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Abstract. In this paper we consider the cocircuit graph GM of an oriented matroidM, the
1-skeleton of the cell complexW formed by the span of the cocircuits ofM. In general,W
is not determined by GM. However, we show that if the vertex set (resp. edge set) of GM is
properly labeled by the hyperplanes (resp. colines) ofM, GM determinesW. Also we prove
that, whenM is uniform, the cocircuit graph together with all antipodal pairs of vertices
being marked determinesW. These results can be considered as variations of Blind–Mani’s
theorem that says the 1-skeleton of a simple convex polytope determines its face lattice.

1. Introduction and Notation

Let E be a finite set of vectors ofRd+1 and, for each vectore ∈ E, consider the
intersection (a(d−1)-dimensional sphere) of the hyperplane perpendicular toe through
the origin with the unit sphereSd. The cell decomposition of the sphere thus obtained
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does not change when vectors are replaced by nonzero scalar multiples. Note that in this
cell complex the normal vectors of the hyperplanes passing through a 0-cell span a linear
hyperplane inRd+1, and those associated with a 1-cell span a coline (i.e.,(d−1)-space).

More generally, given the Folkman–Lawrence representation of an oriented matroid
M on a finite setE as an arrangement of pseudospheres indexed by E in Sd, the
cell complexW is combinatorially represented by the span of the cocircuits ofM. In
general (see Example 2.1), the 1-skeleton ofW (the cocircuit graph GM ofM) does not
determineW. However, we prove that it does determineW if the vertices (resp. edges)
of the graph are labeled by the corresponding subset ofE.

This result can be improved in the rank 3 and in the uniform case under the condition
that the opposite pairs of vertices are marked. Then, as an application of the previous
statement, Theorem 2.3, we prove that the graph is by itself sufficient to determine the
complex.

The results presented here are also closely related to the work of Roudneff in [13].
In particular Theorem 2.3 is a generalization by duality of Theorem 3.1 in [13], and the
two theorems coincide in the uniform case. Applied to the rank 3 case, our main result
implies as well a theorem of Goodman and Pollack, namely, Theorem 2.9 of [8]. It should
be mentioned that our results can be considered as variations of Blind–Mani’s theorem
[4] that says the 1-skeleton of a simple convex polytope determines its face lattice (see
also [11]). When an oriented matroid is representable, the complexW coincides with
the face lattice of the dual of a(d + 1)-zonotope. Thus our results show how theorems
of Blind–Mani’s type can be phrased for a certain class of nonsimple polytopes.

For a long time our results remain unpublished, although they have been used more
than once, mainly for algorithmic purposes. Recently, they were also the base for the
method of proof of the main result of [5].

We suppose the reader is familiar with the basic terminology most commonly used in
matroid theory and in oriented matroid theory, like those presented [2], [14], and [15].

Let us fix some notations we use. We useE to denote the set{1,2, . . . ,n} of n
elements, which is also denoted by [n]. For an elementC of {−,0,+}E, we consider as
usual thepositive support C+ := {e∈ E: Ce = +} ⊂ E, and similarly thezero support
C0 and thenegative support C−. Thesupportof C is C := C+ ∪ C−. For any subset
A of E, by reversing the signs of all the coordinates ofC indexed byA, we obtainĀC.
Given an oriented matroidM (over E), with set of (signed) cocircuitsC and a subset
A of E, the set of formĀC := {ĀC | C ∈ C} is the set of cocircuits of areorientation
of M. We represent the underlying nonoriented matroid byM, whose (nonoriented)
cocircuits are merely the supports of cocircuits ofM. We denote the collection of all
possible reorientations ofM by OC(M), called thereorientation classof M. Two
oriented matroidsM on E andM′ on E′ are said to beisomorphicif there exists a
bijection f from E to E′ such that OC( f (M)) = OC(M′), where f (M) denotes the
oriented matroid onE′ obtained fromM by the mapf . The isomorphism classof all
oriented matroids isomorphic to an oriented matroidM is denoted by IC(M).

As usual, we consider the setW of covectorsor thespan of cocircuitsof M, as
the compositionsof the signed cocircuits (see p. 141 of [2]), defined by(X ◦ Y)± =
X± ∪ (Y±\X∓). The partial order defined by the relation

X ≤ Y ⇐⇒ for everye∈ E, Ye = Xe if Xe 6= 0,
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captures the natural facial incidence relation among cells of the associated arrangement
of pseudospheres.

By the Folkman–Lawrence representation theorem [2], we may think ofW as a cell
complex of cells of form

[X] = {Y ∈W | Y ≤ X}.
The topological dimension of [X] is one less than the corank ofX0, a flat ofM. W
is a piecewise linear sphere of dimension rank(M) − 1 and thetopes, i.e., the cells of
maximal dimension, are in one-to-one correspondence with the acyclic reorientations
ofM.

The abstract cell complexW determines the isomorphism class ofM. The spanW ′
of cocircuits ofM′ is isomorphic toW if and only ifM′ is isomorphic toM. Indeed,
it is possible to reconstruct the isomorphism class ofM from the top two levels of the
complex, thetope graph, whose vertices are the topes and whose edges are the cells of
dimension one less (see [1] and [6]). For a polynomial algorithm for the reconstruction,
see [7]. The present paper studies how much information the bottom two levels of the
complex contain.

Definition 1.1. We call the 1-skeleton of the cell complexW associated withM the
cocircuit graphGM ofM.

Hence, GM consists of:

(i) the set of vertices VGM formed by the signed cocircuits ofM;
(ii) the set of edges EGM of pairs of form{V,W} ⊂ VGM for which there exists

X ∈ W, X ≥ V,W, such thatX coversV (and henceW, by thediamond
property[3]): X = V ◦W = W ◦ V ; the set complement of its support,X0, is a
coline ofM.

LetM be an oriented matroid of rank 2. It is easy to see that its cocircuit graph GM
can be seen as an even-length cycle(C1,C2, . . . ,Cs,−C1,−C2, . . . ,−Cs) of cocircuits
such that any two consecutive ones are adjacent. Its reorientation class OC(M) is thus
representable as the cyclic reordering of the sequence(H1, H2, . . . , Hs)whereHj := C0

j ,
the hyperplane associated withCj .

It should be noted that a cocircuit graph is merely a graph, represented as abstract
sets of vertices and edges which do not carry any explicit information about the original
sign vectors.

2. Main Theorem

We note first that the isomorphism class of an oriented matroidM is not always deter-
mined by the cocircuit graph GM:

Example 2.1. LetMandM′ be the affine oriented matroids of the point configurations
in Fig. 2.1, where we have the vertices of a tetrahedron together with three extra points
interior to three different edges, forming a triangle parallel to a base, in the first case,



260 R. Cordovil, K. Fukuda, and A. Guedes de Oliveira

Fig. 2.1. Two configurations whose cocircuit graphs are identical.

and the same without the vertex opposite to the base. It is clear that two configurations
generate the same set of linear hyperplanes (i.e. planes). There are exactly two cocircuits
associated with each hyperplane, representing the partition of the points not on the
hyperplane. One can easily verify that the extra point 7 of the left has no effect on the
adjacency of cocircuits, and thus GM and GM′ are isomorphic, although clearlyM′ is
not isomorphic toM.

We show that this is not the case when the graph GM is properly labeled. More
precisely, we consider:

Definition 2.2. We say the cocircuit graph GM is vertex-labeledif every vertexC ∈
VGM is labeled by its zero support, i.e., the hyperplaneC0 = E\C. GM isedge-labeled
if every edge{C, D} ∈ EGM is labeled by its zero support, i.e., the colineW0 = E\W,
for W = C ◦ D.

Then we can state the first main theorem:

Theorem 2.3. LetM be a simple oriented matroid, of rank greater than or equal to
2. Then any one of the following structures determines all of them:

(a) OC(M);
(b) the vertex-labeled graphGM;
(c) the edge-labeled graphGM;
(d) the(nonoriented) matroidM, together with the classesOC(M/L) for all colines

L ofM.

Proof. Note that when rank(M) = 2, clearly the structures in (a), (b), and (d) provide
the information for each other. Furthermore, the structures in (b) and (c) are equivalent, in
that vertex- and edge-labeling clearly determine each other. On the other hand, knowledge
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of (a) implies knowledge of (b), according to the definitions. Hence, we start by proving
that knowledge of (b) (⇐⇒ (c)) implies that of (d):

Suppose that we know the vertex-labeled graph GM. ThenM is determined by the
labels. For a colineL of this matroid, consider the subgraph of GM of edges labeled
by L. This new graph is, by definition, the cocircuit graph GM/L ofM/L. Since this
new oriented matroid has rank 2, its graph is a simple cycle, and thus the reorienta-
tion class is represented by the subgraph of the graph GM whose edge labels contain
H\L.

Now, we prove that, given, as in (d), the underlying matroidM of M and the re-
orientation classes OC(M/L) for all colinesL ofM, the reorientation class ofM is
uniquely determined. More precisely, we prove by induction onn the statement

(*) if an oriented matroidM′ satisfiesM′ =M andM′/L ∈ OC(M/L) for every
colineL ofM, then OC(M′) = OC(M).

Clearly (*) is true if rank(M) = 2. In addition, (*) is true if rank(M) = n, because then
every elemente∈ E is a coloop and clearlyM has just one orientation.

LetM be an oriented matroid onE = [n] with rank r > 2 andn > r . By in-
duction hypothesis, we assume that the statement (*) is true for any oriented matroid
of the same rank and a smaller number of elements. Now suppose that an oriented
matroidM′ satisfiesM′ = M andM′/L ∈ OC(M/L) for every colineL of M.
We will showM′ ∈ OC(M). For this, we may reorientM′ as we wish for the proof
below.

Sincen > r , M contains an element which is not a coloop. By renumbering if
necessary, we may supposen is not a coloop. ThusM′([n − 1]) has rankr as well.
Since knowledge of (d) forM clearly induces knowledge of (d) forM\n, and by the
induction hypothesis, OC(M′([n− 1])) = OC(M([n− 1])). By reorientation ofM′ if
necessary, we may assumeM′([n− 1]) =M([n− 1]). Then the following statement
is valid:

(d′) Given a colineL of M such thatn /∈ L, eitherM/L = M′/L orM/L =
{n}M′/L.

We need the following property to complete the proof:

(**) Let M be a matroid on [n] of rank≥2. For any two hyperplanesH0, H with
n 6∈ H0∪ H , there is a sequence of hyperplanesH0, H1, . . . , Hk = H such that
Hi ∩ Hi+1 is a coline, andn /∈ Hi , i = 0, . . . , k.

Statement (**) is clear if the rank ofM is equal to 2. Suppose rank(M) > 2. We use
induction on the rank. If rank(H0∩ H) ≥ 1, there exists a nonloop elemente∈ H0∩ H
and the result is true in the contractionM/e by the induction hypothesis and then inM .
Suppose that rank(H0 ∩ H) = 0, and consider a colineL ⊂ H0. There is at least an
elementa ∈ H\L such thatn is not in the hyperplaneH ′ := L ∪ {a}. Indeed, otherwise,⋂

a∈H\L L ∪ {a}must contain the hyperplaneL ∪ {n} and this is impossible because the
former set is the intersection of at least two hyperplanes by the assumptions rank(M) > 2
and rank(H0 ∩ H) = 0. Thus the property (**) follows from the first case for the pair
H ′ andH .
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We consider now a hyperplaneH0 ofM such thatn /∈ H0. Now, consider another
hyperplaneH,n 6∈ H . From (**) we know that there is a sequence of hyperplanes
H0, H1, . . . , Hm = H such thatHi ∩ Hi+1 is a coline, andn 6∈ Hi , i = 0, . . . ,m.
Hence, by property (d′), all the cocircuits withn inM andM′, are either equal, or all
the cocircuits differ only in the sign ofn. By Las Vergnas’ single element extension
theorem [12] (see also Proposition 7.1.4 of [2]),M =M′ orM = {n}M′, and clearly
M′ ∈ OC(M).

The equivalence (a)⇐⇒ (d) of Theorem 2.3 is a generalization of Theorem 3.1 in
[13] by duality. Also, in the rank 3 case, by identifying opposite points in the Folkman–
Lawrence representation in the sphereS2, we obtain anarrangement of pseudolinesin
the real projective plane (see [10] for definitions); then the equivalence (a)⇐⇒ (b)
reads as a theorem of Goodman and Pollack [8, Theorem 2.9].

An immediate consequence of the equivalence (a)⇐⇒ (d) of Theorem 2.3 is
also:

Corollary 2.4 [5, Theorem 3.1]. Given an oriented matroid of rank r, for each s, 2≤
s < r , the labeled rank s contractions determine the reorientation class of the oriented
matroid.

We remark that Theorem 2.3 can be used to represent the reorientation classM in
a simple graphic way: indeed, the vertex-labeled graph GM can be recovered from its
decomposition in the circuits corresponding to the same labels of edges. Thus, in a way,
this representation “generalizes” the notion of theGale diagram[9], [16].

As a corollary, in the rank 3 case GM determines by itself the isomorphism class of
M. More precisely, we have:

Corollary 2.5. LetM be a simple rank3 oriented matroid. Then any of the following
structures determine all the remaining:

(a) IC(M);
(b) the(unlabeled)cocircuit graphGM ofM;
(c) the (nonoriented) matroidM′ for someM′ ∈ IC(M), together with the class

OC(M′/e) for every element e∈ E that is not a loop.

Proof. We prove that we may recover the structure in (c) of Theorem 2.3 from the one
in (b) of the corollary, i.e., that we may read from GM a proper edge-labeling, which is
uniquely determined up to isomorphism.

For this purpose, considerW, the span of cocircuits ofM′. By the Folkman–Lawrence
representation theorem, there is an embedding ofW into the sphereS2. Since the cocir-
cuit graph is 3-connected (in fact, it is 4-connected by Cordovil–Fukuda’s theorem [6,
Theorem 1.6]), the embedding is unique. All vertices of GM′ are of even degree, and the
edges incident with the same vertex are circularly ordered inS2. Since two such edges
correspond to the same point ofM′ if and only if they are opposite in this ordering, the
result follows now from Theorem 2.3.
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3. Uniform Case

In this section we consider the main theorem in the previous section, Theorem 2.3, in
the special case when an oriented matroid is uniform. It turns out that only a little extra
information besides the cocircuit graph determines the isomorphism class of a uniform
oriented matroid.

Theorem 3.1. LetM be a uniform oriented matroid. Then the isomorphism class
IC(M) ofM is uniquely determined by the(unlabeled) cocircuit graphGM and the
knowledge of the antipodal pairs of vertices inGM corresponding to the opposite pairs
of cocircuits.

To prove this theorem, it is convenient to introduce a few definitions and a lemma.
Let M be a matroid of rankr . We denote byL = L(M) the set of all colines. Define the
distancedist(H, L) in M from a hyperplaneH to a colineL as the smallest numberssuch
that there exists a sequence of colines:L0 ⊆ H, L1, . . . , Ls = L with rank(Li−1∪Li ) =
r − 1 for i = 1, . . . , s. We denote byLk(H) the set of all colines whose distance from
a hyperplaneH is k, for k = 0,1, . . ..

Lemma 3.2. Let M be a uniform matroid and let H be a hyperplane. Then

Lk(H) = {L ⊆ E: |L| = r − 2 and|L\H | = k}.

Proof. This follows immediately from the uniformity.

Proof of Theorem3.1. Again we prove that, besides permutation of the elements ofE,
we can read from GM its edge-labeling.

First, we prove that the edges of GM that correspond to the same coline ofM can be
determined. By the uniformity, the rankr is easily detected, i.e.,δ = 2(r − 1) whereδ
is the degree of each vertex. The sizen of the ground set is still unknown but we explain
below how one can recover it.

Let P = [V = V0,a0, . . . ,am,Vm+1 = −V ] be a path in GM connecting the
opposite verticesV and−V . We assume for the moment that each vertexVj and each
edgeaj are both represented as sign vectors in the original matroid. It is easy to see that
m ≥ n− (r − 1), sinceV and−V have exactlyn− (r − 1) nonzero components, and
the number of (nonzero) components which are opposite inVi−1 andVi+1 is at most one
for any i = 1, . . . ,m. Hence the number of (nonzero) components which are opposite
in V0 andVk is at mostk − 1 for anyk = 2, . . . ,m+ 1. Furthermore, the pathP is a
part of the graph GM/L for some colineL if and only if m = n− r + 1. The “only if”
part is obvious. To show the “if” part, assume that the path is not a part of the graph
GM/L for any colineL. This means that there are two distinct elementse, f ∈ V0 and
two vertices, sayVi andVj , such thate /∈ V0

i and f /∈ V0
j . Since each of thee and f

components of vertices must become nonzero and then zero independently in the path
P, a simple count showsm> n− r + 1.

Therefore, a path of minimum length between a pair of opposite vertices always
corresponds to a coline, and the numbern can be determined from the length andr . In
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addition, two such paths correspond to the same coline if and only if they cross opposite
vertices (in opposite ordering). Consequently we can partition the graph GM into an
edge-disjoint union of cycles of length 2(n − r + 2), each of which is the graph of a
rank 2 contraction. We simply use “cycle” to mean these special cycles for the rest of
the proof.

The only thing left to be shown is a construction of a proper label of each edge (or
equivalently each cycle) by some(r − 2) subset of [n], since Theorem 2.3 takes care of
the rest.

Below we explain how each edge and each vertex of GM can be labeled properly so
that the resulting label is the labeling by an oriented matroid isomorphic to the original
one.

First we select any vertexV0 of GM. By the freedom of isomorphism, one can label
the vertex freely, and so we label it byV0 = [r −1]. Also there are exactly(r −1) cycles
containingV0. We can label these cycles by the(r − 1) subsets of cardinal(r − 2) of
V0. Now we must use the remaining elements from [n], i.e., r, r + 1, . . . ,n. For this,
we select any labeled cycle, say the one labeled by [r − 2]. Half of this cycle is of the
form [V = V0,a0, . . . ,am,Vm+1 = −V ], wherem = n− r + 1. We can then label the
intermediate vertices and their antipodes byVi = [r −2]∪{r + i −1} for i = 1, . . . ,m,
since the remaining labels were never used before and must be used exactly once in this
path.

Now the important claim is that all unlabeled vertices (and thus unlabeled edges) will
get a unique label. This implies that the graph can be labeled without any ambiguity and
thus properly. To prove this claim, we show how the labels can be assigned inductively.
Let H0 = V0

0 and

Lk(H0) = {L ⊆ [n]: |L| = r − 2 and|L\H0| = k}.

By Lemma 3.2,Lk(H0) is the set of labels for the cycles of distancek from V0. The
distance here is well defined since we have GM and the adjacency of two cycles means
they share a vertex. We denote byCk the set of cycles in GM whose distance fromV0

is k.
All labels inL0 are already assigned to the cycles inC0, and the vertices of one cycle

in C0 are assigned labels. The proof is completed by showing the two statements:

(a) The labels of vertices (of cycles) inC0 are uniquely determined by the labels
already assigned.

(b) The labels of vertices and cycles inCk are uniquely determined by the labels of
vertices and cycles inCk−1, for anyk ≥ 1.

To prove (a), consider the vertexVi whose label is [r − 2]∪ {r + i − 1} (i = 1, . . . ,m).
There are exactly(r − 2) cycles inC1 containing this vertex. LetC be any one of them.
It is easy to see that the cycle meets exactly two cycles ofC0, one labeled by [r − 2]
and the other by [r − 1]\{ j } for some j ∈ [r − 2]. The antipodal pair of vertices in the
intersection of these two cycles must get the label [r − 1]\{ j } ∪ {r + i − 1}, and the
cycleC must be labeled [r − 2] ∪ {r + i − 1}\{ j }. It is easy to see that every vertex on
C0 will get a unique label this way. The proof of (b) is essentially the same, and we omit
the details here.



On the Cocircuit Graph of an Oriented Matroid 265

We conclude the paper by posing the following problem:

Problem 3.3. Does the (unlabeled) cocircuit graph GM of auniformoriented matroid
M determine its isomorphism class?
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