The 3-connected binary matroids with circumference 6 or 7

Raul Cordovil ${ }^{\text {a }}$, Bráulio Maia Jr. ${ }^{\text {b }}$, Manoel Lemos ${ }^{\text {c }}$
${ }^{\text {a }}$ Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
${ }^{\text {b }}$ Unidade Acadêmica de Matemática e Estatística, Universidade Federal de Campina Grande, Campina Grande, Paraíba, 58105-305, Brazil
${ }^{\text {c }}$ Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-540, Brazil

ARTICLE INFO

Article history:

Available online 13 January 2009

A B S TRACT

In this paper, we construct all 3 -connected binary matroids with circumference equal to 6 or 7 having large rank. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we assume familiarity with matroid theory. The notation and terminology used in this article follow Oxley [1]. For a matroid M that has a $\operatorname{circuit}, \operatorname{circ}(M)$ denotes the circumference of M, that is, the maximum cardinality of a circuit of M. In recent years, the circumference of a matroid has appeared in some bounds, for example, in an upper bound for the size of a minimally n-connected matroid and in a lower bound for the size of an n-connected matroid having a circuit whose deletion is also n-connected, for $n \in\{2,3\}$ (see [2-4]). Using these bounds and results about matroids with small circumference, it is possible to improve some bounds found in the literature. In this paper, we construct all 3 -connected binary matroid with circumference 6 or 7 (and large rank). In [5], we use the main results of this paper to improve a lower bound due to Lemos and Oxley [4] for the size of a 3 -connected binary matroid having a circuit whose deletion originates also a 3 -connected matroid.

The 3-connected matroids having small circumference must have small rank. Lemos and Oxley [4] proved that:

Theorem 1.1. Suppose that M is a 3-connected matroid. If $r(M) \geq 6$, then $\operatorname{circ}(M) \geq 6$.
By this result, every 3 -connected matroid with circumference at most 5 has rank at most 5. Maia and Lemos [6] proved that a 3 -connected matroid having rank at most 5 is Hamiltonian, unless it is

[^0]isomorphic to $U_{1,1}, F_{7}^{*}, \operatorname{AG}(3,2)$, J_{9}, or J_{10}, where J_{10} is the matroid whose representation over $G F(2)$ is given by the matrix
\[

\left[$$
\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}
$$\right]
\]

and J_{9} is the matroid obtained from J_{10} by deleting the last column.
Maia [7] constructs all the matroids with circumference at most five. With the knowledge of all matroids with circumference c, for example, one can calculate all the Ramsey numbers $n(c+1, y)$ for matroids, for every value of y (for a definition of $n(x, y)$ see Reid [8]). These numbers were completely determined by Lemos and Oxley [9] using a sharp bound for the number of elements of a connected matroid as a function of its circumference and cocircumference.

Before the description of all the 3-connected binary matroids with circumference 6 or 7 , we need to give some definitions. Let $T_{1}^{*}, T_{2}^{*}, \ldots, T_{m}^{*}$ be pairwise disjoint triads of a 3-connected binary matroid M. There is a unique binary matroid N over $E(M) \cup\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is an m element set disjoint from $E(M)$, such that $N \backslash\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}=M$ and, for every $i \in\{1,2, \ldots, m\}$, $Q_{i}=T_{i}^{*} \cup e_{i}$ is a circuit of N. Moreover, Q_{i} is a cocircuit of M. (There is a cocircuit C_{i}^{*} of M such that $T_{i}^{*} \subseteq C_{i}^{*} \subseteq T_{i}^{*} \cup\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. By orthogonality with Q_{j}, for $j \neq i, e_{j} \notin C_{i}^{*}$ and so $C_{i}^{*} \in\left\{T_{i}^{*}, Q_{i}\right\}$. But $\left|C_{i}^{*} \cap Q_{i}\right|$ is even. Thus $C_{i}^{*}=Q_{i}$.) Following Geelen and Whittle [10], we say that a 4 -element circuit-cocircuit of a matroid is a quad. Therefore $Q_{1}, Q_{2}, \ldots, Q_{m}$ are pairwise disjoint quads of N. We say that N is obtained from M by completing the triads $T_{1}^{*}, T_{2}^{*}, \ldots, T_{m}^{*}$ to quads. It is easy to see that N is 3 -connected.

Suppose that l, m and n are integers such that $0 \leq l \leq 3 \leq n$ and $0 \leq m \leq n$. Let $\{U, V\}$ be a partition of the vertices of the complete bipartite graph $K_{3, n}$ such that U and V are stable sets, $|U|=3$ and $|V|=n$, say $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $K_{3, n}^{(l)}$ be the simple graph obtained from $K_{3, n}$ by adding l edges joining two vertices belonging to U. (These l edges are referred as special edges of $K_{3, n}^{(l)}$. When $l=3$, this set of edges is called the special triangle of $K_{3, n}^{(l)}$.) We define $M_{n, m, l}$ to be the binary matroid obtained from $M\left(K_{3, n}^{(l)}\right)$ by completing the triads $\operatorname{st}\left(v_{1}\right), \operatorname{st}\left(v_{2}\right), \ldots, s t\left(v_{m}\right)$ to quads. We prove that:

Theorem 1.2. Let M be a 3 -connected binary matroid such that $r(M) \geq 8$. Then, $\operatorname{circ}(M)=6$ if and only if M is isomorphic to $M_{n, m, l}$, for some integers l, m and n such that $0 \leq l \leq 3,6 \leq n$ and $0 \leq m \leq n$.

Theorem 1.3. For a 3-connected binary matroid M such that $r(M) \geq 9$, the following statements are equivalent:
(i) $\operatorname{circ}(M)=7$.
(ii) There is a 3-connected rank-4 binary matroid N having a Hamiltonian circuit C and a triangle T satisfying $|T \cap C|=2$ such that $T=E(N) \cap E\left(K_{3, r(M)-4}^{(3)}\right)$ is the special triangle of $K_{3, r(M)-4}^{(3)}$ and M is obtained from $M^{\prime} \backslash X$ by completing a set of pairwise disjoint triads of $M\left(K_{3, r(M)-4}^{(3)}\right)$ to quads, where M^{\prime} is the generalized parallel connection of $M\left(K_{3, r(M)-4}^{(3)}\right)$ with N and $X \subseteq T$.
We think that it is very difficult to construct all 3-connected matroids with circumference 6 or 7 (and large rank). To construct all the 3 -connected binary matroids with circumference 8 looks to be hard as well.

2. Contracting a maximum size circuit

Let M be a matroid. For $F \subseteq E(M)$, an F-arc (see Section 3 of [11]) is a minimal non-empty subset A of $E(M)-F$ such that there exists a circuit C of M with $C-F=A$ and $C \cap F \neq \emptyset$. Such a circuit C is called an F-fundamental for A. Let A be an F-arc and $P \subseteq F$. Then $A \rightarrow P$ if there is an F-fundamental for A contained in $A \cup P$. Thus $A \nrightarrow P$ denotes that there is no such Z-fundamental. The next result is a consequence of (3.8) of [11].

Lemma 2.1. Suppose that M is a connected matroid. Let X and Y be non-empty subsets of $E(M)$ such that $M \mid X$ and $M \mid Y$ are both connected. If $M \mid(X \cup Y)=(M \mid X) \oplus(M \mid Y)$, then there is a circuit C of M such that $C \cap X \neq \emptyset, C \cap Y \neq \emptyset$ and $C-(X \cup Y)$ is contained in a series class of $M \mid(X \cup Y \cup C)$.

The next lemma is likely to be known but we do not have a reference for it.
Lemma 2.2. Let M be a connected matroid. If $\emptyset \neq F \subseteq E(M), M \mid F$ is connected and $\operatorname{circ}(M / F) \geq 3$, then there is a circuit C of M / F such that C is an F-arc and $|C| \geq 3$.
Proof. Assume that this result is not true. Let C be a circuit of M / F such that $|C|=\operatorname{circ}(M / F)$. Hence C is a circuit of M and $M \mid(C \cup F)=(M \mid C) \oplus(M \mid F)$. By Lemma 2.1, there is a circuit D of M such that $D \cap C \neq \emptyset, D \cap F \neq \emptyset$ and $D-(C \cup F)$ is contained in a series class of $M \mid(C \cup D \cup F)$. If $e \in D-(C \cup F)$ and $f \in C-D$, then $(C \cup D)-(\{e, f\} \cup F)$ is independent in M / F. Therefore $D-F$ is a circuit of M / F. Hence $|D-F|=2$, say $D-F=\{e, g\}$, where $g \in C \cap D$. As $(M / g) \mid[F \cup(C-g)]=[(M / g) \mid F] \oplus[(M / g) \mid(C-g)]$ and F spans e in M / g, it follows that $C-g$ is a series class of $M \mid(C \cup D \cup F)$. Thus $C^{\prime}=C \triangle D=(C \cup D)-g$ is a circuit of M. But $C^{\prime}-F$ is a circuit of M / F such that $C^{\prime}-F \rightarrow F$. Therefore $2=\left|C^{\prime}-F\right|=|e \cup(C-g)|$. Hence $|C-g|=1$ and so $|C|=2$; a contradiction.

We say that L is a Tutte-line of a matroid M, when L is the union of circuits of M and $r^{*}(M \mid L)=2$. Every Tutte-line has a partition $\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}$, which is called canonical, such that C is a circuit of M contained in L if and only if $C=L-L_{i}$, for some $i \in\{1,2, \ldots, k\}$. We say that a Tutte-line L is connected provided $M \mid L$ is connected. When a Tutte-line L is connected, its canonical partition has at least three sets.

In general, when C is a maximum size circuit of a connected matroid M, the circumference of M / C is at most $|C|-2$. (This sharp result due to Seymour is a consequence of Lemma 2.1.) We reduce this upper bound substantially in a special case. The next proposition plays a central role in the proofs of the main results of this paper.

Proposition 2.1. Suppose that M is a 3-connected binary matroid such that $\operatorname{circ}(M) \in\{6,7\}$ and $r(M) \geq \operatorname{circ}(M)+2$. If C is a maximum size circuit of M, then the rank of every connected component of M / C is at most one.

Proof. It is enough to show that $\operatorname{circ}(M / C) \leq 2$ because a connected matroid with circumference 1 or 2 is isomorphic to $U_{0,1}$ or $U_{1, n}$, for some $n \geq 2$, respectively. Assume that $\operatorname{circ}(M / C) \geq 3$. By Lemma 2.2, there is a circuit A of M / C such that $|A| \geq 3$ and A is a C-arc. Hence $L=C \cup A$ is a connected Tutte-line of M. Suppose that the canonical partition of L is equal to $\left\{X_{1}, X_{2}, X_{3}\right\}$. So $A=X_{i}$, for some $i \in\{1,2,3\}$, say $A=X_{1}$. As $C=L-A$ is a circuit of M having maximum size, it follows that $3 \leq|A| \leq\left|X_{i}\right|$, for every $i \in\{1,2,3\}$. Thus $|A|=3$ and $\left\{\left|X_{2}\right|,\left|X_{3}\right|\right\}=\{3,|C|-3\}$ because

$$
7 \geq|C|=|L-A|=\left|X_{2}\right|+\left|X_{3}\right| \geq 2|A| \geq 6 .
$$

Suppose that $\left|X_{2}\right|=3$.
Let \mathcal{A} be the set of L-arcs. For $k \in\{1,2,3\}$, we define $\mathcal{A}_{k}=\left\{A^{\prime} \in \mathcal{A}: A^{\prime} \rightarrow X_{k}\right\}$ and $\mathcal{A}^{\prime}=\mathscr{A}-\left(\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3}\right)$. We divide the proof in some steps.
Step 1. If $A^{\prime} \in \mathcal{A}^{\prime}$, then $\left|A^{\prime}\right|=1$. Moreover, there is a circuit $C_{A^{\prime}}$ of M such that $A^{\prime}=C_{A^{\prime}}-L$ and $\left(\left|C_{A^{\prime}} \cap X_{1}\right|,\left|C_{A^{\prime}} \cap X_{2}\right|,\left|C_{A^{\prime}} \cap X_{3}\right|\right)=\gamma$,
(i) for some $\gamma \in\{(1,2,2),(2,1,2),(2,2,1)\}$, when $|C|=6$; or
(ii) for some $\gamma \in\{(1,2,3),(2,1,3),(2,2,2)\}$, when $|C|=7$.

We argue by contradiction. Assume that $\left|A^{\prime}\right| \geq 2$ or, when $\left|A^{\prime}\right|=1, C_{A^{\prime}}$ does not exist. Let D be a circuit of $M \mid\left(L \cup A^{\prime}\right)$ such that $A^{\prime}=D-L$. Assume that

$$
\left|D \cap X_{r}\right| \leq\left|D \cap X_{s}\right| \leq\left|D \cap X_{t}\right|,
$$

where $\{r, s, t\}=\{1,2,3\}$ (when possible, take s to be equal to 3). As $A^{\prime} \notin \mathcal{A}_{t}$, it follows that $\left|D \cap X_{s}\right| \geq 1$. First, we prove that:

$$
\begin{equation*}
\left|D \cap X_{r}\right| \leq 1 \quad \text { and } \quad\left|D \cap X_{s}\right| \leq 2 \tag{2.1}
\end{equation*}
$$

If (2.1) does not hold, then

$$
7 \geq|D|=\left|A^{\prime}\right|+\left|D \cap X_{1}\right|+\left|D \cap X_{2}\right|+\left|D \cap X_{3}\right| \geq\left|A^{\prime}\right|+6 .
$$

Hence $\left|A^{\prime}\right|=1$ and $|C|=7$. Moreover, $\left(\left|D \cap X_{1}\right|,\left|D \cap X_{2}\right|,\left|D \cap X_{3}\right|\right)=\gamma$, where $\gamma \in$ $\{(2,2,2),(0,3,3)\}$; a contradiction unless $\gamma=(0,3,3)$. As $D \triangle\left(X_{s} \cup X_{t}\right)$ is a union of pairwise disjoint circuits of M, it follows that M has a circuit with at most two elements; a contradiction. Therefore (2.1) holds.

In this paragraph, we establish that

$$
\begin{equation*}
X_{t} \subseteq D \tag{2.2}
\end{equation*}
$$

If $\left|D \cap X_{t}\right|<\left|X_{t}\right|$, then, by $(2.1),\left(X_{r} \cup X_{s}\right) \cup D$ is a connected Tutte-line of M. So $D_{1}=\left(X_{r} \cup X_{s}\right) \Delta D$ is a circuit of M. But

$$
\begin{equation*}
7 \geq\left|D_{1}\right|=\left|A^{\prime}\right|+\left|X_{r}-D\right|+\left|X_{s}-D\right|+\left|D \cap X_{t}\right| . \tag{2.3}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\left|X_{s}-D\right|+\left|D \cap X_{t}\right|=\left|X_{s}\right|+\left(\left|D \cap X_{t}\right|-\left|D \cap X_{s}\right|\right) \geq\left|X_{s}\right| \geq 3 . \tag{2.4}
\end{equation*}
$$

Now, we prove that

$$
\begin{equation*}
\left|D \cap X_{r}\right| \neq 0 \tag{2.5}
\end{equation*}
$$

If $\left|D \cap X_{r}\right|=0$, then, by (2.3), $4-\left|A^{\prime}\right| \geq\left|X_{s}-D\right|+\left|D \cap X_{t}\right|$. By (2.3) and (2.4), $\left|D_{1}\right|=7,\left|A^{\prime}\right|=$ $1,\left|X_{r}\right|=\left|X_{s}\right|=3,\left|D \cap X_{t}\right|=\left|D \cap X_{s}\right|$ and $\left|X_{s}-D\right|+\left|D \cap X_{t}\right|=3$. In particular, $t=3$. We arrive at a contradiction because s can be taken to be equal to 3 . Therefore (2.5) follows. By (2.1) and (2.5),

$$
\begin{equation*}
\left|D \cap X_{r}\right|=1 . \tag{2.6}
\end{equation*}
$$

Now, we prove that $\left|A^{\prime}\right|=1$. Suppose that $\left|A^{\prime}\right| \geq 2$. By (2.3) and (2.4), $\left|D_{1}\right|=7,\left|A^{\prime}\right|=2,\left|X_{r}\right|=$ $\left|X_{s}\right|=3,\left|D \cap X_{t}\right|=\left|D \cap X_{s}\right|$ and $\left|X_{s}-D\right|+\left|D \cap X_{t}\right|=3$. In particular, $t=3$. Again, we arrive at a contradiction because s can be taken to be equal to 3 . Hence $\left|A^{\prime}\right|=1$. Next, we establish that

$$
\begin{equation*}
\left|D \cap X_{s}\right|=2 \tag{2.7}
\end{equation*}
$$

If (2.7) does not hold, then, by (2.1) and (2.6), $\left|D \cap X_{s}\right|=1$. By (2.3), $\left|D \cap X_{t}\right| \leq 2$. If $\left|D \cap X_{t}\right|=2$, then $\left(\left|D_{1} \cap X_{1}\right|,\left|D_{1} \cap X_{2}\right|,\left|D_{1} \cap X_{3}\right|\right)=(2,2,2)$; a contradiction. If $\left|D \cap X_{t}\right|=1$, then $s=3$ and so $\left(\left|D_{1} \cap X_{1}\right|,\left|D_{1} \cap X_{2}\right|,\left|D_{1} \cap X_{3}\right|\right) \in\{(1,2,2),(2,1,2)\}$, when $|C|=6$, or $\left(\left|D_{1} \cap X_{1}\right|,\left|D_{1} \cap X_{2}\right|,\left|D_{1} \cap X_{3}\right|\right) \in$ $\{(1,2,3),(2,1,3)\}$, when $|C|=7$; a contradiction. Therefore (2.7) holds. By (2.6) and (2.7) and the choice of $A^{\prime},\left|D \cap X_{t}\right|=2$. In particular, $|C|=7$ and $3 \in\{r, s\}$. We arrive at a contradiction because $\left(\left|D_{1} \cap X_{1}\right|,\left|D_{1} \cap X_{2}\right|,\left|D_{1} \cap X_{3}\right|\right) \in\{(2,2,2),(1,2,3),(2,1,3)\}$. Therefore (2.2) follows.

By (2.2), $X_{t} \subseteq D$. Choose $i \in\{r, s\}$ so that $3 \in\{i, t\}$. Observe that $L^{\prime}=D \cup\left(X_{i} \cup X_{t}\right)=D \cup X_{i}$ is a connected Tutte-line of M. If $X \subseteq X_{i} \cup X_{t}$ belongs to the canonical partition of L^{\prime}, then $D_{X}=L^{\prime}-X$ is a circuit of $M \mid\left(L \cup A^{\prime}\right)$ such that $D_{X}-L=A^{\prime}$. By (2.2) applied to D_{X}, D_{X} contains X_{j}, for some $j \in\{1,2,3\}$. Therefore $X_{i} \subseteq D_{X}$ or $X_{t} \subseteq D_{X}$. In particular, $X \subseteq X_{i}$ or $X \subseteq X_{t}$. Assume that $t=3$. (We need to replace D by D_{X}, for some $X \subseteq D_{t}$, when $i=3$.) Assume also that $D \cap X_{i} \neq \emptyset$. (We are free to choose i in $\{r, s\}$ because $t=3$.) As $X \subseteq X_{i}$ or $X \subseteq X_{t}$, for each $X \subseteq X_{i} \cup X_{t}$ belonging to the canonical partition of L^{\prime}, it follows that X_{i} and X_{t} belong to the canonical partition of L^{\prime}. (Each Tutte-line in a binary matroid has at most three sets in its canonical partition.) We arrive at a contradiction because $X_{i}-D$ belongs to the canonical partition of L^{\prime}. Therefore Step 1 follows.

By Step 1, for each $A^{\prime} \in \mathcal{A}^{\prime}$, there is a circuit $C_{A^{\prime}}$ of M such that $A^{\prime}=C_{A^{\prime}}-L$ and $\left(\left|C_{A^{\prime}} \cap X_{1}\right|, \mid C_{A^{\prime}} \cap\right.$ $X_{2}\left|,\left|C_{A^{\prime}} \cap X_{3}\right|\right)=\gamma$, where
(i) $\gamma \in\{(1,2,2),(2,1,2),(2,2,1)\}$, when $|C|=6$; or
(ii) $\gamma \in\{(1,2,3),(2,1,3),(2,2,2)\}$, when $|C|=7$.

Choose $C_{A^{\prime}}$ so that $\left|C_{A^{\prime}} \cap X_{1}\right|$ is minimum. Now, we prove that

$$
\begin{equation*}
\gamma=(1,2,2), \quad \text { when }|C|=6, \quad \text { and } \quad \gamma \in\{(1,2,3),(2,2,2)\}, \quad \text { when }|C|=7 . \tag{2.8}
\end{equation*}
$$

If (2.8) does not hold, then $\left|C_{A^{\prime}} \cap X_{j}\right|=1$, for some $j \in\{2,3\}$. Observe that $D=C_{A^{\prime}} \Delta\left(X_{1} \cup X_{j}\right)$ is a circuit of M because $C_{A^{\prime}} \cup\left(X_{1} \cup X_{j}\right)$ is a connected Tutte-line of M. Hence $\left(\left|D \cap X_{1}\right|,\left|D \cap X_{2}\right|,\left|D \cap X_{3}\right|\right)=\gamma$, for $\gamma=(1,2,2)$, when $|C|=6$, or $\gamma=(1,2,3)$, when $|C|=7$. We arrive at a contradiction since $D-L=A^{\prime}$. Thus (2.8) holds.
Step 2. $\mathcal{A}^{\prime} \neq \emptyset$.
Assume that $\mathcal{A}^{\prime}=\emptyset$. Hence $A^{\prime} \rightarrow X_{1}$ or $A^{\prime} \rightarrow\left(X_{2} \cup X_{3}\right)$, for every L-arc A^{\prime}. As $\left\{X_{1}, X_{2} \cup X_{3}\right\}$ is a 2-separation of $M \mid L$, it follows, by (3.8) of [11], that there is a 2 -separation $\{X, Y\}$ of M such that $X_{1} \subseteq X$ and $X_{2} \cup X_{3} \subseteq Y$; a contradiction. Therefore Step 2 follows.
Step 3. $\mathscr{A}_{i}=\emptyset$, for each $i \in\{1,2,3\}$, when $|C|=6$, or for each $i \in\{1,2\}$, when $|C|=7$.
Suppose that $\mathcal{A}_{i} \neq \emptyset$, say $i=1$. For $A_{1} \in \mathcal{A}_{1}$, let $D_{A_{1}}$ be a circuit of M such that $A_{1}=D_{A_{1}}-L$ and $D_{A_{1}} \subseteq X_{1} \cup A_{1}$. For each $A^{\prime} \in \mathcal{A}^{\prime}$ and $A_{1} \in \mathcal{A}_{1}$, we prove that
(iii) $D_{A_{1}}=A_{1} \cup\left(X_{1}-C_{A^{\prime}}\right.$, when $\left|C_{A^{\prime}} \cap X_{1}\right|=1$; or
(iv) $D_{A_{1}}=A_{1} \cup\left(X_{1} \cap C_{A^{\prime}}\right)$, when $\left|C_{A^{\prime}} \cap X_{1}\right|=2$.

Assume that both (iii) and (iv) do not hold. Observe that $\left|D_{A_{1}} \cap X_{1}\right| \geq 2$ because $\operatorname{circ}(M)=\left|X_{1} \cup X_{3}\right|$. Therefore $D_{A_{1}}$ intercepts both sets belonging to $\left\{X_{1}-C_{A^{\prime}}, X_{1} \cap C_{A^{\prime}}\right\}$. In particular,

$$
\begin{equation*}
\left|\left(C_{A^{\prime}} \Delta D_{A_{1}}\right) \cap X_{1}\right| \geq 1 \tag{2.9}
\end{equation*}
$$

Moreover, $C_{A^{\prime}} \Delta D_{A_{1}}$ is a circuit of M because $D_{A_{1}} \cup C_{A^{\prime}}$ is a connected Tutte-line of M. Thus

$$
|C| \geq\left|A_{1}\right|+\left|A^{\prime}\right|+\left|C_{A^{\prime}} \cap\left(X_{2} \cup X_{3}\right)\right|+\left|\left(C_{A^{\prime}} \Delta D_{A_{1}}\right) \cap X_{1}\right| .
$$

By (2.9), $|C| \geq 3+\left|C_{A^{\prime}} \cap\left(X_{2} \cup X_{3}\right)\right|$ and so $|C|=7,\left|C_{A^{\prime}} \cap\left(X_{2} \cup X_{3}\right)\right|=4,\left|A_{1}\right|=1,\left|C_{A^{\prime}} \cap X_{1}\right|=2$ and $X_{1} \subseteq D_{A_{1}}$. As $\left(X_{1} \cup X_{3}\right) \cup C_{A^{\prime}}$ is a connected Tutte-line of M, it follows that $D_{A^{\prime}}=C_{A^{\prime}} \triangle\left(X_{1} \cup X_{3}\right)$ is a 6 -element circuit of M. But $D_{A^{\prime}} \cup D_{A_{1}}$ is a connected Tutte-line of M. Thus $D_{A^{\prime}} \triangle D_{A_{1}}$ is an 8-element circuit of M; a contradiction. Therefore (iii) or (iv) holds.

Let X be a subset of X_{1} such that $D_{A_{1}}=A_{1} \cup X$, for some $A_{1} \in \mathcal{A}_{1}$. By (iii) and (iv), for every $A^{\prime} \in \mathcal{A}^{\prime}$, $X \cap C_{A^{\prime}}=\emptyset$, when $\left|C_{A^{\prime}} \cap X_{1}\right|=1$, or $X \cap D_{A^{\prime}}=\emptyset$, when $\left|C_{A^{\prime}} \cap X_{1}\right|=2$. As $\mathscr{A}^{\prime} \neq \emptyset$, it follows that X is uniquely determined. Hence $D_{A_{1}}=X \cup A_{1}$, for every $A_{1} \in \mathcal{A}_{1}$. Note that $\{X, L-X\}$ is a 2 -separation of $M \mid L$ such that
(v) $A_{1} \rightarrow X$, for every $A_{1} \in \mathcal{A}_{1}$; and
(vi) $A^{\prime \prime} \rightarrow L-X$, for every $A^{\prime \prime} \in \mathcal{A}-\mathcal{A}_{1}$.
(Note that (vi) occurs when: $A^{\prime \prime} \in \mathcal{A}_{2} \cup \mathcal{A}_{3}$ because $X_{2} \cup X_{3} \subseteq L-X ; A^{\prime \prime} \in \mathcal{A}^{\prime}$ and $\left|C_{A^{\prime \prime}} \cap X_{1}\right|=1$ because $C_{A^{\prime \prime}}-A^{\prime \prime} \subseteq L-X ; A^{\prime \prime} \in \mathcal{A}^{\prime}$ and $\left|C_{A^{\prime \prime}} \cap X_{1}\right|=2$ because $D_{A^{\prime \prime}}-A^{\prime \prime} \subseteq L-X$.) By (3.8) of [11], there is a 2-separation $\left\{X^{\prime}, Y^{\prime}\right\}$ of M such that $X \subseteq X^{\prime}$ and $L-X \subseteq Y^{\prime}$; a contradiction. Therefore Step 3 follows.
Step 4. $A_{3} \neq \emptyset$. In particular, $|C|=7$.
If $\mathcal{A}_{3}=\emptyset$, then, by Step $3, \mathcal{A}=\mathcal{A}^{\prime}$. By Step $1,\left|A^{\prime}\right|=1$, for every $A^{\prime} \in \mathcal{A}$. As each element e belonging to $E(M)-L$ is contained in some L-arc, it follows that $\{e\}$ is an L-arc. Therefore L spans M and $r(M)=|L|-2=|C|+1$; a contradiction to hypothesis. Hence $\mathcal{A}_{3} \neq \emptyset$. By Step 3, $|C|=7$.

To finish the proof of this proposition, it suffices to establish the next step:
Step 5. $A_{3}=\emptyset$.
Assume that $\mathcal{A}_{3} \neq \emptyset$. For $A_{3} \in \mathcal{A}_{3}$, let $D_{A_{3}}$ be a circuit of M such that $A_{3}=D_{A_{3}}-L$ and $D_{A_{3}} \subseteq X_{3} \cup A_{3}$. For each $A^{\prime} \in \mathscr{A}^{\prime}$ and $A_{3} \in \mathscr{A}_{3}$, we prove that
(vii) $D_{A_{3}} \cap X_{3} \subseteq C_{A^{\prime}}$, when $\left|C_{A^{\prime}} \cap X_{1}\right|=1$; or
(viii) $D_{A_{3}} \in\left\{A_{3} \cup\left(X_{3} \cap C_{A^{\prime}}\right), A_{3} \cup\left(X_{3}-C_{A^{\prime}}\right)\right\}$, when $\left|C_{A^{\prime}} \cap X_{1}\right|=2$.

If $D_{A_{3}} \cap C_{A^{\prime}}=\emptyset$, then (viii) holds because $\left|D_{A_{3}} \cap X_{3}\right| \geq 2$ and $\left|C_{A^{\prime}} \cap X_{3}\right| \geq 2$. Assume that $D_{A_{3}} \cap C_{A^{\prime}} \neq \emptyset$. If $D_{A_{3}} \cap X_{3} \subseteq C_{A^{\prime}}$, then (vii) or (viii) follows. We may also assume that $\left[D_{A_{3}}-C_{A^{\prime}}\right] \cap X_{3} \neq \emptyset$. As $C_{A^{\prime}} \cup D_{A_{3}}$ is a connected Tutte-line of M, it follows that $D=C_{A^{\prime}} \Delta D_{A_{3}}$ is a circuit of M. Hence

$$
\begin{equation*}
\left|A_{3}\right|+\left|\left[D_{A_{3}}-C_{A^{\prime}}\right] \cap X_{3}\right| \leq\left|D_{A_{3}} \cap C_{A^{\prime}}\right| \tag{2.10}
\end{equation*}
$$

because $|D| \leq\left|C_{A^{\prime}}\right|=|C|$. As $C_{A^{\prime}} \Delta\left(X_{1} \cup X_{3}\right)$ is a circuit of M and $\left[C_{A^{\prime}} \Delta\left(X_{1} \cup X_{3}\right)\right] \cup D_{A_{3}}$ is a connected Tutte-line of M, it follows that $D^{\prime}=\left[C_{A^{\prime}} \Delta\left(X_{1} \cup X_{3}\right)\right] \Delta D_{A_{3}}$ is a circuit of M. Observe that

$$
\left|D^{\prime}\right|=\left|C_{A^{\prime}} \Delta\left(X_{1} \cup X_{3}\right)\right|+\left|A_{3}\right|+\left|D_{A_{3}} \cap C_{A^{\prime}}\right|-\left|\left[D_{A_{3}}-C_{A^{\prime}}\right] \cap X_{3}\right| .
$$

By (2.10), $\left|D_{A_{3}} \cap C_{A^{\prime}}\right|-\left|\left[D_{A_{3}}-C_{A^{\prime}}\right] \cap X_{3}\right| \geq\left|A_{3}\right|$ and so

$$
\left|D^{\prime}\right| \geq\left|C_{A^{\prime}} \Delta\left(X_{1} \cup X_{3}\right)\right|+2\left|A_{3}\right|=6+2\left|A_{3}\right| \geq 8
$$

a contradiction. Thus (vii) or (viii) follows.
We define $Z=\left\{D_{A_{3}} \cap X_{3}: A_{3} \in \mathcal{A}_{3}\right\}$. First, we show that

$$
\begin{equation*}
Z_{1} \cap Z_{2} \neq \emptyset, \quad \text { when }\left\{Z_{1}, Z_{2}\right\} \subseteq \mathcal{Z} . \tag{2.11}
\end{equation*}
$$

If (2.11) does not hold, then $\left|Z_{1}\right|=\left|Z_{2}\right|=2$ and $X_{3}=Z_{1} \cup Z_{2}$ has 4 elements. Therefore $\left|C_{A^{\prime}} \cap X_{3}\right|=2$, for every $A^{\prime} \in \mathcal{A}^{\prime}$, by (vii). By Step 2 and (viii), $Z=\left\{Z_{1}, Z_{2}\right\}$. Note that $A^{\prime} \rightarrow L-Z_{1}$, for every $A^{\prime} \in \mathcal{A}^{\prime}$, since $C_{A^{\prime}}-A^{\prime} \subseteq L-Z_{1}$ or $\left[C_{A^{\prime}} \triangle\left(X_{1} \cup X_{3}\right)\right]-A^{\prime} \subseteq L-Z_{1}$. By Step 3 and (3.8) of [11], there is a 2separation $\left\{W_{1}, W_{2}\right\}$ of M such that $Z_{1} \subseteq W_{1}$ and $L-Z_{1} \subseteq W_{2}$; a contradiction and so (2.11) follows. Next, we establish that

$$
\begin{equation*}
|Z|=1 . \tag{2.12}
\end{equation*}
$$

If $\left\{Z_{1}, Z_{2}\right\}$ is a 2 -subset of \mathcal{Z}, then, by (2.11), (vii) and (viii), $Z_{1} \cup Z_{2}=C_{A^{\prime}} \cap X_{3}$, for every $A^{\prime} \in \mathcal{A}^{\prime}$. By (vii), $A_{3} \rightarrow Z_{1} \cup Z_{2}$, for every $A_{3} \in \mathcal{A}_{3}$. By (vii), $A^{\prime} \rightarrow L-\left(Z_{1} \cup Z_{2}\right)$, for every $A^{\prime} \in \mathcal{A}^{\prime}$, because $\left[C_{A^{\prime}} \Delta\left(X_{1} \cup X_{3}\right)\right]-A^{\prime} \subseteq L-\left(Z_{1} \cup Z_{2}\right)$. By Step 3 and (3.8) of [11], there is a 2-separation $\left\{W_{1}, W_{2}\right\}$ of M such that $\left(Z_{1} \cup Z_{2}\right) \subseteq W_{1}$ and $L-\left(Z_{1} \cup Z_{2}\right) \subseteq W_{2}$; a contradiction and so (2.12) follows. By (2.12), $|Z|=1$, say $Z=\{Z\}$. By (vii) and (viii), $A^{\prime} \rightarrow L-Z$, for every $A^{\prime} \in \mathcal{A}^{\prime}$, because $C_{A^{\prime}}-A^{\prime} \subseteq L-Z$ or $\left[C_{A^{\prime}} \Delta\left(X_{1} \cup X_{3}\right)\right]-A^{\prime} \subseteq L-Z$. By Step 3 and (3.8) of [11], there is a 2-separation $\left\{W_{1}, W_{2}\right\}$ of M such that $Z \subseteq W_{1}$ and $L-Z \subseteq W_{2}$; a contradiction and the proposition follows.

3. Local structural results

For a circuit C of a binary matroid M, let A be C-arc. Observe that $C \cup A$ is a connected Tutte-line of M. Hence there is a partition $\left\{C_{1}, C_{2}\right\}$ of C such that $C_{1} \cup A$ and $C_{2} \cup A$ are circuits of M. For $i \in\{1,2\}$, we say that C_{i} is a projection of A over C. For C-arcs A_{1} and A_{2}, we say that:
(i) A_{1} and A_{2} are strongly disjoint provided $A_{1} \cap A_{2}=\emptyset, \min \left\{\left|A_{1}\right|,\left|A_{2}\right|\right\} \geq 2$ and $(M / C) \mid\left(A_{1} \cup A_{2}\right)=$ $\left[(M / C) \mid A_{1}\right] \oplus\left[(M / C) \mid A_{2}\right]$; and
(ii) A_{1} and A_{2} cross provided $C_{i 1} \cap C_{j 2} \neq \emptyset$, for every $\{i, j\} \subseteq\{1,2\}$, where $C_{1 k}$ and $C_{2 k}$ are the projections of A_{k} over C, for $k \in\{1,2\}$.

Lemma 3.1. Let C be a circuit of a binary matroid M such that $|C|=\operatorname{circ}(M) \in\left\{6\right.$, 7\}. If A_{1} and A_{2} are strongly disjoint C-arcs, then A_{1} and A_{2} do not cross.
Proof. Assume that A_{1} and A_{2} cross. For $k \in\{1,2\}$, let $C_{1 k}$ and $C_{2 k}$ be the projections of A_{k} over C. As A_{1} and A_{2} cross, it follows that $\left(A_{1} \cup C_{i 1}\right) \cup\left(A_{2} \cup C_{j 2}\right)$ is a connected Tutte-line, for every $\{i, j\} \subseteq\{1,2\}$. Hence $D_{i j}=\left(A_{1} \cup C_{i 1}\right) \Delta\left(A_{2} \cup C_{j 2}\right)$ is a circuit of M. But $C \subseteq D_{11} \cup D_{12}, A_{1} \cup A_{2} \subseteq D_{11} \cap D_{12}$ and so

$$
2|C| \geq\left|D_{11}\right|+\left|D_{12}\right|=\left|D_{11} \cup D_{12}\right|+\left|D_{11} \cap D_{12}\right| \geq|C|+2\left(\left|A_{1}\right|+\left|A_{2}\right|\right) ;
$$

a contradiction since $\min \left\{\left|A_{1}\right|,\left|A_{2}\right|\right\} \geq 2$ and $|C| \leq 7$. Thus A_{1} and A_{2} do not cross.
Let C be a circuit of a 3 -connected binary matroid M such that $|C|=\operatorname{circ}(M) \in\{6,7\}$. A 3 -subset Z of $E(M)$ is said to be a star with respect to C provided Z is contained in a connected component of M / C. Let $\pi(C, Z)$ be the series classes of $M \mid(C \cup Z)$ contained in C. Note that $\pi(C, Z)$ is a partition of C. A star Z^{\prime} with respect to C is said to be strongly disjoint from Z provided $(M / C) \mid\left(Z \cup Z^{\prime}\right)=$ $[(M / C) \mid Z] \oplus\left[(M / C) \mid Z^{\prime}\right]$.

Lemma 3.2. Let C be a circuit of a 3 -connected binary matroid M such that $|C|=\operatorname{circ}(M) \in\{6,7\}$. If Z is a star with respect to C, then Z is independent and:
(i) The cosimplification of $M \mid(C \cup Z)$ is isomorphic to $M\left(K_{4}\right)$. In this case, $|S| \in\{2,3\}$, for every $S \in \pi(C, Z)$. Or
(ii) The cosimplification of $M \mid(C \cup Z)$ is isomorphic to F_{7}^{*}.

When (i) happens, we say that Z is a simple star with respect to C. When (ii) occurs, we say that Z is non-simple.

Proof. Let Z be a star with respect to C. By Proposition $2.1, Z$ is contained in a connected component of M / C whose rank is equal to one. Therefore each 2 -subset of Z is a C-arc of M. In particular, $M \mid(C \cup Z)$ is connected and each element of Z belongs to a trivial series class of $M \mid(C \cup Z)$. As Z is a cocircuit of the simple matroid $M \mid(C \cup Z)$, it follows, by orthogonality, that Z is independent. Observe that $H=[M \mid(C \cup Z)]^{*}$ is a plane having Z as a 3-point line. Let $P_{1}, P_{2}, \ldots, P_{k}$ be the parallel classes of H avoiding Z. As H is connected, it follows that $k \geq 2$. Now, we establish that $k \geq 3$. Assume that $k=2$. Hence $W \cup P_{1}$ is a cocircuit of H for any 2 -subset W of Z. In particular, when W^{\prime} and $W^{\prime \prime}$ are different 2-subsets of $Z,\left(W^{\prime} \cup P_{1}\right) \Delta\left(W^{\prime \prime} \cup P_{1}\right)$ is a cocircuit of H and so a circuit of $M \mid(C \cup Z)$; a contradiction since $\left|\left(W^{\prime} \cup P_{1}\right) \Delta\left(W^{\prime \prime} \cup P_{1}\right)\right|=2$. Therefore $k \geq 3$. The cosimplification of H is isomorphic to $M\left(K_{4}\right)$ or to F_{7} because H is binary.

Lemma 3.3. Let C be a circuit of a 3 -connected binary matroid M such that $|C|=\operatorname{circ}(M) \in\{6,7\}$. If Z and Z^{\prime} are strongly disjoint stars with respect to C, then:
(i) Z and Z^{\prime} are both simple and $\pi(C, Z)=\pi\left(C, Z^{\prime}\right)$; or
(ii) $|C|=7$, exactly one of Z or Z^{\prime} is simple, say Z, and there is $S \in \pi(C, Z)$ and $S^{\prime} \in \pi\left(C, Z^{\prime}\right)$ such that $|S|=3,\left|S^{\prime}\right|=4$ and $C=S \cup S^{\prime}$; or
(iii) Z and Z^{\prime} are both non-simple and there is $S \in \pi(C, Z)$ and $S^{\prime} \in \pi\left(C, Z^{\prime}\right)$ such that $\left\{|S|,\left|S^{\prime}\right|\right\} \subseteq\{3,4\}$ and $C=S \cup S^{\prime}$.

Proof. Assume that this result is not true. By Lemma 3.2, we obtain that:
(a) The cosimplification of $M \mid(C \cup Z)$ is isomorphic to $M\left(K_{4}\right)$ and $\pi(C, Z)=\left\{Z_{1}, Z_{2}, Z_{3}\right\}$ with $\left|Z_{1}\right|=\left|Z_{2}\right|=2$ and $\left|Z_{3}\right| \in\{2,3\}$. Moreover, the elements of Z can be labeled as z_{1}, z_{2}, z_{3} so that, for each $i \in\{1,2,3\},\left(Z-z_{i}\right) \cup\left(C-Z_{i}\right)$ is a circuit of $M \mid(C \cup Z)$. Or
(b) The cosimplification of $M \mid(C \cup Z)$ is isomorphic to F_{7}^{*} and $\pi(C, Z)=\left\{Z_{1}, Z_{2}, Z_{3}, Z_{4}\right\}$. Moreover, there is $r \in\{1,2,3,4\}$ so that $\left|Z_{r}\right|=1$, say $r=4$, since $|C| \leq 7$. The elements of Z can be labeled as z_{1}, z_{2}, z_{3} so that, for each $i \in\{1,2,3\},\left(Z-z_{i}\right) \cup\left[C-\left(Z_{i} \cup Z_{4}\right)\right]$ is a circuit of $M \mid(C \cup Z)$.

By the previous paragraph applied to Z^{\prime} instead of Z, we conclude that:
(c) The cosimplification of $M \mid\left(C \cup Z^{\prime}\right)$ is isomorphic to $M\left(K_{4}\right)$ and $\pi(C, Z)=\left\{Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}\right\}$ with $\left|Z_{1}^{\prime}\right|=\left|Z_{2}^{\prime}\right|=2$ and $\left|Z_{3}^{\prime}\right| \in\{2,3\}$. Moreover, the elements of Z^{\prime} can be labeled as $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ so that, for each $i \in\{1,2,3\},\left(Z^{\prime}-z_{i}^{\prime}\right) \cup\left(C-Z_{i}^{\prime}\right)$ is a circuit of $M \mid\left(C \cup Z^{\prime}\right)$. Or
(d) The cosimplification of $M \mid(C \cup Z)$ is isomorphic to F_{7}^{*} and $\pi(C, Z)=\left\{Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}, Z_{4}^{\prime}\right\}$. Moreover, we can label these sets so that $Z_{4} \subseteq Z_{4}^{\prime}$, when (b) occurs, and $\left|Z_{4}^{\prime}\right|=1$, when (a) occurs. The elements of Z^{\prime} can be labeled as $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ so that, for each $i \in\{1,2,3\},\left(Z^{\prime}-z_{i}^{\prime}\right) \cup\left[C-\left(Z_{i}^{\prime} \cup Z_{4}^{\prime}\right)\right]$ is a circuit of $M \mid\left(C \cup Z^{\prime}\right)$.

Now, we divide the proof in three steps.
Step 1. (b) and (d) cannot occur simultaneously.
Suppose that (b) and (d) occur simultaneously. Assume that $Z_{4}=\{a\}$. First, we show that

$$
\begin{equation*}
Z_{4} \in \pi\left(C, Z^{\prime}\right), \quad \text { that is, } Z_{4}=Z_{4}^{\prime}=\{a\} . \tag{3.1}
\end{equation*}
$$

If $Z_{4} \notin \pi\left(C, Z^{\prime}\right)$, then $\left|Z_{4}^{\prime}\right| \geq 2$. Choose $b \in Z_{4}^{\prime}-Z_{4}$. We may assume that $b \in Z_{1}$. Let $\{r, s\}$ and t be respectively a 2 -subset of $\{1,2,3\}$ and an element of $\{2,3\}$. By (b) and (d), $C_{1 t}=\left\{z_{1}, z_{t}\right\} \cup Z_{1} \cup Z_{t}$ and $C_{r s}^{\prime}=\left\{z_{r}^{\prime}, z_{s}^{\prime}\right\} \cup Z_{r}^{\prime} \cup Z_{s}^{\prime}$ are circuits of M. Observe that

$$
\begin{equation*}
a \notin C_{1 t} \cup C_{r s}^{\prime} \quad \text { and } \quad b \in C_{1 t}-C_{r s}^{\prime} . \tag{3.2}
\end{equation*}
$$

As $\left\{z_{1}, z_{t}\right\}$ and $\left\{z_{r}^{\prime}, z_{s}^{\prime}\right\}$ are strongly disjoint C-arcs, it follows, by Lemma 3.1, that $\left\{z_{1}, z_{t}\right\}$ and $\left\{z_{r}^{\prime}, z_{s}^{\prime}\right\}$ do not cross. Therefore, by definition and (3.2),

$$
\begin{equation*}
C_{1 t} \cap C_{r s}^{\prime}=\emptyset \quad \text { or }\left[C_{r s}^{\prime}-C_{1 t}\right] \cap C=\emptyset . \tag{3.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left(Z_{1} \cup Z_{t}\right) \cap\left(Z_{r}^{\prime} \cup Z_{s}^{\prime}\right)=\emptyset \quad \text { or } \quad\left(Z_{1} \cup Z_{t}\right) \supseteq\left(Z_{r}^{\prime} \cup Z_{s}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

As (3.4) holds for every 2 -subset $\{r, s\}$ of $\{1,2,3\}$, it follows that

$$
\begin{equation*}
\left(Z_{1} \cup Z_{t}\right) \cap\left(Z_{1}^{\prime} \cup Z_{2}^{\prime} \cup Z_{3}^{\prime}\right)=\emptyset \quad \text { or } \quad\left(Z_{1} \cup Z_{t}\right) \supseteq\left(Z_{1}^{\prime} \cup Z_{2}^{\prime} \cup Z_{3}^{\prime}\right) . \tag{3.5}
\end{equation*}
$$

From (3.5) for $t=2$ and $t=3$, it is not difficult to show that there is $k \in\{1,2,3,4\}$ such that

$$
\begin{equation*}
\left(Z_{1}^{\prime} \cup Z_{2}^{\prime} \cup Z_{3}^{\prime}\right) \subseteq Z_{k} \tag{3.6}
\end{equation*}
$$

In particular, $\left|Z_{k}\right| \geq 3$ and $C=Z_{k} \cup Z_{4}^{\prime}$. As $Z_{i} \subseteq Z_{4}^{\prime}$, for every $i \in\{1,2,3,4\}-k$, it follows that $\left|Z_{4}^{\prime}\right| \geq 3$; a contradiction because (iii) happens for $S=Z_{k}$ and $S^{\prime}=Z_{4}^{\prime}$. Therefore (3.1) holds.

Now, we prove that

$$
\begin{equation*}
\left|Z_{1}\right|=\left|Z_{2}\right|=\left|Z_{3}\right|=2 \tag{3.7}
\end{equation*}
$$

Assume that (3.7) does not hold. As $|C| \leq 7$, it follows that $\left|Z_{i}\right|=1$, for some $i \in\{1,2,3\}$, say $i=3$ and $Z_{3}=\{b\}$. By (3.1), $\{b\} \in \pi\left(C, Z^{\prime}\right)$, say $Z_{3}^{\prime}=\{b\}$. By (b) and (d), $C_{12}=\left\{z_{1}, z_{2}\right\} \cup Z_{1} \cup Z_{2}$ and $C_{23}^{\prime}=\left\{z_{2}^{\prime}, z_{3}^{\prime}\right\} \cup Z_{2}^{\prime} \cup Z_{3}^{\prime}$ are circuits of M. (In this paragraph, we assume also that $\left|Z_{2}^{\prime}\right| \geq\left|Z_{1}^{\prime}\right|$.) Note that

$$
\begin{equation*}
a \notin C_{12} \cup C_{23}^{\prime} \quad \text { and } \quad b \in C_{23}^{\prime}-C_{12} . \tag{3.8}
\end{equation*}
$$

As $\left\{z_{1}, z_{2}\right\}$ and $\left\{z_{2}^{\prime}, z_{3}^{\prime}\right\}$ are strongly disjoint C-arcs, it follows, by Lemma 3.1, that $\left\{z_{1}, z_{2}\right\}$ and $\left\{z_{2}^{\prime}, z_{3}^{\prime}\right\}$ do not cross. Therefore, by definition and (3.8),

$$
\begin{equation*}
C_{12} \cap C_{23}^{\prime}=\emptyset \quad \text { or }\left[C_{12}-C_{23}^{\prime}\right] \cap C=\emptyset . \tag{3.9}
\end{equation*}
$$

Observe that $\left|C_{12} \cap C\right|=|C|-2$ and $\left|C_{23}^{\prime} \cap C\right| \geq \frac{|C|}{2}$. (Remember that, in this paragraph, we are assuming that $\left|Z_{2}^{\prime}\right| \geq\left|Z_{1}^{\prime}\right|$.) Hence $\left|C_{23}^{\prime} \cap C\right|+\left|C_{12} \cap C\right| \geq|C|+1$. In particular, $C_{12} \cap C_{23}^{\prime} \cap C \neq \emptyset$. By (3.9), $\left[C_{12}-C_{23}^{\prime}\right] \cap C=\emptyset$. We arrive at a contradiction because $\left|C_{12}\right| \geq\left|C_{23}^{\prime}\right|$ and $b \in C_{23}^{\prime}-C_{12}$. Thus (3.7) follows.

Replacing (Z, Z^{\prime}) by (Z^{\prime}, Z), Eq. (3.7) becomes

$$
\begin{equation*}
\left|Z_{1}^{\prime}\right|=\left|Z_{2}^{\prime}\right|=\left|Z_{3}^{\prime}\right|=2 . \tag{3.10}
\end{equation*}
$$

If $\{r, s\}$ is a 2 -subset of $\{1,2,3\}$, then, by (b) and (d), $C_{r s}=\left\{z_{r}, z_{s}\right\} \cup Z_{r} \cup Z_{s}$ and $C_{r s}^{\prime}=\left\{z_{r}^{\prime}, z_{s}^{\prime}\right\} \cup Z_{r}^{\prime} \cup Z_{s}^{\prime}$ are circuits of M. $B y$ (3.7) and (3.10), $\left|C_{r s}\right|=\left|C_{r s}^{\prime}\right|=6$. We can label z_{1}, z_{2}, z_{3} so that $C_{12} \cap C \neq C_{12}^{\prime} \cap C$. In particular, $\left[C_{12}-C_{12}^{\prime}\right] \cap C \neq \emptyset$ and $\left[C_{12}^{\prime}-C_{12}\right] \cap C \neq \emptyset$. By construction, $a \notin C_{12} \cup C_{12}^{\prime}$. As $\left|C_{12} \cap C\right|+\left|C_{12}^{\prime} \cap C\right|=8$, it follows that $\left[C_{12} \cap C_{12}^{\prime}\right] \cap C \neq \emptyset$. Therefore $\left\{z_{1}, z_{2}\right\}$ and $\left\{z_{1}^{\prime}, z_{2}^{\prime}\right\}$ cross; a contradiction to Lemma 3.1 and so Step 1 follows.

By Step 1, (b) and (d) cannot occur simultaneously. Thus (a) or (c) happens, say (a). That is, Z is simple. We arrive at the final contradiction by proving the next two steps.
Step 2. (d) cannot happen.
Suppose that (d) happens. By (d), $\left|Z_{4}^{\prime}\right|=1$, say $Z_{4}^{\prime}=\{a\}$. By (a), there is $i \in\{1,2,3\}$ such that $a \in Z_{i}$ and there is $b \in Z_{i}-a$ because $\left|Z_{i}\right| \geq 2$. Observe that $b \in Z_{j}^{\prime}$, for some $j \in\{1,2,3\}$, say $j=3$. As $Z-z_{i}$ and $Z^{\prime}-z_{k}^{\prime}$, for $k \in\{1,2\}$, are strongly disjoint C-arcs, it follows, by Lemma 3.1, that $Z-z_{i}$ and $Z^{\prime}-z_{k}^{\prime}$ do not cross. By (a) and (d),
(e) the projections of $Z-z_{i}$ over C are Z_{i} and $C-Z_{i}$; and
(f) the projections of $Z^{\prime}-z_{k}^{\prime}$ over C are $Z_{4}^{\prime} \cup Z_{k}^{\prime}$ and $C-\left(Z_{4}^{\prime} \cup Z_{k}^{\prime}\right)$.

But $a \in Z_{i} \cap\left[Z_{4}^{\prime} \cup Z_{k}^{\prime}\right], b \in Z_{i} \cap\left[C-\left(Z_{4}^{\prime} \cup Z_{k}^{\prime}\right)\right]$ and so, for $k \in\{1,2\}$,

$$
\begin{equation*}
\left[C-Z_{i}\right] \cap\left[Z_{4}^{\prime} \cup Z_{k}^{\prime}\right]=\emptyset \quad \text { or } \quad\left[C-Z_{i}\right] \cap\left[C-\left(Z_{4}^{\prime} \cup Z_{k}^{\prime}\right)\right]=\emptyset . \tag{3.11}
\end{equation*}
$$

Now, we show that

$$
\begin{equation*}
\left[C-Z_{i}\right] \cap\left[Z_{4}^{\prime} \cup Z_{k}^{\prime}\right]=\emptyset, \quad \text { for some } k \in\{1,2\}, \text { say } k=1 . \tag{3.12}
\end{equation*}
$$

If (3.12) does not hold, then, by (3.11), $\left[C-Z_{i}\right] \cap\left[C-\left(Z_{4}^{\prime} \cup Z_{k}^{\prime}\right)\right]=\emptyset$, for each $k \in\{1,2\}$. Hence $C-\left(Z_{4}^{\prime} \cup Z_{k}^{\prime}\right) \subseteq Z_{i}$, for $k \in\{1,2\}$. Hence Z_{i} contains Z_{l}^{\prime}, for every $l \in\{1,2,3\}$; a contradiction because $\left|Z_{i}\right| \leq 3$ and $\left|Z_{1}^{\prime}\right|+\left|Z_{2}^{\prime}\right|+\left|Z_{3}^{\prime}\right|=|C|-\left|Z_{4}^{\prime}\right| \geq 5$. Therefore (3.12) holds. By (3.12), $Z_{4}^{\prime} \cup Z_{1}^{\prime} \subseteq Z_{i}$. By (3.11) for $k=2, Z_{2}^{\prime}$ or Z_{3}^{\prime} is a subset of Z_{i}. As $\left|Z_{i}\right| \leq 3$ and $b \in Z_{i} \cap Z_{3}^{\prime}$, it follows that $\left|Z_{i}\right|=3, Z_{3}^{\prime} \subseteq Z_{i}$ and $\left|Z_{1}^{\prime}\right|=\left|Z_{3}^{\prime}\right|=\left|Z_{4}^{\prime}\right|=1$. Therefore (ii) holds; a contradiction and Step 2 follows.
Step 3. (c) cannot happen.
Assume that (c) happens. For each $e \in C$, let Z_{e} and Z_{e}^{\prime} be the elements of $\pi(C, Z)$ and $\pi\left(C, Z^{\prime}\right)$ respectively so that $e \in Z_{e} \cap Z_{e}^{\prime}$. By (a) and (c), for each $e \in C$, there are circuits C_{e} and C_{e}^{\prime} of M such that $C_{e} \subseteq C \cup Z, C_{e}^{\prime} \subseteq C \cup Z^{\prime}, C_{e} \cap C=C-Z_{e}$ and $C_{e}^{\prime} \cap C=C-Z_{e}^{\prime}$. Observe that $e \notin C_{e} \cup C_{e}^{\prime}$ and $C_{e} \cap C_{e} \neq \emptyset$ because $\left|C \cap C_{e}\right| \geq 4$ and $\left|C \cap C_{e}^{\prime}\right| \geq 4$. As $C_{e}-C$ and $C_{e}^{\prime}-C$ are strongly disjoint C-arcs, it follows, by Lemma 3.1, that $C_{e}-C$ and $C_{e}^{\prime}-C$ do not cross and so

$$
C_{e} \cap C \subseteq C_{e}^{\prime} \cap C \quad \text { or } \quad C_{e}^{\prime} \cap C \subseteq C_{e} \cap C
$$

Hence

$$
\begin{equation*}
Z_{e} \subseteq Z_{e}^{\prime} \quad \text { or } \quad Z_{e}^{\prime} \subseteq Z_{e}, \quad \text { for each } e \in C . \tag{3.13}
\end{equation*}
$$

Now, we prove that

$$
\begin{equation*}
Z_{e}=Z_{e}^{\prime}, \quad \text { for each } e \in C \tag{3.14}
\end{equation*}
$$

By (3.13), we may assume that $Z_{e} \subseteq Z_{e}^{\prime}$. If (3.14) does not hold, then $\left|Z_{e}^{\prime}-Z_{e}\right|=1$, say $Z_{e}^{\prime}=Z_{e} \cup f$. As $Z_{f}^{\prime}=Z_{e}^{\prime}$ and $\pi(C, Z)$ is a partition of C, it follows that $Z_{f}^{\prime} \nsubseteq Z_{f}$. By (3.13), $Z_{f} \subseteq Z_{f}^{\prime}$ and so $Z_{f}=\{f\}$; a contradiction and (3.14) follows. By (3.14), $\pi(C, Z)=\pi\left(C, Z^{\prime}\right)$ and (i) holds; a contradiction. Therefore both Step 3 and this lemma follow.

4. Global structural results

In the only result of this section, we describe the structure of the matroid obtained from a 3connected binary matroid having circumference 6 or 7 after the deletion of all the elements belonging to $\operatorname{cl}(C)-C$, where C is one of its maximum size circuits.

Proposition 4.1. Suppose that M is a 3-connected binary matroid such that $\operatorname{circ}(M) \in\{6,7\}$ and $r(M) \geq \operatorname{circ}(M)+2$. Let C be a maximum size circuit of M. If $K_{1}, K_{2}, \ldots, K_{n}$ are the connected components of M / C having non-zero rank, then $n \geq 3$ and, for every $i \in\{1,2, \ldots, n\},\left|E\left(K_{i}\right)\right| \geq 3$ and $r\left(K_{i}\right)=1$. Moreover, when Z_{i} is a 3 -subset of $E\left(K_{i}\right)$, for $i \in\{1,2, \ldots, n\}$, then:
(i) There is a partition T_{1}, T_{2}, T_{3} of C such that $\left|T_{1}\right|=\left|T_{2}\right|=2$ and T_{1}, T_{2}, T_{3} are series classes of $M \mid\left(C \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}\right)$.
(ii) The cosimplification of $M \mid\left(C \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}\right)$ is isomorphic to $M\left(K_{3, n}^{(3)}\right)$ (and $Z_{1}, Z_{2}, \ldots, Z_{n}$ are the stars of the vertices of $K_{3, n}^{(3)}$ having degree 3).
(iii) For $i \in\{1,2, \ldots, n\}, E\left(K_{i}\right)$ is a triad or a quad of M.
(iv) The cosimplification of $M \backslash\left[\operatorname{cl}_{M}(C)-C\right]$ is isomorphic to $M_{n, l, 3}$, where $l=\mid\{i \in\{1,2, \ldots, n\}$: $E\left(K_{i}\right)$ is a quad of $\left.M\right\} \mid$.
Proof. By Proposition 2.1, each connected component of M / C has rank equal to 0 or 1 . Hence, for every $i \in\{1,2, \ldots, n\}, r\left(K_{i}\right)=1$ and so

$$
n=\sum_{i=1}^{n} r\left(K_{i}\right)=r(M / C)=r(M)-[|C|-1] .
$$

By hypothesis, $r(M) \geq|C|+2$. Consequently,

$$
\begin{equation*}
n \geq 3 . \tag{4.1}
\end{equation*}
$$

To finish the proof of the first part of this proposition, we need to show that $\left|E\left(K_{i}\right)\right| \geq 3$, for every $i \in\{1,2, \ldots, n\}$. This happens because $E\left(K_{i}\right)$ is a cocircuit of both M / C and M. (Remember that M is 3-connected.) Now, we need to establish (i), (ii), (iii) and (iv). Note that:

$$
\begin{equation*}
\text { for } i \in\{1,2, \ldots, n\} \text {, any } 3 \text {-subset of } E\left(K_{i}\right) \text { is a star with respect to } C \text {. } \tag{4.2}
\end{equation*}
$$

By (4.2), for each $i \in\{1,2, \ldots, n\}$, we can choose stars Z_{i} and Z_{i}^{\prime} with respect to C such that $Z_{i} \cup Z_{i}^{\prime} \subseteq E\left(K_{i}\right)$. We next establish that

$$
\begin{equation*}
Z_{i} \text { is simple if and only if } Z_{i}^{\prime} \text { is simple. } \tag{4.3}
\end{equation*}
$$

By (4.2), it is enough to prove (4.3) when $\left|Z_{i}-Z_{i}^{\prime}\right|=1$, say $Z_{i}=\{a, b, c\}$ and $Z_{i}^{\prime}=\{b, c, d\}$. Assume that (4.3) does not hold. So exactly one of Z_{i} or Z_{i}^{\prime} is simple, say Z_{i}. (Consequently, Z_{i}^{\prime} is non-simple.) By Lemma 3.3(ii), there are $S \in \pi\left(C, Z_{i}\right)$ and $S^{\prime} \in \pi\left(C, Z_{i}^{\prime}\right)$ such that $|S|=3,\left|S^{\prime}\right|=4, S \cap S^{\prime}=\emptyset$ and $S \cup S^{\prime}=C$. Let D be the circuit of M such that $D-C=\{b, c\}$ and $|D|$ is minimum. Note that $|D|=4$ because D is a circuit of both $M \mid\left(C \cup Z_{i}\right)$ and $M \mid\left(C \cup Z_{i}^{\prime}\right)$. As Z_{i} is simple, it follows that $D \cap C \in \pi\left(C, Z_{i}\right)$. Hence $(D \cap C) \cap S=\emptyset$ because $|S|=3$ and $|D \cap C|=2$. Therefore $D \cap C \subsetneq S^{\prime}$. We arrive at a contradiction because S^{\prime} is a series class of $M \mid\left(C \cup Z_{i}^{\prime}\right)$. Thus (4.3) follows.

We may reorder the stars $Z_{1}, Z_{2}, \ldots, Z_{n}$ so that $Z_{1}, Z_{2}, \ldots, Z_{m}$ are non-simple and Z_{m+1}, Z_{m+2}, \ldots, Z_{n} are simple, for some $0 \leq m \leq n$. By definition, when $\{i, j\}$ is a 2 -subset of $\{1,2, \ldots, n\}, Z_{i}$ and Z_{j} are strongly disjoint stars with respect to C. By Lemma 3.3(ii, iii), there is $S_{i} \in \pi\left(C, Z_{i}\right)$, for $i \in\{1,2, \ldots, m\}$, such that $3 \leq\left|S_{i}\right| \leq|C|-3 \leq 4$. Moreover, by Lemma 3.3(iii), $S_{i} \cup S_{j}=C$, when $\{i, j\}$ is a 2 -subset of $\{1,2, \ldots, m\}$. Therefore

$$
\begin{equation*}
m \leq 2 \tag{4.4}
\end{equation*}
$$

Now, we show that

$$
\begin{equation*}
m \leq 1 . \tag{4.5}
\end{equation*}
$$

If (4.5) does not hold, then, by (4.4), $m=2$. By (4.1), Z_{3} exists and so Z_{3} is simple. By Lemma 3.3(ii), $|C|=7, S \cup S_{1}=S \cup S_{2}=C$, where $S \in \pi\left(C, Z_{3}\right)$ and $|S|=3$. Hence $S_{1}=S_{2}$; a contradiction since $S_{1} \cup S_{2}=C$. Therefore (4.5) follows.

By Lemma 3.3(i), (4.1) and (4.5),

$$
\begin{equation*}
\pi\left(C, Z_{m+1}\right)=\pi\left(C, Z_{2}\right)=\pi\left(C, Z_{3}\right)=\cdots=\pi\left(C, Z_{n}\right) . \tag{4.6}
\end{equation*}
$$

Now, we establish that:

$$
\begin{equation*}
\pi\left(C, Z_{i}^{\prime}\right)=\pi\left(C, Z_{i}\right) . \tag{4.7}
\end{equation*}
$$

If Z_{i} is simple, then replace Z_{i} by Z_{i}^{\prime}. In this case, (4.7) follows from (4.6). If Z_{i} is non-simple, then, by (4.5), $i=m=1$. By Lemma 3.3(ii), there is $S \in \pi\left(C, Z_{2}\right)$ such that $|S|=3$ and $C-S \in$ $\pi\left(C, Z_{i}\right) \cap \pi\left(C, Z_{i}^{\prime}\right)$ (by (4.3), Z_{i}^{\prime} is also non-simple). Hence every 1 -element subset of S belongs to both $\pi\left(C, Z_{i}\right)$ and $\pi\left(C, Z_{i}^{\prime}\right)$. Thus (4.7) also follows in this case.

To prove this result, we need to show that

$$
\begin{equation*}
m=0 . \tag{4.8}
\end{equation*}
$$

If $m>0$, then, by (4.5), $m=1$. By Lemma 3.3 (ii), $|C|=7$ and there is $S \in \pi\left(C, Z_{n}\right)$ such that $|S|=3$. Note that $\{C-S, S\}$ is a 2 -separation of $M \mid C$. By (3.8) of Seymour [11], there is a C-arc Z such that $Z \nrightarrow S$ and $Z \nrightarrow C-S$ because M is 3 -connected. By (4.7) and (4.6), $Z^{\prime} \rightarrow C-S$, when Z^{\prime} is a C-arc such that $Z^{\prime} \subseteq E\left(K_{i}\right)$, for some $i \in\{2,3, \ldots, n\}$. Hence $Z \nsubseteq E\left(K_{i}\right)$, for each $i \in\{2,3, \ldots, n\}$. By (4.7) and Lemma 3.3(ii), $Z^{\prime \prime} \rightarrow S$, when $Z^{\prime \prime}$ is a C-arc such that $Z^{\prime \prime} \subseteq E\left(K_{1}\right)$. Therefore $Z \nsubseteq E\left(K_{i}\right)$, for each $i \in\{1,2, \ldots, n\}$. In particular, $Z \subseteq \mathrm{cl}_{M}(C)-C$ and $|Z|=1$, say $Z=\{e\}$. Let D be a circuit of M such that $e \in D \subseteq C \cup e$ and $|D|$ is minimum. In particular, $|D| \leq 4$. As $Z \nrightarrow C-S$, it follows that
$D \cap S \neq \emptyset$. Moreover, $|D \cap S| \in\{1,2\}$ because $D \Delta C$ is also a circuit of M and $Z \nrightarrow C-S$. Observe that $D-(S \cup e) \neq \emptyset$ since $Z \nrightarrow S$. Choose 2-subsets X, X^{\prime} and $X^{\prime \prime}$ of Z_{1}, Z_{2} and S respectively such that $D \cap S \subseteq X^{\prime \prime}$ and both $X \cup X^{\prime \prime}$ and $X^{\prime} \cup(C-S)$ are circuits of M. Now, we show that

$$
\begin{equation*}
D^{\prime}=D \Delta\left(X \cup X^{\prime \prime}\right) \Delta\left(X^{\prime} \cup(C-S)\right) \quad \text { is a circuit of } M . \tag{4.9}
\end{equation*}
$$

If C^{\prime} is a circuit of M such that $C^{\prime} \subseteq D^{\prime}$, then
(a) $C^{\prime}-C \neq \emptyset$ because $C \nsubseteq D^{\prime}$;
(b) $C^{\prime}-C \neq X^{\prime}$ because $S \nsubseteq D^{\prime}$ and $C-S \nsubseteq D^{\prime}$;
(c) $C^{\prime}-C \neq X$ because $X^{\prime \prime} \nsubseteq D^{\prime}$ and $C-X^{\prime \prime} \nsubseteq D^{\prime}$; and
(d) $C^{\prime}-C \neq\{e\}$ because $D \nsubseteq D^{\prime}$ and $D \triangle C \nsubseteq D^{\prime}$.

In particular, $\left|C^{\prime}-C\right| \geq 3$. As $\left|D^{\prime}-C\right|=5$ and D^{\prime} is the union of pairwise disjoint circuits of M, it follows that D^{\prime} is a circuit of M. Therefore (4.9) follows. We arrive at a contradiction because $\left|D^{\prime}\right| \geq 8$. Thus (4.8) holds. In particular, Z_{i} is simple, for every i.

Now, our goal is to prove that

$$
\begin{equation*}
r\left(E\left(K_{i}\right)\right)=3 . \tag{4.10}
\end{equation*}
$$

Assume that (4.10) fails for some i. Let B be a maximal independent set of M such that $Z_{i} \subseteq B \subseteq E\left(K_{i}\right)$. Thus $|B| \geq 4$. Choose a 3 -subset Z_{i}^{\prime} of B such that $\left|Z_{i} \cup Z_{i}^{\prime}\right|=4$. By (4.3) and (4.8), both Z_{i}^{\prime} and Z_{i} are simple. By (4.7), $\pi\left(C, Z_{i}^{\prime}\right)=\pi\left(C, Z_{i}\right)$ is the set of series classes of both $M \mid\left(C \cup Z_{i}\right)$ and $M \mid\left(C \cup Z_{i}^{\prime}\right)$ contained in C. Thus $\pi\left(C, Z_{i}^{\prime}\right)=\pi\left(C, Z_{i}\right)$ is the set of series classes of $M \mid\left(C \cup Z_{i} \cup Z_{i}^{\prime}\right)$ contained in C. If N is the cosimplification of $M \mid\left(C \cup Z_{i} \cup Z_{i}^{\prime}\right)$, then $C \cap E(N)$ is a circuit-hyperplane of N having three elements. So $r(N)=3$. But each element of $Z_{i} \cup Z_{i}^{\prime}$ is contained in a trivial series class of $M \mid\left(C \cup Z_{i} \cup Z_{i}^{\prime}\right)$. Hence $r_{N}\left(Z_{i} \cup Z_{i}^{\prime}\right)=r\left(Z_{i} \cup Z_{i}^{\prime}\right)=\left|Z_{i} \cup Z_{i}^{\prime}\right|=4$; a contradiction. Thus (4.10) follows.

Next, we show (iii), that is,

$$
\begin{equation*}
E\left(K_{i}\right) \quad \text { is a triad or a quad of } M . \tag{4.11}
\end{equation*}
$$

If $E\left(K_{i}\right)=Z_{i}$, then (4.11) follows. Suppose that $E\left(K_{i}\right) \neq Z_{i}$. By (4.10), for each $e \in E\left(K_{i}\right)-Z_{i}$, there is a circuit D_{e} of M so that $e \in D_{e} \subseteq Z_{i} \cup e$. As $E\left(K_{i}\right)$ is a cocircuit of M, it follows, by orthogonality, that $\left|D_{e}\right|$ is an even number. Hence $\left|D_{e}\right|=4$ because M is 3-connected. In particular, $D_{e}=Z_{i} \cup e$. As M is simple, it follows that e is unique. Therefore $E\left(K_{i}\right)=Z_{i} \cup e$ and (4.11) follows.

By (4.6), there is a partition $\left\{T_{1}, T_{2}, T_{3}\right\}$ of C such that $\left|T_{1}\right|=\left|T_{2}\right|=2$ and, for every $i \in$ $\{1,2, \ldots, n\}, \pi\left(C, Z_{i}\right)=\left\{T_{1}, T_{2}, T_{3}\right\}$. We can label the elements of Z_{i} by a_{i}, b_{i}, c_{i} so that $C_{i}=\left\{a_{i}, b_{i}\right\} \cup T_{1}$ and $D_{i}=\left\{a_{i}, c_{i}\right\} \cup T_{2}$ are circuits of M. Note that $\mathscr{B}=\left\{C, C_{1}, C_{2}, \ldots, C_{n}, D_{1}, D_{2}, \ldots, D_{n}\right\}$ spans the cycle space of $M \mid\left(C \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}\right)$ because $(C-c) \cup\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ spans $C \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}$, for $c \in C$. In particular, T_{1}, T_{2} and T_{3} are series classes of $M \mid\left(C \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}\right)$ because every circuit belonging to \mathcal{B} contains T_{i} or avoids T_{i}, for every $i \in\{1,2,3\}$. Therefore (i) follows.

For $i \in\{1,2,3\}$, choose $t_{i} \in T_{i}$. By (i), the cosimplification of $M \mid\left(C \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}\right)$ is equal to

$$
H=\left[M \mid\left(C \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{n}\right)\right] /\left(C-\left\{t_{1}, t_{2}, t_{3}\right\}\right) .
$$

Note that $\mathcal{B}^{\prime}=\left\{C^{\prime}, C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}, D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{n}^{\prime}\right\}$ spans the cycle space of H, where $C^{\prime}=\left\{t_{1}, t_{2}, t_{3}\right\}$ and, for $i \in\{1,2, \ldots, n\}, C_{i}^{\prime}=\left\{a_{i}, b_{i}, t_{1}\right\}$ and $D_{i}^{\prime}=\left\{a_{i}, c_{i}, t_{2}\right\}$. Hence $H=M(G)$, where G is a simple graph having vertex-set $\left\{v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, w_{3}\right\}$ whose edges are: t_{1} joining w_{1} and $w_{2} ; t_{2}$ joining w_{3} and $w_{2} ; t_{3}$ joining w_{1} and w_{3}; and, for every $i \in\{1,2, \ldots, n\}, a_{i}$ joining v_{i} and $w_{2} ; b_{i}$ joining v_{i} and w_{1}; and c_{i} joining v_{i} and w_{3}. But $G \cong K_{3, n}^{(3)}$. We have (ii). Note that (iv) is a consequence of (ii) and (iii).

5. The $\mathbf{3}$-connected binary matroids with circumference equal to 6

Proof of Theorem 1.2. It is easy to see that $\operatorname{circ}\left(M_{n, m, l}\right)=6$, when $n \geq 3$. Now, assume that M is a 3 -connected binary matroid such that $\operatorname{circ}(M)=6$. Let C be a circuit of M such that $|C|=\operatorname{circ}(M)$.

By Proposition 4.1, $M \backslash\left[\mathrm{cl}_{M}(C)-C\right]$ has three series classes S_{1}, S_{2} and S_{3} contained in C. Moreover, $\left|S_{1}\right|=\left|S_{2}\right|=\left|S_{3}\right|=2$, say $S_{1}=\left\{a, a^{\prime}\right\}, S_{2}=\left\{b, b^{\prime}\right\}, S_{3}=\left\{c, c^{\prime}\right\}$, and

$$
M \backslash\left[\operatorname{cl}_{M}(C)-C\right] /\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\} \cong M_{n^{\prime}, m^{\prime}, 3},
$$

where $n^{\prime}=r(M)-5$. (We also have that $T=\{a, b, c\}$ is the special triangle of $M \backslash\left[\mathrm{cl}_{M}(C)-\right.$ $C] /\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$. .

For $e \in \mathrm{cl}_{M}(C)-C$, let C_{e} be a circuit of M such that $e \in C_{e} \subseteq C \cup e$ and $\left|C_{e}\right|$ is minimum. Hence $\left|C_{e}-e\right| \in\{2,3\}$. First, we establish that

$$
\begin{equation*}
S_{i} \subseteq C_{e}, \quad \text { for some } i \in\{1,2,3\} \tag{5.1}
\end{equation*}
$$

If (5.1) is not true, then C_{e} meets each S_{i} in 0 or 1 element. In particular, C_{e} meets at least two S_{i} 's in 1 element, say $C_{e} \cap S_{1}=\{a\}$ and $C_{e} \cap S_{2}=\{b\}$. We have two cases to deal with. If $\left|C_{e}\right|=3$, then $C_{e} \cap S_{3}=\emptyset$ and $C_{e} \triangle D$ is a 7 -element circuit of M, where D is a circuit of M such that $S_{2} \cup S_{3} \subseteq D$ and $\left|D-\mathrm{cl}_{M}(C)\right|=2$; a contradiction. If $\left|C_{e}\right|=4$, then C_{e} meets S_{3} in 1 element, say $C_{e} \cap S_{3}=\{c\}$. Let D_{1} and D_{2} be 4 -element circuits of M such that $D_{i} \cap C=S_{i}$, for $i \in\{1,2\}$, and $D_{1}-C$ and $D_{2}-C$ are strongly disjoint C-arcs. We arrive at a contradiction by proving that

$$
X=C_{e} \triangle D_{1} \Delta D_{2}
$$

is a circuit of M. (Observe that $|X|=8$.) If X is not a circuit of M, then $X=C_{1} \cup C_{2} \cup \ldots \cup C_{1}$, where $C_{1}, C_{2}, \ldots, C_{l}$ are pairwise disjoint circuits of M, for some $l \geq 2$. Assume that $e \in C_{1}$. Note that $C_{1}-\mathrm{cl}_{M}(C) \neq \emptyset$, otherwise $C_{1}=\left\{e, a^{\prime}, b^{\prime}, c\right\}$, by the choice of C_{e}, and so $C_{1} \Delta C_{e}=\left\{c, c^{\prime}\right\}$. Hence C_{1} meets $D_{1}-C$ or $D_{2}-C$, say $D_{1}-C$. But $D_{1}-C$ is a series class of $M \mid\left(C \cup e \cup D_{1} \cup D_{2}\right)$. Consequently, $D_{1}-C \subseteq C_{1}$. As C_{2} is not a proper subset of C, it follows that $D_{2}-C \subseteq C_{2}$. In particular, $C_{2} \cap C$ is a projection of the C-arc $D_{2}-C$; a contradiction because $C_{2} \cap C$ does not contain any S_{i}. Therefore (5.1) holds.
By (5.1), for $e \in \mathrm{cl}_{M}(C)-C$, we can choose C_{e} so that $\left|C_{e} \cap\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}\right|=1$. Therefore the elements belonging to $\mathrm{cl}_{M}(C)-C$ can be labeled as:
(i) s_{i}, for $i \in\{1,2,3\}$, when $S_{i} \cup s_{i}$ is a triangle of M.
(ii) $t_{i j}$, for a 2 -subset $\{i, j\}$ of $\{1,2,3\}$, when $S_{i} \cup\left\{t, t_{i j}\right\}$ is a circuit of M, for $t \in S_{j} \cap\{a, b, c\}$.

In particular, $\left|\mathrm{cl}_{M}(C)-C\right| \leq 9$. Let M^{\prime} be the binary extension of M obtained by adding all the elements described in (i) or (ii) which do not belong to M (with the dependence described in (i) or (ii)). When $\{1,2,3\}=\{i, j, k\},\left\{t_{i k}, t_{j k}\right\} \cup S_{k}$ is a circuit of M^{\prime}. In particular, $M^{\prime} \backslash\left\{t_{12}, t_{23}, t_{31}\right\} \cong M_{n^{\prime}+3, m^{\prime}, 3}$ and so $M^{\prime} \cong M_{n^{\prime}+3, m^{\prime}+3,3}$. (Observe that $\left\{s_{1}, s_{2}, s_{3}\right\}$ is the special triangle of M^{\prime}.) Hence $M \cong M_{n, m, l}$, where $n=n^{\prime}+3, m=m^{\prime}+\left[\left|E(M) \cap\left\{t_{12}, t_{13}, t_{21}, t_{23}, t_{31}, t_{32}\right\}\right|-3\right]$ and $l=\left|E(M) \cap\left\{s_{1}, s_{2}, s_{3}\right\}\right|$. (Observe that $\left|\left\{t_{i k}, t_{j k}\right\} \cap E(M)\right| \geq 1$, when $\{i, j, k\}=\{1,2,3\}$, otherwise S_{k} is a cocircuit of M.)

6. The 3-connected binary matroids with circumference equal to 7

A quad Q of a matroid M is said to be special when $Q \cap C=\emptyset$, for some largest circuit C of M.
Lemma 6.1. Let M be a 3 -connected binary matroid such that $\operatorname{circ}(M) \in\{6,7\}$. If Q is a special quad of M, then there is an element e belonging to Q such that $M \backslash e$ is 3 -connected.

Proof. By definition, there is a circuit C of M such that $|C|=\operatorname{circ}(M)$ and $Q \cap C=\emptyset$. As Q is a cocircuit of M / C, it follows, by Proposition 2.1, that $Q \subseteq E(K)$, for a connected component K of M / C such that $r(K)=1$. Therefore $Q=E(K)$ because $E(K)$ is a cocircuit of M. If $M \backslash e$ is not 3-connected, for every $e \in Q$, then, by Theorem 1 of Lemos [12], Q meets at least two triads of M, say T_{1}^{*} and T_{2}^{*}. (Remember that Q is also a circuit of M.) As $\left|T_{i}^{*} \cap Q\right|=2, Q \cap C=\emptyset$ and $\left|T_{i}^{*} \cap C\right| \neq 1$, it follows that $T_{i}^{*} \cap C=\emptyset$. Hence T_{1}^{*} and T_{2}^{*} are cocircuits of M / C and so T_{1}^{*} and T_{2}^{*} are also cocircuits of K. We arrive at a contradiction because $T_{1}^{*} \subsetneq E(K)=Q$. Thus there is $e \in Q$ such that $M \backslash e$ is 3-connected.

Lemma 6.2. Suppose that M is a 3 -connected binary matroid such that $\operatorname{circ}(M) \in\{6,7\}$. Let T^{*} be a triad of M. If N is an one-element binary extension of M, say $M=N \backslash e$, such that $T^{*} \cup e$ is a circuit of N, then $T^{*} \cup e$ is a quad of N and $\operatorname{circ}(N)=\operatorname{circ}(M)$. Moreover, if $T^{* *}$ is a triad or a quad of M such that $T^{*} \cap T^{* *}=\emptyset$, then $T^{* *}$ is respectively a triad or a quad of N.

Proof. First, we show that $T^{*} \cup e$ is a quad of N. There is a cocircuit C^{*} of N such that $T^{*} \subseteq C^{*} \subseteq T^{*} \cup e$. By orthogonality, the circuit $T^{*} \cup e$ meets the cocircuit C^{*} in an even number of elements. Therefore $C^{*}=T^{*} \cup e$ and so $T^{*} \cup e$ is a quad of N.

We argue by contradiction to prove that $\operatorname{circ}(M)=\operatorname{circ}(N)$. If $\operatorname{circ}(M) \neq \operatorname{circ}(N)$, then $\operatorname{circ}(M)<$ $\operatorname{circ}(N)$, since M is a restriction of N. Let C be a maximum size circuit of N. As $\operatorname{circ}(M)<|C|$, it follows that $e \in C$. By orthogonality with the quad $T^{*} \cup e,\left|C \cap T^{*}\right|=1$ or $T^{*} \subseteq C$. Observe that $T^{*} \nsubseteq C$, otherwise $C=T^{*} \cup e$ and $|C|<\operatorname{circ}(M)$. Hence $\left|C \cap T^{*}\right|=1$. Let D be a circuit of N such that $D \subseteq C \Delta\left(T^{*} \cup e\right)$. Note that $D \cap\left(T^{*} \cup e\right) \neq \emptyset$ because D is not a proper subset of C. By orthogonality, $\left|D \cap\left(T^{*} \cup e\right)\right| \geq 2$ and so $\left[C \Delta\left(T^{*} \cup e\right)\right] \cap\left(T^{*} \cup e\right) \subseteq D$. In particular, D is unique. As $C \Delta\left(T^{*} \cup e\right)$ is a union of pairwise disjoint circuits of N, it follows that $C \Delta\left(T^{*} \cup e\right)$ is a circuit of N. But

$$
|C|=\left|C \Delta\left(T^{*} \cup e\right)\right|>\operatorname{circ}(M) ;
$$

a contradiction because $C \Delta\left(T^{*} \cup e\right)$ is also a circuit of M. Thus $\operatorname{circ}(M)=\operatorname{circ}(N)$.
Now, we show that $T^{\prime *}$ is a triad or a quad of N. If $T^{\prime *}$ is not respectively a triad or a quad of N, then $T^{\prime *} \cup e$ is a cocircuit of N. But the quad $T^{*} \cup e$ meets the cocircuit $T^{* *} \cup e$ in just one element, namely e; a contradiction to orthogonality. Consequently, $T^{\prime *}$ is respectively a triad or a quad of N.

Proof of Theorem 1.3. In this paragraph, we show that (ii) implies (i). We construct a sequence of matroids $M_{0}, M_{1}, M_{2}, \ldots, M_{m}$ such that $M_{0}=M^{\prime} \backslash X$ and, for each $i \in\{1,2, \ldots, m\}, M_{i}$ is a 1element binary extension of M_{i-1}, say $M_{i-1}=M_{i} \backslash e_{i}$, and $Q_{i}=T_{i}^{*} \cup e_{i}$ is a circuit of M_{i}. By induction on i and Lemma 6.2, it is easy to show that:

$$
\begin{equation*}
Q_{1}, \ldots, Q_{i} \text { are quads of } M_{i} ; T_{i+1}^{*}, \ldots, T_{m}^{*} \text { are triads of } M_{i} ; \operatorname{circ}\left(M_{i}\right)=7 \tag{6.1}
\end{equation*}
$$

Take M to be M_{m}. The result follows because M_{m} is 3-connected.
Now, we just need to show that (i) implies (ii). We argue by contradiction. Choose a counterexample M such that $|E(M)|$ is minimum. First, we establish that:

$$
\begin{equation*}
M \text { has no special quad. } \tag{6.2}
\end{equation*}
$$

Suppose that (6.2) does not hold. Let Q be a special quad of M. By definition, there a circuit C of M such that $|C|=\operatorname{circ}(M)$ and $C \cap Q=\emptyset$. By Lemma 6.1, there is $e \in Q$ such that $M \backslash e$ is 3 -connected. Observe that $T^{*}=Q-e$ is a triad of $M \backslash e$ and $|C|=\operatorname{circ}(M \backslash e) \leq \operatorname{circ}(M)=|C|$. Therefore $\operatorname{circ}(M \backslash e)=7$. By the choice of M, there is a 3 -connected rank-4 binary matroid N having a Hamiltonian circuit D and a triangle T satisfying $|T \cap D|=2$ such that $T=E(N) \cap E\left(K_{3, r(M)-4}^{(3)}\right)$ is the special triangle of $K_{3, r(M)-4}^{(3)}$ and $M \backslash e$ is obtained from $M^{\prime} \backslash X$ by completing the set of pairwise disjoint triads $T_{1}^{*}, T_{2}^{*}, \ldots, T_{m}^{*}$ of $M\left(K_{3, r(M)-4}^{(3)}\right)$ to quads, where M^{\prime} is the generalized parallel connection of $M\left(K_{3, r(M)-4}^{(3)}\right)$ with N and $X \subseteq T$. As C is a 7 -element circuit of $M \backslash e$, it follows that [$C \cap E(N)] \cup Y$ is a Hamiltonian circuit of N, for some 2-subset Y of T. In particular, T^{*} is a triad of $M\left(K_{3, r(M)-4}^{(3)}\right)$. Therefore M is obtained from $M^{\prime} \backslash X$ by completing the set of pairwise disjoint triads $T_{1}^{*}, T_{2}^{*}, \ldots, T_{m}^{*}, T^{*}$ of $M\left(K_{3, r(M)-4}^{(3)}\right)$ to quads; a contradiction and (6.2) follows.

Let C be a circuit of M such that $|C|=\operatorname{circ}(M)$. By Proposition 4.1, $M \backslash\left[\mathrm{cl}_{M}(C)-C\right]$ has three series classes S_{1}, S_{2} and S_{3} contained in C. Moreover, $\left|S_{1}\right|=\left|S_{2}\right|=2$, say $S_{1}=\left\{a, a^{\prime}\right\}, S_{2}=\left\{b, b^{\prime}\right\}, S_{3}=$ $\left\{c, c^{\prime}, c^{\prime \prime}\right\}$, and

$$
M \backslash\left[\mathrm{cl}_{M}(C)-C\right] /\left\{a^{\prime}, b^{\prime}, c^{\prime}, c^{\prime \prime}\right\} \cong M_{n^{\prime}, m^{\prime}, 3},
$$

where $n^{\prime}=r(M)-6$. (We also have that $T=\{a, b, c\}$ is the special triangle of $M \backslash\left[\mathrm{cl}_{M}(C)-\right.$ $C] /\left\{a^{\prime}, b^{\prime}, c^{\prime}, c^{\prime \prime}\right\}$.) Let $K_{1}, K_{2}, \ldots, K_{n^{\prime}}$ be the rank- 1 connected components of M / C. By (6.2) and Proposition 4.1(iii), $E\left(K_{1}\right), E\left(K_{2}\right), \ldots, E\left(K_{n^{\prime}}\right)$ are triads of M and so $m^{\prime}=0$. Choose C-arcs Z_{1}, Z_{2}, Z_{3} such that $Z_{i} \cup S_{i}$ is a circuit of M and $Z_{i} \subseteq E\left(K_{i}\right)$, for each $i \in\{1,2,3\}$.

For $e \in \mathrm{cl}_{M}(C)-C$, let C_{e} be a circuit of M such that $e \in C_{e} \subseteq C \cup e$ and $\left|C_{e} \cap S_{3}\right|$ is maximum. Hence $2 \leq\left|C_{e} \cap S_{3}\right|$ and $\left|C_{e}\right| \leq 6$ because $C_{e} \Delta C$ is also a circuit of M. First, we establish that

$$
\begin{equation*}
C_{e}=\left(S_{3} \cap C_{e}\right) \cup X \cup e \quad \text { where } X \text { is a subset of } S_{i} \text {, for some } i \in\{1,2\} . \tag{6.3}
\end{equation*}
$$

Assume that (6.3) does not hold. We have two cases to deal with $S_{3} \subseteq C_{e}$ or $S_{3} \nsubseteq C_{e}$. If $S_{3} \subseteq C_{e}$, then $\left|C_{e} \cap S_{1}\right|=\left|C_{3} \cap S_{2}\right|=1$ because $\left|C_{e}\right| \leq 6$. Note that $C_{e} \Delta\left(S_{2} \cup Z_{2}\right)$ is a circuit of M having 8 elements; a contradiction. Thus $S_{3} \nsubseteq C_{e}$ and so $\left|S_{3} \cap C_{e}\right|=2$. Now, we prove that

$$
\begin{equation*}
\left|C_{e} \cap S_{1}\right|=\left|C_{e} \cap S_{2}\right|=1 . \tag{6.4}
\end{equation*}
$$

If (6.4) does not hold, then $\left|C_{e} \cap\left(S_{1} \cup S_{2}\right)\right|=3$, say $S_{1} \subseteq C_{e}$. Again $C_{e} \Delta\left(S_{2} \cup Z_{2}\right)$ is a circuit of M having 8 elements; a contradiction. Hence (6.4) holds. Observe that $C_{e} \Delta\left(S_{1} \cup Z_{1}\right) \Delta\left(S_{2} \cup Z_{2}\right)$ is a circuit of M having 9 elements; a contradiction. Therefore (6.3) happens.

For $i \in\{1,2\}$, we establish that:

$$
\begin{equation*}
\left|\left\{g \in \operatorname{cl}_{M}(C)-C:\left|C_{g} \cap S_{i}\right|=1\right\}\right|=1 . \tag{6.5}
\end{equation*}
$$

Assume that $i=1$. Observe that $C^{\prime}=\left(C-S_{1}\right) \cup Z_{1}$ is a maximum size circuit of M. The rank- 1 connected components of M / C^{\prime} are $K_{1}^{\prime}, K_{2}, \ldots, K_{n^{\prime}}$. Moreover, by (6.3),

$$
E\left(K_{1}^{\prime}\right)=S_{1} \cup\left\{g \in \operatorname{cl}_{M}(C)-C:\left|C_{g} \cap S_{i}\right|=1\right\}
$$

By Proposition 4.1(iii) and (6.2), $E\left(K_{1}^{\prime}\right)$ is a triad of M. So (6.5) follows. By (6.3) and (6.5), for $i \in\{1,2\}$, there is $e_{i} \in \mathrm{cl}_{M}(C)-C, s_{i} \in S_{i}$ and $X_{i} \subseteq S_{3}$ such that $\left|X_{i}\right| \in\{2,3\}$ and $C_{e_{i}}=X_{i} \cup\left\{e_{i}, s_{i}\right\}$. Moreover, e_{i} is unique. In this paragraph, we have proved more:

$$
\begin{equation*}
S_{i} \cup e_{i} \quad \text { is a triad of } M \text {. } \tag{6.6}
\end{equation*}
$$

Now, we show that, for $i \in\{1,2\}$,

$$
\begin{equation*}
\text { when }\left|X_{i}\right|=2, \quad X_{i} \cup\left\{g \in \mathrm{cl}_{M}(C)-C: X_{i} \nsubseteq C_{g}\right\} \text { is a triad of } M . \tag{6.7}
\end{equation*}
$$

Assume that $i=1$. Observe that $C^{\prime \prime}=\left(C_{e_{1}} \Delta C\right) \Delta\left(S_{1} \cup Z_{1}\right)$ is a maximum size circuit of M. The rank- 1 connected components of $M / C^{\prime \prime}$ are $K_{1}^{\prime \prime}, K_{2}, \ldots, K_{n^{\prime}}$ and $E\left(K_{1}^{\prime \prime}\right)=X_{1} \cup\left\{g \in \mathrm{cl}_{M}(C)-C: X_{i} \nsubseteq C_{g}\right\}$. So (6.7) follows from (6.2) and Proposition 4.1(iii).

Let I be the subset of $\{1,2,3\}$ so that $i \in I$ if and only if there is $f_{i} \in E(M)$ such that $f_{i} \cup S_{i}$ is a circuit of M. Choose a (3-|I|)-set disjoint of $E(M)$, say $\left\{f_{j}: j \in\{1,2,3\}-I\right\}$. Let M^{\prime} be a 3-connected binary extension of M such that $E\left(M^{\prime}\right)=E(M) \cup\left\{f_{j}: j \in\{1,2,3\}-I\right\}$ and $f_{i} \cup S_{i}$ is a circuit of M^{\prime}, for every $i \in\{1,2,3\}$. Now, we divide the proof in three cases.
Case 1. $\left|X_{1}\right|=\left|X_{2}\right|=2$.
First, assume that $X_{1} \neq X_{2}$. Note that $D=C_{e_{1}} \Delta C_{e_{2}} \Delta\left(f_{3} \cup S_{3}\right) \Delta\left\{f_{1}, f_{2}, f_{3}\right\}$ is a 7-element circuit of M^{\prime}. Therefore $D \Delta\left(f_{1} \cup Z_{1}\right) \Delta\left(f_{2} \cup Z_{2}\right)$ is a 9 -element circuit of M; a contradiction. So $X_{1}=X_{2}$. Observe that $C_{e_{1}} \Delta C_{e_{2}} \Delta\left(S_{1} \cup Z_{1}\right) \Delta\left(S_{2} \cup Z_{2}\right)$ is an 8 -element circuit of M; a contradiction.
Case 2. $\left|X_{1}\right|=2$ and $\left|X_{2}\right|=3$.
So $C_{e_{2}}=S_{3} \cup\left\{e_{2}, s_{2}\right\}$. Therefore $C_{e_{2}} \Delta C=S_{1} \cup\left\{e_{2}, s_{2}^{\prime}\right\}$ is a circuit of M, where $S_{2}=\left\{s_{2}, s_{2}^{\prime}\right\}$. Hence $D=C_{e_{1}} \Delta\left(S_{1} \cup\left\{e_{2}, s_{2}^{\prime}\right\}\right) \Delta\left(S_{2} \cup f_{2}\right)$ is a 7 -element circuit of M^{\prime}; a contradiction because $D \Delta\left(f_{2} \cup Z_{2}\right)$ is an 8 -element circuit of M.
Case 3. $\left|X_{1}\right|=\left|X_{2}\right|=3$.
For $i \in\{1,2\}, C_{e_{i}}=S_{3} \cup\left\{e_{i}, s_{i}\right\}$. Therefore $C_{e_{i}} \triangle C=S_{3-i} \cup\left\{e_{i}, s_{i}^{\prime}\right\}$ is a circuit of M, where $S_{i}=\left\{s_{i}, s_{i}^{\prime}\right\}$, and so $\left(S_{3-i} \cup\left\{e_{i}, s_{i}^{\prime}\right\}\right) \Delta\left(S_{3-i} \cup f_{3-i}\right)=\left\{e_{i}, s_{i}^{\prime}, f_{3-i}\right\}$ is a circuit of M^{\prime}. If $Y=\left(S_{1} \cup e_{1}\right) \cup$ $\left(S_{2} \cup e_{2}\right) \cup E\left(K_{1}\right) \cup E\left(K_{2}\right) \cup \cdots \cup E\left(K_{n^{\prime}}\right)$, then Y is the union of pairwise disjoint triads of M^{\prime} (use (6.6)). As $M^{\prime} \mid\left[Y \cup\left\{f_{1}, f_{2}, f_{3}\right\}\right] \cong K_{3, n^{\prime}+2}^{(3)}$, it follows that $\left\{Y, E\left(M^{\prime}\right)-Y\right\}$ is an exact 3-separation of M^{\prime}. So M^{\prime} is the generalized parallel connection of $M^{\prime} \mid\left[Y \cup\left\{f_{1}, f_{2}, f_{3}\right\}\right]$ and $M^{\prime} \backslash Y$. By (6.3) and (6.5), $M^{\prime} \backslash Y$ is a rank-4 3-connected binary matroid having $S_{3} \cup\left\{f_{1}, f_{2}\right\}$ as a Hamiltonian circuit and $\left\{f_{1}, f_{2}, f_{3}\right\}$ as a triangle. But $M=M^{\prime} \backslash X$, where $X=\left\{f_{i}: i \in I\right\}$; a contradiction because the result holds for M.

Now, we prove a result that will be used in [5]:
Corollary 6.1. Let M be a 3 -connected binary matroid such that $\operatorname{circ}(M) \in\{6,7\}$ and $r(M) \geq 10$. If $M \backslash C$ is not 3-connected, for every circuit C of M, then $|E(M)|<4 r(M)-8$.

Proof. Suppose that $|E(M)| \geq r(M)-8$. If $\operatorname{circ}(M)=6$, then, by Theorem $1.2, M \cong M_{n, 0, l}$. Note that $|E(M)|=3 n+l=3 r(M)-6+l \geq 4 r(M)-8$.

Therefore $5 \geq l+2 \geq r(M)$; a contradiction. Hence $\operatorname{circ}(M)=7$. By Theorem 1.3, there is a 3-connected rank-4 binary matroid N having a Hamiltonian circuit C and a triangle T satisfying $|T \cap C|=2$ such that $T=E(N) \cap E\left(K_{3, r(M)-4}^{(3)}\right)$ is the special triangle of $K_{3, r(M)-4}^{(3)}$ and $M=M^{\prime} \backslash X$, where M^{\prime} is the generalized parallel connection of $M\left(K_{3, r(M)-4}^{(3)}\right)$ with N and $X \subseteq T$. Observe that

$$
|E(M)|=3 r(M)-12+|E(N)|-|X| \geq 4 r(M)-8 .
$$

Thus

$$
\begin{equation*}
|E(N)|-|X| \geq r(M)+4 \geq 14 . \tag{6.8}
\end{equation*}
$$

As $r(N)=4$, it follows that $|E(N)| \leq 15$. Moreover, $N \backslash X \cong P G(3,2) \backslash Y$, where $|Y| \leq 1$. Let Z be a 7-element subset of $E(P G(3,2))$ such that $Y \subseteq Z$ and $P G(3,2) \backslash Z \cong A G(3,2)$. If T^{\prime} is a triangle of $P G(3,2)$ avoiding Y and contained in Z, then $P G(3,2) \backslash\left(T^{\prime} \cup Y\right)$ is 3-connected. So N has a triangle $T^{\prime \prime}$ such that $N \backslash\left(T^{\prime \prime} \cup X\right)$ is 3-connected; a contradiction because $M \backslash T^{\prime \prime}$ is 3-connected.

Acknowledgements

The first author's research was supported by FCT (Portugal) through program POCTI. The third author is partially supported by CNPq (Grants no. 476224/04-7 and 301178/05-4) and FAPESP/CNPq (Grant no. 2003/09925-5).

References

[1] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[2] M. Lemos, J. Oxley, On packing minors into connected matroids, Discrete Math. 189 (1998) 283-289.
[3] M. Lemos, J. Oxley, On removable circuits in graphs and matroids, J. Graph Theory 30 (1999) 51-66.
[4] M. Lemos, J. Oxley, On size, circumference and circuit removal in 3-connected matroids, Discrete Math. 220 (2000) 145-157.
[5] R. Cordovil, Bráulio Maia Jr., M. Lemos, Removing circuits in 3-connected binary matroids, Discrete Math. doi:10.1016/j. disc.2007.12.095.
[6] Bráulio Maia Junior, M. Lemos, Matroids having small circumference, Combin. Probab. Comput. 10 (2001) 349-360.
[7] Bráulio Maia Junior, Connected matroids with a small circumference, Discrete Math. 259 (2002) 147-161.
[8] T.J. Reid, Ramsey numbers for matroids, European J. Combin. 18 (1997) 589-595.
[9] M. Lemos, J. Oxley, A sharp bound on the size of a connected matroid, Trans. Amer. Math. Soc. 353 (2001) 4039-4056.
[10] J. Geelen, G. Whittle, Matroid 4-connectivity: A deletion-contraction theorem, J. Combin. Theory Ser. B 80 (2000) 57-68.
[11] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980) 305-359.
[12] M. Lemos, On 3-connected matroids, Discrete Math. 73 (1989) 273-283.

[^0]: E-mail addresses: cordovil@math.ist.utl.pt (R. Cordovil), braulio@dme.ufcg.edu.br (B. Maia Jr.), manoel@dmat.ufpe.br (M. Lemos).

 0195-6698/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.ejc.2008.12.001

