Lie bialgebroids and reduction

Edith Padrón

University of La Laguna

Mechanics and Lie algebroids Lisbon, September 11, 2007

(□) (□) (□) (□) (□)

J. Marsden, A. Weinstein: Reduction of symplectic manifolds with symmetry., Rep. Math. Phys. 5, 121 (1974).

- A symplectic action of Lie group G on a symplectic manifold (M, Ω) with equivariant momentum map J : M → g*
- $\mu \in \mathfrak{g}^*$ a regular value of J \downarrow $J^{-1}\mu$ is a submanifold G_μ acts on $\mathsf{J}^{-1}(\mu)$
- The space of orbits $J^{-1}\mu/G_{\mu}$ is an smooth manifold and the canonical projection $\pi_{\mu}: J^{-1}\mu \to J^{-1}\mu/G_{\mu}$ defines a principal G_{μ} -bundle

Theorem (Symplectic reduction)

There exists a unique symplectic 2-form Ω_{μ} on $J^{-1}\mu/G_{\mu}$ such that

$$\pi^*_{\mu}\Omega_{\mu}=i^*_{\mu}\Omega$$

where $\pi_\mu:J^{-1}\mu\to J^{-1}\mu/G_\mu$ is the projection and $i_\mu:J^{-1}\mu\to M$ is the canonical inclusion

1 Lie bialgebroids

- 1.1 Some tools in the Lie algebroid Theory
- 1.2 Lie bialgebroids
- **2** Actions and momentum maps for Lie bialgebroids
 - 2.1 Actions of a Lie group on a Lie bialgebroid by complete lifts
 - 2.2 Momentum maps for Lie bialgebroids
- **③** Reduction of Lie bialgebroids
 - 3.1 Reduction of Lie bialgebroids by bialgebroid automorphisms
 - 3.2 Reduction of Lie bialgebroids with momentum map
 - 3.3 Examples

1.1 Some tools in Lie algebroid Theory

 $au_A: A o M$ a Lie algebroid over M

 $(\llbracket \cdot, \cdot \rrbracket, \rho)$ a Lie algebroid structure on A

 $\Gamma(A) \equiv C^{\infty}(M)$ – modulo of sections of A

 $(A, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid $\Leftrightarrow A^*$ is a linear Poisson manifold

The differential of the Lie algebroid A

$$d^A: \Gamma(\wedge^k A^*) \longrightarrow \Gamma(\wedge^{k+1} A^*)$$

The Lie derivative with respect to $X \in \Gamma(A)$

$$\mathcal{L}_X^A: \Gamma(\wedge^k A^*) \longrightarrow \Gamma(\wedge^k A^*)$$

$$\mathcal{L}_X^A = i_X \circ d^A + d^A \circ i_X$$

(ロ) (部) (E) (E) (E)

The Schouten bracket

• $[X, f] = \rho(X)(f)$

• $\llbracket P, Q \rrbracket = (-1)^{pq+p+q} \llbracket Q, P \rrbracket$

 $\llbracket \cdot, \cdot \rrbracket : \Gamma(\wedge^p A) \times \Gamma(\wedge^q A) \to \Gamma(\wedge^{p+q-1} A)$

 $f \in C^{\infty}(M), X \in \Gamma(A), P \in \Gamma(\wedge^{p}A), Q \in \Gamma(\wedge^{q}A), R \in \Gamma(\wedge^{*}A).$

• $\llbracket P, Q \land R \rrbracket = \llbracket P, Q \rrbracket \land R + (-1)^{q(p+1)} Q \land \llbracket P, R \rrbracket$

1.1 Some tools in Lie algebroids Theory

Vertical and complete lifts

The complete and vertical lift to A of $f: M \to \mathbb{R}$

•
$$f^c: A \to \mathbb{R}, \quad f^c(a) = \rho(a)(f)$$

•
$$f^{\nu}: A \to \mathbb{R}, \quad f^{\nu}(a) = f(\tau(a)), \quad \forall a \in A.$$

The complete and vertical lift to A of $X \in \Gamma(A)$

• $X^c \in \mathfrak{X}(A)$

•
$$X^{c}(f \circ \tau) = \rho(X)(f) \circ \tau, \quad f \in C^{\infty}(M)$$

• $X^{c}(\widehat{\alpha}) = \widehat{\mathcal{L}_{X}^{A}}\alpha, \quad \alpha \in \Gamma(A^{*})$

 $\widehat{\alpha}: \mathcal{A} \rightarrow \mathbb{R}$ the linear function induced by α

(日) (四) (三) (三)

1.1 Some tools in Lie algebroids Theory

<ロ> (日) (日) (日) (日) (日)

1.1 Some tools in Lie algebroids Theory

Proposition

Suppose that $(\llbracket \cdot, \cdot \rrbracket, \rho)$ is a Lie algebroid structure on A. Then, there is a Lie algebroid structure on A' such that $\tilde{\pi}$ is a Lie algebroid epimorphism if and only if the following conditions hold:

- **(**[X, Y] is a $\tilde{\pi}$ -projectable section of A, for all $X, Y \in \Gamma(A)$ $\tilde{\pi}$ -projectable sections of A.
- **2** $[X, Y] \in \Gamma(\ker \tilde{\pi})$, for all $X, Y \in \Gamma(A)$ with $X \in \Gamma(A)$ $\tilde{\pi}$ -projectable section of A and $Y \in \Gamma(\ker \tilde{\pi})$.

D. Iglesias, J.C. Marrero, D. Martín de Diego, E. Martínez, E. Padrón: Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group, *Symmetry, Integrability and Geometry: Methods and Applications* **3** (2007) 049, 28 pages

Cariñena J.F., Nunes Da Costa J.M., Santos, P., Reduction of Lie algebroid structures Int. J. Geom. Methods Mod. Phys. V.2 (2005) (5) 965-991 $(A, \llbracket, \cdot \rrbracket, \rho)$ Lie algebroid over M $(A^*, \llbracket, \rrbracket_*, \rho_*)$ Lie algebroid over M \Downarrow

 $(A, A^*) \text{ is a } \underline{\text{Lie bialgebroid }} \text{ if}$ $d^{A^*}\llbracket X, Y \rrbracket = \llbracket X, d^{A^*}Y \rrbracket - \llbracket Y, d^{A^*}X \rrbracket, \ \forall X, Y \in \Gamma(A)$

K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids, *Duke Math. J.*, **73** (1994), 415-452

 (A, A^*) a Lie bialgebroid on M

∜

 $\{\cdot, \cdot\}_M : C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M) \text{ is a Poisson bracket on } M$ $\{f, h\}_M = \langle d^A f, d^{A^*} h \rangle \quad \forall h \in C^{\infty}(M)$

(日) (문) (문) (문) (문)

Examples

LIE BIALGEBRAS

 \mathfrak{g} Lie algebra + \mathfrak{g}^* Lie algebra

$$d_*[\xi_1,\xi_2]_{\mathfrak{g}} = [\xi_1,d_*\xi_2]_{\mathfrak{g}} - [\xi_2,d_*\xi_1]_{\mathfrak{g}}$$

(日) (圖) (불) (불)

POISSON ALGEBROIDS

 $(A, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid on M, A is Poisson if $\Lambda \in \Gamma(\wedge^2 A)$

Properties:

$$\llbracket \Lambda, \Lambda \rrbracket = 0.$$

- $\#_{\Lambda} : A^* \to A, \quad \alpha_x \to (\#_{\Lambda})_x(\alpha_x) = (i_{\alpha}\Lambda)(x)$ homomorphism of vector bundles
- Poisson bracket on $M : \{f, g\} = \Lambda(d^A f, d^A g)$
- The linear Poisson structure on A: Λ^c

SYMPLETIC ALGEBROIDS

 $(A, \llbracket \cdot, \cdot \rrbracket, \rho)$ Lie algebroid on M, A is symplectic if closed nondegenerated $\Omega \in \Gamma(\wedge^2 A^*)$

 $b_{\Omega}: \Gamma(A) \to \Gamma(A^*)$

$$\Lambda(\alpha,\beta) = \Omega(\flat_{\Omega}^{-1}(\alpha),\flat_{\Omega}^{-1}(\beta))$$

(日) (四) (E) (E) (E) (E)

2. Actions and momentum maps for Lie bialgebroids

2.1 Actions of a Lie group on a Lie algebroid by complete lifts

- $(A, \llbracket \cdot, \cdot \rrbracket, \rho)$ a Lie algebroid over M
- G a connected Lie group
- An action of G on A:

is a commutative diagram

 (Φ_g, ϕ_g) is a vector bundle automorphism

Φ is an action by complete lifts

 $\exists \psi : \mathfrak{g} \to \Gamma(A)$ Lie algebra homomorphism

infinitesimal generator of ξ with respect to $\Phi = \xi_{A_0} = \psi(\xi)^c$, $\forall \xi \in \mathfrak{g}$

2.1 Actions of a Lie group on a Lie algebroid by complete lifts

Some consequences:

- **(**) infinitesimal generator of ξ with respect to the $\phi = \xi_M = \rho(\psi(\xi))$
- 2 (Φ_g, ϕ_g) is a Lie algebroid automorphism, $\forall g \in G$

2.1 Actions of a Lie group on a Lie algebroid by complete lifts

G a Lie group, $\therefore : G \times G \rightarrow G$ the multiplication of G ∜ TG is also a Lie group $T \cdot : TG \times TG \rightarrow TG$ is the multiplication of TGe the identity element of TG∜ $TG \cong G \times \mathfrak{a}$ $TG \to G imes \mathfrak{g}, \quad X_{g} \in T_{g}G \to (g, (T_{g}I_{g^{-1}})(X_{g})) \in G imes \mathfrak{g}$ $(g,\xi) \cdot (g',\xi') = (gg',\xi' + Ad^G_{(g')^{-1}}\xi)$ (e, 0) the identity element of $G \times \mathfrak{g}$ The Lie algebra of $TG \cong G \times \mathfrak{g}$ $T_{(e,0)}(G \times \mathfrak{g}) \cong \mathfrak{g} \times \mathfrak{g}$ $[(\xi, \eta), (\xi', \eta')]_{\mathfrak{a} \times \mathfrak{a}} = ([\xi, \xi']_{\mathfrak{a}}, [\xi, \eta']_{\mathfrak{a}} - [\xi', \eta]_{\mathfrak{a}})$

2.1 Actions of a Lie group on a Lie algebroid by complete lifts

Theorem

Let $((\Phi, \phi), \psi)$ be an action of a connected Lie group G by complete lifts over the Lie algebroid $\tau : A \to M$. Then, the map $\Phi^T : (G \times \mathfrak{g}) \times A \to A$ given by

$$\Phi^{ op}((g,\xi),a_x)=\Phi_g(a_x)+\Phi_g(\psi(\xi)(x)), \quad ext{for } (g,\eta)\in G imes \mathfrak{g}$$

defines an affine action of $G \times \mathfrak{g} \cong TG$ on A. Moreover, if $(\xi, \eta) \in \mathfrak{g} \times \mathfrak{g}$ then the infinitesimal generator $(\xi, \eta)_A$ of (ξ, η) with respect to the action Φ^T is

$$(\xi,\eta)_A = \psi(\xi)^c + \psi(\eta)^v$$

$$\Phi_g(\psi(Ad_{g^{-1}}\xi)(x)) = \psi(\xi)(\phi_g(x)),$$

for $g \in G, \xi \in \mathfrak{g}$ and $x \in M$

2.2 Momentum maps for Lie bialgebroids

 (A, A^*) a Lie bialgebroid over M

 $((\Phi, \phi), \psi)$ an action of the Lie group G on A by complete lifts $J: M \to \mathfrak{g}^*$ smooth equivariant map with respect to ϕ

$$Coad_{g}^{G}(J(x)) = J(\phi_{g}(x)), \quad \forall x \in M, \quad \forall g \in G$$

Definition 1

The action Φ is said to be Hamiltonian with momentum map J if

$$\psi(\xi) = d^{A^*} \widehat{J}_{\xi}, \quad \text{ for } \xi \in \mathfrak{g},$$

$$\widehat{J}_{\xi}: M o \mathbb{R}, \quad \widehat{J}_{\xi}(x) = \langle J(x), \xi
angle, ext{ for any } x \in M$$

CONSEQUENCE: $\Phi_g : A \to A$ and $\Phi_{g^{-1}}^* : A^* \to A^*$ Lie algebroid automorphisms over $\phi_g : M \to M$

 $\oint
\Phi_g$ Lie bialgebroid automorphism

2.2 Momentum maps for Lie bialgebroids

(A, A^*) be a Lie bialgebroid over M

Proposition

Let $\Phi: G \times A \to A$ be a Hamiltonian action of a connected Lie group G over $\phi: G \times M \to M$ with equivariant momentum map $J: M \to \mathfrak{g}^*$. Then, we have that:

- (i) ϕ is an standard Poisson action of G on the Poisson manifold (M, Π_M) and $J: M \to \mathfrak{g}^*$ is a momentum map for ϕ .
- (ii) $\Phi^T : TG \times A \to A$ is a Poisson action of the Lie group TG on Aand the map $J^T : A \to (\mathfrak{g} \times \mathfrak{g})^* \cong \mathfrak{g}^* \times \mathfrak{g}^*$ given by

$$J^{T}(a) = ((dJ \circ \rho)(a), J(\tau(a)))$$

is an equivariant momentum map for the action Φ^T . Here, $dJ: TM \to \mathfrak{g}$ denotes the vector bundle morphism defined by $dJ_{|T_xM} = T_xJ$, for all $x \in M$.

3. Reduction of Lie bialgebroids

3.1 Reduction of Lie bialgebroids by Lie bialgebroid automorphisms

 (A, A^*) a Lie bialgebroid, $\Phi: G \times A \to A$ be an action by Lie bialgebroid automorphisms of a connected Lie group GAssume that the action ϕ is free and that M/G is smooth manifold such that the canonical projection is a surjective submersion

∜

 $A/G \to M/G \text{ is a vector bundle}$ $\Gamma(A/G) = \{X \in \Gamma(A)/X \in G\text{-invariant}\}$ $\pi_A : A \to A/G, \quad \pi_{A^*} : A^* \to A^*/G \text{ are epimorphisms of vector bundles}$ $\{X \in \Gamma(A)/X \text{ is } \pi_A\text{-projectable}\} = \{X \in \Gamma(A)/X \text{ is } G\text{-invariant section}\}$ $\{\alpha \in \Gamma(A^*)/\alpha \text{ is } \pi_{A^*}\text{-projectable}\} = \{\alpha \in \Gamma(A^*)/\alpha \text{ is } G\text{-invariant section}\}$ $\ker((\pi_A)_{|A_x}) = \{0\}, \quad \ker((\pi_{A^*})_{|A_x^*}) = \{0\}$

The pair $(A/G, A^*/G)$ is a Lie bialgebroid over M/G

Reduction procedure for Lie bialgebroid analog of the Marsden Weintein reduction for symplectic manifolds

 (A, A^*) Lie bialgebroid over $M \Rightarrow (A_\mu, A_\mu^*)$ Lie bialgebroid over $J^{-1}(\mu)/G_\mu$

Proposition

Let (A, A^*) be a Lie bialgebroid over M and $\Phi : G \times A \to A$ be a Hamiltonian action of a connected Lie group G on A with momentum map $J : M \to \mathfrak{g}^*$. Consider $\mu \in \mathfrak{g}^*$ such that $(0, \mu) \in \mathfrak{g}^* \times \mathfrak{g}^*$ is a regular value of $J^T : A \to \mathfrak{g}^* \times \mathfrak{g}^*$. Then, we have that:

- (J^{T})⁻¹(0, μ) is a Lie subalgebroid of A over $J^{-1}(\mu)$.
- 2 The restriction ψ_μ of ψ to the isotropy algebra g_μ of μ with respect to the coadjoint action takes values in Γ((J^T)⁻¹(0, μ)).
- The isotropy Lie group G_μ of μ with respect to the coadjoint action acts on (J^T)⁻¹(0, μ) by complete lifts with respect to ψ_μ : g_μ → Γ((J^T)⁻¹(0, μ)).
- The action of G_{μ} on the Lie subalgebroid $(J^{T})^{-1}(0,\mu)$ induces an affine action Φ_{μ}^{T} of TG_{μ} on this subalgebroid.

suppose

- The action of G_{μ} on $J^{-1}(\mu)$ is free
- The space of orbits $J^{-1}(\mu)/G_{\mu}$ is a smooth manifold such that the projection $\pi_{\mu}: J^{-1}(\mu) \to J^{-1}(\mu)/G_{\mu}$ is a surjective submersion

∜

 $J^{-1}(\mu)/{\it G}_{\mu}$ is a reduced Poisson manifold

Theorem

Let (A, A^*) be a Lie bialgebroid over M and $\Phi : G \times A \to A$ be a Hamiltonian action of a Lie group G on (A, A^*) with momentum map $J : M \to \mathfrak{g}^*$. Assume that μ is an element of \mathfrak{g}^* such that $(0, \mu)$ is a regular value for $J^T : A \to \mathfrak{g}^* \times \mathfrak{g}^*$ and that the space of orbits $J^{-1}(\mu)/G_{\mu}$ is a quotient manifold. Then,

- (i) The space of orbits A_μ of the action of TG_μ on (J^T)⁻¹(0, μ) is a Lie algebroid over J⁻¹(μ)/G_μ.
- (ii) The dual bundle $A^*_{\mu} \to J^{-1}(\mu)/G_{\mu}$ is endowed with a Lie algebroid structure.
- (iii) The pair (A_{μ}, A_{μ}^{*}) is a Lie bialgebroid over $J^{-1}(\mu)/G_{\mu}$.

Sketch of the proof

(i) The Lie algebroid structure over $A_{\mu} = (J^{T})^{-1}(0,\mu)/T\mathcal{G}_{\mu}$

Sketch of the proof

$$A_{\mu} := (J^{T})^{-1}(0,\mu)/TG_{\mu} \cong ((J^{T})^{-1}(0,\mu)/G_{\mu})/(\psi_{\mu}(\mathfrak{g}_{\mu})/G_{\mu})$$
$$\Gamma(A_{\mu}) \cong \frac{\Gamma((J^{T})^{-1}(0,\mu))^{G_{\mu}}}{\Gamma(\psi_{\mu}(\mathfrak{g}_{\mu}))^{G_{\mu}}}$$

 $\Gamma((J^T)^{-1}(0,\mu))^{G_{\mu}}$ the space of G_{μ} -invariant section on $(J^T)^{-1}(0,\mu)$

 $\Gamma(\psi_{\mu}(\mathfrak{g}_{\mu}))^{G_{\mu}}$ the space of G_{μ} -invariant section on $\psi_{\mu}(\mathfrak{g}_{\mu})$

Lie algebroid structure ($[\![\cdot, \cdot]\!]_{A_{\mu}}, \rho_{A_{\mu}}$) is characterized by $\llbracket [X], \llbracket Y] \rrbracket_{A_{\mu}} = \llbracket [X, Y] \rrbracket,$ $\rho_{A_{\mu}}([X]) = T\pi_{\mu} \circ \rho(X), \quad \text{for} X, Y \in \Gamma((J^{T})^{-1}(0,\mu))^{G_{\mu}}.$

(日) (四) (注) (注) (三) (三)

Sketch of the proof

(ii) The Lie algebroid structure over A^*_μ

To prove that there exists a Lie algebroid structure on A^*_{μ} , we will show that there exists a linear Poisson structure on A_{μ}

 $\begin{array}{l} \Phi^{\mathcal{T}} \text{ is a Hamilton action of } \mathcal{T}\mathcal{G} \text{ on } (\mathcal{A}, \Pi_{\mathcal{A}}) \text{ with momentum map} \\ \mathcal{J}^{\mathcal{T}} : \mathcal{A} \to \mathfrak{g}^* \times \mathfrak{g}^* \\ \downarrow \end{array}$

∃ reduced Poisson structure $\Pi_{A_{\mu}}$ on $(J^{T})^{-1}(0,\mu)/(TG)_{(0,\mu)}$ $(TG)_{(0,\mu)} = TG_{\mu}$

the Poisson bracket $\{\cdot, \cdot\}_{\Pi_{A_{ij}}}$ is linear

₩

Lie algebroid structure $(\llbracket \cdot, \cdot \rrbracket_{A^*_{\mu}}, \rho_{A^*_{\mu}})$

Sketch of the proof

Lie algebroid structure $(\llbracket \cdot, \cdot \rrbracket_{A^*_{\mu}}, \rho_{A^*_{\mu}})$

 $\alpha_{\mu} \in \Gamma(A_{\mu}^{*}) \Rightarrow \exists \alpha \in \Gamma(A^{*})$ such that $\alpha(\psi(\xi)) = 0$ $\mathcal{L}^{\mathcal{A}}_{\psi(\xi)}\alpha = 0$, $\tilde{\iota}^*_{\mu}(\alpha) = \tilde{\pi}^*_{\mu}(\alpha_{\mu})$ for all $\xi \in \mathfrak{g}$ $\widetilde{\iota}_{\mu}: (J^{T})^{-1}(0,\mu) \to A$ is the inclusion, $\widetilde{\pi}_{\mu}: (J^{\mathsf{T}})^{-1}(0,\mu) \to A_{\mu}$ is the canonical projection $\widetilde{\pi}_{\mu}^{*}(\llbracket \alpha_{\mu}, \beta_{\mu} \rrbracket_{A_{\mu}^{*}}) = \widetilde{\iota}_{\mu}^{*}(\llbracket \alpha, \beta \rrbracket_{*}),$ for $\alpha_{\mu}, \beta_{\mu} \in \Gamma(A^*_{\mu})$ $\rho_{A^*_{\mu}}(\alpha_{\mu})(f_{\mathcal{M}}) \circ \pi_{\mu} = \rho_*(\alpha)(f) \circ \iota_{\mu},$ for $f_{\mu} \in C^{\infty}(J^{-1}(\mu)/G_{\mu})$,

 $f: M \to \text{is a real function on } M$ such that $f_{\mu} \circ \pi_{\mu} = f \circ \iota_{\mu}$, with $\iota_{\mu}: J^{-1}(\mu) \to J^{-1}(\mu)/G_{\mu}$ the canonical inclusion

3.3 Examples: Poisson Lie algebroid

$$(A, \llbracket \cdot, \cdot \rrbracket, \rho, \Lambda)$$
 Poisson Lie algebroid over M
 (A, A^*) is a Lie bialgebroid
+

 $\begin{array}{l} \Phi: G \times A \to A \text{ Hamiltonian action of a connected Lie group } G \text{ over } A \\ \text{with momentum map } J: M \to \mathfrak{g}^* \text{ and associated Lie algebra morphism} \\ \psi: \mathfrak{g} \to \Gamma(A) \\ \psi \end{array}$

$$\psi(\xi) = \mathcal{H}^{\wedge}_{\widehat{J}(\xi)}, \quad \text{for all } \xi \in \mathfrak{g}$$

 $(\Phi_g)_*(\Lambda) = \Lambda, \quad \text{ for all } g \in G$

◆□→ ◆□→ ◆□→ ◆□→ □=

3.3 Examples: Poisson Lie algebroids

$$(0,\mu)$$
 a regular value of $J^{\mathcal{T}}: \mathcal{A}
ightarrow \mathfrak{g}^* imes \mathfrak{g}^*$

 $(A_{\mu}, A_{\mu}^{*}) = ((J^{T})^{-1}(0, \mu) / TG_{\mu}, ((J^{T})^{-1}(0, \mu) / TG_{\mu})^{*}) \text{ is a Lie bialgebroid over } J^{-1}(\mu) / G_{\mu}$

 $\downarrow \\ A_{\mu} \text{ admits a linear Poisson structure (the reduced Poisson structure on$ $<math>\Lambda^{c}$ with respect to the action Φ^{T} and momentum map J^{T}) $\Lambda_{\mu} \in \Gamma(\wedge^{2}A_{\mu})$

$$\Lambda_{\mu}(lpha_{\mu},eta_{\mu})\circ\pi_{\mu}=\Lambda(lpha,eta)\circ i_{\mu}$$
 for all $lpha_{\mu},eta_{\mu}\in\Gamma(A_{\mu})$

where α, β are *TG*-invariant sections of *A*^{*} satisfying

$$\begin{aligned} \widetilde{\pi}_{\mu}(\alpha_{\mu}) &= \widetilde{i}_{\mu}^{*}\alpha, \quad \mathcal{L}_{\psi(\xi)}^{A}\alpha = 0, \quad \alpha(\psi(\xi)) = 0, \\ \widetilde{\pi}_{\mu}(\beta_{\mu}) &= \widetilde{i}_{\mu}^{*}\beta, \quad \mathcal{L}_{\psi(\xi)}^{A}\beta = 0, \quad \beta(\psi(\xi)) = 0 \text{ for all } \xi \in \mathfrak{g} \\ \widetilde{\pi}_{\mu} : (J^{T})^{-1}(0,\mu) \to A_{\mu} \quad \pi_{\mu} : J^{-1}(\mu) \to J^{-1}(\mu)/\mathcal{G}_{\mu} \\ \widetilde{i}_{\mu} : (J^{T})^{-1}(0,\mu) \to A \quad i_{\mu} : J^{-1}(\mu) \to M \end{aligned}$$

Poisson Lie algebroids

Let $(A, \llbracket, \cdot, \cdot\rrbracket, \rho, \Lambda)$ be a Poisson Lie algebroid over M, $\Phi : G \times A \to A$ be a Hamiltonian action of a connected Lie group G over A with momentum map $J : M \to \mathfrak{g}^*$ and associated Lie algebra morphism $\psi : \mathfrak{g} \to \Gamma(A)$. If $(0, \mu)$ is a regular value of $J^T : A \to (\mathfrak{g} \times \mathfrak{g})^*$, then $A_{\mu} = (J^T)^{-1}(0, \mu)/TG_{\mu}$ admits a Poisson Lie algebroid structure Λ_{μ} over $J^{-1}(\mu)/G_{\mu}$.

3.3 Examples: Symplectic Lie algebroids

 $(A, [\![\cdot,\cdot]\!], \rho, \Omega)$ a symplectic Lie algebroid over M

 $\boldsymbol{\Lambda}$ the corresponding Poisson 2-section

 $\begin{array}{l} \Phi: G\times A\to A \text{ a Hamiltonian action of a connected Lie group } G \text{ over} \\ \text{the induced Lie bialgebroid } (A,A^*) \text{ with momentum map } J: M\to \mathfrak{g}^* \\ \text{ and associated Lie algebra morphism } \psi: \mathfrak{g}\to \Gamma(A) \end{array}$

∜

$$i_{\mathcal{H}_{\widehat{J}_{\xi}}^{\Omega}}\Omega = d^{A}\widehat{J}_{\xi}.$$
 \Downarrow
 \Downarrow
 $\Psi^{*}(\Omega) = \Omega, \quad \forall g \in G,$

- 4 同 1 4 日 1 4 日 1

3.3 Examples: Symplectic Lie algebroids

 $i_{\mu}: (J^T)^{-1}(0,\mu) \rightarrow A$

2-section $\widetilde{\Omega}_{\mu} = i_{\mu}^{*}(\Omega)$ on the Lie subalgebroid $(J^{T})^{-1}(0,\mu) \to J^{-1}(\mu)$ For all $\widetilde{X_{\mu}}, \widetilde{Y_{\mu}} \in \Gamma((J^{T})^{-1}(0,\mu)),$ $\widetilde{\Omega}_{\mu}(\widetilde{X_{\mu}}, \widetilde{Y_{\mu}})$ is a π_{μ} -basic function \downarrow For all $X_{\mu}, Y_{\mu} \in \Gamma(A_{\mu}) \Rightarrow \exists$ a function $\Omega_{\mu}(X_{\mu}, Y_{\mu})$ on $J^{-1}(\mu)/G_{\mu}$ such that

$$\Omega_{\mu}(X_{\mu}, Y_{\mu}) \circ \pi_{\mu} = \widetilde{\Omega}_{\mu}(X_{\mu}, Y_{\mu})$$

Symplectic Lie algebroids

Let $(A, \llbracket, \cdot, \rrbracket, \rho, \Omega)$ be a symplectic Lie algebroid and $\Phi : G \times A \to A$ be a Hamilton action with momentum map $J : M \to \mathfrak{g}^*$ and associated Lie homomorphism $\psi : \mathfrak{g} \to \Gamma(A)$. If μ is an element of \mathfrak{g}^* such that $(0, \mu)$ is a regular of J^T , then $A_{\mu} = (J^T)^{-1}(0, \mu)/TG_{\mu}$ is a symplectic Lie algebroid over $J^{-1}(\mu)/G_{\mu}$

 $\rho = [(X_1)]$

 (M, Λ) Poisson manifold + $(\mathfrak{g}, \mathfrak{g}^*)$ Lie bialgebra $\psi: \mathfrak{g}^* \to \mathfrak{X}(M)$ representation

The Lie bialgebroid $TM \oplus_M M \times \mathfrak{g} \to M$ over M

$$(TM, [\cdot, \cdot], 1_{TM}) + (M \times \mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}})$$

$$\mathfrak{X}(M) \times C^{\infty}(M, \mathfrak{g}) \to C^{\infty}(M, \mathfrak{g}) \quad (X, \xi) \mapsto X(\xi)$$

$$C^{\infty}(M, \mathfrak{g}) \times \mathfrak{X}(M) \to \mathfrak{X}(M) \quad (\xi, X) \mapsto 0$$

$$\Downarrow$$

$$(TM \oplus_{M} M \times \mathfrak{g}, \llbracket \cdot, \cdot \rrbracket, \rho) \text{ is a Lie algebroid}$$

$$pr_{1} : TM \oplus_{M} M \times \mathfrak{g} \to TM$$

$$(\xi_{1}), (X_{2}, \xi_{2})] = ([X_{1}, X_{2}], [\xi_{1}, \xi_{2}]_{\mathfrak{g}} + X_{1}(\xi_{2}) - X_{2}(\xi_{1}))$$

 (M, Λ) Poisson manifold + $(\mathfrak{g}, \mathfrak{g}^*)$ Lie bialgebra $\psi : \mathfrak{g}^* \to \mathfrak{X}(M)$ representation

$$(T^*M, [\cdot, \cdot]_{\Lambda}, \#_{\Lambda}) + (M \times \mathfrak{g}^*, [\cdot, \cdot]_{\mathfrak{g}^*}, \psi)$$

$$\Omega^{1}(M) \times C^{\infty}(M, \mathfrak{g}^*) \to C^{\infty}(M, \mathfrak{g}^*) \quad (\alpha, \eta) \mapsto -\#_{\Lambda}(\alpha)(\eta) + \operatorname{coad}_{\psi^*(\alpha)}\eta$$

$$D : C^{\infty}(M, \mathfrak{g}^*) \times \Omega^{1}(M) \to C^{\infty}(M, \mathfrak{g}) \quad D(\eta, \alpha)(X) = -(\mathcal{L}_{\psi(\eta)}\alpha)(X) + \psi(X(\eta))$$

$$\downarrow$$

$$(T^*M \oplus_M M \times \mathfrak{g}^*, [\![\cdot, \cdot]\!]_*, \rho_*) \text{ is a Lie algebroid}$$

$$\rho_* = T^*M \oplus_M M \times \mathfrak{g}^* \to TM \quad \rho_*(\alpha, \eta) = \#_{\Lambda}\alpha + \psi(\eta)$$

$$[(\alpha_1, \alpha_1), (\alpha_2, \eta_2)] = ((\alpha_1, \alpha_2)_{\Lambda} + \mathcal{L}_{\psi(\eta_1)}\alpha_2 - \mathcal{L}_{\psi(\eta_2)}\alpha_1, [\eta_1, \eta_2]_{\mathfrak{g}^*} + \operatorname{coad}_{\psi^*(\alpha_1)}\eta_2 - \operatorname{coad}_{\psi^*(\alpha_2)}(\eta_1))$$

(日) (문) (문) (문) (문)

3.3 Examples: Another Example

 (M, Λ) Poisson manifold + $(\mathfrak{g}, \mathfrak{g}^*)$ Lie bialgebra $\psi : \mathfrak{g}^* \to \mathfrak{X}(M)$ representation

The Lie bialgebroid $TM \oplus_M M \times \mathfrak{g} \to M$ over M $\Phi: G \times M \to M$ Poisson action with momentum map $J: M \to \mathfrak{g}^*$

 $\widetilde{\Phi}: \mathcal{G} \times TM \oplus_M M \times \mathfrak{g} \to TM \oplus_M M \times \mathfrak{g}, \quad \widetilde{\Phi}(h, X, \xi) = (T\Phi_h(X), -Ad_h\psi^*(d\widehat{J}_{\varepsilon}))$ $\widetilde{\Psi}:\mathfrak{q}\to\mathfrak{X}(M)\times C^{\infty}(M,\mathfrak{q})$ $d_*\widehat{J}_{\mathcal{E}}=(\#_{\Lambda}d\widehat{J}_{\mathcal{E}},-\psi^*(d\widehat{J}_{\mathcal{E}}))$ 1 $(\widetilde{\Psi}(\xi))^c \equiv$ Infinitesimal generator of ξ with respect Φ (0,0) is a regular value for J^T $(J^{T})^{-1}(0,0) = T(J^{-1}(0)) \oplus_{J^{-1}(0)} J^{-1}(0) \times \mathfrak{g}$ $(TJ^{-1}(0) \oplus J^{-1}(0) \times \mathfrak{g})/TG \rightarrow J^{-1}(0)/G$ is a Lie bialgebroid

Thanks !!!!

Edith Padrón Lie bialgebroids and reduction

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで