Reduction and Lagrangian mechanics on Lie algebroids

Patrícia Santos
CMUC, University of Coimbra
Engineering Institute of Coimbra

Mechanics and Lie algebroids, one day workshop September 11th, 2007

Outline

(1) Reduction of Lie algebroids \& Poisson reduction
(2) Reduction of Lagrangian mechanics on Lie algebroids
(3) Hamel symbols and nonholonomic mechanics on Lie algebroids

Outline

(1) Reduction of Lie algebroids \& Poisson reduction

(2) Reduction of Lagrangian mechanics on Lie algebroids

(3) Hamel symbols and nonholonomic mechanics on Lie algebroids

Reduction of Lie algebroids

Notation

$\checkmark(A, p, M),(\widehat{A}, \widehat{p}, \widehat{M})$ vector bundles
$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ epimorphism

Definition (Reduced Lie algebroid)
Iet A and \widehat{A} be I ie algebroids with exterior derivatives d_{A} and d_{λ} respectively. The bundle A is a reduced Lie algebroid of A if (Π, π) is a Lie algebroid homomorphism ${ }^{a}$, i.e. $d_{A} \circ \Pi^{*}=\Pi^{*} \circ d_{\hat{A}}$.
${ }^{\text {a Thic definition of } I \text { ie algeb roid morphism is equivalent to the inicial one given by Higgins-Mackenzie, }}$ J. Algebra 129 (1990)

Reduction of Lie algebroids

Notation

$\checkmark(A, p, M),(\widehat{A}, \widehat{p}, \widehat{M})$ vector bundles
$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ epimorphism

Definition (Reduced Lie algebroid)

Let A and \widehat{A} be Lie algebroids with exterior derivatives d_{A} and $d_{\widehat{A}}$ respectively. The bundle \widehat{A} is a reduced Lie algebroid of A if (Π, π) is a Lie algebroid homomorphism ${ }^{a}$, i.e. $d_{A} \circ \Pi^{*}=\Pi^{*} \circ d_{\widehat{A}}$.
${ }^{a}$ This definition of Lie algebroid morphism is equivalent to the inicial one given by Higgins-Mackenzie, J. Algebra 129 (1990).

Definition (Section of an epimorphism)

A section of Π is a set of maps between fibers

$$
S=\left\{\widehat{S_{x}^{x}}: \widehat{A}_{\widehat{x}} \rightarrow A_{x} \mid \pi(x)=\widehat{x}, x \in M\right\}
$$

such that $\Pi_{x} \circ S_{x}^{\widehat{x}}=\mathrm{id}_{\widehat{\mathrm{A}_{\hat{x}}}}$, for all $x \in M$.
(1) The set S does not have to define a vector bundle morphism, but when it does S is a section in the usual sense.
(2) A section S defines a map $S: \Gamma(\widehat{A}) \rightarrow \Gamma(A)$ in the following way
$\mathbf{S}(\hat{v})(x)=S_{x}^{\hat{\hat{v}}}\left(\widehat{v_{\hat{x}}}\right)$,
for all $x \in M$.

Definition (Section of an epimorphism)

A section of Π is a set of maps between fibers

$$
S=\left\{\widehat{S_{x}^{x}}: \widehat{A}_{\widehat{x}} \rightarrow A_{x} \mid \pi(x)=\widehat{x}, x \in M\right\}
$$

such that $\Pi_{x} \circ S_{x}^{\widehat{x}}=\operatorname{id}_{\widehat{A}_{\hat{x}}}$, for all $x \in M$.

Notes

(1) The set S does not have to define a vector bundle morphism, but when it does S is a section in the usual sense.
(2) A section S defines a map $\mathbf{S}: \Gamma(\widehat{A}) \rightarrow \Gamma(A)$ in the following way

$$
\mathbf{S}(\widehat{v})(x)=S_{x}^{\widehat{x}}\left(\widehat{v}_{\widehat{x}}\right)
$$

for all $x \in M$.

Reduction theorem

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ surjective submersion
(1) $\exists(\widetilde{\Pi}, \pi):\left(A^{*}, \tau, M\right) \rightarrow\left(\widehat{A}^{*}, \widehat{\tau}, \widehat{M}\right)$ surjective submersion, such that $S=\left\{S_{x}^{\hat{x}}:=\left(\widetilde{\Pi}_{x}\right)^{*}: \widehat{A}_{\widehat{x}} \rightarrow A_{x} \mid \pi(x)=\widehat{x}, x \in M\right\}$ is a section of Π
(2) $\operatorname{Im} \mathbf{S}$ is a subalgebra of $\left(\Gamma(A),[\cdot, \cdot]_{A}\right)$
(3) $d_{A} \circ \Pi^{*} \circ \widetilde{\Pi}=\Pi^{*} \circ \widetilde{\Pi} \circ d_{A}$, where $\widetilde{\Pi}: \Omega^{\Pi}(A) \rightarrow \Omega(\widehat{A})$ is defined by
for all П-projectable A-k-form α.

Reduction theorem

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ surjective submersion
(1) $\exists(\widetilde{\Pi}, \pi):\left(A^{*}, \tau, M\right) \rightarrow\left(\widehat{A}^{*}, \widehat{\tau}, \widehat{M}\right)$ surjective submersion, such that $S=\left\{S_{x}^{\widehat{x}}:=\left(\widetilde{\Pi}_{x}\right)^{*}: \widehat{A}_{\widehat{x}} \rightarrow A_{x} \mid \pi(x)=\widehat{x}, x \in M\right\}$ is a section of Π
(2) $\operatorname{Im} \mathbf{S}$ is a subalgebra of $\left(\Gamma(A),[\cdot, \cdot]_{A}\right)$
(3) $d_{A} \circ \Pi^{*} \circ \widetilde{\Pi}=\Pi^{*} \circ \widetilde{\Pi} \circ d_{A}$, where $\widetilde{\Pi}: \Omega^{\widetilde{\Pi}}(A) \rightarrow \Omega(\widehat{A})$ is defined by

$$
\widetilde{\Pi}(\alpha)\left(\widehat{v}_{1}, \ldots, \widehat{v}_{k}\right)=\alpha\left(\mathbf{S}\left(\widehat{v}_{1}\right), \ldots, \mathbf{S}\left(\widehat{v}_{k}\right)\right)
$$

for all $\widetilde{\Pi}$-projectable A-k-form α.

Reduction theorem

Then, \widehat{A} is a reduced Lie algebroid of A with exterior derivative

$$
d_{\widehat{A}}:=\widetilde{\Pi} \circ d_{A} \circ \Pi^{*},
$$

and Lie algebroid structure $\left(\widehat{\rho},[\cdot, \cdot]_{\widehat{A}}\right)$:

- $\widehat{\rho}=T \pi \circ \rho \circ S$
- $[\cdot, \cdot]_{\widehat{A}} \circ \pi=\Pi \circ[\mathbf{S}(\cdot), \mathbf{S}(\cdot)]_{A}$

An equivalent version of this theorem was proved by David Iglesias, Juan Carlos Marrero, David Martín de Diego, Eduardo Martínez and Edith Padrón, SIGMA 3 (2007).

Reduction theorem

Then, \widehat{A} is a reduced Lie algebroid of A with exterior derivative

$$
d_{\widehat{A}}:=\widetilde{\Pi} \circ d_{A} \circ \Pi^{*},
$$

and Lie algebroid structure $\left(\widehat{\rho},[\cdot, \cdot]_{\widehat{A}}\right)$:

- $\widehat{\rho}=T \pi \circ \rho \circ S$
- $[\cdot, \cdot]_{\widehat{A}} \circ \pi=\Pi \circ[\mathbf{S}(\cdot), \mathbf{S}(\cdot)]_{A}$

Note

An equivalent version of this theorem was proved by David Iglesias, Juan Carlos Marrero, David Martín de Diego, Eduardo Martínez and Edith Padrón, SIGMA 3 (2007).

Example: Poisson manifold

$\checkmark(M, \Lambda)$ Poisson manifold and $\left(T^{*} M, \Lambda^{\sharp},[\cdot, \cdot]_{T^{*} M}\right)$ associated Lie algebroid $\checkmark \pi: M \rightarrow \widehat{M}$ surjective submersion and $\sigma: \widehat{M} \rightarrow M$ is such that $\pi \circ \sigma=\mathrm{id}_{\widehat{\mathrm{M}}}$ $\checkmark \Pi=(T \sigma)^{*}: T^{*} M \rightarrow T^{*} \widehat{M}$ and $\widetilde{\Pi}=T \pi: T M \rightarrow T \widehat{M}$ are submersions over π
$\checkmark \operatorname{Im} \mathbf{S}$ is a Lie subalgebra of $\left(\Gamma\left(T^{*} M\right),[\cdot, \cdot]_{T^{*} M}\right)$ and the space of sections of $C_{\sigma}=\operatorname{Ker}(T \sigma)^{*}$ is an ideal of this algebra.

The reduced structure on $T^{*} \widehat{M}$:

\square

Example: Poisson manifold

$\checkmark(M, \Lambda)$ Poisson manifold and $\left(T^{*} M, \Lambda^{\sharp},[\cdot, \cdot]_{T^{*} M}\right)$ associated Lie algebroid $\checkmark \pi: M \rightarrow \widehat{M}$ surjective submersion and $\sigma: \widehat{M} \rightarrow M$ is such that $\pi \circ \sigma=\mathrm{id}_{\widehat{M}}$ $\checkmark \Pi=(T \sigma)^{*}: T^{*} M \rightarrow T^{*} \widehat{M}$ and $\widetilde{\Pi}=T \pi: T M \rightarrow T \widehat{M}$ are submersions over π
$\checkmark \operatorname{Im} \mathbf{S}$ is a Lie subalgebra of $\left(\Gamma\left(T^{*} M\right),[\cdot, \cdot]_{T^{*} M}\right)$ and the space of sections of $C_{\sigma}=\operatorname{Ker}(T \sigma)^{*}$ is an ideal of this algebra.

The reduced structure on $T^{*} \widehat{M}$:
(i) $\widehat{\rho}=T \pi \circ \Lambda^{\sharp} \circ S, \quad$ with $S_{x}^{\pi(x)}=\left(T_{x} \pi\right)^{*}: T_{\pi(x)}^{*} \widehat{M} \rightarrow T_{x}^{*} M$;
(ii) $[\cdot, \cdot]_{\widehat{A}} \circ \pi=\Pi \circ[\mathbf{S}(\cdot), \mathbf{S}(\cdot)]_{T^{*} M}, \quad$ with $\mathbf{S}=\pi^{*}: \Gamma\left(T^{*} \widehat{M}\right) \rightarrow \Gamma\left(T^{*} M\right)$.

Poisson reduction

Notation

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark\left(A^{*},\{\cdot, \cdot\}_{A^{*}}\right)$ associated Lie co-algebroid

Poisson reduction in the sense of Marsden-Ratiu '86

I et C be a subbundle of $T A^{*}$ such that:
(1) it defines a surjective submersion $(\bar{\Pi}, \pi):\left(A^{*}, \tau, M\right) \rightarrow\left(A^{*}, \widehat{\tau}, \widehat{M}\right)$
(2) $\forall F, G \in C^{\infty}\left(A^{*}\right)$ such that $d F, d G \in C^{0}$, then $d\{F, G\}_{A^{*}} \in C^{0}$

Poisson reduction

Notation

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark\left(A^{*},\{\cdot, \cdot\}_{A^{*}}\right)$ associated Lie co-algebroid

Poisson reduction in the sense of Marsden-Ratiu '86

Let C be a subbundle of $T A^{*}$ such that:
(1) it defines a surjective submersion $(\bar{\Pi}, \pi):\left(A^{*}, \tau, M\right) \rightarrow\left(\widehat{A^{*}}, \widehat{\tau}, \widehat{M}\right)$
(2) $\forall F, G \in C^{\infty}\left(A^{*}\right)$ such that $d F, d G \in C^{0}$, then $d\{F, G\}_{A^{*}} \in C^{0}$
\square
$\left.\widehat{A^{*}}, \widehat{\tau}, \widehat{M}\right)$ is endowed with a Poisson structure $\{\cdot, \cdot\}_{\wedge}$ that satisfies:
$\{\widehat{F} \circ \bar{\Pi}, \widehat{G} \circ \bar{\Pi}\} \quad=\{\widehat{F}, \widehat{G}\} \circ \bar{\Pi} . \quad \forall \widehat{F}, \widehat{G} \in C^{\infty}\left(\widehat{A^{*}}\right)$

Poisson reduction

Notation

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark\left(A^{*},\{\cdot, \cdot\}_{A^{*}}\right)$ associated Lie co-algebroid

Poisson reduction in the sense of Marsden-Ratiu ' 86

Let C be a subbundle of $T A^{*}$ such that:
(1) it defines a surjective submersion $(\bar{\Pi}, \pi):\left(A^{*}, \tau, M\right) \rightarrow\left(\widehat{A^{*}}, \widehat{\tau}, \widehat{M}\right)$
(2) $\forall F, G \in C^{\infty}\left(A^{*}\right)$ such that $d F, d G \in C^{0}$, then $d\{F, G\}_{A^{*}} \in C^{0}$

$$
\|
$$

$\left(\widehat{A^{*}}, \widehat{\tau}, \widehat{M}\right)$ is endowed with a Poisson structure $\{\cdot, \cdot\}_{\wedge}$ that satisfies:

$$
\{\widehat{F} \circ \bar{\Pi}, \widehat{G} \circ \bar{\Pi}\}_{A^{*}}=\{\widehat{F}, \widehat{G}\}_{\wedge} \circ \bar{\Pi}, \quad \forall \widehat{F}, \widehat{G} \in C^{\infty}\left(\widehat{A^{*}}\right)
$$

Theorem

$$
\left(A, \rho,[\cdot, \cdot]_{A}\right) \xrightarrow{L A R}\left(\widehat{A}, \widehat{\rho},[\cdot, \cdot]_{\widehat{A}}\right) \Longrightarrow\left(A^{*}, \Lambda_{A^{*}}\right) \xrightarrow{P R}\left(\widehat{A}^{*}, \Lambda_{\widehat{A}}\right)
$$

Proposition

- $\widehat{\rho}=T \pi \circ \rho \circ \bar{S}$
- $\left.\overline{\mathbf{S}}(\Gamma . .]_{A}\right)=[\overline{\mathbf{S}}(.) \overline{\mathbf{\sigma}}(\cdot)]_{A}$
where $\bar{S}=\left\{\bar{S}_{x}^{\hat{x}}:=\left(\bar{\Pi}_{x}\right)^{*}: \widehat{A}_{\widehat{x}} \rightarrow A_{x} \mid \pi(x)=\widehat{x}, x \in M\right\}$.

Theorem

$$
\left(A, \rho,[\cdot, \cdot]_{A}\right) \xrightarrow{L A R}\left(\widehat{A}, \widehat{\rho},[\cdot, \cdot]_{\hat{A}}\right) \Longrightarrow\left(A^{*}, \Lambda_{A^{*}}\right) \xrightarrow{P R}\left(\widehat{A}^{*}, \Lambda_{\widehat{A}^{*}}\right)
$$

Proposition

If $\left(A^{*}, \Lambda_{A^{*}}\right) \xrightarrow{P R}\left(\widehat{A^{*}}, \Lambda_{\widehat{A^{*}}}\right)$ then $\widehat{A}:=\left(\widehat{A^{*}}\right)^{*}$ is a Lie algebroid:

- $\widehat{\rho}=T \pi \circ \rho \circ \bar{S}$
- $\overline{\mathbf{S}}\left([\cdot, \cdot]_{\hat{A}}\right)=[\overline{\mathbf{S}}(\cdot), \overline{\mathbf{S}}(\cdot)]_{A}$
where $\bar{S}=\left\{\bar{S}_{x}^{\widehat{x}}:=\left(\bar{\Pi}_{x}\right)^{*}: \widehat{A}_{\widehat{x}} \rightarrow A_{x} \mid \pi(x)=\widehat{x}, x \in M\right\}$.

Theorem

$$
\left(A, \rho,[\cdot, \cdot]_{A}\right) \xrightarrow{L A R}\left(\widehat{A}, \widehat{\rho},\left[\cdot, \cdot \int_{\widehat{A}}\right) \Longrightarrow\left(A^{*}, \Lambda_{A^{*}}\right) \xrightarrow{P R}\left(\widehat{A}^{*}, \Lambda_{\widehat{A}}\right)\right.
$$

Proposition

If $\left(A^{*}, \Lambda_{A^{*}}\right) \xrightarrow{P R}\left(\widehat{A^{*}}, \Lambda_{\widehat{A^{*}}}\right)$ then $\widehat{A}:=\left(\widehat{A^{*}}\right)^{*}$ is a Lie algebroid:

- $\hat{\rho}=T \pi \circ \rho \circ \bar{S}$
- $\overline{\mathbf{S}}\left([\cdot, \cdot]_{\hat{A}}\right)=[\overline{\mathbf{S}}(\cdot), \overline{\mathbf{S}}(\cdot)]_{A}$
where $\bar{S}=\left\{\bar{S}_{x}^{\widehat{x}}:=\left(\bar{\Pi}_{x}\right)^{*}: \widehat{A}_{\widehat{x}} \rightarrow A_{x} \mid \pi(x)=\widehat{x}, x \in M\right\}$.

Note

$$
\left(A, \rho,[\cdot, \cdot]_{A}\right) \xrightarrow{L A R}\left(\widehat{A}, \widehat{\rho},[\cdot, \cdot]_{\widehat{A}}\right) \nLeftarrow\left(A^{*}, \Lambda_{A^{*}}\right) \xrightarrow{P R}\left(\widehat{A^{*}}, \Lambda_{\widehat{A^{*}}}\right)
$$

Example: Lie group G

Let G be finite dimensional Lie group with Lie algebra \mathfrak{g}.

- $(\Pi, \pi):(T G, p, G) \rightarrow(\mathfrak{g}, \widehat{p},\{\cdot\})$ is the canonical projection defined by the tangent representation $\Phi(g)=T L_{g}$ of the action of G on itself by left translations, with $T G \equiv G \times \mathfrak{g}$ we have $\Pi(g, X)=X$ for all $X \in \mathfrak{g}$ and $g \in G$.
- With $T^{*} G \equiv G \times \mathfrak{g}^{*}$ the projection $\widetilde{\Pi}: T^{*} G \rightarrow \mathfrak{g}^{*}=T^{*} G / G$ defined by $\widetilde{\Pi}(g, \alpha)=\alpha$, for all $g \in G$ and $\alpha \in \mathfrak{g}^{*}$, is a surjective submersion over $\pi: G \rightarrow G / G=\{\cdot\}$.
By Marsden-Ratiu g^{*} is endowed with a linear Poisson structure such that $\widetilde{\Pi}: T^{*} G \rightarrow \mathfrak{g}^{*}$ is a Poisson morphism. Then, we can prove that the conditions of the reduction theorem are satisfied and \mathfrak{g}, with its usual structure of Lie algebroid, is a reduced Lie algebroid of $T G$.

Example: Lie group G

Let G be finite dimensional Lie group with Lie algebra \mathfrak{g}.

- $(\Pi, \pi):(T G, p, G) \rightarrow(\mathfrak{g}, \widehat{p},\{\cdot\})$ is the canonical projection defined by the tangent representation $\Phi(g)=T L_{g}$ of the action of G on itself by left translations, with $T G \equiv G \times \mathfrak{g}$ we have $\Pi(g, X)=X$ for all $X \in \mathfrak{g}$ and $g \in G$.
- With $T^{*} G \equiv G \times \mathfrak{g}^{*}$ the projection $\widetilde{\Pi}: T^{*} G \rightarrow \mathfrak{g}^{*}=T^{*} G / G$ defined by $\widetilde{\Pi}(g, \alpha)=\alpha$, for all $g \in G$ and $\alpha \in \mathfrak{g}^{*}$, is a surjective submersion over $\pi: G \rightarrow G / G=\{\cdot\}$.

By Marsden-Ratiu \mathfrak{g}^{*} is endowed with a linear Poisson structure such that $\widetilde{\Pi}: T^{*} G \rightarrow \mathfrak{g}^{*}$ is a Poisson morphism.

Example: Lie group G

Let G be finite dimensional Lie group with Lie algebra \mathfrak{g}.

- $(\Pi, \pi):(T G, p, G) \rightarrow(\mathfrak{g}, \widehat{p},\{\cdot\})$ is the canonical projection defined by the tangent representation $\Phi(g)=T L_{g}$ of the action of G on itself by left translations, with $T G \equiv G \times \mathfrak{g}$ we have $\Pi(g, X)=X$ for all $X \in \mathfrak{g}$ and $g \in G$.
- With $T^{*} G \equiv G \times \mathfrak{g}^{*}$ the projection $\widetilde{\Pi}: T^{*} G \rightarrow \mathfrak{g}^{*}=T^{*} G / G$ defined by $\widetilde{\Pi}(g, \alpha)=\alpha$, for all $g \in G$ and $\alpha \in \mathfrak{g}^{*}$, is a surjective submersion over $\pi: G \rightarrow G / G=\{\cdot\}$.

By Marsden-Ratiu \mathfrak{g}^{*} is endowed with a linear Poisson structure such that $\widetilde{\Pi}: T^{*} G \rightarrow \mathfrak{g}^{*}$ is a Poisson morphism. Then, we can prove that the conditions of the reduction theorem are satisfied and \mathfrak{g}, with its usual structure of Lie algebroid, is a reduced Lie algebroid of $T G$.

Outline

(1) Reduction of Lie algebroids \& Poisson reduction
(2) Reduction of Lagrangian mechanics on Lie algebroids
(3) Hamel symbols and nonholonomic mechanics on Lie algebroids

Reduction of a Lie algebroid prolongation

$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ submersion
$\checkmark \widehat{A}$ reduced Lie algebroid of A
$\mathcal{T} \Pi=(\Pi, \Pi, T \Pi): \mathcal{T} A \rightarrow \mathcal{T} \widehat{A}$ is a Lie algebroid surjective homomorphism over
$\mathcal{T} \widehat{A}$ is a reduced Lie algebroid of $\mathcal{T} A$.

Reduction of a Lie algebroid prolongation

$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ submersion $\checkmark \widehat{A}$ reduced Lie algebroid of A

$$
\Downarrow
$$

$$
\begin{gathered}
\mathcal{T} \Pi=(\Pi, \Pi, T \Pi): \mathcal{T} A \rightarrow \mathcal{T} \widehat{A} \text { is a Lie algebroid surjective homomorphism over } \\
\Pi: A \rightarrow \widehat{A} .
\end{gathered}
$$

$$
\mathcal{T} \widehat{A} \text { is a reduced Lie algebroid of } \mathcal{T} A \text {. }
$$

Reduction of a Lie algebroid prolongation

$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ submersion
$\checkmark \widehat{A}$ reduced Lie algebroid of A

$\mathcal{T} \Pi=(\Pi, \Pi, T \Pi): \mathcal{T} A \rightarrow \mathcal{T} \widehat{A}$ is a Lie algebroid surjective homomorphism over

$$
\Pi: A \rightarrow \widehat{A} .
$$

\downarrow
$\mathcal{T} \widehat{A}$ is a reduced Lie algebroid of $\mathcal{T} A$.

Prolongation \longleftrightarrow Reduction by symmetry

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark \Phi: G \rightarrow \operatorname{Aut}(A)$ Lie algebroid representation of G on A
$\checkmark \Phi$ e Φ^{c} define proper and free actions of G on A and A^{*}
A satisfies the reduction theorem conditions, and then A / G is a reduced Lie algebroid of A over M / G.

$\mathcal{T}(A / G) \simeq(\mathcal{T} A) / G$ is a reduced Lie algebroid of $\mathcal{T} A .{ }^{a}$

[^0]
Prolongation \longleftrightarrow Reduction by symmetry

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark \Phi: G \rightarrow \operatorname{Aut}(A)$ Lie algebroid representation of G on A
$\checkmark \Phi$ e Φ^{c} define proper and free actions of G on A and A^{*}
\square
A satisfies the reduction theorem conditions, and then A / G is a reduced Lie algebroid of A over M / G.

$$
\mathcal{T}(A / G) \simeq(\mathcal{T} A) / G \text { is a reduced Lie algebroid of } \mathcal{T} A .{ }^{a}
$$

[^1]
Prolongation \longleftrightarrow Reduction by symmetry

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark \Phi: G \rightarrow \operatorname{Aut}(A)$ Lie algebroid representation of G on A
$\checkmark \Phi$ e Φ^{c} define proper and free actions of G on A and A^{*}

A satisfies the reduction theorem conditions, and then A / G is a reduced Lie algebroid of A over M / G.
$\mathcal{T}(A / G) \simeq(\mathcal{T} A) / G$ is a reduced Lie algebroid of $\mathcal{T} A .^{a}$
$\frac{{ }^{a} \text { Using a different approach, this result was also proven by Manuel de León, Juan Carlos Marrero and }}{\text { Eduardo Martínez, J. Phys. A: Math Gen. } 38 \text { (2005). }}$.

Example: Principal fiber bundle $P(M, G)$

Consider a principal fibre bundle $P(M, G)$ and the associated gauge algebroid (TP/G, p, M).

- The canonical projection $\Pi: T P \rightarrow T P / G$ is a homomorphism of Lie algebroids over $\pi: P \rightarrow M$ that defines the homomorphism of Lie algebroids $\mathcal{T} \Pi: \mathcal{T}(T P) \rightarrow \mathcal{T}(T P / G)$ over Π. Note that $\mathcal{T}(T P) \equiv T(T P)$.
- Let ϕ be the (right) action of the Lie group G on P. Then, $\Phi(g):=T \phi_{g}$ defines a Lie algebroid representation of G on $T P$.

We can prove that $\mathcal{T} \Phi=(\Phi, \Phi, T \Phi)$ is a Lie algebroid representation of G on $\mathcal{I}(T P)$ and then $\mathcal{T}(T P) / G \cong \mathcal{T}(T P / G)$, that is, $T(T P) / G \cong \mathcal{T}(T P / G)$.

Example: Principal fiber bundle $P(M, G)$

Consider a principal fibre bundle $P(M, G)$ and the associated gauge algebroid (TP/G, p, M).

- The canonical projection $\Pi: T P \rightarrow T P / G$ is a homomorphism of Lie algebroids over $\pi: P \rightarrow M$ that defines the homomorphism of Lie algebroids
$\mathcal{T} \Pi: \mathcal{T}(T P) \rightarrow \mathcal{T}(T P / G)$ over Π. Note that $\mathcal{T}(T P) \equiv T(T P)$.
- Let ϕ be the (right) action of the Lie group G on P. Then, $\Phi(g):=T \phi_{g}$ defines a Lie algebroid representation of G on $T P$.

We can prove that $\mathcal{T} \Phi=(\Phi, \Phi, T \Phi)$ is a Lie algebroid representation of G on $\mathcal{T}(T P)$ and then $\mathcal{T}(T P) / G \cong \mathcal{T}(T P / G)$, that is, $T(T P) / G \cong \mathcal{T}(T P / G)$.

Example: Principal fiber bundle $P(M, G)$

Consider a principal fibre bundle $P(M, G)$ and the associated gauge algebroid (TP/G, p, M).

- The canonical projection $\Pi: T P \rightarrow T P / G$ is a homomorphism of Lie algebroids over $\pi: P \rightarrow M$ that defines the homomorphism of Lie algebroids $\mathcal{T} \Pi: \mathcal{T}(T P) \rightarrow \mathcal{T}(T P / G)$ over Π. Note that $\mathcal{T}(T P) \equiv T(T P)$.
- Let ϕ be the (right) action of the Lie group G on P. Then, $\Phi(g):=T \phi_{g}$ defines a Lie algebroid representation of G on $T P$.

We can prove that $\mathcal{T} \Phi=(\Phi, \Phi, T \Phi)$ is a Lie algebroid representation of G on $\mathcal{T}(T P)$ and then $\mathcal{T}(T P) / G \cong \mathcal{T}(T P / G)$, that is, $T(T P) / G \cong \mathcal{T}(T P / G)$.

Reduction of Lagrangian mechanics on Lie algebroids

Notation

$\checkmark \widehat{A}$ reduced Lie algebroid of A
$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ submersion

Lemma

W / e have $\mathcal{T}\|\circ S=\hat{S} \circ T\|$ and $\mathcal{T} \Pi \circ \Delta=\Delta \circ \Pi$, where \hat{S} and Δ are, respectively, the vertical endomorphism and the Liouville section of $\mathcal{T} A$.

Reduction of Lagrangian mechanics on Lie algebroids

Notation

$\checkmark \widehat{A}$ reduced Lie algebroid of A
$\checkmark(\Pi, \pi):(A, p, M) \rightarrow(\widehat{A}, \widehat{p}, \widehat{M})$ submersion

Lemma

We have $\mathcal{T} \Pi \circ S=\widehat{S} \circ \mathcal{T} \Pi$ and $\mathcal{T} \Pi \circ \Delta=\widehat{\Delta} \circ \Pi$, where \widehat{S} and $\widehat{\Delta}$ are, respectively, the vertical endomorphism and the Liouville section of $\mathcal{T} \widehat{A}$.

Theorem

Let $L \in C^{\infty}(A)$ be a Π-invariant Lagrangian of a dynamics Lagrangian system on A, i.e. there exists $l \in C^{\infty}(\widehat{A})$ such that $L=l \circ \Pi$. Then:

- $\widehat{E}_{l} \circ \Pi=E_{L}$
- $(\mathcal{T} \Pi)^{*} \widehat{\theta}_{l}=\theta_{L} \Longrightarrow(\mathcal{T} \Pi)^{*} \widehat{\omega}_{l}=\omega_{L}$

When L is regular, then we have:

- l is regular

Therefore, the Lagrangian dynamics on A induced by a regular Π-invariant Lagrangian $L=l \circ \Pi$ reduces to the dynamics on \widehat{A} given by l.

Theorem

Let $L \in C^{\infty}(A)$ be a Π-invariant Lagrangian of a dynamics Lagrangian system on A, i.e. there exists $l \in C^{\infty}(\widehat{A})$ such that $L=l \circ \Pi$. Then:

- $\widehat{E}_{l} \circ \Pi=E_{L}$
- $(\mathcal{T} \Pi)^{*} \widehat{\theta}_{l}=\theta_{L} \Longrightarrow(\mathcal{T} \Pi)^{*} \widehat{\omega}_{l}=\omega_{L}$

When L is regular, then we have:

- l is regular
- $\mathcal{T} \Pi \circ X_{L}=\widehat{X}_{l} \circ \Pi$

Therefore, the Lagrangian dynamics on A induced by a regular Π-invariant Lagrangian $L=l \circ \Pi$ reduces to the dynamics on \widehat{A} given by l.

Outline

(1) Reduction of Lie algebroids \& Poisson reduction

(2) Reduction of Lagrangian mechanics on Lie algebroids
(3) Hamel symbols and nonholonomic mechanics on Lie algebroids

Adapted coordinates to nonholonomic restrictions

Notation

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark k$ nonholonomic linear restritions on A

$$
\phi_{a}(q, \mathbf{v})=\widehat{\Phi_{a}}(q, \mathbf{v})=\phi_{a \beta}(q) \mathbf{v}^{\beta},
$$

where $\widehat{\Phi_{a}}$ is a linear function defined by the A-1-form Φ_{a}

Adapted coordinates
$\left\{\left(q^{i} \mathbf{w}^{\alpha}\right) \mid i=1 \ldots,{ }^{n}, \alpha=1, \ldots, s\right\}$ local coordinates on A

- $\mathrm{w}^{\alpha}=\Phi_{\alpha \beta} \mathrm{v}^{\beta}$ the last k coordinates coincide with the restrictions ϕ_{a}, i.e.

Adapted coordinates to nonholonomic restrictions

Notation

$\checkmark\left(A, \rho,[\cdot, \cdot]_{A}\right)$ Lie algebroid over M
$\checkmark k$ nonholonomic linear restritions on A

$$
\phi_{a}(q, \mathbf{v})=\widehat{\Phi_{a}}(q, \mathbf{v})=\phi_{a \beta}(q) \mathbf{v}^{\beta},
$$

where $\widehat{\Phi_{a}}$ is a linear function defined by the A-1-form Φ_{a}

Adapted coordinates

- $\left\{\left(q^{i}, \mathbf{w}^{\alpha}\right) \mid i=1, \ldots, n, \alpha=1, \ldots, s\right\}$ local coordinates on A
- $\mathbf{w}^{\alpha}=\Phi_{\alpha \beta} \mathbf{v}^{\beta}$ the last k coordinates coincide with the restrictions ϕ_{a}, i.e.

$$
\begin{aligned}
\mathbf{w}^{I} & =\Phi_{I \beta} \mathbf{v}^{\beta}, \quad \forall I=1, \ldots,(s-k) \\
\mathbf{w}^{s-k+a} & =\phi_{a}, \quad \forall a=1, \ldots, k
\end{aligned}
$$

Associated with the new coordinates A, we consider on the prolongation of A the following basis of local sections:

$$
\mathcal{X}^{\prime}{ }_{\alpha}(a)=\left(a, f_{\alpha}(p(a)), X_{\alpha}(a)\right), \quad \mathcal{V}^{\prime}{ }_{\alpha}(a)=\left(a, 0,\left.\frac{\partial}{\partial \mathbf{w}^{\alpha}}\right|_{a}\right),
$$

where $X_{\alpha}=\left.\Psi_{\beta \alpha} \rho^{i}{ }_{\beta} \partial_{q^{i}}\right|_{\mathbf{w}}$, for all $\alpha=1, \ldots, r$, where $\Psi_{\alpha \beta} \Phi_{\beta \gamma}=\delta_{\alpha \gamma}$.

Lie algebroid structure on $\mathcal{T} A$

$$
\begin{array}{rlrl}
{\left[\mathcal{X}^{\prime}{ }_{\alpha}, \mathcal{X}^{\prime}{ }_{\beta}\right]_{\mathcal{T} A}} & =\gamma_{\alpha \beta}^{\epsilon} \mathcal{X}_{\epsilon}^{\prime}, & {\left[\mathcal{X}^{\prime}{ }_{\alpha}, \mathcal{V}_{\beta}^{\prime}\right]_{\mathcal{T A}}=0, \quad\left[\mathcal{V}_{\alpha}^{\prime}, \mathcal{V}^{\prime}{ }_{\beta}\right]_{\mathcal{T A}}=0,} \\
\rho_{\mathcal{T A}}\left(\mathcal{X}^{\prime}{ }_{\alpha}\right) & =X_{\alpha}, \quad \rho_{\mathcal{T A}}\left(\mathcal{V}^{\prime}{ }_{\alpha}\right)=\frac{\partial}{\partial \mathbf{w}^{\alpha}},
\end{array}
$$

where $\left[f_{\alpha}, f_{\beta}\right]_{A}=\gamma_{\alpha \beta}^{\epsilon} f_{\epsilon}$.

Euler-Lagrange equations in adapted coordinates

Let $L \in C^{\infty}(A)$ be a regular Lagrangian of a dynamical system on the Lie algebroid A with a non-conservative force \mathcal{Q}.

Euler-Lagrange generalized equations:

with:

- $\dot{q}^{i}=W^{\alpha} \Psi_{\beta \alpha} \rho^{i} \beta$, where $\Psi=\Phi^{-1}$
- Υ_{α} is the α-component of the nonconservative force \mathcal{Q}, in the new coordinates

Mramel symbols

Euler-Lagrange equations in adapted coordinates

Let $L \in C^{\infty}(A)$ be a regular Lagrangian of a dynamical system on the Lie algebroid A with a non-conservative force \mathcal{Q}.

Euler-Lagrange generalized equations:

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \mathbf{w}^{\alpha}}\right)=\Psi_{\beta \alpha} \rho^{i}{ }_{\beta} \frac{\partial L}{\partial q^{i}}+\mathbf{w}^{\epsilon} \gamma_{\epsilon \alpha}^{\beta} \frac{\partial L}{\partial \mathbf{w}^{\beta}}+\Upsilon_{\alpha},
$$

with:

- $\dot{q}^{i}=\mathbf{w}^{\alpha} \Psi_{\beta \alpha} \rho^{i}{ }_{\beta}$, where $\Psi=\Phi^{-1}$
- Υ_{α} is the α-component of the nonconservative force \mathcal{Q}, in the new coordinates
- $\gamma_{\epsilon \alpha}^{\beta}$ Hamel symbols

Gauge algebroid $T G / G$ of a Lie group G

Let G be a Lie group and e its neutral element.

- Using the map $T L_{g^{-1}}: T G \rightarrow G \times T_{e} G$ given by $T L_{g^{-1}}(g, \dot{g})=(g, \xi)$ we can identify $T G$ with $G \times T_{e} G$.
- If $\left(\xi^{I}\right)$, for $I=1, \ldots, \operatorname{dim} G$, is the set of coordinates of $\xi \in T_{e} G$ with respect to a basis $\left\{e_{I}\right\}$ of $T_{e} G$, then we can define a set of quasi-velocities (ξ^{I}) on $T G$ by $\xi^{I} e_{I}=\xi=T_{g} L_{g^{-1}}(\dot{g})$. If g is a point in G of local coordinates $\left(g^{I}\right)$, then $\left(g^{I}, \xi^{I}\right)$ defines a set of quasi-coordinates in $T G$.

A regular G-invariant Lagrangian $\mathcal{L} \in C^{\infty}(T G)$ in quasi-coordinates is given by $\mathcal{L}(g, \dot{g})=l(\xi)$, where l is a function on the Lie algebra $\mathfrak{g}=T_{e} G$. The Euler-Lagrange equations of the gauge algebroid $T G / G \equiv \mathfrak{g}$ are given by:

where $c_{J I}{ }^{K}$ are the structure constants of the Lie algebra g of the Lie group G with resnect to the hasic $\left\{e_{i}\right\}$ of g.

Gauge algebroid $T G / G$ of a Lie group G

Let G be a Lie group and e its neutral element.

- Using the map $T L_{g^{-1}}: T G \rightarrow G \times T_{e} G$ given by $T L_{g^{-1}}(g, \dot{g})=(g, \xi)$ we can identify $T G$ with $G \times T_{e} G$.
- If $\left(\xi^{I}\right)$, for $I=1, \ldots, \operatorname{dim} G$, is the set of coordinates of $\xi \in T_{e} G$ with respect to a basis $\left\{e_{I}\right\}$ of $T_{e} G$, then we can define a set of quasi-velocities (ξ^{I}) on $T G$ by $\xi^{I} e_{I}=\xi=T_{g} L_{g^{-1}}(\dot{g})$. If g is a point in G of local coordinates $\left(g^{I}\right)$, then $\left(g^{I}, \xi^{I}\right)$ defines a set of quasi-coordinates in $T G$.

A regular G-invariant Lagrangian $\mathcal{L} \in C^{\infty}(T G)$ in quasi-coordinates is given by $\mathcal{L}(g, \dot{g})=l(\xi)$, where l is a function on the Lie algebra $\mathfrak{g}=T_{e} G$.

Gauge algebroid $T G / G$ of a Lie group G

Let G be a Lie group and e its neutral element.

- Using the map $T L_{g^{-1}}: T G \rightarrow G \times T_{e} G$ given by $T L_{g^{-1}}(g, \dot{g})=(g, \xi)$ we can identify $T G$ with $G \times T_{e} G$.
- If $\left(\xi^{I}\right)$, for $I=1, \ldots, \operatorname{dim} G$, is the set of coordinates of $\xi \in T_{e} G$ with respect to a basis $\left\{e_{I}\right\}$ of $T_{e} G$, then we can define a set of quasi-velocities (ξ^{I}) on $T G$ by $\xi^{I} e_{I}=\xi=T_{g} L_{g^{-1}}(\dot{g})$. If g is a point in G of local coordinates $\left(g^{I}\right)$, then $\left(g^{I}, \xi^{I}\right)$ defines a set of quasi-coordinates in $T G$.

A regular G-invariant Lagrangian $\mathcal{L} \in C^{\infty}(T G)$ in quasi-coordinates is given by $\mathcal{L}(g, \dot{g})=l(\xi)$, where l is a function on the Lie algebra $\mathfrak{g}=T_{e} G$. The Euler-Lagrange equations of the gauge algebroid $T G / G \equiv \mathfrak{g}$ are given by:

$$
\frac{d}{d t}\left(\frac{\partial l}{\partial \xi^{I}}\right)=\xi^{J} c_{J I}^{K} \frac{\partial l}{\partial \xi^{K}},
$$

where $c_{J I}{ }^{K}$ are the structure constants of the Lie algebra \mathfrak{g} of the Lie group G with respect to the basis $\left\{e_{I}\right\}$ of \mathfrak{g}.

[^0]: aUsing a different appronch, this result was also proven by Mamel de I cón, Juan Camlos Marrero and Eduardo Martínez, J. Phys. A: Math Gen. 38 (2005).

[^1]: ${ }^{a}$ Using a different approach, this result was also proven by Manuel de León, Juan Carlos Marrero and Eduardo Martínez. J. Phys. A: Math Gen. 38 (2005).

