h-principles around Poisson Geometry



The present thesis is thus organized :

Chapter One: purports to review standard notions and to agree on a notation for them; the
reader who is slightly familiar with simplicial objects and Heefliger structures can freely
skip all but the last three sections.

Chapter Two: describes the basic h-theoretic machinery we will use; it is self-contained
except for a theorem of Eliashberg’s which we are happy to merely quote. The exposition
of Section 7 is a solution to exercises of [32].

Chapter Three: is the core of this thesis, and presents the applications of the h-Machine to
problems revolving around Poisson geometry. After a brief excursion through the features
of Poisson Geometry that will later come into play (Sections 1-3), we debate what we wish
for a Poisson-geometric h-principle in Section 4, and then proceed to give four applications
to specific problems, in Sections 5-8.

I have tried to maintain as standard a notation as possible, and to quote proofs of facts we draw
upon when this doesn’t take us too far afield. I also hope I haven’t forgotten any of the references I
used to write this note; please drop me a line if you notice anyone I forgot to quote.
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CHAPTER 1

Setting the Stage

1. Sheaves
Let T be a topological space, C a category equipped with a faithful forgetful functor
E :C — Sets

and denote by O(T') the poset of open sets of T under inclusion, regarded as a discrete category?.
This defines a cofunctor

O : Top — Cat
in the obvious way.

DEFINITION 1. A C-valued presheaf F' on T is a cofunctor

F:0T)-¢C
A morphism
@ Fy— F1
of two such presheaves is a natural transformation of these cofunctors: for each inclusion
iU U
we have a commutative C-diagram
U

Fo(U) *>F1(U)

FU(LUI)\L iFl(LU’)

Fy(U") ——= Fy(U")

The ensuing category of C-valued presheaves on T and morphisms thereof is denoted PSh(T';C).
Note that a continuous map
[:To—-Th
induces
f+ : PSh(Ty,C) — PSh(Ty,C)
(FoF)(U) = F(f~'0)

Let also Cov(T) be the (discrete) category of open coverings of 7' under refinement; thus an
object U = {U;}ies € Cov(T) can be described as a point-set map

U J—O(T)

where J = J() is an arbitrary set, and the only allowed morphisms 4 — I’ are cover refinements;
i.e., a point-set map A : J(U') — J(L) such that

UZI = U)\(i)

IThe reader is encouraged to think of C = Sets or Top for the moment.
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2 1. SETTING THE STAGE

DEFINITION 2. A presheaf F' € PSh(T,C) is called a sheaf if for all U € O(T) and all 4 =
{U;} € Cov(U) we have an equalizer diagram

p
FU- <=1, FU; —=[1,, FU; A U;)
—

where

e: f {flUi}
p({t:}) = {t:|U; 0 U;},  q({ts}) = {t;]U; 0 Uj}

If e is merely a monomorphism?, we call F o separated presheaf.

DEFINITION 3. Let il € Cov(T). A matching family for i with values in F € PSh(T,C) is a
family

{fities
f7,|Uz N Uj = fJ|Ul ] Uj

and denote by Match(4, F) the set of all such matching families. Then we can define

F*T:= colim Match(, F)
UeCov(T)

Naturality of the construction defines the plus construction
+: PSh(T,C) — PSh(T,C)

Thus elements of F(U) are equivalence classes of matching families for coverings of U, where
two such families are regarded as equivalent when they agree on a common refinement.

Note that F'* is always a separated presheaf — but F** := (F7)* is a sheqaf, called the sheaf-
fification of F, as follows from the correspnding statement for C = Sets and the assumption that
E : C — Sets is faithful.

Observe that for each f € F(T) and each 4 € Cov(T), we have a well-defined matching family

Ju = {fi = flUi}

and that under refinement U — ', fi is sent to fi and thus determines a canonical morphism of
C-valued presheaves

F - FT

and one checks that F*++ = F++,
Note finally that F' — F'** can be described alternatively as the universal presheaf morphism
through which every morphism of presheaves F' — F’ factors when F’ is a sheaf :

F/

2Ie., with no assumption on it equalizing (p,q)-
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1.1. Sheaves of sets. Let’s devote some attention to the special case C = Sets.

Denote by (Etale | T') the category of étale maps 7' — T with commutative triangles as
morphisms. Given F' € PSh(T), Sets), define its stalk F, at € T by

F, := colimF(U)
xzeU

Now set

Etale F' := ]_IFJc

zeT

as a set, and observe the natural point-set maps
germ,, : F(U) —» F, forall z e U

to be compatible with restrictions; furthermore, Etale(F') comes equipped with a projection p :
Etale(F) — T defined by germ, f — z.
Now endow Etale(F') with the topology generated by the subsets

O, f)={germ, f: fe F(U),ze U}

One easily sees that p becomes an étale map, so Etale(F) — T is an object of (Etale | T'), and that
for a presheaf morphism

p: Fy— I
the map
Etale ¢ : Etale(Fy) — Etale(F})
Etale p(germ, f) := germ, (2dom 7/)
is continuous, thus automatically étale, and that the assignment
© — Etalep

is functorial.
Wrapping up, we have a functor

Etale : PSh(T, Sets) — (Etale | T')
In the other direction, consider the functor
I': (Etale | T) — PSh(T, Sets)
(' > T) o> T )
where I'(-, T") denotes the sheaf of local sections of 7" — T'. For obvious reasons, this functor factors
by the inclusion Sh(T, Sets) < PSh(T, Sets), and it is not difficult to see that

++

PSh(T, Sets) PSh(T, Sets)

m /

(Etale | T')

commutes and is a projection. Thus, for a sheaf F', we have F(U) = I'(U, Etale F'). Moreover, for a
continuous map

f:To—-Th
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we consider the pullback diagram

To X1y Etale(F) —_— Etale(F)

| l

Iy —Th
and define
¥ : Sh(Ty, Sets) — Sh(Tp, Sets)
by
(f*F)(Uy) = T'(Uy, Tp x1, Etale(F))
It is easy to see that

f*F — G++

where G is the presheaf

Up — colim F(Uy)
U1 f(Uo)

and that f,, f* are adjoint functors — i.e., for any two sheaves F; € Sh(T}, Sets), there is a natural
bijection

Hom(f*F1, Fy) ~ Hom(F1, fFo)

2. Topological groupoids and Heaefliger structures

A small category C is called a topological category if ArC and ObC are endowed with topolo-
gies such that all five structural maps
s,t: ArC - ObC
:ArCyx s ArC — ArC
1, : ObC — ArC

o 1 :IsoC = IsoC

[¢]

are continuous®, where IsoC © ArC denotes the subspace of invertible arrows. Such a category
G = (G1 3 Gy) is called a topological groupoid if IsoG = ArG. A topological groupoid G is
called étale if s is an étale map, i.e., is a local homeomorphism.

A continuous functor F : C — C’ between topological categories C,C’ is a functor for which
F(¢) : F(cp) = F(cy) varies continuously with ¢.

EXAMPLE 1. Of course, every small category can be regarded as a discrete topological category.
Another quite trivial example is that of a topological space T, which can be seen as topological
groupoid, all of whose arrows are identities.

EXAMPLE 2. A slightly more interesting one is that of the Cech groupoid of a covering.
Namely, let U = {U;}icr be an open covering of a topological space T, and define

ObTy := {(z,i) :x € U;}
ArTy = {(z,4,1) : ¢ € U; n Uy}

3As Gustavo Granja points out, it is not quite standard to require explicitly continuity of the inverse map.



2. TOPOLOGICAL GROUPOIDS AND HAFLIGER STRUCTURES 5

with structure maps
S(Iajai) = (Iai)a t(l’,],l) = (‘ij)v ]‘(ZIZ,’L) = (l’,l,l)
(@,k, ) o (2,4,9) = (2, k,0), (2,5,0)7" = (2,4,])

which are continuous in the natural topology of Ty. This will quite obviously serve as a model for
U-trivializable objects on T'; note that it s equivalent, as a category, to T regarded as a groupoid as
in the previous example.

Let now V be a smooth manifold, and consider

diff (V') = {Up %, Uy : U; open in V and d a diffeomorphism}

For notational convenience, we will omit U; from the notation, writing Uy = domd and U; =
codomd. The subset with domd = V = codomd is the group of automorphisms of V', denoted by
Diff (V'), which we topologize under the C”*-compact-open topology.

DEFINITION 4. A pseudogroup of diffeomorphisms of V' is a subset © < diff (V') such that

Ifde® and U is an open subset of domd, then d|U € D;

e A homeomorphism d: U — U’ lies in © iff there exists an open cover {U;} of U such that
d|UZ € @,’

idy € ® for every open U c V;

de® iffdte®;

d,d € ® and domd' c codomd implies d' od € D

EXAMPLE 3. Let ® be a pseudogroup of diffeomorphisms of V.. We can construct an associated
étale groupoid I' 3V by letting

I' = {germ_  d : z € dom(d),d € D}
endowed with the sheaf topology, which is generated by the subsets of the form
O(d) = {germ, d : x € dom(d)}

where d ranges over all elements in ©.
Then we set

s,t:I' >V
s(germ, d) := z, t(germ, d) :=d(x)
1:V->T
1, := germ, (idy)
(germ, d) ! := germy(,) d?
(germ,, d') o (germ,, d) := germ, (d’ o d)
thus obtaining an étale (effective) groupoid as claimed.

When V = R"*, © = diff (R"), we will employ Heefliger’s notation T',, for T

Heaefliger structures. Let again Ty denote the Cech groupoid associated to a covering i of a
topological space T'.

Suppose G = (G1 3 Gyp) is any topological groupoid. A Heaefliger G-cocycle on il is just a
continuous functor

F:Ty -G
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Two such cocycles
F1 : Tul -G
Ty, - G

are said to differ by a coboundary if one can find a G-cocycle for 84y [ [y rendering the following
diagram commutative

Ty,
\ P
Ty, [Tee—— =G
/ F>
Ty,

where
Ty, = Ty, [T < Ty,

are the natural continuous functors induced by the natural inclusions
o th [ Jih < i

This is clearly an equivalence relation, and we denote by H'(T;G) the set of equivalence classes of
such structures, nicknamed Heefliger G-structures; an equivalent description would be to define
H'(U,G) as the equivalence classes of cocycles Ty — G, and define

HY(T,G) := colim H*(U, G)
Cov(T)

We observe that
H'(-,-) : Top°® x TopGrpd — Sets
is bifunctorial. When G is a group, it factors through
Top°? x TopGrpd — hTop°? x TopGrpd

as follows from the classical lemma that homotopic principal group-bundles are isomorphic. For
general groupoids G this need not be the case*. If we insist on homotopy invariance, we are led to
the following notion :

DEFINITION 5. Two Hefliger G-structures Fy, Fy are called concordant if there is
Fe HY(T x I;G)

restricting to F; on T x {i}. The set of concordance classes of such structures will be denoted by
hY(T;G).

At is easy to construct two non-isomorphic Heefliger G-structures on contractible spaces; say,
T=R, th={R}=1tk4
and
Fo,F1 :R—>1T
where

fi  R>R, zix
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By its very construction, h'(-,-) is homotopy-invariant, i.e., factors through
Top x TopGrpd — hTop x TopGrpd

There is another point of view about such structures that is perhaps more transparent for the
more bundle-inclined, with the modification resulting from the fact that groupoids act on maps,
rather than spaces.

Indeed, let G; =3 Gy be a topological groupoid, E a space and

. FE —> Gy
an arrow.
DEFINITION 6. A left action of G on 7 : E — Gy is a map
pw:G xg, E = FE
satisfying
Fibredness: 7(g-e) = m(e);

Associativity: g1 - (g2 -¢) = (g192) - (e);
Identity: 1,-e=¢

DEFINITION 7. A left G-bundle on a topological space T consists then of a bundle®
p:E—>T

with a left G-action on 7 : E — Gg, such that p is G-invariant.
A morphism between two left G-bundles E; — T; is a G-equivariant arrow E1 — Fo, commut-
ing with projections to Go, and giving rise to a commutative diagram of

E1 *>E2

|

TN ——1T
A left G-bundle p : E — T is called principal if p is an open surjection and
Gixg, E—>ExyFE
(g.€) = (e,9-¢€)
is a homeomorphism (hence G acts freely and transitvely on the fibres of p).

We thus have a category PBung of isomorphism types of principal left G-bundles £ — T.
Observe that when G is étale, p is étale.

A distinguished example of left principal G-bundle is obtained by taking T := Gy, E := Gy,
p = s and 7 :=t. This is the so-called unit bundle of G. A left principal G-bundle will be called
trivial if it is isomorphic to the unit bundle. Moreover, note that the operation of pullback through

continuous maps of the bases is well-defined for left G-bundles, and preserves principality of a such
bundle.
Suppose now we are given a cocycle

F:Ty - G.
We can construct a principal G-bundle Er — T by defining
E\;:* = G1 XGo HUz

Ep = E\;“/ ~
where (97 ($,j)) ~ (gOF(ZEr-j’Z.)’ (:L’,Z))

5Mind that, encoded in the word bundle, we assume local triviality.



8 1. SETTING THE STAGE

Let now
p:Ep—>T
p(lg,z,1]) ===
Y[ EF - Go
m(lg, z,1]) == s(g)
Gl XGo EF b EF
gl . [971772] = [glg,,f,i]

and one easily checks that this indeed defines a left principal G-bundle Er — T'.
Note that if I’ refines 4,

Ui c Ury
then this naturally defines a refy F': Ty — G, and also a
Eiety r — EF
l9,2,i] = [g,z,7(i)]

which is G-equivariant and therefore a homeomorphism. Therefore, the assignment of a cocycle F'
to the principal Er — T maps cohomologous cocycles to isomorphic principal G-bundles, i.e.,

HYT,G) - PBung(T)
[F] — [EF]
is well-defined.
That is is also a bijection is seen by constructing an inverse : let £ — T be a left principal

G-bundle. In fact, p : E — T a bundle means that we can find an open cover 4 = {U;} of T' and
sections

t; : U; > E|U;
By principality of F, there is a homeomorphism
Exg, E— Gy xg, E
(e,e') — (B(e, e),¢€)
so we let
F:Ty -G
F(x,i,5) = 0(ti(x), t;(x))
Thus there is a well-defined natural bijection

{isomorphism classes of left principal G-bundles} & {G-structures}

3. Classifying spaces for Haefliger structures

References are [6], [18], [26], [51], [63], [64], [65].

Simplicial primer. For each natural number n, let [n] denote the discrete category with
object-set {0,1,...,n} and exactly one arrow ¢ — j whenever ¢ < j, and by [N] the category obtained
from the union of all such [n]. The simplicial category A is defined as the discrete category with
object-set consisting of all [n], and having as arrows [n] — [m] all functors [n] — [m]; its nth
truncation if the full subcategory A, spanned by the objects [0], ..., [7].

Note that a functor

p:[n] = [m]
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is tantamount to a monotone map fi : Ob[n] — Ob[m], i.e.,
i < j = (i) < i)

REMARK 8. Observe the distinguished
d':[n—1] - [n],

<i1<n
sj:[n+1]—>[n], <j

Jsn
called cofaces and codegeneracies, respectively, and defined by
d:0—>1-->n-1)m>0>1--i-1—oitl—----—n)
sj:(O—>1—>---—>n+1)r—»(O—>1—>---j—1—>j=j—>j+1—>---—>n)

These satisfy the obvious cosimplicial relations

dd = did i<
sdt = disit 1<y
sldl =1 =sId*!

sidt = di~tsd t>7+1
st = glgitl 1<

Observe that every arrow [n] — [m] in A factors uniquely as the composition of an epimorphism
[n] — [k] with a monomorphism [k] — [m]; clearly, monos are composites of coface maps, whereas
epis are composites of codegeneracy maps.

A simplicial object in a category C is a contravariant functor
S:A->C

i.e., an object of CA™; when C = Sets we call S a simplicial set, and when C = Top, a simplicial
space; their respective categories are denoted SSets and SSpaces.
A morphism of simplicial objects in C is a natural transformation between two such functors.
Note that, according to the previous remark, an equivalent description of the simplicial object
S would be :

e A collection of objects .S, in C;
e Face maps

di :=S(d") : S, = Sp_1
and degeneracy maps
s 1= S(s7) : Sy — Spi1
satisfying the simplicial relations dual to those of Remark 8.
EXAMPLE 4. If T is a space, we define the simplicial set of singular simplices
S(T) : A°P — Sets
S(T)[n] = Top(A™,T)

Recall that the singular homology H;mg(T; A) of T is defined as the homology of the complex
(ZS(T)e ® A,d) where A is an Abelian group and

d:ZS(T)n @ A — ZS(T)ns1 ® A
d:=>(-1)"d; ®14
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DEFINITION 9. Suppose S, S’ are simplicial spaces. Their product S x S’ is the simplicial space
(S xS, =8, x5S,
dPS = df x dY

SxS" _ .S s’
55 =8 X 8}

In fact, SSets possesses all limits and colimits, which are constructed levelwise as we exemplified
with X, i.e., given any J-diagram of simplicial sets, F': J — SSets, its colimit is constructed as

<limF ) [n] := UmF[n]
where F'[n] is the induced J-diagram of sets, and
(limF) (u) := UmF[p] : imF[m] — imF[n]

for all p : [n] — [m]; it is evident that this indeed has the categorical properties defining the limit
of the J-diagram F.
The analogous construction can be performed, mutatis mutandis, for colimits in SSets.

Homotopy notions.

DEFINITION 10. The standard n-simplex A™ in the category of simplicial sets is the simplicial
set represented by [n]:

A" = A([n])

Observe that by Yoneda’s lemma®

Sp =~ SSpaces(A", .S)

and let v, for the simplex corresponding to idp,) € A([n],[n]). Its boundary dA™ is the smallest
subsimplicial set of A™ containing all faces d;(in), where 0 < j < n. The kth horn A} is the
subsimplicial set of A™ generated by all faces d;(i,) except for the kth.

DEFINITION 11. A map of simplicial spaces X — Y is called o (Kan) fibration if all diagrams
of the form

AZHX

7
|
Y
v
A" ——Y

are solvable, n = 0.
It is called a trivial (Kan) fibration if all diagrams of the form

A" —> X
7
A" ——Y

are solvable, n = 0.
A simplicial space X is called fibrant or Kan is X — pt is a fibration.

DEFINITION 12. Let fy, f1 : X = Y be morphisms of simplicial spaces. We call a morphism

f:XXA1—>Y

6Here one identifies SSets with level-wise discrete simplicial spaces.
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rendering
X x A9
id xdoi fo
1 f
X xA'—=Y
id xle f1
X x A9

commutative o homotopy between fo and fi.
Such a homotopy is called relative to a subcomplex A < X iff fo|lA = f1|A and

X x Al —Y

T TfoAzflA

Ax A 5—= A
Pra
commutes.

DEFINITION 13. Let X be a fibrant simplicial set, and x € Xo. Define m,(X,x) as the set of rel
JA™ homotopy types of

a: A" —> X

fitting into
A e o X
OA" —— A0

The fibrant hypothesis on X guarantees that having the same rel 0A™ homotopy type indeed
defines an equivalence relation. As usual, these are pointed sets for n > 0, groups for n > 1 and
Abelian groups for n > 2.

Observe the following relation between simplicial sets and spaces :

PROPOSITION 14. If Y is a simplicial space, there exists a simplicial set X and a trivial Kan
fibration

f: X->Y
PROOF. Suppose we have built Sk™ X and a map Sk™ X — Y such that all diagrams of the form
OA™ —Sk" X

L

Y

are solvable for m < n.
Now, for each (isomorphism type of) diagram

OA"TL ——Sk" X

L

An+1 - > Y
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one attaches a non-degenerate A"*! to Sk™ X through the obvious attaching map 6A"*! — X, thus
defining Sk"** in which all

OA™ —— gkl X
L
A" ———Y
are solvable for m < n + 1, see [49]. O

Geometric realization. Every small category C gives rise to a simplicial set, called the nerve
MNC of C, defined by setting 9MC[n] to be the space of all functors

[n]—C
and the obvious
NC(p) : NC[m] — NC[n]

for each p e A([n],[m]).
Observe that this defines a functor

N : TopCat — SSpaces
Let now A" denote the standard n-simplex in R™+!:

A" = {Zn:tiei :t; =2 0 and Zn:ti = 1}
0

0
Given p € A([n],[m]), define
M* . A'"L N An
by the rule

m n
Fos (Z ti€i> = Z tu(i)ei
0 0
Then given a simplicial space S, we define its geometric realization |S| to be the quotient of
IS =115 ([n]) x A"
n

by the relations
(S (:U') T, ’U) ~ (1’, [L*”L))
for all e A([n],[m]) and all n,m.
Observe that any morphism ¢ : S — S’ between simplicial spaces gives rise to a continuous map
||l between the corresponding geometric realizations, and the assignment
o= ol

is functorial.
DEFINITION 15. The Segal functor
& : TopCat — TopCat

assigns to a top-cat C the top-cat &C which has the same object-set as N x C, and for morphisms all
identities and all (n,c) — (n',c) with n < n'.

The (Segal) classifying space BC of C is then defined as the geometric realization of the nerve
of &C.

REMARK 16. The geometric realization of the product X x X' of two simplicial spaces is naturally
homeomorphic to | X| x | X’| if | X| is either locally compact or compactly generated, see [6].
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Consider now a simplicial space S and denote by S° the discretization of S, i.e., its composition
with the adjoint pair Top — Sets (forgetful functor) and Sets — Top (endowing a set with the
discrete topology).

Let T be any topological space. Given a homotopy

H:TxI-|95|

we can always find a set-theoretic diagram

TxI—2 |3

]

T x T 5 159

with both vertical arrows continuous, since ||S| = [ S°|| as sets.

This means essentially that, for each x € T, the induced path H, : I — |S| factors through
|S° — |9, i-e., H, moves only in the “linear” direction of the simplices A" appearing in the
construction of |S].

DEFINITION 17. We call H o linear homotopy if H® is also continuous. We denote by
Lin(T, ||S]) the set of equivalence classes of continuous maps T — || S|| under the equivalence relation
of being linearly homotopic.

Numerable and numerated structures.
DEFINITION 18. A partition of unity on a space T is the data of continuous maps
t,: T —[0,1], neN

which is locally finite” and
Ztn(m) =1, VexeT
n

A partition of unity is called subordinated to a covering U € Cov(T) if the support of each t, is
contained in some member of the covering.
If a covering 3 admits a partition of unity subordinated to it, we call it numerable.

DEFINITION 19. A G-structure on T is said to be numerable if is represented by some cocycle
F: Ty — G, where U is a numerable covering of T.

Let A™ denote the infinite simplex with countably many vertices {e,}nen. Observe that a
partition of unity gives rise to a continuous map

p: T — A*
x l—»Ztn(x)en

The notion of continuous map into A™ is thus closely related to that of partition of unity, and
will be used in what follows.

Recall now that the carrier of a point z € ||S|| in the geometric realization of a simplicial space
S, car(z), is the unique simplex of S to whose interior = belongs.

Now observe that given a continuous map

p:T— |N|= A~

not necessarily arising from a partition of unity on 7', we can consider the topological subcategory
(called numerated by p)

T,cNxT

"That is, each = € T has an open neighborhood U where all but finitely many ¢,’s vanish identically.
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spanned by all objects of the form (n,x), where n € car(p(z)), with the subspace topology. The
unique morphism (n,z) — (m, z) will be denoted by (m,n, x).

DEFINITION 20. A p-numerated cocycle is a continuous homomorpism T, — G, and we call
a cocycle numerated if it is a p-numerated cocycle for some p.

Now given partitions of unity
po,p1: T — A”
define
pofip1 : T — A*

v 5 (ol opo + ] o)
where
hi :N—>N
h; :n—2n+1

and declare two numerated cocycles T},, — G, T, — G cohomologous if there is a numerated cocycle
Fp 4p, — G such that the following diagram commutes :

TPo
\ Fpy
Fpolim
TPO #p1 2 G
/ Fp,
Tpl

where T),, — T,.4p, are the canonical functors (m,n,z) — (2m +14,2n+i,z). The equivalence
classes under this relation are called numerated G-structures. The collection of all numerated
G-structures on T will be denoted by Num(T, G).

REMARK 21. It should be pointed out that the realization of the canonical functors
Ty, = Tpotips
are linear homotopy equivalences, as is easy to verify.

DEFINITION 22. Two numerated cocycles Fy,, : T,, — G, Fy,, : T, — G are called concordant
if there is a homotopy

p:TxI—A*

between py and p1, and a numerated cocycle
E,: (T X ])p - G

such that the induced

commutes.
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The collection of all concordance classes of numerated G-structures will be written num(T, G).

Observe in the above definition that the realizations of T},, — (17'xI), are homotopy equivalences,
as follows from the commutativity of

[Tpsll ——= (T x 1),

T——>Tx1
idrx iy

and the fact that s,,, s, and idp,(;; are homotopy equivalences.

One readily checks that, given two partitions of unity pg,p1 : T — A%, for which two cocycles
Fpo : Tpy = G, Fp, : T, — G are cohomologous, then they are also concordant through a homotopy
p : po — p1 and numerated F), : (T' x I), - G.

Observe that part of the data of a numerated cocycle is a partition of unity p, so such a continuous
T, — G defines canonically a numerable cocycle by the assignment

U, :={z : n € car(p(x))}
Fy, (x) = Fp(”vx)

{Fp(m,n,x) ifm=n

Fy v (x):=
UnuUrL( ) Fp(n’m,x)il OtherWise~

and two numerated cocycles representing the same numerated G-structure obviously give rise to
numerable cocycles in the same equivalence class.

Conversely, given a numerable cocycle F' : Ty — G, equipped with a partition of unity {¢,}
subordinated to 8 = {U;}, one can construct, in a canonical fashion, a new partition of unity {t,}
(call it its Husemoller refinement) with the property that

t,10,1]1 = [ [Uni,  Uni < Us.
i
With this refinement, F' determines a continuous homomorphism T; — @, and any two such numer-
ated cocycles must represent the same numerated G-structure.

The functor Top(-, BG). Notice now that by construction BG comes equipped with a canonical

q: BG — A”
induced by the restriction of
pry: 6G - N
Hence for each continuous map
f:T—- BG

we can assign a partition of unity
pi=qof:T— A"

If we denote by Ty the topological subcategory of T' x Gy spanned by the objects (z, (n, g))
where (n, g) belongs to the carrier of f (z), it is then obvious that the restriction of

Pry X pPrp
to Tt induces a continuous functor

Ty =T,
and that of prs induces a continuous

Ty - G
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LEMMA 23. Ty — T, is an isomorphism of topological categories.

Proor. This is a mere consequence of the following observation : by the construction of 7%,
(z,(n,g)) is an object in this category iff f (z) lies in the interior of the simplex

9k—1
o 90 n g1 N

with (n,g) = (n;,g;) for some 0 <7 < k.

Since ng < 1 < ... < ng, this means that for each n € car(p(x)), there is one, and only one,
g € G such that (n,g) € car(f(x)) hence Ty — T, is bijective.

Since it is obviously continuous (for it is the restriction of a continuous functor), all that remains
to check is that the functor is also open. But this is a direct consequence of the commutativity of
the diagram

Ty — =T,

openness of the induced functors

Ty vpry'({n}) — T, npry'({n})
for each n, and discreteness of N. |
By means of the above lemma, we have defined a correspondence
Top(T, BG) — Num(T, G)

assigning to each f : T'— BG the numerated cocycle Fyof : Tgor — G constructed above. Observe
that, by construction, Fj,(n,x) is the unique g for which (z, (n,g)) is an object of T.

LEMMA 24. The restriction of
Top(-, BG) — Num(-, G)
to locally compact, or compactly generated spaces, gives a natural isomorphism.
Proor. Given a numerated cocycle F}, : T, — G there is a canonical map
T, > A" xT
induced by the inclusion T}, € N x T', since our hypothesis on T is such that
INXT| ~A* xT
It is now straightforward to check that we obtain a commutative diagram

p(w)

\ /

T

and that pry x F}, factors through the canonical inclusion Gy - N x G :
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This allows us to consider the map
Num(T’; G) — Top(T, BG)
Fyp = | ®p] 0 sp
which is easily seen to be an inverse to the previously defined Top(7T, BG) —» Num(T, G). O

Finally, observe that the data of a concordance (T' x I), — G between two numerated cocycles
Fyy, I, gives rise to a commutative

TPO
\ @y
FP
(T x I)) ———= Gy
/ Dy,
T,

Consider now the diagram

T ——— [Ty |

@5 |
id7 {0} l i \
(R4

T x I —% (T x I),| -~ BG

idry g1y
[®p, 1

N

The right triangles are commutative by functoriality of realization; on the other hand, the left squares
are homotopy-commutative (where all maps involved are homotopy equivalences). Thus

[T

V %il
T BG
\ |<1V

[T, |

is homotopy-commutative, which amounts to saying that |®¢l| o s,, and [®1] o s,, are homotopic.
Hence there is a well-defined

num(7T, G) — [T, BG]

This is seen to be bijective (for locally compact or compactly generated T') by functoriality of
Num(-, G) =~ Top(+, BG) applied to the diagram

T x {0}

l I®o]ospq
H

T x I —— BG

T I®1fosp,

T x {1}
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Finally, we observe that, over paracompact 7', all G-cocycles can be numerably refined.
We have thus proved :

THEOREM 25. For all T paracompact which is also locally compact or compactly generated :
(1) Top(T, BG) — HY(T,G) is a surjection;
(2) The induced [T, BG] — h!(T, G) is bijective.

REMARK 26. In [6], Bracho shows that there is an intermediate step in the correspondence
above, namely, that

HY(T,G) ~ Lin(T, BG)

Hence control of the cohomology class of a cocycle F, and not merely its concordance type, is
controlled at the level of maps under linear homotopy; however, our poor understanding of this latter
equivalence makes it difficult to use ths fact significantly in applications.

4. Quasi-topological spaces

Quasi-topological spaces were first devised to provide a “convenient” category for the algebraic
topology of function spaces. In it, several categorical niceties of Sets carry over.

DEFINITION 27. A quasi-topology on a set X is an assignment, for all topological spaces T,
of a subset QTop(T, X) < Sets(T, X), elements of which are called quasi-continuous maps of T
into X, such that the following properties are verified :

(1) All constant maps pt — X are quasi-continuous;

(2) If f: T — X is quasi-continuous and g : T' — T is continuous, then fog:T" — X is
quasi-continuous;

(3) A map f € Sets(T, X) is quasi-continuous iff it is locally quasi-continuous, i.e., every point
t €T has a neighbourhood U such that f|lU : U — X is quasi-continuous;

(4) If T1, T are closed subsets of T and f € Sets(Ty u Ty, X), then f is quasi-continuous iff
fIT1 and f|T» are quasi-continuous.

A morphism
X -X

of quasi-topological spaces is a set-theoretic map which sends quasi-continuous maps into X to quasi-
continuous maps into X', i.e., induces a natural transformation

f* : QTOp(v X) - QTOp(v X/)
We thus have a category, denoted QTop, of quasi-topological spaces and morphisms between them.

Observe that a quasi-topological space is the same as specifying a contravariant functor :
X : Top — Sets

which abides by the sheaf properties for open and finite closed covers on each space T'.

Of course, if T is a topological space, it is a quasi-topological space in a natural way, by defining
quasi-continuous maps into T to be exactly the continuous maps into 7. This defines a Yoneda
embedding

n : Top — QTop

which allows us to regard the category of topological spaces as a full subcategory of quasi-topological
spaces.

Let us also point out the notion of subspaces; if X is a set endowed with a quasi-topology, and
A is a subset of X, a quasi-topology on A is determined by declaring quasi-continuous those maps
T — A whose composition with the (set-theoretic) inclusion A < X is quasi-continuous; thus this
inclusion is automatically a morphism of quasi-topological spaces.
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We also have a product x in QTop; on the underlying sets, it coincides with the product in Sets,
and we define a set-theoretic map

T—XxX

to be quasi-continuous iff its composition with each (set-theoretic) projection is quasi-continuous.
Moreover, if we topologize the hom-sets QTop(X, X’) by defining as quasi-continuous those (set-
theoretic) maps

T — QTop(X, X')
for which
TxX—X
is a morphism of quasi-topological spaces, then it is clear that we have natural isomorphisms
QTop(X, QTop(X’, X")) ~ QTop(X x X', X")
As for more general limits : suppose
F:J— QTop
is a functor from a (small) index category J, and let
E : QTop — Sets

be the functor that forgets the quasi-topological structure. We define the limit of F' : J — QTop, as
a set, to be the limit of FF : J — Sets, with the following quasi-topology : a set-theoretic

f:T - limF
“«—
is quasi-continuous iff its composition with all natural arrows
limF — F(j)
“—
is quasi-continuous.
Similarly for colimits, we first consider the colimit construction of EF, and then declare a
f:T - limF
quasi-continuous iff each
T ximer F(3) = F(5)

is quasi-continuous.

For mental-sanity preservation, let us refer to quasi-topological spaces as quasi-spaces, and
morphisms between them as maps. Also, set X(T') := QTop(T, X).

Observe furthermore that the notion of homotopy type is simplicially imposed on the category
of quasi-spaces :

DEFINITION 28. A homotopy [ between two quasi-continuous maps fo, f1 € X(T) is an element
feX(T x I) such that

fi = FIT x {i}
in which case fo and f1 will be called homotopic.
This defines an equivalence relation on X (7'), the quotient by which we denote X[T].
DEFINITION 29. A map
p: X > X'
of quasi-spaces is called an n-equivalence if it the induced
X[99] — X'[S7]
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are surjective for ¢ < n and injective for ¢ < m. It is called a weak equivalence if it is an
n-equivalence for all n. Finally, ¢ is said to be « homotopy equivalence if

X[T] - X'[T]
are bijections for all spaces T'.

It should also be noted that, for X a quasi-space, composition with the standard cosimplicial
object

A — Top
[n] — A"
defines a simplicial set
BX : A°P — Sets
and, upon realization
| -] : Sets®” — Top

a true space.

The price we pay for insisting in realizing X by an actual space |BX]|| is that we only maintain
control on its weak homotopy type®.

Another notion of homotopy theory of spaces that will be dear to us in the context of quasi-spaces
is recalled in the sequel.

DEFINITION 30. A map
p: X ->Y
of quasi-spaces is called a Serre fibration when for each finite polyhedron P, every diagram
Px{0} —=X
|
- ®
7
Ve
PxI

is solvable. It is called a Serre microfibration if given such a diagram there is € > 0 such that the
following has a solution :

PX{O}g)X

s
T
e
PxI<—Px[0,e] —Y
Finally, let
o : O(T)°" — Top
be a sheaf of spaces on the space T. We have already dscribed a way of constructing a sheaf of
quasi-spaces out of ®, namely, by composition with the Yoneda map v :
p® : O(T)°P - QTop
9O(U) : T' > Top(T", B(U))
But (co-)completeness of QTop allows another natural construction : for each subset S c T, let
S1O(T)={U < U :U,U open in T and containing S}

8By this we mean that the composite

9 IB-|

TopC QTop Top

is a levelwise weak equivalence of spaces.
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Then consider the S | O(T)°P diagram of quasi-spaces induced by y®, and let

¥(S) := i d
(S) im0

Observe that this actually defines a
¥ : o(T)° — QTop

where p(T) D O(T) denotes the poset of all subsets of T under inclusion, called the sheaf of germs
of sections of ®. Note in passing that ®%(T) = y(®(T)), that ®¥(z) = n(®,) for all z € T and
also that the construction of ®% out of ® makes sense (deleting the y’s throughout) if ® were a
sheaf of quasi-spaces from the beginning.

In dealing with germs in so pervasive a manner, it is useful to agree on the following figure of
speech :

CONVENTION 31. Let S c T be an arbitrary subset. Let us convene that Op S will stand for an
opening of S in T'; that is : any open set U containing S, treated as a variable.

Thus when we say that a statement S holds true on Op S, what we actually mean, in full-fledged
form, is that

“There exists an open neighborhood Ug of S in T where ) holds true”.

Observe the dependence of U on both S and (9.
Under this convention, it is natural to think of the “value” of a sheaf F € Sh(T,C) at Op S as
the cocone

F:(S|O(T)®—->cC
In particular, when C = QTop, the cocone F(OpS) has a coliimit, namely, FQ(S).

i CAVEAT !. Ezxcept for this section, we will abuse notation and drop the symbol & from O, It
should be clear from the context which of ®, Y s being discussed.

(As a rule of thumb, if S T is not open, ®(S) stands for ®%(S). The only ambiguity occurrs
when S is open.)

We wish to point out an important fact : sheaves of spaces
U : O(T)°? - Top
are stable under push-forwards, i.e., if
f:T—-T

is continuous, then f, ¥ naturally inherits the structure of a sheaf of spaces on T".
On the other hand, sheaves of spaces are not stable under base change : there is no natural
structure of a sheaf of spaces on f*W for a continuous

f:T'->T
This is another inconvenience that is overcome by the quasi-space formalism : if
U O(T)°? - QTop

and f : T" — T is continuous, then we define f*U first as a sheaf of sets in the usual way, i.e.,
f*uU") =T(U', T x7 Etale V) :

T' x7 Etale W —— Etale U

| |

77 ——>T
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Now a quasi-topology is constructed on f*W(U’) by singling out those set-theoretic maps
T — f*u((U")
whose corresponding
T" x U’ — Etale ¥

are continuous. This is clearly consistent with the restrictions on f*W.

5. Differential Relations and the h-zoo

Assume given a smooth locally trivial fibre bundle p: £ — V.
Associated to it we have the the jet fibrations p” : J"E — V and its associated fibrations :

pl:JE— JEfor0<s<r, J'E=E,
pip =psopi fort <s<r
together with a sequence of jet maps at the level of sections:
i T(V,B) — T(V,J"E), ploj" = j".
DEFINITION 32. Sections in the image of 7" are called holonomic.

Observe these form a very “thin” subspace inside T'(V, J" E).

DErINITION 33. A differential relation R of order r in FE is defined to be an arbitrary
subspace of J'E.

Let ® denote the sheaf of holonomic solutions to R, i.e.,
o : O(V)°? - Top
oU):={fel'(UE):j f(U) c R}

equipped with the compact-open C” topology. We will refer to sections of ® as solutions to R.
On the other hand, there is the sheaf of sections of R :

T'(-,R): O(V)°? - Top
D(U,R) := {FeT(U,J'E) : F(U) € R}

which we again endow with the compact-open topology.
There is then defined a natural continuous map

i ->T(R)

and it is clear that a necessary condition for a solution to R to exist is that there be sections of R.
The meta-h-principle can be summarized as follows :

META-PRINCIPLE. If R is “soft”, then the above obstruction is complete up to homotopy.
That is :

any continuous family of sections of R can be deformed to a continuous family of
solutions to R.

This meta-principle introduces a notion of “softness” for problems of differential nature, which
turns out to be (in a sense not to be made precise in this note) quite generic.

It turns out to be very useful then to know whether a given problem (usually of differential
geometric nature) is soft or not; a criterion for “softness” developed by Gromov will be discussed
later on.

This very vague notion of “softness” can be given more concreteness through the following
taxonomy :
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DEFINITION 34. The h-principle is said to hold for a differential relation R if the natural map
j" (V) - T(V,R)

is a weak equivalence.
The e-principle is said to hold if this map induces a bijection between connected components.
The e- or h-principle is said to hold in C°-dense fashion if the homotopies implied in the above
definitions can be chosen to be arbitrarily C°-small; i.e., if the image of the natural map

®(V) = Cynu(V, E)
is dense in the image of the also natural
L(V,R) = Chin(V, )
There also exist local and relative formulations :
DEFINITION 35. Let Vo € V. Then we say that R abides by the local h-principle at Vj if
j": (Vo) = T(Vo, R)

is a weak equivalence; here we regard ® and I'(-,R) as the associated sheaves of germs of the original
. T(-,R).

The local e-principle and the C°-dense local & and e-principles can be defined through the
obvious modifications of the above.
Finally, suppose V5 < V, and that f; € ®(V7). Let

OV, f1) :=={f e ®(V) : germy, f = f1}
F'(V,j"f1,R) :={F eI(V,R) : germy, F' = j" f1}
with the quasi-topolgy induced from &,I'(-, R).
DEFINITION 36. The relative h-principle holds for the pair (V, V1) if
J" eV, fi) > (V. j"AiR)

is a weak equivalence for all f1 € ®(V7).
The relative e-principle, C°-dense h- and e-principles can again be defined. The local version
of the relative h-principle on a triple (V, Vo, V1), Vi € Vo, claims a weak equivalence for

i" @ (Vo, f1) = T(Vo, 5" f1, R)
where (obviously)

O(Vo, f1) == {f € (Vo) : germy, f = f1}
F'(Vo,j"f1,R) :={F eI'(Vp,R) : germy, F = j" f1}

6. Sheaves of parametric germs and the sheaf-theoretic h-principle
Let
o : O(V)°® — Top

be a sheaf of spaces on V.
Given a space T, the bifunctor

®T : O(T)°? x O(V)°P — QTop
dT(T' x V') := Top(T', ®(V"))
with the quasi-topology described by
QTop(T”, ®T(T" x V')) =~ Top(T” x T',®(V")) for all spaces T”
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extends uniquely to a sheaf of quasi-spaces
®T . O(T x V)P - QTop
Concretely speaking, a section
feoT(w)
can be represented, on an open product cover

U=A{T; xVi}, (JTixVi=W

by continuous functions

fi: Ty — ©(V;)

abiding by
7, — o)
T,aT,  B(VinV)
T, —— (1))
Let now

Ay Vo>V xV
and set @ := AX OV,
DEFINITION 37. We will call ®° the sheaf of parametric germs of .
Observe the natural map
o — @’

of (the associated sheaf of quasi-spaces of) ® to its sheaf of parametric germs, defined by assigning
to each section of ® its family of germs at points :

e(U) - @ (U)
[ germp, (f opry)
where f o pr, is thought of as a section of ®Y (U x U).

REMARK 38. Briefly ressucitating the notational distinction between ® and <I>X§X, we see that O
is described as
o = (&) (Ay)

Suppose now that ® is the sheaf of solutions to some differential relation R < J"E. Then there
is also a natural map

" - TI'(-,R)
F[ve jiF(v)]



6. SHEAVES OF PARAMETRIC GERMS AND THE SHEAF-THEORETIC h-PRINCIPLE 25

which assigns to each family of parametric germs of ® the corresponding family of parametric r-jets.
rendering the diagram below commutative :

o —1>T(,R)

|

(I)b
DEFINITION 39. A differential relation R is germifiable if for all compact C' > C,

d*(C") ——=T(C",R)

L

*(C) ——=T(C,R)

are such that the induced
‘bb(cl) - T(C",R) xr(cr) @b(c)

is a weak equivalence over I'(C, R).

Of course, all open relations are germifiable.

For closed relations this need not be the case; recall that there exist smooth linear differential
operators which admit no local solution, see e.g. [47]. On a more geometric note, there exist
Riemannian manifolds V{, V; for which the isometric immersion relation Vy — Vi is not germifiable,
see [23].

In any case, the sheaf-theoretic version of the h-principle is defined by replacing ®” for
I'(,R) in the string of definitions of Section 5 — and thus clearly makes sense, except for the dense
incarnation, for every sheaf of quasi-spaces on V', whether there is an underlying differential relation
or not.

And, of course, for germifiable relations, the sheaf-theoretic h-principle implies the (usual) h-
principle.






CHAPTER 2

Towards the h-principle

The goal of this Chapter is to show how to cook up solutions (or extensions to partial solutions)
to invariant differential relations from solutions to old-fashioned obstruction-theoretic problems in-
volving the pertinent classifying spaces. This is an old trick of Heefliger’s [40] as seen and generalized
by Gromov in his book [32].

1. Gromov groupoids of diff-invariant relations

Let © be a pseudogroup of diffeomorphisms of V' (see Chapter 1, Section 2), and suppose
p: E — V is a smooth fibre bundle.

DEFINITION 40. An extension of © to E is a pseudogroup of diffeomorphisms D of E and a
map
DD
h— h*

satisfying :

1

e domhy = p~'domh and codomh, = p~ ' codom h;

e (idy)s =idp-1y;
o (h/loh)* :hl*oh*

Such an extension is called continuous if for all open U c V', the induced
Diff(U) — Diff(p~1U)
s continuous.

EXAMPLE 5. Tensor bundles, Grassmann bundles, and such, all admit natural continuous ex-
tensions of diff (V).

Observe that such a continuous extension induces continuous extensions to all jet bundles of E.
Assume then given a continuous extension of some © to E. This provides an action of © on
sections of F, hence of J"FE.

DEFINITION 41. The sheaf ® c (-, E) is called D-invariant if it is left invariant by D.

Observe that an action of some © on ® has a natural prolongation to an action of ® on ®”;
concretely,

de®, Fed"(domd)
(dyF) : (v1,02) = doF(d 'v1,d 'v2)

Bear in mind that in the case of natural bundles there is a canonical extension of ®. We also
refer to “invariance“ tout court to imply diff (V)-invariance.
Moreover, if 'y 3 V denotes the (étale) topological groupoid of germs of local diffeomorphisms,

Iy = {germ, d : d € diff (V), v € dom d}

27
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with the sheaf topology, and I is the subgroupoid consisting of germs of those local diffeomorphisms
in ®, the invariance hypothesis gives continuous actions

Etale(®) xy I' — Etale(®)
Etale(®") xy I' — Etale(®”)

We will denote the associated action groupoids by ¥ and E?b, respectively, and call them the
Gromov groupoids of ®, ®".

(Note that another description of these groupoids is obtained by considering the étale spaces
associated to ®, ®” as non-Hausdorff, smooth n-dimensional manifolds, obtained by glueing of local
sections; then ® can naturally be regarded as a pseudogroup of local diffeomorphisms of these étale
spaces, and thus give rise to groupoids by taking germs at points.)

Observe that the natural

P — @’
induces a continuous homomorphism
Yo — X
as well as forgetful maps
Y, 0% —» T

Let us now turn to case of diff (V) invariant sheaves ®,®”. Such sheaves are equivariantly
modelled on sheaves on R™ by which we mean that there is a diff(R™)-invariant sheaf ¥ on R",
such that for every point x € V there is an open neighbourhood U and compatible equivariant
isomorphisms

OlU —— U

-

VU —— WU

DEFINITION 42. A Gromov ®-structure on a topological space T is a Hefliger Xy -structure
on T; the collection of all such is denoted by H'(T,®). Similarly, a Gromov P -structure on T
is a Hefliger Z?I,—structure on T; we denote their reunion by H* (T, ®").

REMARK 43. Observe that the above construction/definition depends only on the local equivariant
model ¥ of ®, and not on ¢ itself.

Let us unwind the above definition. If a Gromov ®-structure ¢ € H(T; ®) is represented by a
cocycle

F:Tuﬂz\p

then it actually consists of the following data :

(1) Continuous maps
vi : U; — Etale(P)
(2) For each i, j, a continuous
vii Ui nU; = Ty
such that

Vi = ¢f



1. GROMOV GROUPOIDS OF diff-INVARIANT RELATIONS 29

On the other hand, a cocycle
F:Ty— %5
consists of :
(1) For each i, there is a continuous map
fi : U; — Etale(0)°
(2) For each i, j, a continuous map
vii : UinU; = Ty
such that
ViixPi = @5
But observe that to give a point in Etale(\Ilb) above a v € V is the same as giving a germ at v of a
continuous map
Op(v) — ¥(Op(v))
so that the data defining a Gromov ®°-structure consists of
e Quasi-continuous
fi : Ui — Etale(¥)*P
and quasi-continuous
Yij Ui nU; = Ty
Yijefi(v) = f3 (V)
where Etale(¥)'P is defined as having the same point-set as Etale(¥) and a map
f: T — Etale(¥)™*P
is distinguished if the composition pf : T — R™ is continuous and for each tg € T thereistoe T c T
and pf(tg) € U € V and a continuous map
F:T - Y({U)
with
f(t) = germ,, ;) F(2)
for all t e T".

In this parlance, those quasi-continuous maps f : T" — Etale(¥)'*P which factor through the
natural quasi-continuous map

Etale(¥) — Etale(¥)"P
are those for which the F' in the description above is locally constant, i.e., T being chosen small
enough, F' should factor through pt — ¥(U).
Recall also that we have natural (forgetful) transformations
$H: H1(7q))aH1(a(Db) - Hl(vrn)

so we are entitled to speak of the Gromov ®’-structure underlying a given Gromov ®-structure,
and of the I',-structure underlying a given ®- or ®’-structure.
Note that if V' is an n-manifold there is a well-defined

&, (V) > H Hrv) = H(V)
o6y

where {(U;, i« (©|U;), v;i)} represents &, and {(U;, Vi, v;:)} represents the differential structure
of V.
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Conversely, if F' = [{(U;, v, 7;i)}] represents a Gromov ®-structure on V, and
v =$HFe HY(V;T,)
then
pr(r) = (45), F
is a solution to ®, pr € ®(V), and clearly
®QOF = F7 Pe, = ¢
Thus

are mutually inverse bijections :
PROPOSITION 44. Solutions to ® can be identified with Gromov ®-structures lying above T/ .

DEFINITION 45. Let
Fe HY(T;®)

be a Gromov ®-structure.
A graph of F' consists of :
(1) a bundle p: E(F) — T with fibres diffeomorphic to R";
(2) a section s: T — E(F);
(3) a Gromov ®-structure &(F) € HY(E(F);®), whose underlying T,,-structure defines a fo-
liation transverse to the fibres of E(F) — T, and such that the following tautological
equation holds :

s*S(F)=F
Two such data (Eq, po, S0, ®0), (F1,p1, 1, B1) are identified if they they have isomorphic germs along

the sections :

germsoT(E07p07 ®0) = germslT(Ehpl) 61)

We proceed to construct a graph for Gromov ®-structures over a (paracompact) T
PROPOSITION 46. Let T be paracompact. Then every Gromov ®-structure on T has a graph.
PROOF. Let a cocycle for Gromov ®-structure

F:Ty— 3

be given, and set s; := p o ;.
By the sheaf topology in Etale(¥), we can assume (at the expense of refining i), that the ;
are globally defined, i.e., that there exist open sets

s;(U;)) c W; cR"
and sections ¢; € W(W;) with
Ui sz = p] = germ,, ;) ¢
If T is paracompact, we assume further that i is locally finite, i.e., that the sets
J(x):={i:U; n Op(x) # T}

are finite for each z € T
Fix now z¢ € T. Given i, j distinct indices in J(x¢), the equation

ViixPi = ¥j
implies the existence of :
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(1) an open subset U;? < U; n Uy;
(2) open subsets
Si(xo) € ijo C Wl
Sj(xo) € O;:Z»U C Wj
(3) a diffeomorphism
o2 Of S 0Fp
satisfying
05 (0il07)) = 61037
'Y;’Ei = germyg, (y) U]I’z’o
for all x € U}"S.
Set then
vt = (U7
J#i
and note that the equation
Veg Vit = Vi
for each i,j,k € J(xp) implies that for some smaller O
level of representatives :

ik © 05 n O, this equality hold at the

zo

o __ Zo
Okj 05 = Opy

so that we can choose open sets
oy (o
3k
so that, for x € U*° and all i, j, k, we have
Pi = germy, (, d;
Vi) = germy, (077
Construction of E(F') : For each i, we consider a neighbourhood O; of the graph of
si: U —>R"
of the form
0, = |JUurxof
xeU;
After possibly shrinking the O;, we can identify O; with O; over U; n U; by the maps
(z,y) = (z,05;(y))
and define a fibre bundle with fibres diffeormorphic to R™,
E(F)>T
obtained from
pry: O; - pr(0;) T :

by glueing, after having possibly shrunk the O;’s once more.
This bundle comes equipped with some extra structure arising tautologically from F', namely :

A section s: T — E(F): Indeed, the local sections s; of pr; : O; — pri(O;) glue into a
global section s : T'— E(F') according to

o508 =s; onU
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A Gromov ®-structure &(F): Observe that
|Jurxo;
zEUi

carries a Gromov ®-structure ®;(F) induced from ¢; € W(W;) by pr,. Thus the underlying
[, -structure P&;(F) is that induced from pr, by the foliation of R™ by points — and is
thus transverse to the pr;-fibres.

Now, the equation

Tjixbi = ¢5 on U*

implies that such partial Gromov structures &;(F) agree on overlapping domains, thus
giving rise to

S(F) e H(E(F); 3)
with P&(F) transverse to the fibres of E(F) — T.
Finally, observe that
s*&(F)=F
holds tautologically. O

We highlight a few points that follow from the proof of the above Proposition :

(1) First, observe that, for any smooth manifold (of arbitrary finite dimension), the correspon-
dence

H'(W,T,) 3 Fw &(F)e H' (E(F),T,)
factors through the inclusion
Fol’ (E(F) —» W) — H'(E(F),T,)

(2) Moreover, observe the commutativity of
H(V: @) —> H'(E(), @)
. 1
H'(V:Ty) —= H'(E(),T)
and that, in fact,
G(HF) =9H6(F) and E(F)= E(HF)

2. Flexibility

In the next three sections we follow [32]’s exposition closely.
This section deals with the homotopy-theoretic condition on a sheaf of quasi-spaces ® to ensure
that its weak homotopy type is recovered from its local weak homotopy type.

Suppose @ is a sheaf of quasi-spaces on V, ® : O(V)°P — QTop.

Observe that, for any subset S of V', the sheaf of ®-germs along S naturally inherits the structure
of a sheaf of quasi-spaces on S, and inclusions of subsets S c S’ give rise to morphisms of such
sheaves.

DEFINITION 47. We say that a sheaf of quasi-spaces ® is flexible over a nested pair of compact
sets C' © C if the induced

d(C') - ®(0)

is a Serre fibration.
A sheaf @ is called flexible if it is flexible over all pair of nested compact sets (C’,C).
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EXAMPLE 6. Top(-,T) with the compact-open topology, where T is a fized topological space, is
flexible.
The sheaf Hol(+; J"E) of holonomic sections of J'E —V,

Hol(U,J"E) ={F:U—>JE:F=j"f fel(UE)}
is flexible.

The sheaf Z55() of closed p-forms is not flexible over (DP™!, 0DPTY), having Stokes’ theorem
as obstruction; thus it is not flexible. But the sheaf BY(-) of exact p-forms is flexible.

LEMMA 48. A sheaf ® of quasi-spaces on V is flexible iff the restriction of ® to every simplex
of a triangulation of V is flexible.

PROOF. The “only if” is obvious, and the “if” part can be dealt with by this inductive argument:

Choose a triangulation of V and denote by ¥ the resulting simplicial set. Define Sk* ¥ to be
the subcomplex generated by the k-simplices of 3. Suppose now that ®|| Sk* Y| was proven to be
flexible. Let C < C’' |Skchrl Y| be a pair of nested compact sets, and let there be given

P x {0} ——= &(C")

7
-
-
- h
~

PxI o(C)

h
Observe that

®(| K+ x|) — L1®(00)

is a pullback diagram, where o ranges over non-degenerate (k + 1)-simplices of ¥, and that by

hypothesis
[]e() - [[e(00)
o(|Sk* x|) - [ [®(00)
are Serre fibrations.
Hence a solution to the induced

P x {O} N 1;[@(0’ N Cl)

7z
-
-
e
-
-

PxI 5 HCI)((?JGC')

can be lifted to a solution of the original diagram. O
By refining triangulations, we conclude that :

COROLLARY 49. ® is flexible iff it is locally flexible, i.e., iff © restricts to flexible sheaves over
the open sets of a covering of V.

Being flexible means that deformations of section over compact sets C

PxI—®(C)
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can be represented by deformations
PxI—>oU), UoC

which are stationary (i.e., independent of ¢ € I) outside as small a neighborhood of C as we like.
This is made precise in the definition and lemma below.

DEFINITION 50. Let P be a compact polyhedron, C < V' compact and
h:PxI—->®U), UoC
a homotopy, and
CcUyc ClUy) cU
A C-compression of h into Uy is a new homotopy
h:Px[0,1] - ®(U)

of the same h|P x {0}, which is independent of t € [0, 1] outside Uy, and which coincides with h near
C.

A homotopy h as above will be called compressible if, for arbitrarily small Uy D C, there exist
C-compressions h of h into Uy.

LEMMA 51. Let ® be a sheaf of quasi-spaces. Then ® is flexible iff for every C ¢ V' compact,
all homotopies

h:PxI—->®U), UoC
are C'-compressible.

PROOF. Suppose @ is flexible. Choose some Uy c Cl(Up) € U and consider the diagram

P x {0} —L > a(C1Uy)

7
-
-
< R
-

P x[0,1] T><I>(COU0)

where CeUp := Cu (Cl(Uy) —Uy) and the bottom arrow is defined by requiring that it be stationary
on (Cl(Uy) — Uy) and restrict to h|C over C.
Out of I/, define h as
~ R (p,t if v e U
h(p,t)|1): (pv )|U Hve -0
h(p,t)lv  otherwise

Conversely, suppose we are given a diagram

P x {0} = a(C)

7
e
e
l g hl i

P x[0,1] — 0(C)

and we know that h is compressible. Then choose Uy o C with Cl(Up) € C’, and a C-compression
h of h into Up. Then define

h(p,t)|v  if ve Uy

f(p)|v otherwise.

mew={

This correctly defines the required lift. O

The importance of flexibility is described in the following
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THEOREM 52. Suppose ®, U are sheaves of quasi-spaces on V, dimV = n, that U(V) # & and
that, for some k =1,
p: P ->T
is a local (n + k)-equivalence of sheaves, i.e., that it induces (n + k)-equivalences of stalks
Py By =,
If &,V are flexible, then py : ®(V) — U (V) is a k-equivalence.

The claim will be proved in a sequence of lemmas.
Suppose to begin with, let ® be a sheaf of quasi-spaces on V', and for a finite polyhedron P, let
&P be the P-parametric sheaf on P x V.

PROPOSITION 53. ®F is flexible if ® is flexible.

PROOF. In view of Lemma 49, it suffices to prove that if P = A* and C' < C’ are compact sets
in V, then (C’ x P,C x P u C' x 0P) is ®F-flexible.

Let then
Q x {0} ———=dF(C" x P)
| ]
QxI—>dP(Cx PuC xdP)
be given.

These correspond to maps

fiPxQ— o)

and
Op(aP) x Q x T —2 ®(C")
PxQxI o(0)

with

09 = f on dom(f) ndom(dg') = Op(dP) x Q x {0}
Therefore, d¢g’ and f together define a

(PxQxI)y —" &)

’ -7
g _ -
—
—
—~
-

PxQxI———>(C)
where
(PxQxI):=(PxQx{0})u(Op@P)xQxI)cPxQxI
Since P x @ x I deformation retracts onto (P x @ x I), when ® is flexible we can always

solve the latter diagram, and the solution g’ corresponds to a @ x I — ®¥(C") solving our original
problem. O

Let now ¥ be another sheaf of quasi-spaces on V', and
p:d—-> U

be a morphism.
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Then just as in the case of topological spaces, there is a path-space construction to ¢ :
$: O(V)°® - QTop
d(U) c o(U) x ¥ (1)
BW) = {(6,7) : 1(0) = 9())

which comes equipped with a fibration

Q: R
Pu (¢, 7) =~(1)
and a canonical homotopy equivalence
=X XY
pu(¢,7) = ¢
ju(¢) = (6, ¢)
so that
P— T
N A
d
commutes.

Observe that if P is a finite polyhedron, the assignment
DL LN
commutes with that of path-spaces in the sense that the path-space construction applied to ¢!
coincides with applying the parametric functor —F to the path-space construct of ¢.

LEMMA 54. If & is flexible, then so is 3.

PRrROOF. The proof of the lemma consists of the observation that evy : W — W is a fibration,
hence pr : ® — @ is also a fibration, whence h” below

f

P x {0} (C”) > o(C")
i h'/ - 1/h4v P - l
Pxl () ®(C)

can be found due to the flexibility of ®, and this produces h’ as a solution to

P x {0} SN (C")

h'/1
-
-
-

P x IT@(C’)

Now suppose that ®(V') 3 ¢ and consider the fibre sheaf
Q:0(V)°® - QTop
QU) = ¢~ (¥IU)

LEMMA 55. Q is also flexible.
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PROOF. The proof consists of the following observation : a lifting problem for Q(C") — Q(C)
can be written as the problem of finding A’ below

P x {0} 3(C1) —=W(C")
h' /1 _ -7
p /: _ - }II
PxI——=3(C) T(0)
7

where the upper composite is the constant map at 1|C” and the bottom one, that at ¢|C. Now
® — ¥ a fibration means that we can solve

P x {0} —= &(C")

l h'/1 \L
-
-
-

Px]——0(C)
P|C!

and thus solve the original problem. O

LEMMA 56. Let ® be a flexible sheaf on V, and f : V. — W be a proper map. Then f.® is
a flexible sheaf on W. In particular, push-forwards of flexible sheaves over compact manifolds are
always flexible.

PRrROOF. Obvious. 0

LEMMA 57. If Q is a flexible, locally 1-connected sheaf on a compact subset C < R, then Q(C)
is connected.

PRrOOF. There is no loss of generality in assuming C' connected, i.e., C' = [a,b]. Let wg,w; be
two global sections. Observe that, for each v € V', there is € = e(v,wp,w1) > 0 such that

w0|B$ (v) can be joined by a path A, (¢) to w1|B# (v)

Let then 0 < 1/N < e(v) for all v € C, and decompose C' into C; u Cy, where
C1 = [ [l2i/N, (2i + 1)/N]
Cy = [ Ji(2i = 1)/, (20)/N]

Thus we have homotopies A (t) between wp|C; and wq|Cy, and Ay(t) between wg|Cy and w|Cq, but
they do not necessarily agree on the finite set C; n Cy = {i/N}.

But since we assume that €2 is locally 1-connected, there exists a homotopy v between A1 |Cy; N Co
and A2|C1 N Cy :
A1

I x {0} 7Q(C’l)

IxT1-— Q(Cy n Co) = [[Q(i/N)

A solution 7 is a homotopy of A\; € Q(C4) to some A which agrees with Ao around C; n Cy, so we
can glue them into a single path

v

A:(1,0,1) = (C),wo,wr)
O

COROLLARY 58. If Q is a flexible, locally (k + 1)-connected sheaf on a compact subset C < R,
then Q(C) is k-connected.
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PROOF. Follows from the fact that QF is (locally) 1-connected for all polyhedra of dimension
at most k iff it is (locally) (k + 1)-connected, and that QF is flexible by lemma ??. O

Let us make use of the following auxiliary notion : let K(V') denote the poset of compact subsets
of V, and let
w:RV)->N
assign to each C' € K(V) the least m € N such that C embeds into R™. This is well-defined as V

itself embeds into some finite-dimensional Euclidian space.

LEMMA 59. Let ) be a flexible, locally (k + n)-connected flexible sheaf on V, and let C be a
compact subset. Then Q(C) is k-connected, and Q(C’) is (k + 1)-connected for all non-empty C’
obtained by intersecting C' with a hypersurface in V.

PRrROOF. If u(C) = 1, this boils down to the Corollary 58. Suppose then that the claim has been
proved for all ¢’ with u(C’) < m, and let u(C) = m. Choose a hyperplane H ¢ R™ and consider
the orthogonal projection

fR"=H®R>C->R

By Lemma 56, the sheaf f,€ is a flexible sheaf on f(C) c R.

Note that the stalk (f+Q)(c) over a ¢ € f(C) € R is Q(f~!(c) n C). But by construction,
u(f~1(c) n C) < m, so that by the inductive hypothesis we know that Q(f t(c) n C) is (k + 1)-
connected. Thus f,Q is a locally (k + 1)-connected flexible sheaf on f(C), so that Lemma 58 once
again applies, and proves Q(C) = (f«Q)(f(C)) to be k-connected. O

PROOF OF 52. Choose an exhaustion of V' by compact subsets :

v=Ja
C; c gi+1

Observe that we are assuming that the fibre sheaf €2 (which is flexible itself) is (n +k — 1)-connected,
and everything boils down to showing that Q(V) is (k — 1)-connected.

Since all the Q(C;)’s are (k—1)-connected by Lemma 59 and all Q(C;.1) — Q(C;)’s are fibrations,
then

Q(limC;) = limQ(C})

is also (k — 1)-connected. Hence ®(V) — ¥(V) is a k-equivalence, as claimed.

3. Microflexibility

We now turn to the “micro” version of the concepts discussed above. This is especially useful
since this is a form of “local” version of flexibility which is easier to detect.

DEFINITION 60. A homotopy
h:PxI—®U), U>DC compact

will be called C-microcompressible if there exists e = e(h) > 0 such that C-compressions of h|[0, €]
exist into arbitrarily small neighborhoods of C.

That is, it is required that there be € > 0 such that, for small enough Uy D C, there is a new
homotopy

h:P x[0,] - ®(U)
of h|P x {0} which coincides with h|P x [0,e] around C and is independent of t outside Uy.
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The set of all points v € V' for which the value of E(p, t)|v depends on t for some choice of p € P

will be called the support of h, supp(ﬁ) c Up.
REMARK 61. Let us just highlight an important subtlety of this definition : while the homotopy

h itself is allowed to depend (and actually always does) on the particular choice of neighborhood Uy,
the € should be independent of this choice.

Clearly, every C-compressible homotopy is also C-microcompressible. Therefore, in a flexible
sheaf @, all homotopies of sections over compact sets are C-microcompressible. In fact, the converse
also holds :

PropPOSITION 62. If all homotopies
PxI—®C)
are C'-microcompressible, then all such homotopies are C-compressible as well.
PROOF. Let
h:PxI—->®U), UoC

represent a such homotopy.
Define

WP x I x I — &)
B (p,t, s)lv := h(p,min(1,t + s))
Fix Uy o C; and let

B P x I x[0,e] — ®(U)

be a compression of h'|P x I x [0,¢] into Uy. This means that upon restricting the original h to
P x [a,b], for any b — a < ¢, is C-compressible into Uy.

Fix then N > 1/¢ and suppose for i < iy, we can find a C-compression h of h|P x [0,i/N] into
Up. By definition of C-compression, h and % coincide around C, on some U; D C, say. Then a
C-compression h; 41 of h!|P x I x [i/N, (i + 1)/N] into U; can be glued to h, and this produces a
C-compression of h|[0, (i + 1)/N] into U.

Hence, by induction, the whole h C-compresses into Uyp. O

The lemma shows that we do not obtain a broader class of sheaves by relaxing the compressibility
property to that of mcrocompressibility.

There is, however, a way to in fact enlarge this class of sheaves by the following observation : the
microcompressibility property for homotopies of sections around a compact C provides a universal
€ > 0 such that the restricted homotopy can be compressed into an arbitrarily small neighborhood
Uo of C.

We could thus consider the less stringent condition on a sheaf ® that :

Given a homotopy h of sections around a compact C' and an open Uy D C| there is
a € = e(h,Uy) > 0 such that h|[0, ] is compressible into U.

That is, we can allow ¢ to depend on Uy as well.
DEFINITION 63. Call the sheaves of quasi-spaces ® that satisfy the property above microflexible.
PROPOSITION 64. A sheaf of quasi-spaces ® is microflexible if and only if

d(C') — &(0)
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is a Serre microfibration for each pair of nested compact sets C' o C, i.e., given P a finite polyhedron
and commutative diagram

P x {0} ——= &(C")

L

PxI B(C)

there is € > 0 with
P x {0} —— ®(C")

7
—
—
—
—
—
—
—
—

P x [0,¢] PxI o(C)

solvable.
PROOF. Suppose first that ® is microflexible, and that
h:PxI—®U), U>C compact

and Uy are given.
We can assume that Cl(Up) < U is compact and then consider the lift

f: P x{0} - ®(ClUyp))
of the restriction of h|P x {0} to C' U (ClUy — Up). A lift h of h|[0,e] provides the required C-
compression into Uy.

Conversely, suppose given any homotopy h and open set Up, there is a C-compression of h|[0, €]
into Up. Given the problem

P x {0} ——> &(C")

/7
\L ///hl \L

choose C1Uy c dom(h), C-compress it to h and define b/ by

h(p,t)|v if ve Uy
fp)|v otherwise.

mew={
O

EXAMPLE 7. Let R € J"E be an open differential relation. Then its sheaf of solutions ® is
microflexible.

As an useful technical remark, let us point out in the following lemma the following “duality”
between domains of definition and support, in the presence of microflexibility :

PROPOSITION 65. Suppose
h:PxI—®U)

for C c U, is given.
If @ is microflexible, given Uy D C, we can find € > 0 and a C-deformation

h:PxI— &)
of h which is independent of t outside Uy if t < €.
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PRrROOF. Consider the homotopy
h:PxIxI—®U)
h(p,s,t)|v:= h(p,min(1,s +t))|v
Microflexibility provides e(h,Uy) > 0 and a
B P x1Ix[0,e] - ®(U)

which coincides with h around C, starts at h|P x I x {0}, and is independent of ¢ outside Uy. Let
then

h:PxI— o)
h=H|Px1I x {c}
This h has the required properties. O

4. Sharp Actions by Diffeotopies
In this section we describe a condition which ensures flexibility of germs of microflexible equi-

variant sheaves ® along submanifolds.

Let © < diff(V') be a sub-pseudogroup of local diffeomorphisms of V.
The notion of ®-diffeotopy of an inclusion U — U’ of open sets is then defined in the obvious
way, i.e., as a smooth

d:UxI—-U'
d; €®, dy= the inclusion U — U’

Suppose then that J is a collection of diffeotopies
d,:U-=U, U>dV
where Vj is a closed subset in U, and fix a Riemannian metric on V.
DEFINITION 66. Call J strictly moving a subset S < Vy if there is
disp(J,5,Vh) > 0
such that for all d; € 7,
t > 1/2 = dist(d(S), Vo) = disp(T, S, W)

DEFINITION 67. J is called sharp at S if, for each v > 0, J contains a ©-diffeotopy strictly
moving S, which is stationary if t = 1/2 or dist(v,S) > v.

Thus J is sharp at S (roughly) when it contains isotopies which can strictly move S and yet can
be S-“compressed”. Finally,

DEFINITION 68. A submanifold Vo < V is called sharply movable by ® if each point v in Vg
admits a neighborhood U c V' such that, for every closed hypersurface S in U NV, there is a set
J=73(,U,S) of D-diffeotopies Vo n U — U strictly moving S < Vy, and which are sharp at S.

Suppose now that, for a fixed smooth manifold F,
Op: O(V)? - QTop
(V) = C*(U, E)
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DEFINITION 69. Say that a D-diffeotopy dy : U — U’ acts on a subsheaf ® — Pg if the
assignment
Dp(U') - d5(U)
¢ dfy
preserves P.

THEOREM 70. Suppose ® is a microflexible sheaf of quasi-spaces on V', with Vo < V sharply
movable. Then ®|Vj is flexible.

PROOF. According to corollary 49, it suffices to prove that ®|Vj} is locally flexible. That is, that
given any point v € Vj, there is v € U c V such that, given any compact C' = U and homotopy

h:PxI—®U)

there is a C-compression of h|(Vy n U) into arbitrarily small neighborhoods Uy of C. Moreover,
according to Proposition 62, it is enough to find a C-microcompression.

Choose then U as the neighborhod of v in V ensured by Definition 68.

Let Uy denote a small neighborhood of C' in Vy n Uy. Choose M (depending on Up) to be
a compact codimension-zero submanifold of Uy which contain C' in its interior. By invoking the
sharp movability hypothesis, we can find a set J of D-diffeotopies Vy n U — U, strictly moving
OM c Vo n U, and sharp at oM.

Localizing h in U: Let first disp(J,5,Vy) > p > 0 be such that the closure of the u-
neighborhood B, (C) of C is contained in U, and contains Up. (Bear in mind that the
construction need only hold for sufficiently small Uy). Observe that, by definition of mi-
croflexibility, we can C-microcompress h into B, (C), i.e., there is ¢ = e(h, ) > 0 and
homotopy

B P x[0,e] » ®(U)

of h|P x {0}, agreeing with h around C whenever they are both defined.
Further compression: By means of Proposition 65, we can assume that, for some § =
(S(h7 Uo) > 0,

supp(7'|[0,8]) A Vo < Up
Observe that, were the choice of § independent of Uy (as € is), we would be done. Our task then is
to find a Up-compression of the whole of h’, not just up to time 4.
Using J: Let now
0 < v < min(dist(dM, C), dist(0M, dUy))
and use sharpness at 0M of J to find a d; € J such that di(v) is independent of ¢ if either
t>1/20rv¢ B,(0M).

Now note that d;/§ is is stationary for ¢t = §/2, so we can regard it as being defined on [0, £] instead
of [0, d].
Let us now define

h:Px[0,e] > ®(VonU)

~ ~/ .f M
Rp, )l o= {0 Dl (V) toen
h (pa mln(ta 5)) |dt/6(v) otherwise.

Observe that, by the choice of p,
di(0M) ~supp(h') = @
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so that if v € M,

1 (p, )| dyy5(v) = B (p,min(t, 6))|dyys (v)
for t = §. So the formula above is well-defined.

Now, since dy(v) = v for v € VynU, this defines a homotopy of h| P x {0}; moreover, by the choice
of v, di(v) = v for v € Op(C), so h and I’ agree on a neighborhood of C. Finally, supp(h) < Up;
indeed, this is ensured, for ¢t < §, by the “Further compression” step, and, for ¢t > §, by the choice
of v. |

5. Open manifold pairs
DEFINITION 71. A manifold V is called open if it admits a proper, positive Morse function
f:V-oR
without local mazima.

Let V' be an open manifold, and V) a subpolyhedron of V — i.e., a subcomplex of a smooth
triangulation of V.

DEFINITION 72. (V,V,) is an open manifold pair if the following holds : there exists a
subpolyhedron of positive codimension K of V, called a (V,Vy)-core, such that, for every open
neighbourhood Vo u K < U’, there is a smaller open neighbourhood U < U’ of Vo u K and a
diffeotopy

di: Vo>V
di|(Vo v K) = id(y, o)
of the identity map do = idy to a map di that sends V into U.
The crucial example for our applications is this :
PROPOSITION 73. Let
f:V->R

be a proper Morse function without local maxima. Then (V,Morse(f)) is an open manifold pair,
where Morse(f) denotes the Morse complex of f.

PROOF. Just note that the hypothesis on the absence of local maxima says that Morse(f) has
positive codimension in V', so (for some choice of Riemannian metric on V') the flow of the gradient
—V f contracts V into as small a neighborhood of Morse(f) as we want. O

6. Classical Corollaries

Let us first observe a few practical consequences of what has been developed so far.
First, suppose ® : O(V)°P — QTop is any sheaf of quasi-spaces.

PROPOSITION 74. ®” is a flexible sheaf.
PROOF. Let C' © V be any compact, and let
h:PxI—®U), U>sC
be given. Choose
CcUycClUycU
and a smooth
0:U—->R
0o|OpC =1
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supported in Uy. Now define the Uy-compression
h:PxI— 3"
h(p, t)]v = h(p, o(v))|v
O

COROLLARY 75. If ® is a flexible sheaf of quasi-spaces, ®(V) — ®*(V) is a weak equivalence,
hence the sheaf-theoretic h-principle holds true.

PRrROOF. Immediate from Theorem 52 and Proposition 74. ([

Next observe the :
PROPOSITION 76. Suppose
m: N -V

is a line bundle over a manifold Vy. Let D, denote the sub-pseudogroup of diff(N) consisting of
w-fibred local diffeomorphisms, i.e., giving commutative

domd 4> codom d

N A

PROOF. Obvious. O

Then D, sharply moves V.

COROLLARY 77. If Vo € V is a subpolyhedron of positive codimension, and ® is a microflexible
sheaf of quasi-spaces on V', then all forms of the sheaf-theoretic h-principle holds for ®|Vj.

PROOF. Direct consequence of Theorem 70 refined through Lemma 49, and Proposition 76. [J

COROLLARY 78 (Holonomic Approximation). Let (V,Vj) be an open manifold pair, K a (V,Vy)-
core and A = K u V. Given

F:(D*,0poD*) - (T'(Op A, J"E),j'T(Op A, E))
with
F|Op(Vy) : D* — j"T(Op Vo, E)

and arbitrary continuous positive functions €,6 : V. — R, there exist

(1) A continuous family of diffeotopies
d: (D*,0p dD*) — (Diff(V),idy)

which are stationary on D* x OpVy u Op 0D* x V and are §-small in the C°-sense — i.e.,
are such that

dist(p, d(1,q)(p)) < 8(p) for all (t,p,q) € I x V x D*;
(2) A continuous

F:D*xV >0p(dA) » J'E
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with
F|(Op(di4) n{q} x V) =: F, € j'T(Opd(; oA, E)
Fy|OpVy = F,|OpVj
F, = F, for g e Op(aD¥)
dist(Fy(p), Fy(p)) < e(p) for all p € Op(d,pA),q € D*

COROLLARY 79 (Approximation by exact forms). Let (V,Vy) be an open manifold pair, K a
(V,Vi)-core and A = K u V. Given

weQP(OpA)
with
w|Op(Vp) € O

exact

(Op Vo)

and arbitrary continuous positive functions £, : V. — R, there exist
(1) A diffeotopy

d: (I,0) — (Diff(V),idy)

which is stationary around Vy and is §-small in the C°-sense, and

we ngact(op(dlA))

@|OpVy = w|Op Vo
w|Op(diA)  C°-close to &

(We state the non-parametric version of the corollary; for full generality insert the proof below
into the full statement of Corollary 78).

PROOF. Observe first that
d:QIUV) — QYY)
factors as
d = symb(d) o j'
where
gL QUV) = QUV) — T(V, JLAIT*V)
symb(d) : T(V, J'AIT*V) — QIT1(V)

—

where we denoted by symb(d) the map, at the level of sections, induced by the symbol of d :
symb(d) : J'AIT*V — ATHIT*Y
Note that symb(d) is a fibration with contractible fibres; this means that, for any (¢ — 1)-form
n:V — ATITHY
we can find a lift
Fop:V = JATIT*V

—~——

symb(d)F,, = w, p(l)Fw),, =7



46 2. TOWARDS THE h-PRINCIPLE

Now employ Corollary 78 to produce the C%-diffeotopy d; and the holonomic approximation f’:;
along A :

Fu,|Op(diA) = j'7

Then & := dij C%-approximates w|Op(dyA), coincides with it around Vg, and 7 itself is C°-close to
n|Op(d1A4). O

REMARK 80. If Vo = & and & € HY,(V), we can approzimate any w € QP(Op A) by a closed
w € & by applying the previous corollary to the form w — @, for some W € £, and then considering
w0+ w.
Let now F € Fol?(W) and let
Trans(-, F) : O(V)°? — Top
Trans(-, F) < C* (-, W)
feTrans(U,F) & fAF
Similarly, let
Trans(T-,TF) ¢ Hom(T-, TW)
F e Trans(TU,TF) < FATF
Observe the natural continuous map
d : Trans(V, F) — Trans(TV,TF)
As an exercise in the taxonomy put forth in Chapter 1, Section 5, we state the next corollary

in abbreviated form :

COROLLARY 81 (Gromov-Phillips). The relative, C°-dense form of the h-principle holds locally
around Vo < 'V of positive codimension.

Note that if in the statement above (V,1}) is assumed to be an open manifold pair, then the
solution claimed by the corollary can be globalized, if we allow the C°-approximation to be dropped;
cf. Section 5.

7. h-principle as obstruction theory

The formalism of Gromov structures describes a certain “contravariant closure” operation for
sheaves of quasi-spaces

o H'(-, )

Unlike ® itself, H'(-, ®) makes sense for all spaces T, and behaves contravariantly with respect to
mappings 77 — T, and covariantly with respect to ® — ®’. This allows H'(-, ®) to be classified in
the sense of Theorem 25, which also identifies h'(-, ®) with [-, B®].

But, be as it may, our ultimate goal is to understand ®(V'); to this end, recall that we have
described a canonical embedding

- H'(-®)

which allows us to regard a germ of section of ® over a V, c V as a Gromov ®-structure on Vjp;
moreover, we described how to recognize, among those F' € H(V, ®) which correspond to ¢ € ®(V)
: namely, those whose underlying Heefliger structure (in the parlance of Section 1) is the differential
structure of V.

The advantage of this approach is that we can describe e-principles for “weak solutions” in a
fully obstruction-theoretic fashion :
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A pair (F, ') € (V) X v (1) P(Vo) gives rise to the (solid) commutative

7

Vo —— B
%
l - \L
7/
e
7
V ——> B’

with the induced V' — BT, classifying the differential structure on V.
We replace b : B® — B®” by the path-space fibration

B® d B
I A

and we consider the induced commutative
Vo —> Bd
" 7
l s lﬁb
Ve
- b
\%4 —5 B®
Suppose ¢” is a solution to this latter diagram; then

Vo —— B®
J{ ;DAPH /4 l
Ve
7/
d b
V—F2> B®
has strictly commutative upper triangle, and homotopy-commutative lower triangle.
This suggests considering ®*(V) := § =[] :
P(V) —— (V)
Y)l iﬁ
{ro} ——1[mv]

as a space of “weak solutions” to ® on V. Observe that for F € ®*(V), E(F) ~ TV as a fibre
bundle, and that

(V) —2> HY(TV, D)

| |
[Tv] — Fol’z (TV - V)
is a pullback diagram.
The moral so far is that we can ensure that any F € ® (V) with F|V € ®(Vp) is homotopic rel

Op Vp through families of parametric of ® to a “weak solution” ¢” € ®#(V') extending ¢’ by imposing
only conditions on the dimension of the pair (V,V;) and the connectivity of the map B® — B®" :

dim(V, V,) < conn(B® — B®”)

Now we need a procedure to “regularize” a weak solution as ¢” above to a true solution ¢ € ®(V)
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THEOREM 82. Let (V, V) be an open manifold pair. Then given
(¢, ") € (V) Xai(v) P (V)

there is a homotopy rel Op Vi of @" in ®H(V) to a o € ®(V).

ProOOF. Let

VSEW)LV

be a graph for ¢".

We know that

s|Op Vo : Op Vo — E(¢")

is transverse to the underlying H&(¢”) = &(H¢") € Fol'’x (E(¢") — V), and that s*&(Hp") is

concordant to 7y.
Observe that the problem of finding a

S € Trans(TV, TS(H"))
S|0OpVy =ds|OpVj

is inobstructed by usual transversality theory.
We can then apply Corollary 81 to find a (V, Vj)-core K, a diffeotopy d;, stationary around Vj,
and a

o € Trans(Op(d1 (K u V), &(H¢"))
U| OpVp = 3| Op W

together with a homotopy H of do to S| Op(di(K u Vp)) in Trans(TV, T&(Hp")).
Let h denote the corresponding homotopy of C*(Op(di(K u Vp), E(¢")). Then

I — H*(Op(di(K u Vp)), D)
t— hi®(y")

defines a homotopy rel Op Vj of ¢” to a ¢” € ®(Op(di(K u Vy)).
Now globalize the solution by means of a compression V' — Op(d; (K u Vp)). O

COROLLARY 83. If ® is an invariant, microflexible sheaf of quasi-spaces on V', then
B® — BP’
is an (n — 1)-equivalence.

REMARK 84. Actually, as follows from the folding e-principle of Eliashberg (see [21]), for mi-
crofiexible @, the above is in fact a weak equivalence. But since we are mainly concerned with relative
e-principles, we won’t stress connectivity above n.

8. Toy Example : Foliations

The sheaf of foliations Fol? of codimension ¢ is a typical example of a sheaf of differential-
topologic nature whose topology we would like to understand.

The flexible tools developed so far beg the question whether Fol? is microflexible.

This will be decided in the negative using the Godbillon-Vey invariant to provide obstructed
cycles for which the h-principle cannot apply.

Next, we will adress another obstruction to h-principles in the realm of foliations, namely Bott’s
obstructions. Finally, we sketch a general procedure of Heefliger’s to convert the (very overdeter-
mined) problem of integrability-up-to-homotopy of foliations into a homotopy-theoretic problem that
is positively solvable granted certain conditions — a particular case of a more general construction
of Gromov’s described in the previous section.

We would like in particular to address the following classical question, dating back to Reeb :



8. TOY EXAMPLE : FOLIATIONS 49

QUESTION. ;When is a codimension-q subbundle
Do cTV
homotopic trough such subbundles to an involutive one Dy = TF ?

The Godbillon-Vey class. Let us first make a digression into codimension-one foliations.
Suppose F € Foll(V) is a transversally orientable, codimension-one foliation of V. Then there
is a one-form

0eQL(V)
which annihilates precisely the vectors tangent to F :
ker =TF
Now, the fact that T'F is involutive is equivalent to
df=anb
for some other one-form «; upon differentiating this last equation we see that
danf=0=da=0Ap8,0 aone-form.
Note that
dla A da) = (da)? =@ AB)*=0
so that o A do defines a class
GV(h,a) e Hiz(V)
Observe that, given 6, « is defined modulo 6, and if we let
o i=a+ fo
then
o' ndo =anda—d(fanb)

so GV(0,a) = GV(0,a + f0).
Moreover, 6 itself is only conformally well-defined; if

0 =10, f#0
then
do' =0 A (a—d(log f))
so taking o’ := a — d(log f), we get
o' Add = a A da—d(log fda)

This shows that GV (6, a) only depends on the foliation F, GV = GV(F)!. Moreover, if F is not
transversally orientable, we pass to its double covering and observe that the expression

a A do
descends, so that GV(F) is defined for all codimension-one foliations.

DEFINITION 85. The cohomology class GV(F) € H3, (V) is called the Godbillon-Vey class of
F.

n fact, only depends on the cobordism type of F, but this is irrelevant for us at this point.
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Observe that GV is natural in the sense that?
GV(f*F) = f*GV(F)
f: V' =V transverse to F
Therefore, a foliation with non-trivial Godbillon-Vey class cannot be induced from one with
trivial Godbillon-class; in particular, no such foliation can be induced from a space with no non-

trivial 3 cocycles.
Now we can address the question of microflexibility :

THEOREM 86. Fol' is not microflexible.

PROOF. On the Lie group SLy(R) there exists a basis of left-invariant 1-forms
{0, a, 5}
such that :
dd=0ra da=0ApB, dB=anp

Let now I' © SL2(R) be a cocompact subgroup. Then 6 descends to V' = SLo(R)/T, and defines a
foliation F € Fol' (V') whose Godbillon-Vey class is represented by the left-invariant 3-form

anda=0Aranp

and hence is non-zero as a de Rham cohomology class.

Embed V in some large enough Euclidian space RY, N > 4, and extend F by means of a
tubular neighborhood to a codimension-one foliation F’ of a neighborhood of V in RV, /' nV = F.
Now, F’ can be extended to a codimension-one distribution D on the ambient space RY. But
by naturality of GV, D cannot be deformed through such distributions, relative to OpV, to a
codimension-one foliation. Hence the h-principle must fail over some (D*, 0D*), and so Fol' cannot
be microflexible. |

Bott’s obstruction to integrability. Roughly, it imposes certain vanishing conditions on
the characteristic classes of a distribution on V' which is abstractly isomorphic to a foliation. More
precisely, it consists of the following observation : let D is an integrable distribution on V', and

p: TV — v(D) =TV /D

be the projection onto the normal bundle to D. We can define

~

V:T(D) x T'(v(D)) — T'(v(D))
(W, 2) > p[W. Z]

where p(Z) =2

That this is well-defined (i.e., independent of the lift Z ) follows immediately from the fact that
p[[(D),T'(D)] = 0 since D is involutive. Note that this has all formal properties a connection on
v(D) would enjoy were it not for the fact that W is restricted to lie in D.

Now, if ¥ is any connection on v(D), and upon a choice of Riemannian metric we identify v(D)
with the orthogonal complement to D in TV, we can define a basic connection on v(D) by

v : T(TV) x T((D)) —> [((D))
W, 2Z) = Vyw)Z + Vwpw) Z

(A connection is called basic if it amounts to p[W, Z] when W € I'(D)). Hence basic connections
exist on the normal bundle to involutive subbundles.

2The transversality condition can be dropped and GV can be extended to all I'j-structures... but we don’t need
this here.
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Let now V be a basic connection on v(D) and denote by Fy its curvature. The latter can be
regarded as a two-form with values in endomorphisms of v(D) which, since the connection is basic,
vanish when restricted to I'(A%D) since the Jacobi identity holds for sections of D :

Fo(W,W')(Z) = p[W,[W', Z]] — p[W', [W, Z]] - p|[W, W], Z]

Thus, if I(D) denotes the differential ideal in Q°*(V') spanned by the 1-forms which annihilate D, we
see that Fy € I'(I(D) ® End(v(D))).

Suppose now that D has codimension ¢, i.e., that I(D) is locally free in g generators. Then any
product of ¢ + 1 elements in I(D) must vanish identically. If we now recall that via Chern-Weil
theory the real Pontryagin ring Pont(v(D)) < H3i(V;R) is generated by all cohomology classes
represented by elements of the form P(Fy), where P is an invariant polynomial, we see that the
real Pontryagin ring of v(D) must vanish above dimension 2¢. Since the real Pontryagin ring only
depends on the isomorphism type of v(D), we have :

THEOREM 87. If D is a codimension-q distribution of V which is isomorphic to an involutive
distribution, then

Pont*(v(D)) =0 for k > 2¢

Haefliger theory. So far, we have only described negative results concerning the problem de-
scribed at the beginning : Godbillon-Vey shows that in general the h-principle is obstructed, and
Bott’s obstructions impose conditions on the Pontryagin ring of v(Dy) for Dy to be isomorphic (and,
in particular, homotopic) to an involutive subbundle D;.

But we can provide a positive answer in the following form : denote as usual the groupoid of
germs of local diffemorphisms of R? by I' 3 R4, and by

d: Ty — GL,
the constinuous map which assigns to such a germ (the translation of) its differential.

THEOREM 88 (Heefliger [40]). Let Dy be a a codimension-q distribution in an open n-manifold
Vandlett:V - BGL,, £:V —- BGL,—4 and a : V — B GL, denote the classifying maps for the
bundles TV, Dy and TV /Dy, respectively. Then there exists a homotopy Dy of distributions starting
at Dy and ending at a foliation Dy = TF if and only if the following diagram can be solved :

BTy x BGLy,, _,
7
e inxl
e
.7 BGL, xBGL,_,

7
s D
e Exa
s

1% BGL,

T

where @ denotes the arrow (in the homotopy category hTop) inducing direct sum of vector bundles.
Moreover, Bd is (q + 1)-connected.

ProOF. Note that Fol? is germifiable, and denote by Dist? the sheaf of codimension-q distribu-
tions, and by Vect, the sheaf of rank-¢ vector bundles®on R™.

Swithin a specified set-theoretic universe... but let’s not get bogged down by unnecessarily precise language.
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Observe the natural maps
T : Fol? — Dist?
Fe—TF
V : Dist? — Vect, x Vect,,—,
Ew— (E+,E)
@ : Vect, x Vect,,_, — Vect,,
(N,EY» N@FE

where F — E* is induced by some auxiliary Riemannian metric.
Note that

@ (TV — V) = image (Dist? — Vect, x Vect,,_,)
and consider
BDist? — B Vecty x B Vect,_q

Now observe that Top(-, GL,) is the local equivariant model of Vect,, so
B Vect, = BTop(-,GL,) ~ BGL,
so we replace the map above by the corresponding
BDist! - BGL,; x BGL,_,
Now, there is a natural continuous map
d:Ty— GL,

assigning to each germ of diffeomorphism (the translation to the origin of) its differential.
Now, the universal Fol?-structure

Irors € H (B Fol?, Fol?)

defines a
BFol? - BI'y x BGL,,_,
making

BFol4 —— BI'y x BGL,_,

|

BDistd —— BGLy x BGLy,_q

homotopy-commutative, and it is easy to see that the above diagram yields a fibre weak equivalence.

Hence homotopy types of lifts of the diagram in the statement of the theorem correspond bi-
jectively to homotopy classes of deformations of Dy to a Gromov Fol%-structure on V' lying above
Ty . By the discussion in the previous section, such a structure is always concordant to a foliation.
Since the g-manifold S? x R9~% has one single smooth, codimension-q foliation, this implies that the
homotopy fibre of BFol? — BDist? is g-connected, and thus so is that of BI'; - BGL,.

Let now an element ¢ € h'(S9; Fol?) be given and represent it by some Fol?-structure on S¢ =
0Dt < U, where U is an open subset of the (¢ + 1)-dimensional disk, which extends as a Fol®-
structure on Dt

Now, applying the reasoning of Section 7 we can assume that £ indeed comes from a foliation
F1 on U. Now pick a

F € Epi(TU,TR?) ~ Trans(TU, T Fpy)
and use Gromov-Phillips to find a submersion ¢ : U — R? whose differential dg is homotopic in
Epi(TU,RY) to F.
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Now, the submersion
1
7 Op(557) — Rt
flx) = g(2x)

defines a Fol?-structure ¢ on Op(3 D7) which is a true foliation on Op(557) codimension-q foliation
Fo. Observe moreover that by the construction of f, there is a non-singula vector field X defined
on a neighborhood of 1/2 < |z| < 1 with X|Op(S?) = T'Fy and X|Op(35%) = TF;. Since all 1-
dimensional smooth disributions are involutive, the trajectories of X define a smooth, codimension-¢
foliation T'F on that neighborhood.

Now let € € HY (D% Fol?) be defined by glueing F and &'. This is the nullhomotopy & ~ 0 we
sought. O

COROLLARY 89. On an open n-manifold V with H*(V;Z) = 0 for alli > q+1, any codimension-
q distribution is homotopic to a foliation.






CHAPTER 3

Poisson Geometry

In this chapter we apply the machinery described in the preceding chapters to the differential
relation controlling Poisson structures.

1. Poisson Manifolds

Consider the commutative algebra C* (V) := I'*(V,V x R) of smooth functions on a manifold
V. A Poisson bracket on a smooth manifold V' is a Lie algebra structure {-,-} on C* (V') which is
a derivation of the commutative structure. Explicitly, it is an antisymmetric R-bilinear pairing

{,-}: CH (V) x C"(V) > C*(V)

satisfying
(1) © {{f,g},h} = 0! (Jacobi identity)

95

(2) {f,gh} ={f,gth+ g{f, h} (Leibniz rule)
for all f,g,h e C*=(V).
A Poisson bracket on V defines a Poisson bivector 7 € I'(V, ATV by

{f, g} = n(df A dg)

The condition on a bivector? 7 to define, via the above rule, a Poisson bracket (i.e., that it satisfy
Jacobi’s identity) is that its Schouten-Nijenhuis bracket® with itself vanishes identically :

[r,7] =0

see Section 3 for further details.

We will use the term Poisson structure to refer either to a Poisson bracket or its associated
Poisson bivector.

In terms of a system of local coordinates 1, ...,z, on V a bivector

1 0 0

induces

N, 9f 99 v (9f 09 Of dg
{fvg} = ZWU 0z; 6117]‘ - Eﬂ-” <6q;l ax]— axj ox;

1,J

IThe symbol {) always stands for cyclic sum; e.g.

O, (hgh 1y = {{.9h 1+ (Lo, b, £} + iR £ 9}

2We will employ the same notation for a bivector and its associated skew-symmetric bundle map T*V — TV.

3We recall that the Schouten-Nijenhuis bracket is the unique extension of the Lie bracket of vector fields to
a graded bracket on the space of alternating multivector fields that makes the alternating multivector fields into a
Gerstenhaber algebra. See Section 3

55
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which is a Poisson bracket iff

Ot
1 L =
M) z?k Zl: o0x; ke =0

We remark in passing that this is a (heavily) overdetermined system of non-linear (quasi-linear, in
fact) partial differential equations. The corresponding first-order differential relation will be denoted

IIc J'A*TV
We will denote by Poiss®  the sheaf of C™ solutions to I, » > 1, and by Poiss that of smooth

solutions. Notice that this is never void, as the zero bivector is always Poisson.
A differentiable map

o:V->W
between Poisson manifolds is called a Poisson map if the corresponding
0" CT(W) - C*(V)

preserves the Poisson bracket : o*{f, g} = {0*f, 0*g}; this is tantamount to saying that the corre-
sponding bivectors are p-related.
Clearly, Poisson manifolds and Poisson maps between them form a category, denoted JPoiss.
Observe that a Poisson structure {-, -} defines a map

{3:07(V) = x(V)
f = {f7 } = Xf
as follows from the Leibniz rule; this is called the Hamiltonian vector field of f. The Jacobi
identity implies that this is a homomorphism of Lie algebras :

[Xy, Xg] = X{f.9}

The rank of a bivector m € X2(V), not necessarily Poisson, at a point € V, rank, , is defined
to be the dimension of the span of Hamiltonian vector fields at . A point z is called m-regular if
the rank of 7 is locally constant at x; otherwise x is said to be singular. Clearly, m-regular points
form a dense open subset Reg(P) in V.

A bivector is called regular if Reg(m) = V; in this case, D := 7#(T*V) is a subbundle of
TV of rank k = rankn. Notice that m endows its image D with an almost symplectic structure
w € I'(V, A2D*), defined by

w(m(€),m(n)) :=m(&,m).

Conversely, any subbundle D c TV together with a nondegenerate two-form w € I'(V, A2D*) defines
a regular bivector m: it is the unique bivector such that the following diagram commutes:

ot
™V ——=1TV

D* *_1> D
w
where i : D < TV denotes the inclusion and i* its transpose.

Observe furthermore that the Lie homomorphism f — X above says, in the regular case, that
D is involutive, i.e., the tangent space of a foliation F, and the D-non-degenerate two-form w above
is easily seen to be closed on each leaf of F.

This is still true even in the non-regular case : the Hamiltonian vector fields of 7 define a singular
foliation on V| in the sense that every point x of V lies in a unique maximal integral (immersed)
submanifold £ — the leaf through z; each such leaf £ is equipped by 7 with a symplectic form w,
defined as in the regular case, with the immersion £ < V a Poisson map. This provides a nice
geometric description of a Poisson structure, but we will not pursue this point of view to avoid
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dealing with the monstrous technical difficulties of singular foliations; we content ourselves with
quoting a local structure theorem which will be employed elsewhere :

THEOREM 90 (Weinstein’s Splitting Theorem, [70]). If m € Poiss(V) has rank 2r at some point

p, then there exists pe U c V and a Poisson isomorphism

o=psxpny:U—8SxN
where S is a symplectic manifold of dimension 2r, and N is a Poisson manifold which has rank 0
at on(p)-

PROOF. If r = 0 the statement is vacuous. For r # 0, take f1, g7 € C*(Opp) with «(dfy,dg]) =
X597 # 0; by the fundamental theorem of ordinary equations, we can find g1 € C*(Opp) with
Xf 91 = 1. Therefore {Xy,, X, } Lie-commute, so we can complete {fi, g1} to a local system of
coordinates {f1, g1, Y3, -, Ydim v } With 7(dy;,df1) = 0 = w(dy;, dg1).

The obvious induction establishes then the claim. (|

Observe finally that, when p € Reg(w), N has the trivial Poisson structure.

2. Symplectic Realizations or Poisson as Folded Symplectic

We now turn to a discussion of symplectic realization of Poisson bivectors. From a conceptual
point of view, this allows to regard Poisson structures as a non-degenerate structure abiding by
some flatness conditions, namely, projectable symplectic structures. This will find some concrete
application in Sections 7-8. We follow closely the expositions of [16], [24] and also [70].

DEFINITION 91. A symplectic realization of a Poisson manifold (V,{-,-}) is a surmersion*

0:S—-V
of a symplectic Poisson manifold (S,I1) which is a Poisson map.

DEFINITION 92. A surmersion ¢ : S — V of a symplectic manifold (S,w) is called symplecti-
cally complete if the symplectic orthogonal to ker do is a foliation.

THEOREM 93. A symplectic realization of a Poisson manifold (V, ) is symplectically complete.
Conversely, if a surmersion
0:S->V
of a symplectic manifold (S,w) is symplectically complete and has connected fibres, there is a Poisson
strucure ™ on V. which is realized by (S, o, w).
PROOF. This is just this very simple remark : if
0:5-V
is a surmersion of a symplectic manifold (S,w), then
M (ker dg”) = ker do
where w =: II71. Otherwise said, the distribution (ker dg)* w-orthogonal to the foliation ker do
consists precisely of the II-Hamiltonians X+ ¢ of pullbacks of functions on V.
Therefore, if o is a symplectic realization of 7, then involutivity of ker dp“ follows from the

Jacobi identity for 7.
Conversely, if (S,w, o) is symplectically complete, then

[Xoi 5, Xp#g] € D(kerdo”), Vf,geC™(V)

implies that [X,« ¢, X,#4] is constant on the leaves of ker do“, and thus of the form p*h for some
h e C*(V) if g has connected fibres. O

4This language was coined by Thom; surmersion = surjective submersion
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REMARK 94. Observe that the corank of a Poisson tensor w realized by (S,w, ) at a pointpe V
is the difference

rank, 7 = dim V' — (ker d,0) n (ker d,0)*
A key fact is that every Poisson manifold admits a symplectic realization by some (exact !)
symplectic structure in a neighbourhood of the zero section in its cotangent bundle. To explain the

construction in a slightly invariant fashion, we must introduce some concepts first. Cf. [24, 16] for
further references.

DEFINITION 95. Let (V,7) be Poisson. A contravariant connection on T*V is a bilinear
map

VYV x QY(V) - QY(V)
satisfying
(1) Vyen = fVen;
(2) Vefn=fVen+ (Lugf)n
for all (f,€,m) € C*(V) x QY (V) x QY (V). A contravariant connection is torsion-free if
(2) Ven — V& = m(§ An)

If in addition T*V is equipped with a Riemannian metric {-,-) (as we will henceforth assume) we
can introduce the notion of metric contravariant connection V if

(3) Lﬂ'(()<§7 77> = <VC£a 77> + <£, VC”>

The fundamental theorem of Riemannian geometry has its counterpart in the contravariant
world :

THEOREM 96. There is a unique metric, torsion-free contravariant connection V on T*V | called
the Levi-Civita connection (V,7,{:,-)).

From now on, we will always assume that V is the Levi-Civita connection of (m,{-,-)).

DEFINITION 97. A curve a : I — T*V will be called o Poisson path if

dVa
(4) 24(t) = 7(a(t), 7= proa.
A Poisson path a is called a geodesic if
(5) Vaea =0

along vo : I = V.

As in the Riemannian case, the condition on a to define a geodesic turns out to be an ordinary

differential equation, so that there is always a unique maximal geodesic a¢ starting at a chosen initial
condition £ € T*V.

DEFINITION 98. Let G < T*V x R be the subspace of all (§,t) for which ag(t) is defined. The
geodesic flow of V is defined by

(6) G:G—T*V
(7) G(&,1) = ag(t)

THEOREM 99 ([16]). Let (V,7) be a Poisson manifold, pr : T*V — V the canonical projection,
and wq the tautological symplectic structure of T*V . Then if

1
(8) w ;:f Grupdt
0

there is an open disk subbundle S of T*V such that (S, pr,w) is a symplectic realization of (V, ).
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A slightly more down-to-earth description of the above w is to be found in [70], and goes like
this : let x1,...,z, be coordinates on an open subset U < V and vi,...,y, fibre coordinates on
T*U ~ U x R™.

Consider the map

f:T*U - R
fay) =y = Do
1

We regard f as an n-parametric family of maps

y—[Usz fz,y)]

and denote by &, the corresponding Hamiltonian vector field, &, := 7(df).
Let 1), denote the time-s flow of §,. Then set

wi:T*U - R
1
pi(w,y) == J z; 0 Yy (x)ds
0
Hence ¢;(x,y) is the average value of the z;-coordinate of the flow of the Hamiltonian field &, which

starts at « € U. Note that ¢;(x,0) = ;.
So the claim of Theorem 99 boils down to saying that

e QNT*U)
pi= Z idy;
1
is a primitive for a symplectic realization of 7 :
0 —a”
=0 7))

ox; i Ox; Ox; i

7=—a"tha "

We wish now to point out that the construction of a non-degenerate structure (S, w) lying above
m still makes sense, whether w is Poisson or not, provided we give up on either insisting that w be
closed or that w™! project down to m, as is necessary in light of Theorem 93.

The first possibility is to define the primitive ¢ as we did above, and then modify d¢ to some

w’ by setting
W = 0 —a”
“\a ¥V

b = —ama”

where

Then ' might no longer be closed, but by construction it is non-degenerate and w™' projects
down via pr to m. As m and a are globally defined, this local formula for w’ globalizes appropriately
by uniqueness.

This tentative replacement for “symplectic realization” seems tempting in that it is much easier
to deal with the integrability condition dw = 0 than that of [7, 7] = 0, as seen in Chapter 2, Section
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6. However, imposing additionally that the resulting non-degenerate bivector be projectable, which
means concretely that, in the notation above

0
—atba™™ =0 foralll<k<n
Yk
renders this pseudo-realization useless from the perspective of h-principles, as it converts the problem
of integrability into an even more overdetermined one.
Indeed, the projectability of (dyp) ! is controlled by a differential relation
Roroj © J2(d71Q2,) € J2T*S
Rproj = ker (symb Proj)
Proj : d1Q2%,(S) — @} X*(T*S)
d(dp)~t o(dp)~t
Proj: p — ( (dp) Sy (d) )
on OYn
as we can always assume that the fibres of S — V' are connected; observe that

2
codim j27x g Rproj = n( 2n)

50 Rproj is even more overdetermined than the corresponding Poisson relation II < J LA2TV, since

3

On the other hand, we may give up on projectability, and just consider the exact symplectic
form w defined in the statement of Theorem 99. The only thing preserved in this approach is that

pra(w V) =m

COdimJlAZTV II = (n>

DEFINITION 100. Call a
p:S->V
equipped with a section V. — S, a symplectic structure w on S where
pe(W V) =7
a symplectic pseudo realization of the bivector m € X2(V).

We will see applications of this later on.

3. Poisson as a Dirac Geometry

We follow the excellent exposition of [62] of the results obtained in [48], simplified through the
later work of [69].

Courant algebroids.

DEFINITION 101. A real Courant algebroid on a manifold V' consists of :
(1) A wvector bundle E — V;
(2) A bundle map p:E—>TV;
(3) A non-degenerate symmetric C*(V)-bilinear pairing {-,-) on the fibres of E;
(4) A bracket
[-,-]:T(E) x I'(E) — I'(E)
such that, for every triple eq,eq,e3 € I'(E), we have
C1. Derivation of [-,-]:

[e1, [e2, e3]] = [[er, e2], es] + [ea; [e1, es]]
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C2. Derivation of (-, -):
ple1){ez, e3) = {[e1, e2], e3) + ez, [e1, e3])
C3. (., ) controls skew-symmetric anomaly of [-,]:
[er, e2] + [e2,e1] = 17 p* (der, e2))
where
p*: T*V — E*
is the map dual to p and
h:E— E*
is the isomorphism induced by {-,-).
REMARK 102. Observe that [-,-] is not a Lie bracket on T'(E).

From these axioms, it follows formally that :

(1) [e1, fea] = fler, e2] + (p(e1)f) e2;
(2) p(les, e2]) = [pler), ple2)];
(3) pOh* o p* = 0;
(4) [e,5" 0 p*(u)] P (L e)ﬂ)
(5) [t o p*(w), 6]] 0 p* (Lo(e)dht)
for all e, e, e € I‘( ), f€ C“‘( ) and p € QI(V).
ExXAMPLE 8. Let TV :=TV ®@T*V and define {-,-) to be the natural symmetric (n,n)-pairing

X +EY +n) = (exn+ vl
anchor p : TV — TV projection to TV and bracket
[X+&Y 4] = [X, Y]+ Lxn— yd€
This is the standard Courant structure of the generalized tangent bundle of V.

Dirac structures.

DEFINITION 103. We call a subbundle L < E (Courant) involutive if T'(L) is closed under
the bracket [-,-].

It is called isotropic if

<61, 62> = 0

for any two sections ey, ez € T'(L), and Lagrangian if it is mazimal among isotropic subbundles.

An involutive Lagrangian subbundle L < E will be called a (real) Dirac structure on E.

DEFINITION 104. Let L < TV be a Lagrangian subbundle, and denote by

pry TV > TV, prps : TV > T*V

the induced projections. The type of L at a p € V' is the codimension of prp(Ly) in TV ; its cotype
at p is the codimension of pros(Ly) in T*V.

DEerINITION 105. A Lie algebroid over a manifold V' consists of the following data :

(1) A vector bundle A — V, equipped with a bundle morphism § : L — TV over V, the anchor;
(2) A Lie bracket

[]a: T(A)? > I(4)
satisfying the Leibniz-type condition

[fei,e2]a = fle1,ea]a — (feaf)er, fe C*(V),e; € T(A)
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and for which the induced
f:T(A) - X(V)
1s a Lie algebra homomorphism.

REMARK 106. Clearly, Lagrangian subbundles must have rank half that of E. Moreover, axioms
C1-C3 imply that [-,-] restricts to a Lie bracket on sections of a Dirac structure on E. In other
words, Dirac structures inherit a natural structure of Lie algebroid.

REMARK 107. More generally, if L < E is a Lagrangian subbundle, then
Jacy : T(L)® - R
Jacy(e1, e, e3) :={eq, [e2, e3])
is tensorial and anti-symmetric, i.e.
Jacp € T (A®L*)
This tensor controls the involutivity of L in the sense that
Jacy, = 0 < L is involutive.
Now, any Lie algebroid (A, f,[-,-]a) comes equipped with a de Rham-type operator on forms :
da:T(APA*) ST (APT1A*) p=0
(daw)(eo, €1, s €p) 1= > (=1) p(er)w(e0, -ons 6, oons ) +

7
+ 3 (1) w ([e5, €51, €05 coes Gy oory € o )

i<j
squaring to zero, d4 = 0, and thus defining cohomology groups
ker (da : T (APA*) — T (AP+1A%))
image (dg : T (AP~1A*) - T' (AP A*))
REMARK 108. Observe that a Lie bracket on T'(A) extends uniquely to a bracket
[,-]a : T(APA) x T (AYA) - T (A’”q*lA) p,q=0

by requiring that it be graded anti-symmetric, a derivation of A, and satisfies the graded Jacobi
identity :

HP(A) :=

Graded anti-symmetric:
[¢x]a = — (=)D (]

Derivation of A:

[Cx A Tla =[¢x]a AT+ (=)D AT¢ 7]
Graded Jacobi:

(O ()DL [y Ll = 0
7X)T

for every triple of homogeneous elements (,x, 7 € T' (A*A).
We shall refer to this extension as the Schouten bracket of A.

DEFINITION 109. Let A be a Lie algebroid and e € T'(A). The Lie derivative with respect to e
is the degree 0 operator

LY T (A®A*) - T (A®A¥)
defined by the supercommutator

L? = [dA, Le]
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where
i : T (A*A*) > T (A®A¥)
denotes the (degree —1) operator of contraction with e.

REMARK 110. Observe the supercommutation relations

[da,da] =0 [da, LAT=0
[dA; Le] = L? [Lév L?’] = Lé,e’]A
[te,ter] =0 [L?a Ler] = Ue,e']a

EXAMPLE 9. The tangent bundle TV is a Dirac structure in the generalized tangent bundle TV .
The anchor is idpy and has for bracket the Lie bracket of vector fields.

EXAMPLE 10. The cotangent bundle TV, T*V is a Dirac structures in TV . It has trivial anchor
and bracket.

EXAMPLE 11. If D is a subbundle of TV, then
D ® Ann(D)

is Lagrangian in TV . It is Dirac iff D is the tangent bundle of a foliation F.

EXAMPLE 12. If w is a two-form on V, then

TV = {X +i1xw: X eTV}

is Lagrangian in TV . It is Dirac iff w is closed.

EXAMPLE 13. If w is a bivector on V', then

T :={iemn +£: € T*V}

is Lagrangian in TV . It is Dirac iff m is Poisson.

The examples justify our interest in Dirac geometries, which simultaneously encode foliations,
presymplectic and Poisson structures as presymplectic singular foliations. (See [9])

A especially important feature of the Dirac formalism is allowing to regard certain geometric
structures of very singular type (e.g., a Poisson or a presymplectic structure of non-constant rank)
as the “singular” shadow prp(L) a “regular” object L.

We have yet to say what we allow as “morphisms” of Dirac geometries. In view of the examples
that this formalism encodes, it is natural to demand that its morphisms should generalize maps
of “covariant” objects (such as presymplectic structures) and that of ”contravariant“ objects (like
Poisson structures). For that purpose we introduce two notions.

DEeFINITION 111. If L; € TV; are Dirac structures, a smooth map
f+Vo—-W

1s called :
Backward Dirac (Vo, Lg) — (V4, L1): if

Lo = f*Ly := {(Xo, f*&1) : (f+X0,&1) € L1}
Forward Dirac (Vp, Lo) — (V4, L1): if
Ly = fuLo = {(f+X0,&) : (Xo, f*&1) € Lo}

REMARK 112. Observe that the above definitions describe relations, and not operations, of Dirac
structures. In fact, f«Lo need not be even well-defined, and f* L, need not be a smooth subbundle®

5But a sufficient condition to ensure smoothness is that f and Ann f4TVy n L have both constant rank, see [7]
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In the specific case of Dirac structures arising from Poisson structures, the remark above spe-
cializes to the following :

o fiLr, is well-defined iff 7 if f-related to some m; € X2(V1), i.e., iff
feemo(z) = m(fx), forallzeVy

o f*L, 1is pointwise well-defined, but f*L,, has cotype zero at x iff
T (Ann fou T Vo) 0 (fea T2 Vo) =0

Call f a pointwise Poisson-Dirac immersion if f is an immersion and the condition above is
satisfied. Note that, in that case, f*L,, corresponds to a bivector mq(x) € A%T,Vy at all x € Vp;
concretely,

mo(x)(a, B) == mi(f(2))(c, B)
fral =a, 8 =0
Note however that the assignment
x> mo(x)
need not be smooth; when it is, we call f a Poisson-Dirac immersion.

EXAMPLE 14. A simple example is given in [15] and reads as follows : in C3, the complex
1-forms
dZQ, ng — szzl
define a foliation F by complex lines; in particular, F € SympFol4((C3) corresponds to a corank-four
Poisson tensor. Now

(C2 —C (CS
(217 22) = (Zla 2270)

is an embedding which is pointwise Poisson-Dirac and as such defines, for each p € C%, a n(p) €
AT,C2.

But observe that (z2 = 0) < C? is a leaf of F, so that rank 7(p) = 2 for zo(p) = 0, whereas all
other leaves of F meet C? at a single point — and thus rank 7(p) = 0 for zo(p) # 0.

This example shows that p — 7(p) is not even lower semicontinuous !

Lie bialgebroids.

DEFINITION 113. Let (A, a,[-,-]a) be a Lie algebroid over V', and suppose its dual bundle A* is
also endowed with the structure of a Lie algebroid (A*, ay, [, ]ax). We cay that the pair (A, A*) is
a Lie bialgebroid if d4 is a derivation of [-,-]ax, i.e., if

dalp,v]ax = [dap, v]ax + [, dav]ax  for all p,v e T(A*)
By a result of [50], this notion is self-dual in the sense that
(A, A*) Lie bialgebroid <= (A*, A) Lie bialgebroid

Suppose now (4, a, [+, -]4) is a Lie algebroid, and that its dual bundle also carries a Lie algebroid
structure (A*, ay, [+, -]a*). Then define the bundle

E:=A@A*
This bundle comes equipped with two non-degenerate symmetric pairings :
X +&Y +mt = (& £ exn)
On I'(E) define a bracket [-, -] by

1
[X +&Y +n] = {[X,Y]a+ L&Y — £ X — Sdax(X +EY +0) )+

1
+{[€, ) ax + L0 — L50 + gdar(X +&Y + )}
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and an anchor
p:E->TV
P(X +€) = a(X) + aa(6)
THEOREM 114 (Thm 2.5, [48]). The quadruple (E, p,[-,-],{,>+) defines a Courant algebroid if
(A, A*) is a Lie bialgebroid.

THEOREM 115 (Thm 2.6, [48]). In a Courant algebroid (E, p,[-,-],{-,->), suppose L1,Ly < E
are transverse Dirac structures. Then (L1, Lo) is a Lie bialgebroid, where Lo is considered as the
bundle dual to Ly under the pairing {-,-).

REMARK 116. Observe that e*T is transverse to T*V is w is a symplectic form on V; hence,
by Theorem 115, (e“T, T*V) is a Lie bialgebroid.

Hamiltonian operators. Suppose we are given a Lie bialgebroid (A4, A*) and we construct
the Courant algebroid of Theorem 114.
Given a A-two-form Be T (AQA*), let eB A < E be the subbundle

eBA={X+1xB:XeA
Observe that e® A is again Lagrangian :
<X +.1xB,Y + LyB>+ = (Lxl,yB + Lybe)
0

Now :

THEOREM 117 (Thm. 6.1 [48]). The Lagrangian subbundle e® A is Dirac if and only if the
following Maurer-Cartan equation holds :

1
daB + g[B;B]A* =0
There are a few points we wish to highlight concerning the Dirac formalism as a tool to handle
integrability /involutivity of structures up-to-homotopy.
First, for a two-form B € Q%(V), the condition that e (e™T*V) be the graph of a bivector 7’ is
that
pros €Ly = T*V < idpsy +Br € End(T*V) is invertible
In that case, according to the theorem above, m Poisson implies
eBr = 7(idpsy +Bw) ™! Poisson iff dB = 0 on each leaf of 7

The effect of a B-transform on a Dirac structure L is that of twisting the presymplectic form
along its leaves, and the algebraic condition above ensures that the symplectic structure on the leaves
of the Poisson bivector 7 is twisted in such a way as to remain non-degenerate. Note in particular
that the rank of 7 is pointwise preserved under a B-transform.

4. Soft remarks on the hard nature of Poiss

We are primarily concerned with the following:
PROBLEM 118. Specify subsheaves ® < Poiss for which some form of the h-principle holds.
Of course, recall that there is a natural R-action
R x Poiss(V) — Poiss(V)
(t,m) — tm

so the sheaf of Poisson structures is star-shaped and hence universally contractible.
In particular every bivector is homotopic to a Poisson one. Therefore we must impose extra-
requirements to obtain a meaningful h-principle. We list a few of the possibilities :
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Extension Problem: One requires a relative version of the h-principle, proving that, say,
on all submanifolds V; © V of a certain type, germs of Poisson bivectors along Vj can be
extended to global Poisson structures;

Approximation Problem: Here one starts with a given germ of bivector along subman-
ifolds of a given type, and shows that one can C’-approximate such germ by a germ of
Poisson structure;

Sheaves with Topology: Specify sheaves which have non-trivial topology, such as sheaves
of Poisson structures with bounded or fixed corank, admitting only specified singularity
types, unimodular structures etc.

Model example. A model example of a such subsheaf is ® := Poiss¢s, the sheaf of Poisson
structures of rank no greater than 2. This sheaf, regardless of being microflexible or not, is easily
seen to abide by the h-principle as follows : if m € Poiss<o(V), then given any function

f:V-oR
the bivector fr is again Poisson :
[fm, fr] = f*[m 7] + fr A w(df)

where the latter term vanishes since 7 A X = 0 for all X in the image of .
Hence if we are given an extension problem

7' € Poiss<2(0D)
(Am € Poiss(D), w| Op(éD) = 7’7

we choose a f: Op D — R with germ 1 along dD, and zero germ along a concentric smaller sphere
still in the domain of definition of 7’; then 7 := fr’ € Poiss(D) extends 7’. This produces relative
h-principles for the sheaf Poiss<s by the obvious inductive argument.

Sheaf-theoretic h-principle. Next, observe that the fact that if P € Poiss(R"), then for all
t € R, the streched bivector

stretch P : ¢ — P(tx)

where P(tz) is regarded as an element in A?T,V by translation, is again Poisson.
So if we are given a

PeX*D"), D"cM
P|0D € Poiss(0D)
we can define a
P € Poiss’ (D)
P|oD = P"|0D
by means of a choice of smooth function
o: M —1T
0| Op(dD) =1
with supp(p) coiltained in the interior of the subspace where P is Poisson.
Explicitly, P is represented by
P’ € Poiss™ (Ap)
P'(v1,v2) := P(o(v1)va + (1 = o(v1))v1)
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Note that

, _ [P if o(v) =1
o) = {P(Ul) if o(v1) =0

and that
P(v1,-)| Op(v1) € Poiss(v1)
for all v1 € V.
By meauns of sufficiently fine triangulations (and with the obvious induction), this method allows
to homotope any section F' € I'(M, II) to the image of some P by the natural map

Poiss” — I'(-, 1)

in such a way that germy, F' holonomic implies germy, P = P’ for some P € Poiss(Vp), j'P = F.
One easily sees the the same argument applies at the level of Gromov structures, so that

PROPOSITION 119. The Poisson relation is germifiable. Hence B Poiss” is weakly contractible.
1-equivalence B Poiss — B Poiss’. Assume given a Poisson structure P € Poiss(V).
PROPOSITION 120. B Poiss — B Poiss” is a 1-equivalence.

PRrROOF. It suffices to show that B Poiss is connected since, according to Proposition 119, and
thus B Poiss — B Poiss’ induces (trivial) surjections on homotopy groups.

So suppose we are given a germ ¢ € Poiss, for some x € R™. Represent it by a m € Poiss(U) for
some z € U and let 2’ € U be m-regular. If rank, m = 0, choose a smooth curve C' connecting = to
2’ inside U, and take germ 7. This shows that, for all 7 and all z, germ_ 7 is connected to germ,, 0
for some 2’ as close to = as we wish.

In the case where rank, 7 > 2, we use Theorem 90 to find a small ' € U” not containing =z,
and a system of coordinates (p1,q1, ..., Gr, Y1, ---s Yn—2r-) centred at x’, where 7 is expressed as

5 0 0
TlU" =% — A —
le dpi  0g;

7

Let now ¢ : R — R be a smooth monotone function with g(t) = 0 for ¢t < ¢/8r and p(t) = 1 for
t = e/4r, where € > 0 is some number with

S+ +>2<e = (1 Yn-o) €U”
7
Define
P:U">R

n—2r
-Pi(plvqla "'73/71727") =0 (pzz + Qz2 + Z y?)
1

and set

0 0
P._;Ha—piAaqi

Observe that P € Poiss(U”) and that
germ,, P = germ ., m
at those points " of U” where all P;’s have germ 1. It is easy to see that

W:=(U-U")u (U — U CIP[0,1))
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is connected, so we can choose a smooth curve C' connecting x to z’ such that :
C1[0,1/2] lies in W
C|[1/2,1] lies in U’

Then connect germ, 7 to germ,, 0 by taking the germ along C([0, 1/2]) of 7, and along C([1/2,1])
of P. ]

5. h-principles, I : regular Poisson structures

In this section we will prove the h-principle for symplectic foliations on open manifolds.

Given a foliation F on a manifold V', by an F-foliated form w of degree p we mean a section
w e I(V, APT*F). We can always extend w to a p-form @ € I'(V, APT*V) (not uniquely) and often
we will not distinguish between w and an extension @. The de Rham differential induces a differential
dx on foliated forms, so a form w is dz-closed if dw pullbacks to zero on each leaf of F.

DEFINITION 121. A pair (F,w) where w is an F-foliated, non-degenerate, 2-form will be called
an almost symplectic foliation. If, additionally, w is dx-closed then we call (F,w) a symplectic
foliation.

THEOREM 122. Let V' be an open manifold, (Fo,wo) a codimension-q almost symplectic foliation
and & a class in H3(V;R). Then there is a homotopy (Fy,wy) of almost-symplectic, codimension-q
foliations, such that:

(1) (F1,w1) is symplectic and
(2) wy can be represented by a global closed two-form lying in &.
PrOOF. A codimension-g distribution on V is simply a section of the Grassmannian bundle
Gry,—¢(TV), which we topologize as usual with the compact-open topology. We also topologize

I'(V, A2T*V) with the compact-open topology and we consider the subspace topology on the space
of almost symplectic, codimension-q distributions :

QSympDist? (V) € Gro_g(V) x Q(V),
QSympDist? (V) = {(D,w) S (w]D)T" 2 0}.

On the space QSympFol? of almost symplectic, codimension-q foliations and on the space SympFol?
of symplectic, codimension-q foliations we take also the induced topologies :

QSympFol! (V) := Fol(V)) x T'(V, A’T*V) n QSympDist?(V),
SympFol?(V) := {(F,w) € QSympFol? (V) : w is F — symplectic}
Thus our initial data (Fo,wp) lives in QSympFol? (V).

Let us observe that, since non-degeneracy of a form is an open condition, there exists a positive
function

e: V>R
such that
dist(w(y), wo(y)) < e(y)

implies w Fy-leafwise non-degenerate.

Hence, applying approximation by closed forms (Corollary 79), we can choose some smooth
positive function p and a closed form ¢ such that [¢] = & and which is e-close to wy on the p-
neighbourhood U, of a core K of V.

Next, we choose a smooth function x : V' — [0,1], which is identically zero outside U, and
identically 1 on U3, and we define a homotopy of 2-forms by setting:

w:[0,1/2] — T(V; A2T*V)



5. h-PRINCIPLES, I : REGULAR POISSON STRUCTURES 69

t— wo + 2t(¢d — wo)x
Then w is a continuous map such that :
(1) w(0) = wo
(2) w(t) is Fo-leafwise non-degenerate for all ¢t € [0, 1/2];
(3) w(1/2) is closed on U, .
We let F(t) be the stationary homotopy at Fo, for ¢ < 1/2; note then that ¢ — (F(t),w(t)) takes
values in QSympFol?(V).
In order to define the second half of the homotopy, we choose a compression g; : V' — V between
go = ly and g; : V — U, 5 and we define a continuous path (F(t),w(t)) € QSympFol?(V') for t > 1/2
by setting:
t = ((92e-1)")F(1/2), (g2e—1)*w(1/2))
The concatenated homotopy
t— (F(t),w(t)), te[0,1]
is the one we sought, since (F(1),w(1)) € SympFol?(V) and the 2-form w(1) lies in gF¢ = &. O
REMARK 123. Note that the concatenated homotopy is only continuous in t, but a standard
argument involving reparameterization with vanishing derivatives at the end points makes it smooth.

Obstructions to integrability. Recall that A, denotes the space of almost symplectic, codimension-
q distributions and that €2, denotes the space of symplectic, codimension-g foliations on the manifold
V. In this section, we wish to address the following question :

Are there strictly topological conditions that one can imposed upon V so as to
ensure that mo(SympFol?(V)) — mo(QSympDist?(V)) is an isomorphism ?
Notice that the previous theorem implies that SympFol?(V) — QSympFol?(V) induces an
isomorphism at the level of 7. To handle the map

mo(QSympFol?(V)) — mo(QSympDist?(V))

we will invoke Haefliger’s obstruction theory, Theorem 88.
That result shows that the integrability problem for distributions on open manifolds can be
completely reduced to one in obstruction theory, namely, solving

BTy x BGLy, _,
7
e inxl
e
.7 BGL, xBGL,_,

i l
- &)
e Exa
BGL,

T

In order to apply this to our setting, let us spell out what Haefliger’s theorem says: given a distri-
bution Dy such that the diagram above can be solved one can find a path of bundle isomorphisms

¢ : TV — Dy @ (Do)*
where 1 maps T F onto D for some codimension-q foliation F. That is : the path
t— of Dy =: Dy
ends at T F. If an almost-symplectic Dy-form wy has been provided, one can transport this two-form
along the path ¢; by setting
wy 1= P} wo
so that, at all times we have (Dy,w;) € QSympDist?(V) and at the end-point (Dy,w;) € QSympFol?(V).
Now we can use Theorem 122 to construct a continuous path starting at (D1, w;) and ending at some
element in SympFol?(V'). This yields:
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PROPOSITION 124. Given a distribution Dy on an open manifold V with a non-degenerate 2-form
wo, there is a homotopy (D, w;) € QSympDist?(V') starting at (Do, wo) and ending at a F-foliated
symplectic form wy if and only if the distribution Dy is homotopic to a foliation.

Let us recast the previous result in terms of Poisson geometry. Let 7 be regular of rank k.

It is well known that a regular bivector 7 is a Poisson structure (i.e., [r,7] = 0) if and only
if D := imagen? is the tangent bundle of a foliation F and the foliated 2-form w is dz-closed (in
other words, it is a foliated symplectic structure); this is easily worked out from Theorem 90.

Hence, Proposition 124 is equivalent to

THEOREM 125. Let my be a regular bivector on an open manifold V. Then there is a path
t — m; of reqular bivectors on V starting at mg and ending at a Poisson bivector wy if and only if the
distribution Dy = image Wg 18 homotopic to an integrable distribution.

REMARK 126. According to [15, Corollary 14], if the leafwise symplectic form of a regular
Poisson stucture extends to a global closed 2-form, then its leaves are submanifolds of a very special
type, called Lie-Dirac submanifolds, and the Poisson manifold is integrable to a smooth symplectic
groupoid. See [15] for more details.

Also, we have, in line with Corollary 89:

COROLLARY 127. On an open n-manifold V satisfying H'(V;Z) = 0 for all i > q + 1, any
reqular codimension-q bivector is homotopic, through reqular bivectors, to a Poisson structure.

REMARK 128. David Martinez Torres has pointed out that this approach can be used to prove
foliated versions of the h-principle for conformal symplectic structures, contact structures and, more
generally, Jacobi structures (one needs the analog of Theorem 78 concerning approximation by dg-
closed forms, where dg denotes the twisted differential).

An Example. Our main result states that the integrability of a regular bivector is controlled
by the integrability of the underlying distribution. However, it could still be the case that the
existence of a non-degenerate 2-form on this distribution would force its integrability. In other
words, one might wonder whether we are any closer to solving the obstruction problem pertaining to
integrability of subbundles if we have already solved that of providing an almost symplectic structure
(which amounts to lifting the classifying map to the bundle into BSp). In this last section we modify
a classical example of Bott to construct an example of a regular bivector on an open manifold which
is not homotopic to a regular Poisson structure, showing that not all the integrability obstructions
are encoded in the sympletic ones.

Let E be a vector bundle over the manifold V' and denote by Pont(E) < Hjz(V;R) the Pon-
tryagin ring of E. Recall Bott’s theorem :

THEOREM 129 (Bott [4]). If a codimension-q distribution D on V is homotopic to an involutive
distribution TF, then its normal bundle v(D) satisfies:

Pont*(v(D)) =0, for k > 2q.

Recall also that the Pontryagin classes p;(E) of a (real) vector bundle E are related to the Chern
classes ¢;(E ® C) of its complexification F ® C by:

pi(E) = (=1)'c2i(E®C).
On the other hand, the Euler class and the top Chern class of a complex vector bundle coincide, so
the square of the Euler class e(E)? = e(E ® C), lies in the Pontryagin ring of E.
In order to construct our example, we start with the trivial complex vector bundle C** =
CP? 1 x C?" over CP?"! and split it holomorphically as the sum of the tautological line bundle

J and its orthogonal :
cr=JoJ,
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where:
J = {(z,v) e CP™™ 1 xC*™:veua},
Jt = {(z,v) e CP" 1 xC* : v L a}.
We denote by H the line bundle dual to J, and by H? its symmetric square, whose fibre at a point

x € CP?"~! consists of all degree 2 homogeneous functions .J, — C. Finally, let 01, ...,65, be a
basis of (C?*)* and define on C?" the non-degenerate two-form

=01 Al + -+ 02,1 A0y
The 2-form 6 defines a holomorphic surjection

where ¢ € Hom(J, J*) and ¢ € J. Under the well-known isomorphism TCP?"~! ~ Hom(J, J*) we
see that D := ker(f,) is a holomorphic subbundle of (complex) codimension one. If v(D) denotes
its normal bundle, then by multiplicativity of the Euler class, one has

0% 2n = e(TCP? 1) = e(D)e((D))

so that 0 # e(v(D)) € H>(CP?*~,R). Thus ¢*(v(D)) = e(v(D))%e(v(D))? € Pont*(v(D)) as we
pointed out above. Since the real cohomology ring of CP?"~! is the truncated polynomial ring
R[t]/t*"R[t], where t has degree 2, choosing n > 2 guarantees that e(v(D))* # 0. By Bott’s result,
we conclude that D is a (real) codimension-2 distribution which is not homotopic to a foliation.

Finally, we consider the open manifold V := CP?*~! x C. The projection in the first factor
p:V — CP?"1 gives an injection:

p* : Hig(CP*" "1 R) — Hig(V;R)
which maps the Euler class of v(D) to that of p* (D), which is the normal bundle to the holomorphic
codimension-1 subbundle p*D < TV. This means that p*D also cannot be homotopic to a foliation
in V. A metric on p*D, together with its complex structure, yields a non-degenerate 2-form on D.

Hence, this gives an example of a regular bivector on an open manifold which is not homotopic,
through regular bivectors, to a Poisson structure.

6. h-principles, II : b-Poisson structures

Another prototype of the h-principles we wish to prove in the realm of Poisson geometry arises in
the context of b-geometry, as proposed by Melrose and further developed by Guillemin, Miranda and
Pires. By imposing a (rather stringent) regularity condition on bivectors, we are able to sucessfully
reduce the Poisson relation to a microflexible one.

The category ® Mfd.

DEFINITION 130. The category of b-manifolds and b-maps ® Mfd is the one having as objects
pairs (V, Z), where Z is a codimension-one submanifold of V', and whose morphisms

V.2)— (V. Z)
are those smooth maps
f:Vv-v
which are transverse to Z', and such that

f—lzl — Z
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DEFINITION 131. A smooth function
z: V>R

which has zero as a reqular value is called a defining function for the hypersurface x=(0). If
Z <V is a codimension-one submanifold and U c V is an open subset, we call a defining function

z:U—->R
for U n Z to define Z locally on U.

From now on, (V,Z) will denote an m-dimensional b-manifold. Observe that every b-manifold
(V, Z) is locally b-isomorphic, around points p € Z, to the local model

(V,2) = (R™, {0} x R™™1)

around the origin, in the sense that there are open sets

peUcV
and
0OeU cR™
and a b-isomorphism
U = U’

| |

UnZ———=U n{0} x R™!

Let then (z,y1,...,yn) be coordinates in U arising out of this b-isomorphism; we shall refer to such
local coordinates as adapted to (V, Z).

We begin our study of b-manifolds with a very simple lemma which is going to be useful later
on :

LEMMA 132. If h € C*(V) wvanishes identically on Z, then (locally) defining functions for Z
divide h.

PROOF. This is obviously a local matter, so we can assume that
V=RxR"={(z,y1,,Yn) : ,y; € R}
Now if

h:RxR"—>R
h(0,y) =0

we write the Taylor expansion of h with integral remainder :

) ) = h0.9) + 5 O)e+a? [ (1= 035kt -

1 2
(10) — (gZ(O,y) + xfo (1- t)gx};(t,y)dt>

thus proving our claim. O
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The (co-)tangent bundle of a b-manifold. Let (V, Z) be a b-manifold, and denote by X(V)
the Lie algebra of vector fields on V; as is well-known, this corresponds to the space of smooth

sections of the tangent bundle of V. Recall furthermore that, for any point p € V, T,V is described
by

T,V = X(V)/1,(V) - X(V)

where I,(V) € C* (V) denotes the ideal of smooth functions vanishing at p.

Now let X(V, Z) € X(V) be the Lie subalgebra consisting of those vector fields X € X(V') which
are tangent to Z. A miraculous fact, first pointed out by Melrose, is that this subalgebra can also
be identified with the space of smooth sections of a certain vector bundle over V', which we denote
by T(V,Z) - V :

X(v,2) =T(V,T(V,2))
Let us give a more concrete description of this vector bundle :
PROPOSITION 133. On
=[xV, 2)/5,(V)- 2(V, 2)
peV
there is a unique vector bundle structure such that under the natural (vector bundle) map
T(V,Z) > TV
the Lie subalgebra X(V, Z) pulls back to T (V,T(V, Z)).
PrROOF. Note that, for each p, the ideal I,(V) - X(V, Z) consists of finite sums Y. f; X;, where f;
are smooth functions vanishing at p, and X; are vector fields tangent to Z. Thus, for pe V — Z,
I,(V) - X(V, Z) coincides with I,(V) - X(V'), whence T,,(V, Z) = T,V for all such points.
Write a X € X(U,U n Z) in these coordinates :

0 " 0
+ > bi—
le 0y
where a, by, ...,b, € C*(U).
Now
XUNZeT(UnZ,TUNZ))

immediately implies that a|U n Z = 0, so by Lemma (132) we have that x divides a, say,

n

= oo
AN
m, 021 o F forms a local basis for T'(V, Z) in adapted coordinate charts.
It remains to Check that the change of adapted coordinate charts is actually smooth; for this

purpose, let 2/, 41, ..., y,, be another such system of local coordinates. Then
(ef (@)

so that z-=

(x,y) = x,g1(x,y),...,gn(x,y)) = ('r/7yl)

for some smooth function f, so that

0 of\ , 0 -
or T (1+ 6) 67 Z J;@yl

J of ) ;) 0 dgi 0
— == )=+ _
0Yj (0%‘ oz’ ;1 0y; 0y;
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In passing, we note that, along Z, the direction spanned by x(% is independent of the adapted
chart, and thus defines a canonical non-vanishing section v € I' (Z,T(V, Z)|Z) which gives rise to a
line bundle *N(V, Z) c T(V, Z)|Z, said to be the b-normal line field of (V, Z), and which appears
as the kernel of

T(V,2)|Z - TZ
induced by the natural surjective map
X(V,Z) - X(2)
DEFINITION 134. The tangent bundle of the b-manifold (V, Z) is the vector bundle T(V,Z) —
V', whereas its cotangent bundle T*(V, Z) — V is the dual to T(V, Z).

Similarly, we define p-multivector fields and p-differential forms on the b-manifold (V, Z)
as sections of APT(V,Z) and APT*(V, Z), respectively. For notational convenience, we set

X(V,Z) := T (V,A’T(V, 2))
WPV, Z) =T (V,A\PT*(V, Z))
Note that, in an adapted coordinate chart as above, the cotangent bundle of (V, Z) is spanned
dz
by & dy,...., dy,.
REMARK 135. Observe that if

A

ﬁ
TV
1%
is any transitive Lie algebroid and Z < V a codimension-one submanifold, we can transport the
"miracle”

xX(V,2) =T(V,T(V, 2))

to write the Lie subalgebra of sections a of A whose anchor fa is tangent to Z as the space of all
smooth sections of the Lie algebroid

AZ =A X1y T(V, Z)

which carries natural Lie algebroid morphisms T(V,Z) «— Az — A fitting into the commutative
diagram

A TV

]

Az 0 V., z)

This could be used to treat "non-singularly” in Ay sections o € I'(A) with o vanishing linearly
along Z. This section is devoted to the crucial example A =TV, § =idpy.

DEFINITION 136. Let V' be a 2n-dimensional manifold.
A transversely non-degenerate bivector 7 € X2(V) := T (V, AQTV) is a bivector with the
property that its n-th (=top) exterior power ™ is transverse to the zero section

2:V = A"TV
The space of all transversely non-degenerate bivectors will be denoted by

X% (V) c X3(V)
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Observe that by the transversality requirement, a such transversely non-degenerate bivector m
defines a codimension-one submanifold,

Z(n) = (a") " 2(V)cV

which we call the singular locus of 7; hence 7 € f% (V) gives rise to the b-manifold (V, Z(x)).

The space of all transversely non-degenerate bivectors with singular locus Z will be written

X5 (V. 2) c X5(V)

DEFINITION 137. A transversely non-degenerate bivector m will be called a b-bivector if it is

also a bivector on the b-manifold (V, Z(r)), i.e.,
e X% (V) nX*(V,2)

The space of all b-bivectors will be denoted by X3(V).

Suppose m € X2(V), Z < V of codimension one as usual, and fix a point py € Z. In an open
neighbourhood of py in V', we choose a defining function z for Z and write 7 in the form

0
(11) m= A m(dx) + v

where v(dz) vanishes identically. Call this decomposition of = adapted to the defining function z.
Then clearly

T (TxV) Cc Ty Z
if and only if
T (dp,z) =0

LEMMA 138. Let Z c V be a connected codimension-one submanifold and © € X2(V'). Then the
following are equivalent :

(1) (T, V) c T,Z for allpe Z;
(2) w(dpx) =0 for all (locally) defining function x and all p € Z;
(3) me X2(V, Z).
PROOF. (1) < (2) is our remark above, while (3) = (1) is obvious.
As for (2) = (3) : Applying Lemma 132 in the present case yields
m(dz)|Z =0 = w(dz) = zX
for some X € X(V); hence 7(92) is defined and thus m, € A*T,(V, Z). O

Let us now point out an important exclusion principle for transversely non-degenerate bivec-
tors :
PROPOSITION 139. Let m be transversely non-degenerate with singular locus Z, and set
N(m):={pe Z:n(TV)cT,Z}
Then N(w) is open and closed in Z.

PRrOOF. R(7) is clearly closed by its very definition.
Now use an adapted decomposition of 7 as in (11) :

m=— an(dz)+v

ox
and note that 7™ is a non-zero multiple of
— An(dx) A"t
ox (dz)

Now, if po € R(), then we know from the previous lemma that 7(d,,2) = 0. Since 7™ is transverse
to the zero section, we must have v(pg)"~! # 0, so that v"~! is non-vanishing on Op(po).
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But
[ (Op(po) N Z) =0
then implies that
7(dz) divides " !
on (Op(pg) N Z), and the only way this would not contradict transversality of 7™ is if

7(dz)| (Op(po) N Z)

is identically zero. This shows that X(7) is also open in Z, whence our claim. O

COROLLARY 140. To check whether a given transversely non-degenerate bivector m € szﬁ (V) is
a b-bivector on (V, Z(r)) it suffices to check whether
T(T*V) € T,%
at some (hence every) point p in each connected component of Z(r).

ProOOF. Immediate from Lemma 138 and Proposition 139. ]

By means of this proposition, we can derive a rigidity principle for transversely non-degenerate
bivectors :

PROPOSITION 141. Suppose m; is a homotopy of transversely non-degenerate bivectors on V. If
mo 18 a b-bivector, then every m; is a b-bivector.

PROOF. Suppose not; then there is ¢ with 7,(7*V') not contained in T'Z, at some point p € Z,.
But then

0 0
Di=m+ = A - € X*(V xR?
Tt g N s € X )
is also transversely non-degenerate.
Let Z be the singular locus of II. The exclusion principle for II says that either it sends

T*(V x R?) into TZ at all points or at none. But

(T, o(V x R?) = m(T*V) + Ty, R?

and by hypothesis we have
(T3 0.0 (V x R?)) = T, Z + To, o) R?

Hence I1 € X2(V x R2, Z) and thus m € X2(V, Z). 0

b-de Rham complex. Recall that a coordinate-free way to define the exterior differential for

a (usual) manifold V,
d: (V) — Qrti(v)
is by means of the formula
(dw)(Xo, s Xp) 1= 2(—1) Xiw(Xo, ey Xi, ooy Xp)+
i
+ Z(_l)i+jw([Xi7 Xj]v XO; B 55727 ey )/(\ja ) Xp)
1<j

where X, ..., X}, € X(V'). Observe that the fact that d? = 0 is a straightforward consequence of the
Jacobi identity on X(V).

Now the fact that X(V,Z) is a Lie subalgebra of X(V') implies that the exact same formula
defines a b-exterior differential

bd QOP(V, Z) — QPTY(V, Z)
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PROPOSITION 142. The b-de Rham operator factors as the composition of
g D(V,APTH(V, Z)) — T(V, JHAPT*(V, 2)))
symb : (V. JH(APT*(V, 7)) = D(V, APFIT*(V, 7))
where s/}?an is induced by a bundle epimorphism with contractible fibres :
symb : JHAPT*(V, Z)) — APTIT*(V, Z)

PROOF. Let us see how to express d in local (adapted) coordinates : away from Z, it is clear
that ®d coincides with d, and close to the boundary, we write a general p-form using adapted local
charts and multi-index notation

dx
W= Z wadys + Z wlﬁz A dygs
loe|=p |Bl=p-1

and one computes

0wy, dx ow owly dx
by, _ « a g _ B )
dw = |a§|p (3: 3 2 + : Bu; dy]) A dYa E ~— A dy; A dygs

The claim follows immediately by inspection of the formula above; note in particular that symb is
fibrewise surjective even along x = 0. |

So we end up with a b-de Rham complex :
bd bd bd bd
OV, 2) - 1V, 2) s L (v, 2) s

whose homology we define to be the b-de Rham cohomology of (V, Z) :

ker (°d : Q¥ (V, Z) — QP*Y(V, Z))
image (bd : Qr~1(V, Z) — Qp(V, Z))

YHP(V,Z) =

Moreover, by continuity of the usual differential, a b-map
f-(V.2) - (V' Z")
defines both a push-forward
Pfo : (V. Z) = Ty (V' Z')
and a pull-back
F T (V' Z) > T(V,2)
dual to one another, in a functorial fashion, and it follows automatically that this induces
"fut Np(V.Z) = Ny (V', Z")
Needless to say, the induced
bt PV, ZT) - QP(V, Z)
commutes with the differential,
bt fru) =b f*(bdw)
and thus establishes a morphism at the level of b-cohomology :

bpr b g V! Z') =P HY(V, Z)
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b-symplectic structures.

DEFINITION 143. By a non-degenerate two-form on a b-manifold (V, Z) we mean a section
w € N3V, Z) with the property that the induced vector bundle morphism

w:T(V,Z) - T*(V, Z)

is an isomorphism.
Such a two-form is called symplectic if in addition to being non-degenerate it is *d-closed :
bdw = 0.

As in the (usual) manifold case, this is tantamount to saying that dim V' is even, say, dim V' = 2n
and that w" is non-vanishing as a section of Q?"(V, 7).

DEFINITION 144. A b-Poisson structure w on V' is a Poisson structure given by a transversely
non-degenerate bivector. Hence we set :

Poiss”(V) := Poiss(V) n X% (V)
PRrROPOSITION 145. There is a one-to-one correspondence

{symplectic structures w on (V,Z)} < {b-Poisson structures = with singular locus Z}

PROOF. One direction is trivial : a non-degenerate two-form w on (V, Z) gives rise to the bivector
7 = w™ !, and by definition of the b-de Rham operator, 7 automatically satisfies [r, 7] = 0. It just
remains to check that 7 is transversely non-degenerate, but this is also easy : w™ non-vanishing
as a section of A2"T*(V, Z) implies that 7™ is also non-vanishing as a section of A**T'(V, Z), but,
regarded as a section of ATV under the natural map T(V, Z) — TV, vanishes transversely along
Z.

The converse requires Weinstein’s Splitting theorem. Indeed, suppose m € X2(V) is b-Poisson,
with singular locus Z. We claim that in fact 7 € XZ(V) (thus justifying the names b-bivector and
b-Poisson) and that w = 7! is a symplectic form on (V, Z).

Indeed, 7 is obviously symplectic on V — Z; at a point p € Z, the rank of 7 decreases to, say,
2r < 2n. We apply Weinstein’s Theorem to find local coordinates p1, ¢, ..., @r, €241, ---, 2, Where 7
is represented by

T=G+ U
0 0
g._zi:api BQ1

where 11;;(p) = 0 for all ¢, j; this means that

n _ n _
7r"=<”+<1><" 1Au+...+<n_1></\u" Lyppm

Now, ¢¥ = 0 for k > r, and the coefficients of p* are sums of products of k functions which vanish
at p; hence the coefficients of ¢"~* A u* are all divisible by 2*; thus, being b-Poisson implies that
r=n-—1.
Consequently, 7 has corank 2 at points p of Z, and thus Z inherits a codimension-one foliation
by symplectic codimension-two leaves of m. Hence we can find a local representation
o 0 'S0 0

T=T+— AN 5 + A
ox o1 =0 0Yoi 0Y2it1

whence w := (7)~! is well-defined as a section of Q2(V,Z), and thus automatically symplectic on
(V,2). O
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COROLLARY 146. A transversely non-degenerate bivector 7 is homotopic through such bivectors
to a Poisson structure only if ™ is a b-bivector.

Proor. Follows from the rigidity principle (Proposition 141) and Proposition 145. ]

So it is clear from the start that, among transversely non-degenerate bivectors, the h-principle
can hold true only for b-bivectors. That this indeed is the case is what we show in the sequel.

h-principle for b-Poisson structures.
THEOREM 147. The Poisson relation abides by the h-principle on open manifolds over b-bivectors.

PROOF. Let my be a b-bivector, and let Zy be its singular locus. Then as shown above, wqg :=
(7o) ™! is a non-degenerate two-form on (V, 7).
Let Fy: V — JY(T*(V, Z)) be a lift of wy, i.e.,

symb oFy = wyg

Choose a core K ¢ V and apply Holonomic Approximation to find an isotopy h' of idy, and a
holonomic

Fy: Op(h'(K)) — JHT*(V, 2))
which is so close to Fy| Op(h*(K)) that there is a homotopy
H : Op(h'(K)) x I — JY(T*(V, Z))
connecting Fy| Op(h'K) to F; through lifts of non-degenerate two-forms :
symb oH; non-degenerate on (V, Z) around Op(h'K) for all ¢
Now fix a compression
g:VxI->V
go = idy
a(V)cU

where U is an open neighbourhood of Op(h!K) where all our objects are defined.
Next, observe that the g;’s, being open embeddings, define b-maps

9t: (V. Z) = (V. Z)
Zy = g7 2
which induce a homotopy
H' :tw gfFy e T(JY(T*(V, Z,)))

between Fy and gf Fy| Op(h!K); note that symboH] is non-degenerate as a two-form on (V, Z;).
Concatenating this by the homotopy g H, we get a homotopy through b-bivectors between the
bivector 7y and

T = (Smngl)fl

7. h-principles, III : coercibility

In this section we wish to formulate the notion of coercibility of a bivector, and show how this
sheds some light into the integrability up-to-homotopy of Poisson tensors.
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7.1. Coercibility data.

DEFINITION 148. Let p: E — V be a Ri-bundle and let also P € X*(E).
We say that the bivector

Qo :=p«(P|V) € (V)
is forced down upon V by P.

Consider the ring C§” of germs of smooth functions R > Op0 — R, and let C., = C§" be the
ideal of flat germs, i.e., those in the kernel of

Taylor : C" — RJ¢]

Taylor(germ,, f) = 2 A
k=0 !

Suppose now P is a Poisson bivector on a trivial bundle
pr:VxR—->V

which forces down Qg € X2(V) on V =V x {0}. Assume further that a choice of Riemannian metric
{+,-y on V has been made.
Observe that ¢ : V x R — R being well-defined around V allows us to write P in the form

0

so Y = P(dt),Q(dt) =0 and Q|V = Q.
REMARK 149. Observe that the condition [P, P] = 0 is equivalent to
LyQ=Y A %F

3@ Q1 =Y A F

Observe that, from the second equation, one sees that [Q,Q] € X3(V x R) actually lies in Y A
X2(V xR); thus we are implicitly assuming that Q (hence Q) already satisfies “most” of the Poisson
conditions.

DEFINITION 150. A smooth
f : Op V>R
is called a t-coercibility datum of order § € Cﬂat if

. |Pd]|ldr
C1: Lol

C2: j* (Lp(Gllstle10®) - 0 as t — 0,
C3: (%e—l/sm) —0ast— 0.

is bound above by some positive, smooth h: OpV — R;

Observe that the actual choice of Riemannian metric is immaterial in that if {-,-»1,<{-,->2 and
the conditions C1-C3 above are satisfied by one of them, then it is satisfied by the other (with the
same order 0. Also, let dgq := germ, e~1/t in what follows.

EXAMPLE 15. Suppose P(dt) is a gradient with respect to the Riemannian metric, {(P(dt),-) =
df. Then f is a t-coercibility datum of order §sq-

EXAMPLE 16. Suppose that there exist f € C*(OpV),C > 0 such that
P(dt,df) > C|P(dt)], C >0

and that P(dt) is compactly supported. Then f can also be taken to have compact support, and be a
t-coercibility datum of order dgtq-
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EXAMPLE 17. Let V = R?" ! and
P e Poiss®(V xR), (P") 0=V

Then 5 5 2 5
P=t5 " ot Dy " Ao
Then 5

Now, clearly f = x1 satisfies requirements C1-C3 for being a t-coercibility datum of order dgiq.

7.2. Coertion of Hamiltonians. We will describe here the process of coertion of a Hamil-
tonian P(dt) by means of a coercibility datum (f,d). Coertion always takes place with one extra
dimension, but it will turn out that it is much easier to deal with — producing nicer results and
imposing less dynamical restrictions — when more extra variables added.

THEOREM 151 (Coertion). Suppose a Poisson structure P € Poiss(V xR) forces down a bivector
Qo € X2(V) ont =0, and that f is a t-coercibility datum of order ¢ € Cllat-
Then there is a 1-form
be QY OpV —V)
such that :
(1) The db-transformed Poisson structure
e®P e Poiss(OpV — V)
extends smoothly to a Poisson structure Pe Poiss(Op V);
(2) The leaves of P(dt) are contained in the leaves of P(dt), and
jPP(dt) >0 as t—0

(3)

o o~ D~
=P — — A P(dt
Q=P 2 Py
s of the form TQTT™, where
MO P(dt) @ df
T=id+ 1 1 el/5(0)P(dtdf)
~ af
df =df — —dt
[ =df N
(4) V is a Poisson submanifold of (OpV, ]3), and
Qo :=QIV = 5Q57

where
S e End(T Op(V)), S|t7*(c) e End(Tt™*(c))

. Pldt)®@df
—id4—2 =)
> = P ap)
PROOF. Let us consider, on V' := V — V x {0}, the 1-form
b= —e/°W fdt
and let

Bi=db=—e"*Ogf a dt = —eY*OGf A dt
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Observe that the assertion of the theorem is local, in the sense that it suffices to verify that, on
each U, € V of a differential atlas 2 = {(Ua, ¢o)} with precompact domains.
Uy := U, x (i —1/2,i +1/2), Cl(Us) compact, i€ Z

the bivector eP« P, satisfies the conclusion of the theorem, taking V := U,. (The decoration with
subscript « denoting the obvious restriction to 17&, and since B is perfectly well defined outside
V x {0}, and is exact, and the B-transform of P is thus automatically Poisson outside that subspace,
the theorem claims nothing on the U, x (i —1/2,i + 1/2) for i # 0).

Therefore, we may freely assume that V = R", and endow it with global coordinates 1, ..., xy,

by means of which we express
p_ 0 —P(dt)"
P(dt) Q

0 /3 g f
B= < MW g 0

and
P(dt): 0 Q2 -+ Qun
pan=| P@2 | g O 0 O
ran, o an

where P(dt)x, Q;; are given by

0
P =>» P —
(@) = L Pz
0 0
Q= ;Qwﬁixl A E
Qij +Qji =0
We compute
PO P(dt,df)  eMdf(Q)
BP = ~
0 MM dfT P(dt)T
and thus

d +BP — ( 1+ e3®) p(at, df) P df(Q) )

0 id +e /5O dfT P(dt)

where we the abuse notation to mean the identity n x n and (n — 1) x (n — 1) matrices; so id + BP
is everywhere invertible, with inverse

(id—i—BP)_l: 1+el/<5(t)1P(dt,df) 1+el/5(f)1P(dtdf 1/5 df(Q)(1d+€1/6 dfT ( )) !
0 (id +e/5D g7 P(dt)™)
0

ey ()

. M5 p(at)d, Tp
ey L (dt) <1d—1+ew<t>z(a(d)t,§f)>Q(ld+el/5 dfTP(d ))

P(id+BP)™ ! = -
We now remark that there is a simple formula for the inverse of this rank-one update of id :
o1/5(t)
1+ 10 P(dt, df)

(id +e°O 7 P(dt)™)"" = id — dfTP(dt)”
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so that, letting
1

T:=id— V3 p(dt)d.
T el Pat, df) (dt)df
we can write e P in this more pleasant way :
0 s P(dt)
Bp _ : -1 _ 1+€1/5(t) P(dt,df)
¢PP = P(id+BP)~! = . %
( e B ) T

Bear in mind that e® P is only defined outside V' ! Also, since by hypothesis P is smooth and B
was constructed as an exact form, e P € Poiss(Op(V) — V).
Next observe the following estimates which follow from our basic hypothesis :

Estimate A:
1 |P(db)|?
L+ eSO P(dt, df (L+ PO Pd, df))? =
< IPEOP sy _ (AIPEAD] s
P(dt,df)?

P(dt, df)
so j*eB P(dt) goes to zero as t — 0 by C3.
Estimate B: Consider first the endormorphism

. 1
" P

[e? P(dt)|* = | P(dt)|* <

P(dt) @df

which is well defined due to C1.
Then :

1
1+ 3@ P(dt, df)

80P () 01 )~ (11t P @ ) =
1 ;

- P(dt,df)(1+ 61/5(t)P(dt7 df)) P(dt)y®df

T—S=<id

so that

n?| P(dt)[?df | - n?| P(dt)|2|df|* _
P(dt,df)2(1 + eS@& P(dt, df))? ~ P(dt,df)*e?/5®)

~ 2
_ o (1P@OIAST s
‘"2< PLd)? ¢

IT - S|* <

so C2 ensures that
J7IT=S|> -0 as t—0
From Estimate B we conclude that the endomorphism
T € End(T(Op(V) = V)
extends smoothly to an automorphism T of the full T Op(V), by setting :

. [T iteeT(Op(V)~V)
e = {S(f) otherwise.

Now, Estimate A guarantees that the extension of e” B(dt) by zero on V x {0} defines a smooth
vector field X € X(Op V). Hence e® P extends to a smooth bivector which on V reads :

< (0 0
PZ(o SQST>
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Next, observe that the condition of being Poisson is closed, in the sense that if P’ € X2(M) (M a
manifold), then for any open subset U ¢ M

JOPI(U)cl™ = §PP(ClU)c ™

where, as usual, II* < J*A%2TM denotes the infinite prolongation of the Poisson relation II <
JYA2TM. Thus P is necessarily Poisson.
This completes the proof. O

Observe that the theorem is interesting even with V = R".

REMARK 152 (t-relative version). Observe the following : if instead of b = —eYfdt we had
chosen b’ := pfdt, for some

0:0pV >R
germy, g = —e/t

then again the same conclusions of Theorem 151 remain valid, since all we need to control is the
behaviour of eB P in a (deleted) neighborhood of V.

In particular, we can choose g to be zero outside a fized neighborhood U of V', thus ensuring that
P = P outside U.

REMARK 153 (Finite smoothness). We also point out that an analgous statement holds as that
of Theorem 151 holds (upon replacing j ) in case P is merely merely C”-smooth.

8. h-principles, IV : symplectic germs along spheres

We now turn to an unstable application of the methods discussed in the previous section; namely,
we discuss the problem of representing a germ of symplectic structure P along a submanifold Vy c V/
by a global Poisson structure P.

We provide a positive answer to this problem if Vy = 0D is of codimension at least two, and P
is allowed to have merely finite differentiability along a hypersurface.

THEOREM 154. Given P efSymp(é’D), for D c V' an embedded disk of positive codimension,
there exists a Poisson bivector P € Poiss(D) representing P.

PROOF. Choose a tubular neighborhood N o ¢D, and choose also an identification
N~0Dx(l—a,1+a)xR" cR" a>0

Let r : N — R stand for the radial coordinate (hence 0D = D nr~1(1)).
Now write

P e Symp(N)

P=Q+£/\Y
or

and observe that Y = P(dr) is non-singular.
Consider the differential relation of order one on functions f : N — R governing the inequality

Yf>0
This relation is open, hence microflexible. Now, hypothesis n — k > 0 comes in to ensure that
0D x (1—a,14+a)x{0}cdDx(1—a,1+a)xR**

be sharply movable.
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Hence we can find a C%-small diffeotopy
di: 0D x (1 —a,1+a)xR"™® 50D x (1—a,14a)xR**
di(p, 7, 2) = (p,7, 2 (p,7, 2, 1))
di(0S)ndD =@, S:=(1-a/2)D
stationary around 0D, and a function
f:0p(di0S) - R

solving Y f > 0 on Op(d,05).
Note moreover that by compactness of 05, we can find a positive constant C' with

YizClY|

So we are in position to coerce the Hamiltonian Y by f. Since we have d105 n 0D = @ , we can
invoke Remark 152 to produce a P € Poiss(U), U 2 di(D — {S), such that

P=P on U—-OpdiS
jPP(dr)=0 onr '(1—a/2)nU

For notational convenience, let us set R := r — (1 — a/2), so that R7!(a/2) = r=(1) and
R710)=r"11-a/2).
Observe that, if in the usual decomposition

- 0 o~ o~
P=—AY
an +Q
we had N
01Q)
(%) T 0 onR=0
for all ¢ > 1, then a Poisson extension to Op D x R"*~* would be a collar of the form
_ P60 if R >
P(G,R,Z): ( 7-@72) 1 R 0
AMR)Q(0,0,2) if R<O0
where

A:fa/2—1,0] - [0,1]
A Opla/2—1,a—1] =0, AOp0=1
(Note that for this collaring procedure, we ignore whatever happens on R < 0).

Let us show that this situation can be achieved; choose a smooth function w : (0,a/2) — (0,a/2)
satisfying

dw
E(t) >0
-1 .
w(t) = { lost %ft sb
t ift=¥

where 0 < b < V' < a/2.

¥ : 0D x (0,a) x R"™* - D x (0,a) x R"*
Y0, R, z) = (0,w(R), 2)

Observe that 1 is a smooth diffeomorphism, that ) = id for R > ¥/, that for R < b its inverse is of
the form
YN0, R, 2) = (0,e7H,2)
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and so

9 _p2r 0
(o 2 6.R,2) = B2 L

for R < b. Thus the push-forward w*% cannot be extended to R < 0.
Nevertheless, if we look at (¢*13)(0, R, z), then it decomposes as

(14 P)(0, R, z) = R2el/R% AY'(0,R,2) +Q'(0,R, z)
where

Y'(0,R,z) =Y (0,¢ VE 2)
V(0,R,2) = Q0,77 2)

Q

so that
01Q)’
O0R1

But our hypotesis on Y implies that, for each ¢, there is a compact neighborhood K, > R~*(0) and
a Cy > 0 such that

(0,0,2) =0, forallg=>1

IV (0, R, 2)[* < Cy|RI** on K,
In particular,
|Y(0, R, 2)|* < Ca|RJ*
on Op(R~10), whence there we have
|R2eYEY"(0, R, 2)|? < CoR2eX e R = CyR?%e /R
SO

q ~
%(R%URY/)(@, 0,2)=0, forallg>1

This shows that (%) can always be attained, and thus the smooth collaring discussed above
yields a smooth extension to Op(d; D) of the original P|Op(dD). Now use diff-invariance of Poiss

and di|Op 0D = idop op to produce a Poisson extension of P| Op(dD) to an opening of the original
D. O

In the parlance of Gromov structures, this can be stated as the inclusion of the sheaf of symplectic
structures on R™ into the sheaf of Poisson structures induces trivial maps

7q(B Symp) — (B Poiss), ¢<n—2

REMARK 155. Observe that the only reason for assuming that P is symplectic is to ensure that
the Hamiltonian Y is non-singular, but clearly the construction applies ipsis litteris if we relax the
symplectic hypothesis to 'Y # 0.

REMARK 156. Observe furthermore that the codimension = 2 in the statement of the theorem is
the best possible result in full generality, through the technique of coertion; indeed, observe that no
coercibility data can be found if the corresponding Hamiltonian vector field has a periodic orbit; this
forces us to look for solutions to

YizCOlYP=C"20

along positive-codimensional subpolyhedra.
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9. Final comments

Microflexibility. The reader has surely noticed that we have been conspicuosly silent about
the microflexibility of Poiss. And for very good reason : we don’t know whether Poiss is microflexible
or not. I am personally inclined to believe that it is not, but that nevertheless procedures as those
described in Sections 7-8 could still salvage some meaaningful form the h-principle for this sheaf.

One idea of how one could try to disprove Poisson microflexibility could work along these lines
: recall Thurston’s example [67] of a 1-parametric, non-trivial family of codimension-one foliations

(0, +00) — Fol'(5?)
t— Fi
whose Godbillon-Vey number gv(F;) := (GV(F;),[S?]) € R varies continuously :
gv(F) =t

This suggests that we might try to detect lack of microflexibility of Poisson structures by en-
riching an example as the above by finding a family of germs of symplectic foliations at S < R®

F! :[0,400) — SympFol'(5?)
such that :
Fby = Fo|Op(S?), Fo e SympFol'(D?)
If such a family can be found, this would prove failure of the microflexibility test for a certain
(small) homotopy of the corank-one Poisson structure corresponding to Fy.
(But this might be very hard to accomplish, as it seems as yet unknown whether the Thurston
epimorphism

7T3(BF1) — R

is injective as well. But we might try to apply the techniques of 5 to this problem).

In the other direction, one might try to develop a well-behaved theory of Poisson-Dirac immer-
sion to try to descend microflexibility of immersions to that of Poisson structures, or substructures
of a given type.

By “well-behaved” we essentially mean a criterion for determining when an embedding

f: V- W,P)

of V into a Poisson manifold (W, P), which induces pointwise bivectors f*P on V|, is automatically
smooth.

The example I know of a pointwise Poisson-Dirac embedding which does not produce a smooth
induced f*P does not stratify as a continuous bivector, i.e., the rank of f*P is not lower semicon-
tinuous. But it might be worthwhile for the mentioned problem to check whether something like
the following criterion holds true :

CRITERION 157. Suppose P is a Poisson bivector on W, f : V — W a smooth embedding, and
suppose f is pointwise Poisson-Dirac. If f* P stratifies like a bivector, i.e., if

rank, (f*P) < rank, (f*P), 2’ € Op(x)
then Q := f*P is automatically smooth and hence Poisson.

Germ realizability and sufficiency. The notion of “softness” of a differential relation pro-
posed by Gromov and discussed above deals primarily with the holonomic obstructions to solving
a given relation; we agreed to interpret as soft those relations for which pertinent versions of the
h-principle, as formulated in Sections 5 and 6, held.

But there are other competing notions which arguably shed some light into what we would
intuitively understand as “softness” of a given differential problem — and thus, obviously, on its
“rigidity” properties as well.
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Here we discuss one such alternative, that of germ realizability and sufficiency.

Let R € JTFE be a differential relation.
DEFINITION 158. Define the first prolongation R' ¢ J"*'E as
R := i1 (T(V,R)) n Hol(V, JY(J"E))
where
jLT(V,R) cT(V,J'E) - T(V, JY(J"E))
which of course makes sense since
JHE =1 (T'(V,J"E)) n Hol(V, JY(J"E))

Observe the natural map R* — R.
Inductively, the k-th prlongation R* ¢ J"**E of R is defined as

RE = (RF1)
Finally, we define the infinite prolongation by
R” :=limR*

DEFINITION 159. A formal solution j € R™ to a differential relation R is a point of its infinite
prolongation, j € R™.
Observe the obvious fact that
JER* = pljeR
so that any local holonomic section of formal solutions is also a local solution to the differential

relation.

DEFINITION 160. A formal solution j € R} is called realizable to a germ if there is a germ
of solution to R,

0edy, jro=j]

The background for our analogy with the previously discussed instance of “softness” occurrs
under the auspices of a classic theorem of Borel for the case when R = E :

THEOREM 161 (Borel’s lemma). Let V =V, x R. The assignment

Borel : C* (V) — 1:[07“(‘/0)
0
ok f
- (Giles),

Observe that when R is open, then all formal structures are realizable to a germ. This should
be compared, in light of the above discussion, to the fact that open relations are microflexible, and
observe the 1-codimensional hypothesis as in sharp mobility.

has a continuous right inverse.

PROBLEM 162. Which formal structures j € R* are realizable to germs ¢

In line with the ongoing discussion, a relation should be deemed “softer” (or “infinitesimally
softer”, as seems more fitting) the more formal structures are realizable to germs. We again point
out the non-triviality of this notion by means of Lewy’s example [47], where no formal structure at
all is realizable to a germ.

This problem is of particular interest to us in its Poisson incarnation. It seems to be highly
non-trivial, and is completely open even in the case of finite (positive) jets over a point. As a matter
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of fact, even the real algebraic varieties of the finite prolongations of the Poisson relation are too
poorly understood.
Turning now in the direction of “rigidity”, we discuss the following

DEFINITION 163. Let ® be a I'-equivariant sheaf on V.
A germ ¢ € ®(x) is called k-sufficient, 0 < k < oo, if for all ¢ € ()
Jre = ik
implies the existence of a d: x — x in T with dyip = .

It is clear how to interpret this notion as “rigidity” of ®, for it implies that the behaviour of ¢
in a (however small) whole neighborhood of x is entirely determined by its k-th contact order data
at x alone, so a sheaf should be considered “rigid” if “many” of its germs are sufficient, and all the
more so if they are sufficient of “low order”.

Observe moreover that sufficiency is a quite strong statement about a germ ¢ even in the k = o
case.

In the case of ® = Poiss, inspection of non-degenerate structures (all of whose germs are equiv-
alent by Darboux’s theorem) and rank-two structures (where it is easy to construct examples germs
which are not determined even by its infinite jet) shows a wild array of distinct behaviours that might
be useful to analyse through this perspective, especially in view of the known results on 1-sufficiency
in the presence of rigid isotropy ([12, 17, 19]).

Other interesting open problems. We wish to close these remarks by presenting some open
problems whose solution would arguably be a great advance in th investigation of “soft” properties
of Poiss :

Self-interpolation: Instead of studying general flexibility properties of deformations, one
might try to interpolate the canonical linear deformation ¢ — ¢7 connecting a given Poisson
structure m to the trivial one. One way to approach this problem is through symplectic
realizations of Poisson manifolds, which behave rather nicely with respect to this canonical
deformation. Through this lens, this self-interpolation problem is converted into one for
which certain averaging methods might prove useful. An important consequence of a
positive result in this direction would be to settle the problem of locality described in the
sequel;

Locality: Given a Poisson structure on the unit ball in Euclidian space, when can it be
extended to a global Poisson structure 7 What if we require that the structure vanish at
infinity 7 Solving this would shed some light on which semi-local phenomena are expected
to occur on Poisson structures on general manifolds;

Extending germs: In more generality, one may ask the following question : what is the
condition on a germ of Poisson structure along a submanifold to ensure existence of a
global representative ? (One must point out that this question remains open even in the
case where the germ is symplectic, in all codimensions of the submanifold, if we demand
that the Poisson structure be smooth; otherwise see Section 8.)

Topological obstructions: In similar spirit, one might wonder what the topological ob-
structions on a manifold are to admit a sufficiently non-degenerate Poisson structure. Some
very interesting results in this direction have been obtained by A. Ibort and D. Martinez-
Torres, see [45]. The very classical, and still open question of which closed manifolds
admit symplectic structures is naturally part of this program; however, even the existence
of Poisson structures, all of whose pointwise germ are non-trivial, has not yet been settled.






Notation

Categories
ObC the objects of a category C
ArC the arrows of a category C
IsoC the isomorphisms of a category C
Sets the category of sets
p(S) poset of all subsets of S, under inclusion
Cat the category of small category
Top the category of topological spaces
TopCat the category of topological categories
Grpd the category of (discrete) groupoids
TopGrpd the category of topological groupoids
QTop the category of quasi-spaces
oP opposite
E : Top, QTop — Sets | forgetful functor

Quasi-spaces

T a topological space

Cl(S) closure of a subspace S ¢ T

§s interior of a subspace S ¢ T

BdS boundary C1S — {C1S

Ses ClSuBdS

OpsS an openingof ST inT

by an open covering of a topological space

Cov(T) | the category of open coverings ${ of T' under “refines”

o(T) the category of open subsets of 1" with inclusions

S | O(T) | the poset of open subsets of T' containing S, under inclusions

] Yoneda embedding Top — QTop

X(T) quasi-continuous maps of a space 1" into the quasi-space X

X[T] homotopy types of quasi-continuous maps of a space T into the
quasi-space X

Sheaf theory

PSh(T,C) | the category of C-valued presheaves on T
Sh(T,C) | the category of C-valued sheaves on T'

+ plus construction

Etale | T' | the category of étale maps over T

Etale F étalé construction of a (pre-)sheaf F'
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NOTATION
Simplicial objects

the simplicial category

i-th face and j-th degeneracy maps

the category of simplicial sets

the category of simplicial spaces

nerve

Segal construction of the category C

geometric realization of the simplicial space S

carrier of a point p € |||

linear homotopy types of maps 7' — | 9|

classifying (simplicial) space of a topological category C

Bundle theory

set of Heefliger G-structures on T’

set of concordance classes of Hzefliger G-structures on T'
set of numerated G-structures on T'

set of concordance classes of numerated G-structures on T’
category of isomorphism types of (left) principal G-bundles

Differential topology

a smooth manifold

a smooth fibre bundle

the r-jet bundle of a smooth fibre bundle £

the r-jet prolongation of a section of

natural affine projection J"E — J°F

k-multivector fields on V, X(V) := X1(V)

differential k-forms fields on V'

Schouten bracket

sheaf of closed, differential p-forms

sheaf of exact, differential p-forms

distance function with respect to some choice of Riemannian met-
ric

Morse complex of a Morse function f:V — R

a pseudo-group of diffeomorphisms

a ®-diffeotopy

a set of O-diffeotopies

set of all compact subsets of a space T

the space of continuous maps V' — FE under the Whitney /strong
topology

a (covariant or contravariant) connection

geodesic flow of a covariant/contravariant connection V
transpose

ring of germs of smooth real functions at zero

ideal C§" of of flat germs

ring of formal power series in one variable

Taylor expansion

Borel map




NOTATION

Foliations, bundles, characteristic classes

Dist?(V) codimension-q distributions on V, i.e., codimension-¢ subbundles
of TV
D a distribution on V'

QSympDist?(V) | space of codimension-g distributions equipped with a non-
degenerate form

(D,w) an element of QSympDist?(V)

v(D) normal bundle to a distribution D

+ orthogonal bundle (to a subbundle of a bundle with a fibred met-
ric)

Ann(D) the annihilator of D

Pont(FE) Pontryagin ring of a real vector bundle F

pi(E) i-th Pontryagin class of E

ci(E) i-th Chern class of a complex vector bundle £

e(E) Euler class of a real vector bundle E

Fol?(V) space of smooth codimension-q foliations on V'

F a smooth foliation

L leaf of a (possibly singular) foliation

Trans(V, F) space of maps V' — W which are transverse to F € Fol?(W)

Trans(TV,TF) | space of bundle maps TV — W which are transverse to TF < TW
Fol% (E — W) | space of codimension-n smooth foliations on the total space E
QSympFol?(V) | space of codimension-¢g foliations equipped with a leafwise non-
degenerate form

(F,w) an element of QSympFol?(V)

SympFol?(V) space of codimension-g symplectic foliations of a smooth fibre bun-
dle E — W consisting of those foliations which are transverse to
the fibres of the bundle

GV(F) Godbillon-Vey class of F

Differential relations

a differential relation
k-th prolongation of R, 1 < k <
(wR) sheaf of holonomic sections of R

symb(D) For a differential operator D : I'(V, Ey) — I'(V, E7) of order r, the

unique I'(V, J"Ey) — IT'(V, Ey) with D = symb(D) o j"

symb(D) The bundle map Jj — E; corresponding to symb(D)

sheaf of (germs of) solutions of R; a sheaf of quasi-spaces
P-parametric sheaf of ®

sheaf of germs of sections of ® (usually denoted )

the sheaf of parametric germs of a sheaf of qusi-spaces ®
the sheaf of weak solutions to ®

HY(T, ®) Gromov ®-structures on 7'
$:HY(.,®) —» H'(-,T,) | forgetful functor assigning to a Gromov ®-structure its underlying

T, -structure



NOTATION

tautological Gromov structure on the graph E(F') of a Gromov

structure F'

Poisson geometry

{,} a Poisson bracket

Poiss®" sheaf of C" Poisson structures

O cyclic sum

11 the Poisson differential relation in J'A2TV

Xy Hamiltonian vector field {f, -} = 7 (df,-)

Poiss category of Poisson manifolds and Poisson maps
rank, 7 rank of 7 at a point =

Reg(m) subspace of regular points of 7

Poiss<x (V') | Poisson structures of rank at most k

stretch m stretch of

(Ea pa<'7 '>7 [[" ]])

b Mfd
x(V,Z)

TV, z), T*(V,2)
EN(V, Z)

Lie-Dirac geometry

a Courant algebroid

isomorphism E — E* by (-, -)

anchor of a Lie algebroid

generalized tangent bundle of V/

a Lagrangian subbundle of TV

the Jacobiator of L

a Lie algebroid

de Rham operator of A

de Rham ring of A

Schouten bracket of A

Lie derivative T'(A®*A*) — T'(A* A*) in the direction of e € T'(A)
contraction I'(A®*A*) - T['(A*~1A*) by ee I'(A)

graph of a two-form w

graph of a bivector 7

Lie bialgebroid

the graph of A through a two-A-form B in the double Courant
algebroid A @ A*

Differential b-geometry

category of b-manifolds and b-maps

vector fields on V which are tangent to the codimension-one sub-
manifold Z

the b-tangent /cotangent bundle of (V, Z)

normal line field of (V, Z)



NOTATION

k-multivectors on (V, Z)

differential k-forms on (V, Z)

b-construction along Z c V for a transitive Lie algebroid A — V
transversely non-degenerate bivectors on V'
singular locus of 7 € f{% (V)

transversely non-degenerate 7 with Z(7) = Z
b-bivector on V

b-de Rham operator

b-de Rham cohomology ring

b df

b-Poisson structures
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C" coertion, 84 symplectic, 68
D-diffeotopy, 41 forced down, 80
b-(co-)tangent bundle, 74 formal solution, 88
b-Poisson, 78
b-bivector, 75 generalized tangent bundle, 61
b-de Rham complex, 77 geodesic flow, 58
b-manifolds, 71 geometric realization, 12
b-symplectic, 78 germ realizability and sufficiency, 88
h-principle, 23 germ sufficiency, 89
t-coercibility data, 80 gradient, 80
(Segal) classifying space, 12 graph of Gromov structure, 30
étalé space of a presheaf, 3 Gromov ®-structure, 28
Cech groupoid of a covering, 4 Gromov groupoid, 28

Gromov-Phillips, 46
adapted coordinates, 72 groupoid

étale, 4

backward and forward Dirac, 63
Borel Lemma, 88 Heefliger G-cocycle, 5

Haefliger G-structures, 6
carrier, 13 holonomic, 22
coertion, 81 Holonomic Approximation, 44
compression, 34
concordance of Heefliger G-structures, 6 ideal of flat germs of functions, 80
concordance of numerated G-cocycle, 14 integrability to symplectic groupoid, 70
conformal symplectic structures, 70 invariant sheaves, 27
contact structures, 70
continuous extension of a pseudo-group, 27 Jacobi structures, 70
continuous functor, 4 jet fibrations, 22
contravariant connection, 58

Lagrangian subbundle, 61
left G-bundle, 7
Levi-Civita connection, 58

core, 43
Courant algebroid, 60

defining function, 72 Lie algebroid, 61
differential relatin Lie bialgebroid, 64
open, 88 Lie derivative, 62
differential relation, 22 Lie-Dirac submanifold, 70
closed, 25 linear homotopy, 13
germifiable, 25 locality, 89
open, 25

matching family, 2
Maurer-Cartan equation, 65

prolongation, 88

Dirac structure, 61
B-transform, 65 microcompressible, 38

microflexibility, 39
exclusion principle, 75

nerve, 12
flexible, 32 numerable G-structure, 13
foliation numerated G-cocycle, 14
almost symplectic, 68 numerated G-structure, 14
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open manifold (pair), 43
order of coercibility, 80

partition of unity, 13

plus construction, 2

pointwise Poisson-Dirac immersion, 64
Poisson-Dirac immersion, 64, 87
principal G-bundle, 7

projectable bivector, 60

pseudo-group of local diffeomorpisms, 5

quasi-topology, 18

realizable to a germ, 88

relative coertion, 84

rigidity principle, 76

ring of germs of smooth functions, 80

Schouten bracket, 62

Segal functor, 12

self-interpolation, 89

Serre fibration, 20

Serre microfibration, 20

shar set of diffeotopies, 41

sharply movable submanifold, 41

sheaf of parametric germs, 24

sheaf-theoretic h-principle, 25

simplicial category, 8

simplicial object, 9

singular locus, 75

stalk, 3

streching of a bivector, 66

strictly moving diffeotopies, 41

support, 39

symplectic completeness, 57

symplectic realization, 57
pseudo-, 60

Taylor expansion, 80
topology
sheaf, 5
transitive Lie algebroid, 74
transversely non-degenerate bivector, 74

weak solutions, 46

Yoneda embedding, 18



