Reduction and Lagrangian mechanics on Lie algebroids

Patrícia Santos

CMUC, University of Coimbra Engineering Institute of Coimbra

Mechanics and Lie algebroids, one day workshop September 11th, 2007

Outline

• Reduction of Lie algebroids & Poisson reduction

2 Reduction of Lagrangian mechanics on Lie algebroids

3 Hamel symbols and nonholonomic mechanics on Lie algebroids

Outline

• Reduction of Lie algebroids & Poisson reduction

2 Reduction of Lagrangian mechanics on Lie algebroids

3 Hamel symbols and nonholonomic mechanics on Lie algebroids

Reduction of Lie algebroids

Notation

- $\checkmark (A, p, M), (\widehat{A}, \widehat{p}, \widehat{M})$ vector bundles
- $\checkmark (\Pi, \pi) : (A, p, M) \to (\widehat{A}, \widehat{p}, \widehat{M})$ epimorphism

Definition (Reduced Lie algebroid)

Let A and \widehat{A} be Lie algebroids with exterior derivatives d_A and $d_{\widehat{A}}$ respectively. The bundle \widehat{A} is a *reduced Lie algebroid* of A if (Π, π) is a Lie algebroid homomorphism^a, i.e. $d_A \circ \Pi^* = \Pi^* \circ d_{\widehat{A}}$.

^aThis definition of Lie algebroid morphism is equivalent to the inicial one given by *Higgins-Mackenzie*, J. Algebra 129 (1990).

Reduction of Lie algebroids

Notation

- \checkmark $(A, p, M), (\widehat{A}, \widehat{p}, \widehat{M})$ vector bundles
- $\checkmark (\Pi, \pi) : (A, p, M) \to (\widehat{A}, \widehat{p}, \widehat{M})$ epimorphism

Definition (Reduced Lie algebroid)

Let A and \widehat{A} be Lie algebroids with exterior derivatives d_A and $d_{\widehat{A}}$ respectively. The bundle \widehat{A} is a *reduced Lie algebroid* of A if (Π, π) is a Lie algebroid homomorphism^a, i.e. $d_A \circ \Pi^* = \Pi^* \circ d_{\widehat{A}}$.

^aThis definition of Lie algebroid morphism is equivalent to the inicial one given by *Higgins-Mackenzie*, J. Algebra 129 (1990).

Definition (Section of an epimorphism)

A section of Π is a set of maps between fibers

$$S = \left\{ S_x^{\widehat{x}} : \widehat{A}_{\widehat{x}} \to A_x \mid \pi(x) = \widehat{x}, x \in M \right\}$$

such that $\Pi_x \circ S_x^{\widehat{x}} = \mathrm{id}_{\widehat{A}_{\widehat{x}}}$, for all $x \in M$.

Notes

- The set *S* does not have to define a vector bundle morphism, but when it does *S* is a section in the usual sense.
- **2** A section S defines a map $\mathbf{S} : \Gamma(\widehat{A}) \to \Gamma(A)$ in the following way

$$\mathbf{S}(\widehat{\nu})(x) = S_x^{\widehat{x}}(\widehat{\nu}_{\widehat{x}}),$$

for all $x \in M$.

Definition (Section of an epimorphism)

A section of Π is a set of maps between fibers

$$S = \left\{ S_x^{\widehat{x}} : \widehat{A}_{\widehat{x}} \to A_x \mid \pi(x) = \widehat{x}, x \in M \right\}$$

such that $\Pi_x \circ S_x^{\widehat{x}} = \mathrm{id}_{\widehat{A}_x}$, for all $x \in M$.

Notes

- The set *S* does not have to define a vector bundle morphism, but when it does *S* is a section in the usual sense.
- **2** A section S defines a map $\mathbf{S} : \Gamma(\widehat{A}) \to \Gamma(A)$ in the following way

$$\mathbf{S}(\widehat{\nu})(x) = S_x^{\widehat{x}}(\widehat{\nu}_{\widehat{x}}),$$

for all $x \in M$.

- \checkmark $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- $\checkmark (\Pi, \pi) : (A, p, M) \to (\widehat{A}, \widehat{p}, \widehat{M})$ surjective submersion

- **①** ∃ $(\widetilde{\Pi}, \pi)$: $(A^*, \tau, M) \rightarrow (\widehat{A}^*, \widehat{\tau}, \widehat{M})$ surjective submersion, such that $S = \left\{ \widehat{S_x^{\widehat{x}}} := (\widetilde{\Pi}_x)^* : \widehat{A_{\widehat{x}}} \rightarrow A_x \mid \pi(x) = \widehat{x}, \ x \in M \right\}$ is a section of Π
- ② Im **S** is a subalgebra of $(\Gamma(A), [\cdot, \cdot]_A)$
- ③ $d_A \circ \Pi^* \circ \widetilde{\Pi} = \Pi^* \circ \widetilde{\Pi} \circ d_A$, where $\widetilde{\Pi} : \Omega^{\Pi}(A) \to \Omega(\widehat{A})$ is defined by $\widetilde{\Pi}(\alpha)(\widehat{\nu}_1, \dots, \widehat{\nu}_k) = \alpha(\mathbf{S}(\widehat{\nu}_1), \dots, \mathbf{S}(\widehat{\nu}_k))$

for all $\widetilde{\Pi}$ -projectable A-k-form α .

- ✓ $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- $\checkmark (\Pi, \pi) : (A, p, M) \to (\widehat{A}, \widehat{p}, \widehat{M})$ surjective submersion

- $\exists \ (\widetilde{\Pi}, \pi) : (A^*, \tau, M) \to (\widehat{A}^*, \widehat{\tau}, \widehat{M})$ surjective submersion, such that $S = \left\{ S_{\widehat{x}}^{\widehat{x}} := (\widetilde{\Pi}_x)^* : \widehat{A}_{\widehat{x}} \to A_x \mid \pi(x) = \widehat{x}, \ x \in M \right\}$ is a section of Π
- **2** Im **S** is a subalgebra of $(\Gamma(A), [\cdot, \cdot]_A)$
- $\textbf{3} \ d_A \circ \Pi^* \circ \widetilde{\Pi} = \Pi^* \circ \widetilde{\Pi} \circ d_A, \text{ where } \widetilde{\Pi} : \Omega^{\widetilde{\Pi}}(A) \to \Omega(\widehat{A}) \text{ is defined by }$ $\widetilde{\Pi}(\alpha)(\widehat{\nu}_1, \dots, \widehat{\nu}_k) = \alpha(\mathbf{S}(\widehat{\nu}_1), \dots, \mathbf{S}(\widehat{\nu}_k))$

for all $\widetilde{\Pi}$ -projectable *A*-k-form α .

Then, \widehat{A} is a reduced Lie algebroid of A with exterior derivative

$$d_{\widehat{A}} := \widetilde{\Pi} \circ d_A \circ \Pi^*,$$

and Lie algebroid structure $(\widehat{\rho}, [\cdot, \cdot]_{\widehat{A}})$:

- $\widehat{\rho} = T\pi \circ \rho \circ S$
- $[\cdot,\cdot]_{\widehat{A}}\circ\pi=\Pi\circ[\mathbf{S}(\cdot),\mathbf{S}(\cdot)]_A$

Note

An equivalent version of this theorem was proved by *David Iglesias*, *Juan Carlos Marrero*, *David Martín de Diego*, *Eduardo Martínez and Edith Padrón*, SIGMA 3 (2007).

Then, \widehat{A} is a reduced Lie algebroid of A with exterior derivative

$$d_{\widehat{A}}:=\widetilde{\Pi}\circ d_{A}\circ \Pi^{*},$$

and Lie algebroid structure $(\widehat{\rho}, [\cdot, \cdot]_{\widehat{A}})$:

- $\widehat{\rho} = T\pi \circ \rho \circ S$
- $[\cdot,\cdot]_{\widehat{A}} \circ \pi = \Pi \circ [\mathbf{S}(\cdot),\mathbf{S}(\cdot)]_A$

Note

An equivalent version of this theorem was proved by *David Iglesias*, *Juan Carlos Marrero*, *David Martín de Diego*, *Eduardo Martínez and Edith Padrón*, SIGMA 3 (2007).

Example: Poisson manifold

- $\checkmark \ (M,\Lambda)$ Poisson manifold and $(T^*M,\Lambda^\sharp,[\cdot,\cdot]_{T^*M})$ associated Lie algebroid
- $\checkmark \ \pi: M \to \widehat{M}$ surjective submersion and $\sigma: \widehat{M} \to M$ is such that $\pi \circ \sigma = \mathrm{id}_{\widehat{M}}$
- $\checkmark \Pi = (T\sigma)^* : T^*M \to T^*\widehat{M} \text{ and } \widetilde{\Pi} = T\pi : TM \to T\widehat{M} \text{ are submersions over } \pi$
- ✓ Im **S** is a Lie subalgebra of $(\Gamma(T^*M), [\cdot, \cdot]_{T^*M})$ and the space of sections of $C_{\sigma} = \text{Ker}(T_{\sigma})^*$ is an ideal of this algebra.

The reduced structure on $T^*\widehat{M}$:

- (i) $\widehat{\rho} = T\pi \circ \Lambda^{\sharp} \circ S$, with $S_x^{\pi(x)} = (T_x \pi)^* : T_{\pi(x)}^* \widehat{M} \to T_x^* M$;
- (ii) $[\cdot,\cdot]_{\widehat{A}} \circ \pi = \Pi \circ [\mathbf{S}(\cdot),\mathbf{S}(\cdot)]_{T^*M}$, with $\mathbf{S} = \pi^* : \Gamma(T^*\widehat{M}) \to \Gamma(T^*M)$.

Example: Poisson manifold

- \checkmark (M,Λ) Poisson manifold and $(T^*M,\Lambda^\sharp,[\cdot,\cdot]_{T^*M})$ associated Lie algebroid
- $\checkmark \ \pi: M \to \widehat{M}$ surjective submersion and $\sigma: \widehat{M} \to M$ is such that $\pi \circ \sigma = \mathrm{id}_{\widehat{M}}$
- $\checkmark \Pi = (T\sigma)^* : T^*M \to T^*\widehat{M} \text{ and } \widetilde{\Pi} = T\pi : TM \to T\widehat{M} \text{ are submersions over } \pi$
- \checkmark Im **S** is a Lie subalgebra of $(\Gamma(T^*M), [\cdot, \cdot]_{T^*M})$ and the space of sections of $C_{\sigma} = \operatorname{Ker}(T\sigma)^*$ is an ideal of this algebra.

The reduced structure on $T^*\widehat{M}$:

- (i) $\widehat{\rho} = T\pi \circ \Lambda^{\sharp} \circ S$, with $S_x^{\pi(x)} = (T_x \pi)^* : T_{\pi(x)}^* \widehat{M} \to T_x^* M$;
- $\text{(ii)} \ \ [\cdot,\cdot]_{\widehat{A}}\circ\pi=\Pi\circ[\mathbf{S}(\cdot),\mathbf{S}(\cdot)]_{T^*M},\quad \text{with} \ \ \mathbf{S}=\pi^*:\Gamma(T^*\widehat{M})\to\Gamma(T^*M).$

Poisson reduction

Notation

- \checkmark $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- $\checkmark (A^*, \{\cdot, \cdot\}_{A^*})$ associated Lie co-algebroid

Poisson reduction in the sense of Marsden-Ratiu '86

Let C be a subbundle of TA^* such that:

- $\textcircled{1} \text{ it defines a surjective submersion } (\overline{\Pi},\pi):(A^*,\tau,M)\to (\widehat{A^*},\widehat{\tau},\widehat{M})$
- ② $\forall F, G \in C^{\infty}(A^*)$ such that $dF, dG \in C^0$, then $d\{F, G\}_{A^*} \in C^0$

 $(\widehat{A^*},\widehat{\tau},\widehat{M})$ is endowed with a Poisson structure $\{\cdot,\cdot\}_{\wedge}$ that satisfies:

$$\left\{\widehat{F}\circ\overline{\Pi},\widehat{G}\circ\overline{\Pi}\right\}_{A^*}=\left\{\widehat{F},\widehat{G}\right\}_{\wedge}\circ\overline{\Pi},\quad\forall\widehat{F},\widehat{G}\in C^{\infty}(\widehat{A^*}$$

Poisson reduction

Notation

- \checkmark $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- $\checkmark (A^*, \{\cdot, \cdot\}_{A^*})$ associated Lie co-algebroid

Poisson reduction in the sense of Marsden-Ratiu '86

Let C be a subbundle of TA^* such that:

- $lackbox{0}$ it defines a surjective submersion $(\overline{\Pi},\pi):(A^*, au,M)\to(\widehat{A^*},\widehat{ au},\widehat{M})$
- $\ \ \, \mathbf{2} \ \, \forall F,G\in C^{\infty}(A^{*}) \ \, \text{such that} \ \, dF,dG\in C^{0}, \ \, \text{then} \ \, d\{F,G\}_{A^{*}}\in C^{0}$

 $(\widehat{A^*},\widehat{\tau},\widehat{M})$ is endowed with a Poisson structure $\{\cdot,\cdot\}_{\wedge}$ that satisfies:

$$\left\{\widehat{F}\circ\overline{\Pi},\widehat{G}\circ\overline{\Pi}\right\}_{A^*}=\left\{\widehat{F},\widehat{G}\right\}_{\wedge}\circ\overline{\Pi},\quad \forall \widehat{F},\widehat{G}\in C^{\infty}(\widehat{A^*})$$

Poisson reduction

Notation

- \checkmark $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- \checkmark $(A^*, \{\cdot, \cdot\}_{A^*})$ associated Lie co-algebroid

Poisson reduction in the sense of Marsden-Ratiu '86

Let C be a subbundle of TA^* such that:

- lacktriangledown it defines a surjective submersion $(\overline{\Pi},\pi):(A^*, au,M)\to(\widehat{A^*},\widehat{ au},\widehat{M})$

 $(\widehat{A}^*, \widehat{\tau}, \widehat{M})$ is endowed with a Poisson structure $\{\cdot, \cdot\}_{\wedge}$ that satisfies:

$$\left\{\widehat{F}\circ\overline{\Pi},\widehat{G}\circ\overline{\Pi}\right\}_{A^*}=\left\{\widehat{F},\widehat{G}\right\}_{\wedge}\circ\overline{\Pi},\quad\forall\widehat{F},\widehat{G}\in C^{\infty}(\widehat{A^*})$$

$$(A, \rho, [\cdot, \cdot]_A) \xrightarrow{LAR} (\widehat{A}, \widehat{\rho}, [\cdot, \cdot]_{\widehat{A}}) \Longrightarrow (A^*, \Lambda_{A^*}) \xrightarrow{PR} (\widehat{A}^*, \Lambda_{\widehat{A}^*})$$

Proposition

If $(A^*, \Lambda_{A^*}) \xrightarrow{PR} (\widehat{A^*}, \Lambda_{\widehat{A^*}})$ then $\widehat{A} := (\widehat{A^*})^*$ is a Lie algebroid:

- $\widehat{\rho} = T\pi \circ \rho \circ \overline{S}$
- $\overline{\mathbf{S}}([\cdot,\cdot]_{\widehat{A}}) = [\overline{\mathbf{S}}(\cdot),\overline{\mathbf{S}}(\cdot)]_A$

where $\overline{S} = \left\{ \overline{S}_x^{\widehat{x}} := (\overline{\Pi}_x)^* : \widehat{A}_{\widehat{x}} \to A_x \mid \pi(x) = \widehat{x}, \, x \in M \right\}$

Note

$$(A,\rho,[\cdot,\cdot]_A) \xrightarrow{LAR} (\widehat{A},\widehat{\rho},[\cdot,\cdot]_{\widehat{A}}) \not \longleftarrow (A^*,\Lambda_{A^*}) \xrightarrow{PR} (\widehat{A^*},\Lambda_{\widehat{A^*}})$$

$$(A, \rho, [\cdot, \cdot]_A) \xrightarrow{LAR} (\widehat{A}, \widehat{\rho}, [\cdot, \cdot]_{\widehat{A}}) \Longrightarrow (A^*, \Lambda_{A^*}) \xrightarrow{PR} (\widehat{A}^*, \Lambda_{\widehat{A}^*})$$

Proposition

If $(A^*, \Lambda_{A^*}) \xrightarrow{PR} (\widehat{A^*}, \Lambda_{\widehat{A^*}})$ then $\widehat{A} := (\widehat{A^*})^*$ is a Lie algebroid:

- $\widehat{\rho} = T\pi \circ \rho \circ \overline{S}$
- $\overline{\mathbf{S}}([\cdot,\cdot]_{\widehat{A}}) = [\overline{\mathbf{S}}(\cdot),\overline{\mathbf{S}}(\cdot)]_A$

where
$$\overline{S} = \left\{ \overline{S}_x^{\widehat{x}} := (\overline{\Pi}_x)^* : \widehat{A}_{\widehat{x}} \to A_x \mid \pi(x) = \widehat{x}, x \in M \right\}.$$

Note

$$(A, \rho, [\cdot, \cdot]_A) \xrightarrow{LAR} (\widehat{A}, \widehat{\rho}, [\cdot, \cdot]_{\widehat{A}}) \xleftarrow{} (A^*, \Lambda_{A^*}) \xrightarrow{PR} (\widehat{A^*}, \Lambda_{\widehat{A^*}})$$

$$(A,\rho,[\cdot,\cdot]_A) \xrightarrow{\mathit{LAR}} (\widehat{A},\widehat{\rho},[\cdot,\cdot]_{\widehat{A}}) \Longrightarrow (A^*,\Lambda_{A^*}) \xrightarrow{\mathit{PR}} (\widehat{A}^*,\Lambda_{\widehat{A}^*})$$

Proposition

If $(A^*, \Lambda_{A^*}) \xrightarrow{PR} (\widehat{A^*}, \Lambda_{\widehat{A^*}})$ then $\widehat{A} := (\widehat{A^*})^*$ is a Lie algebroid:

- $\widehat{\rho} = T\pi \circ \rho \circ \overline{S}$
- $\overline{\mathbf{S}}([\cdot,\cdot]_{\widehat{A}}) = [\overline{\mathbf{S}}(\cdot),\overline{\mathbf{S}}(\cdot)]_A$

where
$$\overline{S} = \left\{ \overline{S}_x^{\widehat{x}} := (\overline{\Pi}_x)^* : \widehat{A}_{\widehat{x}} \to A_x \mid \pi(x) = \widehat{x}, \ x \in M \right\}.$$

Note

$$(A,\rho,[\cdot,\cdot]_A) \xrightarrow{LAR} (\widehat{A},\widehat{\rho},[\cdot,\cdot]_{\widehat{A}}) \not \longleftarrow \quad (A^*,\Lambda_{A^*}) \xrightarrow{PR} (\widehat{A^*},\Lambda_{\widehat{A^*}})$$

Example: Lie group *G*

Let G be finite dimensional Lie group with Lie algebra \mathfrak{g} .

- $(\Pi, \pi): (TG, p, G) \to (\mathfrak{g}, \widehat{p}, \{\cdot\})$ is the canonical projection defined by the tangent representation $\Phi(g) = TL_g$ of the action of G on itself by left translations, with $TG \equiv G \times \mathfrak{g}$ we have $\Pi(g, X) = X$ for all $X \in \mathfrak{g}$ and $g \in G$.
- With $T^*G \equiv G \times \mathfrak{g}^*$ the projection $\widetilde{\Pi}: T^*G \to \mathfrak{g}^* = T^*G/G$ defined by $\widetilde{\Pi}(g,\alpha) = \alpha$, for all $g \in G$ and $\alpha \in \mathfrak{g}^*$, is a surjective submersion over $\pi: G \to G/G = \{\cdot\}$.

By Marsden–Ratiu \mathfrak{g}^* is endowed with a linear Poisson structure such that $\widetilde{\Pi}: T^*G \to \mathfrak{g}^*$ is a Poisson morphism. Then, we can prove that the conditions of the reduction theorem are satisfied and \mathfrak{g} , with its usual structure of Lie algebroid, is a reduced Lie algebroid of TG.

Example: Lie group *G*

Let G be finite dimensional Lie group with Lie algebra \mathfrak{g} .

- $(\Pi, \pi): (TG, p, G) \to (\mathfrak{g}, \widehat{p}, \{\cdot\})$ is the canonical projection defined by the tangent representation $\Phi(g) = TL_g$ of the action of G on itself by left translations, with $TG \equiv G \times \mathfrak{g}$ we have $\Pi(g, X) = X$ for all $X \in \mathfrak{g}$ and $g \in G$.
- With $T^*G \equiv G \times \mathfrak{g}^*$ the projection $\widetilde{\Pi}: T^*G \to \mathfrak{g}^* = T^*G/G$ defined by $\widetilde{\Pi}(g,\alpha) = \alpha$, for all $g \in G$ and $\alpha \in \mathfrak{g}^*$, is a surjective submersion over $\pi: G \to G/G = \{\cdot\}$.

By Marsden–Ratiu \mathfrak{g}^* is endowed with a linear Poisson structure such that $\widetilde{\Pi}: T^*G \to \mathfrak{g}^*$ is a Poisson morphism. Then, we can prove that the conditions of the reduction theorem are satisfied and \mathfrak{g} , with its usual structure of Lie algebroid, is a reduced Lie algebroid of TG.

Example: Lie group *G*

Let G be finite dimensional Lie group with Lie algebra \mathfrak{g} .

- $(\Pi, \pi): (TG, p, G) \to (\mathfrak{g}, \widehat{p}, \{\cdot\})$ is the canonical projection defined by the tangent representation $\Phi(g) = TL_g$ of the action of G on itself by left translations, with $TG \equiv G \times \mathfrak{g}$ we have $\Pi(g, X) = X$ for all $X \in \mathfrak{g}$ and $g \in G$.
- With $T^*G \equiv G \times \mathfrak{g}^*$ the projection $\widetilde{\Pi} : T^*G \to \mathfrak{g}^* = T^*G/G$ defined by $\widetilde{\Pi}(g,\alpha) = \alpha$, for all $g \in G$ and $\alpha \in \mathfrak{g}^*$, is a surjective submersion over $\pi : G \to G/G = \{\cdot\}$.

By Marsden–Ratiu \mathfrak{g}^* is endowed with a linear Poisson structure such that $\widetilde{\Pi}: T^*G \to \mathfrak{g}^*$ is a Poisson morphism. Then, we can prove that the conditions of the reduction theorem are satisfied and \mathfrak{g} , with its usual structure of Lie algebroid, is a reduced Lie algebroid of TG.

Outline

Reduction of Lie algebroids & Poisson reduction

2 Reduction of Lagrangian mechanics on Lie algebroids

3 Hamel symbols and nonholonomic mechanics on Lie algebroids

Reduction of a Lie algebroid prolongation

$$\checkmark$$
 $(\Pi, \pi) : (A, p, M) \to (\widehat{A}, \widehat{p}, \widehat{M})$ submersion

 $\checkmark \hat{A}$ reduced Lie algebroid of A

 $T\Pi = (\Pi, \Pi, T\Pi) : TA \to TA$ is a Lie algebroid surjective homomorphism over $\Pi : A \to \widehat{A}$.

 \widehat{TA} is a reduced Lie algebroid of \widehat{TA} .

Reduction of a Lie algebroid prolongation

$$\checkmark$$
 $(\Pi, \pi) : (A, p, M) \to (\widehat{A}, \widehat{p}, \widehat{M})$ submersion

 $\checkmark \hat{A}$ reduced Lie algebroid of A

$$T\Pi = (\Pi, \Pi, T\Pi) : TA \to T\widehat{A}$$
 is a Lie algebroid surjective homomorphism over $\Pi : A \to \widehat{A}$.

 \widehat{TA} is a reduced Lie algebroid of \widehat{TA} .

Reduction of a Lie algebroid prolongation

$$\checkmark$$
 $(\Pi, \pi) : (A, p, M) \to (\widehat{A}, \widehat{p}, \widehat{M})$ submersion

 $\checkmark \hat{A}$ reduced Lie algebroid of A

 $T\Pi = (\Pi, \Pi, T\Pi) : TA \to T\widehat{A}$ is a Lie algebroid surjective homomorphism over $\Pi : A \to \widehat{A}$.

 $\mathcal{T}\widehat{A}$ is a reduced Lie algebroid of $\mathcal{T}A$.

Prolongation ← Reduction by symmetry

- ✓ $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- \checkmark Φ : G → Aut(A) Lie algebroid representation of G on A
- $\checkmark \Phi \in \Phi^c$ define proper and free actions of G on A and A^*

A satisfies the reduction theorem conditions, and then A/G is a reduced Lie algebroid of A over M/G.

 $\mathcal{T}(A/G) \simeq (\mathcal{T}A)/G$ is a reduced Lie algebroid of $\mathcal{T}A$.

^aUsing a different approach, this result was also proven by *Manuel de León, Juan Carlos Marrero and Eduardo Martínez*, J. Phys. A: Math Gen. 38 (2005).

Prolongation ← Reduction by symmetry

- \checkmark $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- \checkmark Φ : G → Aut(A) Lie algebroid representation of G on A
- $\checkmark \Phi \in \Phi^c$ define proper and free actions of G on A and A^*

A satisfies the reduction theorem conditions, and then A/G is a reduced Lie algebroid of A over M/G.

 $\mathcal{T}(A/G) \simeq (\mathcal{T}A)/G$ is a reduced Lie algebroid of $\mathcal{T}A$.

^aUsing a different approach, this result was also proven by *Manuel de León, Juan Carlos Marrero and Eduardo Martínez*, J. Phys. A: Math Gen. 38 (2005).

Prolongation \longleftrightarrow Reduction by symmetry

- \checkmark $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- $\checkmark \Phi: G \to \operatorname{Aut}(A)$ Lie algebroid representation of G on A
- $\checkmark \Phi \in \Phi^c$ define proper and free actions of G on A and A^*

A satisfies the reduction theorem conditions, and then A/G is a reduced Lie algebroid of A over M/G.

 $\mathcal{T}(A/G) \simeq (\mathcal{T}A)/G$ is a reduced Lie algebroid of $\mathcal{T}A$.

^aUsing a different approach, this result was also proven by Manuel de León, Juan Carlos Marrero and Eduardo Martínez, J. Phys. A: Math Gen. 38 (2005).

September 11th, 2007

Example: Principal fiber bundle P(M, G)

Consider a principal fibre bundle P(M,G) and the associated gauge algebroid (TP/G,p,M).

- The canonical projection $\Pi: TP \to TP/G$ is a homomorphism of Lie algebroids over $\pi: P \to M$ that defines the homomorphism of Lie algebroids $T\Pi: \mathcal{T}(TP) \to \mathcal{T}(TP/G)$ over Π . Note that $\mathcal{T}(TP) \equiv T(TP)$.
- Let ϕ be the (right) action of the Lie group G on P. Then, $\Phi(g) := T\phi_g$ defines a Lie algebroid representation of G on TP.

We can prove that $\mathcal{T}\Phi=(\Phi,\Phi,T\Phi)$ is a Lie algebroid representation of G on $\mathcal{T}(TP)$ and then $\mathcal{T}(TP)/G\cong\mathcal{T}(TP/G)$, that is, $T(TP)/G\cong\mathcal{T}(TP/G)$.

Example: Principal fiber bundle P(M, G)

Consider a principal fibre bundle P(M,G) and the associated gauge algebroid (TP/G,p,M).

- The canonical projection $\Pi: TP \to TP/G$ is a homomorphism of Lie algebroids over $\pi: P \to M$ that defines the homomorphism of Lie algebroids $T\Pi: T(TP) \to T(TP/G)$ over Π . Note that $T(TP) \equiv T(TP)$.
- Let ϕ be the (right) action of the Lie group G on P. Then, $\Phi(g) := T\phi_g$ defines a Lie algebroid representation of G on TP.

We can prove that $\mathcal{T}\Phi=(\Phi,\Phi,T\Phi)$ is a Lie algebroid representation of G on $\mathcal{T}(TP)$ and then $\mathcal{T}(TP)/G\cong\mathcal{T}(TP/G)$, that is, $T(TP)/G\cong\mathcal{T}(TP/G)$.

Example: Principal fiber bundle P(M, G)

Consider a principal fibre bundle P(M,G) and the associated gauge algebroid (TP/G,p,M).

- The canonical projection $\Pi: TP \to TP/G$ is a homomorphism of Lie algebroids over $\pi: P \to M$ that defines the homomorphism of Lie algebroids $T\Pi: \mathcal{T}(TP) \to \mathcal{T}(TP/G)$ over Π . Note that $\mathcal{T}(TP) \equiv T(TP)$.
- Let ϕ be the (right) action of the Lie group G on P. Then, $\Phi(g) := T\phi_g$ defines a Lie algebroid representation of G on TP.

We can prove that $\mathcal{T}\Phi=(\Phi,\Phi,T\Phi)$ is a Lie algebroid representation of G on $\mathcal{T}(TP)$ and then $\mathcal{T}(TP)/G\cong\mathcal{T}(TP/G)$, that is, $T(TP)/G\cong\mathcal{T}(TP/G)$.

Reduction of Lagrangian mechanics on Lie algebroids

Notation

- $\checkmark \hat{A}$ reduced Lie algebroid of A
- $\checkmark (\Pi, \pi) : (A, p, M) \rightarrow (\widehat{A}, \widehat{p}, \widehat{M})$ submersion

Lemma

We have $T\Pi \circ S = \widehat{S} \circ T\Pi$ and $T\Pi \circ \Delta = \widehat{\Delta} \circ \Pi$, where \widehat{S} and $\widehat{\Delta}$ are, respectively, the vertical endomorphism and the Liouville section of $T\widehat{A}$.

Reduction of Lagrangian mechanics on Lie algebroids

Notation

- $\checkmark \hat{A}$ reduced Lie algebroid of A
- $\checkmark (\Pi, \pi) : (A, p, M) \rightarrow (\widehat{A}, \widehat{p}, \widehat{M})$ submersion

Lemma

We have $\mathcal{T}\Pi \circ S = \widehat{S} \circ \mathcal{T}\Pi$ and $\mathcal{T}\Pi \circ \Delta = \widehat{\Delta} \circ \Pi$, where \widehat{S} and $\widehat{\Delta}$ are, respectively, the vertical endomorphism and the Liouville section of $\mathcal{T}\widehat{A}$.

Let $L \in C^{\infty}(A)$ be a Π -invariant Lagrangian of a dynamics Lagrangian system on A, i.e. there exists $l \in C^{\infty}(\widehat{A})$ such that $L = l \circ \Pi$. Then:

- $\widehat{E}_l \circ \Pi = E_L$
- $(\mathcal{T}\Pi)^*\widehat{\theta}_l = \theta_L \Longrightarrow (\mathcal{T}\Pi)^*\widehat{\omega}_l = \omega_L$

When L is regular, then we have

- *l* is regular
- $T\Pi \circ X_L = \widehat{X}_l \circ \Pi$

Therefore, the Lagrangian dynamics on A induced by a regular Π -invariant Lagrangian $L=l\circ\Pi$ reduces to the dynamics on \widehat{A} given by l.

Let $L \in C^{\infty}(A)$ be a Π -invariant Lagrangian of a dynamics Lagrangian system on A, i.e. there exists $l \in C^{\infty}(\widehat{A})$ such that $L = l \circ \Pi$. Then:

- $\widehat{E}_l \circ \Pi = E_L$
- $(T\Pi)^* \widehat{\theta}_l = \theta_L \Longrightarrow (T\Pi)^* \widehat{\omega}_l = \omega_L$

When L is regular, then we have:

- l is regular
- $T\Pi \circ X_L = \widehat{X}_l \circ \Pi$

Therefore, the Lagrangian dynamics on A induced by a regular Π -invariant Lagrangian $L = l \circ \Pi$ reduces to the dynamics on \widehat{A} given by l.

Outline

• Reduction of Lie algebroids & Poisson reduction

Reduction of Lagrangian mechanics on Lie algebroids

3 Hamel symbols and nonholonomic mechanics on Lie algebroids

Adapted coordinates to nonholonomic restrictions

Notation

- ✓ $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- \checkmark k nonholonomic linear restritions on A

$$\phi_a(q, \mathbf{v}) = \widehat{\Phi}_a(q, \mathbf{v}) = \phi_{a\beta}(q)\mathbf{v}^{\beta},$$

where $\widehat{\Phi_a}$ is a linear function defined by the A-1-form Φ_a

Adapted coordinates

- $\{(q^i, \mathbf{w}^{\alpha}) \mid i = 1, \dots, n, \ \alpha = 1, \dots, s\}$ local coordinates on A
- $\mathbf{w}^{\alpha} = \Phi_{\alpha\beta} \mathbf{v}^{\beta}$ the last k coordinates coincide with the restrictions ϕ_a , i.e.

$$\mathbf{w}^{I} = \Phi_{I\beta}\mathbf{v}^{\beta}, \quad \forall I = 1, ..., (s - k),$$

$$\mathbf{w}^{s-k+a} = \phi_{a}, \quad \forall a = 1, ..., k$$

Adapted coordinates to nonholonomic restrictions

Notation

- ✓ $(A, \rho, [\cdot, \cdot]_A)$ Lie algebroid over M
- \checkmark k nonholonomic linear restritions on A

$$\phi_a(q, \mathbf{v}) = \widehat{\Phi}_a(q, \mathbf{v}) = \phi_{a\beta}(q)\mathbf{v}^{\beta},$$

where $\widehat{\Phi_a}$ is a linear function defined by the A-1-form Φ_a

Adapted coordinates

- $\{(q^i, \mathbf{w}^{\alpha}) \mid i = 1, \dots, n, \ \alpha = 1, \dots, s\}$ local coordinates on A
- $\mathbf{w}^{\alpha} = \Phi_{\alpha\beta} \mathbf{v}^{\beta}$ the last k coordinates coincide with the restrictions ϕ_a , i.e.

$$\mathbf{w}^{I} = \Phi_{I\beta}\mathbf{v}^{\beta}, \quad \forall I = 1, ..., (s - k),$$

$$\mathbf{w}^{s-k+a} = \phi_{a}, \quad \forall a = 1, ..., k$$

Associated with the new coordinates A, we consider on the prolongation of A the following basis of local sections:

$$\mathcal{X'}_{\alpha}(a) = (a, f_{\alpha}(p(a)), X_{\alpha}(a)), \quad \mathcal{V'}_{\alpha}(a) = \left(a, 0, \frac{\partial}{\partial \mathbf{w}^{\alpha}}\Big|_{a}\right),$$

where $X_{\alpha} = \Psi_{\beta\alpha} \, \rho^i_{\ \beta} \, \partial_{q^i}|_{\mathbf{w}}$, for all $\alpha = 1, \dots, r$, where $\Psi_{\alpha\beta} \Phi_{\beta\gamma} = \delta_{\alpha\gamma}$.

Lie algebroid structure on TA

$$\begin{split} [\mathcal{X'}_{\alpha}, \mathcal{X'}_{\beta}]_{\mathcal{T}A} &= \gamma^{\epsilon}_{\alpha\beta} \mathcal{X}'_{\epsilon}, \qquad [\mathcal{X'}_{\alpha}, \mathcal{V'}_{\beta}]_{\mathcal{T}A} = 0, \qquad [\mathcal{V'}_{\alpha}, \mathcal{V'}_{\beta}]_{\mathcal{T}A} = 0, \\ \rho_{\mathcal{T}A}(\mathcal{X'}_{\alpha}) &= X_{\alpha}, \qquad \qquad \rho_{\mathcal{T}A}(\mathcal{V'}_{\alpha}) = \frac{\partial}{\partial \mathbf{w}^{\alpha}}, \end{split}$$

where $[f_{\alpha}, f_{\beta}]_A = \gamma_{\alpha\beta}^{\epsilon} f_{\epsilon}$.

Euler-Lagrange equations in adapted coordinates

Let $L \in C^{\infty}(A)$ be a regular Lagrangian of a dynamical system on the Lie algebroid A with a non-conservative force Q.

Euler-Lagrange generalized equations:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \mathbf{w}^{\alpha}}\right) = \Psi_{\beta\alpha} \rho^{i}{}_{\beta} \frac{\partial L}{\partial q^{i}} + \mathbf{w}^{\epsilon} \gamma_{\epsilon\alpha}^{\beta} \frac{\partial L}{\partial \mathbf{w}^{\beta}} + \Upsilon_{\alpha},$$

with:

- $\dot{q}^i = \mathbf{w}^{\alpha} \Psi_{\beta\alpha} \rho^i_{\beta}$, where $\Psi = \Phi^{-1}$
- Υ_{α} is the α -component of the nonconservative force \mathcal{Q} , in the new coordinates
- $\gamma_{\epsilon\alpha}^{\beta}$ Hamel symbols

Euler-Lagrange equations in adapted coordinates

Let $L \in C^{\infty}(A)$ be a regular Lagrangian of a dynamical system on the Lie algebroid A with a non-conservative force Q.

Euler-Lagrange generalized equations:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \mathbf{w}^{\alpha}} \right) = \Psi_{\beta\alpha} \rho^{i}{}_{\beta} \frac{\partial L}{\partial q^{i}} + \mathbf{w}^{\epsilon} \gamma^{\beta}_{\epsilon\alpha} \frac{\partial L}{\partial \mathbf{w}^{\beta}} + \Upsilon_{\alpha},$$

with:

- $\dot{q}^i = \mathbf{w}^{\alpha} \Psi_{\beta\alpha} \rho^i_{\beta}$, where $\Psi = \Phi^{-1}$
- Υ_{α} is the α -component of the nonconservative force \mathcal{Q} , in the new coordinates
- $\gamma_{e\alpha}^{\beta}$ Hamel symbols

Gauge algebroid TG/G of a Lie group G

Let *G* be a Lie group and *e* its neutral element.

- Using the map $TL_{g^{-1}}: TG \to G \times T_eG$ given by $TL_{g^{-1}}(g, \dot{g}) = (g, \xi)$ we can identify TG with $G \times T_eG$.
- If (ξ^I) , for $I=1,\ldots,\dim G$, is the set of coordinates of $\xi\in T_eG$ with respect to a basis $\{e_I\}$ of T_eG , then we can define a set of quasi-velocities (ξ^I) on TG by $\xi^Ie_I=\xi=T_gL_{g^{-1}}(\dot{g})$. If g is a point in G of local coordinates (g^I) , then (g^I,ξ^I) defines a set of quasi-coordinates in TG.

A regular G-invariant Lagrangian $\mathcal{L} \in C^{\infty}(TG)$ in quasi-coordinates is given by $\mathcal{L}(g,\dot{g}) = l(\xi)$, where l is a function on the Lie algebra $\mathfrak{g} = T_eG$. The Euler-Lagrange equations of the gauge algebroid $TG/G \equiv \mathfrak{g}$ are given by:

$$\frac{d}{dt}\left(\frac{\partial l}{\partial \xi^I}\right) = \xi^J c_{JI}^{\ \ K} \frac{\partial l}{\partial \xi^K},$$

where c_{JI}^{K} are the structure constants of the Lie algebra \mathfrak{g} of the Lie group G with respect to the basis $\{e_{I}\}$ of \mathfrak{g} .

Gauge algebroid TG/G of a Lie group G

Let G be a Lie group and e its neutral element.

- Using the map $TL_{g^{-1}}: TG \to G \times T_eG$ given by $TL_{g^{-1}}(g, \dot{g}) = (g, \xi)$ we can identify TG with $G \times T_eG$.
- If (ξ^I) , for $I=1,\ldots,\dim G$, is the set of coordinates of $\xi\in T_eG$ with respect to a basis $\{e_I\}$ of T_eG , then we can define a set of quasi-velocities (ξ^I) on TG by $\xi^Ie_I=\xi=T_gL_{g^{-1}}(\dot{g})$. If g is a point in G of local coordinates (g^I) , then (g^I,ξ^I) defines a set of quasi-coordinates in TG.

A regular G-invariant Lagrangian $\mathcal{L} \in C^{\infty}(TG)$ in quasi-coordinates is given by $\mathcal{L}(g,\dot{g}) = l(\xi)$, where l is a function on the Lie algebra $\mathfrak{g} = T_eG$. The Euler-Lagrange equations of the gauge algebroid $TG/G \equiv \mathfrak{g}$ are given by:

$$\frac{d}{dt}\left(\frac{\partial l}{\partial \xi^I}\right) = \xi^J c_{JI}^{\ \ K} \frac{\partial l}{\partial \xi^K},$$

where c_{JI}^{K} are the structure constants of the Lie algebra \mathfrak{g} of the Lie group G with respect to the basis $\{e_{I}\}$ of \mathfrak{g} .

Gauge algebroid TG/G of a Lie group G

Let G be a Lie group and e its neutral element.

- Using the map $TL_{g^{-1}}: TG \to G \times T_eG$ given by $TL_{g^{-1}}(g, \dot{g}) = (g, \xi)$ we can identify TG with $G \times T_eG$.
- If (ξ^I) , for $I=1,\ldots,\dim G$, is the set of coordinates of $\xi\in T_eG$ with respect to a basis $\{e_I\}$ of T_eG , then we can define a set of quasi-velocities (ξ^I) on TG by $\xi^Ie_I=\xi=T_gL_{g^{-1}}(\dot{g})$. If g is a point in G of local coordinates (g^I) , then (g^I,ξ^I) defines a set of quasi-coordinates in TG.

A regular G-invariant Lagrangian $\mathcal{L} \in C^{\infty}(TG)$ in quasi-coordinates is given by $\mathcal{L}(g,\dot{g}) = l(\xi)$, where l is a function on the Lie algebra $\mathfrak{g} = T_eG$. The Euler-Lagrange equations of the gauge algebroid $TG/G \equiv \mathfrak{g}$ are given by:

$$\frac{d}{dt}\left(\frac{\partial l}{\partial \xi^I}\right) = \xi^J c_{JI}{}^K \frac{\partial l}{\partial \xi^K},$$

where c_{JI}^{K} are the structure constants of the Lie algebra \mathfrak{g} of the Lie group G with respect to the basis $\{e_{I}\}$ of \mathfrak{g} .