Dirac's Theorem on Simplicial Matroids

Raul Cordovil ${ }^{1}$, Manoel Lemos ${ }^{2}$, and Cláudia Linhares Sales ${ }^{3}$
${ }^{1}$ Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal cordovil@math.ist.utl.pt
${ }^{2}$ Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco, CEP 50740-540, Brasil manoel@dmat.ufpe.br
${ }^{3}$ MDCC, Departamento de Computação, Universidade Federal do Ceará - UFC, Campus do Pici, Bloco 910, Fortaleza, CE, Brasil
linhares@lia.ufc.br

Received September 14, 2006
AMS Subject Classification: 05B35; 05C17

Abstract

We introduce the notion of k-hyperclique complexes, i.e., the largest simplicial complexes on the set $[n]$ with a fixed k-skeleton. These simplicial complexes are a higherdimensional analogue of clique (or flag) complexes (case $k=2$) and they are a rich new class of simplicial complexes. We show that Dirac's theorem on chordal graphs has a higher-dimensional analogue in which graphs and clique complexes get replaced, respectively, by simplicial matroids and k-hyperclique complexes. We prove also a higher-dimensional analogue of Stanley's reformulation of Dirac's theorem on chordal graphs.

Keywords: clique (flag) complexes, Dirac's theorem on chordal graphs, simplicial matroids, k-hyperclique complexes, Helly dual k-property, strong triangulable simplicial matroids

1. Introduction and Notations

Set $[n]:=\{1,2, \ldots, n\}$. The simplicial matroids $\mathrm{S}_{k}^{n}(E)$ on the ground set $E \subseteq\binom{[n]}{k}$ have been introduced by Crapo and Rota [6,7] as one of the six most important classes of matroids. These matroids generalize graphic matroids: More precisely $\mathrm{S}_{2}^{n}(E)$ is the cycle matroid (or graphic matroid) of the graph $([n], E)$. With the aid of Alexander's duality theorem for manifolds applied to simplices, they prove the following beautiful isomorphism

$$
\begin{equation*}
\left[\mathrm{S}_{k}^{n}\left(\binom{[n]}{k}\right)\right]^{*} \simeq \mathrm{~S}_{n-k}^{n}\left(\binom{[n]}{n-k}\right), \quad X \mapsto[n] \backslash X, \tag{1.1}
\end{equation*}
$$

where $\left[\mathrm{S}_{k}^{n}\left(\binom{[n]}{k}\right)\right]^{*}$ denotes the dual (or orthogonal) matroid of $\mathrm{S}_{n}^{k}\left(\binom{[n]}{k}\right)$, see [7, Theorem 11.4] or, for an elementary proof (depending only on matrix algebra), [4, Theorem 6.2.1]. In this paper, we use an equivalent definition of simplicial matroids, see Definition 1.4 below.

We introduce the notion of k-hyperclique complexes. These simplicial complexes are a natural higher-dimensional analogue of clique (or flag) complexes (case $k=2$), see Definition 1.2 below. The k-hyperclique complexes are a rich new class of simplicial complexes of intrinsic interest. To get a better understanding of the structure of $\mathrm{S}_{k}^{n}(E)$ we attach to it the k-hyperclique complex on $[n]$ canonically determined by the family E.

In this paper, we introduce the notion of a strong triangulable simplicial matroid, a higher-dimensional generalization of the notion of a chordal graph. We prove an analogue of Dirac's theorem on chordal graphs (see Theorem 3.2) using a natural generalization of a perfect sequence of vertices of a chordal graph (see Theorem 5.2). We prove also a higher-dimensional generalization of Stanley's reformulation of Dirac's theorem on chordal graphs (see Theorem 4.3).

Let us set some preliminary notation.
Definition 1.1. An (abstract) oriented simplicial complex on the set $[n]$ is a family Δ of linear ordered subsets of $[n]$ (called the faces of Δ) satisfying the following two conditions. (We identify the linear ordered set $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}, v_{1}<v_{2}<\cdots<v_{m}$, with the symbol $v_{1} v_{2} \cdots v_{m}$.)
(1.1.1) Every $v \in[n]$ is a face of Δ.
(1.1.2) If F is a face of Δ and $F^{\prime} \subset F$, then F^{\prime} is also a face of Δ.

Given two faces F^{\prime} and $F=i_{1} i_{2} \cdots i_{m}$, the "incidence number" $\left[F^{\prime}: F\right]$ is

$$
\left[F^{\prime}: F\right]= \begin{cases}(-1)^{j}, & \text { if } F^{\prime}=i_{1} i_{2} \cdots i_{j-1} i_{j+1} \cdots i_{m} \\ 0, & \text { otherwhise }\end{cases}
$$

Let $S_{d}(\Delta)$ denote the d-skeleton of Δ, i.e., the family of faces of size d (or d-faces) of Δ. A facet is a face of Δ, maximal to inclusion. If nothing in contrary is indicated, we suppose that $S_{1}(\Delta)=[n]$.

Definition 1.2. Let $\mathcal{S}_{k}:=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be a family of k-subsets of $[n]$. Let $\left\langle\mathcal{S}_{k}\right\rangle$ be the simplicial complex such that $F \subseteq[n]$ is a face of $\left\langle\mathcal{S}_{k}\right\rangle$ provided that:
(1.2.1) $|F|<k$; or
(1.2.2) if $|F| \geq k$, every k-subset of F belongs to $\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$.

We say that $\left\langle\mathcal{S}_{k}\right\rangle$ is the k-hyperclique complex generated by the set

$$
\mathcal{S}_{k}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\} .
$$

We see $\left\langle\mathcal{S}_{k}\right\rangle$ as an oriented simplicial complex, with the natural orientation induced by $[n]$.

Note that $\left\langle\mathcal{S}_{k}\right\rangle$ is the largest simplicial complex Δ on the set $[n]$ with the fixed k skeleton \mathcal{S}_{k}. (In the hypergraph literature, a family of sets satisfying Property (1.2.2) is said to have the Helly dual k-property.)

Throughout this work S_{k} denotes a family of k-subsets of $[n]$ and let $\left\langle S_{k}\right\rangle$ denote the corresponding k-hyperclique complex. (So, we have $\mathcal{S}_{k}=\mathcal{S}_{k}\left(\left\langle\mathcal{S}_{k}\right\rangle\right)$.) The paradigm examples of the k-hyperclique complexes are the clique (or flag) complexes (the 2-hyperclique complexes).

Example 1.3. Set $\mathcal{S}_{k}=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$. If $\bigcap_{i=1}^{m} F_{i} \neq \emptyset$ then F_{1}, \ldots, F_{m} are facets of $\left\langle\mathcal{S}_{k}\right\rangle$. The other facets of $\left\langle S_{k}\right\rangle$ are the $(k-1)$-subsets of $[n]$ which are in no F_{i}. For every $k, n \geq k \geq 1,2^{[n]}$ is a (full) k-hyperclique complex.

Let S_{ℓ} be a subset of $\binom{[n]}{\ell}$, where $n \geq \ell \geq 2$. Let $\left\langle S_{\ell}\right\rangle$ be the oriented ℓ-hyperclique complex determined by S_{ℓ}. Let \mathbb{F} be a field. Consider the two vector spaces $\mathbb{F}^{S_{\ell}}$ and $\mathbb{F}^{\left(\ell_{-1}^{[n]}\right)}$ over \mathbb{F}. Let us define the (boundary) map

$$
\partial_{\ell}: \mathbb{F}^{S_{\ell}} \rightarrow \mathbb{F}^{\left(\begin{array}{l}
{[n]}
\end{array}\right)}
$$

as the vector space map determined by linearity specifying its values in the basis elements:

$$
\partial_{\ell} F=\sum_{F^{\prime} \in\binom{[n]}{\ell-1}}\left[F^{\prime}: F\right] F^{\prime},
$$

for every $F \in S_{\ell}$. By duality let us define the (coboundary) map

$$
\delta^{\ell-1}: \mathbb{F}^{\binom{[n]}{\ell-1}} \rightarrow \mathbb{F}^{\mathcal{S}_{\ell}}
$$

as the vector space map determined by linearity specifying its values in the basis elements:

$$
\delta^{\ell-1} F^{\prime}=\sum_{F \in E}\left[F^{\prime}: F\right] F
$$

for every $F^{\prime} \in\binom{[n]}{\ell-1}$. (The symbol $\left[F^{\prime}: F\right]$ denotes the incidence number of the faces F^{\prime} and F in the oriented simplicial complex $\left\langle S_{\ell}\right\rangle$.)

Definition 1.4. [4] The simplicial matroid $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$, on the ground set S_{k} and over the field \mathbb{F}, is the matroid such that

$$
\left\{X_{1}, X_{2}, \ldots, X_{m}\right\} \subseteq S_{k}
$$

is an independent set if and only if the vectors,

$$
\partial_{k} X_{1}, \partial_{k} X_{2}, \ldots, \partial_{k} X_{m}
$$

are linearly independent in the vector space $\mathbb{F}^{([n])} k-$
Remark 1.5. [3,4] Let $\left(s_{p, q}\right)$ be the matrix whose rows and columns are labeled by the sets of $\binom{[n]}{k-1}$ and \mathcal{S}_{k} respectively, with $s_{p, q}=0$ if $p \nsubseteq q$ and $s_{p, q}=(-1)^{j}$ if $q-p=i_{j}, q=\left\{i_{1}, \ldots, i_{j}, \ldots i_{k}\right\}$. The simplicial matroid $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ (over the field \mathbb{F}) is
the independent matroid of the columns of the $\{-1,1,0\}$ matrix $\left(s_{p, q}\right)$, over the field \mathbb{F}. If the matrix $\left(s_{p, q}\right)$ is not totally unimodular, the simplicial matroid depends of the field \mathbb{F}. Since the time of Henri Poincaré, it is known that if $k=2$, the matrix $\left(s_{p, q}\right)$ is totally unimodular. The 2-hyperclique complex $\left\langle\mathcal{S}_{2}\right\rangle$ is the clique complex of the simple graph $\left([n], \mathcal{S}_{2}\right)$ and $S_{2}^{n}\left(S_{2}\right)$ is its corresponding cycle matroid. So $S_{2}^{n}\left(S_{2}\right)$ is a regular (or unimodular) matroid, i.e., it is irrespective of the field \mathbb{F}.

If nothing in contrary is said, the simplicial matroids here considered are over the field \mathbb{F}.

For background, motivation, and matroid terminology left undefined here, see any of the standard references $[7,11,13,14]$ or the encyclopedic survey [15-17]. For a description of the developments on simplicial matroids before 1986, see [4]. See also [2] for an interesting application. For a topological approach to combinatorics, see [1]. Dirac characterization of chordal graphs (see [8]) is treated extensively in [9, Chapter 4]. For an algebraic proof of Dirac's theorem, see [10].

2. Simplicial Matroids

The following two propositions are folklore and they are included for completeness. For every vector v of \mathbb{F}^{E}, where

$$
v=a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{m} e_{m}\left(e_{i} \in E, a_{i} \in \mathbb{F}^{*}\right),
$$

let $\underline{v}:=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ denote the support of v.
Proposition 2.1. Let \mathcal{S}_{k} be a subset of $\binom{[n]}{k}$ and $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ be the corresponding simplicial matroid (over the field \mathbb{F}). Consider the linear map $\left.\partial_{k}: \mathbb{F} \mathcal{S}_{k} \rightarrow \mathbb{F}^{[[n-1} k\right)$. Then:
(2.1.1) Each circuit of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ has at least $k+1$ elements.
(2.1.2) For every $(k+1)$-face X of $\left\langle\mathcal{S}_{k}\right\rangle, \partial_{k+1} X$ is a circuit of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$. Each circuit with exactly $k+1$ elements is of this type.

For each $X \in S_{k+1}\left(\left\langle S_{k}\right\rangle\right)$ we say that $\underline{\partial_{k+1} X}$ is a small circuit of $\mathrm{S}_{k}^{n}\left(S_{k}\right)$.
Proposition 2.2. Let S_{k} be a subset of $\binom{[n]}{k}, k \geq 2$, and $S_{k}^{n}\left(S_{k}\right)$ be the corresponding simplicial matroid (over the field \mathbb{F}). Consider the linear map $\delta^{k-1}: \mathbb{F}^{\binom{[n]-1}{k}} \rightarrow \mathbb{F}^{\mathcal{S}_{k}}$. Then:
(2.2.1) The cocircuit space of $S_{k}^{n}\left(\mathcal{S}_{k}\right)$ is generated by the set of vectors $\left\{\delta^{k-1} V \neq\right.$ $\left.0: V \in\binom{[n]}{k-1}\right\}$.
(2.2.2) If non-empty, the set $\underline{\delta^{k-1} V}, V \in\binom{[n]}{k-1}$, is a union of cocircuits of $\mathrm{S}_{k}^{n}\left(S_{k}\right)$.

Proof. The oriented simplicial complex $\left\langle\binom{[n]}{k}\right\rangle=2^{[n]}$ is the oriented full k-hyperclique complex. The matroid $\mathrm{S}_{k}^{n}\left(\binom{[n]}{k}\right)$ is the full simplicial matroid on the ground set $\binom{[n]}{k}$. Consider the linear map

$$
\begin{equation*}
\delta^{k-1}: \mathbb{F}\binom{[n]}{k-1} \rightarrow \mathbb{F}_{\binom{[n]}{k} .} \tag{2.1}
\end{equation*}
$$

From Isomorphism (1.1), we know that

$$
\mathcal{C}^{*}:=\left\{\delta^{k-1} V: V \in\binom{[n]}{k-1}\right\}
$$

is a generating set of the cocircuit space of $S_{k}^{n}\left(S_{k}^{\prime}\right)$. The linear map

$$
\delta^{k-1}: \mathbb{F}\left({ }_{k-1}^{[n]}\right) \rightarrow \mathbb{F}^{\mathcal{S}_{k}}
$$

is the composition of the map (2.1) and the natural projection

$$
1: \mathbb{F}^{\left(\left[\begin{array}{l}
n] \\
k
\end{array}\right)\right.} \rightarrow \mathbb{F}^{S_{k}} .
$$

So, Assertion (2.2.1) holds. We know that C^{*} is a cocircuit of $S_{k}^{n}\left(\binom{[n]}{k}\right)$ if and only if C^{*} is the support of a non-null vector of C^{*}, minimal for inclusion. Note that $S_{k}^{n}\left(S_{k}\right)^{*}$ is obtained from $S_{k}^{n}\left(\binom{[n]}{k}\right)^{*}$ by contracting the set $\binom{[n]}{k} \backslash S_{k}$. So, Assertion (2.2.2) holds.

Throughout this work $V, V^{\prime}, V_{1}, V_{2}, \ldots$ denote $(k-1)$-subsets of $[n]$. So, they are $(k-1)$-face of $\left\langle\mathcal{S}_{k}\right\rangle$. Let $\left\langle\mathcal{S}_{k}\right\rangle \backslash \backslash V$ denote the k-hyperclique complex $\left\langle\mathcal{S}_{k} \backslash \underline{\delta^{k-1} V}\right\rangle$, i.e., the k-hyperclique complex determined by the set $\mathcal{S}_{k} \backslash \underline{\delta^{k-1} V}$. Note that, for every pair of $(k-1)$-faces V and V^{\prime}, we have:

$$
\left(\left\langle\mathcal{S}_{k}\right\rangle \backslash \backslash V\right) \backslash \backslash V^{\prime}=\left(\left\langle\mathcal{S}_{k}\right\rangle \backslash \backslash V^{\prime}\right) \backslash \backslash V=\left\langle\mathcal{S}_{k} \backslash\left(\underline{\delta^{k-1} V} \cup \underline{\delta^{k-1} V^{\prime}}\right)\right\rangle
$$

Definition 2.3. Let $\Delta_{0}=\left\langle\mathcal{S}_{k}\right\rangle$ be a k-hyperclique complex such that $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ has rank r. A sequence $V_{1}, V_{2}, \ldots, V_{r}$ of $(k-1)$-faces of Δ_{0} is said to be basic linear sequence when

$$
C_{j}^{*}:=\underline{\delta^{k-1} V_{j}} \backslash \bigcup_{i=1}^{j-1} \underline{\delta^{k-1} V_{i}}
$$

is a cocircuit of $\mathrm{S}_{k}^{n}\left(S_{k}\left(\Delta_{j-1}\right)\right)$, for $j \in\{1,2, \ldots, r\}$, where

$$
\Delta_{j-1}:=\Delta_{j-2} \backslash \backslash V_{j-1}, \quad j \in\{2, \ldots, r\}
$$

The following result is a corollary of Proposition 2.2.
Corollary 2.4. Let $\left\langle S_{k}\right\rangle$ be a k-hyperclique complex such that $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ has rank r. If $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{r}\right)$ is a basic linear sequence of $(k-1)$-faces of $\left\langle S_{k}\right\rangle$, then

$$
\beta=\left\{\delta^{k-1} V_{1}, \delta^{k-1} V_{2}, \ldots, \delta^{k-1} V_{r}\right\}
$$

is a basis of the cocircuit space of $\mathrm{S}_{k}^{n}\left(S_{k}\right)$.
Proof. Suppose that β is a dependent set. Choose a dependent subset of β

$$
\left\{\delta^{k-1} V_{i_{1}}, \delta^{k-1} V_{i_{2}}, \ldots, \delta^{k-1} V_{i_{s}}\right\}
$$

such that $i_{1}<i_{2}<\cdots<i_{s}$ and s is minimum. Therefore

$$
\underline{\delta^{k-1} V_{i_{s}}} \subseteq \bigcup_{j=1}^{s-1} \frac{\delta^{k-1} V_{i_{j}}}{}
$$

and $V_{i_{s}} \notin \mathcal{V}$, a contradiction. As the cocircuit space of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ has dimension r the result follows.

3. D-Perfect k-Hyperclique Complexes

In this section we extend to k-hyperclique complexes the notions of "simplicial vertex" and "perfect sequence of vertices", introduced in the Dirac characterization of the clique complexes of chordal graphs, see $[8,9]$.

Definition 3.1. Let $\Delta_{0}=\left\langle\mathcal{S}_{k}\right\rangle$ be a k-hyperclique complex and suppose that the simplicial matroid $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ has rank r. We say that a $(k-1)$-face V is simplicial in Δ_{0}, if there is exactly one facet X of Δ_{0} such that $V \subsetneq X$. We say that Δ_{0} is D-perfect if there is a basic linear sequence of $(k-1)$-faces, $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{r}\right)$, such that every $V_{i} \in \mathcal{V}$ is simplicial in the k-hyperclique complex Δ_{i-1} where

$$
\Delta_{i-1}:=\Delta_{i-2} \backslash \backslash V_{i-1}, \quad i \in\{2, \ldots, r\} .
$$

We will call \mathcal{V} a D-perfect sequence of Δ_{0}.
Chordal graphs are an important class of graphs. The following theorem is one of their fundamental characterizations, reformulated in our language.

Theorem 3.2. (Dirac's theorem on chordal graphs $[8,9])$ Let $G=\left([n], \mathcal{S}_{2}\right), \mathcal{S}_{2} \subseteq\binom{[n]}{2}$ be a graph and $\left\langle\mathcal{S}_{2}\right\rangle$ be its clique complex. Then G is chordal if and only if $\left\langle\mathcal{S}_{2}\right\rangle$ is D-perfect.

Proposition 3.3. Let V be a $(k-1)$-subset of [n]. If V is simplicial in the k-hyperclique complex $\left\langle\mathcal{S}_{k}\right\rangle$ then $\underline{\delta^{k-1} V}$ is a cocircuit of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$.

Proof. From Proposition 2.2 we know that $\underline{\delta^{k-1} V}$ is a union of cocircuits of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$. Suppose for a contradiction that there are two different cocircuits C_{1}^{*} and C_{2}^{*} contained in $\underline{\delta^{k-1} V}$. Choose elements $F_{1} \in C_{1}^{*} \backslash C_{2}^{*}$ and $F_{2} \in C_{2}^{*} \backslash C_{1}^{*}$. As V is simplicial it follows that $C=\binom{F_{1} \cup F_{2}}{k}$ is a circuit of $\mathrm{S}_{k}^{n}\left(S_{k}\right)$ and $C \cap C_{1}^{*}=\left\{F_{1}\right\}$, a contradiction to orthogonality.

The reader can easily see that the converse of Proposition 3.3 is not true.
Example 3.4. Set

$$
\mathcal{S}_{3}=\{123,124,125,145,245,136,137,167,367,238,239,289,389\} .
$$

Consider the 3-hyperclique complex $\left\langle\mathcal{S}_{3}\right\rangle$ on the set [9]. From Property (1.2.2) we know that $\mathcal{S}_{4}\left(\left\langle\mathcal{S}_{3}\right\rangle\right)=\{1245,1367,2389\}$ and $\mathcal{S}_{5}\left(\left\langle\mathcal{S}_{3}\right\rangle\right)=\emptyset$. From Property (1.2.1)
we can see that the sets of 2-faces and 1-faces of $\left\langle\mathcal{S}_{3}\right\rangle$ are respectively $\mathcal{S}_{2}\left(\left\langle\mathcal{S}_{3}\right\rangle\right)=\binom{[9]}{2}$ and $\mathcal{S}_{1}\left(\left\langle\mathcal{S}_{3}\right\rangle\right)=\binom{[9]}{1}$. We can see that the set of facets of $\left\langle\mathcal{S}_{3}\right\rangle$ is

$$
\begin{aligned}
& \{18,19,26,27,34,35,46,47,48,49,56,57, \\
& 58,59,68,69,78,79,123,1245,1367,2389\} .
\end{aligned}
$$

Note that $S_{3}^{9}\left(\mathcal{S}_{3}\right)$ has rank 10 and $\left\langle\mathcal{S}_{3}\right\rangle$ is D-perfect with the D-perfect sequence: $45,67,89,15,14,16,17,28,29,12$.

Proposition 3.5. Let V be a $(k-1)$-subset of $[n]$. Suppose that V is not a facet of the k-hyperclique complex $\left\langle\mathcal{S}_{k}\right\rangle=\left\langle F_{1}, F_{2}, \ldots, F_{m}\right\rangle$. Then the following two assertions are equivalent:
(3.5.1) V is simplicial in $\left\langle\mathcal{S}_{k}\right\rangle$.
(3.5.2) The set $X=\bigcup_{F_{i} \in \underline{\delta^{k-1} V}} F_{i}$ is the unique facet of $\left\langle S_{k}\right\rangle$ containing V.

Proof. The implication (3.5.2) \Rightarrow (3.5.1) is clear.
(3.5.1) \Rightarrow (3.5.2) Let X^{\prime} be the unique facet of $\left\langle\mathcal{S}_{k}\right\rangle$ containing V. Then it is clear that $F_{i} \subseteq X^{\prime}$ for each F_{i} containing V. We conclude that $X \subseteq X^{\prime}$ and so X is a face of $\left\langle\mathcal{S}_{k}\right\rangle$. Suppose, for a contradiction, that X is not a facet of $\left\langle\mathcal{S}_{k}\right\rangle$. Then there is an $F \in \mathcal{S}_{k}$ such that $F \not \subset X$ but $F \subset X^{\prime}$. So, for every $x \in F \backslash X$, we know that $V \cup x \in \mathcal{S}_{k}$ and so $V \cup x \in \underline{\delta^{k-1} V}$. We have the contradiction $F \subset X$. Therefore $X=X^{\prime}$.

4. Superdense Simplicial Matroids

A matroid M on the ground set $[n]$ and of rank r is called supersolvable if it admits a maximal chain of modular flats

$$
\begin{equation*}
\operatorname{cl}(\emptyset)=X_{0} \subsetneq X_{1} \subset \cdots \subsetneq X_{r-1} \subsetneq X_{r}=[n] . \tag{4.1}
\end{equation*}
$$

The notion of "supersolvable lattices" was introduced and studied by Stanley in [12]. For a recent study of supersolvability for chordal binary matroids, see [5].

Proposition 4.1. Let $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right), k>2$, be a simplicial matroid. The matroid $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ is supersolvable if and only if it does not have circuits.

Proof. All the circuits of $\mathrm{S}_{k}^{n}\left(S_{k}\right)$ have at least $k+1$ elements. So a hyperplane H is modular if and only if $\left|S_{k} \backslash H\right|=1$. Indeed, if $F, F^{\prime} \in S_{k} \backslash H$, then the line $\mathrm{cl}\left(\left\{F, F^{\prime}\right\}\right)$ cannot intersect the hyperplane H. From (4.1) we conclude that if $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ is supersolvable then it cannot have circuits. The converse is clear.

So, the notion of supersolvability is not interesting for the class of non-graphic simplicial matroids. The following definition gives the "right" extension of the notion of supersolvable.

Definition 4.2. Suppose that $S_{k}^{n}\left(\mathcal{S}_{k}\right)$ has rank r. A hyperplane H of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ is said to be dense if there is a simplicial $(k-1)$-face, V, of $\left\langle\mathcal{S}_{k}\right\rangle$ such that

$$
H=\mathcal{S}_{k} \backslash \underline{\delta^{k-1} V} .
$$

We say that the simplicial matroid $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ is superdense if it admits a maximal chain of "relatively dense" flats

$$
\emptyset=X_{0} \subsetneq X_{1} \subsetneq \cdots \subsetneq X_{r-1} \subsetneq X_{r}=\mathcal{S}_{k},
$$

i.e., such that X_{i} is a dense hyperplane of $\mathrm{S}_{k}^{n}\left(X_{i+1}\right), i \in\{0,1, \ldots, r-1\}$.

A hyperplane H of $S_{2}^{n}\left(S_{2}\right)$ is dense if and only if H is modular. Then $S_{2}^{n}\left(S_{2}\right)$ is superdense if and only if it is supersolvable. So, Theorem 4.3 below can be seen as higher-dimensional generalization of Stanley's reformulation of Dirac's theorem on chordal graphs, see [12].

Theorem 4.3. Let $\Delta_{0}=\left\langle\mathcal{S}_{k}\right\rangle$ be a k-hyperclique complex. Then the following two assertions are equivalent:
(4.3.1) Δ_{0} is D-perfect;
(4.3.2) $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ is superdense.

Proof. $(4.3 .1) \Rightarrow(4.3 .2)$ Let $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{r}\right)$ be a D-perfect sequence of Δ_{0}. From Proposition 3.3 we know that the sets

$$
C_{j}^{*}:=\underline{\delta^{k-1} V_{j}} \backslash \bigcup_{i=1}^{j-1} \frac{\delta^{k-1} V_{i}}{}, \quad j \in\{1,2, \ldots, r\},
$$

are cocircuits of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\left(\Delta_{j-1}\right)\right)$ where

$$
\Delta_{j-1}:=\Delta_{j-2} \backslash \backslash V_{j-1}, \quad j \in\{2,3, \ldots, r\} .
$$

So, \mathcal{V} determines a maximal chain of flats of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$:

$$
\emptyset=X_{0} \subsetneq X_{1} \subsetneq \cdots \subsetneq X_{r-1} \subsetneq X_{r}=\mathcal{S}_{k},
$$

where

$$
X_{r-j}=\mathcal{S}_{k}\left(\Delta_{j-1}\right) \backslash C_{j}^{*}, \quad j=1, \ldots, r .
$$

As V_{j} is simplicial in Δ_{j-1}, we know that X_{r-j} is dense in $\mathrm{S}_{k}^{n}\left(S_{k}\left(\Delta_{j-1}\right)\right)$. So, $\mathrm{S}_{k}^{n}\left(S_{k}\right)$ is superdense. The proof of the converse part is similar.

5. Triangulable Simplicial Matroids

Now we introduce a generalization of the notion of "triangulable" for the classes of simplicial matroids. Given a union of circuits D of $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$, let \vec{D} denote a vector of ${ }_{F} \mathcal{S}_{k}$ whose support is D. Set $\underline{\vec{D}}=D$.

Definition 5.1. Let $\left\langle\mathcal{S}_{k}\right\rangle=\left\langle F_{1}, F_{2}, \ldots, F_{m}\right\rangle$ be a k-hyperclique complex. We say that $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ (over the field \mathbb{F}) is triangulable provided that the vector family

$$
\left\{\partial_{k+1} X: X \in \mathcal{S}_{k+1}\left(\left\langle\mathcal{S}_{k}\right\rangle\right)\right\}
$$

spans the circuit space.

Moreover, when generators $\partial_{k+1} X_{1}, \partial_{k+1} X_{2}, \ldots, \partial_{k+1} X_{m^{\prime}}$ can be chosen such that, for every circuit C, there are non-null scalars $a_{j} \in \mathbb{F}^{*}$ such that

$$
\vec{C}=\sum_{j=1}^{s} a_{j} \partial_{k+1} X_{i_{j}} \text { and } \bigcup_{F_{\ell} \in \underline{C}} F_{\ell}=\bigcup_{i=1}^{s} X_{i_{j}} \text { where } X_{i_{j}} \in\left\{X_{1}, \ldots, X_{m^{\prime}}\right\}
$$

we say that $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ is strongly triangulable.
Note that we can replace in Definition 5.1 the circuit C by a union of circuits D. It is clear that a simple graph $\left([n], S_{2}\right)$ is chordal if and only if $S_{2}^{n}\left(S_{2}\right)$ is strongly triangulable. Theorem 5.2 is the possible generalization of Dirac's theorem on chordal graphs (see Theorem 3.2 above). Indeed, if $k>2$, the converse of Theorem 5.2 is not true, see the remarks following the theorem.

Theorem 5.2. Let $\Delta_{0}=\left\langle\mathcal{S}_{k}\right\rangle=\left\langle F_{1}, F_{2}, \ldots, F_{m}\right\rangle$ be a k-hyperclique complex. If Δ_{0} is D-perfect, then $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ is strongly triangulable.

Proof. The proof is algorithmitic. Let $\mathcal{V}=\left(V_{1}, \ldots, V_{r}\right)$ be a D-perfect sequence. Let D be a union of circuits of $\mathrm{S}_{k}^{n}\left(S_{k}\right)$. Let V_{i} be the first $(k-1)$-face of \mathcal{V} contained in an element of D. From the definitions we know that V_{i} is a simplicial $(k-1)$-face of Δ_{i-1} and D is a union of circuits of $S_{k}^{n}\left(S_{k}\left(\Delta_{i-1}\right)\right)$, where

$$
\Delta_{i-1}=\Delta_{i-2} \backslash \backslash V_{i-1}, \quad i \in\{2, \ldots, r\}
$$

From Proposition 3.3 we know that

$$
C_{j}^{*}:=\underline{\delta^{k-1} V_{j}} \backslash \bigcup_{i=1}^{j-1} \underline{\delta^{k-1} V_{i}}
$$

is a cocircuit of $\mathrm{S}_{k}^{n}\left(S_{k}\left(\Delta_{i-1}\right)\right)$. Set $D \cap C_{j}^{*}=\left\{F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{h}}\right\}$ and consider the family of vectors of $\mathbb{F}^{\mathcal{S}_{k}}$

$$
\left\{\overrightarrow{C_{s}}=\partial_{k+1}\left(F_{i_{1}} \cup F_{i_{s}}\right), \quad s=2, \ldots, h\right\} .
$$

Express a vector \vec{D} of support D in the canonical basis, say,

$$
\vec{D}=a_{i_{1}} F_{i_{1}}+a_{i_{2}} F_{i_{1}}+\cdots+a_{i_{h}} F_{i_{h}}+a_{i_{h+1}} F_{j}+\cdots+a_{i_{m}} F_{i_{m}}
$$

where $a_{i_{\ell}} \in \mathbb{F}^{*}, \ell=1, \ldots, h, a_{i_{\ell}} \in \mathbb{F}, \ell=h+1, \ldots, m$, and $\left\{F_{i_{1}}, \ldots, F_{i_{m}}\right\}=S_{k}$. For every $s \in\{2,3, \ldots, h\}$, it is possible to choose $b_{s} \in \mathbb{F}^{*}$ such that $F_{i_{s}}$ does not belong to the support of $b_{s} \overrightarrow{C_{s}}+\vec{D}$. As $\left(C_{s} \cap D\right) \cap C_{j}^{*}=\left\{F_{i_{1}}, F_{i_{s}}\right\}$ it follows that $F_{i_{2}}, F_{i_{3}}, \ldots, F_{i_{h}}$ does not belong to the support of

$$
\overrightarrow{D^{\prime}}:=\vec{D}+b_{2} \overrightarrow{C_{2}}+b_{3} \overrightarrow{C_{3}}+\cdots+b_{h} \overrightarrow{C_{h}}
$$

The dependent set D^{\prime} is a union of circuits and $D^{\prime} \cap C_{j}^{*} \subseteq\left\{F_{i_{1}}\right\}$. So, by orthogonality we have $D^{\prime} \cap C_{j}^{*}=\emptyset$. Note that
(i) for every $V_{j} \in \mathcal{V}, 1 \leq j \leq i$, no element of D^{\prime} contains V_{j};
(ii)

$$
\bigcup_{F_{\ell} \in D} F_{\ell}=\bigcup_{F_{\ell^{\prime} \in \cup_{s=2}^{h} C_{s} \cup D^{\prime}}} F_{\ell^{\prime}} .
$$

Replace D by the set D^{\prime} and apply the same arguments. From (i) we know that the algorithm finish. It finishes only if D^{\prime} is a small circuit. So the theorem follows.

If $k>2$, the converse of Theorem 5.2 is not true. Indeed, consider the triangulation of a projective plane

$$
\begin{aligned}
& F_{1}=124, F_{2}=126, F_{3}=134, F_{4}=135, F_{5}=165 \\
& F_{6}=235, F_{7}=236, F_{8}=245, F_{9}=346, F_{10}=456
\end{aligned}
$$

Consider the 3-hyperclique complex $\left\langle S_{k}\right\rangle=\left\langle F_{1}, F_{2}, \ldots, F_{10}\right\rangle$ on the set [6]. The simplicial matroid $S_{3}^{n}\left(S_{k}\right)$, over a field \mathbb{F} of characteristic different of 2, does not have circuits and then it is (trivially) strongly triangulable. Every 2 -face of a F_{i} is contained in another $F_{j}, j \in\{1, \ldots, 10\}, j \neq i$. The facets of $\left\langle\mathcal{S}_{k}\right\rangle$ are the sets $F_{1}, F_{2}, \ldots, F_{10}$ and all the 2-faces of $\left\langle\mathcal{S}_{k}\right\rangle$ are not contained in an F_{i}. Then $\left\langle\mathcal{S}_{k}\right\rangle$ does not contain simplicial 2-faces and it is not D-perfect.

We remark that the cycle matroid of a non-chordal graph can be triangulable. More generally, we have
Proposition 5.3. For any $n, k, n-3 \geq k \geq 2$, there is a k-hyperclique complex $\left\langle\mathcal{S}_{k}\right\rangle$ such that
(5.3.1) the simplicial matroid $\mathrm{S}_{k}^{n}\left(S_{k}\right)$ is triangulable but not strongly triangulable;
(5.3.2) $\left\langle\mathcal{S}_{k}\right\rangle$ does not contain a simplicial $(k-1)$-face.

Proof. Let $\left\langle S_{k}\right\rangle$ be the k-hyperclique complex where

$$
\begin{aligned}
S_{k}= & \binom{12 \cdots(k+1)}{k} \cup\binom{23 \cdots(k+2)}{k} \backslash 23 \cdots(k+1) \bigcup \\
& \bigcup_{i=1}^{k+1}\binom{12 \cdots \widehat{i} \cdots(k+1) n}{k} \bigcup \bigcup_{j=2}^{k+2}\binom{23 \cdots \hat{j} \cdots(k+2) n}{k} .
\end{aligned}
$$

The simplicial matroid $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ has $2 k$ small circuits,

$$
\begin{aligned}
& C_{i}:=\binom{12 \cdots \hat{i} \cdots(k+1) n}{k}, \quad i \in\{1,2, \ldots, k+1\}, \\
& C_{j}:=\binom{23 \cdots \hat{j} \cdots(k+2) n}{k}, \quad j \in\{2,3, \ldots, k+2\} .
\end{aligned}
$$

The set

$$
C:=\binom{12 \cdots(k+1)}{k} \bigcup\binom{23 \cdots(k+2)}{k} \backslash 23 \cdots(k+1)
$$

is a circuit, symmetric difference of all the $2 k$ small circuits. So, the simplicial matroid $\mathrm{S}_{k}^{n}\left(\mathcal{S}_{k}\right)$ over a field of characteristic 2 is triangulable but not strongly triangulable. The reader can check that there do not exist simplicial $(k-1)$-faces in $\left\langle\mathcal{S}_{k}\right\rangle$.

References

1. A. Björner, Topological methods, In: Handbook of Combinatorics, R. Graham, M. Grötschel, and L. Lovász, Eds., Elsevier, Amsterdam, (1995) pp. 1819-1872.
2. E.D. Bolker, Simplicial geometry and transportation polytopes, Trans. Amer. Math. Soc. 217 (1976) 121-142.
3. R. Cordovil and M. Las Vergnas, Géometries simpliciales unimodulaires, Discrete Math. 26 (3) (1979) 213-217.
4. R. Cordovil and B. Lindström, Simplicial matroids, In: Combinatorial Geometries, Encyclopedia Math. Appl., Vol. 29, Cambridge University Press, Cambridge, (1987) pp. 98-113.
5. R. Cordovil, D. Forge, and S. Klein, How is a chordal graph like a supersolvable binary matroid?, Discrete Math. 288 (1-3) (2004) 167-172.
6. H.H. Crapo and G.-C. Rota, Simplicial geometries, In: Combinatorics, Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., (1968) pp. 71-75.
7. H.H. Crapo and G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, Preliminary Edition, The M.I.T. Press, Cambridge, Mass.-London, 1970.
8. G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76.
9. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd Ed., Ann. Discrete Math., Vol. 57, Elsevier Science B.V., Amsterdam, 2004.
10. J. Herzog, T. Hibi, and X. Zheng, Dirac's theorem on chordal graphs and Alexander duality, European J. Combin. 25 (7) (2004) 949-960.
11. J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
12. R.P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972) 197-217.
13. W.T. Tutte, Introduction to the Theory of Matroids, American Elsevier Publishing Co., Inc., New York, 1971.
14. D.J.A. Welsh, Matroid Theory, Academic Press, London-New York, 1976.
15. N. White, Theory of Matroids, Cambridge University Press, Cambridge, 1986.
16. N. White, Combinatorial Geometries, Cambridge University Press, Cambridge, 1987.
17. N. White, Matroid Applications, Cambridge University Press, Cambridge, 1992.
