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Abstract. Let V be a vector space of dimensiond over a fieldK and letA be a central
arrangement of hyperplanes inV. To answer a question posed by K. Aomoto, P. Orlik
and H. Terao construct a commutativeK-algebraU(A) in terms of the equations for the
hyperplanes ofA. In the course of their work the following question naturally occurred:

◦ IsU(A) determined by the intersection latticeL(A) of the hyperplanes ofA?

We give a negative answer to this question. The theory of oriented matroids gives rise to a
combinatorial analogue of the algebra of Orlik–Terao, which is the main tool of our proofs.

1. Introduction

LetM =M([n]) (resp.M =M([n])) denote a matroid (resp. oriented matroid) of
rankr with ground set [n] := {1,2, . . . ,n}. Let V be a vector space of dimensiond over
some fieldK. A (central) arrangement (of hyperplanes) inV, AK = {H1, . . . , Hn}, is
a finite listed set of codimension one vector subspaces. Given an arrangementAK we
suppose always chooses a family of linear forms{θHi ∈ V∗: Hi ∈ AK,Ker(θHi ) = Hi },
whereV∗ denotes the dual space ofV. The productQ(A) = ∏

H∈A θH is called the
defining polynomialofA.There is a matroidM(AK)on the ground set [n] determined by
AK: a subsetD ⊂ [n] is a dependent setofM(AK) iff there are scalarsζi ∈ K, i ∈ D,
not all nulls, such that

∑
i∈D ζi θHi = 0. A circuit is a minimal dependent set with

respect to inclusion. We denote byL(AK) the intersection lattice of L(AK): i.e., the
set of intersections of hyperplanes inAK, partially ordered by reverse inclusion. Set
M(AK) = V\⋃H∈AK H.
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ENS/36563/99 and by DONET (European Union Contract ERBFMRX-CT98-0202).



74 R. Cordovil

Aomoto suggested the study of the (graded)K-vector space AO(AK), generated by
the basis{Q(BI)

−1},whereI is an independent set ofM(AK), BI := {Hi ∈ AK: i ∈ I }
and Q(BI) =

∏
i∈I θHi denotes the corresponding defining polynomial. In [1] it is

conjectured that

dim(AO(AR)) = number of chambers ofM(AR).

To prove Aomoto’s conjecture, Orlik and Terao have constructed in [8] a commutative
K-algebra,U(AK), isomorphic to AO(AK) as a gradedK-vector space in terms of the
equations{θH : H ∈ AK}. The authors note that it is not clear whetherU(AK) itself
depends only on the intersection latticeL(AK).

To every oriented matroidM we associate a commutativeZ-algebra, denoted by
A(M). This algebra is the “combinatorial analogue” of the algebra of Orlik–Terao and
it is the main tool to give a negative answer to the question of Orlik–Terao.

We use [9] and [10] as a general reference in matroid theory. We refer to [2] and [7]
for good sources of the theory of oriented matroids and arrangements of hyperplanes,
respectively.

2. Two Commutative Algebras

Let IND`(M) ⊂ ([n]
`

)
be the family of the independent sets of cardinal` of the matroid

M and set IND(M) = ⋃`∈N IND`(M). We denote byC = C(M) the set of circuits
ofM. When the smallest elementα of a circuitC, |C| > 1, is deleted, the remaining
set,C\α, is said to be abroken circuit. (Note that our definition is slightly different to
the standard one. In the standard definitionC\α can be empty.) To shorten the notation
the singleton set{x} is denoted byx. A no broken circuitset of a matroidM is an
independent subset of [n] which does not contain any broken circuit. Let NBC`(M) ⊂([n]
`

)
be the set of the no broken circuit sets of cardinal` of M. Set NBC(M) =⋃

`∈N NBC`(M). We denote byL(M) the lattice of flats ofM. (We remark that the
lattice mapϕ: L(AK) → L(M(AK)), determined by the one-to-one correspondence
ϕ′: Hi ←→ {i }, i = 1, . . . ,n, is a lattice isomorphism.) Consider now an independent
set X. Let clM(X) be (or shortly cl(X)) the closure ofX in M. Pick an element
x ∈ cl(X)\X. Let C(X, x) denote the unique circuit ofM contained inX ∪ x. For
everyX ∈ IND(M), set

EA(X) := {x ∈ cl(X)\X: x is the minimum ofC(X, x) andC(X, x) 6= {x}}.
(The elements of EA(X) are usually called theexternally activeelements ofX.) So, for
every independent setX ofM, X ∈ NBC(M) iff EA (X) = ∅. If EA(X) 6= ∅, letα(X)
denote the smallest element of EA(X).

Here, every mapX: [n] → {+1,−1,0} ⊂ Z is called asigned seton [n]. Set
X+ = {` ∈ [n]: X(`) = +1}, X− = {` ∈ [n]: X(`) = −1}.We say thatX := X+ ∪ X−

is thesupportof X, or X is a signed setsupportingX. A signed setX conforms toa
signed setY if X+ ⊂ Y+ andX− ⊂ Y−. For everyx ∈ [n] and signed setX let X\x
be the signed set on [n]\x, conforming toX and supportingX\x. We say that a signed
setX is theunion of the signed setsX1, . . . ,Xm if X = X1 ∪ · · · ∪ Xm and everyXi

conforms toX. Thereorientation on the subset S⊂ [n] of the signed setX is the signed
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set, denoted−SX, determined by the equalities

(−SX)+ := {X+\S} ∪ {S∩ X−} and (−SX)− := {X−\S} ∪ {S∩ X+}.

Theoppositeof a signed setX, denoted−X, is the signed set−X = −[n]X. An oriented
matroid, denotedM, is a matroid on the ground set [n], denotedM,with an additional
structure:

◦ To every circuitC ∈ C(M) is attached two opposite signed sets (signed circuits)
C and−C supportingC.
◦ The set of signed circuits ofM, denotedC = C(M), verifies a convenient set of

axioms, see page 103 of [2].

The set of all the union of signed circuits ofM is called the set of thevectorsof the
oriented matroid. IfK is an ordered field the arrangementAK determines an oriented
matroidM(AK) on the ground set [n]. Indeed letC = {i1, . . . , im}, i1 < · · · < im, be a
circuit ofM(AR). From the definitions we know that there are well determined scalars
ζi j ∈ K∗, ζi1 = 1, such that

∑m
j=1 ζi j θHi j

= 0. SetC: [n] → {0,1,−1} ⊂ Z the signed
set

C(`) =


+1 if ` ∈ C and λ` > 0,

−1 if ` ∈ C and λ` < 0,

0 if ` /∈ C.

By definition C is one of the two opposite signed circuits ofM(AK) supportingC.
Note thatM(AK) =M(AK). Thereorientationon the subsetS⊂ [n], of the oriented
matroidM, is the oriented matroid, denoted−SM, such thatC(−SM) := {−SC: C ∈
C(M)}.We say also thatC(−SM) is thereorientationon the subsetSof C(M). (The
concept of “reorientation” is the combinatorial analogue of the notion of “nonsingular
projective permissible transformation”.)

Fix a setE := {e1, . . . ,en} and let K be a commutative ring with unity 1. Let K[E]
denote the commutative free K-algebra given by the generatorsE ∪ {1}. For every
X ⊂ [n], seteX :=∏i∈X ei , e∅ := 1.

Definition 2.1 [8, Definition 2.2 and Proposition 2.3]. Consider the map

∂: C(M(AK))→ K[E], C 7→
m∑

j=1

ζi j eC\i j ,

whereC = {i1, . . . , im}, i1 < · · · < im, and
∑m

j=1 ζi j θHi j
= 0, ζi1 = 1. U(AK) is the

(commutative)K-algebra given by the generators 1,e1, . . . ,en, and the relations:

◦ ei ej = ej ei ,∀i, j = 1, . . . ,n,
◦ e2

i = 0,∀i = 1, . . . ,n,
◦ ∂(C) = 0,∀C ∈ C(M(AK)).

We callU(AK) theOrlik–Terao algebra ofAK.

Now, we introduce the “combinatorial analogue” of the Orlik–Terao algebra.
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Definition 2.2. Consider the map

∂̃: C(M)→ Z[E], C 7→
m∑

j=1

C(i j )eC\i j ,

whereC = {i1, . . . , im}, i1 < · · · < im, andC ∈ C(M) is the signed circuit supporting
C, such thatC(i1) = 1. A(M) is the (commutative)Z-algebra given by the generators
1,e1, . . . ,en, and the relations:

◦ ei ej = ej ei ,∀i, j = 1, . . . ,n,
◦ e2

i = 0,∀i = 1, . . . ,n,
◦ ei = 0, if i is a loop ofM,

◦ ∂̃(C) = 0,∀C ∈ C(M), |C| > 1.

We callA(M) thealgebraof the oriented matroidM.

For everyX ⊂ [n], we denote by [X]A (resp. [X]U), or shortly by [X] or eveneX

when no confusion will result, the residue class inA(M) (resp.U(AK)) determined by
the elementeX.Note thatA(M) ∼= A(M\x) if x is a loop orx is parallel to some other
element ofM. So in what follows we suppose thatM is a simple matroid. For every
circuit C ∈ C(M), we have [C]A = 0. To see this, pick an elementx ∈ C if |C| > 1.
Then 0= ex · ∂̃(eC) = ±eC. We conclude that if [X]A 6= 0, thenX is an independent
set ofM.

The “abstract algebra”A(M) has a canonical grading.

Proposition 2.3. SetA` = A`(M) be the submodule ofA(M) generated by the
elements{[X]A: X ∈ IND`(M)}. The gradingA(M) =⊕`∈N A`(M) is canonical,
i.e., it is independent of the knowledge of the oriented matroidM.

Proof. We know thatA`(M) = (0), for all ` > r. If A(M) = A0 = Z (i.e.,r = 0) the
result is clear. Suppose thatA(M) 6= Z. Note thatAr = {x ∈ A(M): x · y = 0, ∀y ∈
A(M)\Z}. If we know the modulesAr , . . . ,Ar−i andA〈i+1〉 := Ar ⊕ · · · ⊕ Ar−i 6=
A(M), (i.e.,r − i > 1) the moduleAr−i−1, i = 0, . . . , r −2, can be defined recursively
by

Ar−i−1 = {x ∈ A(M): x · y ∈ A〈i+1〉,∀y ∈ A(M)\Z}/A〈i+1〉.

Proposition 2.4. For every x ∈ [n] there is a unique epimorphism ofZ-modules
px: A(M)→ A(M/x), such that, for every I∈ IND(M), we have

px(eI ) :=
{

eI \x if x ∈ I ∈ IND(M),

0 otherwise.
(2.1)

Proof. It is enough to prove that

px(eX · ∂̃(C)) = 0, ∀X ⊂ [n], ∀C ∈ C(M). (2.2)
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We can suppose thatX ∩C = ∅ andx ∈ X ∪C. Let Y be a signed set on [n] supporting
Y = {i1, . . . , im}. For convenience of notation set

∂̃Y(Y) :=
m∑

j=1

Y(i j )eY\i j ∈ Z[E].

Let C be one of the opposite signed circuits supportingC. Remember that the signed set
C\x on [n]\x is a vector (union of signed circuits) ofM/x. So we have

px(eX · ∂̃(C)) =
{
±eX · ∂̃C\x(C\x) = 0 if x ∈ C,

±eX\x · ∂̃C(C) = 0 if x ∈ X.

Corollary 2.5. For every subset X= {i1, . . . , im} ⊂ [n], the following two conditions
are equivalents:

◦ X is an independent set ofM,

◦ [X]A = ei1ei2 · · ·eim 6= 0.

Proof. It remains to prove that ifX is an independent set ofM, then [X]A 6= 0. We
prove by induction onn. We know that [∅]A = 1. Suppose that the implication is true
for all the matroids with at mostn− 1 elements. LetX, |X| > 0, be an independent set
ofM and pick an elementx ∈ X. Suppose for a contradiction that [X]A = 0. X\x is
an independent set ofM/x. From Proposition 2.4 we conclude that 0= px([X]A) =
[X\x]A(M/x), a contradiction with the induction hypothesis.

Proposition 2.6. For every x∈ [n] there is a unique morphism ofZ-modules, ix: A
(M\x)→ A(M), such that, for every I∈ IND(M\x), we haveix(eI ) = eI .

Proof. The mapix is well determined. Indeed from Corollary 2.5 we know that

ix(eI · ∂̃(C)) = eI · ∂̃(C) = 0, ∀I ∈ IND(M\x), ∀C ∈ C(M\x).

Setnbc̀ := {[ I ]A: I ∈ NBC`(M)} andnbc := ⋃
`=0 nbc̀ . SetM′ = M\x,

M′′ = M/x, A := A(M), A′ := A(M′) andA′′ := A(M′′). Consider an in-
dependent setX ∈ IND`(M), suppose thatX /∈ NBC`(M), and setα = α(X).
Making use of the definition of̃∂(C(X, α)) we can express the element [X]A as a linear
combination of the elements{[Xx]A: Xx = X\x ∪ α, x ∈ C(X, α)\α}. We claim that
EA(Xx) ⊂ EA(X)\α. Indeed, suppose thatβ ∈ EA(Xx). If α 6∈ C(Xx, β) = C(X, β),
then we haveβ ∈ EA(X)\α. If α ∈ C(Xx, β) we haveβ < α and from the elimination
axiom for circuits there is a circuitC′ such thatβ ∈ C′ ⊂ (C(Xx, β) ∪C(X, α))\α. So
C′ = C(X, β), β is the smallest elementC(X, β) and the claim follows. By the iteration
of this process we conclude that [X]A can be expressed linearly in term of elements of
nbc̀ = {[ I ]A ∈ IND`(M): EA(I ) = ∅}. Sonbc̀ is a generating set of theZ-module
A`(M). Now we are able to prove the main results of this section.
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Theorem 2.7. For every element x ofM, there is a split short exact sequence of
modules

0→ A(M\x) ix−→ A(M)
px−→ A(M/x)→ 0. (2.3)

We postpone the proof of the theorem. The following corollary is an important di-
rect consequence of the above theorem. Corollary 2.8 is similar to a well-known result
concerning the algebras of Orlik–Solomon, Theorem 3.55 of [7].

Corollary 2.8. Suppose that the sequence(2.3) is exact for all the matroids with at
most n elements. Thennbc(M) is a basis of the moduleA(M).

Proof. We prove by induction onn. If n = 0 we know thatA(M(∅)) = Z and
nbc(M(∅)) = {1}. Suppose thatn > 0 and that the result is true for all the matroids
with at mostn− 1 elements. By a reordering of the elements of the matroidM we can
suppose thatx = n. It is clear that

NBC(M′) = {X: X ⊂ [n− 1] andX ∈ NBC(M)}.
From the induction hypothesis we know thatnbc(M′) = {[X]A′ : X ∈ NBC(M′)}
andnbc(M′′) = {[X]A′′ : X ∈ NBC(M′′)} are bases ofA′ andA′′, respectively. The
minimal broken circuits ofM/n are the minimal setsX such that eitherX or X ∪ {n}
is a broken circuit ofM (see Proposition 3.2.e of [4]). Then

NBC(M′′) = {X: X ⊂ [n− 1] andX ∪ {n} ∈ NBC(M)} and (2.4)

NBC(M) = NBC(M′) ] {I ∪ n: I ∈ NBC(M′′)}. (2.5)

We know thatnbc(M) = {[X]A: X ∈ NBC(M)} is a generating set ofA. So Corol-
lary 2.8 follows from the exactness of sequence (2.3).

Theorem 2.7 is a consequence of Lemmas 2.10–2.12 below.

Lemma 2.9. Suppose that sequence(2.3) is exact for all the matroids with at most
n − 1 elements. Then for every x∈ [n], there is an exact sequence ofZ-modules

A′ ix−→ A px−→ A′′ → 0.

Proof. From the definitions we know thatpx◦ix, is the null map so Im(ix) ⊂ Ker(px). It
remains to prove the inclusion Ker(px) ⊂ Im(ix). By a reordering of the elements of [n]
we can suppose thatx = n.Suppose that

∑m
i=1 ζi [ Ii ]A ∈ Ker(pn), [ Ii ]A ∈ nbc(M), ζi ∈

Z, and set
m∑

i=1

ζi [ Ii ]A =
∑
Ii ′ 63n

ζi ′ [ Ii ′ ]A +
∑
Ii ′′ 3n

ζi ′′ [ Ii ′′ ]A, i ′, i ′′ ∈ {1, . . . ,m}.

So,

pn

(
m∑

i=1

ζi [ Ii ]A

)
=
∑
Ii ′′ 3n

ζi ′′ [ Ii ′′ \n]A′′ = 0. (2.6)
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From (2.4) we conclude that [Ii ′′ \n]A′′ ∈ nbc(A′′). From Corollary 2.8 we know that
nbc(A′′) is a basis ofA′′.So, (2.6) implies thatζi ′′ = 0 for everyi ′′.Hence

∑m
i=1 ζi [ Ii ]A =∑

Ii ′ 63n ζi ′ [ Ii ′ ]A = in(
∑
ζi ′ [ Ii ′ ]A′) ∈ Im(in).

Lemma 2.10. Suppose that sequence(2.3) is exact for all the matroids with at most
n− 1 elements. Let a be an element of the moduleA(M) = Z⊕ A1⊕ · · · ⊕ Ar . Then
a ∈ Z iff px(a) = 0, for every x∈ [n].

Proof. From (2.1) we see that ifa= ζ [∅]A ∈ A0 (= Z), thenpx(a) = 0, for all x ∈ [n].
We prove that(px(a) = 0,∀x ∈ [n]) H⇒ a ∈ Z. Suppose thatpx(a) = 0,∀x ∈ [n].
From Lemma 2.9 we know that

a ∈
⋂

x∈[n]

Ker(px) =
⋂

x∈[n]

Im(ix) = Z.

Lemma 2.11. Suppose that sequence(2.3) is exact for all the matroids with at most

n− 1 elements. Then the sequence0→ A′ ix−→ A is exact.

Proof. The casen = 1 is trivial. Suppose thatn > 1. It is well known thatM\x/y =
M/y\x, for every pair of elementsx, y ∈ [n], x 6= y. Consider the epimorphism

p
′
y: A(M\x)→ A(M\x/y).

Consider also the monomorphismi′x: A(M\x/y)→ A(M/y). It is easy to check that
the following diagram of modules is commutative:

A(M\x) ix−−−−→ A(M)yp′y

ypy

A(M\x/y)
i′x−−−−→ A(M/y).

We prove the implicationix(a) = ix(b) H⇒ a = b, for every paira,b ∈ A(M\x).
We know that

ix(a) = ix(b) H⇒ (py ◦ ix(a) = py ◦ ix(b),∀y ∈ [n]\x),

py ◦ ix(a) = i
′
x ◦ p

′
y(a) and py ◦ ix(b) = i

′
x ◦ p

′
y(b), ∀y ∈ [n]\x,

i
′
x ◦ p

′
y(a) = i

′
x ◦ p

′
y(b) ⇐⇒ p

′
y(a) = p

′
y(b), ∀y ∈ [n]\x.

From Lemma 2.10 we know that(p′y(a) = p′y(b),∀y ∈ [n]\x)⇔ a−b = ζ ∈ Z. Then
we have 0= ix(a)− ix(b) = ix(ζ ) = ζ and soa= b.

Lemma 2.12. Suppose that sequence(2.3) is exact for all the matroids with at most n
elements. Then sequence(2.3) for the matroidM([n]) splits, i.e., there is a morphism
of modulesp−1

x : A′′ → A such thatpx ◦ p−1
x is the identity map and

A(M) = ix(A(M\x))⊕ p
−1
x (A(M/x)).
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Proof. We can suppose thatx = n. From Corollary 2.8, we know thatnbc(M′)
andnbc(M′′) are bases ofA′ andA′′, respectively. There is a morphism of modules
p−1

n : A′′ → A well determined by the conditionsp−1
n ([ I ]A′′) := [ I ∪ n]A for all I ∈

NBC(M′′). It is clear thatpn ◦ p−1
n is the identity map. From (2.5) we conclude that the

exact sequence (2.3) splits.

Remark 2.13. With some adjustments, our techniques also give proofs of Proposi-
tion 2.3, Corollary 2.5, Theorem 2.7 and Corollary 2.8 for the algebra of Orlik–Terao.

3. Applications

Proposition 3.1. Let V be a vector space of dimension d over an ordered fieldK, and
letA be a central arrangement of hyperplanes in V. Consider the algebrasU = U(AK)
andA = A(M(AK)) and letnbc(U) and nbc(M) be the corresponding no broken
circuit bases. For a given X⊂ [n], suppose that

(1) [X]U =
∑n

i=1 ξi [ Ii ]U, [ Ii ]U ∈ nbc(U), ξi ∈ K and
(2) [X]A =

∑n
i=1 ξ̃i [ Ii ]A, [ Ii ]A ∈ nbc(M), ξ̃ ∈ {±1,0} ⊂ Z.

Thensign(ξi ) = ξ̃i , i = 1, . . . ,n.

We make use of the following lemma:

Lemma 3.2[5]. Let G= (V, E) be the direct graph defined as follows:

◦ V(G) = IND(M(AK)).
◦ −→I I ′ ∈ E(G) is a directed edge of G iff there is a pivotable pair(α, x) such that

I ′ = I \x ∪ α, whereα = α(I ) and x∈ C(I , α)\α.
For every pair of vertices X, X′ of the graph G, there is at most one directed path from
X to X′.

Proof. We attach toG two edge-labelling graphs determined respectively by the al-
gebrasA(M(AK)) andU(AK). These labelled graphs are denotedGA and GU, re-

spectively. Let
−→
I I ′i be an edge ofG whereα = α(I ) = I ′i \I , C = C(I , α) =

{α, x1, . . . , xi , . . . , xm} and I ′i = I \xi ∪ α. Let C ∈ C(M(AK)) be the signed cir-
cuit supportingC and such thatC(α) = 1.

(1) Suppose that∂(C) = eC\α +
∑m

i=1 ζi eC\xi , i.e., [I ]U =
∑m

i=1−ζi [ I ′i ]U.We label

the edge
−→
I I ′i of GU with the scalar−ζi .

(2) Suppose that̃∂(C) = eC\α +
∑m

i=1 C(xi )eC\xi i.e., [I ]A =
∑m

i=1−C(xi )[ I ′i ]A.
We label the edge

−→
I I ′i of GA with the scalar−C(xi ).

From the definitions we know that sign(ζi ) = C(xi ), for every i = 1, . . . ,m. Let
P1, . . . ,Ps be the list of the maximal length directed paths ofG, beginning with the
vertex I . Let T̀ denote the last vertex of the pathP`,∀` = 1, . . . , s. T̀ is a sink ofG,
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so [T̀ ]A ∈ nbc(M) (resp. [T̀ ]U ∈ nbc(U)). AsK is an ordered field, the proposition
follows.

Definition 3.3. LetB = {b1, . . . ,bn} be an arbitrary basis ofU1 (resp.A1) such that the
set IND(M′) := {{ j1, . . . , js} ⊂ [n]: bj1bj2 · · ·bjs 6= 0} is the family of the independent
sets of a matroidM′([n]).We say thatU fixesM(AK) (resp.A fixesM) if the following
condition holds:

◦ There is a permutationσ ∈ Sn and invertible scalarsζi such thatbi = ζi eσ(i ) , i =
1, . . . ,n. (Note thatσ : M′ ∼=M(AK) (resp.σ : M′ ∼=M).)

Proposition 3.4. In general we cannot reconstructM from the “abstract algebra”
A(M). In the case when the algebraA(M) fixesM we can reconstruct the signed set
of circuitsC(M), up to a reorientation and a permutation of the ground set[n].

Proof. (The following example is similar to one of [6].) Consider the two direct graphs
G1 = (V1, E2) andG2 = (V2, E2) (see Figs. 1 and 2):

◦ V1 := {v1, . . . , v5},
◦ E1 := {a1 = −−→v1v2,a2 = −−→v2v3,a3 = −−→v3v1, a4 = −−→v4v1,a5 = −−→v1v5,a6 = −−→v5v4}.
◦ V2 := {v1, . . . , v5},
◦ E2 := {b1 = −−→v1v2,b2 = −−→v2v3,b3 = −−→v4v3,b4 = −−→v3v1,b5 = −−→v1v5,b6 = −−→v5v3}.
LetMG1 (resp.MG2) be the oriented matroid on the ground set{1, . . . ,6} deter-

mined by the graphG1 (resp.G2). More precisely:

◦ MG1 has two pairs of opposite signed circuitsC1, −C1 and C2, −C2 where
C+1 = {1,2,3}, C+2 = {4,5,6} andC−1 = C−2 = ∅.
◦ MG2 has three pairs of opposite signed circuitsD1, −D1, D2, −D2 andD3,

−D3 whereD+1 = {1,2,4},D+2 = {4,5,6},D−1 = D−2 = ∅, D+3 = {1,2, } and
D−3 = {5,6}.

Consider the algebrasA = A(MG1) andB = A(MG2). From Definition 2.2 we know
thatA is the commutativeZ-algebra generated by the seven elements 1,e1, . . . ,e6 and

Fig. 1. GraphG1. Fig. 2. GraphG2.
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the relations

ei ej = ej ei , e12+ e13+ e23 = 0, e45+ e46+ e56 = 0, e2
i = 0 (3.1)

for all i = 1, . . . ,6. Similarly,B is the commutativeZ-algebra generated by the seven
elements 1,e′1, . . . ,e

′
6 and the relations

e′i e
′
j = e′j e

′
i , e′12+ e′14+ e′24 = 0, e′45+ e′46+ e′56 = 0, e′i e

′
i = 0 (3.2)

for all i = 1, . . . ,6. (The relation−e′126− e′125+ e′156+ e′256= 0 is redundant. Indeed,
from the relations (3.2), we deduce that−e′126 = e′146+ e′246, −e′125 = e′145+ e′245,

e′156= −e′146− e′145 ande′256= −e′245− e′246.)

Let8: A→ B be the morphism ofZ-algebras determined by the values8(1) = 1,
8(è ) = e′` + e′3+ e′4, ` = 1,2, 8(e3) = −e′3 and8(è ) = e′`, ` = 4,5,6. The map8
is well defined. Indeed

8(e12+ e13+ e23) = (e′1+ e′3+ e′4)(e
′
2+ e′3+ e′4)− e′3(e

′
1+ e′2+ 2e′3+ 2e′4)

= e′12+ e′24+ e′14=0,

and

8(e45+ e46+ e56) = e′45+ e′46+ e′56 = 0.

Consider now the morphism ofZ-algebras2: B→ A determined by the values2(1) =
1,2(e′`) = è + e3− e4, ` = 1,2, 2(e′3) = −e3 and2(e′`) = è , ` = 4,5,6. The map
2 is well defined. Indeed

2(e′12+ e′14+ e′24) = (e1+ e3− e4)(e2+ e3− e4)+ e4(e1+ e2+ e1+ 2e3− 2e4)

= e12+ e13+ e23 = 0,

and

2(e′45+ e′46+ e′56) = e45+ e46+ e56 = 0.

As2 ◦8 = 1A and8 ◦2 = 1B, we conclude that the8 is an isomorphism.
Suppose now thatA = A(M) fixesM and lete1, . . . ,en be a family of generators of

A1 in one-to-one correspondenceei ↔ i with the elements of the ground set [n] ofM.

Let C be the signed circuit ofM supportingC = {i1, . . . , i k}, k > 1, i1 < · · · < i k,

and such thatC(i1) = 1. By a reordering of the elements of [n] we may suppose
that i1 = 1, . . . , i j = j . Let nbc(M) be the no broken circuit basis of the algebraA
relative to this new ordering of [n]. It is clear that [1· · · ĵ · · · k]A ∈ nbc(M), for every
j = 2, . . . , k, but C\1 = {2, . . . , k} is a broken circuit. We know that [2· · · k]A =
−∑k

j=2 C( j )[1 · · · ĵ · · · k]A. So, we can recover the signed circuitC. We conclude that
the basee1, . . . ,en of A1 determinesC(M) up to a reorientation and a permutation of
the ground set [n].

Theorem 3.5. In general we cannot reconstruct the intersection lattice L(A) from the
“abstract algebra”U(A).
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Proof. Lete1, . . . ,e6 be the canonical basis of the vector spaceR6.Consider the graph
G1 = (V1, E1), introduced in Proposition 3.4. To every edgeah = −→vi vj ∈ E1, we attach
the vectorvh = ei − ej . Set

AR = {H` ⊂ (R6)?: H` = {x ∈ (R6)?: 〈x, v`〉 = 0}, ` = 1, . . . ,6}.
From the definitions, we see thatM(AR) =MG1. For every one of the four signed
circuitsC ∈ C(M(AR)) we have

∑6
`=1 C(`)v` = 0. So,U(AR) = A(M(AR))⊗Z R.

Similarly, we construct an arrangement of hyperplanesBR in (R6)?, determined by the
graphG2 = (V2, E2),and we also haveU(BR) = A(M(BR))⊗ZR.SoU(AR) ∼= U(BR)
andL(AR) 6∼= L(BR).

We finish with an open question. Orlik and Terao ask in [8]:

◦ Is U(AC) the model for any topological invariant of the manifoldM(AC) =
Cd\⋃H∈AC H?

A partial solution to this problem can be obtained from Proposition 3.4 above and a
celebrated theorem of Bj¨orner and Ziegler [3]:

Proposition 3.6. Suppose thatAC is the complexification of a real arrangementAR
and the algebraU(AC) fixes the matroidM(AC). Then the abstract algebraU(AC)
determines the smooth manifoldM(AC) up to homeomorphism.

Proof. We know thatU(AC) = U(AR) ⊗R C andM(AC) ∼=M(AR). From Propo-
sition 3.4 we conclude that the algebraU(AC) determines (up to reorientation and a
permutation of the ground set [n]) the oriented matroidM(AR). So the smooth mani-
fold M(AC) is well determined up to homeomorphism, see [3].

A combinatorial analogue of the question of Orlik–Terao is:

◦ Which features of the oriented matroidM are reflected in the algebraA(M)?
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