EXAME DE ÁLGEBRA LINEAR LEAmb, LEMat, LQ, MEBiol, MEQ

(11/JANEIRO/2008) Duração: 3H

Nome do Aluno:	Número:
Curso: Tur	ma:
Advertência: há 9 enunciados parecidosmas distintos	
Teste 3 (1h30m de duração): problemas	I 5 I 6 I 7 I 8 II a II b II c II d IV b

GRUPO I (8 valores) Perguntas de escolha múltipla

Cotação de cada pergunta de escolha múltipla: 1v. Resposta em branco: 0v. Resposta errada: -0,3v.

- 1. Para cada parâmetro real α , considere o sistema de equações lineares cuja matriz aumentada $\begin{bmatrix} A | b \end{bmatrix} \in \begin{bmatrix} 1 & 1 & \alpha & | 1 \\ 0 & \alpha & 0 & | 1 \\ \alpha & 0 & -1 & | 1 \end{bmatrix}$. Considere as seguintes afirmações:
 - I) Se $(\frac{1}{2}, 1, -\frac{1}{2})$ é solução de Au = b, então $\alpha = 1$.
 - II) O sistema Au = b é possível e indeterminado para um único valor de α .
 - III) O sistema Au = b é possível e determinado para um único valor de α .
 - IV) O sistema Au = b é impossível para um único valor de α .

A lista completa de afirmações correctas é

- 2. Sejam $a, b \in \mathbb{R}$, $A = \begin{bmatrix} a^2 & -b \\ b & b \end{bmatrix}$ e $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ tais que det(A) = 1. Considere a seguinte lista de afirmações:
 - I) $\det(PA) = \det(AP) = 1$.
 - II) $\det(2A) = 2.$
 - III) det $((I + P)(A^3 + 2A^2 + I)) = 0$, onde I designa a matriz identidade 2×2 .
 - IV) A entrada (1,2) de $A^{-1} \notin b$.

A lista completa de afirmações correctas é

- A) II, III B) I, IV O III, IV D) II, IV
- 3. Para cada $a \in \mathbb{R}$ sejam $v_1 = (1, 0, 0, 2), v_2 = (1, 0, 1, 0)$ e $v_3 = (2, 0, 1, a)$. Seja ainda $V = L(\{v_1, v_2, v_3\})$. Considere a seguinte lista de afirmações:
 - I) Os vectores v_1, v_2, v_3 são linearmente dependentes para um único valor de a.
 - II) dim(V)=3 para $a \neq 2$.
 - III) O conjunto $\{v_1, v_2\}$ é uma base de V para a = 2.
 - IV) $\dim(V)=3$ para qualquer valor de a.
 - A lista completa de afirmações correctas é
 - A) II, III, IV (B) I, II, III (C) I, IV (D) II, III

4. Seja $V = \{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$. Considere a seguinte lista de afirmações:

- I) $\dim(V) = 1$.
- II) $\{(-1, 1, 0, 0), (-1, 0, 1, 0), (1, 0, 0, -1)\}$ é uma base de V.

III) $\{(1,1,1,1)\}$ é uma base de V^{\perp} , usando o produto interno usual.

A lista completa de afirmações correctas é

A) I, II (B) II, III C) I, III D) I, II, III

5. Considere a base canónica $Bc = \{e_1, e_2\}$ de \mathbb{R}^2 e $T : \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear tal que $M(T; Bc, Bc) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Qual das seguintes afirmações é verdadeira? A) $(0,0) \notin \operatorname{Nuc}(T)$. B) T((2,3)) = (3,-2).C) O escalar $\lambda = 0$ é valor próprio de T. D) Para quaisquer $u, v \in \mathbb{R}^2$, $\measuredangle(u, v) = \measuredangle(T(u), T(v))$, onde \measuredangle designa o ângulo. 6. Sejam $v_1 = (2, 1, 0), v_2 = (-1, 0, 1), p = (1, 1, 1)$ e $E = L(\{v_1, v_2\})$ o subespaço linear de \mathbb{R}^3 gerado por $v_1 \in v_2$. Usando o produto interno usual em \mathbb{R}^3 , considere a seguinte lista de afirmações: I) $\dim(E^{\perp}) = 1$. II) $\{(1, -2, 1)\}$ é uma base de E^{\perp} . III) $\{(-1,0,1), (1,1,1)\}$ é uma base ortogonal de E. IV) dist $(p, E) = \sqrt{3}$. A lista completa de afirmações correctas é A) I, II, III B) II, III, IV C) I, III, IV D) I, II, III, IV 7. Seja F o espaço linear das funções de \mathbb{R} para \mathbb{R} , infinitamente diferenciáveis e $T: F \to F$ a aplição linear T(f) = f', onde f' designa a derivada de f. Considere a lista de afirmações: I) Para cada $a \in \mathbb{R}$, a função $f(x) = e^{ax}$ é um vector próprio de T. II) T é injectiva. III) Se f é um polinómio de grau 99, então T(f) também é um polinómio de grau 99.

IV) O número de valores próprios de T é finito.

A lista completa de afirmações correctas é

$$\mathbf{A}$$
 B) II C) III D) I, IV

8. Considere o sistema de equações diferenciais com valor inicial: $\begin{cases} y'_1 = y_1 + 2y_2 \\ y'_2 = 3y_2 \\ y_1(0) = 8 e y_2(0) = 5. \end{cases}$ A solução deste sistema é: $(A) y_1(t) = 3e^t + 5e^{3t}, y_2(t) = 5e^{3t} \\ y_1(t) = 3e^{3t} + 5e^t, y_2(t) = 5e^t \end{cases}$ B) $y_1(t) = 8e^t, y_2(t) = 5e^{3t} \\ D) y_1(t) = 3e^t + 5e^{2t}, y_2(t) = 5e^{3t} \end{cases}$

GRUPO II (4 valores)

Considere as transformações lineares $T_1: \mathbb{R}^3 \to \mathbb{R}^2$ e $T_2: \mathbb{R}^2 \to \mathbb{R}^3$ definidas como se segue:

$$T_1((x,y,z)) = (x+y+z,x+2z), \qquad T_2((x,y)) = (5y,x-3y,-2y)$$

- a) Determine as representações matricias de T_1 e T_2 nas bases canónicas.
- b) Determine bases para $\operatorname{Nuc}(T_1)$ e $\operatorname{Im}(T_2)$ e verifique que $\dim(\operatorname{Nuc}(T_1) \cap \operatorname{Im}(T_2)) = 0$.
- c) Resolva a equação linear $T_1((x, y, z)) = (3, 3)$.
- d) Determine $T_1 \circ T_2((x,y))$.

Resolução:

GRUPO III (5 valores)

Para cada parâmetro real α , seja $A = \begin{bmatrix} \alpha & 0 & \alpha^2 - 1 \\ 0 & 2\alpha & \alpha \\ 0 & \alpha & 2\alpha \end{bmatrix}$, e $\langle \cdot, \cdot \rangle$: $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ a aplicação definida por: $\langle (x, y, z), (a, b, c) \rangle = \begin{bmatrix} x & y & z \end{bmatrix} A \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

- a) Calcule det(A) e verifique que o sistema homogéneo $Au = \mathbf{0}$ é indeterminado se e só se $\alpha = 0$.
- b) Determine o polinómio característico e os valores próprios de A, em função de α .
- c) Para $\alpha = 3$ encontre bases para os espaços próprios de A e verifique se A é diagonalizável (para $\alpha = 3$).
- d) Determine os valores de α para os quais $\langle \cdot, \cdot \rangle$ define um produto interno em \mathbb{R}^3 .
- e) Usando o(s) produto(s) interno(s) em \mathbb{R}^3 da alínea d), calcule ||(0,1,0)||.

a) $det(A) = \alpha det \begin{bmatrix} 2\alpha & \alpha \\ \alpha & 2\alpha \end{bmatrix} = \alpha \left((2\alpha)^2 - \alpha^2 \right) = \frac{3\alpha^3}{2\alpha^3}$ Au=o ind. Me Anão inv. sse clit(A)=0. b) $p(\lambda) = det (A - \lambda I) = det \begin{bmatrix} \alpha - \lambda & 0 & \alpha^2 \\ 0 & 2\alpha - \lambda & \alpha \\ 0 & \alpha & 2\alpha - \lambda \end{bmatrix} = (\alpha - \lambda)((2\alpha - \lambda))^2 - \alpha^2).$ (=) x-1=0 on 2x-1=x on 2x-1=-x $\varphi(\lambda) = 0$ $(e \ \lambda \ e \ a, 3 \ a \ f = \lor b A$ c) $\alpha = 3$, $A = \begin{bmatrix} 3 & 0 & 8 \\ 0 & 6 & 3 \\ 0 & 3 & 6 \end{bmatrix}$ $x = \{3, 9\}$. $E(3) = Nm((A-3I) = Nm([0 33]) = base = {(1,0,0)}{(0 33]}$ $E(9) = N_{M}((A-9t) = N_{M}[\frac{-6 \ 08}{0 \ 3 \ 3}] -) = \frac{1}{3} \frac{1$ (ma(3) = 2 e mg(3) = 1) =) A nav édiagonalizatel]

d) Production in Term (=)
$$\begin{pmatrix} A = A^{T} \\ \forall P_{A} > 0 \\ \forall P_{A} > 0 \\ \end{pmatrix}$$

 $\downarrow p_{ave} \quad \alpha = -1 \quad os \quad valors \not p \not d A = f - 1, -5f, \quad pelo \quad guy$
 $\downarrow hao \quad e \quad p_{1...}$
 $\downarrow p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not d A = f + 1, +sf, \quad pelo \quad guy$
 $\downarrow p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not d A = f + 1, +sf, \quad pelo \quad guy$
 $\downarrow p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not d A = f + 1, +sf, \quad pelo \quad guy$
 $\downarrow p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not d A = f + 1, +sf, \quad pelo \quad guy$
 $\downarrow p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not d A = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d A = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d A = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d A = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d A = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d A = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d a = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d a = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d a = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad \alpha = 1 \quad os \quad valores \not p \not p \quad d a = f + 1, +sf, \quad pelo \quad guy$
 $\lvert p_{ave} \quad p \quad (a = 1) \quad$

GRUPO IV (3 valores)

Seja $S = \{v_1, v_2, \dots, v_k\}$ um conjunto não vazio de vectores linearmente independentes em \mathbb{R}^n , E = L(S) o subespaço linear de \mathbb{R}^n gerado por $S \in P_E$ a projecção ortogonal sobre E. Considere a matriz $A = [v_1 \ v_2 \cdots v_k] \in \operatorname{Mat}_{n \times k}(\mathbb{R})$ cuja coluna j é o vector v_j escrito em coluna, $j = 1, \dots, k$, e seja $Q = A(A^T A)^{-1} A^T$. a) Prove que $Q = Q^T \in Q^2 = Q$.

a) Prove que
$$Q = Q = Q$$
.
(b) Prove que $P_E(u) = Q(u)$ para todo $u \in \mathbb{R}^n$.
(c) Schemes sue $(X Y)^T = Y^T X^T e (X^{-1})^T = (X^T)^{-1}$,
pelo sue $Q^T = Q = Q^T = Q$ result to destes
proprie de dest associative, de de de produte tratinical.
(c) Dadie $u \in IR^h$ Schemes que $\exists u \in E$,
 $\exists M_2 \in E^+$ Tais sue $M = M_1 + M_2$.
($M_1 = P(w) = M_2 = P(w)$).
 E^+
($law que E = C_4$.
 $= C_4$.
 $= Q(m) = [m] = [m]$.
 $= Se u \in C_4^+, Q[m] = [0]$.