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1. Introduction

In this paper, we assume familiarity with matroid theory. The notation and terminology used in
this article follow Oxley [1]. For a matroid M that has a circuit, circ(M) denotes the circumference of
M , that is, the maximum cardinality of a circuit of M . In recent years, the circumference of a matroid
has appeared in some bounds, for example, in an upper bound for the size of a minimally n-connected
matroid and in a lower bound for the size of an n-connected matroid having a circuit whose deletion
is also n-connected, for n ∈ {2, 3} (see [2–4]). Using these bounds and results about matroids with
small circumference, it is possible to improve some bounds found in the literature. In this paper, we
construct all 3-connected binary matroid with circumference 6 or 7 (and large rank). In [5], we use
the main results of this paper to improve a lower bound due to Lemos and Oxley [4] for the size of a
3-connected binary matroid having a circuit whose deletion originates also a 3-connected matroid.

The 3-connected matroids having small circumference must have small rank. Lemos and Oxley [4]
proved that:

Theorem 1.1. Suppose that M is a 3-connected matroid. If r(M) ≥ 6, then circ(M) ≥ 6.

By this result, every 3-connected matroid with circumference at most 5 has rank at most 5. Maia
and Lemos [6] proved that a 3-connected matroid having rank at most 5 is Hamiltonian, unless it is
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isomorphic to U1,1, F∗
7 ,AG(3, 2), J9, or J10, where J10 is the matroid whose representation over GF(2)

is given by the matrix




1 0 0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 1 1 1
0 0 1 0 0 1 1 0 1 1
0 0 0 1 0 1 1 1 0 1
0 0 0 0 1 1 1 1 1 0





and J9 is the matroid obtained from J10 by deleting the last column.
Maia [7] constructs all the matroids with circumference at most five. With the knowledge of all

matroids with circumference c , for example, one can calculate all the Ramsey numbers n(c + 1, y) for
matroids, for every value of y (for a definition of n(x, y) see Reid [8]). These numbers were completely
determined by Lemos and Oxley [9] using a sharp bound for the number of elements of a connected
matroid as a function of its circumference and cocircumference.

Before the description of all the 3-connected binarymatroidswith circumference 6 or 7, we need to
give some definitions. Let T ∗

1 , T ∗
2 , . . . , T ∗

m be pairwise disjoint triads of a 3-connected binary matroid
M . There is a unique binary matroid N over E(M) ∪ {e1, e2, . . . , em}, where {e1, e2, . . . , em} is an m-
element set disjoint from E(M), such that N \ {e1, e2, . . . , em} = M and, for every i ∈ {1, 2, . . . ,m},
Qi = T ∗

i ∪ ei is a circuit of N . Moreover, Qi is a cocircuit of M . (There is a cocircuit C∗
i of M such that

T ∗
i ⊆ C∗

i ⊆ T ∗
i ∪ {e1, e2, . . . , em}. By orthogonality with Qj, for j �= i, ej �∈ C∗

i and so C∗
i ∈ {T ∗

i ,Qi}.
But |C∗

i ∩ Qi| is even. Thus C∗
i = Qi.) Following Geelen and Whittle [10], we say that a 4-element

circuit-cocircuit of a matroid is a quad. Therefore Q1,Q2, . . . ,Qm are pairwise disjoint quads of N . We
say that N is obtained from M by completing the triads T ∗

1 , T ∗
2 , . . . , T ∗

m to quads. It is easy to see that N
is 3-connected.

Suppose that l,m and n are integers such that 0 ≤ l ≤ 3 ≤ n and 0 ≤ m ≤ n. Let {U, V } be a
partition of the vertices of the complete bipartite graph K3,n such that U and V are stable sets, |U| = 3
and |V | = n, say V = {v1, v2, . . . , vn}. Let K (l)

3,n be the simple graph obtained from K3,n by adding l
edges joining two vertices belonging to U . (These l edges are referred as special edges of K (l)

3,n. When
l = 3, this set of edges is called the special triangle of K (l)

3,n.) We define Mn,m,l to be the binary matroid
obtained from M(K (l)

3,n) by completing the triads st(v1), st(v2), . . . , st(vm) to quads. We prove that:

Theorem 1.2. Let M be a 3-connected binary matroid such that r(M) ≥ 8. Then, circ(M) = 6 if and only
if M is isomorphic to Mn,m,l, for some integers l,m and n such that 0 ≤ l ≤ 3, 6 ≤ n and 0 ≤ m ≤ n.

Theorem 1.3. For a 3-connected binary matroid M such that r(M) ≥ 9, the following statements are
equivalent:
(i) circ(M) = 7.
(ii) There is a 3-connected rank-4 binary matroid N having a Hamiltonian circuit C and a triangle T

satisfying |T ∩ C | = 2 such that T = E(N) ∩ E(K (3)
3,r(M)−4) is the special triangle of K (3)

3,r(M)−4 and
M is obtained from M � \ X by completing a set of pairwise disjoint triads of M(K (3)

3,r(M)−4) to quads,
where M � is the generalized parallel connection of M(K (3)

3,r(M)−4) with N and X ⊆ T .

We think that it is very difficult to construct all 3-connected matroids with circumference 6 or 7
(and large rank). To construct all the 3-connected binary matroids with circumference 8 looks to be
hard as well.

2. Contracting a maximum size circuit

Let M be a matroid. For F ⊆ E(M), an F-arc (see Section 3 of [11]) is a minimal non-empty subset
A of E(M) − F such that there exists a circuit C ofM with C − F = A and C ∩ F �= ∅. Such a circuit C is
called an F-fundamental for A. Let A be an F-arc and P ⊆ F . Then A → P if there is an F-fundamental
for A contained in A ∪ P . Thus A �→ P denotes that there is no such Z-fundamental. The next result is
a consequence of (3.8) of [11].
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Lemma 2.1. Suppose that M is a connectedmatroid. Let X and Y be non-empty subsets of E(M) such that
M|X and M|Y are both connected. If M|(X ∪ Y ) = (M|X) ⊕ (M|Y ), then there is a circuit C of M such
that C ∩ X �= ∅, C ∩ Y �= ∅ and C − (X ∪ Y ) is contained in a series class of M|(X ∪ Y ∪ C).

The next lemma is likely to be known but we do not have a reference for it.

Lemma 2.2. Let M be a connected matroid. If ∅ �= F ⊆ E(M),M|F is connected and circ(M/F) ≥ 3,
then there is a circuit C of M/F such that C is an F-arc and |C | ≥ 3.

Proof. Assume that this result is not true. Let C be a circuit ofM/F such that |C | = circ(M/F). Hence
C is a circuit ofM andM|(C ∪ F) = (M|C) ⊕ (M|F). By Lemma 2.1, there is a circuit D ofM such that
D∩C �= ∅,D∩F �= ∅ andD−(C∪F) is contained in a series class ofM|(C∪D∪F). If e ∈ D−(C∪F) and
f ∈ C −D, then (C ∪D)− ({e, f }∪F) is independent inM/F . Therefore D−F is a circuit ofM/F . Hence
|D−F | = 2, sayD−F = {e, g}, where g ∈ C∩D. As (M/g)|[F∪(C−g)] = [(M/g)|F ]⊕[(M/g)|(C−g)]
and F spans e inM/g , it follows that C−g is a series class ofM|(C∪D∪F). Thus C � = C�D = (C∪D)−g
is a circuit ofM . ButC �−F is a circuit ofM/F such thatC �−F → F . Therefore 2 = |C �−F | = |e∪(C−g)|.
Hence |C − g| = 1 and so |C | = 2; a contradiction. �

We say that L is a Tutte-line of a matroid M , when L is the union of circuits of M and r∗(M|L) = 2.
Every Tutte-line has a partition {L1, L2, . . . , Lk}, which is called canonical, such that C is a circuit of
M contained in L if and only if C = L − Li, for some i ∈ {1, 2, . . . , k}. We say that a Tutte-line L is
connected provided M|L is connected. When a Tutte-line L is connected, its canonical partition has at
least three sets.

In general, when C is a maximum size circuit of a connected matroidM , the circumference ofM/C
is at most |C | − 2. (This sharp result due to Seymour is a consequence of Lemma 2.1.) We reduce this
upper bound substantially in a special case. The next proposition plays a central role in the proofs of
the main results of this paper.

Proposition 2.1. Suppose that M is a 3-connected binary matroid such that circ(M) ∈ {6, 7} and
r(M) ≥ circ(M) + 2. If C is a maximum size circuit of M, then the rank of every connected component of
M/C is at most one.

Proof. It is enough to show that circ(M/C) ≤ 2 because a connected matroid with circumference
1 or 2 is isomorphic to U0,1 or U1,n, for some n ≥ 2, respectively. Assume that circ(M/C) ≥ 3. By
Lemma 2.2, there is a circuit A of M/C such that |A| ≥ 3 and A is a C-arc. Hence L = C ∪ A is a
connected Tutte-line ofM . Suppose that the canonical partition of L is equal to {X1, X2, X3}. So A = Xi,
for some i ∈ {1, 2, 3}, say A = X1. As C = L − A is a circuit ofM having maximum size, it follows that
3 ≤ |A| ≤ |Xi|, for every i ∈ {1, 2, 3}. Thus |A| = 3 and {|X2|, |X3|} = {3, |C | − 3} because

7 ≥ |C | = |L − A| = |X2| + |X3| ≥ 2|A| ≥ 6.

Suppose that |X2| = 3.
Let A be the set of L-arcs. For k ∈ {1, 2, 3}, we define Ak = {A� ∈ A : A� → Xk} and

A� = A − (A1 ∪ A2 ∪ A3). We divide the proof in some steps.
Step 1. If A� ∈ A�, then |A�| = 1. Moreover, there is a circuit CA� of M such that A� = CA� − L and
(|CA� ∩ X1|, |CA� ∩ X2|, |CA� ∩ X3|) = γ ,

(i) for some γ ∈ {(1, 2, 2), (2, 1, 2), (2, 2, 1)}, when |C | = 6; or
(ii) for some γ ∈ {(1, 2, 3), (2, 1, 3), (2, 2, 2)}, when |C | = 7.

We argue by contradiction. Assume that |A�| ≥ 2 or, when |A�| = 1, CA� does not exist. Let D be a
circuit ofM|(L ∪ A�) such that A� = D − L. Assume that

|D ∩ Xr | ≤ |D ∩ Xs| ≤ |D ∩ Xt |,
where {r, s, t} = {1, 2, 3} (when possible, take s to be equal to 3). As A� �∈ At , it follows that
|D ∩ Xs| ≥ 1. First, we prove that:

|D ∩ Xr | ≤ 1 and |D ∩ Xs| ≤ 2. (2.1)
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If (2.1) does not hold, then

7 ≥ |D| = |A�| + |D ∩ X1| + |D ∩ X2| + |D ∩ X3| ≥ |A�| + 6.

Hence |A�| = 1 and |C | = 7. Moreover, (|D ∩ X1|, |D ∩ X2|, |D ∩ X3|) = γ , where γ ∈
{(2, 2, 2), (0, 3, 3)}; a contradiction unless γ = (0, 3, 3). AsD�(Xs∪Xt) is a union of pairwise disjoint
circuits ofM , it follows thatM has a circuit with atmost two elements; a contradiction. Therefore (2.1)
holds.

In this paragraph, we establish that

Xt ⊆ D. (2.2)

If |D ∩ Xt | < |Xt |, then, by (2.1), (Xr ∪ Xs) ∪ D is a connected Tutte-line ofM . So D1 = (Xr ∪ Xs) � D is
a circuit ofM . But

7 ≥ |D1| = |A�| + |Xr − D| + |Xs − D| + |D ∩ Xt |. (2.3)

Observe that

|Xs − D| + |D ∩ Xt | = |Xs| + (|D ∩ Xt | − |D ∩ Xs|) ≥ |Xs| ≥ 3. (2.4)

Now, we prove that

|D ∩ Xr | �= 0. (2.5)

If |D ∩ Xr | = 0, then, by (2.3), 4 − |A�| ≥ |Xs − D| + |D ∩ Xt |. By (2.3) and (2.4), |D1| = 7, |A�| =
1, |Xr | = |Xs| = 3, |D ∩ Xt | = |D ∩ Xs| and |Xs − D| + |D ∩ Xt | = 3. In particular, t = 3. We arrive at a
contradiction because s can be taken to be equal to 3. Therefore (2.5) follows. By (2.1) and (2.5),

|D ∩ Xr | = 1. (2.6)

Now, we prove that |A�| = 1. Suppose that |A�| ≥ 2. By (2.3) and (2.4), |D1| = 7, |A�| = 2, |Xr | =
|Xs| = 3, |D ∩ Xt | = |D ∩ Xs| and |Xs − D| + |D ∩ Xt | = 3. In particular, t = 3. Again, we arrive at a
contradiction because s can be taken to be equal to 3. Hence |A�| = 1. Next, we establish that

|D ∩ Xs| = 2. (2.7)

If (2.7) does not hold, then, by (2.1) and (2.6), |D ∩ Xs| = 1. By (2.3), |D ∩ Xt | ≤ 2. If |D ∩ Xt | = 2,
then (|D1 ∩ X1|, |D1 ∩ X2|, |D1 ∩ X3|) = (2, 2, 2); a contradiction. If |D ∩ Xt | = 1, then s = 3 and so
(|D1∩X1|, |D1∩X2|, |D1∩X3|) ∈ {(1, 2, 2), (2, 1, 2)}, when |C | = 6, or (|D1∩X1|, |D1∩X2|, |D1∩X3|) ∈
{(1, 2, 3), (2, 1, 3)}, when |C | = 7; a contradiction. Therefore (2.7) holds. By (2.6) and (2.7) and the
choice of A�, |D ∩ Xt | = 2. In particular, |C | = 7 and 3 ∈ {r, s}. We arrive at a contradiction because
(|D1 ∩ X1|, |D1 ∩ X2|, |D1 ∩ X3|) ∈ {(2, 2, 2), (1, 2, 3), (2, 1, 3)}. Therefore (2.2) follows.

By (2.2), Xt ⊆ D. Choose i ∈ {r, s} so that 3 ∈ {i, t}. Observe that L� = D ∪ (Xi ∪ Xt) = D ∪ Xi is a
connected Tutte-line ofM . If X ⊆ Xi ∪ Xt belongs to the canonical partition of L�, then DX = L� − X is a
circuit ofM|(L∪A�) such that DX −L = A�. By (2.2) applied to DX , DX contains Xj, for some j ∈ {1, 2, 3}.
Therefore Xi ⊆ DX or Xt ⊆ DX . In particular, X ⊆ Xi or X ⊆ Xt . Assume that t = 3. (We need to replace
D by DX , for some X ⊆ Dt , when i = 3.) Assume also that D ∩ Xi �= ∅. (We are free to choose i in {r, s}
because t = 3.) As X ⊆ Xi or X ⊆ Xt , for each X ⊆ Xi ∪ Xt belonging to the canonical partition of L�, it
follows that Xi and Xt belong to the canonical partition of L�. (Each Tutte-line in a binary matroid has
at most three sets in its canonical partition.) We arrive at a contradiction because Xi − D belongs to
the canonical partition of L�. Therefore Step 1 follows.

By Step 1, for each A� ∈ A�, there is a circuit CA� of M such that A� = CA� − L and (|CA� ∩ X1|, |CA� ∩
X2|, |CA� ∩ X3|) = γ , where

(i) γ ∈ {(1, 2, 2), (2, 1, 2), (2, 2, 1)}, when |C | = 6; or
(ii) γ ∈ {(1, 2, 3), (2, 1, 3), (2, 2, 2)}, when |C | = 7.

Choose CA� so that |CA� ∩ X1| is minimum. Now, we prove that

γ = (1, 2, 2), when |C | = 6, and γ ∈ {(1, 2, 3), (2, 2, 2)}, when |C | = 7. (2.8)
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If (2.8) does not hold, then |CA� ∩Xj| = 1, for some j ∈ {2, 3}. Observe thatD = CA� �(X1∪Xj) is a circuit
ofM because CA� ∪ (X1 ∪ Xj) is a connected Tutte-line ofM . Hence (|D ∩ X1|, |D ∩ X2|, |D ∩ X3|) = γ ,
for γ = (1, 2, 2), when |C | = 6, or γ = (1, 2, 3), when |C | = 7. We arrive at a contradiction since
D − L = A�. Thus (2.8) holds.
Step 2. A� �= ∅.

Assume that A� = ∅. Hence A� → X1 or A� → (X2 ∪ X3), for every L-arc A�. As {X1, X2 ∪ X3} is
a 2-separation of M|L, it follows, by (3.8) of [11], that there is a 2-separation {X, Y } of M such that
X1 ⊆ X and X2 ∪ X3 ⊆ Y ; a contradiction. Therefore Step 2 follows.
Step 3. Ai = ∅, for each i ∈ {1, 2, 3}, when |C | = 6, or for each i ∈ {1, 2}, when |C | = 7.

Suppose that Ai �= ∅, say i = 1. For A1 ∈ A1, let DA1 be a circuit of M such that A1 = DA1 − L and
DA1 ⊆ X1 ∪ A1. For each A� ∈ A� and A1 ∈ A1, we prove that

(iii) DA1 = A1 ∪ (X1 − CA�), when |CA� ∩ X1| = 1; or
(iv) DA1 = A1 ∪ (X1 ∩ CA�), when |CA� ∩ X1| = 2.

Assume that both (iii) and (iv) do not hold. Observe that |DA1 ∩ X1| ≥ 2 because circ(M) = |X1 ∪ X3|.
Therefore DA1 intercepts both sets belonging to {X1 − CA� , X1 ∩ CA� }. In particular,

|(CA� � DA1) ∩ X1| ≥ 1. (2.9)

Moreover, CA� � DA1 is a circuit ofM because DA1 ∪ CA� is a connected Tutte-line ofM . Thus

|C | ≥ |A1| + |A�| + |CA� ∩ (X2 ∪ X3)| + |(CA� � DA1) ∩ X1|.
By (2.9), |C | ≥ 3+ |CA� ∩ (X2 ∪ X3)| and so |C | = 7, |CA� ∩ (X2 ∪ X3)| = 4, |A1| = 1, |CA� ∩ X1| = 2 and
X1 ⊆ DA1 . As (X1 ∪ X3) ∪ CA� is a connected Tutte-line of M , it follows that DA� = CA� � (X1 ∪ X3) is a
6-element circuit of M . But DA� ∪ DA1 is a connected Tutte-line of M . Thus DA� � DA1 is an 8-element
circuit ofM; a contradiction. Therefore (iii) or (iv) holds.

Let X be a subset of X1 such that DA1 = A1 ∪X , for some A1 ∈ A1. By (iii) and (iv), for every A� ∈ A�,
X ∩ CA� = ∅, when |CA� ∩ X1| = 1, or X ∩ DA� = ∅, when |CA� ∩ X1| = 2. As A� �= ∅, it follows that X is
uniquely determined. Hence DA1 = X ∪ A1, for every A1 ∈ A1. Note that {X, L − X} is a 2-separation
ofM|L such that

(v) A1 → X , for every A1 ∈ A1; and
(vi) A�� → L − X , for every A�� ∈ A − A1.

(Note that (vi) occurs when: A�� ∈ A2 ∪ A3 because X2 ∪ X3 ⊆ L − X; A�� ∈ A� and |CA�� ∩ X1| = 1
because CA�� − A�� ⊆ L − X; A�� ∈ A� and |CA�� ∩ X1| = 2 because DA�� − A�� ⊆ L − X .) By (3.8) of [11],
there is a 2-separation {X �, Y �} ofM such that X ⊆ X � and L− X ⊆ Y �; a contradiction. Therefore Step
3 follows.
Step 4. A3 �= ∅. In particular, |C | = 7.

If A3 = ∅, then, by Step 3, A = A�. By Step 1, |A�| = 1, for every A� ∈ A. As each element e
belonging to E(M) − L is contained in some L-arc, it follows that {e} is an L-arc. Therefore L spans M
and r(M) = |L| − 2 = |C | + 1; a contradiction to hypothesis. Hence A3 �= ∅. By Step 3, |C | = 7.

To finish the proof of this proposition, it suffices to establish the next step:
Step 5. A3 = ∅.

Assume thatA3 �= ∅. For A3 ∈ A3, letDA3 be a circuit ofM such that A3 = DA3−L andDA3 ⊆ X3∪A3.
For each A� ∈ A� and A3 ∈ A3, we prove that

(vii) DA3 ∩ X3 ⊆ CA� , when |CA� ∩ X1| = 1; or
(viii) DA3 ∈ {A3 ∪ (X3 ∩ CA�), A3 ∪ (X3 − CA�)}, when |CA� ∩ X1| = 2.

If DA3 ∩CA� = ∅, then (viii) holds because |DA3 ∩X3| ≥ 2 and |CA� ∩X3| ≥ 2. Assume that DA3 ∩CA� �= ∅.
IfDA3 ∩X3 ⊆ CA� , then (vii) or (viii) follows.Wemay also assume that [DA3 −CA� ]∩X3 �= ∅. As CA� ∪DA3
is a connected Tutte-line ofM , it follows that D = CA� � DA3 is a circuit ofM . Hence

|A3| + |[DA3 − CA� ] ∩ X3| ≤ |DA3 ∩ CA� | (2.10)
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because |D| ≤ |CA� | = |C |. As CA� � (X1 ∪X3) is a circuit ofM and [CA� � (X1 ∪X3)]∪DA3 is a connected
Tutte-line of M , it follows that D� = [CA� � (X1 ∪ X3)] � DA3 is a circuit ofM . Observe that

|D�| = |CA� � (X1 ∪ X3)| + |A3| + |DA3 ∩ CA� | − |[DA3 − CA� ] ∩ X3|.
By (2.10), |DA3 ∩ CA� | − |[DA3 − CA� ] ∩ X3| ≥ |A3| and so

|D�| ≥ |CA� � (X1 ∪ X3)| + 2|A3| = 6 + 2|A3| ≥ 8;
a contradiction. Thus (vii) or (viii) follows.

We define Z = {DA3 ∩ X3 : A3 ∈ A3}. First, we show that

Z1 ∩ Z2 �= ∅, when {Z1, Z2} ⊆ Z. (2.11)

If (2.11) does not hold, then |Z1| = |Z2| = 2 and X3 = Z1 ∪Z2 has 4 elements. Therefore |CA� ∩X3| = 2,
for every A� ∈ A�, by (vii). By Step 2 and (viii), Z = {Z1, Z2}. Note that A� → L − Z1, for every A� ∈ A�,
since CA� − A� ⊆ L − Z1 or [CA� � (X1 ∪ X3)] − A� ⊆ L − Z1. By Step 3 and (3.8) of [11], there is a 2-
separation {W1,W2} ofM such that Z1 ⊆ W1 and L − Z1 ⊆ W2; a contradiction and so (2.11) follows.
Next, we establish that

|Z| = 1. (2.12)

If {Z1, Z2} is a 2-subset of Z, then, by (2.11), (vii) and (viii), Z1 ∪ Z2 = CA� ∩ X3, for every A� ∈ A�.
By (vii), A3 → Z1 ∪ Z2, for every A3 ∈ A3. By (vii), A� → L − (Z1 ∪ Z2), for every A� ∈ A�, because
[CA� � (X1 ∪ X3)] − A� ⊆ L − (Z1 ∪ Z2). By Step 3 and (3.8) of [11], there is a 2-separation {W1,W2} of
M such that (Z1 ∪ Z2) ⊆ W1 and L − (Z1 ∪ Z2) ⊆ W2; a contradiction and so (2.12) follows. By (2.12),
|Z| = 1, say Z = {Z}. By (vii) and (viii), A� → L − Z , for every A� ∈ A�, because CA� − A� ⊆ L − Z or
[CA� � (X1 ∪ X3)] − A� ⊆ L− Z . By Step 3 and (3.8) of [11], there is a 2-separation {W1,W2} ofM such
that Z ⊆ W1 and L − Z ⊆ W2; a contradiction and the proposition follows. �

3. Local structural results

For a circuit C of a binary matroidM , let A be C-arc. Observe that C ∪ A is a connected Tutte-line of
M . Hence there is a partition {C1, C2} of C such that C1 ∪ A and C2 ∪ A are circuits ofM . For i ∈ {1, 2},
we say that Ci is a projection of A over C . For C-arcs A1 and A2, we say that:
(i) A1 and A2 are strongly disjoint provided A1 ∩ A2 = ∅,min{|A1|, |A2|} ≥ 2 and (M/C)|(A1 ∪ A2) =

[(M/C)|A1] ⊕ [(M/C)|A2]; and
(ii) A1 andA2 crossprovided Ci1∩Cj2 �= ∅, for every {i, j} ⊆ {1, 2}, whereC1k and C2k are the projections

of Ak over C , for k ∈ {1, 2}.

Lemma 3.1. Let C be a circuit of a binary matroid M such that |C | = circ(M) ∈ {6, 7}. If A1 and A2 are
strongly disjoint C-arcs, then A1 and A2 do not cross.

Proof. Assume that A1 and A2 cross. For k ∈ {1, 2}, let C1k and C2k be the projections of Ak over C . As
A1 and A2 cross, it follows that (A1 ∪Ci1)∪ (A2 ∪Cj2) is a connected Tutte-line, for every {i, j} ⊆ {1, 2}.
Hence Dij = (A1 ∪ Ci1) � (A2 ∪ Cj2) is a circuit ofM . But C ⊆ D11 ∪ D12, A1 ∪ A2 ⊆ D11 ∩ D12 and so

2|C | ≥ |D11| + |D12| = |D11 ∪ D12| + |D11 ∩ D12| ≥ |C | + 2(|A1| + |A2|);
a contradiction since min{|A1|, |A2|} ≥ 2 and |C | ≤ 7. Thus A1 and A2 do not cross. �

Let C be a circuit of a 3-connected binary matroid M such that |C | = circ(M) ∈ {6, 7}. A 3-subset
Z of E(M) is said to be a star with respect to C provided Z is contained in a connected component of
M/C . Let π(C, Z) be the series classes of M|(C ∪ Z) contained in C . Note that π(C, Z) is a partition
of C . A star Z � with respect to C is said to be strongly disjoint from Z provided (M/C)|(Z ∪ Z �) =
[(M/C)|Z] ⊕ [(M/C)|Z �].

Lemma 3.2. Let C be a circuit of a 3-connected binary matroid M such that |C | = circ(M) ∈ {6, 7}. If Z
is a star with respect to C, then Z is independent and:
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(i) The cosimplification of M|(C ∪ Z) is isomorphic to M(K4). In this case, |S| ∈ {2, 3}, for every
S ∈ π(C, Z). Or

(ii) The cosimplification of M|(C ∪ Z) is isomorphic to F∗
7 .

When (i) happens, we say that Z is a simple star with respect to C . When (ii) occurs, we say that Z
is non-simple.

Proof. Let Z be a starwith respect to C . By Proposition 2.1, Z is contained in a connected component of
M/C whose rank is equal to one. Therefore each 2-subset of Z is a C-arc ofM . In particular,M|(C ∪ Z)
is connected and each element of Z belongs to a trivial series class of M|(C ∪ Z). As Z is a cocircuit
of the simple matroid M|(C ∪ Z), it follows, by orthogonality, that Z is independent. Observe that
H = [M|(C ∪ Z)]∗ is a plane having Z as a 3-point line. Let P1, P2, . . . , Pk be the parallel classes of H
avoiding Z . As H is connected, it follows that k ≥ 2. Now, we establish that k ≥ 3. Assume that k = 2.
HenceW ∪ P1 is a cocircuit of H for any 2-subsetW of Z . In particular, whenW � andW �� are different
2-subsets of Z , (W � ∪ P1) � (W �� ∪ P1) is a cocircuit of H and so a circuit ofM|(C ∪ Z); a contradiction
since |(W � ∪ P1) � (W �� ∪ P1)| = 2. Therefore k ≥ 3. The cosimplification of H is isomorphic toM(K4)
or to F7 because H is binary. �

Lemma 3.3. Let C be a circuit of a 3-connected binary matroid M such that |C | = circ(M) ∈ {6, 7}. If Z
and Z � are strongly disjoint stars with respect to C, then:

(i) Z and Z � are both simple and π(C, Z) = π(C, Z �); or
(ii) |C | = 7, exactly one of Z or Z � is simple, say Z, and there is S ∈ π(C, Z) and S � ∈ π(C, Z �) such that

|S| = 3, |S �| = 4 and C = S ∪ S �; or
(iii) Z and Z � are both non-simple and there is S ∈ π(C, Z) and S � ∈ π(C, Z �) such that {|S|, |S �|} ⊆ {3, 4}

and C = S ∪ S �.

Proof. Assume that this result is not true. By Lemma 3.2, we obtain that:

(a) The cosimplification of M|(C ∪ Z) is isomorphic to M(K4) and π(C, Z) = {Z1, Z2, Z3} with
|Z1| = |Z2| = 2 and |Z3| ∈ {2, 3}. Moreover, the elements of Z can be labeled as z1, z2, z3 so
that, for each i ∈ {1, 2, 3}, (Z − zi) ∪ (C − Zi) is a circuit ofM|(C ∪ Z). Or

(b) The cosimplification of M|(C ∪ Z) is isomorphic to F∗
7 and π(C, Z) = {Z1, Z2, Z3, Z4}. Moreover,

there is r ∈ {1, 2, 3, 4} so that |Zr | = 1, say r = 4, since |C | ≤ 7. The elements of Z can be labeled
as z1, z2, z3 so that, for each i ∈ {1, 2, 3}, (Z − zi) ∪ [C − (Zi ∪ Z4)] is a circuit ofM|(C ∪ Z).

By the previous paragraph applied to Z � instead of Z , we conclude that:

(c) The cosimplification of M|(C ∪ Z �) is isomorphic to M(K4) and π(C, Z) = {Z �
1, Z

�
2, Z

�
3} with

|Z �
1| = |Z �

2| = 2 and |Z �
3| ∈ {2, 3}. Moreover, the elements of Z � can be labeled as z �

1, z
�
2, z

�
3 so

that, for each i ∈ {1, 2, 3}, (Z � − z �
i ) ∪ (C − Z �

i ) is a circuit ofM|(C ∪ Z �). Or
(d) The cosimplification ofM|(C ∪Z) is isomorphic to F∗

7 and π(C, Z) = {Z �
1, Z

�
2, Z

�
3, Z

�
4}. Moreover, we

can label these sets so that Z4 ⊆ Z �
4, when (b) occurs, and |Z �

4| = 1, when (a) occurs. The elements
of Z � can be labeled as z �

1, z
�
2, z

�
3 so that, for each i ∈ {1, 2, 3}, (Z � − z �

i ) ∪ [C − (Z �
i ∪ Z �

4)] is a circuit
ofM|(C ∪ Z �).

Now, we divide the proof in three steps.
Step 1. (b) and (d) cannot occur simultaneously.

Suppose that (b) and (d) occur simultaneously. Assume that Z4 = {a}. First, we show that

Z4 ∈ π(C, Z �), that is, Z4 = Z �
4 = {a}. (3.1)

If Z4 �∈ π(C, Z �), then |Z �
4| ≥ 2. Choose b ∈ Z �

4 − Z4. We may assume that b ∈ Z1. Let {r, s} and t be
respectively a 2-subset of {1, 2, 3} and an element of {2, 3}. By (b) and (d), C1t = {z1, zt} ∪ Z1 ∪ Zt and
C �
rs = {z �

r , z
�
s} ∪ Z �

r ∪ Z �
s are circuits ofM . Observe that

a �∈ C1t ∪ C �
rs and b ∈ C1t − C �

rs. (3.2)
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As {z1, zt} and {z �
r , z

�
s} are strongly disjoint C-arcs, it follows, by Lemma 3.1, that {z1, zt} and {z �

r , z
�
s} do

not cross. Therefore, by definition and (3.2),

C1t ∩ C �
rs = ∅ or [C �

rs − C1t ] ∩ C = ∅. (3.3)

Thus

(Z1 ∪ Zt) ∩ (Z �
r ∪ Z �

s) = ∅ or (Z1 ∪ Zt) ⊇ (Z �
r ∪ Z �

s). (3.4)

As (3.4) holds for every 2-subset {r, s} of {1, 2, 3}, it follows that

(Z1 ∪ Zt) ∩ (Z �
1 ∪ Z �

2 ∪ Z �
3) = ∅ or (Z1 ∪ Zt) ⊇ (Z �

1 ∪ Z �
2 ∪ Z �

3). (3.5)

From (3.5) for t = 2 and t = 3, it is not difficult to show that there is k ∈ {1, 2, 3, 4} such that

(Z �
1 ∪ Z �

2 ∪ Z �
3) ⊆ Zk. (3.6)

In particular, |Zk| ≥ 3 and C = Zk∪Z �
4. As Zi ⊆ Z �

4, for every i ∈ {1, 2, 3, 4}−k, it follows that |Z �
4| ≥ 3;

a contradiction because (iii) happens for S = Zk and S � = Z �
4. Therefore (3.1) holds.

Now, we prove that

|Z1| = |Z2| = |Z3| = 2. (3.7)

Assume that (3.7) does not hold. As |C | ≤ 7, it follows that |Zi| = 1, for some i ∈ {1, 2, 3}, say i = 3
and Z3 = {b}. By (3.1), {b} ∈ π(C, Z �), say Z �

3 = {b}. By (b) and (d), C12 = {z1, z2} ∪ Z1 ∪ Z2 and
C �
23 = {z �

2, z
�
3} ∪ Z �

2 ∪ Z �
3 are circuits of M . (In this paragraph, we assume also that |Z �

2| ≥ |Z �
1|.) Note

that

a �∈ C12 ∪ C �
23 and b ∈ C �

23 − C12. (3.8)

As {z1, z2} and {z �
2, z

�
3} are strongly disjoint C-arcs, it follows, by Lemma 3.1, that {z1, z2} and {z �

2, z
�
3}

do not cross. Therefore, by definition and (3.8),

C12 ∩ C �
23 = ∅ or [C12 − C �

23] ∩ C = ∅. (3.9)

Observe that |C12 ∩ C | = |C | − 2 and |C �
23 ∩ C | ≥ |C |

2 . (Remember that, in this paragraph, we are
assuming that |Z �

2| ≥ |Z �
1|.) Hence |C �

23 ∩ C | + |C12 ∩ C | ≥ |C | + 1. In particular, C12 ∩ C �
23 ∩ C �= ∅.

By (3.9), [C12 − C �
23] ∩ C = ∅. We arrive at a contradiction because |C12| ≥ |C �

23| and b ∈ C �
23 − C12.

Thus (3.7) follows.
Replacing (Z, Z �) by (Z �, Z), Eq. (3.7) becomes

|Z �
1| = |Z �

2| = |Z �
3| = 2. (3.10)

If {r, s} is a 2-subset of {1, 2, 3}, then, by (b) and (d), Crs = {zr , zs} ∪ Zr ∪ Zs and C �
rs = {z �

r , z
�
s} ∪ Z �

r ∪ Z �
s

are circuits ofM . By (3.7) and (3.10), |Crs| = |C �
rs| = 6. We can label z1, z2, z3 so that C12 ∩C �= C �

12 ∩C .
In particular, [C12 − C �

12] ∩ C �= ∅ and [C �
12 − C12] ∩ C �= ∅. By construction, a �∈ C12 ∪ C �

12. As
|C12 ∩ C | + |C �

12 ∩ C | = 8, it follows that [C12 ∩ C �
12] ∩ C �= ∅. Therefore {z1, z2} and {z �

1, z
�
2} cross; a

contradiction to Lemma 3.1 and so Step 1 follows.
By Step 1, (b) and (d) cannot occur simultaneously. Thus (a) or (c) happens, say (a). That is, Z is

simple. We arrive at the final contradiction by proving the next two steps.
Step 2. (d) cannot happen.

Suppose that (d) happens. By (d), |Z �
4| = 1, say Z �

4 = {a}. By (a), there is i ∈ {1, 2, 3} such that
a ∈ Zi and there is b ∈ Zi − a because |Zi| ≥ 2. Observe that b ∈ Z �

j , for some j ∈ {1, 2, 3}, say j = 3.
As Z − zi and Z � − z �

k, for k ∈ {1, 2}, are strongly disjoint C-arcs, it follows, by Lemma 3.1, that Z − zi
and Z � − z �

k do not cross. By (a) and (d),

(e) the projections of Z − zi over C are Zi and C − Zi; and
(f) the projections of Z � − z �

k over C are Z �
4 ∪ Z �

k and C − (Z �
4 ∪ Z �

k).
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But a ∈ Zi ∩ [Z �
4 ∪ Z �

k], b ∈ Zi ∩ [C − (Z �
4 ∪ Z �

k)] and so, for k ∈ {1, 2},
[C − Zi] ∩ [Z �

4 ∪ Z �
k] = ∅ or [C − Zi] ∩ [C − (Z �

4 ∪ Z �
k)] = ∅. (3.11)

Now, we show that

[C − Zi] ∩ [Z �
4 ∪ Z �

k] = ∅, for some k ∈ {1, 2}, say k = 1. (3.12)

If (3.12) does not hold, then, by (3.11), [C − Zi] ∩ [C − (Z �
4 ∪ Z �

k)] = ∅, for each k ∈ {1, 2}. Hence
C − (Z �

4 ∪ Z �
k) ⊆ Zi, for k ∈ {1, 2}. Hence Zi contains Z �

l , for every l ∈ {1, 2, 3}; a contradiction because
|Zi| ≤ 3 and |Z �

1|+|Z �
2|+|Z �

3| = |C |−|Z �
4| ≥ 5. Therefore (3.12) holds. By (3.12), Z �

4 ∪Z �
1 ⊆ Zi. By (3.11)

for k = 2, Z �
2 or Z �

3 is a subset of Zi. As |Zi| ≤ 3 and b ∈ Zi ∩ Z �
3, it follows that |Zi| = 3, Z �

3 ⊆ Zi and
|Z �

1| = |Z �
3| = |Z �

4| = 1. Therefore (ii) holds; a contradiction and Step 2 follows.
Step 3. (c) cannot happen.

Assume that (c) happens. For each e ∈ C , let Ze and Z �
e be the elements of π(C, Z) and π(C, Z �)

respectively so that e ∈ Ze ∩ Z �
e. By (a) and (c), for each e ∈ C , there are circuits Ce and C �

e of M such
that Ce ⊆ C ∪ Z, C �

e ⊆ C ∪ Z �, Ce ∩ C = C − Ze and C �
e ∩ C = C − Z �

e. Observe that e �∈ Ce ∪ C �
e and

Ce ∩ Ce �= ∅ because |C ∩ Ce| ≥ 4 and |C ∩ C �
e| ≥ 4. As Ce − C and C �

e − C are strongly disjoint C-arcs,
it follows, by Lemma 3.1, that Ce − C and C �

e − C do not cross and so

Ce ∩ C ⊆ C �
e ∩ C or C �

e ∩ C ⊆ Ce ∩ C .

Hence

Ze ⊆ Z �
e or Z �

e ⊆ Ze, for each e ∈ C . (3.13)

Now, we prove that

Ze = Z �
e, for each e ∈ C . (3.14)

By (3.13), we may assume that Ze ⊆ Z �
e. If (3.14) does not hold, then |Z �

e − Ze| = 1, say Z �
e = Ze ∪ f .

As Z �
f = Z �

e and π(C, Z) is a partition of C , it follows that Z �
f �⊆ Zf . By (3.13), Zf ⊆ Z �

f and so Zf = {f };
a contradiction and (3.14) follows. By (3.14), π(C, Z) = π(C, Z �) and (i) holds; a contradiction.
Therefore both Step 3 and this lemma follow. �

4. Global structural results

In the only result of this section, we describe the structure of the matroid obtained from a 3-
connected binarymatroid having circumference 6 or 7 after the deletion of all the elements belonging
to cl(C) − C , where C is one of its maximum size circuits.

Proposition 4.1. Suppose that M is a 3-connected binary matroid such that circ(M) ∈ {6, 7} and
r(M) ≥ circ(M) + 2. Let C be a maximum size circuit of M. If K1, K2, . . . , Kn are the connected
components of M/C having non-zero rank, then n ≥ 3 and, for every i ∈ {1, 2, . . . , n}, |E(Ki)| ≥ 3
and r(Ki) = 1. Moreover, when Zi is a 3-subset of E(Ki), for i ∈ {1, 2, . . . , n}, then:
(i) There is a partition T1, T2, T3 of C such that |T1| = |T2| = 2 and T1, T2, T3 are series classes of

M|(C ∪ Z1 ∪ Z2 ∪ · · · ∪ Zn).
(ii) The cosimplification of M|(C ∪ Z1 ∪ Z2 ∪ · · · ∪ Zn) is isomorphic to M(K (3)

3,n) (and Z1, Z2, . . . , Zn are
the stars of the vertices of K (3)

3,n having degree 3).
(iii) For i ∈ {1, 2, . . . , n}, E(Ki) is a triad or a quad of M.
(iv) The cosimplification of M \ [clM(C) − C] is isomorphic to Mn,l,3, where l = |{i ∈ {1, 2, . . . , n} :

E(Ki) is a quad of M}|.
Proof. By Proposition 2.1, each connected component of M/C has rank equal to 0 or 1. Hence, for
every i ∈ {1, 2, . . . , n}, r(Ki) = 1 and so

n =
n�

i=1

r(Ki) = r(M/C) = r(M) − [|C | − 1].
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By hypothesis, r(M) ≥ |C | + 2. Consequently,

n ≥ 3. (4.1)

To finish the proof of the first part of this proposition, we need to show that |E(Ki)| ≥ 3, for every
i ∈ {1, 2, . . . , n}. This happens because E(Ki) is a cocircuit of both M/C and M . (Remember that M is
3-connected.) Now, we need to establish (i), (ii), (iii) and (iv). Note that:

for i ∈ {1, 2, . . . , n}, any 3-subset of E(Ki) is a star with respect to C . (4.2)

By (4.2), for each i ∈ {1, 2, . . . , n}, we can choose stars Zi and Z �
i with respect to C such that

Zi ∪ Z �
i ⊆ E(Ki). We next establish that

Zi is simple if and only if Z �
i is simple. (4.3)

By (4.2), it is enough to prove (4.3) when |Zi − Z �
i | = 1, say Zi = {a, b, c} and Z �

i = {b, c, d}. Assume
that (4.3) does not hold. So exactly one of Zi or Z �

i is simple, say Zi. (Consequently, Z �
i is non-simple.)

By Lemma 3.3(ii), there are S ∈ π(C, Zi) and S � ∈ π(C, Z �
i ) such that |S| = 3, |S �| = 4, S ∩ S � = ∅ and

S ∪ S � = C . Let D be the circuit of M such that D − C = {b, c} and |D| is minimum. Note that |D| = 4
because D is a circuit of bothM|(C ∪Zi) andM|(C ∪Z �

i ). As Zi is simple, it follows that D∩C ∈ π(C, Zi).
Hence (D ∩ C) ∩ S = ∅ because |S| = 3 and |D ∩ C | = 2. Therefore D ∩ C � S �. We arrive at a
contradiction because S � is a series class ofM|(C ∪ Z �

i ). Thus (4.3) follows.
Wemay reorder the stars Z1, Z2, . . . , Zn so that Z1, Z2, . . . , Zm are non-simple and Zm+1, Zm+2, . . . ,

Zn are simple, for some 0 ≤ m ≤ n. By definition, when {i, j} is a 2-subset of {1, 2, . . . , n}, Zi
and Zj are strongly disjoint stars with respect to C . By Lemma 3.3(ii, iii), there is Si ∈ π(C, Zi), for
i ∈ {1, 2, . . . ,m}, such that 3 ≤ |Si| ≤ |C | − 3 ≤ 4. Moreover, by Lemma 3.3(iii), Si ∪ Sj = C , when
{i, j} is a 2-subset of {1, 2, . . . ,m}. Therefore

m ≤ 2. (4.4)

Now, we show that

m ≤ 1. (4.5)

If (4.5) does not hold, then, by (4.4), m = 2. By (4.1), Z3 exists and so Z3 is simple. By Lemma 3.3(ii),
|C | = 7, S ∪ S1 = S ∪ S2 = C , where S ∈ π(C, Z3) and |S| = 3. Hence S1 = S2; a contradiction since
S1 ∪ S2 = C . Therefore (4.5) follows.

By Lemma 3.3(i), (4.1) and (4.5),

π(C, Zm+1) = π(C, Z2) = π(C, Z3) = · · · = π(C, Zn). (4.6)

Now, we establish that:

π(C, Z �
i ) = π(C, Zi). (4.7)

If Zi is simple, then replace Zi by Z �
i . In this case, (4.7) follows from (4.6). If Zi is non-simple, then,

by (4.5), i = m = 1. By Lemma 3.3(ii), there is S ∈ π(C, Z2) such that |S| = 3 and C − S ∈
π(C, Zi) ∩ π(C, Z �

i ) (by (4.3), Z �
i is also non-simple). Hence every 1-element subset of S belongs to

both π(C, Zi) and π(C, Z �
i ). Thus (4.7) also follows in this case.

To prove this result, we need to show that

m = 0. (4.8)

Ifm > 0, then, by (4.5),m = 1. By Lemma 3.3(ii), |C | = 7 and there is S ∈ π(C, Zn) such that |S| = 3.
Note that {C − S, S} is a 2-separation of M|C . By (3.8) of Seymour [11], there is a C-arc Z such that
Z �→ S and Z �→ C − S because M is 3-connected. By (4.7) and (4.6), Z � → C − S, when Z � is a C-arc
such that Z � ⊆ E(Ki), for some i ∈ {2, 3, . . . , n}. Hence Z �⊆ E(Ki), for each i ∈ {2, 3, . . . , n}. By (4.7)
and Lemma 3.3(ii), Z �� → S, when Z �� is a C-arc such that Z �� ⊆ E(K1). Therefore Z �⊆ E(Ki), for each
i ∈ {1, 2, . . . , n}. In particular, Z ⊆ clM(C) − C and |Z | = 1, say Z = {e}. Let D be a circuit of M
such that e ∈ D ⊆ C ∪ e and |D| is minimum. In particular, |D| ≤ 4. As Z �→ C − S, it follows that
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D ∩ S �= ∅. Moreover, |D ∩ S| ∈ {1, 2} because D � C is also a circuit of M and Z �→ C − S. Observe
that D − (S ∪ e) �= ∅ since Z �→ S. Choose 2-subsets X, X � and X �� of Z1, Z2 and S respectively such
that D ∩ S ⊆ X �� and both X ∪ X �� and X � ∪ (C − S) are circuits ofM . Now, we show that

D� = D � (X ∪ X ��) � (X � ∪ (C − S)) is a circuit ofM. (4.9)

If C � is a circuit ofM such that C � ⊆ D�, then

(a) C � − C �= ∅ because C �⊆ D�;
(b) C � − C �= X � because S �⊆ D� and C − S �⊆ D�;
(c) C � − C �= X because X �� �⊆ D� and C − X �� �⊆ D�; and
(d) C � − C �= {e} because D �⊆ D� and D � C �⊆ D�.

In particular, |C � − C | ≥ 3. As |D� − C | = 5 and D� is the union of pairwise disjoint circuits of M , it
follows that D� is a circuit ofM . Therefore (4.9) follows. We arrive at a contradiction because |D�| ≥ 8.
Thus (4.8) holds. In particular, Zi is simple, for every i.

Now, our goal is to prove that

r(E(Ki)) = 3. (4.10)

Assume that (4.10) fails for some i. Let B be a maximal independent set ofM such that Zi ⊆ B ⊆ E(Ki).
Thus |B| ≥ 4. Choose a 3-subset Z �

i of B such that |Zi ∪ Z �
i | = 4. By (4.3) and (4.8), both Z �

i and Zi are
simple. By (4.7), π(C, Z �

i ) = π(C, Zi) is the set of series classes of both M|(C ∪ Zi) and M|(C ∪ Z �
i )

contained in C . Thus π(C, Z �
i ) = π(C, Zi) is the set of series classes of M|(C ∪ Zi ∪ Z �

i ) contained in C .
If N is the cosimplification ofM|(C ∪ Zi ∪ Z �

i ), then C ∩ E(N) is a circuit-hyperplane of N having three
elements. So r(N) = 3. But each element of Zi∪Z �

i is contained in a trivial series class ofM|(C∪Zi∪Z �
i ).

Hence rN(Zi ∪ Z �
i ) = r(Zi ∪ Z �

i ) = |Zi ∪ Z �
i | = 4; a contradiction. Thus (4.10) follows.

Next, we show (iii), that is,

E(Ki) is a triad or a quad ofM. (4.11)

If E(Ki) = Zi, then (4.11) follows. Suppose that E(Ki) �= Zi. By (4.10), for each e ∈ E(Ki) − Zi, there is
a circuit De of M so that e ∈ De ⊆ Zi ∪ e. As E(Ki) is a cocircuit of M , it follows, by orthogonality, that
|De| is an even number. Hence |De| = 4 because M is 3-connected. In particular, De = Zi ∪ e. As M is
simple, it follows that e is unique. Therefore E(Ki) = Zi ∪ e and (4.11) follows.

By (4.6), there is a partition {T1, T2, T3} of C such that |T1| = |T2| = 2 and, for every i ∈
{1, 2, . . . , n},π(C, Zi) = {T1, T2, T3}.We can label the elements of Zi by ai, bi, ci so thatCi = {ai, bi}∪T1
and Di = {ai, ci} ∪ T2 are circuits of M . Note that B = {C, C1, C2, . . . , Cn,D1,D2, . . . ,Dn} spans the
cycle space ofM|(C ∪Z1 ∪Z2 ∪· · ·∪Zn) because (C − c)∪{a1, a2, . . . , an} spans C ∪Z1 ∪Z2 ∪· · ·∪Zn,
for c ∈ C . In particular, T1, T2 and T3 are series classes of M|(C ∪ Z1 ∪ Z2 ∪ · · · ∪ Zn) because every
circuit belonging to B contains Ti or avoids Ti, for every i ∈ {1, 2, 3}. Therefore (i) follows.

For i ∈ {1, 2, 3}, choose ti ∈ Ti. By (i), the cosimplification ofM|(C ∪ Z1 ∪ Z2 ∪ · · · ∪ Zn) is equal to

H = [M|(C ∪ Z1 ∪ Z2 ∪ · · · ∪ Zn)]/(C − {t1, t2, t3}).
Note that B � = {C �, C �

1, C
�
2, . . . , C

�
n,D

�
1,D

�
2, . . . ,D

�
n} spans the cycle space of H , where C � = {t1, t2, t3}

and, for i ∈ {1, 2, . . . , n}, C �
i = {ai, bi, t1} and D�

i = {ai, ci, t2}. Hence H = M(G), where G is a simple
graph having vertex-set {v1, v2, . . . , vn, w1, w2, w3}whose edges are: t1 joiningw1 andw2; t2 joining
w3 and w2; t3 joining w1 and w3; and, for every i ∈ {1, 2, . . . , n}, ai joining vi and w2; bi joining vi

and w1; and ci joining vi and w3. But G ∼= K (3)
3,n . We have (ii). Note that (iv) is a consequence of (ii)

and (iii). �

5. The 3-connected binary matroids with circumference equal to 6

Proof of Theorem 1.2. It is easy to see that circ(Mn,m,l) = 6, when n ≥ 3. Now, assume that M is a
3-connected binary matroid such that circ(M) = 6. Let C be a circuit of M such that |C | = circ(M).
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By Proposition 4.1, M \ [clM(C) − C] has three series classes S1, S2 and S3 contained in C . Moreover,
|S1| = |S2| = |S3| = 2, say S1 = {a, a�}, S2 = {b, b�}, S3 = {c, c �}, and

M \ [clM(C) − C]/{a�, b�, c �} ∼= Mn�,m�,3,

where n� = r(M) − 5. (We also have that T = {a, b, c} is the special triangle of M \ [clM(C) −
C]/{a�, b�, c �}.)

For e ∈ clM(C) − C , let Ce be a circuit of M such that e ∈ Ce ⊆ C ∪ e and |Ce| is minimum. Hence
|Ce − e| ∈ {2, 3}. First, we establish that

Si ⊆ Ce, for some i ∈ {1, 2, 3}. (5.1)

If (5.1) is not true, then Ce meets each Si in 0 or 1 element. In particular, Ce meets at least two Si’s in
1 element, say Ce ∩ S1 = {a} and Ce ∩ S2 = {b}. We have two cases to deal with. If |Ce| = 3, then
Ce ∩ S3 = ∅ and Ce �D is a 7-element circuit ofM , where D is a circuit ofM such that S2 ∪ S3 ⊆ D and
|D − clM(C)| = 2; a contradiction. If |Ce| = 4, then Ce meets S3 in 1 element, say Ce ∩ S3 = {c}. Let
D1 and D2 be 4-element circuits of M such that Di ∩ C = Si, for i ∈ {1, 2}, and D1 − C and D2 − C are
strongly disjoint C-arcs. We arrive at a contradiction by proving that

X = Ce � D1 � D2

is a circuit of M . (Observe that |X | = 8.) If X is not a circuit of M , then X = C1 ∪ C2 ∪ · · · ∪ Cl,
where C1, C2, . . . , Cl are pairwise disjoint circuits ofM , for some l ≥ 2. Assume that e ∈ C1. Note that
C1 − clM(C) �= ∅, otherwise C1 = {e, a�, b�, c}, by the choice of Ce, and so C1 � Ce = {c, c �}. Hence C1
meets D1 − C or D2 − C , say D1 − C . But D1 − C is a series class ofM|(C ∪ e∪D1 ∪D2). Consequently,
D1 − C ⊆ C1. As C2 is not a proper subset of C , it follows that D2 − C ⊆ C2. In particular, C2 ∩ C is a
projection of the C-arc D2 − C; a contradiction because C2 ∩ C does not contain any Si. Therefore (5.1)
holds.

By (5.1), for e ∈ clM(C)− C , we can choose Ce so that |Ce ∩ {a�, b�, c �}| = 1. Therefore the elements
belonging to clM(C) − C can be labeled as:

(i) si, for i ∈ {1, 2, 3}, when Si ∪ si is a triangle ofM .
(ii) tij, for a 2-subset {i, j} of {1, 2, 3}, when Si ∪ {t, tij} is a circuit ofM , for t ∈ Sj ∩ {a, b, c}.
In particular, |clM(C)−C | ≤ 9. LetM � be the binary extension ofM obtained by adding all the elements
described in (i) or (ii) which do not belong to M (with the dependence described in (i) or (ii)). When
{1, 2, 3} = {i, j, k}, {tik, tjk} ∪ Sk is a circuit of M �. In particular, M � \ {t12, t23, t31} ∼= Mn�+3,m�,3 and so
M � ∼= Mn�+3,m�+3,3. (Observe that {s1, s2, s3} is the special triangle of M �.) Hence M ∼= Mn,m,l, where
n = n� + 3,m = m� + [|E(M) ∩ {t12, t13, t21, t23, t31, t32}| − 3] and l = |E(M) ∩ {s1, s2, s3}|. (Observe
that |{tik, tjk} ∩ E(M)| ≥ 1, when {i, j, k} = {1, 2, 3}, otherwise Sk is a cocircuit ofM .) �

6. The 3-connected binary matroids with circumference equal to 7

A quad Q of a matroidM is said to be specialwhen Q ∩ C = ∅, for some largest circuit C ofM .

Lemma 6.1. Let M be a 3-connected binary matroid such that circ(M) ∈ {6, 7}. If Q is a special quad of
M, then there is an element e belonging to Q such that M \ e is 3-connected.

Proof. By definition, there is a circuit C of M such that |C | = circ(M) and Q ∩ C = ∅. As Q is a
cocircuit of M/C , it follows, by Proposition 2.1, that Q ⊆ E(K), for a connected component K of M/C
such that r(K) = 1. Therefore Q = E(K) because E(K) is a cocircuit ofM . IfM \ e is not 3-connected,
for every e ∈ Q , then, by Theorem 1 of Lemos [12], Q meets at least two triads of M , say T ∗

1 and T ∗
2 .

(Remember that Q is also a circuit ofM .) As |T ∗
i ∩Q | = 2,Q ∩ C = ∅ and |T ∗

i ∩ C | �= 1, it follows that
T ∗
i ∩C = ∅. Hence T ∗

1 and T ∗
2 are cocircuits ofM/C and so T ∗

1 and T ∗
2 are also cocircuits of K . We arrive

at a contradiction because T ∗
1 � E(K) = Q . Thus there is e ∈ Q such that M \ e is 3-connected. �
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Lemma 6.2. Suppose that M is a 3-connected binary matroid such that circ(M) ∈ {6, 7}. Let T ∗ be a
triad of M. If N is an one-element binary extension of M, say M = N \ e, such that T ∗ ∪ e is a circuit of
N, then T ∗ ∪ e is a quad of N and circ(N) = circ(M). Moreover, if T �∗ is a triad or a quad of M such that
T ∗ ∩ T �∗ = ∅, then T �∗ is respectively a triad or a quad of N.

Proof. First, we show that T ∗∪e is a quad ofN . There is a cocircuit C∗ ofN such that T ∗ ⊆ C∗ ⊆ T ∗∪e.
By orthogonality, the circuit T ∗ ∪ e meets the cocircuit C∗ in an even number of elements. Therefore
C∗ = T ∗ ∪ e and so T ∗ ∪ e is a quad of N .

We argue by contradiction to prove that circ(M) = circ(N). If circ(M) �= circ(N), then circ(M) <
circ(N), sinceM is a restriction of N . Let C be a maximum size circuit of N . As circ(M) < |C |, it follows
that e ∈ C . By orthogonality with the quad T ∗ ∪ e, |C ∩ T ∗| = 1 or T ∗ ⊆ C . Observe that T ∗ �⊆ C ,
otherwise C = T ∗ ∪ e and |C | < circ(M). Hence |C ∩ T ∗| = 1. Let D be a circuit of N such that
D ⊆ C � (T ∗ ∪ e). Note that D ∩ (T ∗ ∪ e) �= ∅ because D is not a proper subset of C . By orthogonality,
|D ∩ (T ∗ ∪ e)| ≥ 2 and so [C � (T ∗ ∪ e)] ∩ (T ∗ ∪ e) ⊆ D. In particular, D is unique. As C � (T ∗ ∪ e) is
a union of pairwise disjoint circuits of N , it follows that C � (T ∗ ∪ e) is a circuit of N . But

|C | = |C � (T ∗ ∪ e)| > circ(M);
a contradiction because C � (T ∗ ∪ e) is also a circuit ofM . Thus circ(M) = circ(N).

Now, we show that T �∗ is a triad or a quad of N . If T �∗ is not respectively a triad or a quad of N , then
T �∗ ∪ e is a cocircuit of N . But the quad T ∗ ∪ emeets the cocircuit T �∗ ∪ e in just one element, namely
e; a contradiction to orthogonality. Consequently, T �∗ is respectively a triad or a quad of N . �

Proof of Theorem 1.3. In this paragraph, we show that (ii) implies (i). We construct a sequence of
matroids M0,M1,M2, . . . ,Mm such that M0 = M � \ X and, for each i ∈ {1, 2, . . . ,m}, Mi is a 1-
element binary extension ofMi−1, sayMi−1 = Mi \ ei, and Qi = T ∗

i ∪ ei is a circuit ofMi. By induction
on i and Lemma 6.2, it is easy to show that:

Q1, . . . ,Qi are quads ofMi; T ∗
i+1, . . . , T

∗
m are triads ofMi; circ(Mi) = 7. (6.1)

TakeM to beMm. The result follows becauseMm is 3-connected.
Now, we just need to show that (i) implies (ii). We argue by contradiction. Choose a counter-

exampleM such that |E(M)| is minimum. First, we establish that:

M has no special quad. (6.2)

Suppose that (6.2) does not hold. LetQ be a special quad ofM . By definition, there a circuit C ofM such
that |C | = circ(M) and C∩Q = ∅. By Lemma6.1, there is e ∈ Q such thatM\e is 3-connected. Observe
that T ∗ = Q −e is a triad ofM \e and |C | = circ(M \e) ≤ circ(M) = |C |. Therefore circ(M \e) = 7. By
the choice ofM , there is a 3-connected rank-4 binary matroid N having a Hamiltonian circuit D and a
triangle T satisfying |T ∩ D| = 2 such that T = E(N) ∩ E(K (3)

3,r(M)−4) is the special triangle of K (3)
3,r(M)−4

and M \ e is obtained from M � \ X by completing the set of pairwise disjoint triads T ∗
1 , T ∗

2 , . . . , T ∗
m

of M(K (3)
3,r(M)−4) to quads, where M � is the generalized parallel connection of M(K (3)

3,r(M)−4) with N and
X ⊆ T . As C is a 7-element circuit of M \ e, it follows that [C ∩ E(N)] ∪ Y is a Hamiltonian circuit of
N , for some 2-subset Y of T . In particular, T ∗ is a triad of M(K (3)

3,r(M)−4). Therefore M is obtained from
M � \ X by completing the set of pairwise disjoint triads T ∗

1 , T ∗
2 , . . . , T ∗

m, T ∗ ofM(K (3)
3,r(M)−4) to quads; a

contradiction and (6.2) follows.
Let C be a circuit ofM such that |C | = circ(M). By Proposition 4.1,M \[clM(C)−C] has three series

classes S1, S2 and S3 contained in C . Moreover, |S1| = |S2| = 2, say S1 = {a, a�}, S2 = {b, b�}, S3 =
{c, c �, c ��}, and

M \ [clM(C) − C]/{a�, b�, c �, c ��} ∼= Mn�,m�,3,

where n� = r(M) − 6. (We also have that T = {a, b, c} is the special triangle of M \ [clM(C) −
C]/{a�, b�, c �, c ��}.) Let K1, K2, . . . , Kn� be the rank-1 connected components of M/C . By (6.2) and
Proposition 4.1(iii), E(K1), E(K2), . . . , E(Kn�) are triads of M and so m� = 0. Choose C-arcs Z1, Z2, Z3
such that Zi ∪ Si is a circuit ofM and Zi ⊆ E(Ki), for each i ∈ {1, 2, 3}.
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For e ∈ clM(C) − C , let Ce be a circuit of M such that e ∈ Ce ⊆ C ∪ e and |Ce ∩ S3| is maximum.
Hence 2 ≤ |Ce ∩ S3| and |Ce| ≤ 6 because Ce � C is also a circuit ofM . First, we establish that

Ce = (S3 ∩ Ce) ∪ X ∪ e where X is a subset of Si, for some i ∈ {1, 2}. (6.3)

Assume that (6.3) does not hold. We have two cases to deal with S3 ⊆ Ce or S3 �⊆ Ce. If S3 ⊆ Ce, then
|Ce ∩ S1| = |C3 ∩ S2| = 1 because |Ce| ≤ 6. Note that Ce � (S2 ∪ Z2) is a circuit ofM having 8 elements;
a contradiction. Thus S3 �⊆ Ce and so |S3 ∩ Ce| = 2. Now, we prove that

|Ce ∩ S1| = |Ce ∩ S2| = 1. (6.4)

If (6.4) does not hold, then |Ce ∩ (S1 ∪S2)| = 3, say S1 ⊆ Ce. Again Ce � (S2 ∪Z2) is a circuit ofM having
8 elements; a contradiction. Hence (6.4) holds. Observe that Ce � (S1 ∪ Z1) � (S2 ∪ Z2) is a circuit of
M having 9 elements; a contradiction. Therefore (6.3) happens.

For i ∈ {1, 2}, we establish that:

|{g ∈ clM(C) − C : |Cg ∩ Si| = 1}| = 1. (6.5)

Assume that i = 1. Observe that C � = (C − S1) ∪ Z1 is a maximum size circuit of M . The rank-1
connected components ofM/C � are K �

1, K2, . . . , Kn� . Moreover, by (6.3),

E(K �
1) = S1 ∪ {g ∈ clM(C) − C : |Cg ∩ Si| = 1}.

By Proposition 4.1(iii) and (6.2), E(K �
1) is a triad ofM . So (6.5) follows. By (6.3) and (6.5), for i ∈ {1, 2},

there is ei ∈ clM(C) − C, si ∈ Si and Xi ⊆ S3 such that |Xi| ∈ {2, 3} and Cei = Xi ∪ {ei, si}. Moreover, ei
is unique. In this paragraph, we have proved more:

Si ∪ ei is a triad ofM. (6.6)
Now, we show that, for i ∈ {1, 2},

when |Xi| = 2, Xi ∪ {g ∈ clM(C) − C : Xi �⊆ Cg} is a triad ofM. (6.7)

Assume that i = 1. Observe that C �� = (Ce1 �C)� (S1 ∪Z1) is a maximum size circuit ofM . The rank-1
connected components of M/C �� are K ��

1 , K2, . . . , Kn� and E(K ��
1 ) = X1 ∪ {g ∈ clM(C) − C : Xi �⊆ Cg}.

So (6.7) follows from (6.2) and Proposition 4.1(iii).
Let I be the subset of {1, 2, 3} so that i ∈ I if and only if there is fi ∈ E(M) such that fi ∪Si is a circuit

ofM . Choose a (3− |I|)-set disjoint of E(M), say {fj : j ∈ {1, 2, 3} − I}. LetM � be a 3-connected binary
extension ofM such that E(M �) = E(M) ∪ {fj : j ∈ {1, 2, 3} − I} and fi ∪ Si is a circuit ofM �, for every
i ∈ {1, 2, 3}. Now, we divide the proof in three cases.
Case 1. |X1| = |X2| = 2.

First, assume that X1 �= X2. Note that D = Ce1 � Ce2 � (f3 ∪ S3)�{f1, f2, f3} is a 7-element circuit of
M �. Therefore D� (f1 ∪Z1)� (f2 ∪Z2) is a 9-element circuit ofM; a contradiction. So X1 = X2. Observe
that Ce1 � Ce2 � (S1 ∪ Z1) � (S2 ∪ Z2) is an 8-element circuit ofM; a contradiction.
Case 2. |X1| = 2 and |X2| = 3.

So Ce2 = S3 ∪{e2, s2}. Therefore Ce2 � C = S1 ∪{e2, s�2} is a circuit ofM , where S2 = {s2, s�2}. Hence
D = Ce1 � (S1 ∪ {e2, s�2}) � (S2 ∪ f2) is a 7-element circuit ofM �; a contradiction because D� (f2 ∪ Z2)
is an 8-element circuit ofM .
Case 3. |X1| = |X2| = 3.

For i ∈ {1, 2}, Cei = S3 ∪ {ei, si}. Therefore Cei � C = S3−i ∪ {ei, s�i} is a circuit of M , where
Si = {si, s�i}, and so (S3−i ∪ {ei, s�i}) � (S3−i ∪ f3−i) = {ei, s�i, f3−i} is a circuit of M �. If Y = (S1 ∪ e1) ∪
(S2 ∪ e2)∪ E(K1)∪ E(K2)∪ · · ·∪ E(Kn�), then Y is the union of pairwise disjoint triads ofM � (use (6.6)).
As M �|[Y ∪ {f1, f2, f3}] ∼= K (3)

3,n�+2, it follows that {Y , E(M �) − Y } is an exact 3-separation of M �. So M �

is the generalized parallel connection of M �|[Y ∪ {f1, f2, f3}] and M � \ Y . By (6.3) and (6.5), M � \ Y is
a rank-4 3-connected binary matroid having S3 ∪ {f1, f2} as a Hamiltonian circuit and {f1, f2, f3} as a
triangle. But M = M � \ X , where X = {fi : i ∈ I}; a contradiction because the result holds forM . �

Now, we prove a result that will be used in [5]:

Corollary 6.1. Let M be a 3-connected binary matroid such that circ(M) ∈ {6, 7} and r(M) ≥ 10. If
M \ C is not 3-connected, for every circuit C of M, then |E(M)| < 4r(M) − 8.
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Proof. Suppose that |E(M)| ≥ r(M) − 8. If circ(M) = 6, then, by Theorem 1.2, M ∼= Mn,0,l. Note that

|E(M)| = 3n + l = 3r(M) − 6 + l ≥ 4r(M) − 8.

Therefore 5 ≥ l + 2 ≥ r(M); a contradiction. Hence circ(M) = 7. By Theorem 1.3, there is
a 3-connected rank-4 binary matroid N having a Hamiltonian circuit C and a triangle T satisfying
|T ∩ C | = 2 such that T = E(N) ∩ E(K (3)

3,r(M)−4) is the special triangle of K (3)
3,r(M)−4 and M = M � \ X ,

where M � is the generalized parallel connection ofM(K (3)
3,r(M)−4) with N and X ⊆ T . Observe that

|E(M)| = 3r(M) − 12 + |E(N)| − |X | ≥ 4r(M) − 8.

Thus

|E(N)| − |X | ≥ r(M) + 4 ≥ 14. (6.8)

As r(N) = 4, it follows that |E(N)| ≤ 15. Moreover, N \ X ∼= PG(3, 2) \ Y , where |Y | ≤ 1. Let Z be
a 7-element subset of E(PG(3, 2)) such that Y ⊆ Z and PG(3, 2) \ Z ∼= AG(3, 2). If T � is a triangle of
PG(3, 2) avoiding Y and contained in Z , then PG(3, 2) \ (T � ∪ Y ) is 3-connected. So N has a triangle T ��

such that N \ (T �� ∪ X) is 3-connected; a contradiction becauseM \ T �� is 3-connected. �
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