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Abstract

For a k-connected graph or matroid M , where k is a fixed positive integer, we say that a subset X of E(M) is k-removable
provided M\X is k-connected. In this paper, we obtain a sharp condition on the size of a 3-connected binary matroid to have a
3-removable circuit.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Matroid; Binary matroid; 3-connected matroid; Circuit; Removable circuit

1. Introduction

Removable circuits and cocircuits play an important role in studying the structure of graphic matroids (see [11,12,
24,25]). There has been much interest in the study of removable circuits and cocircuits in graphs and matroids lately
(see [1,4–8,10,12–14,16–18,21,22]).

Hobbs conjectured that every 2-connected graph with minimum degree at least 4 has a 2-removable circuit.
Robertson and Jackson independently gave a counter-example to this conjecture (see [7]). Mader [17] proved this
conjecture for simple graphs. Goodyn, van der Heuvel and McGuinness established it for graphs without a Peterson
Graph as a minor. For more results on graphs that extend this conjecture see [7,14,22]. Inspired by this conjecture,
Oxley [20] proposed the following problem: does a simple 2-connected binary matroid with cogirth at least 4 have a
2-removable circuit? Lemos and Oxley [14] constructed a cographic matroid that provides a negative answer to this
question.

For a 2-connected graph G with having minimum degree at least four, we have that

|E(G)| ≥ 2|V (G)|. (1)

If M is the graphic matroid associated with G, then this inequality translates as

|E(M)| ≥ 2r(M)+ 2. (2)
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For a 2-connected matroid, a condition on the size of the cogirth does not guarantee the existence of a 2-removable
circuit, but a condition on its number of elements does.

Theorem 1. Let M be a 2-connected matroid. If M is non-empty, then M has a 2-removable circuit provided:
(i) (Lemos and Oxley [14]) |E(M)| ≥ 3r(M); or

(ii) (Junior [8]) r(M) ≥ 3 and |E(M)| ≥ 3r(M)− 1; or
(iii) (Junior [8]) M is simple, r(M) ≥ 7 and |E(M)| ≥ 3r(M)− 3.

Each item of the previous result is sharp. Lemos and Oxley [15] proved that:

Theorem 2. If M is a 3-connected matroid such that r(M) ≥ 6 and |E(M)| ≥ 4r(M)−5, then M has a 3-removable
circuit.

This result is sharp. Lemos and Oxley [15] construct an infinite family of matroids that attain this bound. But all
the matroids in this family are non-binary. For binary matroids, in this paper, we prove the following result (it was
conjectured in [9]):

Theorem 3. If M is a 3-connected binary matroid such that r(M) ≥ 10 and |E(M)| ≥ 4r(M) − 8, then M has
a 3-removable circuit.

Theorem 3 is sharp even for graphs as the next example shows. Let {U, V } be a partition of the vertices of the
complete bipartite graph K4,n , for n ≥ 3, such that U and V are stable sets, |U | = 4, and |V | = n. Let K (3)

4,n be a
simple graph obtained from K4,n by adding a set with 3 edges P joining vertices belonging to U so that P is a path.
Note that M(K (3)

4,n)\C is not 3-connected, for every circuit C of M(K (3)
4,n). Moreover,

|E(M(K (3)
4,n))| = 4n + 3 = 4r(M(K (3)

4,n))− 9. (3)

For more detail in removable circuits in graphs and matroids, we recommend Oxley’s excellent survey [19]. For
notation and terminology in matroid theory, we follow Oxley’s book [20].

2. Known theorems

In this section, we state some theorems from other papers that are used in the proof of Theorem 3. Let M be a
matroid. We define Λ1(M) to be the set of connected components of M . We set λ1(M) = |Λ1(M)|. Now M can be
constructed from a collection Λ2(M) of 3-connected matroids by using the operations of 1-sum and 2-sum. It follows
from results of Cunningham and Edmonds (see [3]) that Λ2(M) is unique up to isomorphism. We denote by λ2(M)
the number of matroids in Λ2(M) that are not isomorphic to U1,3. Theorem 1.3 of [15] can be stated as:

Theorem 4. Let M be a 3-connected matroid other than U1,3. If N is a non-empty spanning restriction of M, then
M has a 3-connected restriction K such that E(N ) ⊆ E(K ) and

|E(K )| ≤ |E(N )| + λ1(N )+ λ2(N )− 2, (4)

unless N is a circuit of size at least four, in which case, |E(K )| ≤ 2r(N ).

A circuit C of a matroid M is said to be Hamiltonian provided |C | = r(M) + 1. If M has at least one circuit,
then circ(M) denotes the circumference of M , that is, the maximum cardinality of a circuit of M . The 3-connected
matroids having small circumference must have small rank. Lemos and Oxley [16] proved that:

Theorem 5. Suppose that M is a 3-connected matroid. If r(M) ≥ 6, then circ(M) ≥ 6.

Cordovil, Junior and Lemos [2] constructed all the 3-connected binary matroids having circumference equal to 6
or 7 with large rank. These matroids are central in the proof of the next result (see [2]):

Theorem 6. Let M be a 3-connected binary matroid such that circ(M) ∈ {6, 7} and r(M) ≥ 10. If M\C is not 3-
connected for every circuit C of M, then |E(M)| < 4r(M)− 8.

Using Theorems 5 and 6, we conclude that a counter-example for Theorem 3 must have circumference at least
eight. Using the main result of the next section, we conclude that the circumference of this counter-example must be
eight.
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3. Two auxiliary functions

For a matroid M , we consider the following function

δ(M) = 3r(M)− |E(M)| − λ1(M)− λ2(M). (5)

First, we show that δ is both 1-additive and 2-additive. (A function f defined in the class of matroids is called k-
additive when

f (N ) = f (N1)+ f (N2)+ · · · + f (Nn) (6)

provided the matroid N is the k-sum of matroids N1, N2 . . . , Nn .)

Lemma 1. If the matroid M is the 1-sum of matroids M1,M2 . . . ,Mn , then

δ(M) = δ(M1)+ δ(M2)+ · · · + δ(Mn). (7)

Proof. This result holds because all the functions involved in the definition of δ are 1-additive. �

Following Seymour [23], we consider the 2-sum of matroids M1 and M2 having e as a common element only when
the connected component of e in Mi has at least three elements, for both i ∈ {1, 2}.

Lemma 2. If the matroid M is the 2-sum of matroids M1,M2 . . . ,Mn , then

δ(M) = δ(M1)+ δ(M2)+ · · · + δ(Mn). (8)

Proof. We need to prove this result only when two matroids are involved. When n = 2, we have:

r(M) = r(M1)+ r(M2)− 1

|E(M)| = |E(M1)| + |E(M2)| − 2

λ1(M) = λ1(M1)+ λ1(M2)− 1

λ2(M) = λ2(M1)+ λ2(M2).

The result follows easily from these identities. �

Observe that:

Lemma 3. If M is a coloop, then δ(M) = 0.

For a matroid M , we define the following function:

∆(M) = max{δ(N ) : N is a restriction of M}. (9)

Now, we prove the main result of this section:

Proposition 1. If M is a 3-connected matroid such that r(M) ≥ 2, then M has a 3-connected spanning restriction N
such that

|E(N )| ≤

{
3r(M)−∆(M)− 2 when M is not Hamiltonian;
2r(M) when M is Hamiltonian.

(10)

Proof. If M has a Hamiltonian circuit, then the result follows by Theorem 4. Assume that M is not Hamiltonian. Let
H be a restriction of M so that δ(H) = ∆(M). Choose a basis B of M such that B ∩ E(H) spans E(H) in M .
Hence B − E(H) is a set of coloops of K = M |[E(H) ∪ B]. Therefore K = H ⊕ [M |(B − E(H))]. By Lemmas 1
and 3, δ(K ) = δ(H). In particular, δ(K ) = ∆(M). By Theorem 4, M has a 3-connected restriction N such that
N |E(K ) = K and

|E(N )| ≤ |E(K )| + λ1(K )+ λ2(K )− 2 = 3r(K )− δ(K )− 2. (11)

Thus |E(N )| ≤ 3r(M)−∆(M)− 2 and the result follows. �
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The previous result shows the importance of the function ∆. This function is hard to compute, but for our
application, we just need an upper bound for it such as δ(N ), when N is a restriction of M with small corank.
For example:

Lemma 4. If M is a circuit with at least 3 elements, then δ(M) = |E(M)| − 2.

4. Special pairs

We say that (M,C) is a special pair provided M is a connected matroid having C as a circuit, E(M) 6= C and,
for every K ∈ Λ1(M/C), rM/C (E(K )) = 1 and E(K ) is an independent set of M having at least 3 elements. In this
section, we establish some properties about special pairs.

In the next section, we prove that every connected component of M/C has rank equal to 0 or 1, when C is a largest
circuit of a counter-example M of Theorem 3. Moreover, (M |[∪H∈Λ1(M/C):r(H)=1(C ∪ BH )],C) is a special pair,
where BH is a basis of M |E(H). Therefore the results obtained in this section will be fundamental to conclude the
proof of Theorem 3.

Lemma 5. Let (M,C) be a special pair. If {Z ,W } is a 2-separation of M, then:

(i) If K ∈ Λ1(M/C), then E(K ) ⊆ Z or E(K ) ⊆ W .
(ii) C ∩ Z 6= ∅ and C ∩W 6= ∅.

Moreover, r(Y ) = |C ∩ Y | + |{H ∈ Λ1(M/C) : E(H) ⊆ Y }|, for each Y ∈ {Z ,W }.

Proof. For Y ∈ {Z ,W }, r(C ∩ Y ) = |C ∩ Y | − δY , where δY = 0, when C 6⊆ Y , and δY = 1, when C ⊆ Y . If XY is a
subset of Y −C such that, for each H ∈ Λ1(M/C), |XY ∩ E(H)| = 1, when Y ∩ E(H) 6= ∅, and |XY ∩ E(H)| = 0,
when Y ∩ E(H) = ∅, then

r(Y ) ≥ r(Y ∩ C)+ |XY | = |Y ∩ C | + |XY | − δY (12)

because XY is a set of coloops of M/C . There is εY such that εY ≥ 0 and

r(Y ) = |Y ∩ C | + |XY | + εY − δY . (13)

Therefore

1+ r(M) = r(Z)+ r(W ) = |C | + |X Z | + |XW | + (εZ + εW )− (δZ + δW ). (14)

As |Λ1(M/C)| ≤ |X Z | + |XW |, say, for some ε ≥ 0,

|Λ1(M/C)| = |X Z | + |XW | − ε, (15)

and r(M) = |C | − 1+ |Λ1(M/C)|, it follows that

0 ≤ εZ + εW + ε = δZ + δW ≤ 1. (16)

If (i) does not hold, then E(K ) ∩ Z 6= ∅ and E(K ) ∩ W 6= ∅. In particular, ε ≥ 1. By (16), ε = 1 and
{δZ , δW } = {0, 1}, say δW = 1. Thus C ⊆ W , since δW = 1, and E(H) ⊆ Z or E(H) ⊆ W , for each
H ∈ Λ1(M/C) − {K }, since ε = 1. (That is, (i) holds for each element of Λ1(M/C) other than K .) Moreover,
by (16), εZ = εW = 0. There is H ∈ Λ1(M/C) such that |E(H)∩ Z | ≥ 2 because C ∩ Z = ∅ and (i) holds for every
H ∈ Λ1(M/C) − {K }. We arrive at a contradiction because [E(H) ∩ Z ] ∪ X Z is an independent set of M and so
εZ ≥ 1. Therefore (i) follows. In particular, ε = 0.

Suppose that (ii) does not hold. Then C ∩ Z = ∅ or C ∩ W = ∅, say C ⊆ W . In particular, δZ = 0 and
δW = 1. By (i), there is H ∈ Λ1(M/C) such that E(H) ⊆ Z . As E(H) ∪ X Z is an independent set of M and
|E(H) ∪ X Z | ≥ |X Z | + 2, it follows that εZ ≥ 2; a contradiction to (16). Therefore (ii) follows and so δZ = δW = 0.
By (16), εZ = εW = 0. Thus r(Y ) = |Y ∩ C | + |XY |, for each Y ∈ {Z ,W }. With this, we conclude the proof of this
lemma. �

Lemma 6. Let (M,C) be a special pair. If {Z ,W } is a 2-separation of M, then there are matroids MZ and MW such
that:
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(i) E(MZ ) = Z ∪ e and E(MW ) = W ∪ e, where e is a new element.
(ii) M = MZ ⊕2 MW .

(iii) For Y ∈ {Z ,W }, MY is a circuit or (MY , (C ∩ Y ) ∪ e) is a special pair.
(iv) Λ1(M/C) = Λ1(MZ/CZ ) ∪ Λ1(MW /CW ).

Proof. Observe that (i) and (ii) follow from Section 2 of Seymour [23]. We need to prove only (iii) and (iv). Observe
that MZ and MW are connected because M is connected. By Lemma 5(ii), CY = (C ∩ Y ) ∪ e is a circuit of MY , for
each Y ∈ {Z ,W }. By Lemma 5(i), E(K ) ⊆ Z or E(K ) ⊆ W , for each K ∈ Λ1(M/C), say E(K ) ⊆ Z . Observe
that E(K ) is independent in MZ . We need to show that K is a connected component of MZ/CZ . If f ∈ C ∩W , then
MZ is obtained from M\(W − C)/[(W ∩ C) − f ] by renaming f by e. Thus MZ/CZ = M\(W − C)/C . As K
is a connected component of M/C and E(K ) ⊆ Z , it follows that K is a connected component of MZ/CZ . Hence
Λ1(M/C) ⊆ Λ1(MZ/CZ ) ∪ Λ1(MW /CW ). The equality holds because

E(M)− C = [E(MZ )− CZ ] ∪ [E(MW )− CW ]. (17)

With this identity we conclude the proof of this lemma. �

As a consequence of this lemma, we have the following decomposition (use induction):

Lemma 7. Let (M,C) be a special pair. If

Γ1(M) = {H ∈ Λ2(M) : E(H) ∩ [E(M)− C] 6= ∅} (18)

and Γ2(M) = Λ2(M)− Γ1(M), then:

(i) If H ∈ Γ2(M), then H ∼= U2,3 and E(H) ∩ E(M) ⊆ C.
(ii) If H ∈ Γ1(M) and CH = E(H)− [E(M)− C], then CH is a circuit of H and (H,CH ) is a special pair.

(iii) Λ1(M/C) = ∪H∈Γ1(M) Λ1(H/CH ).
(iv) The matroid obtained by making the 2-sum of the matroids belonging to the family {H |CH : H ∈ Γ1(M)}∪Γ2(M)

is M |C.

Lemma 8. If (M,C) is a special pair, then

δ(M) = δ(M |C)+
∑

H∈Γ1(M)

(|CH | − 3)−
∑

K∈Λ1(M/C)

(|E(K )| − 3), (19)

where CH = E(H)− [E(M)− C], for H ∈ Γ1(M).

Proof. By Lemma 7(iv), M |C is the 2-sum of the matroids belonging to Γ ′1(M) ∪ Γ2(M), where Γ ′1(M) = {H |CH :

H ∈ Γ1(M)}. By Lemma 2, we have that

δ(M |C) =
∑

H∈Γ ′1(M)∪Γ2(M)

δ(H) and δ(M) =
∑

H∈Λ2(M)

δ(H). (20)

By Lemmas 5 and 7(ii), for H ∈ Γ1(M),

δ(H) = 3

r(H |CH )+
∑

K∈Λ1(H/CH )

1

−
|CH | +

∑
K∈Λ1(H/CH )

|E(K )|

− 1− 1

= δ(H |CH )−
∑

K∈Λ1(H/CH )

(|E(K )| − 3)+ λ2(H |CH )− 1.

Hence

δ(M) =
∑

H∈Λ2(M)

δ(H)

=

∑
H∈Γ1(M)

δ(H)+
∑

H∈Γ2(M)

δ(H)
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=

∑
H∈Γ1(M)

δ(H |CH )−
∑

K∈Λ1(H/CH )

(|E(K )| − 3)+ λ2(H |CH )− 1

+ ∑
H∈Γ2(M)

δ(H)

=

∑
H∈Γ ′1(M)∪Γ2(M)

δ(H)+
∑

H∈Γ1(M)

(λ2(H |CH )− 1)−
∑

K∈Λ1(M/C)

(|E(K )| − 3)

= δ(M |C)+
∑

H∈Γ1(M)

(λ2(H |CH )− 1)−
∑

K∈Λ1(M/C)

(|E(K )| − 3)

and the result follows because λ2(H |CH ) = |CH | − 2 (in the passage from the third to the fourth line of this display,
we use Lemma 7(iii)). �

A special pair (M,C) is said to be unitary provided |Λ1(M/C)| = 1. A special pair (M,C) is said to be strong
provided M is binary and ∆(M) = δ(M |C). By Lemma 4, when (M,C) is a strong special pair, C is a largest circuit
of M .

Lemma 9. If (M,C) is a unitary strong special pair, then |Γ1(M)| = 1, say Γ1(M) = {N }, and:

(i) If |E(M)− C | = 3, then N ∼= M(K4).
(ii) If |E(M)− C | = 4, then N ∼= M(W4).

(iii) If |E(M)− C | ∈ {3, 4}, then E(N ) ∩ C = ∅.

Proof. For each H ∈ Γ1(M), we set CH = E(H)−[E(M)−C]. By Lemma 7(ii), CH is a circuit of H and (H,CH )

is a special pair. By Lemma 7(iii), Λ1(M/C) = ∪H∈Γ1(M) Λ1(H/CH ) and so

1 = |Λ1(M/C)| =
∑

H∈Γ1(M)

|Λ1(H/CH )|. (21)

As Λ1(H/CH ) 6= ∅, when H ∈ Γ1(M), it follows that |Γ1(M)| = 1, say Γ1(M) = {N }. Observe that
C∗ = E(N ) − CN is a cocircuit of N because N/CN is a rank-1 connected matroid. Now, we need to prove (i)
to (iii). By definition, ∆(M) = δ(M |C) and so 0 ≥ δ(M)− δ(M |C). As∑

H∈Γ1(M)

(|CH | − 3)−
∑

K∈Λ1(M/C)

(|E(K )| − 3) = (|CN | − 3)− (|C∗| − 3), (22)

it follows, by Lemma 8, that

0 ≥ δ(M)− δ(M |C) = (|CN | − 3)− (|C∗| − 3). (23)

Therefore

|CN | ≤ |C
∗
|. (24)

As CN is a circuit-hyperplane of N and C∗ is independent in N , it follows that

|C∗| ≤ r(N ) = |CN |. (25)

By (24) and (25),

r(N ) = |CN | = |C
∗
|. (26)

Observe that (i) is a consequence of (26) because, up to isomorphism, there is only one 6-element rank-3 3-connected
binary matroid, namely M(K4).

Now, we establish (ii). By (26), N is an 8-element rank-4 3-connected binary matroid. As C∗ is an independent
cocircuit of N , it follows that N is not isomorphic to AG(3, 2). Therefore N is isomorphic to S8 or N is regular. If N
is regular, then, by (14.2) of [23], N is graphic or cographic and so, by Tutte’s characterization of graphic matroids
and Kuratowski’s Theorem, N is the matroid of a planar graph. Thus N is isomorphic to S8 or to M(W4) because W4
is the unique 3-connected planar graph with 8 edges having a circuit-hyperplane. By Lemma 9(i) applied to M\a, for
a ∈ C∗, a belongs to a triad T ∗a of N having two elements in common with CN . Therefore N has at least 4 different
triads and so N is isomorphic to M(W4). Thus (ii) follows.
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We argue by contradiction to prove (iii). Assume that E(N ) ∩ C 6= ∅, say c ∈ E(N ) ∩ C . As c ∈ CN , it follows,
by (i) or (ii), that there is a 2-element subset X of C∗ such that c ∪ X is a triangle of M . Thus (c ∪ X)4C is a circuit
of M having more elements than C ; a contradiction and so (iii) follows. �

Lemma 10. Let (M,C) be a strong special pair. If |E(K )| = 3, for each K ∈ Λ1(M/C), then H ∼=

M(K (3)
3,|Λ1(H/CH )|

) for each H ∈ Γ1(M).

Let {U, V } be a partition of the vertices of the complete bipartite graph K3,n , for n ≥ 1, such that U and V are
stable sets, |U | = 3, and |V | = n. Let K (3)

3,n be a simple graph obtained from K3,n by adding a set with 3 edges joining
vertices belonging to U .

Proof. By Lemma 8,

δ(M) = δ(M |C)+
∑

H∈Γ1(M)

(|CH | − 3), (27)

where CH = E(H)− [E(M)− C], for H ∈ Γ1(M). By hypothesis, δ(M) ≤ ∆(M) = δ(M |C) and so

0 ≥
∑

H∈Γ1(M)

(|CH | − 3). (28)

As |CH | ≥ 3, for each H ∈ Γ1(M), it follows that |CH | = 3, for each H ∈ Γ1(M).
Fix an H ∈ Γ1(M). Suppose that Λ1(H/CH ) = {K1, K2, . . . , Kn}. For i ∈ {1, 2, . . . , n}, let C∗i = E(Ki ). If

N = M |(C ∪C∗1 ∪C∗2 ∪ · · · ∪C∗n ), then (N ,C) is a strong special pair such that Λ1(N/C) = Λ1(H/CH ). Moreover,

Γ2(N ) = Γ2(M) ∪ {L|CL : L ∈ Γ1(M) and L 6= H} and Γ1(N ) = {H}. (29)

For i ∈ {1, 2, . . . , n}, if Ni = N |C ∪ C∗i = M |C ∪ C∗i , then (Ni ,C) is a unitary strong special pair such that

Γ2(Ni ) = Γ2(N ) and Γ1(Ni ) = {H |(CH ∪ C∗i )} (30)

because |CH | = 3. By Lemma 9(i), H |(CH ∪ C∗i )
∼= M(K4). The elements of C∗i can be labeled by ai , bi , ci

so that Ti = {ai , bi , x}, Si = {ai , ci , y}, Ri = {bi , ci , z} are triangles of H |(CH ∪ C∗i ), where CH = {x, y, z}. As
{x, y, a1, a2, . . . , an} is a basis of H , it follows that CH , T1, T2, . . . , Tn, S1, S2, . . . , Sn span the cycle space of H over
G F(2). But these sets also span the cycle space of M(K (3)

3,n) over G F(2), where K (3)
3,n has u, v, w, v1, v2, . . . , vn as

vertices and edges: x incident with u and v; y incident with v andw; z incident with u andw; and, for i ∈ {1, 2, . . . , n},
ai incident with v and vi ; bi incident with u and vi ; and ci incident with w and vi . Therefore M = M(K (3)

3,n) and the
result follows. �

Lemma 11. Let (M,C) be a strong special pair such that |C | = 8. If |E(K )| = 4, for some K ∈ Λ1(M/C), then
(M,C) is unitary.

Proof. Suppose this result is not true. Choose a counter-example (M,C) such that |E(M)| is minimum. Hence
|Λ1(M/C)| ≥ 2. There is H ∈ Λ1(M/C) such that H 6= K . First, we show that E(M) = C ∪ E(H) ∪
E(K ), |E(H)| = 3, and |E(K )| = 4. If N = M |(C ∪ X ∪ Y ), where X is a 3-subset of E(H) and Y is a 4-
subset of E(K ), then Λ1(N/C) = {H |X, K |Y } and so (N ,C) is a strong special pair. By the choice of (M,C),
M = N . That is, E(M) = C ∪ E(H) ∪ E(K ), X = E(H) and Y = E(K ). By Lemma 9(ii) applied to the unitary
special pair (M |(C ∪ E(K )),C), there is a matroid L such that L ∼= M(W4) and Γ1(M |(C ∪ E(K ))) = {L}. By
Lemma 9(iii),

[E(L)− E(K )] ∩ C = ∅. (31)

Observe that

|Γ2(M |(C ∪ E(K )))| = 4 (32)

because, by Lemma 7(iv), M |C is the 2-sum of the matroids belonging to the family Γ2(M |(C∪E(K )))∪{L\E(K )}.
By (31) and (32),

|C ∩ E(L ′)| = 2, for every L ′ ∈ Γ2(M |(C ∪ E(K ))). (33)
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Now, we show that

|Γ1(M)| = 1, say Γ1(M) = {L
′
}. (34)

Assume that (34) is not true. By Lemma 10,

2 ≤ |Γ1(M)| ≤ |Λ1(M/C)| = |{H, K }| = 2, (35)

say Γ1(M) = {L H , L K }, where E(H) ⊆ E(L H ) and E(K ) ⊆ E(L K ). By Lemma 9(i), L H ∼= M(K4). Note that

Λ2(M |(C ∪ E(K ))) = [Λ2(M)− {L H }] ∪ {L H\E(H)}. (36)

Hence L H\E(H) ∈ Γ2(M |(C ∪ E(K ))). By (33), |C ∩ [E(L H ) − E(H)]| = 2; a contradiction to Lemma 9(iii)
applied to the unitary strong special pair (M |[C ∪ E(H)],C). Therefore (34) holds.

By (34) and Lemma 8, when CL ′ = E(L ′)− [E(H) ∪ E(K )],

δ(M) = δ(M |C)+ (|CL ′ | − 3)− (|E(H)| − 3)− (|E(K )| − 3). (37)

Therefore

|CL ′ | = 4+ [δ(M)− δ(M |C)] ≤ 4. (38)

But L ∈ Λ2(L ′\E(H)) and so L = L ′\E(H). By Lemma 9(i) applied to the unitary special pair (M\E(K ),C),
L ′\E(K ) = L1⊕2 L2, where L1 ∼= U2,3 and L2 ∼= M(K4). In particular, L ′\E(K ) has a unique 2-separation
{Z ,W }, say |Z | = 2. Choose e ∈ E(K ) such that r(Z ∪ (E(K )− e)) = 4 and r((W − E(H)) ∪ (E(K )− e)) = 4.
Note that L ′\e is 3-connected. Therefore {L ′\e} = Γ1(M\e); a contradiction to Lemma 10 applied to strong special
pair (M\e,C). �

5. There exists no counter-example to Theorem 3

In this section, we prove Theorem 3 by contradiction. Suppose that M is a 3-connected binary matroid such that
r(M) ≥ 10,

|E(M)| ≥ 4r(M)− 8 (39)

and M does not have a circuit C such that M\C is 3-connected.

Lemma 12. ∆(M) ≤ 6.

Proof. By Proposition 1, M has a 3-connected spanning minor N such that

|E(N )| ≤

{
3r(M)−∆(M)− 2 when M is not Hamiltonian
2r(M) when M is Hamiltonian.

(40)

Observe that

|E(M)− E(N )| ≥

{
r(M)+∆(M)− 6 when M is not Hamiltonian
2r(M)− 8 when M is Hamiltonian.

(41)

If E(M)− E(N ) contains a circuit C of M , then M\C is 3-connected because N is 3-connected and spanning. Hence
E(M)− E(N ) is independent and so

r(M) ≥ |E(M)− E(N )| ≥

{
r(M)+∆(M)− 6 when M is not Hamiltonian
2r(M)− 8 when M is Hamiltonian.

(42)

Thus M is not Hamiltonian and ∆(M) ≤ 6. �

Lemma 13. If C is a circuit of M, then |C | ≤ 8. Moreover, ∆(M) = δ(M |C), when |C | = 8.

Proof. By Lemma 4, |C | − 2 = δ(M |C) ≤ ∆(M). By Lemma 12, ∆(M) ≤ 6 and so |C | ≤ 8. Observe that we have
equality in all inequations when |C | = 8. �
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Lemma 14. circ(M) = 8.

Proof. Suppose that circ(M) 6= 8. By Lemma 13, circ(M) ≤ 7. By Theorem 5, circ(M) ∈ {6, 7}; a contradiction to
Theorem 6. �

We say that L is a Tutte-line of a matroid H , when H |L does not have coloops and r((H |L)∗) = 2. Observe that
every Tutte-line of M is a subdivision of U0,2 or U1,3 since M is binary. We prove that:

Lemma 15. If L is a Tutte-line of M, then δ(M |L) = |L| − 4. Moreover, |L| ≤ 10.

Proof. We have two cases to consider. If M |L is a subdivision of U0,2, then M |L is the 1-sum of matroids M |L1 and
M |L2, where L1 and L2 are the circuits of M |L . Hence, by Lemmas 1 and 4,

δ(M |L) = δ(M |L1)+ δ(M |L2) = (|L1| − 2)+ (|L2| − 2) = |L| − 4. (43)

If M |L is a subdivision of U1,3, then

λ2(M |L) = |L| − 3. (44)

(Remember that, by definition, a matroid belonging to Λ2(M |L) which is isomorphic to U1,3 does not contribute to
λ2(M |L).) Thus,

δ(M |L) = 3(|L| − 2)− |L| − 1− (|L| − 3) = |L| − 4. (45)

The first part of the result follows. By Lemma 12, we have that

|L| − 4 = δ(M |L) ≤ 6 (46)

and so |L| ≤ 10. �

Lemma 16. If C is a circuit of M such that |C | = 8, then every connected component of M/C has rank equal
to 0 or 1.

Proof. Let A be a circuit of M/C . Observe that L = C ∪ A is a Tutte-line of M . By Lemma 15, |C ∪ A| ≤ 10 and
so |A| ≤ 2. Therefore circ(M/C) ≤ 2. The result follows because every connected component of a matroid with
circumference at most 2 has rank equal to 0 or 1. �

By Lemma 14, M has a circuit C such that |C | = 8. By Lemma 16, each connected component of M/C has rank
equal to 0 or 1. Let M1,M2, . . . ,Mn be the connected components of M/C having rank equal to 1.

Lemma 17. r(E(Mi )) ≥ 3, for every i ∈ {1, 2, . . . , n}.

Proof. If r(E(Mi )) ≤ 2, then {E(M) − E(Mi ), E(Mi )} is a 1- or 2-separation of M because r(E(M) − E(Mi )) =

r(M)− 1; a contradiction. �

For i ∈ {1, 2, . . . , n}, let Bi be a basis of Mi . If N = M |(C ∪ B1 ∪ B2 ∪ · · · ∪ Bn), then (N ,C) is a strong
special pair because, by Lemma 13, δ(M |C) = ∆(M) and, by Lemma 17, |Bi | ≥ 3, for every i ∈ {1, 2, . . . , n}. By
Lemma 11, |B1| = |B2| = · · · = |Bn| = 3, since n = r(M)− 7 ≥ 3.

Lemma 18. For i ∈ {1, 2, . . . , n}, |E(Mi )| ∈ {3, 4}. Moreover, when |E(Mi )| = 4, E(Mi ) is a circuit of M.

Proof. If E(Mi ) = Bi , then the result follows. Suppose that e ∈ E(Mi ) − Bi . There is a circuit C of M such
that e ∈ C ⊆ Bi ∪ e. As E(Mi ) is a cocircuit of M , it follows, by orthogonality, that |C ∩ E(Mi )| is even. But
C ∩ E(Mi ) = C and so |C | = 4 because M is 3-connected. In particular, C = Bi ∪ e. If e 6= e′ and e′ ∈ E(Mi )− Bi ,
then Bi ∪ e′ is a circuit of M ; a contradiction because (Bi ∪ e) 4 (Bi ∪ e′) = {e, e′} is a circuit of M . Therefore e′

does not exist and the result follows. �

By Lemma 10, for each H ∈ Γ1(N ), H ∼= M(K (3)
3,|Λ1(H/CH )|

), where CH = E(H) − (B1 ∪ B2 ∪ · · · ∪ Bn). In
particular, |CH | = 3 and CH∩C = ∅. By Lemma 7(iv), M |C = N |C is obtained by making the 2-sum of the matroids
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belonging to the family {H |CH : H ∈ Γ1(N )} ∪ Γ2(N ). As every matroid belonging to this family is isomorphic to
U2,3 and CH ∩ C = ∅, for every H ∈ Γ1(N ), it follows that |Γ2(N )| ≥ 4 and so

|Γ1(N )| ≤ 2. (47)

Lemma 19. If M\E(Mi ) is not 3-connected, for some i ∈ {1, 2 . . . , n}, then M\E(M j ) is 3-connected, for every
j ∈ {1, 2, . . . , n} − {i}.

Proof. By (47), the result follows provided we establish that:

There is H ∈ Γ1(N ) such that E(H) = Bi ∪ CH . (48)

(Remember that n = r(M)− 7 ≥ 3.)
If (48) is not true, then there is H ∈ Γ1(N ) such that Bi ⊆ E(H) and E(H) 6= Bi ∪ CH , say B j ⊆ E(H), for

j ∈ {1, 2, . . . , n}−{i}. Observe that Γ2(N ) = Γ2(N\Bi ) and Γ1(N\Bi ) = [Γ1(N )−{H}]∪{H\Bi }. For a matroid L
belonging to Γ1(N )∪{H\Bi }, let L̂ be the unique binary extension of L such that E(L̂) = E(L)∪[∪Bi⊆E(L) E(Mi )]

and, for each i ∈ {1, 2, . . . , n} satisfying Bi ⊆ E(L) and |E(Mi )| = 4, E(Mi ) is a circuit of L̂ . We have that:

Λ2(M\(clM (C)− C)) = {L̂ : L ∈ Γ1(N )} ∪ Γ2(N )

Λ2(M\[(clM (C)− C) ∪ E(Mi )]) = {L̂ : L ∈ [Γ1(N )− {H}] ∪ {H\Bi }} ∪ Γ2(N ).

In particular, each 2-separation of M\[(clM (C) − C) ∪ E(Mi )] is induced by a 2-separation of M\(clM (C) − C).
As the elements belonging to clM (C) − C destroy every 2-separation of M\(clM (C) − C), it follows that these
elements destroy every 2-separation of M\[(clM (C)−C)∪ E(Mi )]. Thus M\E(Mi ) is 3-connected; a contradiction.
Therefore (48) holds and so the result follows. �

If |E(Mi )| = 4, for some i ∈ {1, 2, . . . , n}, then E(Mi ) is a circuit of M . By hypothesis, M\E(Mi ) is not 3-
connected. By Lemma 19, there is at most one i ∈ {1, 2, . . . , n} such that |E(Mi )| = 4. By Theorem 4, there is a
3-connected spanning restriction M ′ of M such that E(M)− [clM (C)− C] ⊆ E(M ′) and

|E(M ′)| − |E(M\[clM (C)− C])| ≤ λ1(E(M\[clM (C)− C]))+ λ2(E(M\[clM (C)− C]))− 2 = 5. (49)

As

|E(M\[clM (C)− C])| = |C | +
n∑

i=1

|E(Mi )| ≤ 9+ 3n, (50)

it follows that |E(M ′)| ≤ 3n + 14 = 3r(M)− 7. Consequently

|E(M)− E(M ′)| ≥ [4r(M)− 8] − [3r(M)− 7] = r(M)+ 1; (51)

a contradiction because E(M)−E(M ′) contains a circuit C of M and so M\C is 3-connected. With this contradiction,
we finish the proof of Theorem 3.
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