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A Note on the Orlik–Solomon Algebra

RAUL CORDOVIL AND GWIHEN ETIENNE

LetM =M(E) be a matroid on a linear ordered set E . The Orlik–Solomon Z-algebra OS(M)

of M is the free exterior Z-algebra on E , modulo the ideal generated by the circuit boundaries.
The Z-module OS(M) has a canonical basis called ‘no broken circuit basis’ and denoted nbc. Let
eX =

∏
ei , ei ∈ X ⊂ E . We prove that when eX is expressed in the nbc basis, then all the

coefficients are 0 or ±1. We present here an algorithm for computing these coefficients. We prove
in appendix a numerical identity involving the dimensions of the algebras of Orlik–Solomon of the
minors of a matroid and its dual.

c© 2001 Academic Press

1. INTRODUCTION

LetA be an arrangement of hyperplanes (i.e., a finite set of codimension 1 vector subspaces)
in C

d . The intersection lattice L(A) is the set of all intersections of the hyperplanes of A
partially ordered by reversed inclusion. Consider the smooth manifold M(A) = C

d\{
⋃

H :

H ∈ A}. Peter Orlik and Louis Solomon proved that the de Rham cohomology algebra of
M(A) can be described entirely in terms of the geometric lattice L(A), see [7, 8]. This algebra
has found use in the work of Kazuhiko Aomoto, and Israel M. Gel’fand and coworkers on the
systematic study of the general hypergeometric functions, see [9, 10]. We consider here Orlik–
Solomon Z-algebras, defined over arbitrary matroids as introduced by Gel’fand and Rybnikov,
see [5].

Throughout this note M = M(E) denotes a matroid of rank r on the linear ordered set
E = {e1 < e2 < · · · < en}. Let C = C(M) be the set of the circuits ofM. When the smallest
element α of a circuit C , |C | > 1, is deleted, the remaining set, denoted bc(C) := C\α, is
called a broken circuit. In order to abbreviate the notation, the singleton set {x} is denoted
by x . Just as an independent set of a matroid is one which does not contain any circuit, an
internal independent set of the matroidM is one which does not contain a broken circuit. Let
Inter i = Inter i (M) be the set of the internal independent subsets of cardinal i of M. Every
element of Inter i is supposed to be ordered with the ordering induced by E . Set Inter(M) =⋃i=r

i=0 Inter i (M). Consider now an independent set X . Let cl(X) be the closure of X in M.
Pick an element x ∈ cl(X)\X . Let C(X, x) denote the unique circuit of M contained in
X ∪ x . The element x ∈ cl(X)\X is called externally active in the independent set X if x
is the minimal element of the circuit C(X, x). Let EA(X) denote the set of externally active
elements in X . Note that X ∈ Inter(M) iff EA(X) = ∅. If EA(X) 6= ∅, let α(X) denote the
smallest element of EA(X). If B is a basis of M we say that an element x ∈ B is internally
active in B if x is externally active in the basis B? = E\B of the orthogonal matroid M∗.
Let IA(B) denote the set of internal active elements in B. We refer to [8] (resp. [11, 12]) as
standard sources for arrangements of hyperplanes (resp. matroids).

2. nbcnbcnbc BASES

The following definition is due to I. M. Gel’fand and G. L. Rybnikov [5]. It is the ‘combi-
natorial analogous’ of one proposed in [7].

DEFINITION 2.1 ([5, 7]). The Orlik–Solomon algebra of the matroid M(E) is the Z-
algebra OS = OS(M) given by the set of generators E , and the relations:

0195–6698/01/020165 + 06 $35.00/0 c© 2001 Academic Press



166 R. Cordovil and G. Etienne

◦ e2 = e · e′ + e′ · e = 0, ∀e, e′ ∈ E ,
◦ If e is a loop ofM, then we have e = 0.
◦ If {ei1 , ei2 , . . . , eim } ∈ C(M), m > 1, ei1 < · · · < eim , then

j=m∑

j=1

(−1) j−1ei1 · · · · · êi j · · · · · eim = 0,

where ̂ indicates an omitted factor.

If X = {ei1 < · · · < ei p } ⊂ E , set eX := ei1 · ei2 · · · · · ei p . Set e∅ := 1. We say that eX is a
strongly decomposable element of the algebra OS.

REMARK 2.2. In [3] it is shown that the matroidM cannot be reconstructed from the ab-
stract algebra OS(M). In other words, when the algebra OS(M) is determined by an arbitrary
basis B and the corresponding structure constants. It is an open question (implicit in the Con-
jecture 5.4 of [3]) to decide when, given an abstract Orlik–Solomon algebra OS, there is an
unique loop free matroid M such that OS = OS(M). In the following, for each abstract
Orlik–Solomon algebra OS, we fixe an associated matroidM such that OS = OS(M).

Let
⊕

e∈E Ze be the free Z-module, generated by the family of generators e1, e2, . . . , en .
Consider the graded exterior algebra 3E =

⊕
i∈N

3i E of the module
⊕

e∈E Ze. Define the
graded linear mapping ∂ : 3E −→ 3E as a linear extension of the linear maps:

◦ ∂0 : Z → (0),
◦ ∂1 : 31 E → Z, where ∂1(e) = 1, ∀e ∈ E ,
◦ ∀` = 2, 3, . . . , n, the maps ∂` : 3`E −→ 3`−1 E , where

∂`(ei1 ∧ · · · ∧ ei`) =

j=`∑

j=1

(−1) j−1ei1 ∧ · · · ∧ êi j ∧ · · · ∧ ei` .

Let I be the two-sided ideal of the exterior algebra 3E generated by the set {∂(eC ) : C ∈

C(M), |C | > 1} ∪ {e : e is a loop ofM}. Note that OS(M) = 3E/I. Set OSi (M) =

3i E/(I ∩ 3i E), ∀i ∈ N.

PROPOSITION 2.3. The grading OS(M) =
⊕

i∈N
OSi (M) is canonical, i.e., it is inde-

pendent of the knowledge of the matroidM.

PROOF. We know that OSi = (0), for all i > r . If OS = OS0 = Z (i.e., r = 0) the result is
clear. Suppose that OS 6= Z. Note that

OSr = {x ∈ OS : x · y = 0, ∀y ∈ OS\Z}.

If we know the modules OSr , . . . , OSr−i and OS〈i+1〉 := OSr ⊕ · · · ⊕ OSr−i 6= OS, (i.e.,
r − i > 1) the module OSr−i−1, i = 0, . . . , r − 2, can be defined recursively as follows

OSr−i−1 = {x ∈ OS : x · y ∈ OS〈i+1〉, ∀y ∈ OS\Z}/OS〈i+1〉. 2

The following basic theorem was independently discovered by Orlik and Solomon in 1980,
Björner in 1982 and Jambu and Leborgne in 1986. See in [2] for a historical note.

THEOREM 2.4 ([1, 6, 7]). The set nbci := {eI : I ∈ Interi (M)} is a linear basis of the
free Z-module OSi (M), ∀i ∈ N. 2
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Set nbc :=
∑r

i=0 nbci = {eI : I ∈ Inter(M)}. nbc is termed the no broken circuit basis
of the free Z-module OS(M).

THEOREM 2.5. Let eX be a strongly decomposable element of OS(M). If eX is express in
the nbc basis of the Z-module OS(M), then all the coefficients are 0 or, ±1.

Theorem 2.5 is a consequence of the following technical lemma. Let G be the direct graph
such that:

◦ Its vertex set V(G) is the set of all the independent sets of the matroidM.

◦
−−→
X X ′ ∈ E(G) is a directed edge of G iff there is a pivotable pair (α, x) such that X ′ =

X\x ∪ α, where α = α(X) and x ∈ C(X, α)\α.
LEMMA 2.6. For every pair of vertices X, X ′ of the graph G, there is at most one directed

path from X to X ′.
PROOF OF LEMMA 2.6. Suppose that there is in G a directed path containing exactly the

k + 1 vertices, X1, . . . , Xk+1. For every i = 1, . . . , k set αi = α(X i ), Ci = C(X i , αi ), and
set xi = X i\X i+1. We show first that:

αi+1 6= xi , (2.6.1)

αi 6∈ bc(Ci+1), (2.6.2)

α1 < · · · < αk, (2.6.3)

Ci = C(X1, αi ), (2.6.4)

X i+1 = X1\{x1, . . . , xi } ∪ {α1, . . . , αi }, |X11X i+1| = 2i, (2.6.5)

Ci = C(X1\{x1, . . . , xi−1}, αi ). (2.6.6)

(2.6.1). Suppose for a contradiction that αi+1 = xi (6= αi ). Then

αi , αi+1 ∈ Ci = Ci+1 ⊂ X i ∪ αi = X i+1 ∪ αi+1,

and we find the contradiction αi < αi+1 and αi+1 < αi .
(2.6.2). Suppose for a contradiction that αi ∈ bc(Ci+1). So αi+1 = α(X i+1) < αi . From the
circuit elimination axiom we know that there is a circuit C ′

i+1 such that

αi+1 ∈ C ′
i+1 ⊂ {Ci ∪ Ci+1}\αi ⊂ X i ∪ {X i ∪ αi+1} ⊂ X i ∪ αi+1.

So C ′
i+1\αi+1 is a broken circuit contained in X i , and αi = αi (X i ) < αi+1, a contradiction.

(2.6.3). From (2.6.3), we see that bc(Ci+1) ⊂ X i . We conclude that αi < αi+1.
(2.6.4). From the definitions we know that

αi ∈ Ci ⊂ X i ∪ αi ⊂ X1 ∪ {α1, . . . , αi }.

By our hypothesis we know that Ci\αi is a broken circuit. We have proved in (2.6.3) that
α1 < · · · < αi−1 < αi so Ci ∩ {α1, . . . , αi−1} = ∅, and (2.6.4) follows.
(2.6.5). It is clear that |X11X2| = 2. Suppose inductively that

X i = X1\{x1, . . . , xi−1} ∪ {α1, . . . , αi−1}, and |X11X i | = 2(i − 1).

From (2.6.4) we know that xi 6∈ {α1, . . . , αi−1}. So (2.6.5) follows.
(2.6.6). From (2.6.5) we know that X i ∩{x1, . . . , xi−1} = ∅, so Ci is disjoint of {x1, . . . , xi−1}.
Making use of (2.6.4) we conclude that

Ci = C(X1\{x1, . . . , xi−1}, αi ).
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We are now able to complete the proof of Lemma 2.6. We prove by induction on the length
of the paths. Suppose that the Lemma 2.6 is true for all paths of length ` ≤ k. Consider a new
directed path X1 = X ′

1 → · · · → X ′
i → · · · → X ′

k′+1 = Xk+1. From (2.6.5) we know that
k′ = k. For every i = 1, . . . , k, set a′

i := α(X ′
i ), x ′

i := X ′
i+1\X ′

i and C ′
i = C(X ′

i , α
′
i ). As

X ′
k′+1 = Xk+1, we know

{α1, . . . , αk} = {α′
1, . . . , α

′
k} and {x1, . . . , xk} = {x ′

1, . . . , x ′
k}.

From (2.6.3) we get α1 < · · · < αk and α′
1 < · · · < α′

k , so αi = α′
i , for every every

i = 1, . . . , k. From (2.6.4) we conclude that Ck = C(X1, αk) = C(X1, αk′) = Ck′ . (2.6.6)
entails that

xk, xk′ ∈ Ck = C(X1\{x1, . . . , xk−1}, αk)

= Ck′ = C(X1\{x ′
1, . . . , x ′

k−1}, αk),

so xk = x ′
k and Xk = X ′

k . By the induction hypothesis we conclude that X i = X ′
i , ∀ i =

2, . . . , k − 1. 2

PROOF OF THEOREM 2.5. If C ∈ C(M), |C | > 1, then we have eC = 0. Indeed pick an
element e ∈ C . Then eC = ±e · ∂(C) = 0. So eD = 0, for every dependent set D ofM. It is
clear that eX ′ ∈ nbc iff X ′ is a sink of G. We see G as an edge-labelled graph:

◦ Let
−−→
Y Y ′

i1
be an arbitrary edge where α = α(Y ) = Y ′

i1
\Y , and set C = C(Y, α). Suppose

that bc(C) = {y1, . . . , yi1 , . . . , ym} and Y ′
i1

= Y\yi1 ∪ α. Consider the expansion of the
element ∂(eα · eY ) ∈ 3E . The elements ∂(eα · eY ) and eC · ∂(eY\C ) are members of the
ideal I, so

eY =

m∑

i=1

ζi eY ′
i
, with ζi = ±1 and Y ′

i = Y\yi ∪ α. (2.1)

We label the edge
−−→
Y Y ′

i1
with the scalar ζi1 .

Let P1, . . . ,P` be the list of the maximal length directed paths of G, beginning with the
vertex X . We denote by Ti the last vertex of the path Pi . Ti is a sink of G, so eTi ∈ nbc. From
Eqn. (2.1) and Lemma 2.6 we conclude that

eX1 =
∑̀

i=1

ξi eTi , eTi ∈ nbc, ξi ± 1, (2.2)

where ξi is the product of the labels of all the edges of the path Pi . 2

The following corollary provides an useful algorithm to compute the support set of eX ,
supp(eX ) := {eT1 , . . . , eT`

}.

COROLLARY 2.7. On the conditions of Theorem 2.5, eTi ∈ supp(eX ) iff there is a maximal
sequence of pairs (α1, x1), (α2, x2), . . . , (αk, xk) in EA(X)× X, satisfying the following three
conditions:

◦ xi ∈ C(X, αi ), ∀i ∈ {1, . . . , k}.
◦ α1 = α(X1) and ∀i ∈ {2, . . . , k}, αi is the smallest element of EA(X) such that C(X, αi )∩

{x1, . . . , xi−1} = ∅.
◦ Ti = X\{x1, . . . , xk} ∪ {α1, . . . , αk}.
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PROOF. The proof is a straightforward consequence of Lemma 2.6 and left to the reader. 2

REMARK 2.8. Theorem 2.5 does not characterize the nbc basis of OS. Indeed, consider
the rank 2 uniform matroid M on the ground set E = {e1 < e2 < e3 < e4}. Let B be the
basis of OS

B := {1, e1, e2, e3, e4, e1 · e2, e1 · e3, e3 · e4}.

Note that B 6= nbc = {1, e1, e2, e3, e4, e1 · e2, e1 · e3, e1 · e4}. However, every product ei · e j ,
i, j ∈ {1, 2, 3, 4} can be written as a linear combination of the elements of B, with coefficients
0 or ±1. The following problem is open:

◦ Give a topological interpretation of Theorem 2.5.

3. APPENDIX

We remember that a flat F of M is a termed a cyclic flat if F = ∅ or F is the union of
circuits.

PROPOSITION 3.1. Let Fc be the set of cyclic flats ofM(E). Then
∑

F∈Fc

dim(OS(M/F)) × dim(OS(M∗/(E\F))) = 2n .

PROOF. We prove that for every subset S ⊂ E there exists one and only one cyclic flat F
such that:

S\F ∈ Inter(M/F), (3.1.1)

F\S ∈ Inter(M?/(E\F)). (3.1.2)

Note that F is a cyclic flat of M iff E\F is a cyclic flat of M∗. So (3.1.1) and (3.1.2) are
equivalent. We make use of the following two results:

(a) Given a subset S of E, there exists one and only one basis B ofM such that B\IA(B) ⊂

S ⊂ B ∪ EA(B), see [1, Proposition 7.3.6]:
(b) Given a basis B ofM, there is one and only one cyclic flat F ofM such that (B\F, F\B)

∈ Inter(M/F) × Inter(M?/(E\F)), see [4].

(3.1.1). Fix a subset S ⊂ E . Let B be the basis of M associated to S by (a). Let F be the
cyclic flat associated to B by (b). By hypothesis B\F ∈ Inter(M/F), so B\F is a basis of
M/F . We claim that S\F ⊂ B\F . It is clear that this inclusion imply (3.1.1). From (a) we
se that S\F ⊂ (B\F) ∪ (EA(B)\F). So it is enough to prove that EA(B) ⊂ F . Suppose for
a contradiction that x ∈ EA(B)\F ⊂ B?\F . Note that B?\F = (E\F)\(B\F). So

CM/F (B\F, x) ⊂ CM(B, x)\F.

As by hypothesis x ∈ EA(B), x is the smallest element of CM(B, x) and hence it is also the
smallest element of CM/F (B\F, x). So B\F 6∈ Inter(M/F) a contradiction. 2
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