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Abstract

I will review the most relevant ideas and results about mechanical systems

defined on Lie algebroids.

1



Lie Algebroids

A Lie algebroid structure on the vector bundle τ : E →M is given by

��� a Lie algebra structure (Sec(E), [ , ]) on the set of sections of E, and

��� a morphism of vector bundles ρ : E → TM over the identity, such

that

. ρ([σ, η]) = [ρ(σ), ρ(η)]

. [σ, fη] = f [σ, η] + (ρ(σ)f) η,

where ρ(σ)(m) = ρ(σ(m)).

The first condition is actually a consequence of the second and the Jacobi identity.
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Examples

� Tangent bundle.

E = TM ,

ρ = id,

[ , ] = bracket of vector fields.

� Integrable subbundle.

E ⊂ TM , integrable distribution

ρ = i, canonical inclusion

[ , ] = restriction of the bracket to vector fields in E.
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� Lie algebra.

E = g→M = {e}, Lie algebra (fiber bundle over a point)

ρ = 0, trivial map (since TM = {0e})
[ , ] = the bracket in the Lie algebra.

� Atiyah algebroid.

Let π : Q→M a principal G-bundle.

E = TQ/G→M , (Sections are equivariant vector fields)

ρ([v]) = Tπ(v) induced projection map

[ , ] = bracket of equivariant vectorfields (is equivariant).
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� Transformation Lie algebroid.

Let Φ: g→ X(M) be an action of a Lie algebra g on M .

E = M × g→M ,

ρ(m, ξ) = Φ(ξ)(m) value of the fundamental vectorfield

[ , ] = induced by the bracket on g.
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Mechanics on Lie algebroids

Lie algebroid E →M .

L ∈ C∞(E) or H ∈ C∞(E∗)

��� E = TM →M Standard classical Mechanics

��� E = D ⊂ TM →M (integrable) System with holonomic constraints

��� E = TQ/G → M = Q/G System with symmetry (ej. Classical

particle on a Yang-Mils field)

��� E = g→ {e} System on a Lie algebra (ej. Rigid body)

��� E = M × g→M System on a semidirect product (ej. heavy top)
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Structure functions

A local coordinate system (xi) in the base manifold M and a local basis of

sections (eα) of E, determine a local coordinate system (xi, yα) on E.

The anchor and the bracket are locally determined by the local functions

ρi
α(x) and Cα

βγ(x) on M given by

ρ(eα) = ρi
α

∂

∂xi

[eα, eβ ] = Cγ
αβ eγ .
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The function ρi
α and Cα

βγ satisfy some relations due to the compatibility

condition and the Jacobi identity which are called the structure equations:

ρj
α

∂ρi
β

∂xj
− ρj

β

∂ρi
α

∂xj
= ρi

γCγ
αβ

∑
cyclic(α,β,γ)

[
ρi

α

∂Cν
βγ

∂xi
+ Cµ

βγCν
αµ

]
= 0.
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Lagrange’s equations

Given a function L ∈ C∞(E), we define a dynamical system on E by means

of a system of differential equations, which in local coordinates reads

d

dt

(
∂L

∂yα

)
+

∂L

∂yγ
Cγ

αβyβ = ρi
α

∂L

∂xi

ẋi = ρi
αyα.

The equation ẋi = ρi
αyα is the local expression of the admissibility condi-

tion: A curve a : R→ E is said to be admissible if

ρ ◦ a =
d

dt
(τ ◦ a).
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Exterior differential

On 0-forms

df(σ) = ρ(σ)f

On p-forms (p > 0)

dω(σ1, . . . , σp+1) =

=
p+1∑
i=1

(−1)i+1ρ(σi)ω(σ1, . . . , σ̂i, . . . , σp+1)

−
∑
i<j

(−1)i+jω([σi, σj ], σ1, . . . , σ̂i, . . . , σ̂j , . . . , σp+1).
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Exterior differential-local

Locally determined by

dxi = ρi
αeα

and

deα = −1
2
Cα

βγeβ ∧ eγ .

The structure equations are

d2xi = 0 and d2eα = 0.
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Admissible maps and Morphisms

A bundle map Φ between E and E′ is said to be admissible map if

Φ?df = dΦ?f.

A bundle map Φ between E and E′ is said to be a morphism of Lie alge-

broids if

Φ?dθ = dΦ?θ.

Obviously every morphism is an admissible map.
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Variational description

Solutions of Lagrange equations are the critical points of the action func-

tional

S(a) =
∫ t1

t0

L(a(t)) dt

defined on an adequate infinite dimensional manifold of curves whose tan-

gent vectors (variations of the curve a(t)) are of the form

δxi = ρi
ασα δyα = σ̇α + Cα

βγaβσγ

for some curve σ(t) such that τ(a(t)) = τ(σ(t)).

We use the notation

Ξa(σ) = ρi
ασα ∂

∂xi
+ [σ̇α + Cα

βγaβσγ ]
∂

∂yα
.

for the variation vector field.
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E-Homotopy

(Crainic and Fernandes 2003)

Let I = [0, 1] and J = [t0, t1], and (s, t) coordinates in R2.

Definition 1 Two E-paths a0 and a1 are said to be E-homotopic if there

exists a morphism of Lie algebroids Φ: TI × TJ → E such that

Φ
(

∂

∂t

∣∣∣
(0,t)

)
= a0(t) Φ

(
∂

∂s

∣∣∣
(s,t0)

)
= 0

Φ
(

∂

∂t

∣∣∣
(1,t)

)
= a1(t) Φ

(
∂

∂s

∣∣∣
(s,t1)

)
= 0.

It follows that the base map is a homotopy (in the usual sense) with fixed

endpoints between the base paths.
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Homotopy foliation

The set of E-paths

A(J,E) =
{

a : J → E

∣∣∣∣ ρ ◦ a =
d

dt
(τ ◦ a)

}
is a Banach submanifold of the Banach manifold of C1-paths whose base

path is C2. Every E-homotopy class is a smooth Banach manifold and the

partition into equivalence classes is a smooth foliation. The distribution

tangent to that foliation is given by a ∈ A(J,E) 7→ Fa where

Fa = {Ξa(σ) ∈ TaA(J,E) | σ(t0) = 0 and σ(t1) = 0 } .

and the codimension of F is equal to dim(E). The E-homotopy equiva-

lence relation is regular if and only if the Lie algebroid is integrable (i.e. it

is the Lie algebroid of a Lie groupoid).
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Variational description

The E-path space with the appropriate differential structure is

P(J,E) = A(J,E)F .

Fix m0,m1 ∈M and consider the set of E-paths with such base endpoints

P(J,E)m1
m0

= { a ∈ P(J,E) | τ(a(t0)) = m0 and τ(a(t1)) = m1 }

It is a Banach submanifold of P(J,E).

Theorem 1 Let L ∈ C∞(E) be a Lagrangian function on the Lie alge-

broid E and fix two points m0,m1 ∈ M . Consider the action functional

S : P(J,E) → R given by S(a) =
∫ t1

t0
L(a(t))dt. The critical points of

S on the Banach manifold P(J,E)m1
m0

are precisely those elements of that

space which satisfy Lagrange’s equations.
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Morphisms and reduction

Given a morphism of Lie algebroids Φ: E → E′ the induced map

Φ̂ : P(J,E)→ P(J,E′) given by Φ̂(a) = Φ◦a is smooth and T Φ̂(Ξa(σ)) =
ΞΦ◦a(Φ ◦ σ).

��� If Φ is fiberwise surjective then Φ̂ is a submersion.

��� If Φ is fiberwise injective then Φ̂ is a immersion.

Consider two Lagrangians L ∈ C∞(E), L′ ∈ C∞(E′) and Φ: E → E′ a

morphism of Lie algebroids such that L′ ◦ Φ = L.

Then, the action functionals S on P(J,E) and S′ on P(J,E′) are related

by Φ̂, that is

S′ ◦ Φ̂ = S.
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Theorem 2 (Reduction) Let Φ: E → E′ be a fiberwise surjective mor-

phism of Lie algebroids. Consider a Lagrangian L on E and a Lagrangian

L′ on E′ such that L = L′ ◦ Φ. If a is a solution of Lagrange’s equations

for L then a′ = Φ ◦ a is a solution of Lagrange’s equations for L′.

Proof. From S′ ◦ Φ̂ = S we get

〈 dS(a) , v 〉 = 〈 dS′(Φ̂(a)) , TaΦ̂(v) 〉 = 〈 dS′(a′) , TaΦ̂(v) 〉.

Since TaΦ(v) surjective, if dS(a) = 0 then dS′(a′) = 0. ���
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Theorem 3 (Reconstruction) Let Φ: E → E′ be a morphism of Lie al-

gebroids. Consider a Lagrangian L on E and a Lagrangian L′ on E′ such

that L = L′◦Φ. If a is an E-path and a′ = Φ◦a is a solution of Lagrange’s

equations for L′ then a itself is a solution of Lagrange’s equations for L.

Proof. We have

〈 dS(a) , v 〉 = 〈 dS′(a′) , TaΦ̂(v) 〉.

If dS′(a′) = 0 then dS(a) = 0. ���
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Theorem 4 (Reduction by stages) Let Φ1 : E → E′ and Φ2 : E′ → E′′

be fiberwise surjective morphisms of Lie algebroids. Let L, L′ and L′′ be

Lagrangian functions on E, E′ and E′′, respectively, such that L′ ◦Φ1 = L

and L′′ ◦Φ2 = L′. Then the result of reducing first by Φ1 and later by Φ2

coincides with the reduction by Φ = Φ2 ◦ Φ1.
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Prolongation

Given a Lie algebroid τ : E → M and a submersion µ : P → M we can

construct the E-tangent to P (the prolongation of P with respect to E).

It is the vector bundle τE
P : T EP → P where the fibre over p ∈ P is

T E
p P = { (b, v) ∈ Em × TpP | Tµ(v) = ρ(b) }

where m = µ(p).

Redundant notation: (p, b, v) for the element (b, v) ∈ T E
p P .

The bundle T EP can be endowed with a structure of Lie algebroid.

The anchor ρ1 : T EP → TP is just the projection onto the third fac-

tor ρ1(p, b, v) = v. The bracket is given in terms of projectable sections

(σ,X), (η, Y )
[(σ,X), (η, Y )] = ([σ, η], [X, Y ]).
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Prolongation of maps: If Ψ: P → P ′ is a bundle map over ϕ : M → M ′

and Φ: E → E′ is a morphism over the same map ϕ then we can define a

morphism T ΦΨ: T EP → T E′
P ′ by means of

T ΦΨ(p, b, v) = (Ψ(p),Φ(b), TpΨ(v)).

In particular, for P = E we have the E-tangent to E

T E
a E = { (b, v) ∈ Em × TaE | Tτ(v) = ρ(b) } .

The structure of Lie algebroid in T EE can be defined in terms of the

brackets of vertical and complete lifts

[ηC, σC] = [σ, η]C, [ηC, σV] = [σ, η]V and [ηV, σV] = 0.
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Geometric Lagrangian Mechanics

Associated to L there is a section θL of (T EE)∗,

〈 θL , ηC 〉 = dηVL and 〈 θL , ηV 〉 = 0.

Equivalent conditions:

iΓωL = dEL

with ωL = −dθL and EL = d∆L− L the energy, or

dΓθL = dL

with Γ a sode-section. (Mart́ınez 2001)
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Poisson bracket

The dual E∗ of a Lie algebroid carries a canonical Poisson structure. In

terms of linear and basic functions, the Poisson bracket is defined by

{σ̂, η̂} = [̂σ, η]

{σ̂, g̃} = ρ(σ)g

{f̃ , g̃} = 0

for f , g functions on M and σ, η sections of E.

Basic and linear functions are defined by

f̃(µ) = f(m)

σ̂(µ) = 〈µ , σ(m) 〉
for µ ∈ E∗

m.

In coordinates

{xi, xj} = 0 {µα, xj} = ρi
α {µα, µβ} = Cγ

αβµγ .
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Hamiltonian formalism

Consider the prolongation T EE∗ of the dual bundle π : E∗ →M :

T EE∗ = { (µ, a,W ) ∈ E∗ × E × TE∗ | µ = τE∗(W ) ρ(a) = Tπ(W ) } .

There is a canonical symplectic structure Ω = −dΘ, where the 1-form Θ
is defined by

〈Θµ , (µ, a,W ) 〉 = 〈µ , a 〉.

In coordinates

Θ = µαXα,

and

Ω = Xα ∧ Pα +
1
2
µγCγ

αβX
α ∧ X β .
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The Hamiltonian dynamics is given by the vector field ρ(ΓH) associated to

the section ΓH solution of the symplectic equation

iΓH
Ω = dH.

In coordinates, Hamilton equations are

dxi

dt
= ρi

α

∂H

∂µα

dµα

dt
= −

(
µγCγ

αβ

∂H

∂µβ
+ ρi

α

∂H

∂xi

)
.

The canonical Poisson bracket on E∗ can be re-obtained by means of

Ω(dF, dG) = {F,G}

for F,G ∈ C∞(E∗).

The equations of motion are Poisson

Ḟ = {F,H}.
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Hamilton-Jacobi theory

Let H ∈ C∞(E∗) a Hamiltonian function and ΓH the Hamiltonian section.

Theorem: Let α be a closed section of E∗ and let σ = FH ◦ α. The

following conditions are equivalent

��� If m(t) is an integral curve of ρ(σ) then µ(t) = α(m(t)) is a solution

of the Hamilton equations.

��� α satisfies the equation d(H ◦ α) = 0.

We can try α = dS, for S ∈ C∞(M) (but notice that closed 6= exact, even

locally). In such case if H ◦dS = 0 then d
dt (S ◦m) = L◦σ ◦m, or in other

words

S(m(t1))− S(m(t0)) =
∫ t1

t0

L(σ(m(t))) dt
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Lie groupoids

A groupoid over a set M is a set G together with the following structural

maps:

��� A pair of maps (source) s : G→M and (target) t : G→M .

��� A partial multiplication m, defined on the set of composable pairs

G2 = { (g, h) ∈ G×G | t(g) = s(h) }.

. s(gh) = s(g) and t(gh) = t(h).

. g(hk) = (gh)k.

��� An identity section ε : M → G such that

. ε(s(g))g = g and gε(t(g)) = g.

��� An inversion map i : G → G, to be denoted simply by i(g) = g−1,

such that

. g−1g = ε(t(g)) and gg−1 = ε(s(g)).
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s(g)

g

))
t(g)

•

gh

&&g '' • h '' •

•
g

'' •

g−1

gg

A groupoid is a Lie groupoid if G and M are manifolds, all maps (source,

target, inversion, multiplication, identity) are smooth, s and t are submer-

sions (then m is a submersion, ε is an embedding and i is a diffeomor-

phism).
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The Lie algebroid of a Lie groupoid

The Lie algebroid of a Lie groupoid G is the vector bundle τ : E → M

where Em = Ker(Tε(m)s) with ρm = Tε(m)t.

The bracket is defined in terms of left-invariant vector fields.

Left and right translation:

g ∈ G with s(g) = m and t(g) = n

lg : s−1(n)→ s−1(m), lg(h) = gh

rg : t−1(m)→ t−1(n), rg(h) = hg

Every section σ of E can be extended to a left invariant vectorfield ←−σ ∈
X(G). The bracket of two sections of E is defined by

←−−
[σ, η] = [←−σ ,←−η ].
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Examples

� Pair groupoid.

G = M ×M with s(m1,m2) = m1 and t(m1,m2) = m2.

Multiplication is (m1,m2)(m2,m3) = (m1,m3)
Identities ε(m) = (m,m)
Inversion i(m1,m2) = (m2,m1).
The Lie algebroid is TM →M .

� Lie group.

A Lie group is a Lie groupoid over one point M = {e}. Every pair of

elements is composable.

The Lie algebroid is just the Lie algebra.
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� Transformation groupoid.

Consider a Lie group H acting on a manifold M on the right. The set

G = M ×H is a groupoid over M with s(m, g) = m and t(m, g) = mg.

Multiplication is (m,h1)(mh1, h2) = (m,h1h2).
Identity ε(m) = (m, e)
Inversion i(m,h) = (mh, h−1)
The Lie algebroid is the transformation Lie algebroid M × h→M .

� Atiyah or gauge groupoid.

If π : Q→M is a principal H-bundle, then (Q×Q)/H is a groupoid over

M , with source s([q1, q2]) = π(q1) and target t([q1, q2]) = π(q2).
Multiplication is [q1, q2][hq2, q3] = [hq1, q3].
Identity ε(m) = [q, q]
Inversion i([q1, q2]) = [q2, q1]
(An element of (Q × Q)/G can be identified with an equivariant map

between fibers)
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Discrete Lagrangian Mechanics

A discrete Lagrangian on a Lie groupoid G is just a function L on G. It

defines a discrete dynamical system by mean of discrete Hamilton principle.

� Action sum: defined on composable sequences (g1, g2, · · · , gn) ∈ Gn

S(g1, g2, . . . , gn) = L(g1) + L(g2) + · · ·+ L(gn).

� Discrete Hamilton principle: Given p ∈ G, a solution of a Lagrangian

system is a critical point of the action sum on the set of composable se-

quences with product p, i.e. sequences (g1, g2 · · · , gn) ∈ Gn such that

g1g2 · · · gn = p
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Discrete Euler-Lagrange equations

We can restrict to sequences of two elements (g, h). Since gh = p is fixed,

variations are of the form g 7→ gη(t) and h 7→ η(t)−1h, with η(t) a curve

thought the identity at m = t(g) = s(h) with η̇(0) = a ∈ Em. Then the

discrete Euler-Lagrange equations are:

〈DEL(g, h) , a 〉 =
d

dt
[L(gη(t)) + L(η(t)−1h)]

∣∣∣
t=0

= 〈 d0
(
L ◦ lg + L ◦ rh ◦ i

)
, a 〉.
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Simplecticity

In the case of the pair groupoid, it is well known that the algorithm defined

by the discrete Euler-Lagrange equations is symplectic.

In the general case of a Lagrangian system on a Lie groupoid one can

also define a symplectic section on an appropriate Lie algebroid which is

conserved by the discrete flow. From this it follows that the algorithm is

Poisson (In the standard sense).

Such appropriate Lie algebroid is called the prolongation of the Lie groupoid

PG→ G, where

PgG = Ker(Tgs)⊕Ker(Tgt)

It can be seen isomorphic to

PG = { (a, g, b) ∈ E ×G× E | τ(a) = s(g) and τ(b) = t(g) }

where τ : E →M is the Lie algebroid of G.
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Cartan forms

Given a discrete Lagrangian L ∈ C∞(G) we define the Cartan 1-sections

Θ−
L and Θ+

L of PG∗ by

Θ−
L(g)(Xg, Yg) = −Xg(L), and Θ+

L(g)(Xg, Yg) = Yg(L),

for each g ∈ G and (Xg, Yg) ∈ Vgβ ⊕ Vgα.

The difference between them is

dL = Θ+
L −Θ−

L.

The Cartan 2-section is

ΩL = −dΘ+
L = −dΘ−

L

A Lagrangian is said to be regular if ΩL is a symplectic section.
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Discrete evolution operator

For a regular Lagrangian there exists a locally unique map ξ : G→ G such

that it solves the discrete Euler-Lagrange equations

DEL(g, ξ(g)) = 0 for all g in an open U ⊂ G.

One of such maps is said to be a discrete Lagrangian evolution operator.

Given a map ξ : G → G such that s ◦ ξ = t, there exists a unique vector

bundle map Pξ : PG→ PG, such that Φ = (Pξ, ξ) is a morphism of Lie

algebroids.

A map ξ is a discrete Lagrangian evolution operator if and only if

Φ∗Θ−
L −Θ−

L = dL.

If ξ is a discrete Lagrangian evolution operator then it is symplectic, that

is, Φ∗ΩL = ΩL.

37



Hamiltonian formalism

Define the discrete Legendre transformations F−L : G→ E∗ and F+L :
G→ E∗ by

(F−L)(h)(a) = −a(L ◦ rh ◦ i), for a ∈ Es(h)

(F+L)(g)(b) = b(L ◦ lg), for b ∈ Et(g)

The Lagrangian is regular if and only if F±L is a local diffeomorphism.

If Θ is the canonical 1-section on the prolongation of E∗ then

(PF±L)∗Θ = Θ±
L ,

and

(PF±L)∗Ω = ΩL.
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We also have that

DEL(g, h) = F+L(g)−F−L(h)

so that the Hamiltonian evolution operator ξL is

ξL = (F+L) ◦ (F−L)−1,

which is therefore symplectic

(PξL)∗Ω = Ω.
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Morphisms and reduction

A morphism of Lie groupoids is a bundle map (φ, ϕ) between groupoids G

over M and G′ over M ′ such that Φ(gh) = Φ(g)Φ(h).

The prolongation Pφ of φ is the map Pφ(X, Y ) = (Tφ(X), TΦ(Y )) from

PG to PG′.

Assume that we have a Lagrangian L on G and a Lagrangian L′ on G′

related by a morphism of Lie groupoids φ, that is L′ ◦ φ = L. Then

��� 〈DEL(g, h) , a 〉 = 〈DDELL′(φ(g), φ(h)) , φ∗(a) 〉

��� Pφ∗Θ±
L′ = Θ±

L

��� Pφ∗ΩL′ = ΩL
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As a consequence:

Let (φ, ϕ) be a morphism of Lie groupoids from G ⇒ M to G′ ⇒ M ′ and

suppose that (g, h) ∈ G2.

1. If (φ(g), φ(h)) is a solution of the discrete Euler-Lagrange equations

for L′ = L◦Φ, then (g, h) is a solution of the discrete Euler-Lagrange

equations for L.

2. If φ is a submersion then (g, h) is a solution of the discrete Euler-

Lagrange equations for L if and only if (φ(g), φ(h)) is a solution of

the discrete Euler-Lagrange equations for L′.
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Thank you !
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Example: Heavy top

Consider the transformation Lie algebroid τ : S2 × so(3) → S2 and La-

grangian

Lc(Γ,Ω) =
1
2
Ω · IΩ−mglΓ · e =

1
2

Tr(Ω̂IΩ̂T )−mglΓ · e.

where Ω ∈ R3 ' so(3) and I = 1
2 Tr(I)I3 − I.

Discretize the action by the rule

Ω̂ = RT Ṙ ≈ 1
h

RT
k (Rk+1 −Rk) =

1
h

(Wk − I3),

where Wk = RT
k Rk+1 to obtain a discrete Lagrangian (an approximation

of the continuous action) on the transformation Lie groupoid L : S2 ×
SO(3)→ R

L(Γk,Wk) = − 1
h

Tr(IWk)− hmglΓk · e.
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The value of the action on a variated sequence is

λ(t) = L(Γk,WketK) + L(e−tKΓk+1, e
−tKWk+1)

= − 1
h

[
Tr(IWketK) + mglh2Γk · e + Tr(Ie−tKWk+1) + mglh2(e−tKΓk+1) · e

]
,

where Γk+1 = WT
k Γk (since the above pairs must be composable) and

K ∈ so(3) is arbitrary.

Taking the derivative at t = 0 and after some straightforward manipulations

we get the DEL equations

Mk+1 −WT
k MkWk −mglh2( ̂Γk+1 × e) = 0

where M = W I− IWT .

In terms of the axial vector Π in R3 defined by Π̂ = M , we can write the

equations in the form

Πk+1 = WT
k Πk + mglh2Γk+1 × e.
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Examples

� Pair groupoid.

Lagrangian: L : M ×M → R Discrete Euler-Lagrange equations:

D2L(x, y) + D1L(y, z) = 0.

� Lie group.

Lagrangian: L : G→ R Discrete Euler-Lagrange equations:

µk+1 = Ad∗gk
µk, discrete Lie-Poisson equations

where µk = r∗gk
dL(e).
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� Action Lie groupoid.

Lagrangian: L : M ×H → R Discrete Euler-Lagrange equations: Defining

µk(x, hk) = d(Lx ◦ rhk
)(e), we have

µk+1(xhk, hk+1) = Ad∗hk
µk(x, hk) + d(Lhk+1 ◦ ((xhk)·))(e),

where (xhk)· : H →M is the map defined by

(xhk) · (h) = x(hkh).

These are the discrete Euler-Poincaré equations.
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� Atiyah groupoid.

Lagrangian: L : (Q × Q)/H → R. Discrete Euler-Lagrange equations:

Locally Q = M ×H

D2L((x, y), hk) + D1L((y, z), hk+1) = 0,
µk+1(y, z) = Ad∗hk

µk(x, y), (1)

where

µk(x̄, ȳ) = d(r∗hk
L(x̄,ȳ, ))(e)

for (x̄, ȳ) ∈M ×M .

One can find a global expression in terms of a discrete connection.
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Examples

� Let G be a Lie group and consider the pair groupoid G×G over G. Consider

also G as a groupoid over one point. Then we have that the map

Φl : G×G −→ G
(g, h) 7→ g−1h

is a Lie groupoid morphism, and a submersion. The discrete Euler-Lagrange

equations for a left invariant discrete Lagrangian on G × G reduce to the

discrete Lie-Poisson equations on G for the reduced Lagrangian.
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� Let G be a Lie group acting on a manifold M by the left. We con-

sider a discrete Lagrangian on G × G which depends on the variables

of M as parameters Lm(g, h). The Lagrangian is invariant in the sense

Lm(rg, rh) = Lr−1m(g, h).

We consider the Lie groupoid G×G×M over G×M where the elements in

M as parameters, and thus L ∈ C∞(G×G×M) and then L(rg, rh, rm) =
L(g, h, m). Thus we define the reduction map (submersion)

Φ : G×G×M −→ G×M
(g, h, m) 7→ (g−1h, g−1m)

where on G ×M we consider the transformation Lie groupoid defined by

the right action m · g = g−1m.

The Euler-Lagrange equations on G×G×M reduces to the Euler-Lagrange

equations on G×M .
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� A G-invariant Lagrangian L defined on the pair groupoid L : Q×Q→ R,

where p : Q → M is a G-principal bundle. In this case we can reduce to

the Atiyah gauge groupoid by means of the map

Φ : Q×Q −→ (Q×Q)/G
(q, q′) 7→ [(q, q′)]

Thus the discrete Euler-Lagrange equations reduce to the discrete

Lagrange-Poincaré equations.
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