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J. Marsden, A. Weinstein: Reduction of symplectic manifolds with
symmetry., Rep. Math. Phys. 5, 121 (1974).

A symplectic action of Lie group G on a symplectic manifold (M,Ω)
with equivariant momentum map J : M → g∗

µ ∈ g∗ a regular value of J

⇓
J−1µ is a submanifold

Gµ acts on J−1(µ)

The space of orbits J−1µ/Gµ is an smooth manifold and the
canonical projection πµ : J−1µ→ J−1µ/Gµ defines a principal
Gµ-bundle
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Theorem (Symplectic reduction)

There exists a unique symplectic 2-form Ωµ on J−1µ/Gµ such that

π∗µΩµ = i∗µΩ

where πµ : J−1µ→ J−1µ/Gµ is the projection and iµ : J−1µ→ M is the
canonical inclusion
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1.1 Some tools in Lie algebroid Theory

τA : A → M a Lie algebroid over M

([[·, ·]], ρ) a Lie algebroid structure on A

Γ(A) ≡ C∞(M)−modulo of sections of A

(A, [[·, ·]], ρ) Lie algebroid ⇔ A∗ is a linear Poisson manifold

The differential of the Lie algebroid A

dA : Γ(∧kA∗) −→ Γ(∧k+1A∗)

The Lie derivative with respect to X ∈ Γ(A)

LA
X : Γ(∧kA∗) −→ Γ(∧kA∗)

LA
X = iX ◦ dA + dA ◦ iX
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1.1 Some tools in Lie algebroids Theory

The Schouten bracket

[[·, ·]] : Γ(∧pA)× Γ(∧qA) → Γ(∧p+q−1A)

[[X , f ]] = ρ(X )(f )

[[P,Q ∧ R]] = [[P,Q]] ∧ R + (−1)q(p+1)Q ∧ [[P,R]]

[[P,Q]] = (−1)pq+p+q[[Q,P]]

f ∈ C∞(M), X ∈ Γ(A), P ∈ Γ(∧pA), Q ∈ Γ(∧qA), R ∈ Γ(∧∗A).
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1.1 Some tools in Lie algebroids Theory

Vertical and complete lifts

The complete and vertical lift to A of f : M → R

f c : A → R, f c(a) = ρ(a)(f )

f v : A → R, f v (a) = f (τ(a)), ∀a ∈ A.

The complete and vertical lift to A of X ∈ Γ(A)

X c ∈ X(A)

X c(f ◦ τ) = ρ(X )(f ) ◦ τ, f ∈ C∞(M)

X c(α̂) = L̂A
Xα, α ∈ Γ(A∗)

α̂ : A → R the linear function induced by α

X v ∈ X(A) X v (ax) = (X (x))vax
, ax ∈ Ax

where v
a : Aτ(a) → Ta(Aτ(a)) is the canonical isomorphism of vector

spaces.
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1.1 Some tools in Lie algebroids Theory

Lie algebroid morphism

A vector bundle morphism

M
f

- M ′

τA

?

τA′

?

A
F - A′

dA((F , f )∗α′) = (F , f )∗(dA′α′), for α′ ∈ Γ(∧k(A′)∗)

((F , f )∗α′)x(a1, . . . , ak) = α′f (x)(F (a1), . . . ,F (ak))
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1.1 Some tools in Lie algebroids Theory

π̃ : A → A′ vector bundle epimorphism

X ∈ Γ(A) π̃-projectable

M
π

- M′

X
6

X ′
6

A
π̃ - A′

Proposition

Suppose that ([[·, ·]], ρ) is a Lie algebroid structure on A. Then, there is a Lie algebroid
structure on A′ such that π̃ is a Lie algebroid epimorphism if and only if the following
conditions hold:

1 [[X ,Y ]] is a π̃-projectable section of A, for all X ,Y ∈ Γ(A) π̃-projectable
sections of A.

2 [[X ,Y ]] ∈ Γ(ker π̃), for all X ,Y ∈ Γ(A) with X ∈ Γ(A) π̃-projectable section of A
and Y ∈ Γ(ker π̃).

D. Iglesias, J.C. Marrero, D. Mart́ın de Diego, E. Mart́ınez, E. Padrón: Reduction of symplectic Lie algebroids by a
Lie subalgebroid and a symmetry Lie group, Symmetry, Integrability and Geometry: Methods and Applications 3
(2007) 049, 28 pages

Cariñena J.F., Nunes Da Costa J.M., Santos, P., Reduction of Lie algebroid structures Int. J. Geom. Methods Mod.

Phys. V.2 (2005) (5) 965-991
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1.2 Lie bialgebroids

(A, [[·, ·]], ρ) Lie algebroid over M

(A∗, [[ , ]]∗, ρ∗) Lie algebroid over M

⇓

(A,A∗) is a Lie bialgebroid if

dA∗ [[X ,Y ]] = [[X , dA∗Y ]]− [[Y , dA∗X ]], ∀X ,Y ∈ Γ(A)

K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids, Duke

Math. J., 73 (1994), 415-452
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1.2 Lie bialgebroids

(A,A∗) a Lie bialgebroid on M

⇓

{·, ·}M : C∞(M)× C∞(M) → C∞(M) is a Poisson bracket on M

{f , h}M =< dAf , dA∗h > ∀h ∈ C∞(M)
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1.2 Lie bialgebroids

Examples

Lie bialgebras

g Lie algebra + g∗ Lie algebra

d∗[ξ1, ξ2]g = [ξ1, d∗ξ2]g − [ξ2, d∗ξ1]g
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1.2 Lie bialgebroids

Poisson algebroids

(A, [[·, ·]], ρ) Lie algebroid on M, A is Poisson if Λ ∈ Γ(∧2A)

[[Λ,Λ]] = 0.Properties:

#Λ : A∗ → A, αx → (#Λ)x(αx) = (iαΛ)(x) homomorphism of vector
bundles

([[·, ·]]∗, ρ∗) Lie algebroid structure on A∗

[[α, β]]∗ = LA
#Λαβ − LA

#Λβα− dA(Λ(α, β)), ρ∗(α) = ρ(#Λα)

⇓
(A,A∗) Lie bialgebroid

Poisson bracket on M : {f , g} = Λ(dAf , dAg)

The linear Poisson structure on A: Λc
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1.2 Lie bialgebroids

sympletic algebroids

(A, [[·, ·]], ρ) Lie algebroid on M, A is symplectic if closed nondegenerated
Ω ∈ Γ(∧2A∗)

[Ω : Γ(A) → Γ(A∗)

Λ(α, β) = Ω([−1
Ω (α), [−1

Ω (β))
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2. Actions and momentum maps for Lie bialgebroids

2.1 Actions of a Lie group on a Lie algebroid by complete lifts

(A, [[·, ·]], ρ) a Lie algebroid over M

G a connected Lie group

An action of G on A:

g ∈ G =⇒

M
φg -M

τ
?

τ
?

A

Φg

- A
is a commutative diagram

(Φg , φg ) is a vector bundle automorphism

Φ is an action by complete lifts

m
∃ψ : g → Γ(A) Lie algebra homomorphism

infinitesimal generator of ξ with respect to Φ = ξA = ψ(ξ)c , ∀ξ ∈ g
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2.1 Actions of a Lie group on a Lie algebroid by complete
lifts

Some consequences:

1 infinitesimal generator of ξ with respect to the φ = ξM = ρ(ψ(ξ))

2 (Φg , φg ) is a Lie algebroid automorphism, ∀g ∈ G
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2.1 Actions of a Lie group on a Lie algebroid by complete
lifts

G a Lie group, · : G × G → G the multiplication of G

⇓

TG is also a Lie group

T · : TG × TG → TG is the multiplication of TG

e the identity element of TG

⇓

TG ∼= G × g

TG → G × g, Xg ∈ TgG → (g , (Tg lg−1)(Xg )) ∈ G × g

(g , ξ) · (g ′, ξ′) = (gg ′, ξ′ + AdG
(g′)−1ξ)

(e, 0) the identity element of G × g

The Lie algebra of TG ∼= G × g

T(e,0)(G × g) ∼= g× g

[(ξ, η), (ξ′, η′)]g×g = ([ξ, ξ′]g, [ξ, η
′]g − [ξ′, η]g)

Edith Padrón Lie bialgebroids and reduction



2.1 Actions of a Lie group on a Lie algebroid by complete
lifts

Theorem

Let ((Φ, φ), ψ) be an action of a connected Lie group G by complete lifts over
the Lie algebroid τ : A → M. Then, the map ΦT : (G × g)× A → A given by

ΦT ((g , ξ), ax) = Φg (ax) + Φg (ψ(ξ)(x)), for (g , η) ∈ G × g

defines an affine action of G × g ∼= TG on A. Moreover, if (ξ, η) ∈ g× g then
the infinitesimal generator (ξ, η)A of (ξ, η) with respect to the action ΦT is

(ξ, η)A = ψ(ξ)c + ψ(η)v

Φg (ψ(Adg−1ξ)(x)) = ψ(ξ)(φg (x)),

for g ∈ G , ξ ∈ g and x ∈ M
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2.2 Momentum maps for Lie bialgebroids

(A,A∗) a Lie bialgebroid over M

((Φ, φ), ψ) an action of the Lie group G on A by complete lifts
J : M → g∗ smooth equivariant map with respect to φ

CoadG
g (J(x)) = J(φg (x)), ∀x ∈ M, ∀g ∈ G

Definition 1

The action Φ is said to be Hamiltonian with momentum map J if

ψ(ξ) = dA∗ Ĵξ, for ξ ∈ g,

Ĵξ : M → R, Ĵξ(x) = 〈J(x), ξ〉, for any x ∈ M

consequence: Φg : A → A and Φ∗g−1 : A∗ → A∗ Lie algebroid
automorphisms over φg : M → M

⇓

Φg Lie bialgebroid automorphism
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2.2 Momentum maps for Lie bialgebroids

(A,A∗) be a Lie bialgebroid over M

Proposition

Let Φ : G × A → A be a Hamiltonian action of a connected Lie group G
over φ : G ×M → M with equivariant momentum map J : M → g∗.
Then, we have that:

(i) φ is an standard Poisson action of G on the Poisson manifold
(M,ΠM) and J : M → g∗ is a momentum map for φ.

(ii) ΦT : TG × A → A is a Poisson action of the Lie group TG on A
and the map JT : A → (g× g)∗ ∼= g∗ × g∗ given by

JT (a) = ((dJ ◦ ρ)(a), J(τ(a)))

is an equivariant momentum map for the action ΦT . Here,
dJ : TM → g denotes the vector bundle morphism defined by
dJ|TxM = TxJ, for all x ∈ M.
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3. Reduction of Lie bialgebroids

3.1 Reduction of Lie bialgebroids by Lie bialgebroid automorphisms

(A,A∗) a Lie bialgebroid, Φ : G × A → A be an action by Lie bialgebroid
automorphisms of a connected Lie group G
Assume that the action φ is free and that M/G is smooth manifold such that
the canonical projection is a surjective submersion

⇓

A/G → M/G is a vector bundle

Γ(A/G) = {X ∈ Γ(A)/X ∈ G -invariant}
πA : A → A/G , πA∗ : A∗ → A∗/G are epimorphisms of vector bundles

{X ∈ Γ(A)/X is πA-projectable} = {X ∈ Γ(A)/X is G -invariant section}
{α ∈ Γ(A∗)/αis πA∗ -projectable} = {α ∈ Γ(A∗)/α is G -invariant section}

ker((πA)|Ax ) = {0}, ker((πA∗)|A∗x ) = {0}
⇓

The pair (A/G ,A∗/G) is a Lie bialgebroid over M/G
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3.2 Reduction of Lie bialgebroids with momentum map

Reduction procedure for Lie bialgebroid analog of the Marsden Weintein
reduction for symplectic manifolds

(A,A∗) Lie bialgebroid over M ⇒ (Aµ,A
∗
µ) Lie bialgebroid over J−1(µ)/Gµ

Proposition

Let (A,A∗) be a Lie bialgebroid over M and Φ : G × A → A be a Hamiltonian
action of a connected Lie group G on A with momentum map J : M → g∗.
Consider µ ∈ g∗ such that (0, µ) ∈ g∗ × g∗ is a regular value of
JT : A → g∗ × g∗. Then, we have that:

1 (JT )−1(0, µ) is a Lie subalgebroid of A over J−1(µ).

2 The restriction ψµ of ψ to the isotropy algebra gµ of µ with respect to
the coadjoint action takes values in Γ((JT )−1(0, µ)).

3 The isotropy Lie group Gµ of µ with respect to the coadjoint action acts
on (JT )−1(0, µ) by complete lifts with respect to
ψµ : gµ → Γ((JT )−1(0, µ)).

4 The action of Gµ on the Lie subalgebroid (JT )−1(0, µ) induces an affine
action ΦT

µ of TGµ on this subalgebroid.
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3.2 Reduction of Lie bialgebroids with momentum map

suppose

The action of Gµ on J−1(µ) is free

The space of orbits J−1(µ)/Gµ is a smooth manifold such that the
projection πµ : J−1(µ) → J−1(µ)/Gµ is a surjective submersion

⇓
J−1(µ)/Gµ is a reduced Poisson manifold

Theorem

Let (A,A∗) be a Lie bialgebroid over M and Φ : G × A → A be a Hamiltonian
action of a Lie group G on (A,A∗) with momentum map J : M → g∗. Assume
that µ is an element of g∗ such that (0, µ) is a regular value for
JT : A → g∗ × g∗ and that the space of orbits J−1(µ)/Gµ is a quotient
manifold. Then,

(i) The space of orbits Aµ of the action of TGµ on (JT )−1(0, µ) is a Lie
algebroid over J−1(µ)/Gµ.

(ii) The dual bundle A∗µ → J−1(µ)/Gµ is endowed with a Lie algebroid
structure.

(iii) The pair (Aµ,A
∗
µ) is a Lie bialgebroid over J−1(µ)/Gµ.
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof
(i) The Lie algebroid structure over Aµ = (JT )−1(0, µ)/TGµ

ψµ(gµ) Lie subalgebroid of (JT )−1(0, µ) over J−1(µ)
+

Gµ acts by Lie algebroid automorphisms on (JT )−1(0, µ) and ψµ(gµ)

⇓

induce Lie algebroid structures on (JT )−1(0, µ)/Gµ and ψµ(gµ)/Gµ such that
ψµ(gµ)/Gµ is a Lie subalgebroid of (JT )−1(0, µ)/Gµ

⇓

ψµ(gµ)/Gµ is an ideal of (JT )−1(0, µ)/Gµ

⇓

((JT )−1(0, µ)/Gµ)/(ψµ(gµ)/Gµ) Lie algebroid over J−1(µ)/Gµ

⇓

Aµ := (JT )−1(0, µ)/TGµ ∼= ((JT )−1(0, µ)/Gµ)/(ψµ(gµ)/Gµ)
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof

Aµ := (JT )−1(0, µ)/TGµ ∼= ((JT )−1(0, µ)/Gµ)/(ψµ(gµ)/Gµ)

Γ(Aµ) ∼=
Γ((JT )−1(0, µ))Gµ

Γ(ψµ(gµ))Gµ

Γ((JT )−1(0, µ))Gµ the space of Gµ-invariant section on (JT )−1(0, µ)

Γ(ψµ(gµ))
Gµ the space of Gµ-invariant section on ψµ(gµ)

Lie algebroid structure ([[·, ·]]Aµ , ρAµ) is characterized by

[[[X ], [Y ]]]Aµ = [[[X ,Y ]]],

ρAµ([X ]) = Tπµ ◦ ρ(X ), forX ,Y ∈ Γ((JT )−1(0, µ))Gµ .
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof
(ii) The Lie algebroid structure over A∗µ

To prove that there exists a Lie algebroid structure on A∗µ, we will show that
there exists a linear Poisson structure on Aµ

ΦT is a Hamilton action of TG on (A,ΠA) with momentum map
JT : A → g∗ × g∗

⇓

∃ reduced Poisson structure ΠAµ on (JT )−1(0, µ)/(TG)(0,µ)

(TG)(0,µ) = TGµ

the Poisson bracket {·, ·}ΠAµ
is linear

⇓

Lie algebroid structure ([[·, ·]]A∗µ , ρA∗µ)
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3.2 Reduction of Lie bialgebroids with momentum map

Sketch of the proof

Lie algebroid structure ([[·, ·]]A∗µ , ρA∗µ)

αµ ∈ Γ(A∗µ) ⇒ ∃ α ∈ Γ(A∗) such that

α(ψ(ξ)) = 0 LA
ψ(ξ)α = 0, ι̃∗µ(α) = π̃∗µ(αµ) for all ξ ∈ g

ι̃µ : (JT )−1(0, µ) → A is the inclusion,

π̃µ : (JT )−1(0, µ) → Aµ is the canonical projection

π̃∗µ([[αµ, βµ]]A∗µ) = ι̃∗µ([[α, β]]∗),

for αµ, βµ ∈ Γ(A∗µ)

ρA∗µ(αµ)(fM) ◦ πµ = ρ∗(α)(f ) ◦ ιµ,

for fµ ∈ C∞(J−1(µ)/Gµ),

f : M → is a real function on M such that fµ ◦ πµ = f ◦ ιµ, with
ιµ : J−1(µ) → J−1(µ)/Gµ the canonical inclusion
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3.3 Examples: Poisson Lie algebroid

(A, [[·, ·]], ρ,Λ) Poisson Lie algebroid over M
⇓

(A,A∗) is a Lie bialgebroid
+

Φ : G × A → A Hamiltonian action of a connected Lie group G over A
with momentum map J : M → g∗ and associated Lie algebra morphism

ψ : g → Γ(A)
⇓

ψ(ξ) = HΛ
Ĵ(ξ)

, for all ξ ∈ g

(Φg )∗(Λ) = Λ, for all g ∈ G
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3.3 Examples: Poisson Lie algebroids

(0, µ) a regular value of JT : A → g∗ × g∗

(Aµ,A
∗
µ) = ((JT )−1(0, µ)/TGµ, ((J

T )−1(0, µ)/TGµ)
∗) is a Lie bialgebroid over J−1(µ)/Gµ

⇓
Aµ admits a linear Poisson structure (the reduced Poisson structure on

Λc with respect to the action ΦT and momentum map JT )
Λµ ∈ Γ(∧2Aµ)

Λµ(αµ, βµ) ◦ πµ = Λ(α, β) ◦ iµ for all αµ, βµ ∈ Γ(Aµ)

where α, β are TG -invariant sections of A∗ satisfying

π̃µ(αµ) = ĩ∗µα, LA
ψ(ξ)α = 0, α(ψ(ξ)) = 0,

π̃µ(βµ) = ĩ∗µβ, LA
ψ(ξ)β = 0, β(ψ(ξ)) = 0 for all ξ ∈ g

π̃µ : (JT )−1(0, µ) → Aµ πµ : J−1(µ) → J−1(µ)/Gµ

ĩµ : (JT )−1(0, µ) → A iµ : J−1(µ) → M
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3.3 Examples: Poisson Lie algebroids

Poisson Lie algebroids

Let (A, [[·, ·]], ρ,Λ) be a Poisson Lie algebroid over M, Φ : G × A → A be
a Hamiltonian action of a connected Lie group G over A with momentum
map J : M → g∗ and associated Lie algebra morphism ψ : g → Γ(A). If
(0, µ) is a regular value of JT : A → (g× g)∗, then
Aµ = (JT )−1(0, µ)/TGµ admits a Poisson Lie algebroid structure Λµ
over J−1(µ)/Gµ.
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3.3 Examples: Symplectic Lie algebroids

(A, [[·, ·]], ρ,Ω) a symplectic Lie algebroid over M

Λ the corresponding Poisson 2-section

Φ : G × A → A a Hamiltonian action of a connected Lie group G over
the induced Lie bialgebroid (A,A∗) with momentum map J : M → g∗

and associated Lie algebra morphism ψ : g → Γ(A)
⇓

iHΩ
Ĵξ

Ω = dAĴξ.

⇓

Φ∗g (Ω) = Ω, ∀g ∈ G ,
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3.3 Examples: Symplectic Lie algebroids

µ ∈ g∗ such that (0, µ) is a regular value of JT : M → g∗ × g∗

⇓
Aµ is a Poisson Lie algebroid

iµ : (JT )−1(0, µ) → A

2-section Ω̃µ = i∗µ(Ω) on the Lie subalgebroid (JT )−1(0, µ) → J−1(µ)

For all X̃µ, Ỹµ ∈ Γ((JT )−1(0, µ)),

Ω̃µ(X̃µ, Ỹµ) is a πµ-basic function
⇓

For all Xµ,Yµ ∈ Γ(Aµ) ⇒ ∃ a function Ωµ(Xµ,Yµ) on J−1(µ)/Gµ such
that

Ωµ(Xµ,Yµ) ◦ πµ = Ω̃µ(Xµ,Yµ)

Edith Padrón Lie bialgebroids and reduction



3.3 Examples: Symplectic Lie algebroids

Symplectic Lie algebroids

Let (A, [[·, ·]], ρ,Ω) be a symplectic Lie algebroid and Φ : G × A → A be a
Hamilton action with momentum map J : M → g∗ and associated Lie
homomorphism ψ : g → Γ(A). If µ is an element of g∗ such that (0, µ) is
a regular of JT , then Aµ = (JT )−1(0, µ)/TGµ is a symplectic Lie
algebroid over J−1(µ)/Gµ
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3.3 Examples: Another Example

(M,Λ) Poisson manifold + (g, g∗) Lie bialgebra

ψ : g∗ → X(M) representation

The Lie bialgebroid TM ⊕M M × g → M over M

(TM, [·, ·], 1TM) + (M × g, [·, ·]g)

X(M)× C∞(M, g) → C∞(M, g) (X , ξ) 7→ X (ξ)

C∞(M, g)× X(M) → X(M) (ξ,X ) 7→ 0

⇓

(TM ⊕M M × g, [[·, ·]], ρ) is a Lie algebroid

ρ = pr1 : TM ⊕M M × g → TM

[(X1, ξ1), (X2, ξ2)] = ([X1,X2], [ξ1, ξ2]g + X1(ξ2)− X2(ξ1))
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3.3 Examples: Another Example

(M,Λ) Poisson manifold + (g, g∗) Lie bialgebra

ψ : g∗ → X(M) representation

(T ∗M, [·, ·]Λ,#Λ) + (M × g∗, [·, ·]g∗ , ψ)

Ω1(M)×C∞(M, g∗) → C∞(M, g∗) (α, η) 7→ −#Λ(α)(η)+coadψ∗(α)η

D : C∞(M, g∗)×Ω1(M) → C∞(M, g) D(η, α)(X ) = −(Lψ(η)α)(X )+ψ(X (η))

⇓

(T ∗M ⊕M M × g∗, [[·, ·]]∗, ρ∗) is a Lie algebroid

ρ∗ = T∗M ⊕M M × g∗ → TM ρ∗(α, η) = #Λα+ ψ(η)

[(α1, η1), (α2, η2)] =

([α1, α2]Λ + Lψ(η1)α2 − Lψ(η2)α1, [η1, η2]g∗ + coadψ∗(α1)η2 − coadψ∗(α2)(η1))

Edith Padrón Lie bialgebroids and reduction



3.3 Examples: Another Example

(M,Λ) Poisson manifold + (g, g∗) Lie bialgebra

ψ : g∗ → X(M) representation

The Lie bialgebroid TM ⊕M M × g → M over M
Φ : G ×M → M Poisson action with momentum map J : M → g∗

Φ̃ : G×TM⊕MM×g → TM⊕MM×g, Φ̃(h,X , ξ) = (TΦh(X ),−Adhψ
∗(dĴξ))

Ψ̃ : g → X(M)× C∞(M, g) d∗Ĵξ = (#ΛdĴξ,−ψ∗(dĴξ))

⇓
(Ψ̃(ξ))c ≡ Infinitesimal generator of ξ with respect Φ̃

(0, 0) is a regular value for JT

⇓
(JT )−1(0, 0) = T (J−1(0))⊕J−1(0) J−1(0)× g

(TJ−1(0)⊕ J−1(0)× g)/TG → J−1(0)/G is a Lie bialgebroid
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Thanks !!!!
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