noncommuta-
tive geometry. Thiswil be dealt with below.

2.2. Cubical sets
- Recall that acubical set X = ((Xy), (8, (&)) isasequence of sets X, (n= 0), together with
mappings, called faces (df) and degeneracies (g)
(1) 0 =09%: Xn = Xpa, € = &ni: Xn1 — Xn (a=%; i=1,..,n),
satisfying the cubical relations
(2 o¢db = abar, (=i ge = eu1q (=i,

otg = gayy (<i), or id (j=1i), or g0y (j>i).
- Elements of X,, are called n-cubes; vertices and edgesfor n=0 or 1, respectively. Every n-cube
XEXn has 2" vertices: 9{abol(x) for n=3.

- A morphism f = (f,): X — Y of cubical setsis a sequence of mappings fn: X, — Y, which
commute with faces and degeneracies. These objects and morphisms form the category Cub.

- Cub hastwo involutions (covariant involutive endofunctors), reflection and exchange

(3) R: Cub — Cub, RX = X% = ((Xy), (9;%), (&) (reflection),
(49 S:Cub — Cub, SX = ((Xn), (0r41-4) (En+1-i)) (exchange),

thefirst reversing the 1-dimensiona direction, the second the 2-dimensional one.
- We say that acubical set X isreflexiveif RX =~ X and symmetricif SX =~ X.



2.3. Subobjects and quotients
- Cub hasall limits and colimits (computed componentwise) and is cartesian closed.

- Some category-theoretical remarks. Cub isacategory of presheaves: its objects are the functors X:
I°P — Set, where I isthe subcategory of Set consisting of the sets 2" (where 2 ={0, 1})
together with the maps 2™ — 2" which delete some coordinates and insert some 0's and 1's,
without modifying the order of the remaining coordinates (cf. [GM]). The representable presheaves
are given by the Yonedaembedding y: T — Cub, y(2") =1(-, 2"): I°P — Set; the cubical set
y(2") can aso be seen asthe free cubical set generated by one element of degree n, according to the
adjunction Fn: Set = Cub : ().

- A cubical subset Y C X isasequence of subsets Y, C X, stable under faces and degeneracies.

- Anequivalencerdation £ in X isacubical subset of XxX whaose components £, C X xX, are
equivalence relations; then, the quotient X/€ isthe sequence of quotient sets Xn/E,,, with induced
faces and degeneracies. In particular, for Y C X, the quotient X/Y has components X,/Y,, where
al cubes yeY,, areidentified.

- For acubical set X, we define the homotopy set
(1) mo(X) = Xo/=,
where ~ isthe equivalencerdationin Xy generated by being vertices of acommon edge.

- The connected component of X at an equivalence class [X] € ng(X) isthe cubical subset formed
by all cubesof X whose verticesliein [x]; X isawaysthe sum (or coproduct, digoint union) of
its connected components. If X is not empty, we say that it is connected if it has one connected
component, or equivalently if =g(X) isasingleton.

- One can easily see that the forgetful functor (-)o: Cub — Set has aleft adjoint, the discrete cubical
set on a set

(2) D: Set — Cub, DS = Set(1*, S),

where components are constant, (DS), =S (nEN), faces and degeneracies are identities. Then, the
functor ng: Cub — Set isleft adjointto D. (Theforgetful functor (-)g hasalso aright adjoint CS
= Set(2*, S), the codiscrete cubical set on S.)

2.4. Tensor product of cubical sets [Ka, BH; G1]
- The category Cub has amonoidal structure

(1) (X&Y)n = (Zprg=n XpxY )/ ~n,

where ~, isthe equivalence relation generated by identifying (e+1x,y) with (X, ery), for al
(X,y) € XixYg (for r+s=n-1).

- Wewrite x®y the equivalence class of (X, y). Facesand degeneracies are defined as

(2) of(x®y) = (f)ey  (1=<i=p), It (x®y) = x®(0f_py) (ptl=i =< pta),
() alxey) = (ex)®y (1=i=p+l), 8(x®y) = x®(e—y) (p+l<is ptqtl),
(and ep+1(x®Y) = (ep+1X)®Y = x@(e1y) iswell defined because of the equivalence relation ~ ).



- The identity of the tensor product is the singleton {*}, i.e. the cubical set generated by one 0-
dimensiona cube; it isreflexive and symmetric.

- Thetensor product is not symmetric, but is linked with reversion and exchange as follows:
(4) R(X®Y) = RX@RY, S(X®Y) = (SY)®(SX).

- Therefore, reflexive objects are stable under tensor product while symmetric objects are stable under
tensor powers: if SX = X, then S(X®") = (SX)®" = X®N, (The construction of the internal homs
related with tensor products will berecalledin 3.1.7.)

2.5. Standard models
- The elementary directed interval 1i =2 isfreely generated by al-cube, u

u

@ 0—1 a7(u) = 0, oj(u) = 1.
- The elementary directed n-cube is its n-th tensor power 1i" = ti®..®1i (for n= 0), freey
generated by one n-cube u®". (It isthe representable presheaf y(2") =1(-, 2"): I°° — Set).

- The elementary directed square 1i = ti®ti can be represented as follows, showing the generator
ueu and itsfaces

0®u 2
00 — 01 . —>
@) U0 l uRu l u®1 l 1
10 — 11
1®u

where the face 97(ueu) = 0®u isdrawn orthogonally to direction 1 (and directions are chosen so that
the labelling of vertices agrees with matrix indexing).

- Note that, for each cubical object X, Cub(1i", X) = X.

- The directed (integral) line 1Z is generated by (countably many) vertices nEZ and edges Uup,
from 97(un) =n to 97(un) = n+l. The directed integral interval 1[i, j]z isthe obvious cubical
subset with verticesin the integral interval [i, j]z. In particular, ti = 1[0, 1]z.

- The elementary directed circle ts! isgenerated by one 1-cube u with equal faces

u

@ *— = a7(u) = a3(u).

- The elementary directed n-sphere 1s" (for n> 1) isgenerated by one n-cube u all whose faces are
totally degenerate (hence equal)

(4 o) = (e)™X(3)"(u) (@=% i=1..n).
-1 =<0 isgenerated by two vertices: it is the discrete cubical set D{0, 1} (2.3.2).

- The elementary directed n-torus is a tensor power of tst

(5) tt" = (1sh®n.

- Theordered circle 1ol isgenerated by two edges with the same faces



6 v v IF(U) = ag(u").

- More generally the ordered spheres 10", generated by two n-cubes u', u* with the same
boundary: o(u’) = a-(u").

- Starting from 9, the unpointed suspension providesall 10" (3.2.5) while the pointed suspension
providesall 1™ of course, these models have the same geometric redlisation S" (as atopological
space) and the same homology; but their directed homology is different (4.2). The models 1s" are
more interesting: for instance, their order in directed homology is not trivial.

- All these cubical sets are reflexive and symmetric.

3. Directed homotopy of cubical sets [G1, Section 1]

3.1. Elementary directed homotopies

- Since the tensor product of cubical setsis not symmetric, the elementary directed interval produces a
left (elementary) cylinder ti®X and aright cylinder X®+ti. But each of these functors determines
the other, using the exchange S (2.4.4) and the property S(ti) = ¢i

(1) I: Cub — Cub, IX = t1i®X,
SIS: Cub — Cub, SIS(X) = S(1i®@SX) = X&ti.

- Theleft cylinder | hastwo faces and a degeneracy, the following natural transformations

(2) %X — IX, 9*(X) = a®x (e =0, 1),
elX — X, e(uex) = ey(x).

- | hasaright adjoint, the (elementary) left cocylinder or left path functor P, which shifts down all
components discarding the faces and degeneracies of index 1 (which are then used to build the faces
and degeneracy of P, asnatural transformations)

(3) P:Cub — Cub, PY = ((Yn+), (0741), (8+1)),

9* = o PY — Y, e=e:Y — PY.
- An (elementary) left homotopy f: f~ — | f*: X — Y isdefinedasamap f: IX — Y with fo* =
fe. Or, equivalently (because of the adjunction), asamap f: X — PY with 9%f =f% Thissecond
expression leadsimmediately to asimple expression of f asafamily of mappings
(@) foi Xn = Yna, 0% fn = fog 0, e+ fa = fre,

o fn = f@ (a=%; i=1,..,n).

- Dually, the right cylinder SIS(X) = X®ti hasaright adjoint SPS, the right cocylinder or right

path functor, which discards the faces and degeneracies of highest index (used again to build the
corresponding natural transformations)

(5) SPS: Cub — Cub, SPS(Y) = ((Yn+), (69, (&),
9% SPS(Y) — Y, % = (941" Y1 — Yn)n=0s
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eY — SPY(Y), e = (én+1: Yn — Yn+Dn=0.
- An (elementary) right homotopy f: f~ —gf*: X — Y isamap f: X — SPS(Y) with faces 9%f =
f¢, i.e. afamily (f,) suchthat
(6) fni Xn = Yns, 0 fn = fnq 09, e fr1 = fhe,
041 f, = f¢ (o =%; i=1,..,Nn).
- Elementary homotopies of cubical sets (without connections) are a very defective notion: one cannot
even contract the elementary interval 1i to avertex.

- Moreover, to obtain 'non-elementary' paths which can be concatenated and a fundamental category
tT11(X), one should use - instead of the elementary interval ti = 1[0, 1]z - the directed integral line
1Z (2.5), asin [GX] for simplicial sets: paths are parametrised on 1Z and eventually constant.

- But here we are interested in homology, where concatenation is surrogated by formal sums of cubes,
and we will restrain ourselves to proving its invariance up to elementary homotopies, right and |eft.
Also, we prefer not to rely on the geometric realisation, which would ignore the directed structure.

- The category Cub has left and right internal homs, which we shall not need (see [BH]). Let us
only recall that theright internal hom CUB(A, Y) can be constructed with the left cocylinder functor
P and its natural transformations (which produce a cubical object P*Y)

(7) @A — CUB(A, ), CUBL(A, Y) = Cub(A, PY).

3.2. Cones and suspension
- Theleft upper cone C*X isdefined asthe first pushout, below

X - IX X —— {*}
M L I
{*} — C*'X IX — CX

vt Y

i.e., the quotient (IX+{*})/(6*X+{*}), where the upper basis of the cylinder is collapsed to an
upper vertex v* =v*(x), while the lower basis 9= X — IX — C*X ‘subsists. Dually, the left
lower cone CX isdefined as the second pushout, above, obtained by collapsing the lower basis of
IX toalower vertex v—=v(*).

- Analytically, we can describe C*X saying that it is generated by (n+1)-dimensional cubes u®x &
IX (XEXp) plusavertex v*, under therelations arising from X together with

(2) 1ex = (v (XEXp).

- Similarly, the left suspension =X is defined as the colimit of the left diagram
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X — {*} .
| X —— C*X
d
©) X ——= IX v o | -l
| N CX — =X
() ——— =X :

Vv

obtained by collapsing, independently, the bases of 1X to alower and an upper vertex, v— and v*.
Equivalently, it is the right-hand pushout, above.

- Thus, the suspension of ¥ = D{0, 1} yieldsthe 'ordered circle’ 1ol (2.5.6)

vt — vt
(4) v { fu u = <Opu>, Uu' = <1leu>,
v — v~

where <—> denotes equivalence classes in the pushout (3). More generally
(5 ="(s% = 10"

- The pointed suspension, studied in [G1, Section 5], yields the directed spheres 1s".

3.3. Geometric realisation
- We have aready recalled, in 1.1, the functor

(1) ©o:Top — Cub, oT = Top(l*, T),

which assigns to a topological space T the singular cubical set of (continuous) n-cubes I" — T,
produced by the cocubical set of standard cubes I* = ((I"), (), (&)) (1.1.2). Asfor simplicial sets,
the geometric realisation RX of acubica set isgiven by theleft adjoint functor R — o

R
(2 Cub == Top RX) = (S 1")/~,

o

which takes acubical set X to atopological space, by pasting a copy of the standard cube 1"®) for
each cube x (of dimension n(x)), along faces and degeneracies. More precisely, the equivalence
relation ~ is generated by the pair of points which corresponds themselves, along the mappings
induced by faces (5) and degeneracies (gj)

(3 %I — N (for y = a9x), gir 1IN — N0 (for x = gqy).

- This pasting (formally, the coend of the functor X-.1*: T°PxI — Top) comes thus with afamily of
structural mappings, one for each cube x, coherent with faces and degeneracies (of 1 and X)

(4 Xx: 1" — RX, o8 = (09%)°,  xeei = (&%),

and RX hasthe finest topology making all the structural mappings continuous.

- Thisrealisation isimportant, since it iswell known that the combinatorial homology of a cubical set
X coincides with the homology of the CW-space RX (cf. [Mu, 4.39], for the simplicial case). But
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there are finer 'directed realisations, keeping information about the privileged cubesof X (see8.11
or [G1, 1.9]).

4. Directed homology of cubical sets [G1, Section 2]

Combinatorial homology of cubical sets is a ssmple theory with evident proofs. We study its
enrichment with a natural preorder, showing that it is preserved and reflected by excision (4.4) and
tensor product (4.5), but not preserved by the differentials of the usual exact sequences (cf. 4.4).

4.1. Directed homology

- Every cubical set X determines a collection DegnX = U; Im(g: X1 — X,) of subsets of
degenerate elements (with DegpX = @); this collectionisnot acubical subset (unless X isempty),
but satisfies weaker conditions (for all i =1,..., n)

(1) xEDegX = (Ix € DegnaX or 97X =97X), e(Degn1X) C DegnX.

- The cubica set X determines a (normalised) chain complex of free abelian groups

(2) Cn(X) = (ZX)/(ZDegnX) = ZXn (Xn = Xn\ DegnX),
an(x) = Zio (D) (@5%) (X € Xp),

where ZS isthefree abelian group ontheset S and X isthe class of the n-cube x. We often write

the normalised class x as x, identifying all degenerate cubes with 0.

- Each component can be preordered by the positive cone of positive chains NX,,, and will be written
as 1Cn(X) when thus enriched.

- The positive cone is not preserved by the differential 9,: 1Cn(X) - 1Ch_1(X), whichisjust a
homomorphism of the underlying abelian groups (as stressed by marking its arrow with adot).

- A morphism of cubical sets f: X — Y induces a sequence of preorder-preserving homomorphisms
1Ch(X) — 1CH(Y). We have defined a covariant functor

(3 1C,:Cub — dC,AD,

with valuesin the category dC,Ab of directed chain complexes of abelian groups (directed referring
to the preorder of components, preserved by chain homomorphisms).

- The directed homology of acubical set is a sequence of preordered abelian groups
(49 tHp: Cub — dAD, tHR(X) = tHR(1C, X)),

where the directed homology tHp(1C,) of adirected chain complex is its ordinary homology
equipped with the preorder induced on the subquotient Kera/Iman.1.

- When we forget preorders, the usual chain and homology functorswill be written as usual
(5) C.:Cub — C,Ab, H,: Cub — Ab.

-If T isatopological space, we have Hy(T) = H,(2 T). Here we are not likely losing any essential
information with respect to tH,(2 T). Infact, 1Ho(2 T) has an obvious order generated by the
homology classes of points (4.2.1), while the preorder of tH1(0 T) is easily seen to be chaotic:
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every homology class belongs to the positive cone (for every 1-cube a: | — T, thereversed cube ap
produced by thereversion p: | — | isequivalentto —a, modulo boundaries).

4.2. Elementary computations

- The homology of asum X =X X; isadirect sum tH.X = ®; tHpX; (and every cubical set isthe
sum of its connected components).

- Also here (as for spaces) it is easy to seethat, if X isconnected (non empty), then tHo(X) = 1Z
(via the augmentation do: 1CoX = 1ZXg — 1Z taking each vertex x&Xg to 1€Z). Thus, for
every cubical set X

(1) tHo(X) = 1Z.xoX,

isthe free ordered abelian group generated by the homotopy set moX (2.3).

- In particular, 1Ho(1s%) = 1Z2. Now, it is easy to see that, for n>0

(2) tHN(1s") =12,

isthe group of integers with the natural order: anormalised n-chain ku (notation of 2.5) is positive if
andonly if k=0 (andisawaysacycle).

- On the other hand, tHx(10") = 14Z hasthe discrete order: the positive coneisreduced to 0. In fact,
anormalised n-chain hu' + ku" (notation of 2.5) isacyclewhen h+k =0, and a positive chain for
h=0, k=0. The directed homology of the elementary directed torus 1t2 is easy to determine; but
we shall computeit for all 1t" (4.6.2).

4.3. Invariance Theorem

- The homology functor tHpn: Cub — dAb isinvariant for left (or right) immediate homotopies:
given f: f~ — | f*: X — Y, then tHu(f) = tHu(fY).

Proof. We can forget about preorders. By 3.1.4, the homotopy f: f~ — | f*: X — Y has

(D o Xn = Yne, ¢t = fhaof, ffn = 1% fre = exfna (1<isn),

|
and produces a homotopy of the associated (normalised) chain complexes
(2 fni CX — Cpaa, fo(DegnX) C DegnaaY,
an+1fn = 81 fn - E)I fn _ZIOL (_1)|+(X 8?+1 fn = f:]- _fﬁ - fn_l an. O

4.4, Mayer-Vietoris and Excision

- Given two cubical subsets U, V C X, their union UuV (resp. intersection UnV) just consists of
the union (resp. intersection) of all components. Therefore, 1C, takes subobjects of X to directed
chain subcomplexes of 1C« X, preserving joins and meets

(D 1C(UuV) = 1CU +1CyV, 1C«(UnV) = 1C U N 1C V.
These facts have two important consequences

Theorem (The Mayer-Vietoris sequence). Let the cubical set X be covered by its subobjects U, V,
i.e. X = UuV. Then we have an exact sequence
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(ix, jx) [Us, —Vs] A
(2 ...— tHy(UNV) —— (HpU)®(tHRV) —— tHp(X) — tHpa(UNV) — ...
with the obvious meaning of brackets, themaps u: U — X, v:V — X, i:UnV — U, j:UnV —
X areinclusions and the connective A (which does not preserve preorder!) is:

(3 Alc] = [dndl, c=atbh (@€ 1Ch(U), bE 1Cx(V)).
The sequenceis natural, in an obvious sense.

Theorem (Excision). Let acubical set X be given, with subobjects B C YNA. Theinclusion map

i:(Y,B) — (X,A) issaid to be excisive whenever Y\ B,=Xy\Ap, foral n (or equivalently:

YUA = X, YNA =B, in the lattice of subobjects of X). Then i induces isomorphismsin
homology, preserving and reflecting preorder.

Hints. The proof is similar to the topological one, ssimplified by the fact that here no subdivision is
needed. For Mayer-Vietoris, it is sufficient to apply the algebraic theorem of the exact homology
sequence to the following sequence of directed chain complexes

(%, Jx) [Us, V4]

—  (1CU)e(1CsV) —— 1C(X) — 0

@ 0 — 1C(UnV)

whose exactness needs one non-trivial verification. Take a&€ 1CyU, b& 1C,V and assume that
Ux(a) = v« (b); therefore, each cube redlly appearingin a (and b) belongsto UnV; globally, there
is(one) normalised chain c & 1C,(UNV) suchthat i«(c) =4, ix(c) =h.

- For Excision, the proof reduces to a Noether isomorphism for directed chain complexes
(6) 1C«(Y,B) = (1GY)(Cx(YNA)) = (1CY)/(C+Y N CiA)
= (1CY +1CA) [ (CxA) = (1Cx(YUA)) [ (CkA) = 1Ci(X, A). o

4.5. Theorem (Tensor products)

- Given two cubical sets X, Y, thereisanatura isomorphism and a natural monomorphism

(1) 1C.(XeY) = 1C,.(X) ® 1C.(Y), tH.(X) ® 1HL(Y) — tH.(X®Y).

Proof. It suffices to prove the first part, and apply the Kinneth formula. First, the canonical
(positive) basis of the preordered abelian group 1Cp(X)®1C4(Y) is XpxYq (asin4.1, Xp = Xp\
DegpX).

- Recall now that the set (X®Y), isaquotient of Xp.q=n XpxYq modulo an equivalence relation
which only identifies pairs where aterm is degenerate (2.4.1); moreover, aclass x®y isdegenerateif
and only if x or y isdegenerate (2.4.3). Therefore, the canonical positive basis of 1CL(X®Y) is
precisely the sum (digjoint union) of the preceding sets >_(p><\7q, for p+q=n. We can identify the
preordered abelian groups

(2) 1Ch(X®Y) = @pig=n 1Cp(X) ® 1Cy(Y),

respecting the canonical positive bases. Finaly, the differential of an element x®y, with (x,y) €
XpxYg, isthe samein both chain complexes



15

) Zie (D) 91 (x@y) = Tigpa (D) (9X)Y + Zjcqa (FPHH x0(35y)
= (0pX)®Y + (=1)P x®(dqy)- o

4.6. Elementary cubical tori

- The graded preordered abelian group of acubical set X will be written as aformal polynomial
(1) tH.X) = Zj ol tHi(X),
whose coefficients are preordered abelian group, while o' shows the homology degree.

- One can think of o' as a power of the suspension operator of chain complexes (acting on a
preordered abelian group, embedded in dC,Ab in degree 0): then the expression (1) is adirect sum
of graded preordered abelian groups; and the direct sum of such objects amounts to the sum of the
corresponding polynomials (computed by means of the direct sum of the coefficients, in the obvious
way).

- Using 4.5, it is easy to see that the directed homology of the elementary torus 1t" = (1s)®" is:
@) tH(1") = (1Z +6.4Z)®" = 1Z + 042D + 624Z2Q) + .. + o"1Z,

where, of course, apower 1ZK has the product order.

- In cohomology, one can show that multiplication need not preserve the positive cone [G1, 2.9].

4.7. Some hints at pointed homology and pointed suspension [G1, Section 5]

- A pointed cubical set (X, Xg) isacubical set with adistinguished vertex xo € Xp; together with
the pointed morphisms (preserving the base-points), they form a category Cub,.. One definesin the
obvious way pointed homotopies, the pointed suspension and pointed directed homology [G1,
Section 5]. (The latter only differs from the ordinary directed homology in degree zero; it is a sort of
reduced homology, better suited for ordering.)

- Asprovedin [G1, Thm. 5.4], there is a natural isomorphism of preordered abelian groups
(1) tHA(X, x0) = tHp+(Z(X, X)), [2 Mxk] — [2 Ma<uexic>] (n=0),

where < —> denotes equivalence classes in 2(X, Xg) as aquotient of (X, Xp), and u isthe
generator of the elementary interval 1i.

5. Action of groups on cubical sets [G1, Section 3]

The classical theory of proper actions on topological spaces, as developed in [Ma, IV.11], is
extended to free actions on cubical sets. G is a group, always written in additive notation
(independently of commutativity); the action of an operator geG on an element X is written as x+g.

5.1. Basics

- Takeacubical set X and agroup G acting on it, on the right: we have an action x+g (XEXy,
geG) on each component, consistently with faces and degeneracies (or, equivalently, a cubical object
in the category of G-sets).
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- The cubical set of orbits X/G has components X,/G and the induced structure; there is a natural
projection p: X — X/G.

- Say that the action isfreeif G acts freely on each component: if x = x+g, for some x&X, and
geG, then g=0. Thisisequivalent to sayingthat G actsfreely on the set of vertices Xy (because
X =x+g impliesthat their first vertices coincide).

- Wewill extend to free actions on cubical sets the classical results of actions of groups on topological
spaces [Ma, 1V.11], which hold for groups acting properly on a space, a much stronger condition
(every point has an open neighbourhood U such that all subsets U+g are digoint). But note that all
results below which involve the homology of G ignore preorder, necessarily (6.5).

5.2. Lemma (Free actions)

(@) If G actsfreely onthecubical set X, then 1C,(X) isacomplex of free right G-modules, with a
(positive) basis B, C X, which projects bijectively onto X,/G, the canonical basisof 1CL(X/G).

(b) The canonical projection p: X — X/G induces an isomorphism of directed chain complexes, and
hence an isomorphism in homology (t1Z isviewed asatrivial G-module)

D p1C(X)®c1Z — 1C(XIG), P.n: HW(1C,(X)®c1Z) — tHn(X/G).

Proof. (This Lemma adapts [Ma, IV.11.2-4]). It is sufficient to prove (a), which plainly implies (b).
Theactionof G on X, extendsto aright action on the free abelian group ZX,, consistent with
faces and degeneracies and preserving the canonical basis; it induces thus an obvious action on
1Ch(X) = 1ZX,, consistent with the positive cone and the differential

(2 (Enx)+g = Zn(x +09), I nix)) +g = X AiXi + ).

Thus 1C(X) isacomplex of G-modules, whose components are preordered G-modules. Take
now asubset By C X choosing exactly one point in each orbit; then Bg isaG-basisof 1Cq(X).
Letting B C X be the subset of those non-degenerate n-cubes x whose 'initia vertex' 97...97x
belongsto By, we have more generally a G-basisof 1Cy(X) which satisfies our requirements. o

5.3. Theorem (Free actions on acyclic cubical sets)

Let X bean acyclic (connected) cubical set and G agroup acting freely on it. Then, forgetting
preorder in combinatorial homology

(1) H.(X/IG) = H,(G).
Proof. Asin [Ma, 1V.11.5], the augmented sequence
2 .—-CX)—=C(X)—2z2—=0

isexact, since X isacyclic (hasthe homology of the point). By 5.2a, this sequence forms a G-free
resolution of the G-trivial module Z. Therefore, applying the definition of Hn(G) and the
isomorphism 5.2.1, we get the thesis for homology (and cohomology as well)

(3 Hn(G) = Hn(C.(X)®cZ) = Hn(X/G). o



17

5.4. Corollary (Free actions on acyclic spaces)

Let T bean acyclic (path connected) topological space and G agroup acting freely on it. Then
H.((o T)/G) = H,(G), and tH1((o T)/G) has a chaotic preorder. (The same holds in cohomol-

ogy.)

Proof. It suffices to apply the preceding theorem to the singular cubical set o T of continuous cubes
of T. Thiscubical set has the same homology as T, and G acts obviously on it, by (x+g)(t) =
x(t)+g (for t€IM). Moreover, the action is free because so it is on the set of vertices, T. Finally,
the remark on preorder isproved asfor tHy(2 T), in 4.1. m

6. Noncommutative tori, Kronecker foliations and cubical sets [G1, Section 4]

We compute the directed homology of various cubical sets, related with 'virtual spaces of
noncommutative geometry: irrational rotation algebras and noncommutative tori of dimension= 2; o
and ¢ will always denoteirrational real numbers.

6.1. Rotation algebras
- Let us begin recalling some well-known 'noncommutative spaces.

- First, take the line R and its (dense) additive subgroup Gy = Z+9Z, acting on the former by
trangations. In Top, the orbit space R/Gg = SY/9Z istrivial: an uncountable set with the coarse
topology.

- Second, consider the Kronecker foliation F' of thetorus T2 = R%/Z2, with slope 9 (recalled in
6.3), andthe set T2 =T%=¢ of itsleaves. Itiswell known, and easy to see, that the sets R/Gy and
T§ are in bijection (cf. 6.3). Again, ordinary topology gives no information on T2, since the
quotient T%/= in Top iscoarse (every leaf being dense).

- In noncommutative geometry, both these sets are 'interpreted' as the (noncommutative) C*-algebra
Ay, generated by two unitary elements u, v under the relation vu = exp(2=i9).uv, and caled the
irrational rotation algebra associated with 9, or aso a noncommutative torus[C1, C2, Ri, BI]. Both
its complex K-theory groups are two-dimensional .

- A relevant achievement of K-theory [PV, Ri] classifies these algebras, by proving that Kg(Ag) =
Z+9Z asan ordered subgroup of R; more precisely, the traces of the projections of Ay cover the
set GyN[O, 1]. Therefore [Ri, Thm. 2 and Thm. 4]:

- (@ Ay and A areisomorphicif andonly if cE+ 9+ Z,;

- (b) Ay and A arestrongly Morita equivalent if and only if & and ¢ are equivalent modulo the
fractional action (on theirrationals) of thegroup GL(2, Z) of invertibleintegral 2x2 matrices

ab _a+b . _
1) (c d)'t ~ ct+d (ab,c,deZ; ad—-bc=1+1),

(or the action of the projective genera linear group PGL(2, Z) onthe projective line).
- Since GL(2,Z) isgenerated by the matrices

@r=(15)  T=(1)

the orbit of 9 isitsclosure {9}rt under the transformations R(t) =t and T*(t) =t+1 (on R\Q)
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- We show now how one can obtain similar results with cubical sets naturally arising from the
previous situations: the point is to replace atopologically-trivial orbit space T/G with the correspond-
ing quotient of the singular cubical set o T, identifying the cubes I" — T modulo the action of G.

6.2. Irrational rotation structures

(a) Now, instead of considering the trivial quotient R/Gg of topological spaces, wereplace R with
thesingular cubical set o R (onwhich Gy actsfreely) and consider the cubical set (o R)/Gg.

- Applying Corollary 5.4, we find that the cubical set (0 R)/Gy has the same homology as the group
Gy = Z2, which coincides with the ordinary homology of the torus T2
(1) H.((BR)IGy) = H,(Gp) = H(T? = Z+0.2%2+5%Z;

(the last fact follows, for instance, from the classical version of Theorem 5.3 [Ma, 1V.11.5], applied
to the proper action of the group Z2 on the acyclic space R?). We aso know that directed homology
only givesthe chagtic preorder on tH;((2 R)/Gg) (again by 5.4).

- In cohomology, we have the same graded group. Algebraically, thisisin accord with the K-theory
of therotation algebra Ay, since both H&&((o R)/Gg) and HO¥((o R)/Gg) are two-dimensional.

(b) A much moreinteresting result (and accord) can be obtained from the cubical sets

(20 o0tRCBOR, the cubical set of the ordered line,

0 ,tR = theset of continuous order-preserving mappings I" — R;
(3 o1st = (01R)/Z, the cubical set of the directed circle.
- We want to classify the isomorphism classes of the cubical sets
(4 Cy = (91R)IGy = (o 1SH/vZ, theirrational rotation cubical set (associated to 9 & Q).

- We prove below (Theorems 6.7, 6.8) that 1H1(Cy) = 1Gg, asan ordered subgroup of the line and
that the cubical sets Cy have the same classification up to isomorphism as the rotation algebras Ay
up to strong Morita equivalence: while the algebraic homology of Cg isthe same asin (a),
independent of 9, the (pre)order of directed homology determines 9 up to the equivalence relation
1Gy = 1G;, whichamountsto 9 and ¢ being conjugate under the action of the group GL(2, Z).

- Note that the stronger classification of rotation algebras up to isomorphism (recalled in 6.1) has no
analogue here: cubical setslack the 'metric information’ contained in C*-algebras.

- Note also the role of the ordered cube 1" (with its faces and degeneracies) for defining © 1R.
Presumably, this cannot be easily transferred to a simplicial approach: the standard realisations of A"
in R™1 or R" are of no use (the former inherits the discrete order while the latter has a ‘diagonal’
face not consistent with ordering). Other realisationsin R" have complicated faces. Not to mention
the problem of having a subdivision consistent with ordering (which has an obvious solutionin 11).

6.3. The noncommutative two-dimensional torus

Consider now the Kronecker foliation F' of thetorus T2 = R%Z2, with irrational slope 9, and
theset T2=T%=p of itsleaves. F and =g areinduced, respectively, from the following foliation
F=(F) andequivalencerelation = on the plane
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(D) F={(xy)ER? | y=9x+2} (»ER),
x,y) = (X,y) = y+k—9(x+h) = y'+k'—9(x'+h’) (for some h, k, h', k' € Z).
Now, we interpret T§ asthe quotient cubical set (0 T2)/=g, i.e. the cubical set of the torus (or of
the plane) modul o the equivalence relation induced by projecting cubes modulo =g (or modulo =).

This can be proved to be isomorphic to the previous cubical set K = (2 R)/Gg [Gl, 4.3]; the
isomorphism is induced by the following maps:

(20 iR — R2 i(t) = (0, 1), p:R2 — R, p(X,y) = y—ox.

6.4. Higher foliations of codimension 1

(a) Extending 6.2a and 6.3, take an n-tuple of real numbers 9 = (94,..., 9), linearly independent on
the rationals, and consider the additive subgroup Gy =X 9;Z = Z", acting freely on R. (The
previous case corresponds to the pair (1, 9).)

- Now, the cubical set (0 R)/Gg has the homology (or cohomology) of the n-dimensional torus T"
(notation asin 4.6)

(1) H,(SR)Gs) = Hy(Gp) = H(T) = Z + 0.2® + 62.20) + ... + o".Z.
- Again, this coincides with the homology of a cubical set arising from the foliation F of the n-
dimensional torus T"=R"/Z" induced by the hyperplanes X; 9jx; =2 of R".

(b) Extending now 6.2b (and Theorem 6.7), the cubical set (o tR)/Gg has a more interesting
directed homology, with arelevant total order in degree 1.

(2) tH((7 t1R)/IGy) = 1Gy = 1(Zj 92) (G =Gy N RY).

6.5. Remarks

- The previous results show also that it is not possible to preorder group-homology so that the
isomorphism H,(G) =~ H,(X/G) (5.3.1) be extended to 1H,(X/G): agroup G can act freely on
two acyclic cubical sets X; producing different preorders on some 1H(Xi/Gg).

- Infact, it issufficient to take Gy = Z+9Z, asabove, and recall that 1H1((© R)/Gg) has achaotic
preorder (5.4) while 1H1((0 1R)/Gy) = 1Gy istotally ordered (6.7).

6.6. Lemma

Let 9, ¢ beirrationals. Then Gy = G, assubsetsof R, if andonly if c € +9+Z. Moreover
the following conditions are equivalent

(@ 1Gy = 1G¢ asordered groups,
(b) © and t are conjugate under the action of GL(2, Z) (6.1.1),
(c) ¢ belongstotheclosure{o}rr of {9} under thetransformations R(t) =t and T*(t) = t+1.

Further, these conditions imply the following one (which will be proved to be equivalent in 6.7)

(d) (7 1R)/Gy = (0 1R)/G; ascubical sets.
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6.7. Theorem (Directed homology of the irrational rotation cubical sets)

The cubical set o tR (6.2b) is acyclic. The directed homology of Cg = (T tR)/Gy isthe
homology of T2, with atotal order on tH; and achaotic preorder on tH,

(1) tH1(Cp) = 1Gy = 1(Z +9Z) (G =Gp N RY),
tH2(Cy) = 1cZ,

and obviously tHg(Cg) = 1Z. The first isomorphism above has a simple description on the positive
cone Gy N R* (p: o 1R — Cy isthe canonical projection)

(2) 911Gy — tH1(Co), ®(p) = [P3p] (p € Gy N R,
.l — R, a(t) = pt.

6.8. Classification Theorem (For the cubical sets of irrational rotation)

The cubical sets (0 t1R)/Gy and (0 tR)/G; are isomorphic if and only if the ordered groups
1Gy and 1G¢ areisomorphic, if and only if 9 and ¢ are conjugate under the action of GL(2, Z)
(6.1.2), if and only if ¢ belongsto the closure {9}rr (6.1.2).

Proof. From Lemma 6.6 and Theorem 6.7. o

7. Metric aspects by normed cubical sets [G2]

7.0. Introduction
- Enriching cubical sets and their homology groups with anorm, we get stronger results.

- First, let us note that this homology norm can distinguish between metrically-different realisations of
the same homotopy type, the one of the circle. Thus, applying the normed directed 1-homology group
N1H; to the standard normed directed circle No 1+S1, where the length of a homology generator is
2n, weget 2x.1Z asanormed ordered subgroup of the line. Similarly, the normed directed 1-torus
No+T =(o01R)/Z gives the group of integers tZ with natural norm and order, since now the
length of a homology generator is 1. Finally, the (naturally normed) singular cubical set of the
punctured plane R2\{0} assignsto the group Z the coarse preorder and the zero (semi)norm,
making manifest the existence of (reversible) 1-cycles of arbitrarily small length (7.6).

- These rather obvious aspects become of interest for the cubical set, Cy = (0 1R)/Gy. We have seen
(6.8) that the classification of the cubical sets Cg up to isomorphism coincides with that of the
algebras Ag up to strong Morita equivalence. The stricter classification of the latter up to
isomor phism suggests that cubical sets provide a sort of 'noncommutative topology', without the
metric character of noncommutative geometry.

- To account for this character, we enrich Cy with a natural normed structure NCy, essentially
produced by the length of (increasing) paths | — R (7.3). Now, normed directed 1-homology gives
N1H1(NCy) = 1Gg asanormed ordered subgroup of R (Thm. 7.7). It follows easily that the
normed cubical sets NCgy have precisely the same classification up to isomorphism as the C*-
algebras Ay (Thm. 7.8).

- We end this introduction with some technical remarks. Norms for cubical sets (7.1) and abelian
groups (7.4) will take valuesin [0, +=], so that these categories have all products (and some useful
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left adjoints); morphisms in these categories are aways assumed to be (weakly) contracting, so that
isomorphisms are isometrical. Moreover, in an abelian group, |x|| =0 will not imply x =0: this
assumption would annihilate useful information, as for the punctured plane recalled above.

- Preorder of homology groups does not play a relevant role here, since the metric information is
sufficient for our main goals; however, preorder is an independent aspect, which might be of usein
other cases. It is also interesting to note that, in the present proofs, the arguments concerning norms
are similar to the ones concerning preorders in the preceding sections, if more complicated; thisis
likely related with the fact that preorder is a simplified, two-valued generaised metric [G2, 1.5].

7.1. Normed cubical sets [G2, 1.1]

- A normed cubical set will beacubical set X equipped with a sequence of 'norms which annihilate
on degenerate elements

(D [=1I- Xn — [0, +oe], le@] = 0 (for al a€ X,).

- We do not require any coherence condition for faces, nor any restriction on the norm of a point; for
instance, a degenerate edge must have norm zero, but its vertices can have any norm. The category
NCub of normed cubical sets has, for morphisms, the (weakly) contracting morphisms of cubical
sets f: X — Y, with |[f,(X)]| = |||, for al xEXi.

7.2. Elementary models [G2, 1.2]

- A normal cubical set hasnorm 1 on all non-degenerate entries (and 0 on the degenerate ones). All the
‘elementary’ cubical sets considered in 2.5 will be equipped with this normal norm and denoted with
the same symbols (in this section).

- 1i = 2: thenormal directed elementary interval, freely gen. (asanormal cubica set) by a1-cube u

u

M 0—1 of(u) =0, oj(w) =1, ull = o]l = |1 = 1.
- The normed directed elementary n-cube 1i™ the normal object generated by one n-cube, for n= 0.
- The normed directed elementary circle 1st: the normal object gen. by a 1-cube u with equal faces

u

(2) * —> % aI(U) = (')I(U), ”U” = "*" =1

- The normed directed elementary n-sphere 1s" (n > 1): the normal object generated by an n-cube u,
al whose faces are totaly degenerate (hence equal)

() 9*u) = (en™Ha"(u), flull = |+l = 1 (=% i=1..,n),
- 19 =% the normal object generated by two vertices.

- The n-dimensional torus 1t" can be defined as a tensor power of 1s![G2, 2.3].

- The normed ordered circle to': the normal object generated by two edges with the same faces

@ v v og(u) = ag(u"), Il = fuil = IvAl = vl = 1.
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- More generally, the normed ordered sphere 10" isthe normal object generated by two n-cubes U,
u" with the same boundary: a§(u’) = o¢(u").

- For the links of these objects with suspension, pointed or not, see 3.2 and [G1, 5.2].

7.3. Normed circles and irrational rotation structures [G2, 1.3-1.4]

- Here, we distinguish between the standard circle St, equipped with the natural geodetic metric, and
the standard 1-torus T, with the metric induced by the line

(1) S' =~ R/2xZ, T = R/Z,

so that a ssimple loop has, respectively, alength of 2r and 1.
- Thenormed directed line No tR will be the cubical directed line 0 1R (6.2.2), with the following,
obvious norm on then-cube a I" — R
2 n=0 [al =1, n=1 [al = a1)-a0), n>1 |l& = 0
notethat, indegree 1, a isanincreasing path and ||a| isitslength.
- Now, thegroups Z and 2xZ act (isometrically) on the line, by trandations, aswell ason NO1R.
The quotient cubical sets are, by definition
(3) No1St = (No 1R)/(2x2), the normed directed circle,
No1T = (NotR)/Z, the normed directed 1-torus,
the quotient normis obvioudly || [@] || = |lal|. (For quotient norms see [G2, 2.1].)
- Similarly, to enrich the cubical set Cy = (o 1R)/Gg with a norm, it suffices to replace the cubical
set o0 1R with thenormed analogue NoOtR . Thegroup Gg=Z+38Z actsisometrically onit, and

(4) NCy = (NB1R)/Gy, & Il = llall

7.4. Normed abelian groups and chain complexes [G2, 3.1-3.2]

- Normed directed homology will take valuesin normed preordered abelian groups, a'metric’ version
of the category dAb of preordered abelian groups.

- Here, anormed abelian group L isequipped withanorm |A|| € [0, «] such that

(D 1ol = o, =2 = 1]l [+ ull < [+ -

- Note that, for nEN, weonly have ||n.A|| = n.|[r|| (requiring equality would make quotients difficult
to handle).

- For anormed preordered abelian group 1L, no coherence conditions between preorder and norm
are required. In the category NdAb of such objects, a morphism is a contracting homomorphism
(IFI = IIMD - which respects preorder. But also the purely algebraic homomorphisms of the underly-
ing abelian groups will intervene, denoted by arrowswith adot, - .

- NdAb has al limits and colimits, computed asin Ab and equipped with a suitable norm and
preorder. The tensor product tL®tM of dAb (with positive cone generated by the tensors of
positive dements) can be lifted to NdAb, with anorm

@ el = inf{ 2 [nill-lhall 1 & = 25 2ioui} (€ € tLetM),
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which solves the universal problem for preorder-preserving bi-homomorphisms ¢: tLxtM — tN
suchthat [le(x, W)l = M- llul-

- This makes a closed symmetric monoidal structure: the internal hom tHom(1M, tN) isthe abelian
group of all homomorphisms of the underlying abelian groups, with the positive cone of preorder
preserving homomorphisms and the Lipschitz norm [G2, 2.2].

- The unit of the tensor product is the ordered group of integers tZ with the natural norm, |K|.
Again, the representable functor NdAb(1Z, -), applied to the internal Hom, gives back the set of
morphisms

(3) NdADb(1Z, tL) = B4(L™), Bi(Hom* (1M, t1N)) = NdAb(tM, tN).

- The forgetful functor NdAb — dAb hasaleft adjoint N.tL and right adjoint NotL, respec-
tively giving to a preordered abelian group 1L itsdiscrete co-norm (|jo|| =« for A = 0) or the coarse
one (|rll = 0).

- The forgetful functor NdAb — NSet has aleft adjoint, associating to anormed set S the free
normed ordered abelian group 1ZS, whichisthe free abelian group generated by the underlying set,
equipped with the obvious horm

(4 IZx keXll = Zx Kl lIX,
((ky)xes isaquasi-null family of integers) and with the order whose positive cone isthe monoid NS
of positive combinations, with kyEN.

- NdC,Ab will denote the category of normed directed chain complexes: their components are
normed preordered abelian groups, differentials are not assumed to respect norms or preorders, but
chain morphisms are: they must be contracting and preorder-preserving.

- The normed directed homology of such acomplex 1C, isasequence of normed preordered abelian
groups, consisting of the ordinary homology subquotients

(5) NtHp: NdC,Ab — NdADb, NtHn(1C,) = Kerdn/Imanyg,

with the induced norm and preorder. (To forget about preorder, we take out the prefixes d, 1.)

7.5. Normed directed homology [G2, 3.3]

- The normed cubical set X determines a chain complex of free normed ordered abelian groups
(1) N1Cy(X) = (1ZXn)/(1ZDegnX) = 1ZXp (Xn = Xn\ DegnX),
0n(x) = o () (95%)” (X € Xn).

- Again, we shall write the class X as X, identifying all degenerate cubes with 0. This is consistent
with the norm, since all degenerate chains have norm 0 and all representatives of X have the same
normin tZX. (For this chain complex, we shall avoid the usual term 'normalised’, which might
giveriseto confusion with norms.)

- Also here (cf. 4.1), the positive cone and the norm are not respected by the differential 9,: N1Cr(X)
- N1Cp1(X), which is just a homomorphism of the underlying abelian groups, as stressed by
marking its arrow with a dot.
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- On the other hand, a morphism of normed cubical sets f: X — Y induces a sequence of morphisms
N1Cr(X) — N1Ch(Y), which do preserve preorder and respect norms. We have defined afunctor

(2) N1C,: NCub — NdC,Ab,

with valuesin the category NdC,Ab of normed directed chain complexes of abelian groups (7.4).
- This produces the normed directed homology of a cubical set

(3 N1tHp: NCub — NdADb, N1tHH(X) = NtHRp(N1C,X),

given by the ordinary homology subguotient, with the induced preorder and norm. When we forget
preorder, the normed chain and homology functors will be written as NC, X and NH,X.

7.6. Normed homology of circles and tori [G2, 3.5-3.7]

- The normed directed 1-homology group of the normed directed circle No 1S and 1-torus No 1T
(7.3) are easy to compute, taking into account the length of the standard generating 1-cycle:

(1) NtHy(No1SY) = 2712, NtH(NT1T) = 12,
with the natural norm and order.

- The punctured plane R?\{0} (with the euclidean metric) gets the coarse preorder and the zero
'norm’, since the homology generator contains arbitrarily small cycles

(2) NtHy(Ne (R®\{0})) = NotcZ.
(Of course, in all these cases, NtHq isthe normed ordered abelian group 1Z.)

- Also because of a theorem on the tensor product of nhormed cubical sets [G2, 3.6], the normed
directed homology of the normed torus 1t" = (1s)®" isexpressed asin 4.6

(3 NtH(1tn) = 12 (0<k=<n),

but now 1Z isthe normed ordered abelian group of integers.

7.7. Theorem (Normed homology of the normed cubical sets of irrational rotation) [G2, 4.1]
For any irrational number 9, the normed homology groupsof NCy =(No tR)/Gy (7.3) are:
(1) NH1(NCy)
NHg(NCy)

Gy = Z+9Z C R,
Z C R, NHz(NCﬁ) = NoZ,

(with the norm induced by the realsin degrees 0 and 1; and null in degree 2). The first isomorphism
acts on the positive cone Gg N R* asin6.7.2.

7.8. Classification Theorem (For the normed cubical sets of irrational rotation) [G2, 4.2]
The normed cubical sets (N0 tR)/Gy and (N © tR)/G; are (isometrically) isomorphic if and
only if Gy =G assubsetsof R, ifandonlyif cE+9+Z.

Proof. By Theorem 7.7, if our normed cubical sets are isomorphic, also their normed groups NH;
are, and Gy =~ G (isometrically). Since the values of the norm || —|: Gy — R form the set
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GpnRY, itfollowsthat Gy coincideswith Ge. Findly, if thisisthe case, then 9 =a+ bt and ¢ =
c+dy, whence 9 =a+bc+bdy and d=+1. o

7.9. An extension [G2, 4.3]

- Extending the previous case (and enriching 6.4b), take an n-tuple of real numbers o = (91,..., 9y),
linearly independent on the rationals, and consider the normed additive subgroup Gy = 2 %;Z CR,
acting freely and isometrically on the line. (The previous case corresponds to the pair (1, 9).)

- Again, the normed cubical set (No t1R)/Gg has a normed directed homology, isomorphic to the
normed ordered abelian group 1Gg

(1) NtHy((NZ1R)/Gg) = 1Gy = 1(Z; 9,2) (G}, =Gy N RY).

8. Similar models by equilogical and inequilogical spaces [G3, G4]

After introducing singular homology for D. Scott's equilogical spaces [Sc], we show how these
structures can express 'formal quotients' of topological spaces, which do not exist as ordinary spaces
and are related with well-known noncommutative C*-algebras. This study also uses awider notion of
local maps between equilogical spaces, which might be of interest for the general theory of the latter.

8.1. Equilogical spaces [Sc; G3, 1.1-1.2]
- Equilogical spaces are sort of 'formal quotients' of topological spaces.

- Anequilogical space X = (X*, ~x) will be atopological space X* provided with an equivalence
relation, written ~x or ~. Thespace X* will be called the support of X, whilethe quotient [X|=
X#~ isthe underlying space (or set, according to convenience). One can think of the object X asa
set |X| coveredwithachart p: X* — |X| containing the topological information.

- A map of equilogical spaces f: X — Y (also called an equivariant mapping [Sc]) isamapping f:
[X| = Y| which admits some continuous lifting f': X* — Y#. It can aso be defined as an equi-
valence class of continuous mappings f': X* — Y# coherent with the equivalence relations

D VX, xeX: x~xX =. f(X) ~y f'(X),

under the associated pointwise equivalence relation

2 f~f if (VxeX, fX) ~y f"(X)).

- Thecategory Eql thus obtained contains Top asafull subcategory, identifying the space X with
the obvious pair (X,=x). Anequilogical space X isisomorphic to atopological space A if and
only if A isaretract of X, with aretraction p: X — A whose equivalence relation is precisely
~x. We shall seethat the new category has relevant new objects.

- The terminal abject of Eql isthe singleton space {*}. Therefore, apoint x: {*} — X isan
element of the underlying set [X| = X#/~ (not an element of the support X*). The (faithful) forgetful
functor, with valuesin Top (or in Set, when convenient)

3 |- Eql — Top, IX] = X#/~,
sends f: X — Y tothe underlying mapping f: [X| — [Y| (alsowritten [f|, to be more precise).
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- The'function’ X — X* isnot part of afunctor, asit does not preserve isomorphic objects.

Remarks. Equilogical spaces have been introduced in [Sc] using To-spaces as supports, so that they
can be viewed as subspaces of algebraic lattices with the Scott topology (which is always Tp). The
category so obtained - afull subcategory of the category Eql we are using here - is generally written
as Equ. Asareevant, non obvious fact, Equ iscartesian closed (while Top isnot): one can
define an 'internal hom' ZY satisfying the exponential law Equ(XxY, Z) = Equ(X,ZY); this has
been proved in [BBS]; for other references, see [G3].

- Here, we prefer to drop the condition Tg, so that every topological space be an equilogical one. The
category Eql can be obtained from Top by ageneral construction, as its regular completion
Topreg [CV]. Thisfact can be used to prove that also Eql iscartesian closed [Rs, p. 161].

- Cartesian closednessis crucial in the theory of datatypes, where equilogical spaces originated; but
hereit only plays amarginal role: we are essentially interested in the (easy) fact that the path space X!
existsin Eql, and coincides with the topological onewhen X isin Top [G3, 1.5].

8.2. Limits [BBS; G3, 1.3]
- The category Eql hasall limitsand colimits.

- The construction of products and sumsis obvious: a product ITX; isthe product of the supports
X?, equipped with the product of all equivalence relations; a sum (or coproduct) 2 X; isthe sum of
the spaces Xf‘, with the sum of their equivalences.

- Now, take two maps f, g: X — Y. For their equaliser E = (E¥, ~), takefirst the (set-theoretical
or topological) equaliser Eg of the underlying mappings f, g: [X| — |Y|; then, the space E* isthe
counterimage of Eg in X*, with the restricted topology and equivalence relation; the map E — X
isinduced by theinclusion E# — X#,

- For the coequaliser C of the same maps, let us begin forming the set-theoretical coequaliser of the
underlying mappings f, g: [X| — |Y]: itisaquotient |Y|/R, which can berewrittenas Y#/~¢ by a
suitable equivalence relation coarser than ~v (namely, the counterimage of R aong the projection
Y# — Y| =Y/~y). Then C=(Y# ~(), withthemap Y — C induced by theidentity of Y# (and
represented by the canonical projection |Y| — |C|). Notice that coequalisersin Top (whose
disagreement with products precludes cartesian closedness) are not used.

- An (equilogical) subspace, or regular subobject A = (A#, ~) of X isatopological subspace A# C
X# saturated with respect to ~x, with the restricted equivalence relation. The order relation A C B
(of regular subobjects) amountsto A* C B, or equivalently to |A| C |B|. We say that the equilogical
subspace A isopen (resp. closed) in X if A# isopen (resp. closed) in X# or, equivalently, if the
underlying set |A| isopen (resp. closed) in |X].

- An (equilogical) quotient, or regular quotient of X isthe space X* itself, equipped with a coarser
equivalence relation. A map f: X — Y hasacanonical factorisation through its coimage (a quotient
of X) and itsimage (asubspace of Y)

(1) X — Coim(f) — Im(f) — Y,

where Coim(f) = (X#, R) is determined by the equivalence relation associated to the composed
mapping X# — Y|, while (Im(f))* isthe counterimage of f(|X|) in Y¥.
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- The (faithful) forgetful functor |—|: Eql — Top (8.1.3) isleft adjoint to the (full) embedding Top
C Eql

(2) Top(X|, T) = EqI(X, T) (X in Eql; T in Top),
sinceevery map [X| — T canbeliftedto X*. Theleft adjoint |—| preserves colimits (obviously)

and equalisers, but not products, while the embedding Top C Eql preserves limits (obviously) and
sums, but not coequalisers (see 8.3).

8.3. Equilogical circles and spheres [G3, 1.4]

- The category Eql has various (non isomorphic) models of the circle, i.e., objects whose associated
space is homeomorphicto St. Similar facts happen with other structures of common use in algebraic
topology: simplicial complexes, smplicial sets, cubical sets. We will see that the models we consider
here are equivaent up to 'local homotopy' (8.4).

- First, we have the topological circleitself: St isthe coequaliserin Top of thefacesof | =[0, 1]
Q) % {*} =1, 0%(*) = a (x =0, 1),
and represents loopsin Top (asmaps St — X); italsolivesin Eql.

- But the coequaliser in Eql of the faces of theinterval is produced by the equivalencerelation R;,
which identifies the endpoints

(2 St = (,Ry), the standard equilogical circle;
(Ra will often denote the equival ence relation which identifies the points of asubset A).

- A third model isthe orbit quotient of the action of the group Z ontheline, in Eql

3 St = (R, =2).

- Finally, we consider a sequence of models

(4) Cx = (kl, Ry, the k-gonal equilogical circle,

where kl =1 +... +| (thesumof k copies) and Ry is the equivalence relation identifying the
terminal point of any addendum with the initial point of the following one, circularly. This can be
pictured as a polygon for k = 3; but the definition makes sensefor k=1, and C; = SL.

- There are obvious maps
(5) _._—>Ck+1—>ck—>._.—>C2—>Cl:Sé—>§é—>Sl

(where Cy+1 — Cx collapses the last 'edge'); their underlying map is (at least) a homotopy equiva-
lence. But it is easy to see that any morphism in the opposite direction has an underlying map whichis
homotopically trivial. This situation will be further analysed below (8.4).

- Similarly, indimension n> 0, we have the topological n-sphere S" and
6) Sg = (I", Ry") (the standard equilogical n-sphere),
(M) S = (R", ~n),

where the equivalence relation ~ |, isgenerated by the congruence modulo Z" and by identifying all
points (ti,..., ty) where at least one coordinate belongsto Z.
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- Of course, S°=S2=({0, 1}, =) hasthe discrete topology. All the standard equilogical spheres are
pointed suspensions of SO [G3, 1.6].

8.4. Local maps [G3; 2.1, 2.3, 2.4]

- An important feature of topology is the local character of continuity: a mapping between two spaces
is continuous if and only if it is on a convenient neighbourhood of every point. Thislocal character
failsin Eql: for instance, the canonical map (R,=z) — S! hasatopological inverse St — R/ =2
which cannot be lifted toamap S! — R, even though it can be locally lifted.

- This suggests us to extend Eql to the category EqgL of equilogical spaces and locally liftable
mappings, or local maps. A local map f: X - Y (the arrow is marked with adot) is a mapping f:
IX| — [Y| between the underlying sets which admits an open saturated cover (U;)ig of the space X#
(by open subsets, saturated for ~ ), so that the mapping f has a partial (continuous) lifting fi:
Ui — Y# foral i

1) fx] = [fi(X)], for x€U; and i€l.

- Equivalently, for every point [x] € |X|, the mapping f restrictsto amap of equilogical spaceson a
suitable saturated neighbourhood U of x in X¥. The previous remark on the local character of
continuity in Top has two consequences. the embedding Top C EqL is (still) full and reflective,
with reflector (left adjoint) |—|: EQL — Top.

- Finite limits and arbitrary colimitsof Eql (as constructed in 8.2) still ‘'work' in the extension.

- A local isomorphismwill be an isomorphism of EqL; alocal path will bealoca map | - X; a
local homotopy will be alocal map XxI — Y, etc. Itemsof Eql will be caled global (or
dementary, for paths) when we want to distinguish them from the corresponding local ones.

- Coming back to our models of the circle (8.3), the canonical map S} = (R, =z) — St iseasily
seen to be locally invertible, and these models are locally isomorphic. Thisis not true, in the strict
sense, of the canonical map p: S — Si: thetopologica inverse R/Z — 1/91 cannot be locally
lifted at [Q]; but we see below that alocal inverse up to homotopy exists (8.4).

- Thefact that & and S! be not locally isomorphic can be interpreted viewing St = (I, Ry) asa
‘circle with a corner point' (at [Q]), which elementary paths are not allowed to cross; similarly, Cy
would have k corner points. Thus, elementary paths are able to capture properties of equilogical
spaces which can be of interest, but are missed by local paths, fundamental groups [G3, 2.6] and
singular homology [G3, 3.7], aswell as by any functor invariant up to local homotopy.

- Also in higher dimension, the canonical map (R", ~,) — S" islocaly invertible, while thisis not
true, in the strict sense, for (1", Ryn) — S (n> 0).

Proposition [Local homotopy equivalences of spheres]. All the canonical maps linking the models
of thecircle (8.3.5)

2 .- Cs—C— .. >C—C=8—5 — st
are local homotopy equivalences. The same holds for the higher spheres

3 S0 - - (S3=R" ~n), SI=(" Rym).
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8.5. Singular homology of equilogical spaces [G3, Section 3]

- Singular homology can be easily extended to equilogical spaces and used to study the new objects.
Less trivially, we prove that singular homology can be equivalently computed by local cubes and
deduce that it isalso invariant under local homotopy equivalence.

- Anequilogical space X hasacubical set of singular cubes o X, constructed in the category Eq|l
(1) oX = ((7X), (37), (), opX = Eql(I", X) = (8 X*)/~n.

- Therefore, acube 1" — X isamapping 1" — [X| which can be (continuously) lifted to X# or
also an equivalence class in the quotient of theset o ,(X*) = Top(1", X#) (the n-cubes of the support
X, modulo the associated equivalence relation ~,, obtained by projecting such cubes along the
canonical projection X# — |X|=X#~.

- We have defined in (1) a canonical embedding o: Eql — Cub, actingonamap f: X — Y of
equilogica spaces in the obvious way

2 (opf): o X — ogY, (e H@ = fea (for a I" — X).

- This embedding produces the (normalised) singular chain complex of equilogical spaces and their
singular homology:

(3) C,:Eql — C,Ab, C.(X)
Hn: Eql — Ab, Hn(X)

C.(mX),
Hn(2 X) = Hn(C. (X)),

which extends the singular homology of topological spaces; but we shall see that Hp(X) does not
reduce to the homology of the underlying space, Hn(]X]).

- Using the wider category EqL of local maps (8.4), we have the local cubes a I" - X, the
complex of local chains CL,(X) and thelocal homology groups HL,(X)

(4 olL.X = EqL(I", X), CL,(X)
HLn EqL — Ab, HLn(X)

C.(o LX),
Hn(CL..(X)).

- One can prove that HL,(X) always coincides with the global homology Hn(X) [G3, Thm. 3.5].
Then, the classical (cubical) proof of homotopy invariance (1.7) can be extended to show that:

Theorem [Homotopy Invariance]

Homotopic maps of equilogical spaces induce the same homomorphismsin homology. The same
holds for local homotopy and local homology. Because of the coincidence previously recalled, global
homology is also invariant for local homotopy.

8.6. Actions of groups [G3, 4.1-4.3]

- Let X beatopological spaceand G agroup acting on it. Under appropriate hypotheses, the orbit
cubical set (o X)/G used above can be replaced with the orbit equilogical space (X, =g).

- Wesay that G acts pathwise freely on X if, whenever two paths a, b: | — X have the same
projection to the orbit space X/G, thereis precisely one geG suchthat a=b+ g. Then, the same
works for al pairs of n-cubes a, b: I" — X, and the O-dimensional case shows that the action is
free. On the other hand, a proper action is ways pathwise free.
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- If the action is pathwise free and the space X isacyclic, then the canonical surjection (o X)/G —
o (X, =¢) = (o X)/(=c). isabhijection and (applying 5.4) we have:

(1) H.(X,=¢) = H.((2 X)/G) = H,(G).

(a) Various pathwise free (non proper) actions will be obtained as follows: the space X is an
(additive) topological group and G isatotally disconnected subgroup, acting on X by translations
X+g. Indeed, if the paths a, b: | — X have the same projection to X/G, their difference a—b: |
— G must be constant. (And the action is proper if and only if G isdiscrete.)

(b) Asan example of a free action which is not pathwise free, take a (non trivial) group G acting on
itsunderlying set X, equipped with the coarse topology.

8.7. Equilogical spaces and irrational rotations [G3, 4.5]

- Thegroup Gy C R istotally disconnected, so that its action on the line is aso pathwise free (8.6)
and the homology of the orbit equilogical space (R, =g,) is

(D) H.(R,=g,) = H.((BR)/Gy) = H.(T?).

- Two generators [d], [b] € Hy(R, =g,) = Z2 and agenerator [A] € Hy(R, =g,) = Z aregiven by
the following cycles (asit follows from 6.7, or from its proof for the second case)

2 abl—R, at) =t b(t) = o,
(3) A:[0, 1]2 — RIGy, At t) = to+1t]

this yields a sort of 'homological correspondence’ between the virtual space (R, =g,) and the torus
T2, together with some geometric intuition of the former.

- Algebraically, all thisisin accord with the 'interpretation’ of R/Gg asthe C*-algebra Ay, which
has the same K-theory groups as the torus; but note that here we lose the order information, and we
cannot recover 9, at any extent. This can be obtained enriching equilogical spaceswith preorders.

8.8. Inequilogical spaces [G4]

- The new category is built on the category pTop of preordered topological spaces (and preorder-
preserving maps), in the same way as the category of equilogical spacesisbuilt on Top.

- Aninequilogical space, or preordered equilogical space X = (X¥, ~x) will be apreordered
topological space X* endowed with an equivalencerelation ~yx (or ~); the preorder relation will
generally be written as <x. The quotient [X| = X#/~ will be viewed as a preordered topological
space (with the induced preorder and topology), or atopological space, or a set, as convenient. A map
f: X — Y 'is amapping f: [X| — [Y| which admits some continuous preorder-preserving lifting f":
X# — Y#_ Equivalently, amap is an equivalence class of maps f' in pTop which respect the
equivalence relations (8.1.1), under the equivalence relation f' ~ f" (8.1.2). Note that there are no
mutual conditions among topology, preorder and equivalence relation.

- This category will be denoted as pEql. The forgetful functor
(1) |-l pEal — pTop, X = X#I~x,
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with values in preordered topological spaces (or spaces, or sets, when convenient) sends the map f:
X — Y totheunderlying mapping f: [X| — |Y| (adso written [f[). A point x: {*} — X isan
element of the underlying space |X|.

- The following embeddings will be viewed asinclusions (= isagain the chaotic preorder on a set)

Jp
Top —— pTop (M = ([T, =7), RT) = (T,=7),
@) ) [ (T, <) = (T, =<, =7),
Eql —— pEql (T, ~) = (T, =1, ~).

4

8.9. Directed homology of inequilogical spaces [G4, 3.2]

- Now, an inequilogical space X (onapreordered space X* = (T, <)) hasasingular cubical set

(1) o©o:pEgl — Cub, o.X = pEQI(tIM, X) = (2  XH)/~p,

whose n-component 'is the quotient of © ,X# = pTop(+1", X*) modulo the equivalence relation ~,
obtained by projecting cubes along the canonical projection X# — |X|=X#/~. Noticethat o X isa
subobject of the cubical set of the underlying equilogical space (T, ~)

(2) o X C oy(T, ~) = Eql(In, (T, ~)).

- This canonical embedding of pEqgl in Cub defines the singular homology of an inequilogical
space, again as a sequence of preordered abelian groups:

(3) tHn: pEql — dAb, tHr(X) = tHp(o X)),

and a pEql-map induces preorder-preserving homomorphisms. This functor is homotopy invariant.

- If X isanequilogical space (with the coarse preorder), the cubical set o X is precisely the one
aready considered in 8.5, and the singular homology groups are - algebraically - the same, while their
preorder islikely of no interest.

- In the general case, the groups 1HR(X) can differ - even algebraically - from the groups Hy(T, ~)
of the underlying equilogical space; as atrivial example, if the preorder <x isdiscrete (the equality),
al directed cubes 11" — X areconstant and tH(X) =0 for n>0.

8.10. Classification of the inequilogical spaces of irrational rotation [G4, Section 4]
- Theirrational rotation inequilogica space:
(D Cy = (1R, =g,) = (R, =, =g,),

- Since Gy isatotaly disconnected subgroup of R, and its action on the (ordered) lineis pathwise
free, the directed homolgy of Cg coincides with the one of the cubica set Cy = (0 1R)/Gy

(2) tH(Cy) = tH((T 1R)/Gp) = 1Gs.
- It follows easily:

Classification Theorem (For the inequilogical spaces of irrational rotation)

The inequilogical spaces Cy have the same classification up to isomorphism as the cubical sets
Cy (6.8). o
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- More generdly, let ustake (asin 6.4 and 7.9) an n-tuple of real numbers & = (94,..., 9y), linearly
independent on Q, and consider the additive subgroup Gy = X 9;Z = Z" of the line. Again, the
(totally disconnected) group Gy acts pathwise freely on 1R and on the cubical set o 1R, whence
(3) tH1(1R, =g,) = tH1((2 tR)/Gp) = 1Gy = 1(Zj 92).

- The classification theorem can also be extended to this case.

8.11. Inequilogical realisation [G4, 3.7]

- We end with remarking that acubical set K can be given aredisationin pEqgl which, in contrast
with the classical geometric realisation R(K) in Top (recaled in 3.3), does not lose priviliged
directions. Theinequilogical realisation isthe functor

(1) 1&: Cub — pEql, 1K) = (Bx 11", ~),

left adjointto ©: pEql — Cub (8.9.1). Asin the geometric realisation R(K) = (Zy I"®))/~ (3.3),
the sum is indexed on the cubes x of K, and the equivalence relation ~ is the same (see 3.3.3);
thus, the geometric realisation is precisely the topological space underlying the inequilogical
realisation.

- Itiseasy to provethat 1E(K®L) = 1E(K)xtE(L), putting together the following facts:

(@ thisisobviously truewhen K =1iM L =+i" and K®L =1i™" (representable presheaves),
(b) each cubical set isacolimit of representable ones (say K = colimy 1i"®), L = colimy 1i"V)),

(c) left adjoints preserve colimits,

(3 1€(KeL) = 1&((colimy 1i"®) @ (colimy 1i"M))) = 1€ (colimyy, (11"Me1inM)))

colimyy (1€ (1i"M@1i"W)) = colimyy, (1€ (11"M)x1 € (1iNM))

(colimy 1€ (1i"®))) x (colimy 1€ (1I"M))) = 1E (K)x1E(L). o

Refer ences

[BBS] A. Bauer - L. Birkedal - D.S. Scott, Equilogical spaces, Theoretical Computer Science, to appear.

[BH] R. Brown - P.J. Higgins, Tensor products and homotopies for w-groupoids and crossed complexes,
J. Pure Appl. Algebra 47 (1987), 1-33.

[BI] B. Blackadar, K-theory for operator algebras, Springer, Berlin 1986.

[C1] A. Connes, Noncommutative geometry, Academic Press, San Diego CA 1994.

[C2] A. Connes, A short survey of noncommutative geometry, J. Math. Physics 41 (2000), 3832-3866.
[CV] A. Carboni - E. Vitale, Regular and exact completions, J. Pure Appl. Algebra 125 (1998), 79-116.
[EM] S. Eilenberg - S. Mac Lane, Acyclic models, Amer. J. Math. 75 (1953), 189-199.

[GX] M. Grandis, Higher fundamental functors for simplicial sets, Cahiers Topologie Géom.
Différentielle Catég. 42 (2001), 101-136.

[GY] M. Grandis, Directed homotopy theory, I. The fundamental category, Cahiers Topologie Géom.
Différentielle Catég. 44 (2003), to appear. [Dip. Mat. Univ. Genova, Preprint 443 (2001).]
http://www.dima.unige.it/~grandis/

[G1] M. Grandis, Directed combinatorial homology and noncommutative tori (The breaking of
symmetries in algebraic topology), Math. Proc. Cambridge Philos. Soc., to appear.



33

[Dip. Mat. Univ. Genova, Preprint 480 (2003).] htt p://wwv. di ma. uni ge. it/ ~grandi s/ Bsy. pdf

[G2] M. Grandis, Normed combinatorial homology and noncommutative tori, Dip. Mat. Univ. Genova,
Preprint 484 (2003). http://wwmw. di ma. uni ge. i t/ ~grandi s/ Bsy2. pdf

[G3] M. Grandis, Equilogical spaces, homology and noncommutative geometry, Dip. Mat. Univ. Genova,
Preprint 493 (2003). htt p://ww. di ma. uni ge. it/ ~grandi s/ Eql . pdf

[G4] M. Grandis, Inequilogical spaces, directed homology and noncommutative geometry, Dip. Mat.
Univ. Genova, Preprint 494 (2004). htt p: // ww. di nma. uni ge. it/ ~gr andi s/ pEqgl . pdf

[GM] M. Grandis - L. Mauri, Cubical sets and their site, Theory Appl. Categ. 11 (2003), No. 8, 185-211
(electronic). http://tac.nta.cal/tac/

[HW] P.J. Hilton - S. Wylie, Homology theory, Cambridge University Press, Cambridge 1962.
[Ka] D.M. Kan, Abstract homotopy I, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 1092-1096.
[Ma] S. Mac Lane, Homology, Springer, Berlin 1963.

[Ms] W. Massey, Singular homology theory, Springer, Berlin 1980.

[Mu] JR. Munkres, Elements of algebraic topology, Perseus Publ., Cambridge MA, 1984.

[PV] M. Pimsner - D. Voiculescu, Imbedding the irrational rotation C*-algebra into an AF-algebra, J.
Operator Th. 4 (1980), 93-118.

[Ri] M.A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.

[Rs] G. Rosolini, Equilogical spaces and filter spaces, Categorical studies in Italy (Perugia, 1997). Rend.
Circ. Mat. Palermo (2) Suppl. No. 64, (2000), 157-175.

[Sc] D. Scott, A new category? Domains, spaces and equivalence relations, Unpublished manuscript
(1996). ht t p: / / www. cs. cmu. edu/ Groups/ LTC/



