Removing circuits in 3-connected binary matroids

Raul Cordovil ${ }^{\mathrm{a}}$, Bráulio Maia Junior ${ }^{\mathrm{b}}$, Manoel Lemos ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
${ }^{\text {b }}$ Unidade Acadêmica de Matemática e Estatística, Universidade Federal de Campina Grande, Campina Grande, Paraíba, 58105-305, Brazil
${ }^{\text {c }}$ Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-540, Brazil

Received 2 May 2007; received in revised form 26 December 2007; accepted 30 December 2007
Available online 14 February 2008

Abstract

For a k-connected graph or matroid M, where k is a fixed positive integer, we say that a subset X of $E(M)$ is k-removable provided $M \backslash X$ is k-connected. In this paper, we obtain a sharp condition on the size of a 3-connected binary matroid to have a 3-removable circuit.

(c) 2008 Elsevier B.V. All rights reserved.

Keywords: Matroid; Binary matroid; 3-connected matroid; Circuit; Removable circuit

1. Introduction

Removable circuits and cocircuits play an important role in studying the structure of graphic matroids (see [11,12, $24,25]$). There has been much interest in the study of removable circuits and cocircuits in graphs and matroids lately (see [1,4-8,10,12-14,16-18,21,22]).

Hobbs conjectured that every 2 -connected graph with minimum degree at least 4 has a 2 -removable circuit. Robertson and Jackson independently gave a counter-example to this conjecture (see [7]). Mader [17] proved this conjecture for simple graphs. Goodyn, van der Heuvel and McGuinness established it for graphs without a Peterson Graph as a minor. For more results on graphs that extend this conjecture see [7,14,22]. Inspired by this conjecture, Oxley [20] proposed the following problem: does a simple 2-connected binary matroid with cogirth at least 4 have a 2-removable circuit? Lemos and Oxley [14] constructed a cographic matroid that provides a negative answer to this question.

For a 2-connected graph G with having minimum degree at least four, we have that

$$
\begin{equation*}
|E(G)| \geq 2|V(G)| \tag{1}
\end{equation*}
$$

If M is the graphic matroid associated with G, then this inequality translates as

$$
\begin{equation*}
|E(M)| \geq 2 r(M)+2 \tag{2}
\end{equation*}
$$

[^0]For a 2-connected matroid, a condition on the size of the cogirth does not guarantee the existence of a 2 -removable circuit, but a condition on its number of elements does.

Theorem 1. Let M be a 2-connected matroid. If M is non-empty, then M has a 2 -removable circuit provided:
(i) (Lemos and Oxley [14]) $|E(M)| \geq 3 r(M)$; or
(ii) (Junior [8]) $r(M) \geq 3$ and $|E(M)| \geq 3 r(M)-1$; or
(iii) (Junior [8]) M is simple, $r(M) \geq 7$ and $|E(M)| \geq 3 r(M)-3$.

Each item of the previous result is sharp. Lemos and Oxley [15] proved that:
Theorem 2. If M is a 3-connected matroid such that $r(M) \geq 6$ and $|E(M)| \geq 4 r(M)-5$, then M has a 3-removable circuit.

This result is sharp. Lemos and Oxley [15] construct an infinite family of matroids that attain this bound. But all the matroids in this family are non-binary. For binary matroids, in this paper, we prove the following result (it was conjectured in [9]):

Theorem 3. If M is a 3-connected binary matroid such that $r(M) \geq 10$ and $|E(M)| \geq 4 r(M)-8$, then M has a 3-removable circuit.

Theorem 3 is sharp even for graphs as the next example shows. Let $\{U, V\}$ be a partition of the vertices of the complete bipartite graph $K_{4, n}$, for $n \geq 3$, such that U and V are stable sets, $|U|=4$, and $|V|=n$. Let $K_{4, n}^{(3)}$ be a simple graph obtained from $K_{4, n}$ by adding a set with 3 edges P joining vertices belonging to U so that P is a path. Note that $M\left(K_{4, n}^{(3)}\right) \backslash C$ is not 3-connected, for every circuit C of $M\left(K_{4, n}^{(3)}\right)$. Moreover,

$$
\begin{equation*}
\left|E\left(M\left(K_{4, n}^{(3)}\right)\right)\right|=4 n+3=4 r\left(M\left(K_{4, n}^{(3)}\right)\right)-9 . \tag{3}
\end{equation*}
$$

For more detail in removable circuits in graphs and matroids, we recommend Oxley's excellent survey [19]. For notation and terminology in matroid theory, we follow Oxley's book [20].

2. Known theorems

In this section, we state some theorems from other papers that are used in the proof of Theorem 3. Let M be a matroid. We define $\Lambda_{1}(M)$ to be the set of connected components of M. We set $\lambda_{1}(M)=\left|\Lambda_{1}(M)\right|$. Now M can be constructed from a collection $\Lambda_{2}(M)$ of 3-connected matroids by using the operations of 1-sum and 2-sum. It follows from results of Cunningham and Edmonds (see [3]) that $\Lambda_{2}(M)$ is unique up to isomorphism. We denote by $\lambda_{2}(M)$ the number of matroids in $\Lambda_{2}(M)$ that are not isomorphic to $U_{1,3}$. Theorem 1.3 of [15] can be stated as:

Theorem 4. Let M be a 3 -connected matroid other than $U_{1,3}$. If N is a non-empty spanning restriction of M, then M has a 3-connected restriction K such that $E(N) \subseteq E(K)$ and

$$
\begin{equation*}
|E(K)| \leq|E(N)|+\lambda_{1}(N)+\lambda_{2}(N)-2, \tag{4}
\end{equation*}
$$

unless N is a circuit of size at least four, in which case, $|E(K)| \leq 2 r(N)$.
A circuit C of a matroid M is said to be Hamiltonian provided $|C|=r(M)+1$. If M has at least one circuit, then $\operatorname{circ}(M)$ denotes the circumference of M, that is, the maximum cardinality of a circuit of M. The 3-connected matroids having small circumference must have small rank. Lemos and Oxley [16] proved that:

Theorem 5. Suppose that M is a 3-connected matroid. If $r(M) \geq 6$, then $\operatorname{circ}(M) \geq 6$.
Cordovil, Junior and Lemos [2] constructed all the 3-connected binary matroids having circumference equal to 6 or 7 with large rank. These matroids are central in the proof of the next result (see [2]):
Theorem 6. Let M be a 3 -connected binary matroid such that $\operatorname{circ}(M) \in\{6,7\}$ and $r(M) \geq 10$. If $M \backslash C$ is not 3 connected for every circuit C of M, then $|E(M)|<4 r(M)-8$.

Using Theorems 5 and 6 , we conclude that a counter-example for Theorem 3 must have circumference at least eight. Using the main result of the next section, we conclude that the circumference of this counter-example must be eight.

3. Two auxiliary functions

For a matroid M, we consider the following function

$$
\begin{equation*}
\delta(M)=3 r(M)-|E(M)|-\lambda_{1}(M)-\lambda_{2}(M) . \tag{5}
\end{equation*}
$$

First, we show that δ is both 1 -additive and 2 -additive. (A function f defined in the class of matroids is called k additive when

$$
\begin{equation*}
f(N)=f\left(N_{1}\right)+f\left(N_{2}\right)+\cdots+f\left(N_{n}\right) \tag{6}
\end{equation*}
$$

provided the matroid N is the k-sum of matroids $N_{1}, N_{2} \ldots, N_{n}$.)
Lemma 1. If the matroid M is the 1 -sum of matroids $M_{1}, M_{2} \ldots, M_{n}$, then

$$
\begin{equation*}
\delta(M)=\delta\left(M_{1}\right)+\delta\left(M_{2}\right)+\cdots+\delta\left(M_{n}\right) \tag{7}
\end{equation*}
$$

Proof. This result holds because all the functions involved in the definition of δ are 1 -additive.
Following Seymour [23], we consider the 2-sum of matroids M_{1} and M_{2} having e as a common element only when the connected component of e in M_{i} has at least three elements, for both $i \in\{1,2\}$.

Lemma 2. If the matroid M is the 2-sum of matroids $M_{1}, M_{2} \ldots, M_{n}$, then

$$
\begin{equation*}
\delta(M)=\delta\left(M_{1}\right)+\delta\left(M_{2}\right)+\cdots+\delta\left(M_{n}\right) . \tag{8}
\end{equation*}
$$

Proof. We need to prove this result only when two matroids are involved. When $n=2$, we have:

$$
\begin{aligned}
& r(M)=r\left(M_{1}\right)+r\left(M_{2}\right)-1 \\
& |E(M)|=\left|E\left(M_{1}\right)\right|+\left|E\left(M_{2}\right)\right|-2 \\
& \lambda_{1}(M)=\lambda_{1}\left(M_{1}\right)+\lambda_{1}\left(M_{2}\right)-1 \\
& \lambda_{2}(M)=\lambda_{2}\left(M_{1}\right)+\lambda_{2}\left(M_{2}\right) .
\end{aligned}
$$

The result follows easily from these identities.
Observe that:
Lemma 3. If M is a coloop, then $\delta(M)=0$.
For a matroid M, we define the following function:

$$
\begin{equation*}
\Delta(M)=\max \{\delta(N): N \text { is a restriction of } M\} . \tag{9}
\end{equation*}
$$

Now, we prove the main result of this section:
Proposition 1. If M is a 3 -connected matroid such that $r(M) \geq 2$, then M has a 3 -connected spanning restriction N such that

$$
|E(N)| \leq \begin{cases}3 r(M)-\Delta(M)-2 & \text { when } M \text { is not Hamiltonian; } \tag{10}\\ 2 r(M) & \text { when } M \text { is Hamiltonian } .\end{cases}
$$

Proof. If M has a Hamiltonian circuit, then the result follows by Theorem 4. Assume that M is not Hamiltonian. Let H be a restriction of M so that $\delta(H)=\Delta(M)$. Choose a basis B of M such that $B \cap E(H)$ spans $E(H)$ in M. Hence $B-E(H)$ is a set of coloops of $K=M \mid[E(H) \cup B]$. Therefore $K=H \oplus[M \mid(B-E(H))]$. By Lemmas 1 and $3, \delta(K)=\delta(H)$. In particular, $\delta(K)=\Delta(M)$. By Theorem 4, M has a 3-connected restriction N such that $N \mid E(K)=K$ and

$$
\begin{equation*}
|E(N)| \leq|E(K)|+\lambda_{1}(K)+\lambda_{2}(K)-2=3 r(K)-\delta(K)-2 . \tag{11}
\end{equation*}
$$

Thus $|E(N)| \leq 3 r(M)-\Delta(M)-2$ and the result follows.

The previous result shows the importance of the function Δ. This function is hard to compute, but for our application, we just need an upper bound for it such as $\delta(N)$, when N is a restriction of M with small corank. For example:

Lemma 4. If M is a circuit with at least 3 elements, then $\delta(M)=|E(M)|-2$.

4. Special pairs

We say that (M, C) is a special pair provided M is a connected matroid having C as a circuit, $E(M) \neq C$ and, for every $K \in \Lambda_{1}(M / C), r_{M / C}(E(K))=1$ and $E(K)$ is an independent set of M having at least 3 elements. In this section, we establish some properties about special pairs.

In the next section, we prove that every connected component of M / C has rank equal to 0 or 1 , when C is a largest circuit of a counter-example M of Theorem 3. Moreover, $\left(M \mid\left[\cup_{H \in \Lambda_{1}(M / C): r(H)=1}\left(C \cup B_{H}\right)\right], C\right)$ is a special pair, where B_{H} is a basis of $M \mid E(H)$. Therefore the results obtained in this section will be fundamental to conclude the proof of Theorem 3.

Lemma 5. Let (M, C) be a special pair. If $\{Z, W\}$ is a 2-separation of M, then:
(i) If $K \in \Lambda_{1}(M / C)$, then $E(K) \subseteq Z$ or $E(K) \subseteq W$.
(ii) $C \cap Z \neq \emptyset$ and $C \cap W \neq \emptyset$.

Moreover, $r(Y)=|C \cap Y|+\left|\left\{H \in \Lambda_{1}(M / C): E(H) \subseteq Y\right\}\right|$, for each $Y \in\{Z, W\}$.
Proof. For $Y \in\{Z, W\}, r(C \cap Y)=|C \cap Y|-\delta_{Y}$, where $\delta_{Y}=0$, when $C \nsubseteq Y$, and $\delta_{Y}=1$, when $C \subseteq Y$. If X_{Y} is a subset of $Y-C$ such that, for each $H \in \Lambda_{1}(M / C),\left|X_{Y} \cap E(H)\right|=1$, when $Y \cap E(H) \neq \emptyset$, and $\left|X_{Y} \cap E(H)\right|=0$, when $Y \cap E(H)=\emptyset$, then

$$
\begin{equation*}
r(Y) \geq r(Y \cap C)+\left|X_{Y}\right|=|Y \cap C|+\left|X_{Y}\right|-\delta_{Y} \tag{12}
\end{equation*}
$$

because X_{Y} is a set of coloops of M / C. There is ϵ_{Y} such that $\epsilon_{Y} \geq 0$ and

$$
\begin{equation*}
r(Y)=|Y \cap C|+\left|X_{Y}\right|+\epsilon_{Y}-\delta_{Y} . \tag{13}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
1+r(M)=r(Z)+r(W)=|C|+\left|X_{Z}\right|+\left|X_{W}\right|+\left(\epsilon_{Z}+\epsilon_{W}\right)-\left(\delta_{Z}+\delta_{W}\right) \tag{14}
\end{equation*}
$$

As $\left|\Lambda_{1}(M / C)\right| \leq\left|X_{Z}\right|+\left|X_{W}\right|$, say, for some $\epsilon \geq 0$,

$$
\begin{equation*}
\left|\Lambda_{1}(M / C)\right|=\left|X_{Z}\right|+\left|X_{W}\right|-\epsilon \tag{15}
\end{equation*}
$$

and $r(M)=|C|-1+\left|\Lambda_{1}(M / C)\right|$, it follows that

$$
\begin{equation*}
0 \leq \epsilon_{Z}+\epsilon_{W}+\epsilon=\delta_{Z}+\delta_{W} \leq 1 \tag{16}
\end{equation*}
$$

If (i) does not hold, then $E(K) \cap Z \neq \emptyset$ and $E(K) \cap W \neq \emptyset$. In particular, $\epsilon \geq 1$. By (16), $\epsilon=1$ and $\left\{\delta_{Z}, \delta_{W}\right\}=\{0,1\}$, say $\delta_{W}=1$. Thus $C \subseteq W$, since $\delta_{W}=1$, and $E(H) \subseteq Z$ or $E(H) \subseteq W$, for each $H \in \Lambda_{1}(M / C)-\{K\}$, since $\epsilon=1$. (That is, (i) holds for each element of $\Lambda_{1}(M / C)$ other than K.) Moreover, by (16), $\epsilon_{Z}=\epsilon_{W}=0$. There is $H \in \Lambda_{1}(M / C)$ such that $|E(H) \cap Z| \geq 2$ because $C \cap Z=\emptyset$ and (i) holds for every $H \in \Lambda_{1}(M / C)-\{K\}$. We arrive at a contradiction because $[E(H) \cap Z] \cup X_{Z}$ is an independent set of M and so $\epsilon_{Z} \geq 1$. Therefore (i) follows. In particular, $\epsilon=0$.

Suppose that (ii) does not hold. Then $C \cap Z=\emptyset$ or $C \cap W=\emptyset$, say $C \subseteq W$. In particular, $\delta_{Z}=0$ and $\delta_{W}=1$. By (i), there is $H \in \Lambda_{1}(M / C)$ such that $E(H) \subseteq Z$. As $E(H) \cup X_{Z}$ is an independent set of M and $\left|E(H) \cup X_{Z}\right| \geq\left|X_{Z}\right|+2$, it follows that $\epsilon_{Z} \geq 2$; a contradiction to (16). Therefore (ii) follows and so $\delta_{Z}=\delta_{W}=0$. By (16), $\epsilon_{Z}=\epsilon_{W}=0$. Thus $r(Y)=|Y \cap C|+\left|X_{Y}\right|$, for each $Y \in\{Z, W\}$. With this, we conclude the proof of this lemma.

Lemma 6. Let (M, C) be a special pair. If $\{Z, W\}$ is a 2 -separation of M, then there are matroids M_{Z} and M_{W} such that:
(i) $E\left(M_{Z}\right)=Z \cup e$ and $E\left(M_{W}\right)=W \cup e$, where e is a new element.
(ii) $M=M_{Z} \oplus_{2} M_{W}$.
(iii) For $Y \in\{Z, W\}, M_{Y}$ is a circuit or $\left(M_{Y},(C \cap Y) \cup e\right)$ is a special pair.
(iv) $\Lambda_{1}(M / C)=\Lambda_{1}\left(M_{Z} / C_{Z}\right) \cup \Lambda_{1}\left(M_{W} / C_{W}\right)$.

Proof. Observe that (i) and (ii) follow from Section 2 of Seymour [23]. We need to prove only (iii) and (iv). Observe that M_{Z} and M_{W} are connected because M is connected. By Lemma 5(ii), $C_{Y}=(C \cap Y) \cup e$ is a circuit of M_{Y}, for each $Y \in\{Z, W\}$. By Lemma 5 (i), $E(K) \subseteq Z$ or $E(K) \subseteq W$, for each $K \in \Lambda_{1}(M / C)$, say $E(K) \subseteq Z$. Observe that $E(K)$ is independent in M_{Z}. We need to show that K is a connected component of M_{Z} / C_{Z}. If $f \in C \cap W$, then M_{Z} is obtained from $M \backslash(W-C) /[(W \cap C)-f]$ by renaming f by e. Thus $M_{Z} / C_{Z}=M \backslash(W-C) / C$. As K is a connected component of M / C and $E(K) \subseteq Z$, it follows that K is a connected component of M_{Z} / C_{Z}. Hence $\Lambda_{1}(M / C) \subseteq \Lambda_{1}\left(M_{Z} / C_{Z}\right) \cup \Lambda_{1}\left(M_{W} / C_{W}\right)$. The equality holds because

$$
\begin{equation*}
E(M)-C=\left[E\left(M_{Z}\right)-C_{Z}\right] \cup\left[E\left(M_{W}\right)-C_{W}\right] . \tag{17}
\end{equation*}
$$

With this identity we conclude the proof of this lemma.
As a consequence of this lemma, we have the following decomposition (use induction):
Lemma 7. Let (M, C) be a special pair. If

$$
\begin{equation*}
\Gamma_{1}(M)=\left\{H \in \Lambda_{2}(M): E(H) \cap[E(M)-C] \neq \emptyset\right\} \tag{18}
\end{equation*}
$$

and $\Gamma_{2}(M)=\Lambda_{2}(M)-\Gamma_{1}(M)$, then:
(i) If $H \in \Gamma_{2}(M)$, then $H \cong U_{2,3}$ and $E(H) \cap E(M) \subseteq C$.
(ii) If $H \in \Gamma_{1}(M)$ and $C_{H}=E(H)-[E(M)-C]$, then C_{H} is a circuit of H and $\left(H, C_{H}\right)$ is a special pair.
(iii) $\Lambda_{1}(M / C)=\cup_{H \in \Gamma_{1}(M)} \Lambda_{1}\left(H / C_{H}\right)$.
(iv) The matroid obtained by making the 2 -sum of the matroids belonging to the family $\left\{H \mid C_{H}: H \in \Gamma_{1}(M)\right\} \cup \Gamma_{2}(M)$ is $M \mid C$.

Lemma 8. If (M, C) is a special pair, then

$$
\begin{equation*}
\delta(M)=\delta(M \mid C)+\sum_{H \in \Gamma_{1}(M)}\left(\left|C_{H}\right|-3\right)-\sum_{K \in \Lambda_{1}(M / C)}(|E(K)|-3), \tag{19}
\end{equation*}
$$

where $C_{H}=E(H)-[E(M)-C]$, for $H \in \Gamma_{1}(M)$.
Proof. By Lemma 7(iv), $M \mid C$ is the 2-sum of the matroids belonging to $\Gamma_{1}^{\prime}(M) \cup \Gamma_{2}(M)$, where $\Gamma_{1}^{\prime}(M)=\left\{H \mid C_{H}\right.$: $\left.H \in \Gamma_{1}(M)\right\}$. By Lemma 2, we have that

$$
\begin{equation*}
\delta(M \mid C)=\sum_{H \in \Gamma_{1}^{\prime}(M) \cup \Gamma_{2}(M)} \delta(H) \quad \text { and } \quad \delta(M)=\sum_{H \in \Lambda_{2}(M)} \delta(H) . \tag{20}
\end{equation*}
$$

By Lemmas 5 and 7(ii), for $H \in \Gamma_{1}(M)$,

$$
\begin{aligned}
\delta(H) & =3\left(r\left(H \mid C_{H}\right)+\sum_{K \in \Lambda_{1}\left(H / C_{H}\right)} 1\right)-\left(\left|C_{H}\right|+\sum_{K \in \Lambda_{1}\left(H / C_{H}\right)}|E(K)|\right)-1-1 \\
& =\delta\left(H \mid C_{H}\right)-\sum_{K \in \Lambda_{1}\left(H / C_{H}\right)}(|E(K)|-3)+\lambda_{2}\left(H \mid C_{H}\right)-1 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\delta(M) & =\sum_{H \in \Lambda_{2}(M)} \delta(H) \\
& =\sum_{H \in \Gamma_{1}(M)} \delta(H)+\sum_{H \in \Gamma_{2}(M)} \delta(H)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{H \in \Gamma_{1}(M)}\left(\delta\left(H \mid C_{H}\right)-\sum_{K \in \Lambda_{1}\left(H / C_{H}\right)}(|E(K)|-3)+\lambda_{2}\left(H \mid C_{H}\right)-1\right)+\sum_{H \in \Gamma_{2}(M)} \delta(H) \\
& =\sum_{H \in \Gamma_{1}^{\prime}(M) \cup \Gamma_{2}(M)} \delta(H)+\sum_{H \in \Gamma_{1}(M)}\left(\lambda_{2}\left(H \mid C_{H}\right)-1\right)-\sum_{K \in \Lambda_{1}(M / C)}(|E(K)|-3) \\
& =\delta(M \mid C)+\sum_{H \in \Gamma_{1}(M)}\left(\lambda_{2}\left(H \mid C_{H}\right)-1\right)-\sum_{K \in \Lambda_{1}(M / C)}(|E(K)|-3)
\end{aligned}
$$

and the result follows because $\lambda_{2}\left(H \mid C_{H}\right)=\left|C_{H}\right|-2$ (in the passage from the third to the fourth line of this display, we use Lemma 7(iii)).

A special pair (M, C) is said to be unitary provided $\left|\Lambda_{1}(M / C)\right|=1$. A special pair (M, C) is said to be strong provided M is binary and $\Delta(M)=\delta(M \mid C)$. By Lemma 4 , when (M, C) is a strong special pair, C is a largest circuit of M.

Lemma 9. If (M, C) is a unitary strong special pair, then $\left|\Gamma_{1}(M)\right|=1$, say $\Gamma_{1}(M)=\{N\}$, and:
(i) If $|E(M)-C|=3$, then $N \cong M\left(K_{4}\right)$.
(ii) If $|E(M)-C|=4$, then $N \cong M\left(W_{4}\right)$.
(iii) If $|E(M)-C| \in\{3,4\}$, then $E(N) \cap C=\emptyset$.

Proof. For each $H \in \Gamma_{1}(M)$, we set $C_{H}=E(H)-[E(M)-C]$. By Lemma 7(ii), C_{H} is a circuit of H and $\left(H, C_{H}\right)$ is a special pair. By Lemma 7 (iii), $\Lambda_{1}(M / C)=\cup_{H \in \Gamma_{1}(M)} \Lambda_{1}\left(H / C_{H}\right)$ and so

$$
\begin{equation*}
1=\left|\Lambda_{1}(M / C)\right|=\sum_{H \in \Gamma_{1}(M)}\left|\Lambda_{1}\left(H / C_{H}\right)\right| . \tag{21}
\end{equation*}
$$

As $\Lambda_{1}\left(H / C_{H}\right) \neq \emptyset$, when $H \in \Gamma_{1}(M)$, it follows that $\left|\Gamma_{1}(M)\right|=1$, say $\Gamma_{1}(M)=\{N\}$. Observe that $C^{*}=E(N)-C_{N}$ is a cocircuit of N because N / C_{N} is a rank-1 connected matroid. Now, we need to prove (i) to (iii). By definition, $\Delta(M)=\delta(M \mid C)$ and so $0 \geq \delta(M)-\delta(M \mid C)$. As

$$
\begin{equation*}
\sum_{H \in \Gamma_{1}(M)}\left(\left|C_{H}\right|-3\right)-\sum_{K \in \Lambda_{1}(M / C)}(|E(K)|-3)=\left(\left|C_{N}\right|-3\right)-\left(\left|C^{*}\right|-3\right), \tag{22}
\end{equation*}
$$

it follows, by Lemma 8, that

$$
\begin{equation*}
0 \geq \delta(M)-\delta(M \mid C)=\left(\left|C_{N}\right|-3\right)-\left(\left|C^{*}\right|-3\right) . \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|C_{N}\right| \leq\left|C^{*}\right| . \tag{24}
\end{equation*}
$$

As C_{N} is a circuit-hyperplane of N and C^{*} is independent in N, it follows that

$$
\begin{equation*}
\left|C^{*}\right| \leq r(N)=\left|C_{N}\right| . \tag{25}
\end{equation*}
$$

By (24) and (25),

$$
\begin{equation*}
r(N)=\left|C_{N}\right|=\left|C^{*}\right| . \tag{26}
\end{equation*}
$$

Observe that (i) is a consequence of (26) because, up to isomorphism, there is only one 6-element rank-3 3-connected binary matroid, namely $M\left(K_{4}\right)$.

Now, we establish (ii). By (26), N is an 8 -element rank-4 3-connected binary matroid. As C^{*} is an independent cocircuit of N, it follows that N is not isomorphic to $A G(3,2)$. Therefore N is isomorphic to S_{8} or N is regular. If N is regular, then, by (14.2) of [23], N is graphic or cographic and so, by Tutte's characterization of graphic matroids and Kuratowski's Theorem, N is the matroid of a planar graph. Thus N is isomorphic to S_{8} or to $M\left(W_{4}\right)$ because W_{4} is the unique 3-connected planar graph with 8 edges having a circuit-hyperplane. By Lemma 9(i) applied to $M \backslash a$, for $a \in C^{*}, a$ belongs to a triad T_{a}^{*} of N having two elements in common with C_{N}. Therefore N has at least 4 different triads and so N is isomorphic to $M\left(W_{4}\right)$. Thus (ii) follows.

We argue by contradiction to prove (iii). Assume that $E(N) \cap C \neq \emptyset$, say $c \in E(N) \cap C$. As $c \in C_{N}$, it follows, by (i) or (ii), that there is a 2-element subset X of C^{*} such that $c \cup X$ is a triangle of M. Thus $(c \cup X) \triangle C$ is a circuit of M having more elements than C; a contradiction and so (iii) follows.

Lemma 10. Let (M, C) be a strong special pair. If $|E(K)|=3$, for each $K \in \Lambda_{1}(M / C)$, then $H \cong$ $M\left(K_{3,\left|\Lambda_{1}\left(H / C_{H}\right)\right|}^{(3)}\right)$ for each $H \in \Gamma_{1}(M)$.

Let $\{U, V\}$ be a partition of the vertices of the complete bipartite graph $K_{3, n}$, for $n \geq 1$, such that U and V are stable sets, $|U|=3$, and $|V|=n$. Let $K_{3, n}^{(3)}$ be a simple graph obtained from $K_{3, n}$ by adding a set with 3 edges joining vertices belonging to U.

Proof. By Lemma 8,

$$
\begin{equation*}
\delta(M)=\delta(M \mid C)+\sum_{H \in \Gamma_{1}(M)}\left(\left|C_{H}\right|-3\right) \tag{27}
\end{equation*}
$$

where $C_{H}=E(H)-[E(M)-C]$, for $H \in \Gamma_{1}(M)$. By hypothesis, $\delta(M) \leq \Delta(M)=\delta(M \mid C)$ and so

$$
\begin{equation*}
0 \geq \sum_{H \in \Gamma_{1}(M)}\left(\left|C_{H}\right|-3\right) \tag{28}
\end{equation*}
$$

As $\left|C_{H}\right| \geq 3$, for each $H \in \Gamma_{1}(M)$, it follows that $\left|C_{H}\right|=3$, for each $H \in \Gamma_{1}(M)$.
Fix an $H \in \Gamma_{1}(M)$. Suppose that $\Lambda_{1}\left(H / C_{H}\right)=\left\{K_{1}, K_{2}, \ldots, K_{n}\right\}$. For $i \in\{1,2, \ldots, n\}$, let $C_{i}^{*}=E\left(K_{i}\right)$. If $N=M \mid\left(C \cup C_{1}^{*} \cup C_{2}^{*} \cup \cdots \cup C_{n}^{*}\right)$, then (N, C) is a strong special pair such that $\Lambda_{1}(N / C)=\Lambda_{1}\left(H / C_{H}\right)$. Moreover,

$$
\begin{equation*}
\Gamma_{2}(N)=\Gamma_{2}(M) \cup\left\{L \mid C_{L}: L \in \Gamma_{1}(M) \text { and } L \neq H\right\} \quad \text { and } \quad \Gamma_{1}(N)=\{H\} \tag{29}
\end{equation*}
$$

For $i \in\{1,2, \ldots, n\}$, if $N_{i}=N\left|C \cup C_{i}^{*}=M\right| C \cup C_{i}^{*}$, then $\left(N_{i}, C\right)$ is a unitary strong special pair such that

$$
\begin{equation*}
\Gamma_{2}\left(N_{i}\right)=\Gamma_{2}(N) \quad \text { and } \quad \Gamma_{1}\left(N_{i}\right)=\left\{H \mid\left(C_{H} \cup C_{i}^{*}\right)\right\} \tag{30}
\end{equation*}
$$

because $\left|C_{H}\right|=3$. By Lemma $9(\mathrm{i}), H \mid\left(C_{H} \cup C_{i}^{*}\right) \cong M\left(K_{4}\right)$. The elements of C_{i}^{*} can be labeled by a_{i}, b_{i}, c_{i} so that $T_{i}=\left\{a_{i}, b_{i}, x\right\}, S_{i}=\left\{a_{i}, c_{i}, y\right\}, R_{i}=\left\{b_{i}, c_{i}, z\right\}$ are triangles of $H \mid\left(C_{H} \cup C_{i}^{*}\right)$, where $C_{H}=\{x, y, z\}$. As $\left\{x, y, a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a basis of H, it follows that $C_{H}, T_{1}, T_{2}, \ldots, T_{n}, S_{1}, S_{2}, \ldots, S_{n}$ span the cycle space of H over $G F(2)$. But these sets also span the cycle space of $M\left(K_{3, n}^{(3)}\right)$ over $G F(2)$, where $K_{3, n}^{(3)}$ has $u, v, w, v_{1}, v_{2}, \ldots, v_{n}$ as vertices and edges: x incident with u and $v ; y$ incident with v and $w ; z$ incident with u and w; and, for $i \in\{1,2, \ldots, n\}$, a_{i} incident with v and $v_{i} ; b_{i}$ incident with u and v_{i}; and c_{i} incident with w and v_{i}. Therefore $M=M\left(K_{3, n}^{(3)}\right)$ and the result follows.

Lemma 11. Let (M, C) be a strong special pair such that $|C|=8$. If $|E(K)|=4$, for some $K \in \Lambda_{1}(M / C)$, then (M, C) is unitary.

Proof. Suppose this result is not true. Choose a counter-example (M, C) such that $|E(M)|$ is minimum. Hence $\left|\Lambda_{1}(M / C)\right| \geq 2$. There is $H \in \Lambda_{1}(M / C)$ such that $H \neq K$. First, we show that $E(M)=C \cup E(H) \cup$ $E(K),|E(H)|=3$, and $|E(K)|=4$. If $N=M \mid(C \cup X \cup Y)$, where X is a 3-subset of $E(H)$ and Y is a 4subset of $E(K)$, then $\Lambda_{1}(N / C)=\{H|X, K| Y\}$ and so (N, C) is a strong special pair. By the choice of (M, C), $M=N$. That is, $E(M)=C \cup E(H) \cup E(K), X=E(H)$ and $Y=E(K)$. By Lemma 9(ii) applied to the unitary special pair $(M \mid(C \cup E(K)), C)$, there is a matroid L such that $L \cong M\left(W_{4}\right)$ and $\Gamma_{1}(M \mid(C \cup E(K)))=\{L\}$. By Lemma 9(iii),

$$
\begin{equation*}
[E(L)-E(K)] \cap C=\emptyset \tag{31}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\left|\Gamma_{2}(M \mid(C \cup E(K)))\right|=4 \tag{32}
\end{equation*}
$$

because, by Lemma 7(iv), $M \mid C$ is the 2-sum of the matroids belonging to the family $\Gamma_{2}(M \mid(C \cup E(K))) \cup\{L \backslash E(K)\}$. By (31) and (32),

$$
\begin{equation*}
\left|C \cap E\left(L^{\prime}\right)\right|=2, \quad \text { for every } L^{\prime} \in \Gamma_{2}(M \mid(C \cup E(K))) \tag{33}
\end{equation*}
$$

Now, we show that

$$
\begin{equation*}
\left|\Gamma_{1}(M)\right|=1, \quad \text { say } \Gamma_{1}(M)=\left\{L^{\prime}\right\} . \tag{34}
\end{equation*}
$$

Assume that (34) is not true. By Lemma 10,

$$
\begin{equation*}
2 \leq\left|\Gamma_{1}(M)\right| \leq\left|\Lambda_{1}(M / C)\right|=|\{H, K\}|=2, \tag{35}
\end{equation*}
$$

say $\Gamma_{1}(M)=\left\{L_{H}, L_{K}\right\}$, where $E(H) \subseteq E\left(L_{H}\right)$ and $E(K) \subseteq E\left(L_{K}\right)$. By Lemma 9(i), $L_{H} \cong M\left(K_{4}\right)$. Note that

$$
\begin{equation*}
\Lambda_{2}(M \mid(C \cup E(K)))=\left[\Lambda_{2}(M)-\left\{L_{H}\right\}\right] \cup\left\{L_{H} \backslash E(H)\right\} \tag{36}
\end{equation*}
$$

Hence $L_{H} \backslash E(H) \in \Gamma_{2}(M \mid(C \cup E(K)))$. By (33), $\left|C \cap\left[E\left(L_{H}\right)-E(H)\right]\right|=2$; a contradiction to Lemma 9(iii) applied to the unitary strong special pair $(M \mid[C \cup E(H)], C)$. Therefore (34) holds.

By (34) and Lemma 8, when $C_{L^{\prime}}=E\left(L^{\prime}\right)-[E(H) \cup E(K)]$,

$$
\begin{equation*}
\delta(M)=\delta(M \mid C)+\left(\left|C_{L^{\prime}}\right|-3\right)-(|E(H)|-3)-(|E(K)|-3) . \tag{37}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|C_{L^{\prime}}\right|=4+[\delta(M)-\delta(M \mid C)] \leq 4 \tag{38}
\end{equation*}
$$

But $L \in \Lambda_{2}\left(L^{\prime} \backslash E(H)\right)$ and so $L=L^{\prime} \backslash E(H)$. By Lemma 9(i) applied to the unitary special pair ($M \backslash E(K), C$), $L^{\prime} \backslash E(K)=L_{1} \oplus_{2} L_{2}$, where $L_{1} \cong U_{2,3}$ and $L_{2} \cong M\left(K_{4}\right)$. In particular, $L^{\prime} \backslash E(K)$ has a unique 2-separation $\{Z, W\}$, say $|Z|=2$. Choose $e \in E(K)$ such that $r(Z \cup(E(K)-e))=4$ and $r((W-E(H)) \cup(E(K)-e))=4$. Note that $L^{\prime} \backslash e$ is 3-connected. Therefore $\left\{L^{\prime} \backslash e\right\}=\Gamma_{1}(M \backslash e)$; a contradiction to Lemma 10 applied to strong special pair ($M \backslash e, C$).

5. There exists no counter-example to Theorem 3

In this section, we prove Theorem 3 by contradiction. Suppose that M is a 3-connected binary matroid such that $r(M) \geq 10$,

$$
\begin{equation*}
|E(M)| \geq 4 r(M)-8 \tag{39}
\end{equation*}
$$

and M does not have a circuit C such that $M \backslash C$ is 3-connected.
Lemma 12. $\Delta(M) \leq 6$.
Proof. By Proposition $1, M$ has a 3-connected spanning minor N such that

$$
|E(N)| \leq \begin{cases}3 r(M)-\Delta(M)-2 & \text { when } M \text { is not Hamiltonian } \tag{40}\\ 2 r(M) & \text { when } M \text { is Hamiltonian } .\end{cases}
$$

Observe that

$$
|E(M)-E(N)| \geq \begin{cases}r(M)+\Delta(M)-6 & \text { when } M \text { is not Hamiltonian } \tag{41}\\ 2 r(M)-8 & \text { when } M \text { is Hamiltonian. }\end{cases}
$$

If $E(M)-E(N)$ contains a circuit C of M, then $M \backslash C$ is 3-connected because N is 3-connected and spanning. Hence $E(M)-E(N)$ is independent and so

$$
r(M) \geq|E(M)-E(N)| \geq \begin{cases}r(M)+\Delta(M)-6 & \text { when } M \text { is not Hamiltonian } \tag{42}\\ 2 r(M)-8 & \text { when } M \text { is Hamiltonian }\end{cases}
$$

Thus M is not Hamiltonian and $\Delta(M) \leq 6$.
Lemma 13. If C is a circuit of M, then $|C| \leq 8$. Moreover, $\Delta(M)=\delta(M \mid C)$, when $|C|=8$.
Proof. By Lemma 4, $|C|-2=\delta(M \mid C) \leq \Delta(M)$. By Lemma 12, $\Delta(M) \leq 6$ and so $|C| \leq 8$. Observe that we have equality in all inequations when $|C|=8$.

Lemma 14. $\operatorname{circ}(M)=8$.
Proof. Suppose that $\operatorname{circ}(M) \neq 8$. By Lemma 13, $\operatorname{circ}(M) \leq 7$. By Theorem 5, $\operatorname{circ}(M) \in\{6,7\}$; a contradiction to Theorem 6.

We say that L is a Tutte-line of a matroid H, when $H \mid L$ does not have coloops and $r\left((H \mid L)^{*}\right)=2$. Observe that every Tutte-line of M is a subdivision of $U_{0,2}$ or $U_{1,3}$ since M is binary. We prove that:

Lemma 15. If L is a Tutte-line of M, then $\delta(M \mid L)=|L|-4$. Moreover, $|L| \leq 10$.
Proof. We have two cases to consider. If $M \mid L$ is a subdivision of $U_{0,2}$, then $M \mid L$ is the 1 -sum of matroids $M \mid L_{1}$ and $M \mid L_{2}$, where L_{1} and L_{2} are the circuits of $M \mid L$. Hence, by Lemmas 1 and 4 ,

$$
\begin{equation*}
\delta(M \mid L)=\delta\left(M \mid L_{1}\right)+\delta\left(M \mid L_{2}\right)=\left(\left|L_{1}\right|-2\right)+\left(\left|L_{2}\right|-2\right)=|L|-4 \tag{43}
\end{equation*}
$$

If $M \mid L$ is a subdivision of $U_{1,3}$, then

$$
\begin{equation*}
\lambda_{2}(M \mid L)=|L|-3 . \tag{44}
\end{equation*}
$$

(Remember that, by definition, a matroid belonging to $\Lambda_{2}(M \mid L)$ which is isomorphic to $U_{1,3}$ does not contribute to $\lambda_{2}(M \mid L)$.) Thus,

$$
\begin{equation*}
\delta(M \mid L)=3(|L|-2)-|L|-1-(|L|-3)=|L|-4 . \tag{45}
\end{equation*}
$$

The first part of the result follows. By Lemma 12, we have that

$$
\begin{equation*}
|L|-4=\delta(M \mid L) \leq 6 \tag{46}
\end{equation*}
$$

and so $|L| \leq 10$.
Lemma 16. If C is a circuit of M such that $|C|=8$, then every connected component of M / C has rank equal to 0 or 1 .

Proof. Let A be a circuit of M / C. Observe that $L=C \cup A$ is a Tutte-line of M. By Lemma $15,|C \cup A| \leq 10$ and so $|A| \leq 2$. Therefore $\operatorname{circ}(M / C) \leq 2$. The result follows because every connected component of a matroid with circumference at most 2 has rank equal to 0 or 1 .

By Lemma $14, M$ has a circuit C such that $|C|=8$. By Lemma 16, each connected component of M / C has rank equal to 0 or 1 . Let $M_{1}, M_{2}, \ldots, M_{n}$ be the connected components of M / C having rank equal to 1 .

Lemma 17. $r\left(E\left(M_{i}\right)\right) \geq 3$, for every $i \in\{1,2, \ldots, n\}$.
Proof. If $r\left(E\left(M_{i}\right)\right) \leq 2$, then $\left\{E(M)-E\left(M_{i}\right), E\left(M_{i}\right)\right\}$ is a 1- or 2-separation of M because $r\left(E(M)-E\left(M_{i}\right)\right)=$ $r(M)-1$; a contradiction.

For $i \in\{1,2, \ldots, n\}$, let B_{i} be a basis of M_{i}. If $N=M \mid\left(C \cup B_{1} \cup B_{2} \cup \cdots \cup B_{n}\right)$, then (N, C) is a strong special pair because, by Lemma 13, $\delta(M \mid C)=\Delta(M)$ and, by Lemma $17,\left|B_{i}\right| \geq 3$, for every $i \in\{1,2, \ldots, n\}$. By Lemma $11,\left|B_{1}\right|=\left|B_{2}\right|=\cdots=\left|B_{n}\right|=3$, since $n=r(M)-7 \geq 3$.

Lemma 18. For $i \in\{1,2, \ldots, n\},\left|E\left(M_{i}\right)\right| \in\{3,4\}$. Moreover, when $\left|E\left(M_{i}\right)\right|=4, E\left(M_{i}\right)$ is a circuit of M.
Proof. If $E\left(M_{i}\right)=B_{i}$, then the result follows. Suppose that $e \in E\left(M_{i}\right)-B_{i}$. There is a circuit C of M such that $e \in C \subseteq B_{i} \cup e$. As $E\left(M_{i}\right)$ is a cocircuit of M, it follows, by orthogonality, that $\left|C \cap E\left(M_{i}\right)\right|$ is even. But $C \cap E\left(M_{i}\right)=C$ and so $|C|=4$ because M is 3-connected. In particular, $C=B_{i} \cup e$. If $e \neq e^{\prime}$ and $e^{\prime} \in E\left(M_{i}\right)-B_{i}$, then $B_{i} \cup e^{\prime}$ is a circuit of M; a contradiction because $\left(B_{i} \cup e\right) \Delta\left(B_{i} \cup e^{\prime}\right)=\left\{e, e^{\prime}\right\}$ is a circuit of M. Therefore e^{\prime} does not exist and the result follows.

By Lemma 10, for each $H \in \Gamma_{1}(N), H \cong M\left(K_{3,\left|\Lambda_{1}\left(H / C_{H}\right)\right|}^{(3)}\right.$, where $C_{H}=E(H)-\left(B_{1} \cup B_{2} \cup \cdots \cup B_{n}\right)$. In particular, $\left|C_{H}\right|=3$ and $C_{H} \cap C=\emptyset$. By Lemma 7(iv), $M|C=N| C$ is obtained by making the 2 -sum of the matroids
belonging to the family $\left\{H \mid C_{H}: H \in \Gamma_{1}(N)\right\} \cup \Gamma_{2}(N)$. As every matroid belonging to this family is isomorphic to $U_{2,3}$ and $C_{H} \cap C=\emptyset$, for every $H \in \Gamma_{1}(N)$, it follows that $\left|\Gamma_{2}(N)\right| \geq 4$ and so

$$
\begin{equation*}
\left|\Gamma_{1}(N)\right| \leq 2 \tag{47}
\end{equation*}
$$

Lemma 19. If $M \backslash E\left(M_{i}\right)$ is not 3-connected, for some $i \in\{1,2 \ldots, n\}$, then $M \backslash E\left(M_{j}\right)$ is 3-connected, for every $j \in\{1,2, \ldots, n\}-\{i\}$.
Proof. By (47), the result follows provided we establish that:
There is $H \in \Gamma_{1}(N)$ such that $E(H)=B_{i} \cup C_{H}$.
(Remember that $n=r(M)-7 \geq 3$.)
If (48) is not true, then there is $H \in \Gamma_{1}(N)$ such that $B_{i} \subseteq E(H)$ and $E(H) \neq B_{i} \cup C_{H}$, say $B_{j} \subseteq E(H)$, for $j \in\{1,2, \ldots, n\}-\{i\}$. Observe that $\Gamma_{2}(N)=\Gamma_{2}\left(N \backslash B_{i}\right)$ and $\Gamma_{1}\left(N \backslash B_{i}\right)=\left[\Gamma_{1}(N)-\{H\}\right] \cup\left\{H \backslash B_{i}\right\}$. For a matroid L belonging to $\Gamma_{1}(N) \cup\left\{H \backslash B_{i}\right\}$, let \hat{L} be the unique binary extension of L such that $E(\hat{L})=E(L) \cup\left[\cup_{B_{i} \subseteq E(L)} E\left(M_{i}\right)\right]$ and, for each $i \in\{1,2, \ldots, n\}$ satisfying $B_{i} \subseteq E(L)$ and $\left|E\left(M_{i}\right)\right|=4, E\left(M_{i}\right)$ is a circuit of \hat{L}. We have that:

$$
\begin{aligned}
& \Lambda_{2}\left(M \backslash\left(\operatorname{cl}_{M}(C)-C\right)\right)=\left\{\hat{L}: L \in \Gamma_{1}(N)\right\} \cup \Gamma_{2}(N) \\
& \Lambda_{2}\left(M \backslash\left[\left(\operatorname{cl}_{M}(C)-C\right) \cup E\left(M_{i}\right)\right]\right)=\left\{\hat{L}: L \in\left[\Gamma_{1}(N)-\{H\}\right] \cup\left\{H \backslash B_{i}\right\}\right\} \cup \Gamma_{2}(N) .
\end{aligned}
$$

In particular, each 2-separation of $M \backslash\left[\left(\mathrm{cl}_{M}(C)-C\right) \cup E\left(M_{i}\right)\right]$ is induced by a 2-separation of $M \backslash\left(\mathrm{cl}_{M}(C)-C\right)$. As the elements belonging to $\mathrm{cl}_{M}(C)-C$ destroy every 2-separation of $M \backslash\left(\mathrm{cl}_{M}(C)-C\right)$, it follows that these elements destroy every 2-separation of $M \backslash\left[\left(\operatorname{cl}_{M}(C)-C\right) \cup E\left(M_{i}\right)\right]$. Thus $M \backslash E\left(M_{i}\right)$ is 3-connected; a contradiction. Therefore (48) holds and so the result follows.

If $\left|E\left(M_{i}\right)\right|=4$, for some $i \in\{1,2, \ldots, n\}$, then $E\left(M_{i}\right)$ is a circuit of M. By hypothesis, $M \backslash E\left(M_{i}\right)$ is not 3connected. By Lemma 19, there is at most one $i \in\{1,2, \ldots, n\}$ such that $\left|E\left(M_{i}\right)\right|=4$. By Theorem 4, there is a 3-connected spanning restriction M^{\prime} of M such that $E(M)-\left[\mathrm{cl}_{M}(C)-C\right] \subseteq E\left(M^{\prime}\right)$ and

$$
\begin{equation*}
\left|E\left(M^{\prime}\right)\right|-\left|E\left(M \backslash\left[\mathrm{cl}_{M}(C)-C\right]\right)\right| \leq \lambda_{1}\left(E\left(M \backslash\left[\operatorname{cl}_{M}(C)-C\right]\right)\right)+\lambda_{2}\left(E\left(M \backslash\left[\mathrm{cl}_{M}(C)-C\right]\right)\right)-2=5 . \tag{49}
\end{equation*}
$$

As

$$
\begin{equation*}
\left|E\left(M \backslash\left[\mathrm{cl}_{M}(C)-C\right]\right)\right|=|C|+\sum_{i=1}^{n}\left|E\left(M_{i}\right)\right| \leq 9+3 n, \tag{50}
\end{equation*}
$$

it follows that $\left|E\left(M^{\prime}\right)\right| \leq 3 n+14=3 r(M)-7$. Consequently

$$
\begin{equation*}
\left|E(M)-E\left(M^{\prime}\right)\right| \geq[4 r(M)-8]-[3 r(M)-7]=r(M)+1 \tag{51}
\end{equation*}
$$

a contradiction because $E(M)-E\left(M^{\prime}\right)$ contains a circuit C of M and so $M \backslash C$ is 3-connected. With this contradiction, we finish the proof of Theorem 3.

Acknowledgements

The first author's research was supported by FCT (Portugal) through program POCTI. The third author is partially supported by CNPq (Grants No. 476224/04-7 and 301178/05-4) and FAPESP/CNPq (Grant No. 2003/09925-5).

References

[1] R.E. Bixby, W. Cunningham, Matroids, graphs, and 3-connectivity, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 91-103.
[2] R. Cordovil, B.M. Junior, M. Lemos, The 3-connected binary matroids with circumference 6 or 7, European J. Combin. (in press).
[3] W.H. Cunningham, A combinatorial decomposition theory, Ph.D. Thesis, University of Waterloo, 1973.
[4] H. Fleischner, B. Jackson, Removable cycles in planar graphs, J. London Math. Soc. 31 (2) (1985) 193-199.
[5] L. Goddyn, J. van der Heuvel, S. McGuinness, Removable circuits in multigraphs, J. Combin. Theory Ser. B 71 (1997) $130-143$.
[6] L. Goddyn, B. Jackson, Removable circuits in binary matroids, Combin. Probab. Comput. 8 (1999) 539-545.
[7] B. Jackson, Removable cycles in 2-connected graphs of minimum degree at least four, J. London Math. Soc. 21 (2) (1980) $385-392$.
[8] B.M. Junior, Connected matroids with a small circumference, Discrete Math. 259 (2002) 147-161.
[9] B.M. Junior, M. Lemos, T.R.B. Melo, Non-separating circuits and cocircuits in matroids, in: G. Grimmett, C. McDiarmid (Eds.), Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, Oxford University Press, Oxford, 2007, pp. 162-171.
[10] A.K. Kelmans, The concepts of a vertex in a matroid, the non-separating circuits and a new criterion for graph planarity, in: Algebraic Methods in Graph Theory, Vol. 1, in: Colloq. Math. Soc. János Bolyai, Szeged, Hungary, 1978, vol. 25, North-Holland, Amsterdam, 1981, pp. 345-388.
[11] A.K. Kelmans, A new planarity criterion for 3-connected graphs, J. Graph Theory 5 (1981) 259-267.
[12] A.K. Kelmans, Graph planarity and related topics, in: N. Robertson, P.D. Seymour (Eds.), Graph Structure Theory, in: Contemporary Mathematics, vol. 147, 1991, pp. 635-667.
[13] M. Lemos, Non-separating cocircuits in binary matroids, Linear Algebra Appl. 382 (2004) 171-178.
[14] M. Lemos, J. Oxley, On removable circuits in graphs and matroids, J. Graph Theory 30 (1999) 51-66.
[15] M. Lemos, J. Oxley, On the 3-connected matroids that are minimal having a fixed spanning restriction, Discrete Math. 218 (2000) $131-165$.
[16] M. Lemos, J. Oxley, On size, circumference and circuit removal in 3-connected matroids, Discrete Math. 220 (2000) $145-157$.
[17] W. Mader, Kreuzungfreie a, b-Wege in endlichen Graphe, Abh. Math. Sem. Univ. Hamburg 42 (1974) 187-204.
[18] S. McGuinness, Contractible bonds in graphs, J. Combin. Theory Ser. B 93 (2005) 733-746.
[19] J. Oxley, Graphs and matroids, in: J.W.P. Hirschfeld (Ed.), Surveys in Combinatorics, 2001, in: LMS Lecture Note Series, vol. 288, pp. 199-239.
[20] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[21] T.J. Reid, H. Wu, On minimally 3-connected binary matroids, Combin. Probab. Comput. 10 (2001) 453-461.
[22] P.A. Sinclair, On removable even circuits in graphs, Discrete Math. 286 (2004) 177-184.
[23] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980) 305-359.
[24] C. Thomassen, B. Tøft, Non-separating induced cycles in graphs, J. Combin. Theory Ser. B 31 (1980) 199-224.
[25] W.T. Tutte, How to draw a graph, Proc. London Math. Soc. 13 (1963) 734-768.

[^0]: * Corresponding author.

 E-mail addresses: cordovil@math.ist.utl.pt (R. Cordovil), braulio@dme.ufcg.edu.br (B.M. Junior), manoel@dmat.ufpe.br (M. Lemos).

