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1. Introduction

In this paper, we assume familiarity with matroid theory. The notation and terminology used in
this article follow Oxley [1]. For a matroid M that has a circuit, circ(M) denotes the circumference of
M, that is, the maximum cardinality of a circuit of M. In recent years, the circumference of a matroid
has appeared in some bounds, for example, in an upper bound for the size of a minimally n-connected
matroid and in a lower bound for the size of an n-connected matroid having a circuit whose deletion
is also n-connected, for n € {2, 3} (see [2-4]). Using these bounds and results about matroids with
small circumference, it is possible to improve some bounds found in the literature. In this paper, we
construct all 3-connected binary matroid with circumference 6 or 7 (and large rank). In [5], we use
the main results of this paper to improve a lower bound due to Lemos and Oxley [4] for the size of a
3-connected binary matroid having a circuit whose deletion originates also a 3-connected matroid.

The 3-connected matroids having small circumference must have small rank. Lemos and Oxley [4]
proved that:

Theorem 1.1. Suppose that M is a 3-connected matroid. If r(M) > 6, then circ(M) > 6.

By this result, every 3-connected matroid with circumference at most 5 has rank at most 5. Maia
and Lemos [6] proved that a 3-connected matroid having rank at most 5 is Hamiltonian, unless it is
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isomorphic to Uy 1, F;', AG(3, 2), J, or J1o, where J1o is the matroid whose representation over GF(2)
is given by the matrix

10 00 0 0 1 1 1 1
01 00 O0T1UO0T1 11
0 0100 1T 10 11
0 001011101
0 000 1T 1T 1 1T 10

and Jy is the matroid obtained from J;o by deleting the last column.

Maia [7] constructs all the matroids with circumference at most five. With the knowledge of all
matroids with circumference c, for example, one can calculate all the Ramsey numbers n(c + 1, y) for
matroids, for every value of y (for a definition of n(x, y) see Reid [8]). These numbers were completely
determined by Lemos and Oxley [9] using a sharp bound for the number of elements of a connected
matroid as a function of its circumference and cocircumference.

Before the description of all the 3-connected binary matroids with circumference 6 or 7, we need to

give some definitions. Let T, T, . . ., T, be pairwise disjoint triads of a 3-connected binary matroid
M. There is a unique binary matroid N over E(M) U {eq, e, ..., ey}, where {e, €5, ..., ey} is an m-
element set disjoint from E(M), such that N \ {ey, e5, ..., e} = M and, foreveryi € {1,2,...,m},

Qi = T;* U g; is a circuit of N. Moreover, Q; is a cocircuit of M. (There is a cocircuit ¢ of M such that
T C G € T/ U{e;, ey, ..., en}. By orthogonality with Q;, for j # i, ¢; ¢ G and so C € {T{, Q;}.
But |G N Q| is even. Thus C* = Q;.) Following Geelen and Whittle [10], we say that a 4-element
circuit-cocircuit of a matroid is a quad. Therefore Qq, Qy, . . ., Q;; are pairwise disjoint quads of N. We
say that N is obtained from M by completing the triads T}, T, ..., T to quads. It is easy to see that N
is 3-connected.

Suppose that I, m and n are integers suchthat0 <[ <3 <nand0 < m < n.Let {U,V} be a
partition of the vertices of the complete bipartite graph K3 , such that U and V are stable sets, [U| = 3
and |V| = n,say V = {vq, v2,..., vy}. Let KB('L be the simple graph obtained from K3 , by adding !
edges joining two vertices belonging to U. (These I edges are referred as special edges of K3(f)n. When
I = 3, this set of edges is called the special triangle ofKa(fL.) We define M, to be the binary matroid

obtained from M(K3(21) by completing the triads st(vq), st(v;), ..., st(vy) to quads. We prove that:

Theorem 1.2. Let M be a 3-connected binary matroid such that r (M) > 8. Then, circ(M) = 6 if and only
if M is isomorphic to My ., for some integers |, mand n such that 0 <1< 3,6 <nand0 <m <n.

Theorem 1.3. For a 3-connected binary matroid M such that r(M) > 9, the following statements are

equivalent:

(i) circ(M) =17.

(ii) There is a 3-connected rank-4 binary matroid N having a Hamiltonian circuit C and a triangle T
satisfying |T N C| = 2suchthat T = E(N) N E(K3(’3r)(M)74) is the special triangle of K3(.3r)(M)74 and
M is obtained from M’ \ X by completing a set of pairwise disjoint triads of M(I(;?:(M)_‘l) to quads,
where M’ is the generalized parallel connection of M(KS&M)%) withNand X C T.

We think that it is very difficult to construct all 3-connected matroids with circumference 6 or 7
(and large rank). To construct all the 3-connected binary matroids with circumference 8 looks to be
hard as well.

2. Contracting a maximum size circuit

Let M be a matroid. For F C E(M), an F-arc (see Section 3 of [11]) is a minimal non-empty subset
A of E(M) — F such that there exists a circuit C of M withC — F = Aand C NF # @. Such a circuit C is
called an F-fundamental for A. Let Abe an F-arcand P C F.Then A — P if there is an F-fundamental
for A contained in A U P. Thus A & P denotes that there is no such Z-fundamental. The next result is
a consequence of (3.8) of [11].
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Lemma 2.1. Suppose that M is a connected matroid. Let X and Y be non-empty subsets of E(M) such that
M|X and M|Y are both connected. If M|(X UY) = (M|X) & (M|Y), then there is a circuit C of M such
that CNX #@,CNY # @Pand C — (X UY) is contained in a series class of M|(X UY U C).

The next lemma is likely to be known but we do not have a reference for it.

Lemma 2.2. Let M be a connected matroid. If # # F < E(M), M|F is connected and circ(M/F) > 3,
then there is a circuit C of M /F such that C is an F-arc and |C| > 3.

Proof. Assume that this result is not true. Let C be a circuit of M /F such that |C| = circ(M/F). Hence
Cisacircuit of M and M|(C UF) = (M|C) & (M|F). By Lemma 2.1, there is a circuit D of M such that
DNC # @, DNF # ¥ and D— (CUF) is contained in a series class of M| (CUDUF).Ife € D—(CUF) and
f € C—D, then (CUD) — ({e, f} UF) is independent in M /F. Therefore D —F is a circuit of M /F. Hence
|D—F| = 2,sayD—F = {e, g}, whereg € CND.As (M/g)|[FU(C—g)] = [(M/g)IFI®[(M/g)|(C—g)]
and F spans ein M /g, it follows that C —g is a series class of M| (CUDUF).Thus C’ = CAD = (CUD)—g
isacircuit of M. But C'—F is a circuit of M /F such that C'—F — F.Therefore2 = |C'—F| = |eU(C—g)]|.
Hence |C — g| = 1and so |C| = 2; a contradiction. O

We say that L is a Tutte-line of a matroid M, when L is the union of circuits of M and r*(M|L) = 2.
Every Tutte-line has a partition {Lq, L,, ..., L}, which is called canonical, such that C is a circuit of
M contained in L if and only if C = L — L;, for some i € {1, 2, ..., k}. We say that a Tutte-line L is
connected provided M|L is connected. When a Tutte-line L is connected, its canonical partition has at
least three sets.

In general, when C is a maximum size circuit of a connected matroid M, the circumference of M/C
is at most |C| — 2. (This sharp result due to Seymour is a consequence of Lemma 2.1.) We reduce this
upper bound substantially in a special case. The next proposition plays a central role in the proofs of
the main results of this paper.

Proposition 2.1. Suppose that M is a 3-connected binary matroid such that circ(M) € {6,7} and
r(M) > circ(M) + 2. If C is a maximum size circuit of M, then the rank of every connected component of
M /C is at most one.

Proof. It is enough to show that circ(M/C) < 2 because a connected matroid with circumference
1 or 2 is isomorphic to Up 1 or Uy ,, for some n > 2, respectively. Assume that circ(M/C) > 3. By
Lemma 2.2, there is a circuit A of M/C such that [A] > 3 and Ais a C-arc. Hence L = CUAis a
connected Tutte-line of M. Suppose that the canonical partition of L is equal to {X1, X3, X3}. S0 A = X;,
forsomei € {1, 2, 3},say A = X;.As C = L — Ais a circuit of M having maximum size, it follows that
3 < |A|l < |Xj|,foreveryi € {1, 2, 3}. Thus |A| = 3 and {|Xz|, |X3]} = {3, |C| — 3} because

7= |Cl = |L—A] = |Xa| +X3] = 2|A] = 6.

Suppose that |X;| = 3.
Let A be the set of L-arcs. For k € {1,2, 3}, we define A, = {A' € A : A — X} and
A = A — (A1 U sy U A3z). We divide the proof in some steps.

Step 1. If A* € A/, then |A'| = 1. Moreover, there is a circuit C4# of M such that A* = Cy — L and
(ICy N X4l Gy N X, [Cy N X3]) =y,

(i) forsome y € {(1, 2,2),(2,1,2), (2,2, 1)}, when |C| = 6; or
(ii) forsome y € {(1, 2, 3), (2,1, 3), (2,2, 2)}, when |C| = 7.

We argue by contradiction. Assume that |[A'| > 2 or, when |A’| = 1, Cy does not exist. Let D be a
circuit of M|(L U A) such that A’ = D — L. Assume that

IDNX:| < [DNX| < |DNX,

where {r,s,t} = {1, 2,3} (when possible, take s to be equal to 3). As A’ & Ay, it follows that
|[D N X;| > 1. First, we prove that:

IDNX,| <1 and |[DNX < 2. (2.1)
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If (2.1) does not hold, then
7> |D| = |A|+[DNXi|+ DN Xz| + DN X3| > |A'| + 6.

Hence |[A'| = 1 and |[C|] = 7. Moreover, (|ID N Xq|,|D N X3|,|D N X3]) = y, where y €
{(2,2,2), (0,3, 3)}; acontradiction unless y = (0, 3, 3). AsDA (X;UX;) is a union of pairwise disjoint
circuits of M, it follows that M has a circuit with at most two elements; a contradiction. Therefore (2.1)
holds.

In this paragraph, we establish that

X, € D. (2.2)

If IDNX;| < |X¢|, then, by (2.1), (X; U X;) U D is a connected Tutte-line of M.So D1 = (X; UX;) A D is
a circuit of M. But

7 > Dyl = |A'| + IX; — D| + |X; — D| + [ID N X, |. (2.3)
Observe that
[Xs = DI+ DN X;| = [Xs| + (IDNXe| = DN Xs]) > [X| > 3. (24)

Now, we prove that
IDNX;| # 0. (2.5)

If|IDNX,| = 0, then, by (2.3),4 — |A'| > |X; — D| + |[D N X¢|. By (2.3) and (2.4), |[D{| = 7, |A'| =
1, [X;] = |Xs] = 3, IDNX¢| = [DNX;| and |X; — D| + |D N X;| = 3. In particular, t = 3. We arrive ata
contradiction because s can be taken to be equal to 3. Therefore (2.5) follows. By (2.1) and (2.5),

IDNX| = 1. (2.6)

Now, we prove that |A’| = 1. Suppose that |A’| > 2.By (2.3) and (2.4), |D{| = 7, |A| = 2,|X;| =
|Xs| = 3,|IDNX| = DN X;| and |Xs — D| + |D N X;| = 3. In particular, t = 3. Again, we arrive at a
contradiction because s can be taken to be equal to 3. Hence |A’| = 1. Next, we establish that

IDNX| = 2. (2.7)

If (2.7) does not hold, then, by (2.1) and (2.6), [D N X;| = 1.By (2.3), DN X;| < 2. If [ DN X;| = 2,
then (D1 N Xq|, |D1 N Xz|, |D; N X3]) = (2, 2, 2); a contradiction. If D N X;| = 1, thens = 3 and so
(ID1NXql, ID1NXz|, ID1NX3]) € {(1, 2, 2), (2, 1, 2)}, when |C| = 6, 0r (|ID1NX;], [D1NX3[, ID1NX3]) €
{(1, 2, 3), (2,1, 3)}, when |C| = 7; a contradiction. Therefore (2.7) holds. By (2.6) and (2.7) and the
choice of A, |D N X;| = 2. In particular, |C| = 7 and 3 € {r, s}. We arrive at a contradiction because
(]D1 N X1l, ID1 N X3, ID1 N X3]) € {(2, 2, 2), (1, 2, 3), (2,1, 3)}. Therefore (2.2) follows.

By (2.2), X; C D.Choosei € {r, s} sothat3 € {i, t}. Observethat ' = DU (X; UX;) = DU X;isa
connected Tutte-line of M. If X C X; U X; belongs to the canonical partition of L, thenDy = L' — X isa
circuit of M|(LUA’) such that Dy — L = A'. By (2.2) applied to Dy, Dx contains X;, for somej € {1, 2, 3}.
Therefore X; C Dy or X; C Dx. In particular,X C X;orX C X;.Assume thatt = 3.(We need to replace
D by Dy, for some X C D;, wheni = 3.) Assume also that D N X; % (. (We are free to choose i in {r, s}
becauset = 3.)As X C X;or X C X;, for each X C X; U X; belonging to the canonical partition of L', it
follows that X; and X; belong to the canonical partition of L'. (Each Tutte-line in a binary matroid has
at most three sets in its canonical partition.) We arrive at a contradiction because X; — D belongs to
the canonical partition of L. Therefore Step 1 follows.

By Step 1, for each A’ € A/, there is a circuit C4 of M such that A’ = Cy — Land (|Cy N X;l, |Ca N
le, |CA’ DX3|) = y,where

(i) y €{(1,2,2),(2,1,2), (2,2, 1)}, when |C| = 6; or
(i) y € {(1,2,3), (2, 1,3), (2,2,2)},when |[C| = 7.

Choose C4 so that |Cy N X;| is minimum. Now, we prove that

y=(1,2,2), when|C|=6, and y €{(1,2,3),(2,2,2)}, when|C|=7. (2.8)
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If (2.8) does not hold, then |[Cy NX;| = 1, for somej € {2, 3}. Observe thatD = Cy A (X; UX;) is a circuit
of M because Cy U (X; U X;) is a connected Tutte-line of M. Hence (|[D N Xi|, DN Xz|, IDNX3]) =y,
fory = (1,2,2),when |[C| = 6,0r y = (1,2, 3), when |C| = 7. We arrive at a contradiction since
D — L = A'. Thus (2.8) holds.
Step 2. A" # .

Assume that A’ = @. Hence A — X; or A’ — (X3 U X3), for every L-arc A. As {X;, X, U X3} is
a 2-separation of M|L, it follows, by (3.8) of [11], that there is a 2-separation {X, Y} of M such that
X1 € X and X, U X3 C Y; a contradiction. Therefore Step 2 follows.
Step 3. A; = @, foreachi € {1, 2, 3}, when |C| = 6, or foreach i € {1, 2}, when |C| = 7.

Suppose that A; # @, say i = 1. For A; € 41, let D4, be a circuit of M such that A; = Ds, — L and
Da, € X7 UA;.ForeachA’ € A’ and A; € 4, we prove that

(lll) DA1 =AU (X] — CA/), when |CA/ ﬂX1| = 1;o0r
(IV) DA1 =AU (X] N CA/), when |CA/ ﬂX1| =2.

Assume that both (iii) and (iv) do not hold. Observe that [D4, N X;| > 2 because circ(M) = |X; U X3|.
Therefore Dy, intercepts both sets belonging to {X; — Cu, X; N Cy }. In particular,

|(CA/ ADAl) ﬂX]l > 1. (29)
Moreover, Cy A Dy, is a circuit of M because D4, U Cy is a connected Tutte-line of M. Thus
ICl > 1Aq1] + 1A' + |Gy N (X2 UX3)| 4+ [(Car A Day) N X4l

By (29), |C| >34 |CA/ N (X2 UX3)| and so |C| =7, |CA/ N (Xz UX3)| =4, |A1| =1, |CA/ ﬂX1| = 2and
X1 € Da,. As (X U X3) U Cy is a connected Tutte-line of M, it follows that Dy = Cy A (X, U X3)isa
6-element circuit of M. But Dy U Dy, is a connected Tutte-line of M. Thus Dy A Dy, is an 8-element
circuit of M; a contradiction. Therefore (iii) or (iv) holds.

Let X be a subset of X; such that D;, = A; UX, for some A; € 4. By (iii) and (iv), forevery A’ € A’,
XNCy =@, when |Cy NX1| = 1,0r X N Dy = ¥, when |Cy NX;| = 2. As A’ # (7, it follows that X is
uniquely determined. Hence Dy, = X U Ay, for every A; € 4. Note that {X, L — X} is a 2-separation
of M|L such that

(v) Ay — X, forevery Ay € +47; and
(vi) A” - L — X, forevery A” € A — ;.

(Note that (vi) occurs when: A” € A, U 3 because X, UX3 CL—X;A” € A and |Gir N Xq| = 1
because Cy» — A" C L —X; A” € A’ and |Cy» N X;| = 2 because Dy» — A” € L — X.) By (3.8) of [11],
there is a 2-separation {X’, Y’} of M such that X € X’ and L — X C Y’; a contradiction. Therefore Step
3 follows.

Step 4. A3 #£ (. In particular, |C| = 7.

If A3 = J, then, by Step 3, A = A'. By Step 1, |A'| = 1, for every A’ € . As each element e
belonging to E(M) — L is contained in some L-arg, it follows that {e} is an L-arc. Therefore L spans M
and r(M) = |L| — 2 = |C| + 1; a contradiction to hypothesis. Hence +3 # ¢. By Step 3, |[C| = 7.

To finish the proof of this proposition, it suffices to establish the next step:

Step 5. A3 = (.

Assume that A3 # (). For A3 € A3, let Da, be acircuit of M such that A3 = Da, —Land D, € X3UAs3.

ForeachA’ € A’ and A3 € A3, we prove that

(vii) Da; N X3 € Ca, when [Cy N Xq| = 1; 01
(Vlll) DA3 S {A3 U (X3 n CA/),A3 U (X3 — CA’)}, when ICA’ le' =2.

If Ds, NCar = ¥, then (viii) holds because |Ds; NX3| > 2and |Cy NX3| > 2. Assume that Dy, NCy # @.
If Da, NX3 € Cy, then (vii) or (viii) follows. We may also assume that [Da, — Ca JNX3 # @. As Cy UDp,
is a connected Tutte-line of M, it follows that D = Cy A Da, is a circuit of M. Hence

|As| + |[Da; — Co]1 N X3| < [Da; N Ca| (2.10)
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because |D| < |Ca| = |C|. As Cy A (X1 UX3) is acircuit of M and [Car A (X1 UX3)]U Dy, is a connected
Tutte-line of M, it follows that D’ = [Ca A (X7 U X3)] A Dy, is a circuit of M. Observe that

ID'| = |Gy & (X1 UX3)| + |A3| 4+ |Day N Car| — [[Da; — Ca1 N X1
By (2.10), [Da; N Car| — [[Da; — Ca]1 N X3| > |A3| and so
ID'| = [Cyr A (X1 UX3)| + 2|A3| = 6 + 2|A3| > 8;

a contradiction. Thus (vii) or (viii) follows.
We define Z = {Da, N X3 : A3 € A3}. First, we show that

Z1NZy # @, when {Z],Zz} C Z. (211)

If (2.11) does not hold, then |Z;| = |Z;| = 2 and X3 = Z; UZ, has 4 elements. Therefore |C4 N X3| = 2,
for every A’ € A’, by (vii). By Step 2 and (viii), Z = {Z;, Z,}. Note that A’ — L — Z;, forevery A’ € A/,
sinceCy —A' CL—Zjor[Cy A (X; UX3)] —A € L— Z;.ByStep 3 and (3.8) of [11], there is a 2-
separation {Wy, W5} of M such that Z; € W; and L — Z; C W,; a contradiction and so (2.11) follows.
Next, we establish that

|Z| = 1. (2.12)

If {Z1, Z,} is a 2-subset of Z, then, by (2.11), (vii) and (viii), Z; U Z; = Cy N X3, for every A’ € A'.
By (vii), A3 — Z; U Z,, for every A3 € s3. By (vii), A" — L — (Z; U Z,), for every A’ € A/, because
[Co A (X1 UX3)] —A C L— (ZyUZ).ByStep 3 and (3.8) of [11], there is a 2-separation {W;, W,} of
M such that (Z; UZ;) € Wy and L — (Z; U Z,) € W,; a contradiction and so (2.12) follows. By (2.12),
|Z| = 1,say Z = {Z}. By (vii) and (viii), A" — L — Z, for every A’ € 4/, because Cy — A’ C L —Z or
[Coy A (X1 UX3)]—A € L—Z.ByStep 3 and (3.8) of [11], there is a 2-separation {W;, W} of M such
thatZ C Wy and L — Z C W5; a contradiction and the proposition follows. O

3. Local structural results

For a circuit C of a binary matroid M, let A be C-arc. Observe that C U A is a connected Tutte-line of
M. Hence there is a partition {C;, C;} of C such that C; U A and C, U A are circuits of M. For i € {1, 2},
we say that C; is a projection of A over C. For C-arcs A; and A,, we say that:

(i) A and A; are strongly disjoint provided A; N A, = @, min{|A], |A2|} > 2 and (M/C)|(A; UA;) =
[(M/C)|A1] © [(M/C)|A,]; and

(ii) Aq and A; cross provided G1NCj, # @, forevery {i, j} € {1, 2}, where Cyx and Cy are the projections
of A, over C, for k € {1, 2}.

Lemma 3.1. Let C be a circuit of a binary matroid M such that |C| = circ(M) € {6, 7}. If A1 and A, are
strongly disjoint C-arcs, then A, and A, do not cross.

Proof. Assume that A; and A, cross. For k € {1, 2}, let Cy, and Cy;, be the projections of Ay over C. As
A1 and A; cross, it follows that (A; U G1) U (A, U G;2) is a connected Tutte-line, for every {i, j} < {1, 2}.
Hence D;j = (A1 U Gi1) A (A2 U Cpp) is a circuit of M. But C € Dq; U Dy, Ay UA; € Dy1 N Dyy and so

2|C| = |D11| + |D12] = |D11 U D12| + [D11 N D12| = [C| + 2(|A1]| + |A2]);
a contradiction since min{|A1[, |A2|} > 2 and |C| < 7. Thus A; and A; do not cross. O

Let C be a circuit of a 3-connected binary matroid M such that |C| = circ(M) € {6, 7}. A 3-subset
Z of E(M) is said to be a star with respect to C provided Z is contained in a connected component of
M/C. Let w (C, Z) be the series classes of M|(C U Z) contained in C. Note that 7 (C, Z) is a partition
of C. A star Z’ with respect to C is said to be strongly disjoint from Z provided (M/C)|(Z U Z) =
[(M/O)|Z] & [(M/C)|Z'].

Lemma 3.2. Let C be a circuit of a 3-connected binary matroid M such that |C| = circ(M) € {6,7}.If Z
is a star with respect to C, then Z is independent and:
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(i) The cosimplification of M|(C U Z) is isomorphic to M(K,). In this case, |S| € {2, 3}, for every
Sen(C,Z2).0r
(ii) The cosimplification of M|(C U Z) is isomorphic to F;.

When (i) happens, we say that Z is a simple star with respect to C. When (ii) occurs, we say that Z
is non-simple.

Proof. Let Z be a star with respect to C. By Proposition 2.1, Z is contained in a connected component of
M /C whose rank is equal to one. Therefore each 2-subset of Z is a C-arc of M. In particular, M|(C U Z)
is connected and each element of Z belongs to a trivial series class of M|(C U Z). As Z is a cocircuit
of the simple matroid M|(C U Z), it follows, by orthogonality, that Z is independent. Observe that
H = [M|(C U Z)]* is a plane having Z as a 3-point line. Let Py, P,, ..., P be the parallel classes of H
avoiding Z. As H is connected, it follows that k > 2. Now, we establish that k > 3. Assume that k = 2.
Hence W U Py is a cocircuit of H for any 2-subset W of Z. In particular, when W’ and W” are different
2-subsets of Z, (W’ U P;) A (W” U Py) is a cocircuit of H and so a circuit of M|(C U Z); a contradiction
since |(W'UP;) A (W” UP;)| = 2. Therefore k > 3. The cosimplification of H is isomorphic to M (Ky)
or to F; because H is binary. O

Lemma 3.3. Let C be a circuit of a 3-connected binary matroid M such that |C| = circ(M) € {6,7}.If Z
and Z' are strongly disjoint stars with respect to C, then:

(i) Z and Z’ are both simple and 7 (C,Z) = 7 (C,Z'); or
(ii) |C| = 7, exactly one of Z or Z' is simple, say Z, and there is S € w(C,Z) and S’ € 7w (C, Z") such that
IS|=3,|S| =4andC =SUS’; or
(iii) Z andZ’ are both non-simple and thereisS € 7 (C,Z)andS’ € 7 (C, Z') suchthat {|S|, |S'|} C {3, 4}
andC =SUS.

Proof. Assume that this result is not true. By Lemma 3.2, we obtain that:

(a) The cosimplification of M|(C U Z) is isomorphic to M(Ky) and n(C,Z) = {Zi,Z,,Z3} with
|Z1] = |Zz] = 2 and |Z3] € {2, 3}. Moreover, the elements of Z can be labeled as z1, z;, z3 so
that, for eachi € {1, 2, 3}, (Z — z;)) U (C — Z;) is a circuit of M|(C U Z). Or

(b) The cosimplification of M|(C U Z) is isomorphic to F; and 7 (C, Z) = {Z;, Z,, Z3, Z4}. Moreover,
thereisr € {1, 2, 3, 4} so that |Z.| = 1,say r = 4, since |C| < 7. The elements of Z can be labeled
as zq, 22, z3 so that, foreach i € {1, 2, 3}, (Z — z;) U [C — (Z; U Z4)] is a circuit of M|(C U Z).

By the previous paragraph applied to Z’ instead of Z, we conclude that:

(c) The cosimplification of M|(C U Z’) is isomorphic to M(K4) and 7 (C,Z) = {Z},Z;,Z}} with
1Z1] = |Zi| = 2 and |Z| € {2, 3}. Moreover, the elements of Z’ can be labeled as z}, Z}, z; so
that, foreachi € {1, 2, 3}, (Z — z)) U (C — Z]) is a circuit of M|(C U Z"). Or

(d) The cosimplification of M|(C UZ) is isomorphic to F; and 7 (C, Z) = {Z{, Z}, Z§, Z,}. Moreover, we
can label these sets so that Z, € Z;, when (b) occurs, and |Z;| = 1, when (a) occurs. The elements
of Z' can be labeled as z7, 25, z§ so that, for each i € {1, 2, 3}, (Z' — z)) U [C — (Z] UZ})] is a circuit
of M|(CUZ").

Now, we divide the proof in three steps.

Step 1. (b) and (d) cannot occur simultaneously.
Suppose that (b) and (d) occur simultaneously. Assume that Z, = {a}. First, we show that

Zy € w(C,Z'), thatis,Zy =Z, = {a}. (3.1)

IfZ, ¢ m(C,Z’), then |Z;| > 2. Choose b € Z; — Z,. We may assume that b € Z;. Let {r, s} and t be
respectively a 2-subset of {1, 2, 3} and an element of {2, 3}. By (b) and (d), C;; = {z1, z:} UZ; UZ; and
Gy, = {z;, 2,y U Z[ U Z/ are circuits of M. Observe that

agCyUC, and be Cy—C. (3.2)
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As {z1,z:} and {z], z;} are strongly disjoint C-arcs, it follows, by Lemma 3.1, that {2, z;} and {z/, z/} do

not cross. Therefore, by definition and (3.2),

CieNC,=0 or [C,—Cy]lNC =40 (3.3)
Thus

(Z1UZ)NEZUZ)=0 or (ZyUZ) 2 (Z UZ). (3.4)
As (3.4) holds for every 2-subset {r, s} of {1, 2, 3}, it follows that

(Z1UZ)N(EZUZyUZy) =0 or (ZyUZ) 2 (ZUZyUZy). (3.5)
From (3.5) fort = 2 and t = 3, it is not difficult to show that there is k € {1, 2, 3, 4} such that

(Z;UZ;UZ) C Z4. (3.6)

In particular, |Zy| > 3and C = Z,UZ,. As Z; C Z,,foreveryi € {1, 2, 3, 4} —k, it follows that |Z;| > 3;
a contradiction because (iii) happens for S = Z; and S’ = Z,. Therefore (3.1) holds.
Now, we prove that

1Z1] = |Z2] = |Z5] = 2. (3.7)

Assume that (3.7) does not hold. As |C| < 7, it follows that |Z;| = 1, for somei € {1, 2, 3},sayi = 3
and Z; = {b}. By (3.1), {b} € 7 (C,Z’), say Z; = {b}. By (b) and (d), C1; = {z1,22} UZ; U Z; and
G5 = {75, 25} U Z, U Z; are circuits of M. (In this paragraph, we assume also that |Z;| > |Z;|.) Note
that

a ¢ Cp U C2/3 and b e C£3 — Cq3. (38)

As {z1, z;} and {z;, z3} are strongly disjoint C-arcs, it follows, by Lemma 3.1, that {z;, z,} and {z}, z3}
do not cross. Therefore, by definition and (3.8),

CaNGCy =0 or [Cp—CrlNC=4. (3.9)

Observe that [C;; N C| = |C| —2and [C)3 N C| > ‘g—l (Remember that, in this paragraph, we are
assuming that |Z}| > |Z{|.) Hence |C;; N C| + |C12 N C| > |C| + 1. In particular, Ci; N C3 N C # @.
By (3.9), [C12 — Cj3]1 N C = ¥. We arrive at a contradiction because |Cyy| > |C);| and b € Cj5 — Cya.
Thus (3.7) follows.

Replacing (Z, Z") by (Z’, Z), Eq. (3.7) becomes

1Zil = 125 = |Z5] = 2. (3.10)
If {r, s} is a 2-subset of {1, 2, 3}, then, by (b) and (d), C;s = {2, z;} UZ, UZ; and C, = {2, 2]} UZ/ U Z]

are circuits of M. By (3.7) and (3.10), |Gs| = |C;| = 6. We can label z;, z;, z3 so that Cy; rrw Cs;é C;,NC.
In particular, [C; — C;,]1 N C # @ and [C}, — Ci2] N C # @. By construction, a & Ci U Cp,. As
|C12 N C| + |Cf, N C| = 8, it follows that [Ci; N Cj,] N C # @. Therefore {21, z;} and {z}, Z}} cross; a
contradiction to Lemma 3.1 and so Step 1 follows.

By Step 1, (b) and (d) cannot occur simultaneously. Thus (a) or (c) happens, say (a). That is, Z is

simple. We arrive at the final contradiction by proving the next two steps.
Step 2. (d) cannot happen.

Suppose that (d) happens. By (d), |Z;| = 1, say Z, = {a}. By (a), there is i € {1, 2, 3} such that
a € Z; and there is b € Z; — a because |Z;| > 2. Observe thatb € Zj’, for somej € {1, 2, 3}, sayj = 3.
AsZ —ziand Z' — z;, for k € {1, 2}, are strongly disjoint C-arcs, it follows, by Lemma 3.1, that Z — z
and Z’ — z;, do not cross. By (a) and (d),

(e) the projections of Z — z; over C are Z; and C — Z;; and
(f) the projections of Z' — z; over C are Z; U Z; and C — (Z, U Z}).
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ButaeZN[Z;UZ],beZN[C—(Z,UZ)]andso, fork € {1, 2},

[C—Z]IN[Z,UZ]=0 or [C—Z]IN[C— (Z,UZ)]=0. (3.11)
Now, we show that

[C—Z]IN[zyUZ] =¥, forsomeke (1,2}, sayk=1. (3.12)

If (3.12) does not hold, then, by (3.11), [C — Z]1 N [C — (Z, U Z;)] = @, for each k € {1, 2}. Hence
C—(Z,UZ) C Z,fork € {1, 2}. Hence Z; contains Z/, for every | € {1, 2, 3}; a contradiction because
1Zi| < 3and|Zj|+1Z;|+|Z5] = |C|—|Z;] = 5. Therefore (3.12) holds. By (3.12),Z, UZ; C Z;. By (3.11)
for k = 2,7} or Z is a subset of Z.. As |Z;] < 3 and b € Z; N Z, it follows that |Z;]| = 3,Z C Z; and
1Z;| = |Z| = |Z4| = 1. Therefore (ii) holds; a contradiction and Step 2 follows.

Step 3. (c) cannot happen.

Assume that (c) happens. For each e € C, let Z, and Z, be the elements of 7 (C, Z) and 7 (C, Z')
respectively so that e € Z, N Z,. By (a) and (c), for each e € C, there are circuits C, and C, of M such
thatC, € CUZ,C, € CUZ,C,NC=C—Z,and C,NC = C — Z]. Observe thate ¢ C, U C, and
C. N C, # @ because |[C N C,| > 4and |CNC,| > 4.As C, — C and C, — C are strongly disjoint C-arcs,
it follows, by Lemma 3.1, that C, — C and C, — C do not cross and so

C.NCCSC.NC or C.NCCCNC.
Hence

Z,CZ, or Z,CZ, foreacheeC. (3.13)
Now, we prove that

Z, =12, foreacheceC. (3.14)

By (3.13), we may assume that Z, € Z,. If (3.14) does not hold, then |Z, — Z,| = 1,say Z, = Z, U f.
AsZ{ = Z,and 7 (C, Z) is a partition of C, it follows that Zf € Z;. By (3.13),Z; € Z; and so Zy = {f};
a contradiction and (3.14) follows. By (3.14), 7(C,Z) = x(C,Z’) and (i) holds; a contradiction.
Therefore both Step 3 and this lemma follow. O

4. Global structural results

In the only result of this section, we describe the structure of the matroid obtained from a 3-
connected binary matroid having circumference 6 or 7 after the deletion of all the elements belonging
to cl(C) — C, where C is one of its maximum size circuits.

Proposition 4.1. Suppose that M is a 3-connected binary matroid such that circ(M) € {6,7} and

r(M) > circ(M) + 2. Let C be a maximum size circuit of M. If Ky, K>, ..., K, are the connected

components of M/C having non-zero rank, then n > 3 and, for everyi € {1,2,...,n}, |[E(Ky))| > 3

and r(K;) = 1. Moreover, when Z; is a 3-subset of E(K;), fori € {1, 2, ..., n}, then:

(i) There is a partition Ty, T,, T3 of C such that |T,| = |T,| = 2 and Ty, T,, T3 are series classes of
M|(CUZyUZ U---UZ,).

(ii) The cosimplification of M|(C U Z; UZ, U ---U Z,) is isomorphic to M(K3(,3n)) (and Z1, Z,, ..., Z, are
the stars of the vertices of ng having degree 3).

(iii) Fori e {1,2,...,n}, E(K;) is a triad or a quad of M.

(iv) The cosimplification of M \ [cly(C) — C] is isomorphic to My 3, where | = |{i € {1,2,...,n} :
E(K;) is a quad of M}|.

Proof. By Proposition 2.1, each connected component of M/C has rank equal to 0 or 1. Hence, for

everyi e {1,2,...,n},r(K;) = 1and so

n

n=> r(K)=rM/C)=rM)—[|C|—1].

i=1



R. Cordovil et al. / European Journal of Combinatorics 30 (2009) 1810-1824 1819

By hypothesis, r(M) > |C| 4 2. Consequently,
n> 3. (4.1)

To finish the proof of the first part of this proposition, we need to show that |E(K;)| > 3, for every
i €{1,2,...,n}. This happens because E(K;) is a cocircuit of both M/C and M. (Remember that M is
3-connected.) Now, we need to establish (i), (ii), (iii) and (iv). Note that:

fori € {1, 2,...,n}, any 3-subset of E(K;) is a star with respect to C. (4.2)

By (4.2), for each i € {1,2,...,n}, we can choose stars Z; and Z/ with respect to C such that
Z;UZ! C E(K;). We next establish that

Z; is simple if and only if Z| is simple. (4.3)

By (4.2), it is enough to prove (4.3) when |Z; — Z/| = 1,say Z; = {a, b, c} and Z] = {b, c, d}. Assume
that (4.3) does not hold. So exactly one of Z; or Z] is simple, say Z;. (Consequently, Z/ is non-simple.)
By Lemma 3.3(ii), there are S € 7 (C, Z;)) and S’ € 7 (C, Z/) such that |S| = 3,|S'| =4,SNS = P and
SUS’ = C.Let D be the circuit of M such that D — C = {b, c} and |D| is minimum. Note that |D| = 4
because D is a circuit of both M|(CUZ;) and M|(CUZ/). As Z; is simple, it follows that DN C € 7 (C, Z)).
Hence (DN C) NS = (¥ because |S| = 3 and |[D N C| = 2. Therefore DN C C S’. We arrive at a
contradiction because S’ is a series class of M|(C U Z). Thus (4.3) follows.

We may reorder the stars Zy, Z,, . .., Z, sothat Zy, Z,, . . ., Z, are non-simple and Z;, 1 1, Zi42, - - -,
Z, are simple, for some 0 < m < n. By definition, when {i, j} is a 2-subset of {1,2,...,n}, Z
ie{1,2,...,m},suchthat3 < |5;| < |C| — 3 < 4. Moreover, by Lemma 3.3(iii), S; U S; = C, when
{i, j} is a 2-subset of {1, 2, ..., m}. Therefore

Now, we show that
m<1. (4.5)

If (4.5) does not hold, then, by (4.4), m = 2. By (4.1), Z5 exists and so Z3 is simple. By Lemma 3.3(ii),
|ICl=7,SUS; =SUS, =C,whereS € 7(C, Z3) and |S| = 3. Hence S; = S,; a contradiction since
S1US; = C. Therefore (4.5) follows.

By Lemma 3.3(i), (4.1) and (4.5),

7(C,Zmy1) =7(C,2) =7(C,Z3) = --- =7(C, Zy). (4.6)
Now, we establish that:
7(C,Z)) =n(C,Z). (4.7)

If Z; is simple, then replace Z; by Z/. In this case, (4.7) follows from (4.6). If Z; is non-simple, then,
by (4.5),i = m = 1. By Lemma 3.3(ii), there is S € w(C,Z;) such that |[S| = 3andC — S €
7(C,Z) Nm(C,Z]) (by (4.3), Z| is also non-simple). Hence every 1-element subset of S belongs to
both 7 (C, Z;) and 7 (C, Z/). Thus (4.7) also follows in this case.

To prove this result, we need to show that

m = 0. (4.8)

If m > 0, then, by (4.5), m = 1. By Lemma 3.3(ii), |C| = 7 and there is S € 7 (C, Z,) such that |S| = 3.
Note that {C — S, S} is a 2-separation of M|C. By (3.8) of Seymour [11], there is a C-arc Z such that
Z 4 Sand Z & C — S because M is 3-connected. By (4.7) and (4.6),Z" — C — S, when Z’ is a C-arc
such that Z’ C E(K;), for somei € {2,3,...,n}.Hence Z € E(K;), foreachi € {2, 3,...,n}. By (4.7)
and Lemma 3.3(ii), Z” — S, when Z” is a C-arc such that Z” C E(K;). Therefore Z Z E(K;), for each
i e {1,2,...,n}. In particular,Z C cly(C) — C and |Z| = 1,say Z = {e}. Let D be a circuit of M
such thate € D € C U e and |D| is minimum. In particular, |D| < 4.AsZ 4 C — S, it follows that
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D NS # (. Moreover, |D N S| € {1, 2} because D A C is also a circuit of M and Z 4 C — S. Observe
that D — (S U e) # @ since Z  S. Choose 2-subsets X, X" and X" of Z;, Z, and S respectively such
that DN'S € X” and both X U X” and X’ U (C — S) are circuits of M. Now, we show that

D=DAXUX")A X U(C—=S5)) isacircuitof M. (4.9)

If C’ is a circuit of M such that C’ € D/, then

(@) C"—C # WbecauseC Z D';

(b) C" —C # X' becauseS Z D'andC —S Z D';

(c) ¢’ —C # Xbecause X"  D'and C — X" € D’; and
(d) ¢’ — C # {e}because D Z D'andDAC Z D'.

In particular, |C" — C| > 3. As |D’ — C| = 5 and D' is the union of pairwise disjoint circuits of M, it
follows that D’ is a circuit of M. Therefore (4.9) follows. We arrive at a contradiction because |D’| > 8.
Thus (4.8) holds. In particular, Z; is simple, for every i.

Now, our goal is to prove that

r(E(K;)) = 3. (4.10)

Assume that (4.10) fails for some i. Let B be a maximal independent set of M such that Z; C B € E(K)).
Thus |B| > 4. Choose a 3-subset Z{ of B such that |Z; U Z/| = 4. By (4.3) and (4.8), both Z and Z; are
simple. By (4.7), n(C, Z]) = 7 (C, Z;) is the set of series classes of both M|(C U Z;) and M|(C U Z)
contained in C. Thus 7 (C, Z}) = 7 (C, Z) is the set of series classes of M|(C U Z; U Z/) contained in C.
If N is the cosimplification of M|(C U Z; U Z]), then C N E(N) is a circuit-hyperplane of N having three
elements. Sor(N) = 3.But each element of Z;UZ; is contained in a trivial series class of M|(CUZ UZ)).
Hence ry(Z; U Z)) = r(Z; U Z!) = |Z; U Z]| = 4; a contradiction. Thus (4.10) follows.
Next, we show (iii), that is,

E(K;) isatriad or a quad of M. (4.11)

If E(K;) = Z;, then (4.11) follows. Suppose that E(K;) # Z;. By (4.10), for each e € E(K;) — Z;, there is
a circuit D, of M so thate € D, C Z; U e. As E(K;) is a cocircuit of M, it follows, by orthogonality, that
|De| is an even number. Hence |D,| = 4 because M is 3-connected. In particular, D, = Z; U e. As M is
simple, it follows that e is unique. Therefore E(K;) = Z; U e and (4.11) follows.

By (4.6), there is a partition {Tq, T, T3} of C such that |T;| = |T»| = 2 and, for every i €
{1,2,...,n},7(C, Z) = {T1, T2, T3}. We can label the elements of Z; by a;, b;, c; so that C; = {a;, b;}UT;
and D; = {a;, ¢;} U T, are circuits of M. Note that 8 = {C, C;, C, ..., Cy, D1, D4, ..., D} spans the
cycle space of M|(CUZ{ UZ, U - --UZ,) because (C—c)U{ay, az, ..., a,}spansCUZ{UZ, U---UZ,,
for ¢ € C.In particular, Ty, T, and T3 are series classes of M|(C U Z; U Z, U --- U Z;) because every
circuit belonging to $B contains T; or avoids T;, for every i € {1, 2, 3}. Therefore (i) follows.

Fori € {1, 2, 3}, choose t; € T;. By (i), the cosimplification of M|(CUZ; UZ, U --- U Z,) is equal to

H=[M[(CUZUZ U---UZ)]/(C—{t1, tz, t3}).

Note that 8’ = {C', C{, G5, ..., C,, D}, D, ..., D)} spans the cycle space of H, where C' = {ty, t,, t3}
and, fori € {1,2,...,n},( = {a;, b;, t1} and D} = {a;, ¢;, t2}. Hence H = M(G), where G is a simple
graph having vertex-set {vq, va, ..., Up, W1, Wo, w3} Whose edges are: t; joining w{ and w-; t; joining
w3 and w,; t3 joining wy and ws; and, for every i € {1, 2, ..., n}, a; joining v; and w,; b; joining v;
and wq; and ¢; joining v; and ws. But G = 1(3(2. We have (ii). Note that (iv) is a consequence of (ii)
and (iii). O

5. The 3-connected binary matroids with circumference equal to 6

Proof of Theorem 1.2. It is easy to see that circ(M,, ;) = 6, when n > 3. Now, assume that M is a
3-connected binary matroid such that circ(M) = 6. Let C be a circuit of M such that |C| = circ(M).
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By Proposition 4.1, M \ [cly(C) — C] has three series classes Sy, S, and S; contained in C. Moreover,
IS1] = [S2] = IS3] = 2,say S = {a, '}, S, = {b, b'}, S3 = {c, ¢}, and

M\ [cly(C) — C1/{d, b, ¢} = My py 3,

where n’ = r(M) — 5. (We also have that T = {a, b, c} is the special triangle of M \ [cly(C) —
Cl/{d, b, c'})

For e € cly(C) — C, let C, be a circuit of M such thate € C, € C U e and |C,| is minimum. Hence
|C. — e| € {2, 3}. First, we establish that

Si € C, forsomeie {1,2,3]}. (5.1)

If (5.1) is not true, then C, meets each S; in 0 or 1 element. In particular, C, meets at least two S;’s in
1 element, say C. N S; = {a} and C, N S, = {b}. We have two cases to deal with. If |C.| = 3, then
C.NS3 =@ and C, A Dis a7-element circuit of M, where D is a circuit of M such that S, US3 € D and
|ID — cly (C)| = 2; a contradiction. If |C.| = 4, then C, meets S3 in 1 element, say C. N S3 = {c}. Let
D¢ and D, be 4-element circuits of M such that D; N C = S;, fori € {1, 2},and D; — C and D, — C are
strongly disjoint C-arcs. We arrive at a contradiction by proving that

X=CADiAD,

is a circuit of M. (Observe that |X| = 8.) If X is not a circuit of M, then X = C; UG U --- UC(,
where Cq, C,, ..., C are pairwise disjoint circuits of M, for some [ > 2. Assume that e € C;. Note that
C1 — cly(C) # @, otherwise C; = {e, d’, b’, c}, by the choice of C,, and so C; A C. = {c, c’}. Hence C;
meets D; — C or D, — C, say D; — C.But Dy — C is a series class of M|(C U e U D; U D,). Consequently,
D1 — C C (4. As G, is not a proper subset of C, it follows that D, — C C C,. In particular, G; N Cis a
projection of the C-arc D, — C; a contradiction because C, N C does not contain any S;. Therefore (5.1)
holds.

By (5.1), for e € cly (C) — C, we can choose C, so that |C. N {d’, b’, ¢’}| = 1. Therefore the elements
belonging to cly (C) — C can be labeled as:

(i) s;, fori € {1, 2, 3}, when S; U s; is a triangle of M.
(ii) t;, for a 2-subset {i, j} of {1, 2, 3}, when S; U {t, t;;} is a circuit of M, for t € S; N {a, b, c}.

In particular, |cly (C) —C| < 9.Let M’ be the binary extension of M obtained by adding all the elements
described in (i) or (ii) which do not belong to M (with the dependence described in (i) or (ii)). When
{1,2,3} = {i, ], k}, {ti, ti} U Sk is a circuit of M’. In particular, M \ {t12, t23, t31} = My 43,3 and so
M’ = My 43.m+3.3. (Observe that {sq, s, s3} is the special triangle of M'".) Hence M = M, .., where
n=n' +3,m= m’ + [|E(M) n {tu, t13, b1, t23, t31, t32}| — 3] and [ = |E(M) N {S], S2, S3}|. (Observe
that [{ti, tx} N E(M)| > 1, when {i, j, k} = {1, 2, 3}, otherwise Sy is a cocircuitof M.) O

6. The 3-connected binary matroids with circumference equal to 7
A quad Q of a matroid M is said to be special when Q N C = @, for some largest circuit C of M.

Lemma 6.1. Let M be a 3-connected binary matroid such that circ(M) € {6, 7}. If Q is a special quad of
M, then there is an element e belonging to Q such that M \ e is 3-connected.

Proof. By definition, there is a circuit C of M such that |[C] = circ(M) andQ NC = #. AsQ is a
cocircuit of M/C, it follows, by Proposition 2.1, that Q C E(K), for a connected component K of M/C
such that r(K) = 1. Therefore Q = E(K) because E(K) is a cocircuit of M. If M \ e is not 3-connected,
for every e € Q, then, by Theorem 1 of Lemos [12], Q meets at least two triads of M, say T} and T5.
(Remember that Q is also a circuitof M.)As [T NQ| =2,QNC =¥ and [T N C| # 1, it follows that
T NC = ¥. Hence T{ and T are cocircuits of M/C and so T} and T, are also cocircuits of K. We arrive
at a contradiction because T; C E(K) = Q. Thus there is e € Q such that M \ e is 3-connected. O
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Lemma 6.2. Suppose that M is a 3-connected binary matroid such that circ(M) € {6, 7}. Let T* be a
triad of M. If N is an one-element binary extension of M, say M = N \ e, such that T* U e is a circuit of
N, then T* U e is a quad of N and circ(N) = circ(M). Moreover, if T'* is a triad or a quad of M such that
T* N T'* = ¢, then T'* is respectively a triad or a quad of N.

Proof. First, we show that T*Ueis a quad of N. There is a cocircuit C* of N such that T* C C* C T*Ue.
By orthogonality, the circuit T* U e meets the cocircuit C* in an even number of elements. Therefore
C*=T*UeandsoT*Ueisaquad of N.

We argue by contradiction to prove that circ(M) = circ(N). If circ(M) s circ(N), then circ(M) <
circ(N), since M is a restriction of N. Let C be a maximum size circuit of N. As circ(M) < |C|, it follows
that e € C. By orthogonality with the quad T* Ue, [C N T*| = 1or T* C C. Observe that T* & C,
otherwise C = T* U e and |C| < circ(M). Hence |C N T*| = 1. Let D be a circuit of N such that
D C C A (T*Ue).Note that DN (T* Ue) # @ because D is not a proper subset of C. By orthogonality,
IDN(T*Ue)| >2andso[C A (T*Ue)]N(T*Ue) C D.In particular, D is unique. AsC A (T* U e) is
a union of pairwise disjoint circuits of N, it follows that C A (T* U e) is a circuit of N. But

IC| = |C A(T* Ue)| > circ(M);

a contradiction because C A (T* U e) is also a circuit of M. Thus circ(M) = circ(N).

Now, we show that T'* is a triad or a quad of N. If T’* is not respectively a triad or a quad of N, then
T’* U e is a cocircuit of N. But the quad T* U e meets the cocircuit T’* U e in just one element, namely
e; a contradiction to orthogonality. Consequently, T’* is respectively a triad or a quad of N. O

Proof of Theorem 1.3. In this paragraph, we show that (ii) implies (i). We construct a sequence of
matroids Mg, M1, My, ..., My, such that M; = M’ \ X and, for eachi € {1,2,...,m}, M;is a 1-
element binary extension of M;_q, say M;_y = M; \ e;, and Q; = T;" U g; is a circuit of M;. By induction
oniand Lemma 6.2, it is easy to show that:

Qi,...,Q arequadsof M;; T} ,, ..., T, are triads of Mj; circ(M;) = 7. (6.1)

Take M to be M,,. The result follows because M,, is 3-connected.
Now, we just need to show that (i) implies (ii). We argue by contradiction. Choose a counter-
example M such that |E(M)| is minimum. First, we establish that:

M has no special quad. (6.2)

Suppose that (6.2) does not hold. Let Q be a special quad of M. By definition, there a circuit C of M such
that |C| = circ(M) and CNQ = @.By Lemma6.1, thereise € Q such that M\ e is 3-connected. Observe
that T* = Q —eisatriad of M\ eand |C| = circ(M \ e) < circ(M) = |C|. Therefore circ(M \ e) = 7.By
the choice of M, there is a 3-connected rank-4 binary matroid N having a Hamiltonian circuit D and a
triangle T satisfying |T N D| = 2 suchthatT = E(N) N E(K3(_3r)(M)74) is the special triangle 0fl<3(13,)(,v,)74
and M \ e is obtained from M’ \ X by completing the set of pairwise disjoint triads T}, T, ..., T
of M (K3(,3r>(1v1)7 ) to quads, where M’ is the generalized parallel connection of M (K3(3)(M)7 4) with N and

ST

X C T.As Cis a7-element circuit of M \ e, it follows that [C N E(N)] U Y is a Hamiltonian circuit of
N, for some 2-subset Y of T. In particular, T* is a triad ofM(K3(,3T)(M)74). Therefore M is obtained from

M’ \ X by completing the set of pairwise disjoint triads T}, T, ..., T, T* ofM(I(é?f(M)_4) to quads; a
contradiction and (6.2) follows.

Let C be a circuit of M such that |C| = circ(M). By Proposition 4.1, M \ [cly;(C) — C] has three series
classes S1, S, and S3 contained in C. Moreover, |S;| = |S;| = 2,say S; = {a,d'},S; = {b,b'},S3 =
{c,c’,c"},and

M\ [cly(C) — Cl/{d, b, ¢, ¢"} = My 1w 3,

where n’ = r(M) — 6. (We also have that T = {a, b, c} is the special triangle of M \ [cly(C) —
Cl/{d,b',c’,c"}.) Let K1, Ky, ..., Ky be the rank-1 connected components of M/C. By (6.2) and
Proposition 4.1(iii), E(K;), E(K3), . . ., E(Kyy) are triads of M and so m’ = 0. Choose C-arcs Zi, Z,, Z3
such that Z; U §; is a circuit of M and Z; C E(K;), for eachi € {1, 2, 3}.
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For e € cly(C) — C, let C, be a circuit of M such thate € C, € C U e and |C, N S3| is maximum.
Hence 2 < |C. N S3] and |C,| < 6 because C, A C is also a circuit of M. First, we establish that

C.=(S53NC)UXUe whereXisasubsetofS;, for somei € {1, 2}. (6.3)

Assume that (6.3) does not hold. We have two cases to deal with S3 € C, or S3 € C.. If S3 € C,, then
|CeNS1| = |C3NS;| = 1because |G| < 6. Note that C, A (S, UZ,) is a circuit of M having 8 elements;
a contradiction. Thus S3 € C. and so |S3 N C.| = 2. Now, we prove that

IC.N Sy =|CNSy| = 1. (6.4)

If (6.4) does not hold, then |C, N (S5; US;)| = 3,s5ay Sy C Ce. Again C, A (S, UZ,) is a circuit of M having
8 elements; a contradiction. Hence (6.4) holds. Observe that C, A (S U Z;y) A (S U Zy) is a circuit of
M having 9 elements; a contradiction. Therefore (6.3) happens.

Fori € {1, 2}, we establish that:

Hg edcdu(C) —C:|GNS| =1} =1 (6.5)
Assume that i = 1. Observe that C' = (C — S;) U Z; is a maximum size circuit of M. The rank-1
connected components of M /C" are K1, Ks, . . ., Kyy. Moreover, by (6.3),

E(K)) =S1U{g ecly(C) —C: |G NS = 1).

By Proposition 4.1(iii) and (6.2), E(K}) is a triad of M. So (6.5) follows. By (6.3
thereise; € cly(C) — C,s; € S;and X; C Sz such that |X;| € {2,3}and C,; =
is unique. In this paragraph, we have proved more:

)and (6.5), fori € {1, 2},
X; U {e;, s;}. Moreover, e;

S;iUe; isatriad of M. (6.6)
Now, we show that, fori € {1, 2},
when [Xi| =2, X;U{g ecly(C) —C:X; € C,}isatriad of M. (6.7)

Assume that i = 1. Observe that C" = (C,, A C) A (S;UZ;) is a maximum size circuit of M. The rank-1
connected components of M/C” are K{, K, ..., Ky and E(K{) = X; U {g € cly(C) = C : X; € G}
So (6.7) follows from (6.2) and Proposition 4.1(iii).

Let I be the subset of {1, 2, 3} so thati € I ifand only if there is f; € E(M) such that f; US; is a circuit
of M. Choose a (3 — [I])-set disjoint of E(M), say {f; : j € {1, 2, 3} —I}. Let M’ be a 3-connected binary
extension of M such that E(M’) = E(M) U {f; : j € {1, 2, 3} — I} and f; U S; is a circuit of M’, for every
i € {1, 2, 3}. Now, we divide the proof in three cases.

Case 1. |X1]| = |X3| = 2.

First, assume that X; # X,. Note that D = C,; A Ce, A (f3US3) A{fi, fo, f3} is a 7-element circuit of
M’.Therefore D A (fy UZ;) A (f, UZy) is a 9-element circuit of M; a contradiction. So X; = X;. Observe
that G, A G, A (§1UZy) A (S; UZy) is an 8-element circuit of M; a contradiction.

Case 2. |X1| = 2 and |X;| = 3.

So C., = S3U{ey, s,}. Therefore C,, A C = S; U {e,, s5} is a circuit of M, where S, = {s;, s} }. Hence
D = Ce, A (S1U{ez, 51 A (S2 Uf,) is a 7-element circuit of M'; a contradiction because D A (f, U Z,)
is an 8-element circuit of M.

Case 3. |1X1] = |X3| = 3.

Fori € {1,2}, C; = S3 U {e;, si}. Therefore C;; A C = S3_; U {e;, s;} is a circuit of M, where
Si = {si, s{}, and so (S3_; U {e;, si}) A (S3—i U f51) = {ey, s, f5_i} isacircuit of M. If Y = (S; U eq) U
(S, Uey)) UE(K) UE(Ky) U- - -UE(K,y), then Y is the union of pairwise disjoint triads of M’ (use (6.6)).
AsM'|[Y U {f1, o, fs}] = Kg,ﬂ, it follows that {Y, E(M’) — Y} is an exact 3-separation of M’. So M’
is the generalized parallel connection of M'|[Y U {f1, f>, fs}] and M’ \ Y. By (6.3) and (6.5), M’ \ Y is
a rank-4 3-connected binary matroid having S3 U {f1, f} as a Hamiltonian circuit and {f1, f5, f3} as a
triangle. But M = M’ \ X, where X = {f; : i € I}; a contradiction because the result holds for M. O

Now, we prove a result that will be used in [5]:

Corollary 6.1. Let M be a 3-connected binary matroid such that circ(M) € {6,7} and r(M) > 10. If
M \ C is not 3-connected, for every circuit C of M, then |[E(M)| < 4r(M) — 8.
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Proof. Suppose that [E(M)| > r(M) — 8.If circ(M) = 6, then, by Theorem 1.2, M = M, ;. Note that
[EM)|=3n+1=3r(M) —6+1> 4r(M) — 8.

Therefore 5 > | + 2 > r(M); a contradiction. Hence circ(M) = 7. By Theorem 1.3, there is
a 3-connected rank-4 binary matroid N having a Hamiltonian circuit C and a triangle T satisfying

ITNC| =2suchthatT = E(N) N E(K3(,3r)(M)—4) is the special triangle of 1(3(,32(1\/1)74 and M = M’ \ X,

where M’ is the generalized parallel connection ofM(I<3(’3r)(M)_4) with N and X C T. Observe that

[E(M)| = 3r(M) — 12 + |[E(N)| — IX| = 4r(M) — 8.
Thus
[EN)| = IX] = (M) +4 > 14. (6.8)

As r(N) = 4, it follows that |[E(N)| < 15. Moreover, N \ X = PG(3,2) \ Y, where |Y| < 1.Let Z be
a 7-element subset of E(PG(3, 2)) such that Y C Z and PG(3, 2) \ Z = AG(3, 2). If T' is a triangle of
PG(3, 2) avoiding Y and contained in Z, then PG(3, 2) \ (T’ UY) is 3-connected. So N has a triangle T”
such that N \ (T” U X) is 3-connected; a contradiction because M \ T” is 3-connected. O
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