
WHAT IS POISSON GEOMETRY?

RUI LOJA FERNANDES

1. Motivation and Origins

In Classical Mechanics one learns how to describe a mechaninal system
with n degrees of freedom evolving with time. Briefly, the state of the system
at time t is described by a point (q(t), p(t)) in phase space R2n. Here the
(q1(t), . . . , qn(t)) are the configuration coordinates and the (p1(t), . . . , pn(t))
are the momentum coordinates of the system. The evolution of the system
in time is determined by a function h : R2n → R, called the hamiltonian:
if (q(0), p(0)) is the initial state of the system, then the state at time t is
obtained by solving Hamilton’s equations:

(1)


q̇i = ∂H

∂pi
,

ṗi = −∂H
∂qi ,

(i = 1, . . . , n).

This description of mechanics is the departing point for Poisson geometry.
First, one starts by defining a new product {f1, f2} between any two

smooth functions f1 and f2, called the Poisson bracket, by setting:

(2) {f1, f2} :=
n∑

i=1

(
∂f1

∂pi

∂f2

∂qi
− ∂f1

∂qi

∂f2

∂pi

)
.

Note that this product is not associative. In fact, one has instead the very
important Jacobi identity:

{f1, {f2, f3}}+ {f1, {f2, f3}}+ {f1, {f2, f3}} = 0,

valid for any smooth functions f1, f2 and f3. It is also skew-symmetric:

{f1, f2} = −{f2, f1},
and bilinear over R:

{f, af1 + bf2, f} = a{f, f1}+ b{f, f2}, (a, b ∈ R).

You can find all these properties in the definition of a Lie algebra, and we
will pursue this connection later. There is a fourth property which relates
this new product with the usual product of two functions. This property is
the Leibniz identity:

{f, f1 · f2} = f1 · {f, f2}+ {f, f1} · f2.

All this is quite algebraic, so let us turn back to the dynamics. We now
observe that, once a function h has been fixed, Hamilton’s equations (1) can
be written in the form:

ẋi = {h, xi}, (i = 1, . . . , n)

Date: February 2007.
1



2 RUI LOJA FERNANDES

where xi is any of the coordinate functions (qi, pi). Actually, let us observe
that we can define a vector field Xh in R2n by setting:

Xh(f) := {h, f}.
Note that, by the Leibniz identity, Xh is indeed a derivation so defines a
vector field which in the coordinates (qi, pi) is given by:

Xh =
n∑

i=1

(
∂h

∂pi

∂

∂qi
− ∂h

∂qi

∂

∂pi

)
.

Then Hamilton’s equations are just the equations for the integral curves of
this vector field, i.e., the equations:

ẋ(t) = Xh(x(t)).

In this way, we have geometrized mechanics, and we are now ready to pro-
ceed to the next abstraction level.

2. Poisson brackets

Let me quote Michael Spivak (the author of some very nice textbooks in
Calculus and Differential Geometry):

“There are all good reasons why definitions should be hard
and theorems should be easy.”

So here is our main definition:

Definition 2.1. A Poisson bracket on a manifold M is a Lie bracket { , }
on its space of smooth functions C∞(M) which satisfies the Leibniz identity:

(3) {f, f1 · f2} = f1 · {f, f2}+ {f, f1} · f2.

A Poisson manifold (M, { , }) is a manifold M together with a choice of
a Poisson bracket on it.

Remember that a Lie bracket is just a bilinear operation, which is skew-
symmetric and satisfies the Jacobi identity. We can summarize part of what
we said before by saying that R2n with the bracket defined by (2) is a Poisson
manifold.

Let (M, { , }) be a Poisson manifold. If h ∈ C∞(M) is a any smooth func-
tion, we associate to it a vector field Xh, called the Hamiltonian vector
field of h, by setting for any smooth function f ∈ C∞(M):

Xh(f) := {h, f}.
Therefore, on a a Poisson manifold a function determines dynamics.

Just to give you the flavour of the theory, let us look quickly at first
integrals. Remember that a function f is a first integral of a vector field X
if for any integral curve x(t) of X we have

d
dt

f(x(t)) = 0.

Note that this happens if, and only if, X(f) = 0. Therefore, for the hamil-
tonian vector field Xh the first integrals are precisely those functions f such
that {h, f} = 0. This yields immediately the well-known fact that the
hamiltonian is a conserved quantity:
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Theorem 2.2. The hamiltonian function h is a first integral of the hamil-
tonian vector field Xh.

Proof. Due to the skew-symmetry of the bracket, we have:

Xh(h) = {h, h} = 0.

�

Actually, the Poisson bracket allows us to do even better:

Theorem 2.3. If f1 and f2 are first integrals of Xh then so is {f1, f2}.

Proof. Using the Jacobi identity we find:

Xh({f1, f2}) = {h, {f1, f2}} = {{h, f1}, f2}+ {f1, {h, f2}} = 0.

�

All this is quite elementary and familiar. I only wanted to stress the
point that the Poisson bracket is the essential ingredient in any study of
Hamiltonian dynamics.

So far we have been quite algebraic. So where is the geometry? It turns
out that there is both local and global geometry underlying Poisson brackets.
I will explain this briefly in the next two sections.

3. Local Poisson geometry

If (M, { , }) is a Poisson manifold and we choose a local coordinate system
(U, x1, . . . , xm), the Poisson bracket takes the local form:

{f1, f2} =
m∑

i<j

Cij ∂f1

∂xi

∂f2

∂xj
,

where the coefficients are the structure functions Cij := {xi, xj}. Note that
by changing coordinates these structures functions can get simplified or more
complex.

The local study of Poisson brackets is based upon the following theorem
of Alan Weinstein:

Theorem 3.1 (Darboux-Weinstein). Let (M, { , }) be a Poisson mani-
fold and x0 ∈ M . There is an even number r = 2n and local coordinates
(U, (q1, . . . , qn, p1, . . . , pn, y1, . . . , ys)) centered at x0 such that:

{f1, f2} =
n∑

i=1

(
∂f1

∂pi

∂f2

∂qi
− ∂f1

∂qi

∂f2

∂pi

)
+

s∑
i<j

φij ∂f1

∂yi

∂f2

∂yj
,

where φij = φij(y) are functions that depend only on the (yi) coordinates
and vanish at x0.

You can find an elegant proof of this result in the original Weinstein’s
paper [6]. By the way, this is a very nice paper, which lays down the
foundations of local Poisson geometry, and which I recommend as a good
starting point to learn Poisson geometry.

The number r = 2n is called the rank of the Poisson bracket at x0. Lo-
cally a Poisson bracket splits into a product of the standard Poisson bracket
on R2n and a singular Poisson bracket, vanishing at x0.



4 RUI LOJA FERNANDES

If you write down Hamilton’s equations in Darboux-Weinstein coordi-
nates, you will see that a point in U can be connected to x0 by an integral
curve lying in U of some Hamiltonian vector field if, and only if, the integral
curve lies in the level set yi = 0 (i = 1, . . . , s). This shows that points lying
in the same integral curve of some Hamiltonian vector field will have the
same rank.

Now we can get a more geometric picture as follows. Let us define an
equivalence relation on M by declaring two points x and y to be equivalent
if they can be connected by a piece-wise continuous curve made of integral
curves of Hamiltonian vector fields. Using the Darboux-Weinstein splitting
theorem, we can see that the equivalence classes are immersed submanifolds
and that they form a (singular) foliation of M . Note that the dimension of
each leaf is precisely the rank of the points of that leaf.

Let us focus our attention now on the singular part. By the Weinstein
splitting theorem, we can assume that we are at a point x0 where the rank
is zero (otherwise, we pick a small transverse manifold to the leaf and we
restrict attention to it). Now (x1, . . . , xm) are local coordinates centered at
x0, the Taylor expansion of the function {xi, xj} around x0 is

{xi, xj}(x) =
m∑

k=1

cij
k xk + o(2),

where the cij
k are some constants, and o(2) denotes terms that vanish to first

order. The linearization problem asks:
• Is there a set of local coordinates where the higher order terms vanish

so that the Poisson bracket becomes linear?
When this is possible, one says that the Poisson structure is linearizable
around x0. This problem is just an instance of a normal form problem. In
these kind of problems one looks for local invariants that allow one to solve
it. Let us explain one such local invariant.

Let us observe that the vector space T ∗x0
M carries a natural Lie algebra

structure: in terms of the base {dx0x
1, . . . ,dx0x

m} the bracket is given by:

[dx0x
i,dx0x

j ] =
m∑

k=1

cij
k dx0x

k.

You can check, by changing variables, that this is independent of the choice
of coordinates. This Lie algebra, called the isotropy Lie algebra at x0,
is a local invariant of our Poisson manifold. Its Killing form K, which in
terms of the base above is given by:

K(q) = cim
l cjl

mqiqj ,

is also an invariant. We have the following deep theorem:

Theorem 3.2 (Conn [3]). If K is negative definite, then { , } is linearizable
around x0.

Note that K is negative definite if, and only if, every Lie group integrating
the isotropy Lie algebra is compact.

I hope this has given you a flavour of what (local) Poisson geometry. It
is now time to turn into global Poisson geometry.
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4. Global Poisson geometry

As we have explained in the previous section, a Poisson manifold has a
(singular) foliation.

*** TO BE CONTINUED ***

5. Lie Groupoids and Lie algebroids

*** TO BE CONTINUED ***

6. Integrable Systems

*** TO BE CONTINUED ***
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