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J. Marsden, A. Weinstein: Reduction of symplectic manifolds with
symmetry., Rep. Math. Phys. 5, 121 (1974).

@ A symplectic action of Lie group G on a symplectic manifold (M, Q)
with equivariant momentum map J: M — g*

@ 4 € g* a regular value of J

4

J71 is a submanifold
G, acts on J71(p)

@ The space of orbits J~*1/G,, is an smooth manifold and the
canonical projection 7, : J=1yu — J711/G,, defines a principal
G,,-bundle
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Theorem (Symplectic reduction)

There exists a unique symplectic 2-form Q,, on J~™11/G,, such that
8, = i,Q

where 7, : J™'u — J71u/ G, is the projection and i, : J~'u — M is the
canonical inclusion
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1.1 Some tools in Lie algebroid Theory

T7a : A— M a Lie algebroid over M

([+5 1, p) a Lie algebroid structure on A
I(A) = C*>(M) — modulo of sections of A

(A, [, -], p) Lie algebroid < A* is a linear Poisson manifold

The differential of the Lie algebroid A ‘

d? : T(AKA*) — T(AFHLA%)

The Lie derivative with respect to X € ['(A)

Ly : T(AKA*) — T(AKAY)

Ly =ixod*+doix

v
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1.1 Some tools in Lie algebroids Theory

[,1: T(APA) x T(ATA) — T(APTITLA)
o [X,f] = p(X)(f)
o [P,QAR] =[P, Q] AR+ (-1)9PtNQ A [P, R]
Y [[P Q]] 7( )Pq+P+q|[Q P]]
f € C®(M), X € T(A), P € T(APA), Q € T(AA), R € T(A*A).

Edith Padrén Lie bialgebroids and reduction



1.1 Some tools in Lie algebroids Theory

Vertical and complete lifts |

The complete and vertical lift to Aof f: M — R

@ fC:A—R, f°(a)=p(a)(f)
e f*:A—R, fY(a)=f(r(a)), VaecA.
The complete and vertical lift to A of X € I'(A)
@ X< e X(A)
o X°(for) f\p(X)(f) or, feC®(M)
o X°(Q) = Lya, a€Tl(A%)
@ : A — R the linear function induced by «
@ XVeX(A) XY(ax) = (X(x))5, ax€A

where Y : Ar5) — Ta(Ar(s)) is the canonical isomorphism of vector

spaces.

v
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1.1 Some tools in Lie algebroids Theory

Lie algebroid morphism |

A vector bundle morphism

F
A - A

TA TA

M - M

dA((F, F)*a’) = (F, )" (d" o), for o’ € T(AK(A'))

((F, £) (a1, - ., ak) = iy (F(a1), - -, F(ak))
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1.1 Some tools in Lie alge

7 : A— A’ vector bundle epimorphism w

X € I[(A) 7-projectable

M >~ M’

Proposition

Suppose that ([, ], p) is a Lie algebroid structure on A. Then, there is a Lie algebroid
structure on A’ such that 7 is a Lie algebroid epimorphism if and only if the following
conditions hold:

@ [X, Y] is a 7-projectable section of A, for all X, Y € [(A) 7-projectable
sections of A.

Q [X,Y] € I'(ker7), for all X, Y € I'(A) with X € ['(A) 7-projectable section of A
and Y € I'(ker7).

V.

D. Iglesias, J.C. Marrero, D. Martin de Diego, E. Martinez, E. Padrén: Reduction of symplectic Lie algebroids by a
Lie subalgebroid and a symmetry Lie group, Symmetry, Integrability and Geometry: Methods and Applications 3
(2007) 049, 28 pages

Carifiena J.F., Nunes Da Costa J.M., Santos, P., Reduction of Lie algebroid structures Int. J. Geom. Methods Mod.
Phys. V.2 (2005) (5) 965-991
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1.2 Lie bialgebroids

(A, [-,-], p) Lie algebroid over M

(A*,[, ]+, p«) Lie algebroid over M

Y

(A, A%) is a Lie bialgebroid if
dAIX, Y] = [X,dV Y] - [Y,dY X], ¥X,Y €T (A)

K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids, Duke
Math. J., 73 (1994), 415-452
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1.2 Lie bialgebroids

(A, A*) a Lie bialgebroid on M

\
{s:}Im: C®°(M) x C®°(M) — C°°(M) is a Poisson bracket on M

{f, Wy =< dAf,dAh> Yhe C®(M)
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1.2 Lie bialgebroids

Examples

LIE BIALGEBRAS

g Lie algebra + g* Lie algebra

di[€1,&2]g = [€1, du&o]g — [€2, di&alg
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1.2 Lie bialgebroids

POISSON ALGEBROIDS |

(A, [-,-1, p) Lie algebroid on M, A is Poisson if A € T(A2A)

Properties: A, A] =o0.

@ #r: A" = A ax — (#a)x(ax) = (ia\)(x) homomorphism of vector
bundles

@ ([-,-]+,p«) Lie algebroid structure on A*
[o, Bl = LoyaB — Lippa— d*(Ma, B), pu(a) = p(#ra)
I
(A, A) Lie bialgebroid
@ Poisson bracket on M : {f, g} = A(d*f,d"g)

@ The linear Poisson structure on A: A€

.
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1.2 Lie bialgebroids

SYMPLETIC ALGEBROIDS

(A, [, p) Lie algebroid on M, A is symplectic if closed nondegenerated
Q € [(A%A%)

bo : [(A) — [(A%)

Na, B) = Qb (), ba ' (5))

.
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2. Actions and momentum maps for Lie bialgebroids

2.1 Actions of a Lie group on a Lie algebroid by complete lifts

@ (A, ], p) a Lie algebroid over M
@ G a connected Lie group
@ An action of G on A:

d)g
geiG= A A
is a commutative diagram
S
¢
M———M

(Pg, ¢g) is a vector bundle automorphism
@ & is an action by complete lifts

)

¢ : g — [(A) Lie algebra homomorphism
infinitesimal generator of £ with respect to ® = &4 = ¥(£)", YEeg
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2.1 Actions of a Lie group on a Lie algebroid by complete

lifts

SOME CONSEQUENCES:
@ infinitesimal generator of £ with respect to the ¢ = &v = p(¥(&))
Q (¥, ¢g) is a Lie algebroid automorphism, Vg € G
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2.1 Actions of a Lie group on a Lie algebroid by complete

lifts

G a Lie group, -: G x G — G the multiplication of G
U
TG is also a Lie group
T-: TG x TG — TG is the multiplication of TG
e the identity element of TG
4
TG=Gxg
TG — Gxg, Xg€T,G— (g,(Tgl-1)(Xe)) €Gxg
(8:€)-(g',€) = (gg', & + AdGy18)
(e, 0) the identity element of G X g

The Lie algebra of TG =2 G x g
Teo(Gxg)=gxg

[(5777)» (f/fﬁ/)]gxg = ([fvgl]g’ [5777/]9 - [5'777]9)



2.1 Actions of a Lie group on a Lie algebroid by complete
lifts

Theorem

Let ((®, ®), %) be an action of a connected Lie group G by complete lifts over
the Lie algebroid 7 : A — M. Then, the map ®7 : (G x g) x A — A given by

®7((g,€), ax) = Pe(ax) + Pe(¥(€)(x)), for (g,n) € G x g

defines an affine action of G X g = TG on A. Moreover, if (§,7) € g X g then
the infinitesimal generator (£,7)a of (£,7) with respect to the action ® is

(&ma = (&) + ¥(n)

®g((Adg-1£)(x)) = »(§)(¢s(x)),
forge G, €gand xe M
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2.2 Momentum maps for Lie bialgebroids

(A, A*) a Lie bialgebroid over M

((, @), ) an action of the Lie group G on A by complete lifts
J: l\/l — g% smooth equivariant map with respect to ¢

Coadgc(J(x)) = J(¢g(x)), VxeM, Vgei

Definition 1

The action ¢ is said to be Hamiltonian with momentum map J if

W(€) = d* Je, for € €g,

Jg M — R, jg(x): (J(x), &), for any x € M

CONSEQUENCE: ¢, : A— A and ¢¥_, : A* — A* Lie algebroid
automorphisms over ¢, : M — M

I

®, Lie bialgebroid automorphism
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2.2 Momentum maps for Lie bialgebroids

(A, A*) be a Lie bialgebroid over M

Proposition

Let ®: G x A— A be a Hamiltonian action of a connected Lie group G
over ¢ : G X M — M with equivariant momentum map J: M — g*.
Then, we have that:

(i) ¢ is an standard Poisson action of G on the Poisson manifold
(M,MNpy) and J: M — g* is a momentum map for ¢.

(i) @7 : TG x A— A'is a Poisson action of the Lie group TG on A
and the map JT : A — (g x g)* = g* x g* given by

J7(a) = ((dJ 0 p)(a), J(7(a)))

is an equivariant momentum map for the action &7, Here,
dJ : TM — g denotes the vector bundle morphism defined by
d)yr.m = T.J, for all x € M.

v
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3. Reduction of Lie bialgebroids

3.1 Reduction of Lie bialgebroids by Lie bialgebroid automorphisms |

(A, A*) a Lie bialgebroid, ® : G x A — A be an action by Lie bialgebroid
automorphisms of a connected Lie group G

Assume that the action ¢ is free and that M/G is smooth manifold such that
the canonical projection is a surjective submersion

I

A/G — M/G is a vector bundle
F(A/G) ={X €T(A)/X € G-invariant}
ma:A— A/G, Tax: A" — A"/G are epimorphisms of vector bundles
{X € I'(A)/Xis ma-projectable} = {X € I'(A)/X is G-invariant section}
{a € T(A")/ais ma=-projectable} = {a € [(A")/c is G-invariant section}
ker((ma)ja,) = {0},  ker((ma+)a;) = {0}
I

The pair (A/G,A*/G) is a Lie bialgebroid over M/G

v
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3.2 Reduction of Lie bialgebroids with momentum map

Reduction procedure for Lie bialgebroid analog of the Marsden Weintein
reduction for symplectic manifolds
(A, A*) Lie bialgebroid over M = (A, A7) Lie bialgebroid over J~'(11)/ Gy

Proposition
Let (A, A*) be a Lie bialgebroid over M and ® : G X A — A be a Hamiltonian
action of a connected Lie group G on A with momentum map J: M — g*.
Consider p € g* such that (0, ) € g* x g is a regular value of
JT: A — g* x g*. Then, we have that:
@ (J7)71(0, ) is a Lie subalgebroid of A over J=!(u).
@ The restriction 1, of ¢ to the isotropy algebra g, of u with respect to
the coadjoint action takes values in F((J7) (0, w)).
© The isotropy Lie group G,, of p with respect to the coadjoint action acts
on (J7)7(0, i) by complete lifts with respect to
Yy g — T((IT) 70, 1))
@ The action of G, on the Lie subalgebroid (J7)~%(0, 1) induces an affine
action ®, of TG, on this subalgebroid.
7
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3.2 Reduction of Lie bialgebroids with momentum map

suppose
@ The action of G, on J7* () is free

@ The space of orbits J~'(u)/G,. is a smooth manifold such that the
projection 7, : J7 () — J7!(u)/ G, is a surjective submersion

U
J7Y(1)/ G, is a reduced Poisson manifold

Theorem

Let (A, A*) be a Lie bialgebroid over M and ® : G X A — A be a Hamiltonian
action of a Lie group G on (A, A*) with momentum map J : M — g*. Assume
that p is an element of g* such that (0, u) is a regular value for

JT 1 A— g* x g* and that the space of orbits J~'()/G,. is a quotient
manifold. Then,

(i) The space of orbits A, of the action of TG, on (J7)7'(0, i) is a Lie
algebroid over J~*(11)/ G-

(i) The dual bundle A5, — J~'(1)/ G, is endowed with a Lie algebroid
structure.

(iii) The pair (A,, A%) is a Lie bialgebroid over J~'(u)/G,.

v
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof
(/) The Lie algebroid structure over A, = (J7)7*(0, 1)/ TG,

Y. (g,) Lie subalgebroid of (J7)7(0, 1) over J~ (1)
+
G,. acts by Lie algebroid automorphisms on (J7)~%(0, 1) and ,.(g.)

I

induce Lie algebroid structures on (J7)7*(0, 1)/ G, and t,.(g,.)/ G, such that
¥,(8.)/ Gy is a Lie subalgebroid of (J7)~%(0, 1)/ G,

4
u(g)/ Gy is an ideal of (J7)7*(0, 1)/ Gy
¢
((UT) 70, 1)/ Gu)/($u(84)/ Gyu) Lie algebroid over J~*(11)/ Gy
4
A= (IT)7HO0, 1)/ TG = ((I7) 710, 1)/ Gu) / (hu(81)/ Gur)
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof
Ay =)0 )/ TG = ((IT) 710, 1)/ Gu) / (ru(84)/ Gu)
F(A,) & D 0.m)%

F(Yu(g,))on
F((JT)71(0, 1)) the space of G,-invariant section on (JT7)71(0, u)

M(1.(g,))% the space of G-invariant section on 1, (g,)

Lie algebroid structure ([-, Ja,,pa,) is characterized by

[iX1, [Y1a, = [1X, Y1,
pa.(IX]) = Tmu o p(X), forX,Y € F((JT)71(0, )% .
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof
(ii) The Lie algebroid structure over Ay,

To prove that there exists a Lie algebroid structure on A}, we will show that
there exists a linear Poisson structure on A,

" is a Hamilton action of TG on (A, T4) with momentum map
JT A= g xg
I

3 reduced Poisson structure Ma, on (J7)7'(0, 1£)/(TG)o,p)
(TG)o,p) = TG,

the Poisson bracket {-,-}n, is linear

I

Lie algebroid structure ([, -Jax , paz )
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof
Lie algebroid structure ([, -Jaz , paz )
a, € T(A,) = 3 a € [(A") such that
a(¥(§) =0 Ci(g)a =0, T,(a)=T,(ay) forall{eg

7. (JT)7H(0, ) — A is the inclusion,

7w o (JT) 70, u) — A, is the canonical projection
Tu(low, Bulay) = Tl A1),
for a, By € T(A},)
pas, (au)(fu) o mu = pe(@)(f) 0 1y,
for £, € C=(J~ ()/ G,

f : M — is a real function on M such that f, o m, = f 0 ¢y, with
ty 2 J7H(w) — J7(1)/ G, the canonical inclusion
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3.3 Examples: Poisson Lie algebroid

(A, T, -1, p, ) Poisson Lie algebroid over M
4

(A, A*) is a Lie bialgebroid
_|_
®: G x A— A Hamiltonian action of a connected Lie group G over A
with momentum map J: M — g* and associated Lie algebra morphism

Y:g—T(A)
(8

Y(&) =M, forallgeg

(Pg)«(N)=A, forallge G
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3.3 Examples: Poisson Lie algebroids

(0, i) a regular value of JT : A — g* x g*

(A, A%) = ((JT) 710, 1)/ TG, (47) (0, 12)/ TG,)*) is a Lie bialgebroid over J~*(11)/ G,

I

A, admits a linear Poisson structure (the reduced Poisson structure on
A° with respect to the action @ and momentum map JT)
Ay € T(A2AL)

Nu(op, Bu) o my = Ny, B) o iy, for all oy, B, € T(A,)

where «, 0 are TG-invariant sections of A* satisfying

7F"v',u(O‘/L) :’{;017 ‘Cﬁ(g)a = 07 04(1/)(5)) = 07
Tu(Bu) = 00, 53(5)5 =0, B(E)=0foralfeg

Tt ()70 ) — Ay m T () = ST () /Gy

T UNDTHO L) = A TN w) = M
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3.3 Examples: Poisson Lie algebroids

Poisson Lie algebroids

Let (A, [, ], p,\) be a Poisson Lie algebroid over M, ® : G x A — A be
a Hamiltonian action of a connected Lie group G over A with momentum
map J: M — g* and associated Lie algebra morphism v : g — I'(A). If
(0, ) is a regular value of JT : A — (g x g)*, then

A, = (JT)71(0, )/ TG, admits a Poisson Lie algebroid structure A,
over J7X(1)/ G,
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3.3 Examples: Symplectic Lie algebroids

(AT, -1, p, ) a symplectic Lie algebroid over M
A the corresponding Poisson 2-section

® : G x A— A a Hamiltonian action of a connected Lie group G over
the induced Lie bialgebroid (A, A*) with momentum map J : M — g*
and associated Lie algebra morphism ¢ : g — ['(A)

4
ine Q= d*Je.
e

I

®L(Q) =Q, VgeG,
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3.3 Examples: Symplectic Lie algebroids

p € g* such that (0, i) is a regular value of JT : M — g* x g*
\

A, is a Poisson Lie algebroid

o (7)) — A
2-section Q,, = i%(€2) on the Lie subalgebroid (J7)~*(0, ) — J~ (1)
For all X,,, Y, € T((JT)"1(0, ),
Qu(X,, Y,.) is a 7,-basic function
U

For all X,,, Y, € [(A,) = 3 a function ©,(X,, Y,,) on J~1(u)/G, such
that

QM(XM’ Yu) oMy = Qu(Xuv Yu)
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3.3 Examples: Symplectic Lie algebroids

Symplectic Lie algebroids

Let (A, [, ], p, Q) be a symplectic Lie algebroid and ® : G x A — A be a
Hamilton action with momentum map J : M — g* and associated Lie
homomorphism ¢ : g — [(A). If u is an element of g* such that (0, i) is
a regular of J7, then A, = (JT)71(0, )/ TG, is a symplectic Lie
algebroid over J~1(u)/ G,
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3.3 Examples: Another Example

(M, A) Poisson manifold + (g, g") Lie bialgebra
¥ g* — X(M) representation

The Lie bialgebroid TM ©y M x g — M over M

(TM, [ -],1mm)  + (M x g, [ ]q)
X(M) x C*(M,g) — C=(M,g) (X&) — X(¢)
C*(M,g) x X(M) — X(M) (£, X) —0
4
(TM &m M x g,[-, -], p) is a Lie algebroid
p=pr:TMOyMxg— TM
(X1, &), (X2, &)] = ([X1, X2], [61, &2]g + X1(€2) — X2(&1))
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3.3 Examples: Another Example

(M, A) Poisson manifold + (g, g") Lie bialgebra
¥ g* — X(M) representation

(T*M. [ In#4)  + (M x g™ [ ]g+,9)
QY M) x C=(M,g") — C®(M,g") (1) = —#a(a)(1) + coady~(ay1
D: C®(M,g")xQ (M) — C*(M,g) D(n,a)(X) = —(Lymya)(X)+b(X (1))
I
(T*"M @m M x g*, [, ], p«) is a Lie algebroid
pr=T*M@yMx g — TM  pu(a,n) = #ra+9(n)

[(e1,m), (02, m2)] =
([, 2l + Ly @2 = Lymp)on, [n1, Mg + c0adyx(ag)m2 — coady(az) (1))
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3.3 Examples: Another Example

(M, A) Poisson manifold + (g, g*) Lie bialgebra
¥ g* — X(M) representation

The Lie bialgebroid TM &y M x g — M over M
®: G x M — M Poisson action with momentum map J: M — g*

®: GxTME&yMxg — TMe&uMxg, ®(h, X,£) = (TOH(X), —Adyp*(dJe))

Vg — X(M)x C®(M,g) duJe = (#rdJe, —0*(dJe))
I
(W(£))S = Infinitesimal generator of & with respect ®

(0,0) is a regular value for JT

(8
(J7)7H0,0) = T(J7H(0)) ®y-1(0) J7H(0) x g
(TJ71(0) ® J~1(0) x g)/ TG — J~1(0)/G is a Lie bialgebroid
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Thanks I
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