Annals of Combinatorics

Ann. Comb. 13 (2009) 53–63 DOI 10.1007/s00026-009-0012-2 Published online June 19, 2009 © Birkhäuser Verlag Basel/Switzerland 2009

Dirac's Theorem on Simplicial Matroids

Raul Cordovil¹, Manoel Lemos², and Cláudia Linhares Sales³

¹Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal cordovil@math.ist.utl.pt

²Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco, CEP 50740-540, Brasil manoel@dmat.ufpe.br

³MDCC, Departamento de Computação, Universidade Federal do Ceará - UFC, Campus do Pici, Bloco 910, Fortaleza, CE, Brasil linhares@lia.ufc.br

Received September 14, 2006

AMS Subject Classification: 05B35; 05C17

Abstract. We introduce the notion of *k*-hyperclique complexes, i.e., the largest simplicial complexes on the set [n] with a fixed *k*-skeleton. These simplicial complexes are a higher-dimensional analogue of clique (or flag) complexes (case k = 2) and they are a rich new class of simplicial complexes. We show that Dirac's theorem on chordal graphs has a higher-dimensional analogue in which graphs and clique complexes get replaced, respectively, by simplicial matroids and *k*-hyperclique complexes. We prove also a higher-dimensional analogue of Stanley's reformulation of Dirac's theorem on chordal graphs.

Keywords: clique (flag) complexes, Dirac's theorem on chordal graphs, simplicial matroids, *k*-hyperclique complexes, Helly dual *k*-property, strong triangulable simplicial matroids

1. Introduction and Notations

Set $[n] := \{1, 2, ..., n\}$. The simplicial matroids $S_k^n(E)$ on the ground set $E \subseteq {\binom{[n]}{k}}$ have been introduced by Crapo and Rota [6,7] as one of the six most important classes of matroids. These matroids generalize graphic matroids: More precisely $S_2^n(E)$ is the cycle matroid (or graphic matroid) of the graph ([n], E). With the aid of Alexander's duality theorem for manifolds applied to simplices, they prove the following beautiful isomorphism

$$\left[\mathbf{S}_{k}^{n}\left(\binom{[n]}{k}\right)\right]^{*} \simeq \mathbf{S}_{n-k}^{n}\left(\binom{[n]}{n-k}\right), \quad X \mapsto [n] \setminus X, \tag{1.1}$$

where $\left[S_k^n\left(\binom{[n]}{k}\right)\right]^*$ denotes the dual (or orthogonal) matroid of $S_n^k\left(\binom{[n]}{k}\right)$, see [7, Theorem 11.4] or, for an elementary proof (depending only on matrix algebra), [4, Theorem 6.2.1]. In this paper, we use an equivalent definition of simplicial matroids, see Definition 1.4 below.

We introduce the notion of *k*-hyperclique complexes. These simplicial complexes are a natural higher-dimensional analogue of clique (or flag) complexes (case k = 2), see Definition 1.2 below. The *k*-hyperclique complexes are a rich new class of simplicial complexes of intrinsic interest. To get a better understanding of the structure of $S_k^n(E)$ we attach to it the *k*-hyperclique complex on [n] canonically determined by the family *E*.

In this paper, we introduce the notion of a strong triangulable simplicial matroid, a higher-dimensional generalization of the notion of a chordal graph. We prove an analogue of Dirac's theorem on chordal graphs (see Theorem 3.2) using a natural generalization of a perfect sequence of vertices of a chordal graph (see Theorem 5.2). We prove also a higher-dimensional generalization of Stanley's reformulation of Dirac's theorem on chordal graphs (see Theorem 4.3).

Let us set some preliminary notation.

Definition 1.1. An (abstract) oriented simplicial complex on the set [n] is a family Δ of linear ordered subsets of [n] (called the faces of Δ) satisfying the following two conditions. (We identify the linear ordered set $\{v_1, v_2, \ldots, v_m\}$, $v_1 < v_2 < \cdots < v_m$, with the symbol $v_1v_2\cdots v_m$.)

(1.1.1) Every $v \in [n]$ is a face of Δ . (1.1.2) If F is a face of Δ and $F' \subset F$, then F' is also a face of Δ .

Given two faces F' and $F = i_1 i_2 \cdots i_m$, the "incidence number" [F': F] is

 $[F':F] = \begin{cases} (-1)^j, & \text{if } F' = i_1 i_2 \cdots i_{j-1} i_{j+1} \cdots i_m; \\ 0, & \text{otherwhise.} \end{cases}$

Let $S_d(\Delta)$ denote the *d*-skeleton of Δ , i.e., the family of faces of size *d* (or *d*-faces) of Δ . A *facet* is a face of Δ , maximal to inclusion. If nothing in contrary is indicated, we suppose that $S_1(\Delta) = [n]$.

Definition 1.2. Let $S_k := \{F_1, F_2, ..., F_m\}$ be a family of k-subsets of [n]. Let $\langle S_k \rangle$ be the simplicial complex such that $F \subseteq [n]$ is a face of $\langle S_k \rangle$ provided that:

(1.2.1) |F| < k; or (1.2.2) if $|F| \ge k$, every k-subset of F belongs to $\{F_1, F_2, ..., F_m\}$.

We say that $\langle S_k \rangle$ is the k-hyperclique complex generated by the set

$$\mathcal{S}_k = \{F_1, F_2, \ldots, F_m\}.$$

We see $\langle S_k \rangle$ *as an oriented simplicial complex, with the natural orientation induced by* [n]*.*

Note that $\langle S_k \rangle$ is the largest simplicial complex Δ on the set [n] with the fixed *k*-skeleton S_k . (In the hypergraph literature, a family of sets satisfying Property (1.2.2) is said to have the *Helly dual k-property*.)

Throughout this work S_k denotes a family of *k*-subsets of [n] and let $\langle S_k \rangle$ denote the corresponding *k*-hyperclique complex. (So, we have $S_k = S_k(\langle S_k \rangle)$.) The paradigm examples of the *k*-hyperclique complexes are the clique (or flag) complexes (the 2-hyperclique complexes).

Example 1.3. Set $S_k = \{F_1, F_2, ..., F_m\}$. If $\bigcap_{i=1}^m F_i \neq \emptyset$ then $F_1, ..., F_m$ are facets of $\langle S_k \rangle$. The other facets of $\langle S_k \rangle$ are the (k-1)-subsets of [n] which are in no F_i . For every $k, n \ge k \ge 1, 2^{[n]}$ is a (full) *k*-hyperclique complex.

Let S_{ℓ} be a subset of $\binom{[n]}{\ell}$, where $n \ge \ell \ge 2$. Let $\langle S_{\ell} \rangle$ be the oriented ℓ -hyperclique complex determined by S_{ℓ} . Let \mathbb{F} be a field. Consider the two vector spaces $\mathbb{F}^{S_{\ell}}$ and $\mathbb{F}^{\binom{[n]}{\ell-1}}$ over \mathbb{F} . Let us define the (boundary) map

$$\partial_{\ell} \colon \mathbb{F}^{\mathcal{S}_{\ell}} \to \mathbb{F}^{\binom{[n]}{\ell-1}}$$

as the vector space map determined by linearity specifying its values in the basis elements:

$$\partial_{\ell}F = \sum_{F' \in \binom{[n]}{\ell-1}} \left[F' \colon F\right]F',$$

for every $F \in S_{\ell}$. By duality let us define the (coboundary) map

$$\delta^{\ell-1} \colon \mathbb{F}^{\binom{[n]}{\ell-1}} \to \mathbb{F}^{\mathcal{S}_{\ell}}$$

as the vector space map determined by linearity specifying its values in the basis elements:

$$\delta^{\ell-1}F' = \sum_{F \in E} \left[F' \colon F\right]F$$

for every $F' \in {[n] \choose \ell-1}$. (The symbol [F': F] denotes the incidence number of the faces F' and F in the oriented simplicial complex $\langle S_{\ell} \rangle$.)

Definition 1.4. [4] *The* simplicial matroid $S_k^n(S_k)$, on the ground set S_k and over the field \mathbb{F} , is the matroid such that

$$\{X_1, X_2, \ldots, X_m\} \subseteq \mathcal{S}_k$$

is an independent set if and only if the vectors,

$$\partial_k X_1, \partial_k X_2, \ldots, \partial_k X_m,$$

are linearly independent in the vector space $\mathbb{F}^{\binom{[n]}{k-1}}$.

Remark 1.5. [3,4] Let $(s_{p,q})$ be the matrix whose rows and columns are labeled by the sets of $\binom{[n]}{k-1}$ and \mathcal{S}_k respectively, with $s_{p,q} = 0$ if $p \not\subseteq q$ and $s_{p,q} = (-1)^j$ if $q - p = i_j, q = \{i_1, \dots, i_j, \dots i_k\}$. The simplicial matroid $S_k^n(\mathcal{S}_k)$ (over the field \mathbb{F}) is the independent matroid of the columns of the $\{-1, 1, 0\}$ matrix $(s_{p,q})$, over the field \mathbb{F} . If the matrix $(s_{p,q})$ is not totally unimodular, the simplicial matroid depends of the field \mathbb{F} . Since the time of Henri Poincaré, it is known that if k = 2, the matrix $(s_{p,q})$ is totally unimodular. The 2-hyperclique complex $\langle S_2 \rangle$ is the clique complex of the simple graph $([n], S_2)$ and $S_2^n(S_2)$ is its corresponding cycle matroid. So $S_2^n(S_2)$ is a regular (or unimodular) matroid, i.e., it is irrespective of the field \mathbb{F} .

If nothing in contrary is said, the simplicial matroids here considered are over the field \mathbb{F} .

For background, motivation, and matroid terminology left undefined here, see any of the standard references [7, 11, 13, 14] or the encyclopedic survey [15–17]. For a description of the developments on simplicial matroids before 1986, see [4]. See also [2] for an interesting application. For a topological approach to combinatorics, see [1]. Dirac characterization of chordal graphs (see [8]) is treated extensively in [9, Chapter 4]. For an algebraic proof of Dirac's theorem, see [10].

2. Simplicial Matroids

The following two propositions are folklore and they are included for completeness. For every vector v of \mathbb{F}^E , where

 $v = a_1 e_1 + a_2 e_2 + \dots + a_m e_m \ (e_i \in E, a_i \in \mathbb{F}^*),$

let $\underline{v} := \{e_1, e_2, \dots, e_m\}$ denote the *support* of *v*.

Proposition 2.1. Let S_k be a subset of $\binom{[n]}{k}$ and $S_k^n(S_k)$ be the corresponding simplicial matroid (over the field \mathbb{F}). Consider the linear map $\partial_k : \mathbb{F}^{S_k} \to \mathbb{F}^{\binom{[n]}{k-1}}$. Then:

- (2.1.1) Each circuit of $S_k^n(S_k)$ has at least k+1 elements.
- (2.1.2) For every (k+1)-face X of $\langle S_k \rangle$, $\frac{\partial_{k+1}X}{\partial_{k+1}X}$ is a circuit of $S_k^n(S_k)$. Each circuit with exactly k+1 elements is of this type.

For each $X \in S_{k+1}(\langle S_k \rangle)$ we say that $\underline{\partial_{k+1}X}$ is a *small circuit* of $S_k^n(S_k)$.

Proposition 2.2. Let S_k be a subset of $\binom{[n]}{k}$, $k \ge 2$, and $S_k^n(S_k)$ be the corresponding simplicial matroid (over the field \mathbb{F}). Consider the linear map $\delta^{k-1} : \mathbb{F}^{\binom{[n]}{k-1}} \to \mathbb{F}^{S_k}$. Then:

(2.2.1) The cocircuit space of $S_k^n(S_k)$ is generated by the set of vectors $\left\{\delta^{k-1}V \neq 0: V \in {[n] \choose k-1}\right\}$.

(2.2.2) If non-empty, the set $\underline{\delta}^{k-1}V$, $V \in {[n] \choose k-1}$, is a union of cocircuits of $S_k^n(S_k)$.

Proof. The oriented simplicial complex $\left\langle {\binom{[n]}{k}} \right\rangle = 2^{[n]}$ is the oriented full *k*-hyperclique complex. The matroid $S_k^n\left({\binom{[n]}{k}}\right)$ is the full simplicial matroid on the ground set ${\binom{[n]}{k}}$. Consider the linear map

$$\delta^{k-1} \colon \mathbb{F}^{\binom{[n]}{k-1}} \to \mathbb{F}^{\binom{[n]}{k}}.$$
(2.1)

From Isomorphism (1.1), we know that

$$\mathcal{C}^* := \left\{ \delta^{k-1} V \colon V \in {[n] \choose k-1} \right\}$$

is a generating set of the cocircuit space of $S_k^n(\mathcal{S}_k')$. The linear map

$$\delta^{k-1} \colon \mathbb{F}^{\binom{[n]}{k-1}} \to \mathbb{F}^{\mathcal{S}_k}$$

is the composition of the map (2.1) and the natural projection

$$\iota\colon \mathbb{F}^{\binom{[n]}{k}} \to \mathbb{F}^{\mathcal{S}_k}.$$

So, Assertion (2.2.1) holds. We know that C^* is a cocircuit of $S_k^n\left(\binom{[n]}{k}\right)$ if and only if C^* is the support of a non-null vector of \mathcal{C}^* , minimal for inclusion. Note that $S_k^n(\mathcal{S}_k)^*$ is obtained from $S_k^n\left(\binom{[n]}{k}\right)^*$ by contracting the set $\binom{[n]}{k} \setminus \mathcal{S}_k$. So, Assertion (2.2.2) holds.

Throughout this work $V, V', V_1, V_2, ...$ denote (k-1)-subsets of [n]. So, they are (k-1)-face of $\langle S_k \rangle$. Let $\langle S_k \rangle \backslash V$ denote the *k*-hyperclique complex $\langle S_k \setminus \underline{\delta^{k-1}V} \rangle$, i.e., the *k*-hyperclique complex determined by the set $S_k \setminus \underline{\delta^{k-1}V}$. Note that, for every pair of (k-1)-faces V and V', we have:

$$(\langle \mathcal{S}_k \rangle \backslash \backslash V) \backslash \backslash V' = (\langle \mathcal{S}_k \rangle \backslash \backslash V') \backslash \backslash V = \left\langle \mathcal{S}_k \setminus \left(\underline{\delta^{k-1}V} \cup \underline{\delta^{k-1}V'} \right) \right\rangle.$$

Definition 2.3. Let $\Delta_0 = \langle S_k \rangle$ be a k-hyperclique complex such that $S_k^n(S_k)$ has rank r. A sequence V_1, V_2, \ldots, V_r of (k-1)-faces of Δ_0 is said to be basic linear sequence when

$$C_j^* := \underline{\delta^{k-1}V_j} \setminus \bigcup_{i=1}^{j-1} \underline{\delta^{k-1}V_i}$$

is a cocircuit of $S_k^n(\mathcal{S}_k(\Delta_{j-1}))$, for $j \in \{1, 2, ..., r\}$, where

$$\Delta_{j-1} := \Delta_{j-2} \setminus V_{j-1}, \quad j \in \{2, \dots, r\}.$$

The following result is a corollary of Proposition 2.2.

Corollary 2.4. Let $\langle S_k \rangle$ be a k-hyperclique complex such that $S_k^n(S_k)$ has rank r. If $\mathcal{V} = (V_1, V_2, \dots, V_r)$ is a basic linear sequence of (k-1)-faces of $\langle S_k \rangle$, then

$$\beta = \left\{ \delta^{k-1} V_1, \delta^{k-1} V_2, \dots, \delta^{k-1} V_r \right\}$$

is a basis of the cocircuit space of $S_k^n(S_k)$.

Proof. Suppose that β is a dependent set. Choose a dependent subset of β

$$\left\{\delta^{k-1}V_{i_1},\delta^{k-1}V_{i_2},\ldots,\delta^{k-1}V_{i_s}\right\},\,$$

such that $i_1 < i_2 < \cdots < i_s$ and *s* is minimum. Therefore

$$\underline{\delta^{k-1}V_{i_s}} \subseteq \bigcup_{j=1}^{s-1} \underline{\delta^{k-1}V_{i_j}}$$

and $V_{i_s} \notin \mathcal{V}$, a contradiction. As the cocircuit space of $S_k^n(\mathcal{S}_k)$ has dimension *r* the result follows.

3. D-Perfect *k*-Hyperclique Complexes

In this section we extend to *k*-hyperclique complexes the notions of "simplicial vertex" and "perfect sequence of vertices", introduced in the Dirac characterization of the clique complexes of chordal graphs, see [8,9].

Definition 3.1. Let $\Delta_0 = \langle S_k \rangle$ be a *k*-hyperclique complex and suppose that the simplicial matroid $S_k^n(S_k)$ has rank *r*. We say that a (k-1)-face *V* is *simplicial* in Δ_0 , if there is exactly one facet *X* of Δ_0 such that $V \subsetneq X$. We say that Δ_0 is D-*perfect* if there is a basic linear sequence of (k-1)-faces, $\mathcal{V} = (V_1, V_2, \dots, V_r)$, such that every $V_i \in \mathcal{V}$ is simplicial in the *k*-hyperclique complex Δ_{i-1} where

$$\Delta_{i-1} := \Delta_{i-2} \backslash \! \backslash V_{i-1}, \quad i \in \{2, \ldots, r\}.$$

We will call \mathcal{V} a D-perfect sequence of Δ_0 .

Chordal graphs are an important class of graphs. The following theorem is one of their fundamental characterizations, reformulated in our language.

Theorem 3.2. (Dirac's theorem on chordal graphs [8,9]) Let $G = ([n], S_2), S_2 \subseteq {\binom{[n]}{2}}$ be a graph and $\langle S_2 \rangle$ be its clique complex. Then G is chordal if and only if $\langle S_2 \rangle$ is D-perfect.

Proposition 3.3. Let V be a (k-1)-subset of [n]. If V is simplicial in the k-hyperclique complex $\langle S_k \rangle$ then $\underline{\delta^{k-1}V}$ is a cocircuit of $\mathbf{S}_k^n(S_k)$.

Proof. From Proposition 2.2 we know that $\underline{\delta}^{k-1}V$ is a union of cocircuits of $S_k^n(\mathcal{S}_k)$. Suppose for a contradiction that there are two different cocircuits C_1^* and C_2^* contained in $\underline{\delta}^{k-1}V$. Choose elements $F_1 \in C_1^* \setminus C_2^*$ and $F_2 \in C_2^* \setminus C_1^*$. As *V* is simplicial it follows that $C = \binom{F_1 \cup F_2}{k}$ is a circuit of $S_k^n(\mathcal{S}_k)$ and $C \cap C_1^* = \{F_1\}$, a contradiction to orthogonality.

The reader can easily see that the converse of Proposition 3.3 is not true.

Example 3.4. Set

 $S_3 = \{123, 124, 125, 145, 245, 136, 137, 167, 367, 238, 239, 289, 389\}.$

Consider the 3-hyperclique complex $\langle S_3 \rangle$ on the set [9]. From Property (1.2.2) we know that $S_4(\langle S_3 \rangle) = \{1245, 1367, 2389\}$ and $S_5(\langle S_3 \rangle) = \emptyset$. From Property (1.2.1)

we can see that the sets of 2-faces and 1-faces of $\langle S_3 \rangle$ are respectively $S_2(\langle S_3 \rangle) = {[9] \choose 2}$ and $S_1(\langle S_3 \rangle) = {[9] \choose 1}$. We can see that the set of facets of $\langle S_3 \rangle$ is

{18, 19, 26, 27, 34, 35, 46, 47, 48, 49, 56, 57, 58, 59, 68, 69, 78, 79, 123, 1245, 1367, 2389}.

Note that $S_3^9(S_3)$ has rank 10 and $\langle S_3 \rangle$ is D-perfect with the D-perfect sequence: 45, 67, 89, 15, 14, 16, 17, 28, 29, 12.

Proposition 3.5. Let V be a (k-1)-subset of [n]. Suppose that V is not a facet of the k-hyperclique complex $\langle S_k \rangle = \langle F_1, F_2, ..., F_m \rangle$. Then the following two assertions are equivalent:

(3.5.1) *V* is simplicial in $\langle S_k \rangle$. (3.5.2) The set $X = \bigcup_{F_i \in \underline{\delta}^{k-1}V} F_i$ is the unique facet of $\langle S_k \rangle$ containing *V*.

Proof. The implication $(3.5.2) \Rightarrow (3.5.1)$ is clear.

 $(3.5.1) \Rightarrow (3.5.2)$ Let X' be the unique facet of $\langle S_k \rangle$ containing V. Then it is clear that $F_i \subseteq X'$ for each F_i containing V. We conclude that $X \subseteq X'$ and so X is a face of $\langle S_k \rangle$. Suppose, for a contradiction, that X is not a facet of $\langle S_k \rangle$. Then there is an $F \in S_k$ such that $F \not\subset X$ but $F \subset X'$. So, for every $x \in F \setminus X$, we know that $V \cup x \in S_k$ and so $V \cup x \in \underline{\delta^{k-1}V}$. We have the contradiction $F \subset X$. Therefore X = X'.

4. Superdense Simplicial Matroids

A matroid M on the ground set [n] and of rank r is called *supersolvable* if it admits a maximal chain of modular flats

$$\operatorname{cl}(\mathbf{0}) = X_0 \subsetneq X_1 \subset \cdots \subsetneq X_{r-1} \subsetneq X_r = [n]. \tag{4.1}$$

The notion of "supersolvable lattices" was introduced and studied by Stanley in [12]. For a recent study of supersolvability for chordal binary matroids, see [5].

Proposition 4.1. Let $S_k^n(S_k)$, k > 2, be a simplicial matroid. The matroid $S_k^n(S_k)$ is supersolvable if and only if it does not have circuits.

Proof. All the circuits of $S_k^n(S_k)$ have at least k + 1 elements. So a hyperplane H is modular if and only if $|S_k \setminus H| = 1$. Indeed, if $F, F' \in S_k \setminus H$, then the line $cl(\{F, F'\})$ cannot intersect the hyperplane H. From (4.1) we conclude that if $S_k^n(S_k)$ is supersolvable then it cannot have circuits. The converse is clear.

So, the notion of supersolvability is not interesting for the class of non-graphic simplicial matroids. The following definition gives the "right" extension of the notion of supersolvable.

Definition 4.2. Suppose that $S_k^n(S_k)$ has rank r. A hyperplane H of $S_k^n(S_k)$ is said to be dense if there is a simplicial (k-1)-face, V, of $\langle S_k \rangle$ such that

$$H = \mathcal{S}_k \setminus \underline{\delta^{k-1}V}.$$

We say that the simplicial matroid $S_k^n(S_k)$ is superdense if it admits a maximal chain of "relatively dense" flats

$$\emptyset = X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_{r-1} \subsetneq X_r = \mathcal{S}_k,$$

i.e., such that X_i is a dense hyperplane of $S_k^n(X_{i+1})$, $i \in \{0, 1, \dots, r-1\}$.

A hyperplane *H* of $S_2^n(S_2)$ is dense if and only if *H* is modular. Then $S_2^n(S_2)$ is superdense if and only if it is supersolvable. So, Theorem 4.3 below can be seen as higher-dimensional generalization of Stanley's reformulation of Dirac's theorem on chordal graphs, see [12].

Theorem 4.3. Let $\Delta_0 = \langle S_k \rangle$ be a k-hyperclique complex. Then the following two assertions are equivalent:

(4.3.1) Δ_0 is D-perfect; (4.3.2) $S_k^n(S_k)$ is superdense.

Proof. $(4.3.1) \Rightarrow (4.3.2)$ Let $\mathcal{V} = (V_1, V_2, \dots, V_r)$ be a D-perfect sequence of Δ_0 . From Proposition 3.3 we know that the sets

$$C_j^* := \underline{\delta^{k-1}V_j} \setminus \bigcup_{i=1}^{j-1} \underline{\delta^{k-1}V_i}, \quad j \in \{1, 2, \dots, r\},$$

are cocircuits of $S_k^n(\mathcal{S}_k(\Delta_{j-1}))$ where

 $\Delta_{j-1} := \Delta_{j-2} \setminus V_{j-1}, \quad j \in \{2, 3, \dots, r\}.$

So, \mathcal{V} determines a maximal chain of flats of $S_k^n(\mathcal{S}_k)$:

$$\emptyset = X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_{r-1} \subsetneq X_r = \mathcal{S}_k,$$

where

$$X_{r-j} = \mathcal{S}_k(\Delta_{j-1}) \setminus C_j^*, \quad j = 1, \dots, r.$$

As V_j is simplicial in Δ_{j-1} , we know that X_{r-j} is dense in $S_k^n(\mathcal{S}_k(\Delta_{j-1}))$. So, $S_k^n(\mathcal{S}_k)$ is superdense. The proof of the converse part is similar.

5. Triangulable Simplicial Matroids

Now we introduce a generalization of the notion of "triangulable" for the classes of simplicial matroids. Given a union of circuits D of $S_k^n(\mathcal{S}_k)$, let \overrightarrow{D} denote a vector of $\mathbb{F}^{\mathcal{S}_k}$ whose support is D. Set $\overrightarrow{D} = D$.

Definition 5.1. Let $\langle S_k \rangle = \langle F_1, F_2, \dots, F_m \rangle$ be a *k*-hyperclique complex. We say that $S_k^n(S_k)$ (over the field \mathbb{F}) is triangulable provided that the vector family

$$\{\partial_{k+1}X: X \in \mathcal{S}_{k+1}(\langle \mathcal{S}_k \rangle)\}$$

spans the circuit space.

Moreover, when generators $\partial_{k+1}X_1, \partial_{k+1}X_2, \dots, \partial_{k+1}X_{m'}$ can be chosen such that, for every circuit *C*, there are non-null scalars $a_i \in \mathbb{F}^*$ such that

$$\overrightarrow{C} = \sum_{j=1}^{s} a_j \partial_{k+1} X_{i_j} \text{ and } \bigcup_{F_\ell \in \underline{C}} F_\ell = \bigcup_{i=1}^{s} X_{i_j} \text{ where } X_{i_j} \in \{X_1, \dots, X_{m'}\},$$

we say that $S_k^n(S_k)$ is strongly triangulable.

Note that we can replace in Definition 5.1 the circuit *C* by a union of circuits *D*. It is clear that a simple graph $([n], S_2)$ is chordal if and only if $S_2^n(S_2)$ is strongly triangulable. Theorem 5.2 is the possible generalization of Dirac's theorem on chordal graphs (see Theorem 3.2 above). Indeed, if k > 2, the converse of Theorem 5.2 is not true, see the remarks following the theorem.

Theorem 5.2. Let $\Delta_0 = \langle S_k \rangle = \langle F_1, F_2, \dots, F_m \rangle$ be a k-hyperclique complex. If Δ_0 is D-perfect, then $S_k^n(S_k)$ is strongly triangulable.

Proof. The proof is algorithmitic. Let $\mathcal{V} = (V_1, \ldots, V_r)$ be a D-perfect sequence. Let D be a union of circuits of $S_k^n(\mathcal{S}_k)$. Let V_i be the first (k-1)-face of \mathcal{V} contained in an element of D. From the definitions we know that V_i is a simplicial (k-1)-face of Δ_{i-1} and D is a union of circuits of $S_k^n(\mathcal{S}_k(\Delta_{i-1}))$, where

$$\Delta_{i-1} = \Delta_{i-2} \setminus V_{i-1}, \quad i \in \{2, \ldots, r\}.$$

From Proposition 3.3 we know that

$$C_j^* := \underline{\delta^{k-1}V_j} \setminus \bigcup_{i=1}^{j-1} \underline{\delta^{k-1}V_i}$$

is a cocircuit of $S_k^n(\mathcal{S}_k(\Delta_{i-1}))$. Set $D \cap C_j^* = \{F_{i_1}, F_{i_2}, \dots, F_{i_h}\}$ and consider the family of vectors of $\mathbb{F}^{\mathcal{S}_k}$

$$\left\{\overrightarrow{C_s} = \partial_{k+1} \left(F_{i_1} \cup F_{i_s}\right), \quad s = 2, \dots, h\right\}.$$

Express a vector \overrightarrow{D} of support D in the canonical basis, say,

$$\overrightarrow{D} = a_{i_1}F_{i_1} + a_{i_2}F_{i_1} + \dots + a_{i_h}F_{i_h} + a_{i_{h+1}}F_j + \dots + a_{i_m}F_{i_m},$$

where $a_{i_{\ell}} \in \mathbb{F}^*, \ell = 1, ..., h$, $a_{i_{\ell}} \in \mathbb{F}, \ell = h + 1, ..., m$, and $\{F_{i_1}, ..., F_{i_m}\} = S_k$. For every $s \in \{2, 3, ..., h\}$, it is possible to choose $b_s \in \mathbb{F}^*$ such that F_{i_s} does not belong to the support of $b_s \overrightarrow{C_s} + \overrightarrow{D}$. As $(C_s \cap D) \cap C_j^* = \{F_{i_1}, F_{i_s}\}$ it follows that $F_{i_2}, F_{i_3}, ..., F_{i_h}$ does not belong to the support of

$$\overrightarrow{D'} := \overrightarrow{D} + b_2 \overrightarrow{C_2} + b_3 \overrightarrow{C_3} + \dots + b_h \overrightarrow{C_h}.$$

The dependent set D' is a union of circuits and $D' \cap C_j^* \subseteq \{F_{i_1}\}$. So, by orthogonality we have $D' \cap C_j^* = \emptyset$. Note that

(i) for every $V_j \in \mathcal{V}$, $1 \le j \le i$, no element of D' contains V_j ;

(ii)

$$\bigcup_{F_{\ell} \in D} F_{\ell} = \bigcup_{F_{\ell'} \in \bigcup_{s=2}^{h} C_s \cup D'} F_{\ell'}.$$

Replace *D* by the set D' and apply the same arguments. From (i) we know that the algorithm finish. It finishes only if D' is a small circuit. So the theorem follows.

If k > 2, the converse of Theorem 5.2 is not true. Indeed, consider the triangulation of a projective plane

$$F_1 = 124, F_2 = 126, F_3 = 134, F_4 = 135, F_5 = 165,$$

 $F_6 = 235, F_7 = 236, F_8 = 245, F_9 = 346, F_{10} = 456.$

Consider the 3-hyperclique complex $\langle S_k \rangle = \langle F_1, F_2, \dots, F_{10} \rangle$ on the set [6]. The simplicial matroid $S_3^n(S_k)$, over a field \mathbb{F} of characteristic different of 2, does not have circuits and then it is (trivially) strongly triangulable. Every 2-face of a F_i is contained in another F_j , $j \in \{1, \dots, 10\}$, $j \neq i$. The facets of $\langle S_k \rangle$ are the sets F_1, F_2, \dots, F_{10} and all the 2-faces of $\langle S_k \rangle$ are not contained in an F_i . Then $\langle S_k \rangle$ does not contain simplicial 2-faces and it is not D-perfect.

We remark that the cycle matroid of a non-chordal graph can be triangulable. More generally, we have

Proposition 5.3. For any $n, k, n-3 \ge k \ge 2$, there is a k-hyperclique complex $\langle S_k \rangle$ such that

(5.3.1) the simplicial matroid $S_k^n(S_k)$ is triangulable but not strongly triangulable; (5.3.2) $\langle S_k \rangle$ does not contain a simplicial (k-1)-face.

Proof. Let $\langle S_k \rangle$ be the *k*-hyperclique complex where

$$S_{k} = \binom{12\cdots(k+1)}{k} \bigcup \binom{23\cdots(k+2)}{k} \setminus 23\cdots(k+1) \bigcup$$
$$\bigcup_{i=1}^{k+1} \binom{12\cdots\widehat{i}\cdots(k+1)n}{k} \bigcup \bigcup_{j=2}^{k+2} \binom{23\cdots\widehat{j}\cdots(k+2)n}{k}.$$

The simplicial matroid $S_k^n(S_k)$ has 2k small circuits,

$$C_i := \binom{12\cdots\hat{i}\cdots(k+1)n}{k}, \quad i \in \{1, 2, \dots, k+1\},$$
$$C_j := \binom{23\cdots\hat{j}\cdots(k+2)n}{k}, \quad j \in \{2, 3, \dots, k+2\}.$$

The set

$$C := \binom{12\cdots(k+1)}{k} \bigcup \binom{23\cdots(k+2)}{k} \setminus 23\cdots(k+1)$$

is a circuit, symmetric difference of all the 2k small circuits. So, the simplicial matroid $S_k^n(S_k)$ over a field of characteristic 2 is triangulable but not strongly triangulable. The reader can check that there do not exist simplicial (k-1)-faces in $\langle S_k \rangle$.

References

- 1. A. Björner, Topological methods, In: Handbook of Combinatorics, R. Graham, M. Grötschel, and L. Lovász, Eds., Elsevier, Amsterdam, (1995) pp. 1819–1872.
- E.D. Bolker, Simplicial geometry and transportation polytopes, Trans. Amer. Math. Soc. 217 (1976) 121–142.
- R. Cordovil and M. Las Vergnas, Géometries simpliciales unimodulaires, Discrete Math. 26 (3) (1979) 213–217.
- R. Cordovil and B. Lindström, Simplicial matroids, In: Combinatorial Geometries, Encyclopedia Math. Appl., Vol. 29, Cambridge University Press, Cambridge, (1987) pp. 98–113.
- R. Cordovil, D. Forge, and S. Klein, How is a chordal graph like a supersolvable binary matroid?, Discrete Math. 288 (1-3) (2004) 167–172.
- 6. H.H. Crapo and G.-C. Rota, Simplicial geometries, In: Combinatorics, Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., (1968) pp. 71–75.
- H.H. Crapo and G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, Preliminary Edition, The M.I.T. Press, Cambridge, Mass.-London, 1970.
- 8. G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76.
- M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd Ed., Ann. Discrete Math., Vol. 57, Elsevier Science B.V., Amsterdam, 2004.
- J. Herzog, T. Hibi, and X. Zheng, Dirac's theorem on chordal graphs and Alexander duality, European J. Combin. 25 (7) (2004) 949–960.
- 11. J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
- 12. R.P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972) 197–217.
- 13. W.T. Tutte, Introduction to the Theory of Matroids, American Elsevier Publishing Co., Inc., New York, 1971.
- 14. D.J.A. Welsh, Matroid Theory, Academic Press, London-New York, 1976.
- 15. N. White, Theory of Matroids, Cambridge University Press, Cambridge, 1986.
- 16. N. White, Combinatorial Geometries, Cambridge University Press, Cambridge, 1987.
- 17. N. White, Matroid Applications, Cambridge University Press, Cambridge, 1992.