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Portugal
cordovil@math.ist.utl.pt
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Abstract. We introduce the notion of k-hyperclique complexes, i.e., the largest simplicial
complexes on the set [n] with a fixed k-skeleton. These simplicial complexes are a higher-
dimensional analogue of clique (or flag) complexes (case k = 2) and they are a rich new class
of simplicial complexes. We show that Dirac’s theorem on chordal graphs has a higher-dimen-
sional analogue in which graphs and clique complexes get replaced, respectively, by simplicial
matroids and k-hyperclique complexes. We prove also a higher-dimensional analogue of Stan-
ley’s reformulation of Dirac’s theorem on chordal graphs.
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1. Introduction and Notations

Set [n] := {1, 2, . . . , n}. The simplicial matroids Sn
k(E) on the ground set E ⊆

([n]
k

)
have been introduced by Crapo and Rota [6,7] as one of the six most important classes
of matroids. These matroids generalize graphic matroids: More precisely Sn

2(E) is the
cycle matroid (or graphic matroid) of the graph ([n], E). With the aid of Alexander’s
duality theorem for manifolds applied to simplices, they prove the following beautiful
isomorphism [

Sn
k

((
[n]

k

))]∗
� Sn

n−k

((
[n]

n− k

))
, X �→ [n]\X , (1.1)
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where
[
Sn

k

(([n]
k

))]∗
denotes the dual (or orthogonal) matroid of Sk

n

(([n]
k

))
, see [7,

Theorem 11.4] or, for an elementary proof (depending only on matrix algebra), [4,
Theorem 6.2.1]. In this paper, we use an equivalent definition of simplicial matroids,
see Definition 1.4 below.

We introduce the notion of k-hyperclique complexes. These simplicial complexes
are a natural higher-dimensional analogue of clique (or flag) complexes (case k = 2),
see Definition 1.2 below. The k-hyperclique complexes are a rich new class of sim-
plicial complexes of intrinsic interest. To get a better understanding of the structure
of Sn

k(E) we attach to it the k-hyperclique complex on [n] canonically determined by
the family E .

In this paper, we introduce the notion of a strong triangulable simplicial matroid,
a higher-dimensional generalization of the notion of a chordal graph. We prove an
analogue of Dirac’s theorem on chordal graphs (see Theorem 3.2) using a natural
generalization of a perfect sequence of vertices of a chordal graph (see Theorem
5.2). We prove also a higher-dimensional generalization of Stanley’s reformulation
of Dirac’s theorem on chordal graphs (see Theorem 4.3).

Let us set some preliminary notation.

Definition 1.1. An (abstract) oriented simplicial complex on the set [n] is a family
∆ of linear ordered subsets of [n] (called the faces of ∆) satisfying the following two
conditions. (We identify the linear ordered set {v1, v2, . . . , vm}, v1 < v2 < · · · < vm,
with the symbol v1v2 · · ·vm.)

(1.1.1) Every v ∈ [n] is a face of ∆ .
(1.1.2) If F is a face of ∆ and F ′ ⊂ F, then F ′ is also a face of ∆ .

Given two faces F ′ and F = i1i2 · · · im, the “incidence number” [F ′ : F ] is

[
F ′ : F

]
=

{
(−1) j, if F ′ = i1i2 · · · i j−1i j+1 · · · im;

0, otherwhise.

Let Sd(∆) denote the d-skeleton of ∆, i.e., the family of faces of size d (or d-faces)
of ∆. A facet is a face of ∆, maximal to inclusion. If nothing in contrary is indicated,
we suppose that S1(∆) = [n].

Definition 1.2. Let Sk := {F1, F2, . . . , Fm} be a family of k-subsets of [n]. Let 〈Sk〉 be
the simplicial complex such that F ⊆ [n] is a face of 〈Sk〉 provided that:

(1.2.1) |F | < k; or
(1.2.2) if |F| ≥ k, every k-subset of F belongs to {F1, F2, . . . , Fm}.

We say that 〈Sk〉 is the k-hyperclique complex generated by the set

Sk = {F1, F2, . . . , Fm}.

We see 〈Sk〉 as an oriented simplicial complex, with the natural orientation induced
by [n].



Dirac’s Theorem on Simplicial Matroids 55

Note that 〈Sk〉 is the largest simplicial complex ∆ on the set [n] with the fixed k-
skeleton Sk. (In the hypergraph literature, a family of sets satisfying Property (1.2.2)
is said to have the Helly dual k-property.)

Throughout this work Sk denotes a family of k-subsets of [n] and let 〈Sk〉 de-
note the corresponding k-hyperclique complex.

(
So, we have Sk = Sk(〈Sk〉).

)
The

paradigm examples of the k-hyperclique complexes are the clique (or flag) complexes
(the 2-hyperclique complexes).

Example 1.3. Set Sk = {F1, F2, . . . , Fm}. If
⋂m

i=1 Fi �= /0 then F1, . . . , Fm are facets of
〈Sk〉. The other facets of 〈Sk〉 are the (k− 1)-subsets of [n] which are in no Fi. For
every k, n ≥ k ≥ 1, 2[n] is a (full) k-hyperclique complex.

Let S� be a subset of
([n]

�

)
, where n ≥ �≥ 2. Let 〈S�〉 be the oriented �-hyperclique

complex determined by S�. Let F be a field. Consider the two vector spaces FS� and

F( [n]
�−1) over F. Let us define the (boundary) map

∂� : FS� → F( [n]
�−1)

as the vector space map determined by linearity specifying its values in the basis
elements:

∂�F = ∑
F ′∈( [n]

�−1)

[
F ′ : F

]
F ′,

for every F ∈ S�. By duality let us define the (coboundary) map

δ�−1 : F( [n]
�−1) → FS�

as the vector space map determined by linearity specifying its values in the basis
elements:

δ�−1F ′ = ∑
F∈E

[
F ′ : F

]
F

for every F ′ ∈
( [n]
�−1

)
.
(
The symbol [F ′ : F ] denotes the incidence number of the faces

F ′ and F in the oriented simplicial complex 〈S�〉.
)

Definition 1.4. [4] The simplicial matroid Sn
k(Sk), on the ground set Sk and over the

field F, is the matroid such that

{X1, X2, . . . , Xm} ⊆ Sk

is an independent set if and only if the vectors,

∂kX1, ∂kX2, . . . , ∂kXm,

are linearly independent in the vector space F( [n]
k−1).

Remark 1.5. [3, 4] Let (sp,q) be the matrix whose rows and columns are labeled

by the sets of
( [n]

k−1

)
and Sk respectively, with sp,q = 0 if p �⊆ q and sp,q = (−1) j if

q− p = i j, q = {i1, . . . , i j, . . . ik}. The simplicial matroid Sn
k(Sk) (over the field F) is
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the independent matroid of the columns of the {−1, 1, 0} matrix (sp,q), over the field
F. If the matrix (sp,q) is not totally unimodular, the simplicial matroid depends of the
field F. Since the time of Henri Poincaré, it is known that if k = 2, the matrix (sp,q)
is totally unimodular. The 2-hyperclique complex 〈S2〉 is the clique complex of the
simple graph ([n], S2) and Sn

2(S2) is its corresponding cycle matroid. So Sn
2(S2) is a

regular (or unimodular) matroid, i.e., it is irrespective of the field F.

If nothing in contrary is said, the simplicial matroids here considered are over the
field F.

For background, motivation, and matroid terminology left undefined here, see
any of the standard references [7, 11, 13, 14] or the encyclopedic survey [15–17]. For
a description of the developments on simplicial matroids before 1986, see [4]. See
also [2] for an interesting application. For a topological approach to combinatorics,
see [1]. Dirac characterization of chordal graphs (see [8]) is treated extensively in [9,
Chapter 4]. For an algebraic proof of Dirac’s theorem, see [10].

2. Simplicial Matroids

The following two propositions are folklore and they are included for completeness.
For every vector v of FE , where

v = a1e1 + a2e2 + · · ·+ amem (ei ∈ E, ai ∈ F∗),

let v := {e1, e2, . . . , em} denote the support of v.

Proposition 2.1. Let Sk be a subset of
([n]

k

)
and Sn

k(Sk) be the corresponding simpli-

cial matroid (over the field F). Consider the linear map ∂k : FSk → F( [n]
k−1). Then:

(2.1.1) Each circuit of Sn
k(Sk) has at least k + 1 elements.

(2.1.2) For every (k + 1)-face X of 〈Sk〉, ∂k+1X is a circuit of Sn
k(Sk). Each circuit

with exactly k + 1 elements is of this type.

For each X ∈ Sk+1(〈Sk〉) we say that ∂k+1X is a small circuit of Sn
k(Sk).

Proposition 2.2. Let Sk be a subset of
([n]

k

)
, k ≥ 2, and Sn

k(Sk) be the corresponding

simplicial matroid (over the field F). Consider the linear map δk−1 : F( [n]
k−1) → FSk .

Then:

(2.2.1) The cocircuit space of Sn
k(Sk) is generated by the set of vectors

{
δk−1V �=

0: V ∈
( [n]

k−1

)}
.

(2.2.2) If non-empty, the set δk−1V , V ∈
( [n]

k−1

)
, is a union of cocircuits of Sn

k(Sk).

Proof. The oriented simplicial complex
〈([n]

k

)〉
= 2[n] is the oriented full k-hypercli-

que complex. The matroid Sn
k

(([n]
k

))
is the full simplicial matroid on the ground set([n]

k

)
. Consider the linear map

δk−1 : F( [n]
k−1) → F([n]

k ). (2.1)
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From Isomorphism (1.1), we know that

C ∗ :=

{
δk−1V : V ∈

(
[n]

k−1

)}
is a generating set of the cocircuit space of Sn

k

(
S ′k
)
. The linear map

δk−1 : F( [n]
k−1) → FSk

is the composition of the map (2.1) and the natural projection

ι : F([n]
k ) → FSk .

So, Assertion (2.2.1) holds. We know that C∗ is a cocircuit of Sn
k

(([n]
k

))
if and only

if C∗ is the support of a non-null vector of C ∗, minimal for inclusion. Note that

Sn
k (Sk)

∗ is obtained from Sn
k

(([n]
k

))∗
by contracting the set

([n]
k

)
\ Sk. So, Assertion

(2.2.2) holds.

Throughout this work V, V ′, V1, V2, . . . denote (k−1)-subsets of [n]. So, they are
(k−1)-face of 〈Sk〉. Let 〈Sk〉\\V denote the k-hyperclique complex 〈Sk \δk−1V 〉, i.e.,
the k-hyperclique complex determined by the set Sk \δk−1V . Note that, for every pair
of (k−1)-faces V and V ′, we have:

(〈Sk〉\\V)\\V ′ =
(
〈Sk〉\\V ′

)
\\V =

〈
Sk \

(
δk−1V ∪δk−1V ′

)〉
.

Definition 2.3. Let ∆0 = 〈Sk〉 be a k-hyperclique complex such that Sn
k (Sk) has rank

r. A sequence V1, V2, . . . , Vr of (k−1)-faces of ∆0 is said to be basic linear sequence
when

C∗j := δk−1V j \
j−1⋃

i=1

δk−1Vi

is a cocircuit of Sn
k (Sk (∆ j−1)), for j ∈ {1, 2, . . . , r}, where

∆ j−1 := ∆ j−2 \\V j−1, j ∈ {2, . . . , r}.

The following result is a corollary of Proposition 2.2.

Corollary 2.4. Let 〈Sk〉 be a k-hyperclique complex such that Sn
k(Sk) has rank r. If

V = (V1, V2, . . . , Vr) is a basic linear sequence of (k−1)-faces of 〈Sk〉, then

β =
{

δk−1V1, δk−1V2, . . . , δk−1Vr

}
is a basis of the cocircuit space of Sn

k(Sk).

Proof. Suppose that β is a dependent set. Choose a dependent subset of β{
δk−1Vi1 , δk−1Vi2 , . . . , δk−1Vis

}
,
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such that i1 < i2 < · · · < is and s is minimum. Therefore

δk−1Vis ⊆
s−1⋃

j=1

δk−1Vi j

and Vis �∈ V , a contradiction. As the cocircuit space of Sn
k(Sk) has dimension r the

result follows.

3. D-Perfect k-Hyperclique Complexes

In this section we extend to k-hyperclique complexes the notions of “simplicial ver-
tex” and “perfect sequence of vertices”, introduced in the Dirac characterization of
the clique complexes of chordal graphs, see [8, 9].

Definition 3.1. Let ∆0 = 〈Sk〉 be a k-hyperclique complex and suppose that the sim-
plicial matroid Sn

k(Sk) has rank r. We say that a (k− 1)-face V is simplicial in ∆0,
if there is exactly one facet X of ∆0 such that V � X . We say that ∆0 is D-perfect if
there is a basic linear sequence of (k−1)-faces, V = (V1, V2, . . . , Vr), such that every
Vi ∈ V is simplicial in the k-hyperclique complex ∆i−1 where

∆i−1 := ∆i−2\\Vi−1, i ∈ {2, . . . , r}.

We will call V a D-perfect sequence of ∆0.

Chordal graphs are an important class of graphs. The following theorem is one of
their fundamental characterizations, reformulated in our language.

Theorem 3.2. (Dirac’s theorem on chordal graphs [8,9]) Let G = ([n], S2), S2 ⊆
([n]

2

)
be a graph and 〈S2〉 be its clique complex. Then G is chordal if and only if 〈S2〉 is
D-perfect.

Proposition 3.3. Let V be a (k−1)-subset of [n]. If V is simplicial in the k-hypercli-
que complex 〈Sk〉 then δk−1V is a cocircuit of Sn

k(Sk).

Proof. From Proposition 2.2 we know that δk−1V is a union of cocircuits of Sn
k(Sk).

Suppose for a contradiction that there are two different cocircuitsC∗1 and C∗2 contained
in δk−1V . Choose elements F1 ∈ C∗1 \C∗2 and F2 ∈ C∗2 \C∗1 . As V is simplicial it
follows that C =

(F1∪F2
k

)
is a circuit of Sn

k(Sk) and C∩C∗1 = {F1}, a contradiction to
orthogonality.

The reader can easily see that the converse of Proposition 3.3 is not true.

Example 3.4. Set

S3 = {123, 124, 125, 145, 245, 136, 137, 167, 367, 238, 239, 289, 389}.

Consider the 3-hyperclique complex 〈S3〉 on the set [9]. From Property (1.2.2) we
know that S4(〈S3〉) = {1245, 1367, 2389} and S5(〈S3〉) = /0. From Property (1.2.1)
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we can see that the sets of 2-faces and 1-faces of 〈S3〉 are respectively S2(〈S3〉) =
([9]

2

)
and S1(〈S3〉) =

([9]
1

)
. We can see that the set of facets of 〈S3〉 is

{18, 19, 26, 27, 34, 35, 46, 47, 48, 49, 56, 57,

58, 59, 68, 69, 78, 79, 123, 1245, 1367, 2389}.

Note that S9
3(S3) has rank 10 and 〈S3〉 is D-perfect with the D-perfect sequence:

45, 67, 89, 15, 14, 16, 17, 28, 29, 12.

Proposition 3.5. Let V be a (k−1)-subset of [n]. Suppose that V is not a facet of the
k-hyperclique complex 〈Sk〉= 〈F1, F2, . . . , Fm〉. Then the following two assertions are
equivalent:

(3.5.1) V is simplicial in 〈Sk〉.
(3.5.2) The set X =

⋃
Fi∈δk−1V Fi is the unique facet of 〈Sk〉 containing V .

Proof. The implication (3.5.2) ⇒ (3.5.1) is clear.

(3.5.1) ⇒ (3.5.2) Let X ′ be the unique facet of 〈Sk〉 containing V . Then it is clear
that Fi ⊆ X ′ for each Fi containing V . We conclude that X ⊆ X ′ and so X is a face
of 〈Sk〉. Suppose, for a contradiction, that X is not a facet of 〈Sk〉. Then there is an
F ∈ Sk such that F �⊂ X but F ⊂ X ′. So, for every x ∈ F \X , we know that V ∪x ∈ Sk
and so V ∪ x ∈ δk−1V . We have the contradiction F ⊂ X . Therefore X = X ′.

4. Superdense Simplicial Matroids

A matroid M on the ground set [n] and of rank r is called supersolvable if it admits a
maximal chain of modular flats

cl( /0) = X0 � X1 ⊂ ·· · � Xr−1 � Xr = [n]. (4.1)

The notion of “supersolvable lattices” was introduced and studied by Stanley in [12].
For a recent study of supersolvability for chordal binary matroids, see [5].

Proposition 4.1. Let Sn
k(Sk), k > 2, be a simplicial matroid. The matroid Sn

k(Sk) is
supersolvable if and only if it does not have circuits.

Proof. All the circuits of Sn
k(Sk) have at least k + 1 elements. So a hyperplane H is

modular if and only if |Sk \H|= 1. Indeed, if F, F ′ ∈ Sk \H, then the line cl({F, F ′})
cannot intersect the hyperplane H. From (4.1) we conclude that if Sn

k(Sk) is super-
solvable then it cannot have circuits. The converse is clear.

So, the notion of supersolvability is not interesting for the class of non-graphic
simplicial matroids. The following definition gives the “right” extension of the notion
of supersolvable.

Definition 4.2. Suppose that Sn
k(Sk) has rank r. A hyperplane H of Sn

k(Sk) is said to
be dense if there is a simplicial (k−1)-face, V , of 〈Sk〉 such that

H = Sk \ δk−1V .
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We say that the simplicial matroid Sn
k(Sk) is superdense if it admits a maximal chain

of “relatively dense” flats

/0 = X0 � X1 � · · · � Xr−1 � Xr = Sk,

i.e., such that Xi is a dense hyperplane of Sn
k (Xi+1), i ∈ {0, 1, . . . , r−1}.

A hyperplane H of Sn
2(S2) is dense if and only if H is modular. Then Sn

2(S2) is
superdense if and only if it is supersolvable. So, Theorem 4.3 below can be seen as
higher-dimensional generalization of Stanley’s reformulation of Dirac’s theorem on
chordal graphs, see [12].

Theorem 4.3. Let ∆0 = 〈Sk〉 be a k-hyperclique complex. Then the following two
assertions are equivalent:

(4.3.1) ∆0 is D-perfect;
(4.3.2) Sn

k(Sk) is superdense.

Proof. (4.3.1) ⇒ (4.3.2) Let V = (V1, V2, . . . , Vr) be a D-perfect sequence of ∆0.
From Proposition 3.3 we know that the sets

C∗j := δk−1V j \
j−1⋃

i=1

δk−1Vi, j ∈ {1, 2, . . . , r},

are cocircuits of Sn
k (Sk (∆ j−1)) where

∆ j−1 := ∆ j−2 \\V j−1, j ∈ {2, 3, . . . , r}.

So, V determines a maximal chain of flats of Sn
k(Sk):

/0 = X0 � X1 � · · · � Xr−1 � Xr = Sk,

where
Xr− j = Sk (∆ j−1)\C∗j , j = 1, . . . ,r.

As V j is simplicial in ∆ j−1, we know that Xr− j is dense in Sn
k (Sk (∆ j−1)). So, Sn

k(Sk)
is superdense. The proof of the converse part is similar.

5. Triangulable Simplicial Matroids

Now we introduce a generalization of the notion of “triangulable” for the classes of
simplicial matroids. Given a union of circuits D of Sn

k(Sk), let
−→
D denote a vector of

FSk whose support is D. Set
−→
D = D.

Definition 5.1. Let 〈Sk〉 = 〈F1, F2, . . . , Fm〉 be a k-hyperclique complex. We say that
Sn

k(Sk) (over the field F) is triangulable provided that the vector family

{∂k+1X : X ∈ Sk+1(〈Sk〉)}

spans the circuit space.
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Moreover, when generators ∂k+1X1, ∂k+1X2, . . . , ∂k+1Xm′ can be chosen such that,
for every circuit C, there are non-null scalars a j ∈ F∗ such that

−→
C =

s

∑
j=1

a j∂k+1Xi j and
⋃

F�∈C

F� =
s⋃

i=1

Xi j where Xi j ∈ {X1, . . . , Xm′},

we say that Sn
k(Sk) is strongly triangulable.

Note that we can replace in Definition 5.1 the circuit C by a union of circuits D.
It is clear that a simple graph ([n],S2) is chordal if and only if Sn

2(S2) is strongly tri-
angulable. Theorem 5.2 is the possible generalization of Dirac’s theorem on chordal
graphs (see Theorem 3.2 above). Indeed, if k > 2, the converse of Theorem 5.2 is not
true, see the remarks following the theorem.

Theorem 5.2. Let ∆0 = 〈Sk〉 = 〈F1, F2, . . . , Fm〉 be a k-hyperclique complex. If ∆0 is
D-perfect, then Sn

k(Sk) is strongly triangulable.

Proof. The proof is algorithmitic. Let V = (V1, . . . , Vr) be a D-perfect sequence. Let
D be a union of circuits of Sn

k(Sk). Let Vi be the first (k− 1)-face of V contained in
an element of D. From the definitions we know that Vi is a simplicial (k−1)-face of
∆i−1 and D is a union of circuits of Sn

k(Sk(∆i−1)), where

∆i−1 = ∆i−2 \\Vi−1, i ∈ {2, . . . , r}.

From Proposition 3.3 we know that

C∗j := δk−1V j \
j−1⋃

i=1

δk−1Vi

is a cocircuit of Sn
k(Sk(∆i−1)). Set D∩C∗j =

{
Fi1 , Fi2 , . . . , Fih

}
and consider the family

of vectors of FSk {−→
Cs = ∂k+1 (Fi1 ∪Fis) , s = 2, . . . , h

}
.

Express a vector
−→
D of support D in the canonical basis, say,

−→
D = ai1Fi1 + ai2Fi1 + · · ·+ aihFih + aih+1Fj + · · ·+ aimFim ,

where ai� ∈ F∗, � = 1, . . . , h, ai� ∈ F, � = h + 1, . . . , m, and {Fi1 , . . . , Fim} = Sk. For
every s∈ {2, 3, . . . , h}, it is possible to choose bs ∈ F∗ such that Fis does not belong to

the support of bs
−→
Cs +

−→
D . As (Cs ∩D)∩C∗j = {Fi1 , Fis} it follows that Fi2 , Fi3 , . . . , Fih

does not belong to the support of

−→
D′ :=

−→
D + b2

−→
C2 + b3

−→
C3 + · · ·+ bh

−→
Ch.

The dependent set D′ is a union of circuits and D′∩C∗j ⊆ {Fi1}. So, by orthogonality
we have D′∩C∗j = /0. Note that

(i) for every V j ∈ V , 1 ≤ j ≤ i, no element of D′ contains V j;
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(ii) ⋃

F�∈D

F� =
⋃

F�′∈
⋃h

s=2 Cs∪D′

F�′ .

Replace D by the set D′ and apply the same arguments. From (i) we know that the
algorithm finish. It finishes only if D′ is a small circuit. So the theorem follows.

If k > 2, the converse of Theorem 5.2 is not true. Indeed, consider the triangula-
tion of a projective plane

F1 = 124, F2 = 126, F3 = 134, F4 = 135, F5 = 165,

F6 = 235, F7 = 236, F8 = 245, F9 = 346, F10 = 456.

Consider the 3-hyperclique complex 〈Sk〉 = 〈F1, F2, . . . , F10〉 on the set [6]. The sim-
plicial matroid Sn

3(Sk), over a field F of characteristic different of 2, does not have cir-
cuits and then it is (trivially) strongly triangulable. Every 2-face of a Fi is contained
in another Fj, j ∈ {1, . . . , 10}, j �= i. The facets of 〈Sk〉 are the sets F1, F2, . . . , F10
and all the 2-faces of 〈Sk〉 are not contained in an Fi. Then 〈Sk〉 does not contain
simplicial 2-faces and it is not D-perfect.

We remark that the cycle matroid of a non-chordal graph can be triangulable.
More generally, we have

Proposition 5.3. For any n, k, n− 3 ≥ k ≥ 2, there is a k-hyperclique complex 〈Sk〉
such that

(5.3.1) the simplicial matroid Sn
k(Sk) is triangulable but not strongly triangulable;

(5.3.2) 〈Sk〉 does not contain a simplicial (k−1)-face.

Proof. Let 〈Sk〉 be the k-hyperclique complex where

Sk =

(
12 · · ·(k + 1)

k

)⋃(
23 · · ·(k + 2)

k

)
\23 · · ·(k + 1)

⋃

k+1⋃

i=1

(
12 · · · î · · · (k + 1)n

k

)⋃ k+2⋃

j=2

(
23 · · · ĵ · · · (k + 2)n

k

)
.

The simplicial matroid Sn
k(Sk) has 2k small circuits,

Ci :=

(
12 · · · î · · · (k + 1)n

k

)
, i ∈ {1, 2, . . . , k + 1},

C j :=

(
23 · · · ĵ · · ·(k + 2)n

k

)
, j ∈ {2, 3, . . . , k + 2}.

The set

C :=

(
12 · · ·(k + 1)

k

)⋃(
23 · · ·(k + 2)

k

)
\23 · · ·(k + 1)

is a circuit, symmetric difference of all the 2k small circuits. So, the simplicial ma-
troid Sn

k(Sk) over a field of characteristic 2 is triangulable but not strongly triangu-
lable. The reader can check that there do not exist simplicial (k− 1)-faces in 〈Sk〉.
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