A Note on the Orlik-Solomon Algebra

Raul Cordovil and Gwihen Etienne

Let $\mathcal{M}=\mathcal{M}(E)$ be a matroid on a linear ordered set E. The Orlik-Solomon \mathbb{Z}-algebra $\operatorname{OS}(\mathcal{M})$ of \mathcal{M} is the free exterior \mathbb{Z}-algebra on E, modulo the ideal generated by the circuit boundaries The \mathbb{Z}-module $\operatorname{OS}(\mathcal{M})$ has a canonical basis called 'no broken circuit basis' and denoted $\boldsymbol{n} \boldsymbol{b} \boldsymbol{c}$. Let $e_{X}=\prod e_{i}, e_{i} \in X \subset E$. We prove that when e_{X} is expressed in the $\boldsymbol{n} \boldsymbol{b} \boldsymbol{c}$ basis, then all the coefficients are 0 or ± 1. We present here an algorithm for computing these coefficients. We prove in appendix a numerical identity involving the dimensions of the algebras of Orlik-Solomon of the minors of a matroid and its dual.
(C) 2001 Academic Press

1. Introduction

Let \mathcal{A} be an arrangement of hyperplanes (i.e., a finite set of codimension 1 vector subspaces) in \mathbb{C}^{d}. The intersection lattice $L(\mathcal{A})$ is the set of all intersections of the hyperplanes of \mathcal{A} partially ordered by reversed inclusion. Consider the smooth manifold $\mathfrak{M}(\mathcal{A})=\mathbb{C}^{d} \backslash\{\bigcup H$: $H \in \mathcal{A}\}$. Peter Orlik and Louis Solomon proved that the de Rham cohomology algebra of $\mathfrak{M}(\mathcal{A})$ can be described entirely in terms of the geometric lattice $L(\mathcal{A})$, see [7, 8]. This algebra has found use in the work of Kazuhiko Aomoto, and Israel M. Gel'fand and coworkers on the systematic study of the general hypergeometric functions, see [9,10]. We consider here OrlikSolomon \mathbb{Z}-algebras, defined over arbitrary matroids as introduced by Gel'fand and Rybnikov, see [5].

Throughout this note $\mathcal{M}=\mathcal{M}(E)$ denotes a matroid of rank r on the linear ordered set $E=\left\{e_{1}<e_{2}<\cdots<e_{n}\right\}$. Let $\mathfrak{C}=\mathfrak{C}(\mathcal{M})$ be the set of the circuits of \mathcal{M}. When the smallest element α of a circuit $C,|C|>1$, is deleted, the remaining set, denoted $\operatorname{bc}(C):=C \backslash \alpha$, is called a broken circuit. In order to abbreviate the notation, the singleton set $\{x\}$ is denoted by x. Just as an independent set of a matroid is one which does not contain any circuit, an internal independent set of the matroid \mathcal{M} is one which does not contain a broken circuit. Let $\operatorname{Inter}^{i}=\operatorname{Inter}^{i}(\mathcal{M})$ be the set of the internal independent subsets of cardinal i of \mathcal{M}. Every element of Inter^{i} is supposed to be ordered with the ordering induced by E. Set $\operatorname{Inter}(\mathcal{M})=$ $\bigcup_{i=0}^{i=r} \operatorname{Inter}^{i}(\mathcal{M})$. Consider now an independent set X. Let $\operatorname{cl}(X)$ be the closure of X in \mathcal{M}. Pick an element $x \in \operatorname{cl}(X) \backslash X$. Let $C(X, x)$ denote the unique circuit of \mathcal{M} contained in $X \cup x$. The element $x \in \operatorname{cl}(X) \backslash X$ is called externally active in the independent set X if x is the minimal element of the circuit $C(X, x)$. Let $\operatorname{EA}(X)$ denote the set of externally active elements in X. Note that $X \in \operatorname{Inter}(\mathcal{M})$ iff $\operatorname{EA}(X)=\emptyset$. If $\mathrm{EA}(X) \neq \emptyset$, let $\alpha(X)$ denote the smallest element of $\mathrm{EA}(X)$. If B is a basis of \mathcal{M} we say that an element $x \in B$ is internally active in B if x is externally active in the basis $B^{\star}=E \backslash B$ of the orthogonal matroid \mathcal{M}^{*}. Let $\operatorname{IA}(B)$ denote the set of internal active elements in B. We refer to [8] (resp. [11, 12]) as standard sources for arrangements of hyperplanes (resp. matroids).

2. $\boldsymbol{n b c}$ BASES

The following definition is due to I. M. Gel'fand and G. L. Rybnikov [5]. It is the 'combinatorial analogous' of one proposed in [7].

Definition $2.1([5,7])$. The Orlik-Solomon algebra of the matroid $\mathcal{M}(E)$ is the \mathbb{Z} algebra $\mathrm{OS}=\mathrm{OS}(\mathcal{M})$ given by the set of generators E, and the relations:

- $\quad e^{2}=e \cdot e^{\prime}+e^{\prime} \cdot e=0, \forall e, e^{\prime} \in E$,
- If e is a loop of \mathcal{M}, then we have $e=0$.
\circ If $\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{m}}\right\} \in \mathfrak{C}(\mathcal{M}), m>1, e_{i_{1}}<\cdots<e_{i_{m}}$, then

$$
\sum_{j=1}^{j=m}(-1)^{j-1} e_{i_{1}} \cdots \widehat{e}_{i_{j}} \cdots e_{i_{m}}=0
$$

where ${ }^{\wedge}$ indicates an omitted factor.
If $X=\left\{e_{i_{1}}<\cdots<e_{i_{p}}\right\} \subset E$, set $e_{X}:=e_{i_{1}} \cdot e_{i_{2}} \cdots \cdot e_{i_{p}}$. Set $e_{\emptyset}:=1$. We say that e_{X} is a strongly decomposable element of the algebra OS.

REMARK 2.2. In [3] it is shown that the matroid \mathcal{M} cannot be reconstructed from the abstract algebra $\operatorname{OS}(\mathcal{M})$. In other words, when the algebra $\operatorname{OS}(\mathcal{M})$ is determined by an arbitrary basis \boldsymbol{B} and the corresponding structure constants. It is an open question (implicit in the Conjecture 5.4 of [3]) to decide when, given an abstract Orlik-Solomon algebra OS, there is an unique loop free matroid \mathcal{M} such that $\operatorname{OS}=\operatorname{OS}(\mathcal{M})$. In the following, for each abstract Orlik-Solomon algebra OS, we fixe an associated matroid \mathcal{M} such that $\mathrm{OS}=\mathrm{OS}(\mathcal{M})$.

Let $\bigoplus_{e \in E} \mathbb{Z} e$ be the free \mathbb{Z}-module, generated by the family of generators $e_{1}, e_{2}, \ldots, e_{n}$. Consider the graded exterior algebra $\Lambda E=\bigoplus_{i \in \mathbb{N}} \Lambda^{i} E$ of the module $\bigoplus_{e \in E} \mathbb{Z} e$. Define the graded linear mapping $\partial: \Lambda E \longrightarrow \Lambda E$ as a linear extension of the linear maps:

- $\quad \partial_{0}: \mathbb{Z} \rightarrow(0)$,
- $\quad \partial_{1}: \Lambda^{1} E \rightarrow \mathbb{Z}$, where $\partial_{1}(e)=1, \forall e \in E$,

○ $\forall \ell=2,3, \ldots, n$, the maps $\partial_{\ell}: \Lambda^{\ell} E \longrightarrow \Lambda^{\ell-1} E$, where

$$
\partial_{\ell}\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{\ell}}\right)=\sum_{j=1}^{j=\ell}(-1)^{j-1} e_{i_{1}} \wedge \cdots \wedge \widehat{e}_{i_{j}} \wedge \cdots \wedge e_{i_{\ell}}
$$

Let \mathcal{I} be the two-sided ideal of the exterior algebra ΛE generated by the set $\left\{\partial\left(e_{C}\right): C \in\right.$ $\mathfrak{C}(\mathcal{M}),|C|>1\} \cup\{e:$ e is a loop of $\mathcal{M}\}$. Note that $\operatorname{OS}(\mathcal{M})=\Lambda E / \mathcal{I}$. Set $\operatorname{OS}_{i}(\mathcal{M})=$ $\Lambda^{i} E /\left(\mathcal{I} \cap \Lambda^{i} E\right), \forall i \in \mathbb{N}$.

PROPOSITION 2.3. The grading $\operatorname{OS}(\mathcal{M})=\bigoplus_{i \in \mathbb{N}} \mathrm{OS}_{i}(\mathcal{M})$ is canonical, i.e., it is independent of the knowledge of the matroid \mathcal{M}.

Proof. We know that $\mathrm{OS}_{i}=(0)$, for all $i>r$. If $\mathrm{OS}=\mathrm{OS}_{0}=\mathbb{Z}$ (i.e., $r=0$) the result is clear. Suppose that $\mathrm{OS} \neq \mathbb{Z}$. Note that

$$
\mathrm{OS}_{r}=\{x \in \mathrm{OS}: x \cdot y=0, \forall y \in \mathrm{OS} \backslash \mathbb{Z}\}
$$

If we know the modules $\mathrm{OS}_{r}, \ldots, \mathrm{OS}_{r-i}$ and $\mathrm{OS}^{\langle i+1\rangle}:=\mathrm{OS}_{r} \oplus \cdots \oplus \mathrm{OS}_{r-i} \neq \mathrm{OS}$, (i.e., $r-i>1$) the module $\mathrm{OS}_{r-i-1}, i=0, \ldots, r-2$, can be defined recursively as follows

$$
\mathrm{OS}_{r-i-1}=\left\{x \in \mathrm{OS}: x \cdot y \in \mathrm{OS}^{\langle i+1\rangle}, \forall y \in \mathrm{OS} \backslash \mathbb{Z}\right\} / \mathrm{OS}^{\langle i+1\rangle}
$$

The following basic theorem was independently discovered by Orlik and Solomon in 1980, Björner in 1982 and Jambu and Leborgne in 1986. See in [2] for a historical note.

THEOREM $2.4([1,6,7])$. The set $\boldsymbol{n b} \boldsymbol{c}^{i}:=\left\{e_{I}: I \in \operatorname{Inter}^{i}(\mathcal{M})\right\}$ is a linear basis of the free \mathbb{Z}-module $\operatorname{OS}_{i}(\mathcal{M})$, $\forall i \in \mathbb{N}$.

Set $\boldsymbol{n} \boldsymbol{b} \boldsymbol{c}:=\sum_{i=0}^{r} \boldsymbol{n} \boldsymbol{b} \boldsymbol{c}^{i}=\left\{e_{I}: I \in \operatorname{Inter}(\mathcal{M})\right\} . \boldsymbol{n b} \boldsymbol{c}$ is termed the no broken circuit basis of the free \mathbb{Z}-module $\operatorname{OS}(\mathcal{M})$.

THEOREM 2.5. Let e_{X} be a strongly decomposable element of $\mathrm{OS}(\mathcal{M})$. If e_{X} is express in the nbe basis of the \mathbb{Z}-module $\operatorname{OS}(\mathcal{M})$, then all the coefficients are 0 or, ± 1.
Theorem 2.5 is a consequence of the following technical lemma. Let \mathbf{G} be the direct graph such that:

- Its vertex set $\mathrm{V}(\mathbf{G})$ is the set of all the independent sets of the matroid \mathcal{M}.
- $\overrightarrow{X X^{\prime}} \in \mathrm{E}(\mathbf{G})$ is a directed edge of \mathbf{G} iff there is a pivotable pair (α, x) such that $X^{\prime}=$ $X \backslash x \cup \alpha$, where $\alpha=\alpha(X)$ and $x \in C(X, \alpha) \backslash \alpha$.
Lemma 2.6. For every pair of vertices X, X^{\prime} of the graph \mathbf{G}, there is at most one directed path from X to X^{\prime}.

Proof of Lemma 2.6. Suppose that there is in \mathbf{G} a directed path containing exactly the $k+1$ vertices, X_{1}, \ldots, X_{k+1}. For every $i=1, \ldots, k$ set $\alpha_{i}=\alpha\left(X_{i}\right), C_{i}=C\left(X_{i}, \alpha_{i}\right)$, and set $x_{i}=X_{i} \backslash X_{i+1}$. We show first that:

$$
\begin{align*}
& \alpha_{i+1} \neq x_{i}, \tag{2.6.1}\\
& \alpha_{i} \notin \mathrm{bc}\left(C_{i+1}\right), \tag{2.6.2}\\
& \alpha_{1}<\cdots<\alpha_{k}, \tag{2.6.3}\\
& C_{i}=C\left(X_{1}, \alpha_{i}\right), \tag{2.6.4}\\
& X_{i+1}=X_{1} \backslash\left\{x_{1}, \ldots, x_{i}\right\} \cup\left\{\alpha_{1}, \ldots, \alpha_{i}\right\},\left|X_{1} \Delta X_{i+1}\right|=2 i, \tag{2.6.5}\\
& C_{i}=C\left(X_{1} \backslash\left\{x_{1}, \ldots, x_{i-1}\right\}, \alpha_{i}\right) . \tag{2.6.6}
\end{align*}
$$

(2.6.1). Suppose for a contradiction that $\alpha_{i+1}=x_{i}\left(\neq \alpha_{i}\right)$. Then

$$
\alpha_{i}, \alpha_{i+1} \in C_{i}=C_{i+1} \subset X_{i} \cup \alpha_{i}=X_{i+1} \cup \alpha_{i+1},
$$

and we find the contradiction $\alpha_{i}<\alpha_{i+1}$ and $\alpha_{i+1}<\alpha_{i}$.
(2.6.2). Suppose for a contradiction that $\alpha_{i} \in \operatorname{bc}\left(C_{i+1}\right)$. So $\alpha_{i+1}=\alpha\left(X_{i+1}\right)<\alpha_{i}$. From the circuit elimination axiom we know that there is a circuit C_{i+1}^{\prime} such that

$$
\alpha_{i+1} \in C_{i+1}^{\prime} \subset\left\{C_{i} \cup C_{i+1}\right\} \backslash \alpha_{i} \subset X_{i} \cup\left\{X_{i} \cup \alpha_{i+1}\right\} \subset X_{i} \cup \alpha_{i+1} .
$$

So $C_{i+1}^{\prime} \backslash \alpha_{i+1}$ is a broken circuit contained in X_{i}, and $\alpha_{i}=\alpha_{i}\left(X_{i}\right)<\alpha_{i+1}$, a contradiction. (2.6.3). From (2.6.3), we see that bc $\left(C_{i+1}\right) \subset X_{i}$. We conclude that $\alpha_{i}<\alpha_{i+1}$. (2.6.4). From the definitions we know that

$$
\alpha_{i} \in C_{i} \subset X_{i} \cup \alpha_{i} \subset X_{1} \cup\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}
$$

By our hypothesis we know that $C_{i} \backslash \alpha_{i}$ is a broken circuit. We have proved in (2.6.3) that $\alpha_{1}<\cdots<\alpha_{i-1}<\alpha_{i}$ so $C_{i} \cap\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}=\emptyset$, and (2.6.4) follows. (2.6.5). It is clear that $\left|X_{1} \Delta X_{2}\right|=2$. Suppose inductively that

$$
X_{i}=X_{1} \backslash\left\{x_{1}, \ldots, x_{i-1}\right\} \cup\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}, \quad \text { and } \quad\left|X_{1} \Delta X_{i}\right|=2(i-1) .
$$

From (2.6.4) we know that $x_{i} \notin\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}$. So (2.6.5) follows.
(2.6.6). From (2.6.5) we know that $X_{i} \cap\left\{x_{1}, \ldots, x_{i-1}\right\}=\emptyset$, so C_{i} is disjoint of $\left\{x_{1}, \ldots, x_{i-1}\right\}$. Making use of (2.6.4) we conclude that

$$
C_{i}=C\left(X_{1} \backslash\left\{x_{1}, \ldots, x_{i-1}\right\}, \alpha_{i}\right) .
$$

We are now able to complete the proof of Lemma 2.6. We prove by induction on the length of the paths. Suppose that the Lemma 2.6 is true for all paths of length $\ell \leq k$. Consider a new directed path $X_{1}=X_{1}^{\prime} \rightarrow \cdots \rightarrow X_{i}^{\prime} \rightarrow \cdots \rightarrow X_{k^{\prime}+1}^{\prime}=X_{k+1}$. From (2.6.5) we know that $k^{\prime}=k$. For every $i=1, \ldots, k$, set $a_{i}^{\prime}:=\alpha\left(X_{i}^{\prime}\right), x_{i}^{\prime}:=X_{i+1}^{\prime} \backslash X_{i}^{\prime}$ and $C_{i}^{\prime}=C\left(X_{i}^{\prime}, \alpha_{i}^{\prime}\right)$. As $X_{k^{\prime}+1}^{\prime}=X_{k+1}$, we know

$$
\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}=\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\} \quad \text { and } \quad\left\{x_{1}, \ldots, x_{k}\right\}=\left\{x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right\}
$$

From (2.6.3) we get $\alpha_{1}<\cdots<\alpha_{k}$ and $\alpha_{1}^{\prime}<\cdots<\alpha_{k}^{\prime}$, so $\alpha_{i}=\alpha_{i}^{\prime}$, for every every $i=1, \ldots, k$. From (2.6.4) we conclude that $C_{k}=C\left(X_{1}, \alpha_{k}\right)=C\left(X_{1}, \alpha_{k^{\prime}}\right)=C_{k^{\prime}}$. (2.6.6) entails that

$$
\begin{aligned}
x_{k}, x_{k^{\prime}} \in C_{k} & =C\left(X_{1} \backslash\left\{x_{1}, \ldots, x_{k-1}\right\}, \alpha_{k}\right) \\
& =C_{k^{\prime}}=C\left(X_{1} \backslash\left\{x_{1}^{\prime}, \ldots, x_{k-1}^{\prime}\right\}, \alpha_{k}\right),
\end{aligned}
$$

so $x_{k}=x_{k}^{\prime}$ and $X_{k}=X_{k}^{\prime}$. By the induction hypothesis we conclude that $X_{i}=X_{i}^{\prime}, \forall i=$ $2, \ldots, k-1$.

Proof of Theorem 2.5. If $C \in \mathfrak{C}(\mathcal{M}),|C|>1$, then we have $e_{C}=0$. Indeed pick an element $e \in C$. Then $e_{C}= \pm e \cdot \partial(C)=0$. So $e_{D}=0$, for every dependent set D of \mathcal{M}. It is clear that $e_{X^{\prime}} \in \boldsymbol{n} \boldsymbol{b} \boldsymbol{c}$ iff X^{\prime} is a sink of \mathbf{G}. We see \mathbf{G} as an edge-labelled graph:

- Let $\overrightarrow{Y Y_{i_{1}}^{\prime}}$ be an arbitrary edge where $\alpha=\alpha(Y)=Y_{i_{1}}^{\prime} \backslash Y$, and set $C=C(Y, \alpha)$. Suppose that $\operatorname{bc}(C)=\left\{y_{1}, \ldots, y_{i_{1}}, \ldots, y_{m}\right\}$ and $Y_{i_{1}}^{\prime}=Y \backslash y_{i_{1}} \cup \alpha$. Consider the expansion of the element $\partial\left(e_{\alpha} \cdot e_{Y}\right) \in \Lambda E$. The elements $\partial\left(e_{\alpha} \cdot e_{Y}\right)$ and $e_{C} \cdot \partial\left(e_{Y \backslash C}\right)$ are members of the ideal \mathcal{I}, so

$$
\begin{equation*}
e_{Y}=\sum_{i=1}^{m} \zeta_{i} e_{Y_{i}^{\prime}}, \quad \text { with } \quad \zeta_{i}= \pm 1 \quad \text { and } \quad Y_{i}^{\prime}=Y \backslash y_{i} \cup \alpha . \tag{2.1}
\end{equation*}
$$

We label the edge $\overrightarrow{Y Y_{i_{1}}^{\prime}}$ with the scalar $\zeta_{i_{1}}$.
Let $\mathfrak{P}_{1}, \ldots, \mathfrak{P}_{\ell}$ be the list of the maximal length directed paths of \mathbf{G}, beginning with the vertex X. We denote by T_{i} the last vertex of the path \mathfrak{P}_{i}. T_{i} is a sink of \mathbf{G}, so $e_{T_{i}} \in \boldsymbol{n} \boldsymbol{b} \boldsymbol{c}$. From Eqn. (2.1) and Lemma 2.6 we conclude that

$$
\begin{equation*}
e_{X_{1}}=\sum_{i=1}^{\ell} \xi_{i} e_{T_{i}}, \quad e_{T_{i}} \in \boldsymbol{n b} \boldsymbol{c}, \quad \xi_{i} \pm 1 \tag{2.2}
\end{equation*}
$$

where ξ_{i} is the product of the labels of all the edges of the path \mathfrak{P}_{i}.
The following corollary provides an useful algorithm to compute the support set of e_{X}, $\operatorname{supp}\left(e_{X}\right):=\left\{e_{T_{1}}, \ldots, e_{T_{\ell}}\right\}$.

COROLLARY 2.7. On the conditions of Theorem 2.5, $e_{T_{i}} \in \operatorname{supp}\left(e_{X}\right)$ iff there is a maximal sequence of pairs $\left(\alpha_{1}, x_{1}\right),\left(\alpha_{2}, x_{2}\right), \ldots,\left(\alpha_{k}, x_{k}\right)$ in $\mathrm{EA}(X) \times X$, satisfying the following three conditions:

- $\quad x_{i} \in C\left(X, \alpha_{i}\right), \forall i \in\{1, \ldots, k\}$.
- $\alpha_{1}=\alpha\left(X_{1}\right)$ and $\forall i \in\{2, \ldots, k\}, \alpha_{i}$ is the smallest element of $\mathrm{EA}(X)$ such that $C\left(X, \alpha_{i}\right) \cap$
$\left\{x_{1}, \ldots, x_{i-1}\right\}=\emptyset$.
- $T_{i}=X \backslash\left\{x_{1}, \ldots, x_{k}\right\} \cup\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$.

PROOF. The proof is a straightforward consequence of Lemma 2.6 and left to the reader.

REMARK 2.8. Theorem 2.5 does not characterize the $\boldsymbol{n} \boldsymbol{b} \boldsymbol{c}$ basis of OS. Indeed, consider the rank 2 uniform matroid \mathcal{M} on the ground set $E=\left\{e_{1}<e_{2}<e_{3}<e_{4}\right\}$. Let \mathbf{B} be the basis of OS

$$
\mathbf{B}:=\left\{1, e_{1}, e_{2}, e_{3}, e_{4}, e_{1} \cdot e_{2}, e_{1} \cdot e_{3}, e_{3} \cdot e_{4}\right\}
$$

Note that $\mathbf{B} \neq \boldsymbol{n} \boldsymbol{b} \boldsymbol{c}=\left\{1, e_{1}, e_{2}, e_{3}, e_{4}, e_{1} \cdot e_{2}, e_{1} \cdot e_{3}, e_{1} \cdot e_{4}\right\}$. However, every product $e_{i} \cdot e_{j}$, $i, j \in\{1,2,3,4\}$ can be written as a linear combination of the elements of \mathbf{B}, with coefficients 0 or ± 1. The following problem is open:

- Give a topological interpretation of Theorem 2.5.

3. APPENDIX

We remember that a flat F of \mathcal{M} is a termed a cyclic flat if $F=\emptyset$ or F is the union of circuits.

Proposition 3.1. Let \mathfrak{F}_{c} be the set of cyclic flats of $\mathcal{M}(E)$. Then

$$
\sum_{F \in \mathfrak{F}_{c}} \operatorname{dim}(\operatorname{OS}(\mathcal{M} / F)) \times \operatorname{dim}\left(\operatorname{OS}\left(\mathcal{M}^{*} /(E \backslash F)\right)\right)=2^{n}
$$

Proof. We prove that for every subset $S \subset E$ there exists one and only one cyclic flat F such that:

$$
\begin{align*}
& S \backslash F \in \operatorname{Inter}(\mathcal{M} / F) \tag{3.1.1}\\
& F \backslash S \in \operatorname{Inter}\left(\mathcal{M}^{\star} /(E \backslash F)\right) \tag{3.1.2}
\end{align*}
$$

Note that F is a cyclic flat of \mathcal{M} iff $E \backslash F$ is a cyclic flat of \mathcal{M}^{*}. So (3.1.1) and (3.1.2) are equivalent. We make use of the following two results:
(a) Given a subset S of E, there exists one and only one basis B of \mathcal{M} such that $B \backslash \operatorname{IA}(B) \subset$ $S \subset B \cup \mathrm{EA}(B)$, see $[1$, Proposition 7.3.6]:
(b) Given a basis B of \mathcal{M}, there is one and only one cyclic flat F of \mathcal{M} such that $(B \backslash F, F \backslash B)$ $\in \operatorname{Inter}(\mathcal{M} / F) \times \operatorname{Inter}\left(\mathcal{M}^{\star} /(E \backslash F)\right)$, see [4].
(3.1.1). Fix a subset $S \subset E$. Let B be the basis of \mathcal{M} associated to S by (a). Let F be the cyclic flat associated to B by (b). By hypothesis $B \backslash F \in \operatorname{Inter}(\mathcal{M} / F)$, so $B \backslash F$ is a basis of \mathcal{M} / F. We claim that $S \backslash F \subset B \backslash F$. It is clear that this inclusion imply (3.1.1). From (a) we se that $S \backslash F \subset(B \backslash F) \cup(\mathrm{EA}(B) \backslash F)$. So it is enough to prove that $\mathrm{EA}(B) \subset F$. Suppose for a contradiction that $x \in \mathrm{EA}(B) \backslash F \subset B^{\star} \backslash F$. Note that $B^{\star} \backslash F=(E \backslash F) \backslash(B \backslash F)$. So

$$
C_{\mathcal{M} / F}(B \backslash F, x) \subset C_{\mathcal{M}}(B, x) \backslash F
$$

As by hypothesis $x \in \mathrm{EA}(B), x$ is the smallest element of $C_{\mathcal{M}}(B, x)$ and hence it is also the smallest element of $C_{\mathcal{M} / F}(B \backslash F, x)$. So $B \backslash F \notin \operatorname{Inter}(\mathcal{M} / F)$ a contradiction.

AcKnowledgement

The first author's research was partially supported by FCT and PRAXIS XXI through the Research Units Pluriannual Funding Program, and by the project PRAXIS/PCEX/C/MAT/ 39/96.

REFERENCES

1. A. Björner, On the homology of geometric lattices, Algebra Universalis, 14 (1) (1982), 107-128.
2. A. Björner, The homology and shellability of matroids and geometric lattices, in: Matroid Applications, Cambridge University Press, Cambridge-New York, 1992, pp. 226-283.
3. C. Eschenbrenner and M. Falk, Orlik-Solomon algebras and Tutte polynomials, J. Algebr. Comb., 10 (2) (1999), 189-199.
4. G. Etienne and M. Las Vergnas, External and internal elements of a matroid basis, Discrete Math., 179 (1998), 111-119.
5. I. Gel'fand and G. Rybnikov, Algebraic and topological invariants of oriented matroids (Russian), Dokl. Akad. Nauk SSSR, 307 (4) (1989), 791-795; translation in Soviet Math. Dokl., 40 (1) (1990), 148-152.
6. M. Jambu and D. Leborgne, Fonction de Möbius et arrangements d'hyperplans (French). [The Möbius function and arrangements of hyperplanes], C. R. Acad. Sci. Paris Sér. I Math., 303 (7) (1986), 311-314.
7. P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math., 59 (1) (1980), 77-94.
8. P. Orlik and H. Terao, Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, BerlinHeidelberg, 1992.
9. P. Orlik and H. Terao, Arrangements and hypergeometric functions, Math. Soc. Japan, to appear.
10. A. Varchenko, Multidimensional hypergeometric functions in conformal field theory, algebraic K theory, algebraic geometry, in: Proceedings of the International Congress of Mathematicians, Vol. I, II, (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, pp. 281-300.
11. Theory of Matroids, Encyclopedia of Mathematics and its Applications, 26, N. White (ed.), Cambridge University Press, Cambridge-New York, 1986.
12. Combinatorial Geometries, Encyclopedia of Mathematics and its Applications, 29, N. White (ed.), Cambridge University Press, Cambridge-New York, 1987.

Received 2 June 1999 and accepted 10 July 2000. Published electronically 1 December 2000
Raul Cordovil
Departamento de Matemática, Instituto Superior Técnico,

Av. Rovisco Pais, 1049-001 Lisboa,

Portugal
E-mail: cordovil@math.ist.utl.pt AND

Gwihen Etienne
Université Pierre et Marie Curie, Case 189, Combinatoire\# 4, Place Jussieu,

75005 Paris,
France
E-mail: gwihen@easynet.fr

