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Chapter 1

Introduction

1.1 Some general BlaBla

e Usually have determinism in physics: Given some fields (tensor fields, sections of fiber bundles, position
of point-particle, etc), initial conditions and equations of motion uniquely fix the time evolution (the
solution in spacetime).

e Gauge Invariance of a Physical system:

— time evolution contains time-dependent arbitrary functions (i.e. not fixed):
€.g. q1 (t) = ’Ult + E(t), QQ(t) = ’UQt - E(t)
Can be seen as coming from local symmetries of the action:
Symmetries map solutions of eom’s to solutions.
= local symmetries (i.e. with time-dependent transformation-parameter) thus allow arbitrary time
dependent parameters in the solution, i.e. solution is not fixed.

— determinism can be reinstalled by identifying solutions that differ by this shift (mod out gauge
orbits)

— or by 'fixing the gauge’, i.e. choosing a representative of the orbit.

— In most cases one can think of these symmetries as 4 change of coordinates or change of reference frame

— Note that one can also mod out discrete symmetries (e.g. dualities= Z2: mirror symmetry (T-
duality), S-duality: electric magnetic duality, T-folds, U-folds)

e Examples:

— YM: Yang Mills theories (including Maxwell U(1), QCD SU(3), electroweak SU(2)xU(1)):
standard class of examples. Relation to fiber bundles manifest. Gauge trafo=transition functions
(choice of basis in the fiber)

— classical mechanics:
Mostly related to implementation of reparametrization invariance, e.g. relativistic point particle
(geodesic equations).
But one can easily construct plenty of artificial examples.

— GR: General relativity :
Again reparametrization invariance. Metric (instead of connection) plays the role of the gauge field.
=1In flat space, metric can be gauged away completely (by fixing an orthonormal coordinate system).
One then says that the metric is “pure gauge”.
In curved space this is possible only for a given point of the manifold (where one can even bring the
Christoffel symbols to zero).

— Pure math example: geodesic equations (minimal volumes) from variational principle. (Nambu-Goto
action with Euclidean signature):
Worldvolume-diffeomorphism-invariance

— Similar, but with Minkowskian signature:

x Relativistic point particle.
x Or even superparticle (particle propagating through superspace)=-super-diffeomorphism-invariance



* ST: (bosonic) string theory:
Worldsheet diffeo invariance. (with gauge field(metric): Polyakov-string, without: Nambu-Goto)
Local Weyl-invariance (without gauge field)
Gauge-constraints: Virasoro-Constraints -> Virasoro-algebra

* Dp-branes (world-volume diffeomorphism invariant Dirac Born Infeld action + other gauge sym-
metries)

gauged WZW: Wess Zumino (Novikov) Witten theory (2dim sigma-models with (coset) group
manifold target space):

Fields live in the group G itself. Can act on them with other group elements by either left or right
multiplication.

One of these is realized for a subgroup H C G as local symmetry (gauge symmetry), the other just
a global symmetry. Modding out the local symmetry leads effectively to a sigma-model on the coset
G/H.

higher gauge fields (B-field, TQFT):

§B® = dA® (compare A = dA(®)

Fiber bundles not enough. Need gerbes.

(Cech-2-Cocycles: gag, : Us NUz N U, — S, 6g = gg.yég;%gaﬁ(Sg;BlW =1 (07),

Aap + Apy + Ay = 903,490py,  Bs — Ba = dAug, dBg = dB, = H|y, . Hitchin-talk)

topological models (Poisson sigma-model: no propagating degrees of freedom, —Kontsevich star
product)

can gauge any global symmetry (Noether-method)
=was used to derive SUGRA from SUSY

1.2 Plan

Definition of gauge transformations
Examples (including a first glance on Yang Mills)
Back to general discussion: Noether theorem and Noether identities

Hamiltonian description:

Phase space T*M with natural Poisson bracket

H: T*M—R

Constraints in the phase space (1st and 2nd class).

(presymplectic Hamiltonian systems)

Koszul Tate differential 6 reduces to the corresponding submanifold.

BRST differential (longitudinal exterior derivative) mods out gauge transformations (generated by
the BRST charge via the Poisson bracket).

e For both § need: homological perturbation theory: s = ) + d +...

~—

BRST  KoszulTate i1 dinal exterior derivative

e Lagrangian description (Legendre-transformation T*M — TM)

Tangent space TM a priori without natural Poisson bracket

L: TM—R

Space of paths PM in M (determined by initial conditions on T'M and eom’s).
Eom’s are constraints in PM

extend M to antifields. Functions on extended space= T’ (/\' TM ) (multivector-fields)
Graded Lie algebra with natural “odd Poisson bracket”: Schouten-bracket or antibracket

Koszul tate differential § reduces to the surface given by the solution to the equations of motion
(“on-shell”)

BRST differential mods out gauge transformations (generated by the action S via the antibracket).



1.3

Fiber bundle geometry and relation to YM

— characteristic classes (fiber bundle obstructions)

— Index theorem (anomalies)
Maybe more on:

— Anomalies

Fermions

Solitons (magnetic monopole)

Definition of a gauge transformation

[Henneaux,p.67]: Consider a manifold (?) M and the space of all paths PM. Le. an arbitrary path
q € PM is of the form

t +— q(t) (with coords ¢'(t), i€ {1,...,dimM}) (1.1)
where we assume the paths to be smooth. Consider further a functional on this space

all pathson M

~~
S PM - R
b
¢ = Sld= [ L0400, (1.2
which will be called an action functional . (It is called local if the integrand contains only a finite
number of derivatives)

The equations
0
q'(t)

which extremize S are called the equations of motion (eom)

0= 5S[q] = /dt 5qi(t)6 Slg] VYvariations dq (G(t) = q(t) + dq(2)) (1.3)

If there exists a particular (infinitesimal) variation d.q (parametrized by some transformation param-

eters %) with
5.5l =0 Vg (1.4)

it is called a symmetry transformation of the action.

Or finite (more general, as there might not be an infinitesimal version, e.g. for discrete symmetries):
A map

f: PM — PM (1.5)
q = §=f(qg) (=q+dq) (1.6)

with
Sif(g)l = Slg] Vg (1.7)

is called a symmetry trafo.

Symmetry transformations of an action form a group:

— identity is always a symmetry

— Composition of two symmetries is always a symmetry

Slql VYf.g = S[f(9(q))] = Slg(q)] = S|dg] (1.8)

2
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>Q
=
|
s
=2,
s
2
<
=
|



— Inverse is always a symmetry (plug f~*(q) into (1)
Slal = S[f~H(a)] (1.9)

— counterexample to last: S[g1,q2] = [dt L(g1,¢1) (action does not depend on g»). The function
f: g2 — 0 is a non-invertible symmetry transformation of this action.

— In order to avoid this:

* Restrict to trafos generated by infinitesimal ones (which are always invertible)

* Or restrict the trafos to be elements of the diffeomorphisms on PM. Then the symmetry group
is a subgroup

e A symmetry of the action is also a symmetry of the equations of motion, in the sense that it maps solutions
of the equations to other solutions:

Sl oal = s tslal + [ a6 () s Sl = (1.10)
1) 1)
= sam el s %Sl =0 (1.11)
=0 -0

e On shell = either on the “shell” defined by the equations of motion (that’s how I will call it, while probably
writing ”eom” ), or on the constraint surface (I will say “on the constraint surface”), in particular on the
mass-shell p?> = —m? (which I will call — if ever — “on mass-shell”).

e Off shell = Not on the “shell”.

Definition 1.1. Assume we can expand the symmetry transformation §.¢*(¢) in some (infinitesimal) and maybe
time-dependent parameter € and its time derivatives:

6" (t) = ) 6O¢ )+ )M (t) +... = (1.12)
\\.,—/
Rioya
= /dt’ () daq (', 1) (1.13)
——
RE (t',t)

If 6.¢%(t) is a symmetry transformation for any (infinitesimal) function £%(¢) of ¢, i.e.
3:S[gl =0 Ve(t) (1.14)

then ¢, is called a local symmetry of S or (in particular if those ¢’s related by a local transformation 4. are
identified) a gauge transformation.

(some ambiguity for the latter: as soon as one uses a symmetry to identify solutions — could also be a discrete
symmetry like dualities — one can call these symmetries gauge transformations, even in the discrete case.
However, as a local symmetry enforces the identification, one tends to identify gauge symmetry with local
symmetry)

Remarks:

e Allowing £(¢) to be an arbitrary function of ¢ is quite a strong condition on the symmetry. It is quite
common that one has some restrictions on (t). For example, d.¢*(t) might be a symmetry transformation
only if £(t) = € = const, in which case all the derivative terms drop. Such a symmetry is called a global
symmetry.

e The definition of a local symmetry requires arbitrary €, but not arbitrary form of d.¢*(t). In particular
there can be also local symmetries that don’t have derivative terms, i.e. that are of the form d.¢*(t) =

sa(t)ééo)qi(t). Still they differ from global symmetries by the fact that (¢) has an arbitrary ¢-dependence.

e Remark on the notation: Note that M can not only be finite dimensional (for example for a point
particle moving in space-time), but also infinite dimensional, like in field theorey where one should replace
the discrete index ¢ by a continuous (perhaps combined with a discrete). Take for example a co-vector



field A in spacetime (section of the cotangent bundle of R*! where “3,1” means that the signature of
the metric is (—1,1,1,1)). Its components are A, (z°,z',...,23) = A,(t,Z). One can think of ¥ as a
continous “index”, i.e. ¢'(t) = A, z(t). Many of the statements derived for finite dimensions carry over
for infinite dimensions. Sometimes, however, it is nice to avoid the split of the spacetime coordinates into
time ¢ and space ¥. So some of our discussion will be made explicitly for the field-theory case. When
we don’t want to specify, whether we are talking about vector fields or other tensor fields or whatever,
we will collectively denote all the fields of some theory by ¢!(x) (where x is now space and time). One
then obtains the particle case by splitting spacetime into time and space and taking the space-dimension
to be zero. So ¢'(t) in these notes can be both, either the point particle case (space-dimension=0) of the
general field theory or a condensed notation of the general field theory:

¢'(t) = ¢L"(t) = ¢lu(x) (iis then a cont oo-dim index: » (...)=> / d¥mE(.. ) (1.15)
i A

org'(t) = q¢'(t) =¢5(t) (iis discrete and finite dimensional) (1.16)

Rarely we might use even more condensed notation, where also time is included in the index:

EAS Z&Z/dt (1.17)

1.4 Examples

A few examples which we might use from time to time to illustrate some general concepts / techniques.

1.4.1 Stupid example

b
Sla1, 2] = / dt 161 —d2)* — V(g — q) (1.18)
Local symmetry

deqi(t) = e(t), deqa(t) =e(t) (1.19)

Eom’s (d¢|, = 0 = dq|, general variations, but with fixed end-points)
0 = /dt (0G1 — 6G2) (41 — G2) — (dq1 — 6q2)V' (1 — q2) = (1.20)
= [t (oo - 60) (G~ @) + V(a1 ~ @) (121)

55 _ 58
bqp (1) dai(t)

equations of motion are dependent (Noether identities):

08 n 08
5(]1 (t) 6(]2(t)

Solutions to eom’s are not unique. Only the difference is unique after fixing initial conditions

=0 (1.22)

qi(t) = 3qo+ svt+ f(t) (arbitrary f(t)) (1.23)
®lt) = —3q0—zvt+f(1) (1.24)
a(t) —q2(t) = qo+ut (1.25)

Physically identify solutions that differ by a gauge transformation (equivalence relation)
(01,92) ~ (@1 4+ 0-q1, 2 + 9-¢2) (1.26)
Can gauge fix (= choose a representative of the equivalence class of paths) e.g. via
f(@) = 1qo+ vt (q2(t) =0, g as effective variable) (1.27)

This is an example for a gauge symmetry without the explicit appearance of a gauge connection (0A =
E+..).



1.4.2 (Geodesic equation from the variational principle

e Embedding ¥ 5 M

e dim Y = 1: Geodesic:

S[X]:_/Edg \/| Xmgmn(X)Xn|

X*g

(1.28)

Variation yields in proper-time parametrization (affine parametrization) the geodesic equation:

6S=0 <<= X"m-X"XT7"=0
(e.g. point-particle in GR-background)

o dim X arbitrary:

SX) =~ [ e [t @K g X
3

|det(X*g)|

(1.29)

(1.30)

(e.g. bosonic string, Dp-brane). Variation yields a generalized geodesic equation (again in a particular

parametrization)
9OrX™ — M X*9, X'T =0

e Gauge symmetry: local worldsheet-reparametrizations:

5. XM =L X™ = £(0)9.X™(0)

e E.g. for 1-dim case can gauge fix 0° = X° = X° = 1, and assume that the remaining

(1.31)

(1.32)

X' <« 1 (where 1

can be thought of as the speed of light). Then we can expand the square root as follows:

V1 X g (O | = (/1= Xigy; (X)X7 =1 = 1X7g,,(X)X7 + ...

(1.33)

The second term is just the kinetic energy of a point particle in Newtonian mechanics which serves in this

case as a Lagrangian.
e Above examples are without worldvolume metric. So one has gauge invariance without
e With independent worldvolume-metric (Polyakov-action, works at least in 2dim)
S[X] = d*oVh AR, X g0, X"
@)
In 1d one has to add an extra term containing only h (or the vielbein e).

0= 63—5 = eom for h,, can be plugged back. One obtains back the old action.

Remark on condensed notation:
In case of the worldsheet (dim¥=2)
2@ xR x x®
55Xm(\02,, oy = &Y oMo X" (0% o) =

T

5 X™ (1) = / de'e™ (1) 8(c" — o)0 X" (7,0")

8 xmet(r)
Compare to
0=q'(t) = e"(t)0V () + () (1) + ... =
~
RZ

(0)a

Local in 0° —gauge symmetry. Local in o' —infinite global symmetries (conserved charges)
both.

a “gauge field”.

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

. Usually local in



1.4.3 General Relativity

Einstein-Hilbert action without matter

Seulgl = 16er d%z v|detg| R

Ricei — scalar corresp t0 g ()

It is diffeomorphism invariant (gauge invariance)

559#!/(517) = Lfg;w(x) = {K(x)a,{g#,,(:r) + 28(M|§“(I)g|n),,(x)

Equations of motion give Ricci-flatness

| 5
0 = —Sx Ru —ig.R
69w () . 270
<~ 0 = R,

1.4.4 Yang Mills I - a first glance

(1.39)

(1.40)

(1.41)

(1.42)

The aim of this subsection is to quickly introduce the Yang Mills action in order to have it at hand as an
example. This will be done without introducing in detail fiber bundle geometry (this will be done later). Some

names will be dropped in order to specify what the objects are, but without yet carefully defining these.

e Conventions:

here [Nak] [Kugo] [Hitchin] [thesis]
ADF | A=iAD F=iF | ZAD,IF | A D,F | -Q,V,-R
tr ltr
2

e A: Lie algebra valued one form, or to be more precise a local section of T*M ® g.

In fact it is the pullback of the so called connection 1-form (which is an element of Q'(P(M,G)) @ g) of

a principle fiber bundle along a local section.
F': pullback of the corresponding curvature 2-form [Nak, 355]

° Actio

S[A]

/ (—)p(Dip)E(D)p)%tI‘F/\*F =
RD—1,1

- /RD?Hde 2 F"™" Frpy (mn €{0,1,...,D —1})

with [Nak,p.353]

F = dA+ANA

L[thesis, p.169, (D.24)] Define the components of the e-tensor (volume-form) for Minkowskian signature via
emy.mp = V| g lemy..mp, €o1..(p—1) =1=tep 1. (p-1) = (—)P tier.p
——
_ (B
:Egu?D
The last step defines the Euclidean version. The actual D-form thus reads
€= %emlmmD & D = (—)Pie)
Its components obey the following identity:
<by..bp_ E b1...bp_pcy...c <by...bp_
HealmaD,pcl4.4cp€b1me7pC1ch = _éallma%,;;y %Ez(zl?uaD,pclmcpE(g) PPt = éallma%,i;

Using this tensor, we can define the Hodge dual as ([thesis,p.171,fn3], with redef wi,{’)nm — %wi,{’)nm, e —dle)

)y mpy = Lo S F®) (k) with ()

where €(p ) is some p and D dependent sign-factor which can be chosen in any convenient way. Natural choices are

p(p—1) p(p—1)

1,(=)PP=P) (=)~ =7 or (=) z (—=)P(P=P) | The second is most common in literature ([Nak]), the last was used by my-
self in [thesis]. (The factor (—)P(P—P) corresponds to contracting w(®) with the first instead of the last p indices of the e-tensor,

p(p—1)
the factor (=) 2 reverses the order of w(P)’s indices.)



or expressed in terms of the covariant derivative

F = [D,D (1.47)
D = d+]A,] (1.48)

e Bianchi identity for general (nonabelian) group

dFF = [dA, A]x (1.49)
= [F-AANA A]\ (1.50)
DF=dF - [A,F]n=0 (< [D,[D,D]]=0) (1.51)
e Gauge transformation (bundle transition maps)
A=gAg '+ gy~ | F=gFg! (1.52)
——
7dg gfl

Or for an infinitesimal gauge transformation g =1+ o

0A=[a,A]—da=—-Da , O6F=|o,F] (9=1+a) (1.53)
e Equations of motion
SF =dA+[A,0A] = D6A (1.54)
88 = / — T 6F AxF — Lt F A*0F = (1.55)
—_———
tr SFEAXF
= / —2tr DA A +F (1.56)
= / —%tréA/\D*F—I—/ d(3tr§A A«F) (1.57)
The Hodge-dual of 1 is simply
(*1)m1...mD = &D,0)€my..mp (*(E) with a(E))

*1 =¢p,gye =¢ (for all above versions of ¢(p p))

The square of the Hodge-star operation is either +1 or -1, depending on dimension D and (convention-dependent) also on the
form-degree p.

= (PP Pep pennop iy = ()PP P pyen,np)
KL= —€D,0«D,p); *== €D.D)
N——— N——
e{lepy} e{Lep)}

The Hodge dual of a wedge product of two forms leads to the contraction of its indices. If we denote by @ the p-vector obtained
by raising all p indices of the p-form w(®), then we can write

*(w(p) A W(q)) — (—)”‘I*T’(D*p)e(Dprrq)e(qu)(—)7’(7’*1)/21&@) *,](Q) — (_)q(qu)e(Dprrq)e(Dyp)(_)q(qfl)/%ﬁ(q)w(p)

Replacing 77(‘1) by *n(p) (of degree ¢ = D — p) and acting with another star, yields a symmetric inner product
@P Axn ) = ()PP Pe(p ) (4 ypo-1)/26m1 ) e = (P Axw®)

posdef for Euklid

Above we actually have a volume form, so that the proper inner product is its integral over the manifold.
For ¢(p,p) = (—)P(P=p) (=)P(P=1)/2 e have

(*W(P))mlme7p = %wl(cz)...klakl"'kpml...mD,p (k(py with e(g))
*Dmy.omp = €my..mp  (kp) Wwith eg))
%2 = _(_)D(D*l)/Z
(w® APy = (zw(p)n(p))e = (@ Axw®))

For ¢(p py = (—=)P(P7P) (e.g. [Nak])

1.,® ki...kp
1Yk . k€ m

(*w(p))m1.4.mD7p 1---MD—p (*(E) with E(E))

(*1)m1...mD Emi..mp (*(E) with 5(E))

2 = ()PP *%E) = (—)P(P~-P)
(WP Axp®)y = (2(7)13(1)71)/2u_)(13)77(79))8 = (@ Axw®) o

10



5S[A]=0= DxF=0 (DnF™=0) & Fppn"|yy =0 (1.58)
e Gauge group U(1) (commutative, linear eom’s): Maxwell electromagnetic field E :1-form on R?,

E; =Fy (1.59)

B :Hodge dual of a 2-form B®) (in 3dim: 1-form 21-vector),
B = Ltk Ejfk/ (1.60)

=Bji
So F' written in terms of electric and magnetic field reads

F=B+cENd (1.61)

This is a closed 2-form in R* upon some of the Maxwell-equations (the Bianchi-part of Maxwell eqs)

d = dB+dAdE= (1.62)
=  dAd'Add (30:Bi; + cO,Ej) + &F A de' A de? (L0,Bij) (1.63)
dF =0 <— §B+VxE=0 VB=0 (1.64)
Similarly L .
dxF =0 < E-VxB=0, VE=0 (1.65)

e Noether identities: (see later)
0=D,(D,F*) =[F,, F*"]=0 (1.66)

e Remark on “gauging”: fermion action with global invariance -> gauge field action,

St.dl = [d'a 010, -mpw (1.67)
or Slo.o = [d'a 8,000~ V(ero) (1.68)
Invariant under global U(1) transformations
v = €%y, 6= const, o = iy (1.69)
org = e (1.70)

Not invariant under local transformation, because of derivative. Introducing gauge field A, (“minimal
coupling”) leads to locally invariant theory:

S, A] = / iz G (B, — Ay) —m)p+ Law (L.71)
D
Slé,¢", 4] = / d'c Dud* D6 — V(6°6) + Larw (172)

Similarly: S is invariant under global Poincaré-transformations (translation+SO(1,3)). Can make the
local by introducing metric and vielbeins (local diffeo-invariance+local Lorentz invariance). Adding some
kinetic term for metric =general relativity coupled to fermions+Maxwell;

Note that A, is coupled to the current j* = YpT#1p. This is the starting point of the “Noether procedure”
to “gauge” a global symmetry.

1.5 Noether Theorem and Noether identities

Consider a quite general action functional of the form

JR dr fz(dfl) d(dil)d

—
Skl = [dle L6000 0u0udh ) (1.73)
m

11



Theorem 1.1 (Noether). To every transformation 6, q%” which leaves the action S invariant, i.e. transforms

the Lagrangian as
! .
S L = 8HIC€LP) with nHICfbp) e = 0 (1.74)

there is an on-shell divergence-free current jfp) whose explicit form can be chosen to be

oL

T 7 7 m
j = 6P, + Oy o Oy OGOy ... 0, -K 1.75
R iu kz Z v OO0 O Oy gty Ko (4T9)
Its off-shell divergence is given by
08
Oy, —0( )¢azz (1.76)
#e) : 5¢all
The such defined Noether current is unique up to trivially conserved terms of the form d,8vnl,
In turn, for any given on-shell divergence-free current j* with
~ 08 T 08 T 08
ot = —yh —— =y 0y, —— — ..y Ny, D (1.77)
I (0) 5¢£” (1) M 5¢£” (N) 1 KN 5¢a”

which is furthermore itself on-shell neither vanishing nor trivial, there is a corresponding nonzero symmetry
transformation d¢%,, of the form

N

bt = D ()0 Oy (1.78)

k=0
The simple form of the off-shell divergence given in (1.70) can be recovered upon redefining
k—

N

- I 5S

m=gr Y DT Dy O VST (1.79)
k=1 z:O all

—

Proof. See [thesis, p.182]. Let’s prove only the mechanics-case ¢Z; () — ¢'(t) and even there further restrict to
Lagrangians of the form L(q,¢) without higher derivatives. We start from the symmetry requirement ((L.74)

K(p) = 6(p)L = (1.80)
i 0 i 0
000 Gl +0d 5l = (1.81)
o  do .\ df. 0
34’ (a L - aa—qiL) to <5(p>q 6_qiL) (1.82)
_ 5
3q* (1)
d(. 0 s

The main difference for higher derivatives is that one needs to use a generalized formula for partial integration
which is of the form

k—1
a-b = 8 [Z(—)iak“a 0| 4 (—)ka - 0*b (1.84)
i=0
Instead for L(q,q) we just needed simple partial integration. The inverse direction is left as an exercise... O

Fact. Every Noether current with on-shell vanishing divergence leads to a conserved Noether charge :
Q

/(d )dd*10j0 (1.85)
»(d—-1
)

L0 = / 4415 8,0 = —/ 4415 8,57 "X 0 (1.86)
ot $(d—1) S(d—1)

12
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Theorem 1.2 (2nd Noether theorem). If 5,,(;%” is a symmetry transformation for arbitrary local (gauge)parameters
p% (o) of the form

Sp)Pan = P"0aPay+ 0up Ol by + Oy Oy 0L Py (1.87)
N——
80y P 80y Pau 6P

then the following Noether identities hold and are equivalent to (1.70)

08 08 08
Sa®% Oy | 011 gt A+ ()N, .0 Shnta-pa T =0 1.88
¢al16¢a” 11 ( a ¢a115¢a”> +...4+ (=) 1 un1 | Oa ¢all(5¢azz (1.88)
Proof. Plugging (L87) into
! d T g
O = /d (o 6(P)¢a11(0)ms[¢all] = (189)
)
= /ddU (P"0ata + 0pup® 84 b + Opuy Opr pUOL 2 Gy + .. 56T (o )S[¢all] Vp (1.90)
all
This shows the Noether identities.
Similar to 6(,)¢Z;, we can expand also j(“p )
Jpy = PUIE A O p I A A Oy Oy PN (1.91)
Plugging (IL.8T) and the expension of the current (91 into (IZG]), one can show the equivalence of the Noether
identities to (L76). O
Example: Noether identity for Yang Mills: The equations of motion where
08
— x D, F* 1.92
sz < DoF: (1.92)
The variation of the gauge field was:
A, = [0, Ay —Oua= (1.93)
= aTu, Ay — 0,06, T, (1.94)
0A;, = a“fabcAZ — 0,a%0,,0, (1.95)
Compare to
8(p) I = P a0 + Oup S 4 0y Oy p O BL 4+ (1.96)
——
805y ®an 8oy Pan 8oy Pan
The Noether identities are in general
08 08
SadF, -9 (551¢§ ) +...=0 1.97
all ¢ 7 5¢&11 228 e T 5¢&11 ( )
So this translates for Yang Mills into
? 08 08
0 = faA 9, | 668 = 1.98
x f;wng,,FgH + 0, (DVF;H) = (1.99)
= fa®AY (O F" + AL faecF"M0) + 0, (0, FY" + AS fepa FHY) = (1.100)
= [ A0, F + fur AL AL facc PP + 04 AL fovaFy ¥ + A fopaOp B = (1.101)
= fabcAZauFéj# - AZfbcaaVFV'uc + aHAICchea - AZAg fabcfced Free = (1102)
——
=0 _%feacfcbd
= Fj feeaF""=0 / (1.103)
Probably boils down to (exercise: check)
0=D,(D,F') =[F,, F"]|= (1.104)
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shellZero

shellZero

Proposition 1.1. : The Noether current of a gauge symmetry vanishes on-shell up to trivially conserved terms

N
58
wo MLy [uv]
I = kZNp) U O O g S (1.105)
=0 a

In turn, if a given global symmetry transformation has an on-shell vanishing current (compare [Henneauz, p.95])

N

. 08
D R - (1.106)
k=0 a
then one can extend the transformation to a local one
N
S(p) B = P“0atiy — 0up™ MT + D> (=)0, o Oy (D p AT 114k (1.107)
k=1
Proof. Quite technical to prove. We’ll skip that as well as the proof of the next statement. O

Theorem 1.3. Every on-shell vanishing symmetry transformation is a trivial gauge transformation as
defined below:

on—she. 55 .
S, =hellg §5=0 = S¢r, = /ddo At (o, U/)W with A* (0,0") = =A% (o', 0) (1.108)
at\?
Proof. See in [Henneaux] (theorem 17.3 on page 414 or theorem 3.1 on page 70 - see also proof(p.229) of thm
10.1(p.209)) for a proof of this theorem. See [Henneaux] p.69 for a discussion of trivial gauge transformations. O

Remark

e Shortcut to calculate Noether current:
Spman = 1(0) - Spday (1.109)

6po = /dda 0y~ () (1.110)

Where jé‘p ) vanishes on-shell. Can instead also use 522; L = pa5,(10)¢§11.

e Conserved Noether Charges = Integrals of Motion
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Chapter 2

Constrained Hamiltonian /Lagrangian
Systems — Classical

2.1 Formulations with brackets (without gauge symmetry)

2.1.1 Legendre Transform without constraints

e The Lagrangian is a function on T'M (assuming that it depends maximally on first time derivatives of q:
L: TM — R (2.1)
(¢™,v™) = L(gv) (2.2)

e The Hamiltonian instead is a function on 7% M:
H: T"M — R (2.3
(¢",pm) = H(g,p) (2.4)

e The Legendre transformation brings one from one to the other by assigning a momentum (cotangent
vector) p for a given ¢ and v as follows

OL(q,v)

m = —— 2.5
P Sy (2.5)
Assuming that the resulting relation between p,, and v™ is invertible, i.e.
9*L(g,v)
det | —=—+ 0 2.6
¢ < ovm o™ ) 7 (2:6)

one can build the following function on the cotangent bundle as follows (Legendre transform)
H(q,p) = pmv™(q,p) — L(g,v(q,p)) (2.7)

e One can calculate the partial derivatives of H without knowing the explicit form of the inverse transfor-
mation v™(q, p), because §v™ (g, p) drops from the variation of H:

0 0
0H(q,p) = 5pmvm(q,p)+pm5vm(q,p)—5qmaq—mL(q,v(q,p))—5vm m—mL(q,v(q,p)) = (28)
[ S ——
Pm
0
= 0pmv™(q,p) = 0q™" 5—L(q,v(q, D)) (2.9)

oq™

IFor Lagrangians that depend on higher derivatives of ¢™, see either the comment at the end of the subsequent subsection on

first order Lagrangians (suggesting to iteratively replace ¢ by momenta and build a “first order Lagrangian” which might not be
first order yet, but can be used again to define momenta and so on) , or see [Henneaux, p.47, exercise 1.26]: simply introduce one
new variable for each of ¢, and so on:

OL oL
1 = (2) =
p —_— aq. 9 p —_ ad 9t
H = pWi+p?4—Lig,ile,p),d(a,p),...) o
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The partial derivatives of the two functions thus read:

oH OL
aqgm  dqm
oH 0L
% - ) Pm o™

2.1.2 Hamiltonian eom’s with Poisson bracket
e From the Lagrangian eom’s

oL d OL
dg™  dt O¢g™

one can easily obtain the Hamiltonian ones (using the above relations):

oOH

q = %:{Haq}
. OH
bm = ~pum ={H,p}

The Hamiltonian thus generates the time evolution via the Poisson bracket.

0 0

F. = OF/dp,—G — (—)F¢ m——F =
(F.G} = OF[0pgiG = (<) 06/ 0p 5
= O0F/0 iG—@F/(? mig
= pmaqm q 5pm
{Fu G} = _(_)FG{GvF}
e Hamiltonian vector field
O0H 0 O0H 0 OH 0
Xy = {H,-}= — = pMN
f .= Ipm g™ 0q™ Opm,  OyM ayN
or equivalently
dd = ix,w
a]wH = XgWNM
So
M = Xny

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.22)

e The Hamiltonian equations of motion can also be obtained from an action principle (first order action)

L: T(T*M) — R

(Q7p7 qup) = L(q=p7 qup) = qmpm - H(va)

oL 0L
o ogm
oL oL
agr T o
oL . OH
o Opm

(2.23)
(2.24)

(2.25)
(2.26)

(2.27)

e If the original Lagrangian depends on higher derivatives of q, say §, then L will also depend on p. But
not on § any more. Then one can do the procedure of defining momenta again. If one has even higher

derivatives, one does this iteratively.
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2.1.3 Schouten-Nijenhuis bracket on I'(A*T'M)

e Generalization of Lie-bracket of vector fields and of Lie-derivative

e Remember for vector fields v = v™8,,, the Cartan formulae:

[to,t0] = 0 (= Yo,wlus,) (2.28)

[dd = 0 (2:29)

Ly = [w,d] (2.30)

[Ly,d = 0 (2.31)

[‘E”Uu E'w] = L”['u,'w] (232)

[[Zvadlvlw] = v,w] (233)
~——
Ly

e Last line shows that the Lie bracket is a derived bracket. Inherits the Jacobi-property.
e Take now multivectors

@)

ST D AL A D, (2.34)

WP = s o ks BTN A T (2.35)

e Define Lie derivative in the same way

L,wp” = [rye,dlp) = (2.36)

1 ki...k
- o iy &AL A A
- Dir—p+1)° kp Php 1. kamame—p i +

1 m my
_(_)pmamlUkl...kppkp...klml...m7\,p(h' AL A (237)

e The Cartan formulae then hold exactly in the same way and define a generalization of the Lie-bracket of
vector fields, namely the Schouten-Nijenhuis-bracket of multivector fields

[tow s d,2m] = e we) (2.38)
L,
[U(P)’w(Q)] — (mv[nﬂu...mpfl|kakw|mp...mp+q,1]+
()OI b g Yo, B, (2.39)

e It is a Lie bracket of degree -1 :

degv®,w?] = p4+qg-1 (2.40)
[v(p)’w(q)] — _(_)(pfl)(qfl)(w(q) ,v(p)) (2.41)
[v,lwu]] = ((vyw),u) + (_)(Uil)(wil)(w’(vau)) (2.42)
vawAu] = [vw] Au+ (=)D A [o,u] (2.43)

e Alternative approach: Start by identifying the bracket of a vector v with a general tensor 7" with the
Lie-derivative of the tensor 1" with respect to the vector:

[v,T) =L, T (2.44)
In particular for a scalar ¢ or a vector w we have
[V,6] = Lo = VO, [v,w] = Low = (V¥ Opw™ — wFIH™),n (2.45)
Note that this definition implies a Leibniz rule for tensor products in the right argument of the bracket

[vs(w @ )] = [vyw] @y +w @ [v,y] (2.46)
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Next one can try to generalize also the lefthand side of the bracket [v,T] to tensors, by demanding some
Leibniz rule for tensor products [v ® w,T]. For some reason (which I cannot reproduce at the moment)
this turns out not to be possible for general tensors and for the general tensor product v ® w. However,
if one restricts 7' to multivectors y® and demands the graded Leibniz rule

[vAwyy] =v A [wy] + (=) Y [oy] Aw (2.47)

when acting on the wedge product of two other multivectors, then this works and one obtains precisely
the SN-bracket. The above Leibniz rule is of course equivalent to (Z43]) when taking into account the
graded antisymmetry of the bracket.

Application: the SN-bracket appears in the criterion for integrability of a Poisson-structure:
0 = [P,P] = PImlky, plmamsly, 9, 8,,, <= Jacobi of Poisson-bracket (2.48)

If the Poisson bivector P is non-degenerate, then this condition is equivalent to closure of its inverse w
which is a symplectic structure

if P invertible

2 e A de* 0wy = dw = 0 (2.49)
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2.1.4 Lagrangian eom’s with antibracket

e Note first the formal isomorphism
[(A*TM) = F(IIT*M) (2.50)

where

IT*M : T*M with ”parity-inversed fiber”: RN — AN F - into AN (2.51)
Take coordinates (¢, q;\,) on IIT*M and f € F(IIT*M). It can be expanded as

D

Flag™) =D Hf™ ™ a)gh, - ah, (2.52)
k=0

Each of the expansion coefficients corresponds to a section of A¥T M.

e The Schouten-Nijenhuis bracket of above now corresponds to a bracket [g},¢"] = 6,. However, as we are
actually interested in paths on M (€ PM) we will actually need to extend this bracket from F(IIT*M)
to F(IIT*PM) (i.e. functionals) which will be denoted by round brackets and defined by simply setting

(@m(7)5¢" (7)) = &7,0(7 = 7') (2.53)
This bracket is called the antibracket. The g}, are known as antifields.

e For general functionals on IIT*PM the antibracket thus reads

- [ -0 a (Y EDEDa 5" (1) -2
(PG) = [ arirsg(r)5=G - () G ()i F (25
5

+ (7 — .

(g, (1),G) o) (2.55)
. B 5

(¢"(1),G) = —(qu(T)G (2.56)
(F,G) = (=)D D@G,r) (2.57)

(F(G,H)) = ((F,G),H)+ (—)F=DCE"(G(F,H)) (graded Jacobi) (2.58)

It is a graded Lie-bracket of degree -1.
e Using this bracket, the equations of motion appear in the bracket of the action with the antifields:

6
g (T)

This can be either seen as g, acting on the action functional S or as S acting on g;,. The latter
interpretation is interesting, because

(g7 (1), 5) S (2.59)

s=(5,-) (2.60)

defines a differential (of degree —1) which (as a differential should) squares to zero

g = (5,(5-) = ((S,5),~) — (5,(5,-)) (2.61)
=
=& = 0 (2.62)

s can thus be used to build a homology (as it reduces the multivector degree). In this homology the

equations of motion ﬁs are apparently sexact and are thus implemented homologically

5
™G S = —sq} (7) (2.63)

In other words the functionals on the physical subspace of IIT*PM (consisting of those paths PppysM on
M that obey the equations of motion) is given by the zero-degree homology

F(PyysM) = Hols| FIT*PM)) = (Ker(s)) (2.64)

Im(s)

deg0
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o At degree 1 we havd? we have vector fields which we can identify with symmetry transformations along
these vectors

Ulga'] = [ar VMla)air) God () = V3lo) (2.65)
And indeed the requirement of sinvariance (BRST invariance) of the vector field is equivalent to invariance
of the action under the corresponding transformation

Via] = - [a V)5 L0 (= 685 =0) (2.66)

)
So it’s the symmetry transformations which are BRST invariant. Instead the exact ones are obtained
from

+
s/ dT’/dT%an(T,T Yat gl (r /dT /dTQ [l (] (7, 7') 65; ) q () (2.67)

—oVmql(r)
So the exact functionals contain just the trivial gauge transformations.

e If we have a local symmetry, then the Noether identities imply that there are also non-integrated BRST-
invariant (and non-exact) vertices

NI 6 d )
0 = §0¢gr_—g— SWgm—8) +... = 2.68
- _ ) mo+ _ & (5(1), m +
s(éa q"q; o (5a q qm) —l—) (2.69)

Trivial gauge transformations can also be written in an unintegrated form

d\" 65 . 55
- Q(r)(s)[(ﬂ<<a> 6qmqsl)+ (dt) 57 qy) >1¢27O)

S Z 1Q(r)( yla lg ) gl

r,s>0 r,s>0
08
_ 1 mn nm s
- Z 2 (Q(r)(s)[‘ﬂ - (s)(r)[q]> (dt) g™ q( i (2.71)
r,s>0

e Noether current
0,07 (7) = =" (7)o = s(V"lal(r)a, () (272)

For a typical global symmetry, only the integrated vertex U = [V is sinvariant. The integrand V instead
induces descent equations

& = dj (2.73)
s = 0 (2.74)

21f one sticks to the finite dimensional manifold M (instead of the space of paths PM) together with the Schouten-Nijenhuis-
bracket on I'(A*TM) = F(IIT*PM), then we have

0 0
[w] = 00/0(8m) 5w — (2) VT 0w/0(Bm) 5w, [Bmya"] = b7,
9q” 9q”
In the same way as in the infinite dimensional case let us define a functional s generated by a O-vector (a function on M) S(q) via
s= [57_]

Then at 0-grade all 0-vectors (functions) are in the kernel. They are s-exact (the image of some 1-vector) if they are the Lie-derivative
(directional derivative) of the function S along that vector:

sf =0 VfeF(M), flg) ~ flg)+m0m)=f(q) —EmmS(q)

1¢dS
So Ker(s)
R er(s
Hosira i) = (155)| -~ F{q € Mions(a) = o)
Im(s) deg0

At grade 1, for a vector to be in the kernel it has to be a symmetry-direction (flat direction) of the function S

v = V"(q)0m

o = —0"(qQ)0mS = —LyS = [S,]

v~ 0 S(FEMN(@)OmOn) = (V" — €M(q)Om (@) O = v +£(dS, —) o
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The current is thus the non-integrated s-invariant vertex corresponding to the symmetry transformation
V™in the integrated vertex.

e We can also generate the transformation itself with the antibracket
slal(r) = ([ s al()al (7)™ (1) = (U () (2.75)
What do the non-integrated vertices induce? E.g. (4, F[q]) = 0.

Remarks

e Future: BRST-differential
s=0+d+... (2.76)

— §:Koszul-Tate-differential: homology puts you on the constraint surface (Hamiltonian formalism=BRST-
formalism) or on the equations of motion (Antifield-formalism=BV=BFV). (Different ¢’s!)
— d;: longitudinal exterior derivative: cohomology restricts to gauge invariant objects

— combining them to sis known as homological perturbation theory
H®(Y...)=H*(dH.(4|...)) (2.77)

— in the above antifield-discussion the differential s = (.9,...) did not yet take care of any gauge sym-
metry. So we had just s= §. Indeed we observed that sjust put us on the equations of motion.

e Manifold: MP looks locally like RP (charts map to R”)
Supermanifold: M P[P« Jooks locally like RDe x RP« where R, and R, are commuting/anticommuting
supernumbers respectively, where the supernumbers A, = R. ®R, are the formal limit of a Grassmann
algebra Ay with oo generators: see next item. It can be expanded as follows:

e
2= D hran” mt (2.78)
k=0
oo
= \ZB/+ Z %211 Zk'r]“ : '77““ (237 Ziy..ip, € R) (279)
body k=1
=zg (soul)
= Zeven T Zodd (280)
M~~~
ER. ER,

Transition functions for the supermanifold have to be superanalytic functions Ao, — A.

e Grassmann algebra: Ay generated by ¢, i€ {1,..., N} with

X2

n'n’ =-n'n', ¥0')*=0 Vi (2.81)

Ziv:o (J,\C[) = 2V dimensional (e.g. real or complex) vector space. (think of exterior algebra of differential
forms n* = dr?).

e Cotangent bundle with parity reversed fiber II7T* M

T*M < MP xRP, &transition functions (2.82)
nrm = MP RP | &same transition functions (2.83)

e Schouten-Nijenhuis-bracket (partial derivative)

[—,—]: T(A*TM)xT(A*TM) — T(A°TM) (2.84)
FOT*M) x F(OT*M) — F(IIT*M) (2.85)
lar.q"] = o, (2.86)

qmeM, (¢ q))elIT*M (2.87)
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<-> antibracket (variational derivative):

D(A*TPM) x T(A*TPM) — PT(ATPM) (2.88)
FMOT*PM) x FIIT*PM) — FIIT*PM) (2.89)
qm € PM, (¢, q})ec PIOT*M (2.90)

q"(r) e M, (¢™(1),q (7)) e UT*M (2.91)

e graded commutator

[to,00] = by + (=) 0ty | |=| V] (2.92)
L, [dw] |Lyl|=v]|+1 (2.93)

2.1.5 More about symmetries

e A symmetry dq(q,q,d, q,...,t) of a Langrangian L(q,¢) can always be split into a symmetry dq(q, g, t)
plus a trivial symmetry! (Henneaux, Exercise 3.8, page 96). This allows to write symmetries in the
Hamiltonian formalism as functions of ¢ and p (and maybe t) only.

e Similarly for the Noether charge, see exercise 3.28, page 100

Moment map

e Noether theorem <+ moment map? [Silva,p.131]
— Action ¢ of a Lie group G on a (symplectic) manifold M

v: G — Diff(M)
g = Yy (2.94)
Similar to embedding (group homomorphism, so a representation? right-action: ¢ is an antihomo-
morphism). The associated evaluation map is
evy : M xG — M
(p,g) = (p) (2.95)

Action is called smooth, if evy is smooth.

— symplectic action
v: G — Sympl(M,w)C Diff(M) (2.96)

— a symplectic action ¥ of S! (or R) on (M,w) is hamiltonian if the vector field generated by 1) is
hamiltonian (3H s.t. X = {H,—} or dH =1, X)

— a symplectic action ¢ of G on (M,w) is a hamiltonian action if there exists a map
w:M— g (2.97)

satisfying:
* VX € glet
wX M — R, X (p) := (u(p), X) be the component of x along X.
X7 be the vector field on M generated by the one-parameter subgroup {exptX|t € R} C G
Then
duX =1xsw (2.98)
i.e. uX is a hamiltonian function for the vector field X#.
x p is equivariant with respect to the given action ¥ of G on M and the coadjoint action Ad* of
G on g*:
potyyg=Ad,op VYgeG (2.99)

The tuple (M, w, G, ) is then called a hamiltonian G-space and p is a moment map.

— It would be nice to translate the last general definition of a hamiltonian action of a nonabelian group
into the Poisson-bracket language. For me it would be natural to call such an action hamiltonian, if
there exist generators G, such that d. = ¢*{Gq, —}.
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2.2 Hamiltonian system with constraints

2.2.1 Primary phase space constraints

e Remember that the Legendre transformation

H(q,p) = pmv™(q,p) — L(q,v(q,p)) (2.100)

with the assignment of a momentum (cotangent vector) p for a given ¢ and v via

9L(g,v)
= 2.101
p Sy (2.101)
needs a nondegenerate Hessian (for the relation between p,,, and v™ to be invertible), i.e.
9?L(q,v)
det [ ——— 2.102
¢ ( ovmov™ 70 (2.102)

dvm oy
that the p,, are not all independent. So the map from T'M to T*M is not surjective but will instead map
only onto a constraint surface Xy, within 7% M (phase space). They will be defined by some functions

2
e If instead det (6 L(q’v)) = 0, it means that the relation between p,, and v is not invertible and therefore

$alg,p) =0 (2.103)
e Examples:
L(q1,q2,G1,42) = 3G — V(a,q2) (2.104)
Po= ¢, p2=0 (2.105)
= ¢(q1,q2,p1,p2) = p2 (2.106)
L = qq (2.107)
= 0, pp=aq (2.108)
P11 =p1 P2=p2—q (2.109)

e Def: A function F': T*M — R is called first class if

{F,¢.} =0 Va (2.110)
otherwise it is called second class.
[ ]
<0
{pa, 06} =Cap , — (2.111)
~ det #0

e All constraint functions are second class <=
{basPp} = Cap is nondegen (2.112)

e All constraint functions are first class
{Ga,Gv} = far Ge ™~ (2.113)
Constraints generate gauge transformation. Each constraint removes 2dof’s!

e The constraints so far are called primary as they were obtained just from the definition p,, = %

without taking into account the equations of motion which can imply further (secondary) constraints.
For their treatment, this distinction is not at all essential.

e Constraints are called reducible, if they are not (linearly) independent
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2.2.2 Total Hamiltonian

In the presence of constraints, the map v™ — p,, = % is not invertible. In order to better understand

what happens, let us split the Legendre transformation into
- building the difference vp — L(g,v)
- and only then identify (parts of) p and v via p = %.
So a priori we will obtain a function H which depends on ¢™,v™ and p,,. Geometrically one could say it is

defined on the fiberwise direct product of T'M with T* M, which we will denote simply by TM x T*M).

H(q,p,v) = (vV"pm — L(q,v)) (2.114)
As noted already earlier, the variation of v™ drops completely if we restrict to the subspace of {(g,p,v)} where
p= %. This is true even if p(g,v) is not invertible:
m m 9L(g,v) m 9L(g; v)
6 H(q,p, ’U)|p:6LZ()Z,v) = <U 5pm + 5’U (pm — 8’(}77” — (Sq aqT :BLéq’v) = (2115)
9L(q,v)
= V"py, — 0¢" ——— 2.116
V"™ op "5 (2.116)
This means that H(g,p,v) does not depend on v when we restrict to a subspace =2 C TM x T*M defined via
p= %. Remember that the same equation p = % implies also the primary constraints ¥pim C T M

in phase space. This means that the we can define a well-defined ¢, p-dependent Hamiltonian on ¥pim C T*M
by restrictinég H(g,p,v) to Z:
H(q,p)

As H(q,p) coincides only on Xp.im with H(g,p,v), also their p and ¢-derivatives coincide only when they are
along the surface. So we can say something about the variation of H(q,p) if we restrict in (2ZIT6]) not only the
variables to the surface, but also the variations to be along Y. Any such constrained variation Jdx; has to obey
05 prim @a = 0 o1 any linear combination thereof::

= H(q,p,v)|,_ oL@ (2.117)
v

|Eprim

0 ; uaézprim(ba(q?p) = (2.118)
= 0,md" -u“%?n’p) + 05 i P - u“M (2.119)
dq Opm

Therefore to a variation of H(q,p)|s, which stays on the surface one can always add (or for later convenience
subtract) these vanishing terms and obtains in general a variation

I OL(q,

5EprimH(q7p)|Eprim = 5Epr;mpm’0m — 52prim qm% = (2.120)
a I a ) L ?

S (vm - uaia(ba;q P >> + 054" (—u" %aé?np ) 9 aga”)> (2.121)

This tells us that independent from how we extend H off the surface Xp;im, the partial derivatives on the surface

3A different approach might be to work immediately with H(q,p,v), instead of first restricting to the constraint surface and
then extending again with the help of Lagrange multipliers. The function H(q,p,v) already provides the partial derivatives that
one wants, in order to reformulate the Lagrangian equations of motion in terms of Poisson brackets:

OH OL(q,v) OH m OH OL(q,v)
—_ = -, — =v, = _——7
oq™ oq™ Opm o™ " o™
I.e. Lagrangian equations of motion ai—% — % g—ﬁ =0 (with v™ = ¢™) are equivalent to
_ oL OH
Pm o= Hym dom
. oL OH .
Pm = 8(17’”:_8(177" < Pm = {H,pm}
OH
v = — = ¢"={H,q"} o
Opm
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will be of the above fornﬁ

9H(q,p) _ _09%lap)  9L(g,v) (2.122)
aqm Sprimm aqm aqm

OH(q,p) = ™ —ul 99a(a,p) for some u® (2.123)
apm z:prim apm

It should be clear that the first naive extension H(q,p) can be redefined by arbitrary linear combinations of
the constraints ¢,(q,p) as this does not change H(q,p)|s. In particular we can define an extension for which
the partial derivatives reduce to the ones we are used to from the non-degenerate case. Remember that the
coefficients u® can be completely arbitrary. So if we act on them with derivatives, we might allow also a g or

dependence, but we might also treat them as new independent variables. The two different points of view arﬁ

Hiot(q,p) = H(g,p) +u®(q,p)Palq,p) (i) (2.124)
or Hiot(q,p,u) = H(q,p) +uda(q,p) (i) (2.125)

The variation of this so-called total Hamiltonian becomes for both approaches (remember ~ means on the
constraint surface, so for ¢, = 0)

OH 0y 0] OH 0¢g  Ou®
SHiot(q,p | = ( @ "0 ) O — 04" (— 5 — Ut SO — S5, ) +0u 2126
tot(¢;p s u) oo T apm+apmuq5 J4 " (=g " ogm 8qm¢ +0u¢2.126)
“ (@) (@) w
CEI22) @123) oL
~ V0P — 6¢" =— (2.127)
dg™
So the definition of the total Hamiltonian is such that on the constraint surface it has precisely the above
simple partial derivatives %%Htot = o™ and aqimHtot = —&ZimL. Now we can translate the original Lagrangian

equations into Hamiltonian language:

0L(g;v) d 0L(q,v) _  OHiot(q,p)

0 = = P 2.128
dgm dl 9 ogm |y T (2.128)
N , prim
Pm
O0H,ot(q,
™ =pm = # (2.129)
pm Eprim

Or in terms of brackets and explicitly demanding the constraints:

Pm = {Hiot:Pm}, G" = {Htot,q™} (2.130)
$alq,p) = 0 (2.131)

This can be obtained from a first order action, containing u® a priori as independent Lagrange multipliers which
force the constraints ¢, = 0.

Slg,p,u] = /dt q"pm — H(g,p) — u"¢alq,p) (2.132)
Indeed the variation yields
(g_i — (;—{TIL - gji (2.133)
(s‘;—i - - % - u“;fi (2.134)
LA 2135

4The appearance of v on the righthand side of (ZI22))-(EI23)) seems to contradict the statement that H(q,p) is a function
of ¢ and p only. v on the righthand side has to be understood as inverting p = g—ﬁ as much as possible and removing the remaining
v’s by choosing u®(q,p) appropriately. So in fact one might want to give the coefficients u® an explicit v-dependence. Take for
example the extreme case where L(q,v) = L(q) and thus pm, = = 0. In this case the v-dependence in the first line drops
OH (q,p)

Opm

5Note that the two ansatzs i) and ii) for Hiot both don’t mean any loss of generality. If we have u®(q,p), it contains also the
possibility of taking u® to be a constant. Then the definition of Hto: depends on the choice of this constant, and we are basically at
ii). Instead if we start from ii), we can always plug a q,p-dependent function u(q,p) as third argument. This would mean restricting
the (g, p,u) space to a subspace where u = u(q,p). Then we are back at i). The difference is thus more a notational one and the
decision if a total derivative (or variation) should contain the derivative (variation) with respect to w or not. ¢

dvm™m

=v™ +u" —gg" =v™ + 4™ for some u™
m

explicitly, while in the second we have which in fact is just u™ = —v™. ©

25



The equation ¢™ = % + u“g%‘; should be the “inverse” of p,, = ngn. If the latter is not invertible, the u®
have to make up for it.

This indicates already what we will see in the discussion of the secondary constraints: some of the Lagrange
multipliers can be integrated out via their equations of motions (those corresponding to 2nd class constraints),
while others cannot and correspond to the gauge symmetries induced by 1st class constraints.

Altogether we have from the Lagrangian to the Hamiltonian formalism a coordinate transformation (¢™, vy, ) —
(@™, Pm, u®) with

o= g (2.136)
0L(q,v)
., = DY) 2.1
» L (2.137)
H a(,
OH(¢:p)| | e0%aleD) _ (2.138)
apm Eprim 6pm

2.2.3 Secondary Constraints

e Secondary constraints are obtained as consistency conditions on the equations of motion. Namely the
time evolution should stay on the constraint surface:

0 ~ ¢p= (2.139)
= {Hipt, b} = (2.140)
{H, ¢b} +u*Cyp (2.141)

Whenever possible, we use the freedom in the functions u*(g, p) to impose this equality.

e Sometimes it is not possible and leads to new secondary constraints on the phase space which we add
to the set {¢,} of primary constraints (while in the total Hamiltonian we keep a priori only the primary
constraints). These new constraints again must obey the same consistency condition which can again lead
to new constraints (still called secondary). And so on.

e Example for secondary constraints

L = Lo+ X\f(g) (2.142)
Ly (2.143)

Py = o 1 =D .
Hioe = pg— Lo— M(q)+ upx (2.144)
px = {Hiot;o2} = —f(q) ~ 0=1|¢2= f(q)| (secondary) (2.145)

e Assume now that {¢4} are all constraints (not just the primary ones} that we obtain in this way and
define a submanifold . Let us now focus on the constraints that we get on the functions u®(q, p):

0~ {H, é5)} +uCup (2.146)

o If all {¢pa} = {GA} are all first class, then C,p ~ 0, so u® drops from the equation and we would get
a new constraint on ¢, p, but by assumption all these constraints are already part of {G 4}. This means
in the first class case there is no condition on the u®’s! They are thus completely free parameters in the
time evolution and thus correspond to gauge symmetries of the system. The time evolution using the
total Hamiltonian makes only part of these gauge symmetries manifest. If one wants all of them manifest
one can add also the remaining ones to the the total Hamiltonian and obtain the so-called extended
Hamiltonian

Hpo = H+uGy (2.147)

e Instead if all {¢p4} = {xa} are second class we can solve explicitly (at least on the constraint surface) for
u®:

u ~ —{H, xg}(C~HBe (2.148)

However, for the remaining indicex-values of A, where we don’t have a corresponding u®, we obtain also
consistency relations of the form
(u® =)0~ —{H,xp}(C~1)B (2.149)

These should be automatically fulfilled, if the original Lagrangian was well-defined (as the two systems of
equations were equivalent).
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2.2.4 Second class constraints and Dirac bracket

e For purely second class constraints
{Xasxp} = Cap  detC #0 (2.150)

one can define a bracket which is compatible with the constraints. It is called the Dirac bracket

{f.9tp ={f.9YpE — {f:xa}C ™ " {x0 9} (2.151)
Indeed the bracket of a constraint with anything yields a vanishing result:
{Xe: 930 = {Xe: 9} B — {Xes Xa}C T {x0, 9} = 0 (2.152)

e The Dirac bracket is defined also off the constraint surface ¥, but what actually matters is only what
happens on the surface. The claims are that

— second class constraints define a surface on which the symplectic form w of T* M induces a symplectic
form (nondegenerate) on the constraint surface

— and that the Dirac bracket restricted to the surface agrees with the the Poisson bracket defined with
the induced symplectic form ([Henneaux],p.57):

Proof: Take the coordinates y™ in M such that we extend the coordinates on ¥ to M and take the
constraint-functions x, as orthogonal coordinates

y™ = (0™, xa) (2.153)
in such a way that
{Xa, o™} =0 (0on ¥ ={x,=0}) (2.154)
If a first naive choice G leads to {6, x3} % 0 then redefine
oM =M — {6M I P\ (2.155)
which leads to the desired relation:
{o" o) = ™M = {eM X} PXas xo} (2.156)
{7 xo} — {5, X} P Cay, —{{6 X} P, X0} xa (2.157)
=0 ~0
The remaining Poisson brackets are
{Xa,x6} = Ca rank2N < Don X (2.158)
{oM, N} = (w HMN rank2(D — N) (2.159)

The fact that we were able to implement {x,, o™} ~ 0 together with {y™,y"} and {C,, C}} having full
rank, implies that also (wil)MN has full rank on ¥ as indicated above. This proves the first claim.
Our choice of coordinates immediately provide the explicit embedding function of ¥ into M:

XM oM XM(g) = (6™)0) (2.160)
The pullback of w onto the constraint surface then reads

(X*w)mn = OmMXMounon XN = wan (2.161)

Now build the Poisson bracket that is built using the inverse (w=')M

rewrite it in terms of the Poisson bracket in the ambient phase space

of the induced 2-form wan and

||~

{X*F,X*G}p OMF (w )YMVonG|, =

= OuF (w H)MNONG|, — 0°F Cud"G|y, =

= {FG}y ~{F x}(CT)Cap(C™)"xa, G}, =
= X'{F,G} - X {F,x. }(C)"“"X*{xa,G} V

This indeed coincides with the Dirac bracket as we defined it.

27



e Second class can always be seen as gauge fixed first class and vice versa ([Henneaux,p.31, p.46)
e regularity condition for constraint (example of 1st-class=2nd class):
{Xa,xv} = Cab (assume 2nd class) (2.166)
{Xaxps XeXa} = CacxvoXd + CaaxvXe + CheXaXd + ChaxaXe (looks 1st class) (2.167)
Condition: Constraints x, should define local coordinates around the constraint manifold.

e Use of Dirac-bracket: Let us demonstrate that the Dirac-bracket allows to calculate with H instead of
Hior. To this end, let us again split the phase space coordinates y™ = (¢™,p,,) into X-coordinates
o™ (coordinates of the constraint surface) and the constraint functions y, themselves as orthogonal
coordinates. As shown above, the Poisson-brackets can be chosen to be

{Xa, o™} =~ 0 (Don X ={x,=0}) (2.168)
{Xasxp} = Cu rank2N < Don % (2.169)
{eM N} = (w HMN rank2(D — N) (2.170)

The time evolution of a general phase space function generated by the total Hamiltonian reads

F(q,p) = {Hior, F(o,X)} = (2.171)
~ {H,F}+u"{xa, F(o,%x)} (2.172)

Now we can use the previous result u® ~ —{H, x5}(C~1)B% to obtain

F(q,p) ~ {H,F}—{H,xs}C ")P{Xa, F(o,X)} (2.173)

Using 0 ~ —{H, xp}(C~1)B% we can extend the sum over a (primary constraints) to a sum over A (all
constraints) and obtain precisely the Dirac bracket

F(g.p) ~ {H F}p (2.174)

Now H(q, p) was a priori only one naive extension off the constraint surface and therefore quite ambiguous.
But any other Hamiltonian, differing just by a linear combination of the constraint functions would work
as well, in particular the total Hamiltonian: {H, F'} , = {Hyot, F'} , = {Hot, F'} # {H, F'}.

Main 2nd-class example: Dirac bracket directly from first order action

See also [Henneaux, p.59]

Dirac bracket for a general first order action

Consider now a first order Lagrangian of the form
Sly'] = /dt (5" Ar(y) + B(y)) (2.175)

(We call the variables 3 instead of ¢' , because a typical case is y' = (¢*,p;).)
Its momenta are all constrained

T o= OiL(y,9) = As(y) (2.176)
= o, = 7y —A[(y) (2177)
Cry = {21, Q5}pp=1{mr —Ar1(y), 77 — As(W)} pp = (2.178)
= 0rA;(y) — 9,A1(y) (2.179)
If we define
A = Ard)f (2.180)

1
C = §O,Jdr1dz:J
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then A is a symplectic (pre)potential [ in the sense

dA = - (0/A;— (90,4 &'’ =C (2.181)

N =

The Dirac bracket belonging to a first order action of the upper type implements a symplectic structure within
the coordinate-space (so actually the coordinate space is already a phase space):

{Fv),Gw)}p = {FGlpg—{F®r}pp c'’ {@s,G}pp = (2.182)
0
- - (achl OxF — 9FF achl)c” (8KG Ox®y — KD, 8KG) - (2.183)
b 0 0 N
= oFCo,aG (2.184)

Poisson bracket <-> Dirac bracket of first order Lagrangian

If the first order action is just the first order formalism of a second order action, then the Dirac-bracket on this
“extended phase space” coincides with the Poisson bracket of the original phase space:

(g[qi,pi]E) Sly'l = /qipi—H(qm) (2.185)
= A = (4,49 =(pi,0), 91 =(9,0) (2.186)
C]J = 6]Aj(y)_6JA[(y): (2187)

0 —dp; 0 -6

C1 thus coincides with the symplectic two form wyy of the Poisson bracket of the original action!

Calculation of the symplectic 2-form via variation of the action (Witten’s method)

Consider now the variation of a first-order action

(S‘[qi,pi]E) Sly') = /dt(yJAJ(y)JrB(y)) (2.189)
5S) = [ @i As+ 37y 0rAs + 070, ) = (2.190)
= /dt(y"]éyl(ﬁfAJ—6JA1)+5yJ6JB) (2.191)

CrJ

One can thus read off the symplectic two form of the variation of the first order action. In the point particle
case there seems no advantage over just reading off Ay and then calculating its exterior derivative. However, in
field theory we enter the co-dimensional case with continous index & over which is integrated. The method of
partial integration then becomes quite convenient. In particular in the 2-dimensional W ZW -sigma model which
has the special property that part of it can only be locally written via a 2-dimensional integral, for a global
description instead requires a 3-dimensional one. This mixture of dimensions makes it quite challenging to read
of A;(y), while the above method to determine Cy still works. (see Wittens “nonabelian bosonization”-paper).

6The symplectic prepotential of the canonical phase space symplectic 2-form w = dg’dp; is A := —dg’p; for which clearly
w=dA o
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2.2.5 First Class Constraints and longitudinal exterior derivative
2.2.5.1 First class constraints generate gauge symmetries

e Claim: The following transformations generated by the first class constraints

d0e = eG4 —}=¢"X, = %0k Gaw NN
5eq™ = eG4, q"} = aagg:
0cpm = €4{Ga,pm} = —¢" 0Ca

qm
are gauge transformations!

e (higher derivative gauge trafos can be written as canonical(as above)+trivial)

(2.192)
(2.193)

(2.194)

e To see that they are gauge transformations, let us show that they are a symmetry of the first order action

Slq,p,u] = /dT (¢"pm — H(q,p) —u°G.)

The generators GG, act on the various terms as follows:

{Gu,H} = v,’Gy~0 (this was the cons-cond leading to 2ndary constr’s)
{Gau UCGC} = ucfachb
{Gaa Qmpm} = {Gaa Qm}pm + qm{Gaapm} =
_ d0G,  m0Ga
~ dr Opm bm =4 0qm
_a 0G, _8Ga _ m0Ga
~ A\ ") T O B
d (0G,
= - m Ga
dr <6pm P )
Ka
Need to transform also Lagrange-multipliers
6auc = _ubfabC - Vac
The corresponding Noether charge is indeed Gy:
oL oL
a = 6amf dq mf—Ka:
Q 7" Hgm + dap ap
oL
= Gm m A Ka =
{Gaq 9

= G,

e Global symmetry with Noether current G, which is on-shell vanishing. Has a local extension.

0:S[g,p,u] = /dT Gy
As u® is coupling to the current, it is the natural candidate of a gauge field

55’U,C — 8¢ _ga (ubfabc + Vac)

(2.195)

(2.202)

(2.203)

(2.204)
(2.205)

(2.206)

and indeed with this choice we obtain 6.5[q, p, u] = 0. At least for v,° = 0 the above transformation looks

indeed like a transformation of a gauge field.
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2.2.5.2 Gauge orbits with Hamiltonian vector fields as frame

e Remark on notation: Remember we used coordinates y™ on the phase space T*M. In Darboux-
coordinates, these are just

y™ = (¢", pm) (2.207)

As we will quite often deal with the exterior algebra over T(T*M) and T*(T*M) (where basis elements
are multiplied with the antisymmetric wedge product A), I will treat the 1-form basis elements dy™ as
well as the vector basis elements 8, as anticommuting variables (and print them boldface). So also vector
fields are denoted boldface

X =XxMay, (2.208)

The interior product with a vector field reduces the degree of a p-form by 1 and is thus an odd operation
which is still stressed by printing the vector (but not the symbol of the interior product) boldface

deg(rx) = deg(X) (2.209)

Instead the Lie derivative with respect to a vector field does not change the grading of a tensor (it maps
vectors to vectors, 1-forms to 1-forms and so on). This is because the grading of the vector field is
compensated by the grading of the exterior derivative in the definition of the Lie derivative

Lx = [ix,d (2.210)

When the Lie derivative acts on a scalar field F', it reduces to a directional derivative which looks precisely
like the vector field, but it doesn’t carry a grading. It will thus be denoted simply by X

X=xMoy, XF=LxF=XMoyF (2.211)

e The relation between Poisson bracket and Hamiltonian vector fields has to be understood in the above
sense:

Xy = {f, —} (actually Lx,) (2.212)
= X' = onflw MM (2.213)

Multiplying from the right with the matrix wysn yields the version that is more common in symplectic
geometry literature
1x,w = df (2.214)

The vector field X ¢ is called ”Hamiltonian”, because the time evolution in Hamiltonian mechanics is
given by the Hamiltonian vector field with respect to the Hamiltonian H:

F={HF}=XyF=CLx,F (2.215)

e Hamiltonian vector fields obey the following product rule and/or linearity

Xig+n = {fg+h -} = (2.216)
= gX;+ fXg+ Xy (2.217)

Note that if we simply identify Xy with the Lie derivative £Lx, (which is true for scalar fields) this would
read

LXiyin < 9Lx, + fLx, + Lx, (2.218)

However, we have to be more careful for Lie derivatives acting on general tensor fields where we also get
derivative terms on the vector field and thus on any scalar field multiplying the vector field. In particular
when we act on general forms, we obtain]

Lxp0n =  LoXptfX,+h = (2.219)
f 3
ME™ gLx, + fLx, + Lx, +dgNix, +df Aux, (2.220)
. o . Ni...N .
@I "Remember, the Lie derivative £ x of a general tensor with components tMll A.AA;,) with respect to a vector field X = XX 8,

can be written in terms of partial ([thesis,p.159]) or covariant derivatives ([thesis, p.208]). For the latter, one gets additional
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e Lie brackets between Hamiltonian vector fields are in 1:1 correspondence with the Poisson-brackets of
their defining functiond

XpaopF = {{f,9}F}= (
HrFygy+{f{e. F}} = (2.222
(
(

= {XfFvg}_F{vagF}:
= [Xf’Xg]F

This holds for all F'; so we obtain
(X5, Xyl = X150 (2.225)

e Let us denote the Hamiltonian vector fields which correspond to the gauge constraint functions G, by X,
and the corresponding Lie-derivative on scalar fields by X,

Xo=Xg, ={Ga, =} = 0nGow™Noy  (X,F=Lx,F) (2.226)

Then the first class constraint algebra {G,, Gp} = fap°G. translates into

[Xa,Xb] =Xy,G. (2.227)
According to (2217) we have
XfachC = fu X+ Gchabc ~ far’ X, (2.228)
torsion-terms:
N, _ K N N; N1 KNjqq...N K _
ﬁxtMl qu = X a1‘<tMl1 ZaKX M1 Mp . e +ZaM X tMl MI 1KM;qyq...Mp —
(3
K Ni... N; L N; N; N1..N;_1KN;y1...N,
= X vKtMllmj\;p — Z(VKX + X" Tt —TkrL ))tM1u,Mp1 +1 T4
' TLKN
+ 3 (Var, X5 4+ (Coag, ® = Tar, ) X5 ) eyt
M; LM; M; L M1 M;_1KM;4q1...Mp
- -
’ Tp, K

7

From the first version we can read off a product rule if X is multipliod with a scalar function «

Ni..Ng _ Ni.. Ni_1KN;{1...Ng
ﬁaxtMl...Mp —‘J‘L:XtM1 ZaK‘lX M1 Mp +Z‘9M ax’ tMl Ml KM ..My
i

This can be written in a nice coordinate independent form when the tensor ¢ is a differential p-form w(®)
Loxw® = aw® +do Arxw®

If X = X (g) is the r-th basis vector of the coordinate frame, so with constant (not covariantly constant) components X(R) =K,

the Lie derivative L = LX(R) reads simply

N;p...N, ..N,
Lrty, v, = Ortyy A

If X = E(4) is the A-th basis vector of a local frame with components E(A) = Efq(, the Lie derivative L4 = L',E(A) in terms of

partial derivatives reads

Ny K Ny N1Ni 1 KNigq1..Ng K,N1...Ng
LAtMl My, T E4 aKtMl Z OB " M1 M + Z O, Ey tMl M1 KM;qq...Mp
i
For objects with “flat index” A we will use the convention where the covariant derivative V i includes (in addition to the Christoffel
Symbols I‘KMN) also a structure group connection Qx4 2 acting on the flat index. With respect to this covariant derivative, F 4™
is covariantly constant, but the above gonoral tensor formula gets modified by the connection terms

.N _ K N; B -N; L N\ Vi Ny 1 KNjpq...N
EAtMl M, = EAvKtMl M Z(VKEA +QrA”Eg' + E4 Tk )tMl...Mp +
P ——
-0
B K Nq
+Z<VM EX +Qun,APEp"™ + Tru, EA) My KMy M, ©

i
=0

8Note that the vector fields act on functions via the Lie derivative, i.e. XpF = L',Xf F. The commutator of vector fields acting
on a function therefore actually means the commutator of Lie derivatives, which as we remember from the Schouten Nijenhuis
bracket discussion, is the Lie derivative with respect to the Lie bracket of the vector fields.

X5, X)F = [£x,.£x,| F=£ix,,x,F = X7, X,)F

So in (Z2ZI) we started with [X ¢, X4] meaning the commutator of the corresponding Lie derivatives and in (2224) we ended up
with the Lie bracket of vector fields which acts as a Lie derivative on F. As they coincide, it is not necessary to distinguish in
notation, but one should keep the conceptional difference in mind. <
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From this follows that
(X0, Xo] ~ far" X (2.229)

This corresponds to Frobenius integrability , i.e. the vector fields are surface forming and generate
the so-called gauge orbits. In this form they cannot be integrated to coordinates though, because then
we would need commutativity of the vector fields at least on the constraint surface (this differs from the
Poisson-algebra of G,’s which commutes on the surface).

e The Hamiltonian vector fields are || to the constraint surface ¥. In order to see this, assume y € ¥ and
make an infinitesimal shift in the direction of X,. Is the new y still in 37

Goly+e°Xy) = Galy)+e’XGaly) = (2.230)
N——
0
= Gy, G} =0 (2.231)

Or a more sophisticated way to argue: Remember first that ¥ is the zero locus of G,
Go: MDY —={0}CcR"=g" X=G;0) (2.232)

and therefore TY is the zero locus of the push-forward-map G,. (the Jacobian)

Gar: TMDTY — {0}2T{0}CcTR"=Tg" (2.233)
d oG ex
.M a . K Y
g () = —=G.(y(t)) = U =0 2.234
) = GO0) = 55 (2:234)
So TY is the Kernel of Ggx:
TY = Ker(Gax) (2.235)
Now we just need to show that indeed X is in the kernel:
oG 0G
SXE = = Ky = RS 2.2

e Off the constraint surface in general no integrability: gauge orbits exist only on-shell.

2.2.5.3 Dual frame, ghosts and longitudinal exterior derivative

e In other words, { X} build a local frame of half of T (namely of the gauge orbits). Let us define dual
1-forms c® = dyMcg, € T*Y via

c*(Xyp) = & (2.237)
——
o, o= X ek,
In physics language they are called ghosts.
dx,c’ = 0 (2.238)
——
dyM(aKC?uxly"'c?uaKXgl)
They are a subset of the frames of TM and T*M:
{X.} < {Ea} (2.239)
{c"} < {e"} (2.240)
where 15, €% = 0§ (deg,e”) =0) (2.241)
The interior products 1, and 1x« act like a derivative with respect to the dual 1-forms
0 0
1E, = acﬁ, 1Xa = Dot (2242)

This allows to build a counting oberator that counts the number of e?’s (counts form degree) or in
particular of ¢*’s (counts the so-called pure ghost number, i.e. the longitudinal form-degree)

0

elip, = eA(’“)cﬁ = 7e/-counting operator” (form-degree) (2.243)
0

cix, = c* 5ot — 7 ¢%-counting operator” (pure ghost number) (2.244)
cll
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e The Lie bracket between two basis vectors E 4 is again a tangent vector which can be written again as a
linear combination of the basis vectors

[Ea,E3] = fas°(y)Ec (2.245)

with some y-dependent coefficients f4p®. It is a well-known fact for local frames (see e.g. [Lee, p.311])
that then the corresponding dual frame obeys

et = —%fABCeAeB (2.246)

Although well know, let us still prove this formula in three different ways, in order to get a good feeling
for it:

— direct proof in coordinates

EXoxEL — E5oxEL = fagp®EL |eP (2.247)
EX OxEpef —Ef 0xE% e = fa” |- (—¢fyeny) (2.248)
—ELdxeD —EMgeD,
Omely —oneyy = —fap"efyeR) v (2.249)
— or using Cartan formulae:
YEA,Ep] = fas%iE, (2.250)
[te.,dyie,] = fap%ie. |etel(...)el (2.251)
e*e’ ip,,d,1p,le” = e’e”fapip.e” (2.252)
——
—zEBzEAdeD 5g

Now we note that €1, is a counting operator that counts the form degree 1 of 15 ,de”. So we
obtain on the lefthand side —e*1g,de”. Now the counting operator e*1g, counts the form degree
2 of de” so that indeed we precisely obtain the claimed result.

— finally, using footnote [[, we can relate the Lie bracket of vector fields (or better the commutator of
their corresponding Lie derivatives) to the commutator of covariant derivatives. Because of the pre-
viously mentioned convention that the covariant derivative Vg contains also an action of a structure
group connection Qx 4” on “flat indices”. In particular when one acts twice with a Lie derivative e.g.
on a scalar field, i.e. £L4Lp¢, then the second action also sees the index B. Any covariant derivative
on Lp¢ would then act also on B, which was not taken into account in footnote [ and has to be
removed manually:

(LA, LBl = 2EMVM(ERVNe) + 2B Qs (ESVNG) = (2.253)
— QV[AVB]¢+2E[%QMB]CVC¢ (2.254)

Using that the commutator on covariant derivatives([thesis,p.190]) acting on scalars reads
[Va, VB¢ = —TapVeo (2.255)
the commutator of Lie derivatives becomes

[La,LBlo = (2Qap© — Tas®) Vao (2.256)

=fan®

Now we compare to the “definition” of torsion (at least in the vielbein-formalism, this is how torsion
is defined)
CEA = TA — QCAeC = (%TBCA — Q[BC]A) eBeC (2.257)

1
—5faB®

This completes the last proof.
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edl...e4d

e The exterior derivative on a general p-form w(® = ﬁw ArA,(Y) e“r can be completely defined by

giving its action on the on the coefficient-functions wa, ... A‘éy) (or equivalently just on the coordinate y*)

together with the above action on the cotangent basis e
@M = e'E M =e'LayM (2.258)
doa,.a,(y) = e*EaMonwa,. a,(y) = e Lawa,. a,(y) (2.259)
de? = T*-Qce’ = (3Tpc” — Qpo?) ePe” (2.260)
~%fanc

Let us check that this indeed reproduces the correct exterior derivative (repeated boldface indices at the
same level stand in the following simply for antisymmetrized indices):

o = %ng.)..A(eA)p = (2.261)
Leibniz _

= ﬁEAMaMwE:,)“A(eA)erl + (p—11)!w(DZ)34...A (TD _ QcDec) (eA)p 1_ (2.262)

= AVawd) @+ AT wEl ale®) (2.263)

Compare with coordinate basis:

w® = %anggynM(dyM)pH: (2.264)
= 1Vl (@M s T ™M M Wiy, (M) (2.265)
—— —
TK

e Because of the integrability of the Hamiltonian vector fields X, we can use the same formulas to define
a differential, which acts only in the directions of the gauge orbit, the so-called longitudinal exterior
derivative d,:

[XaaXb] ~ fachc (2266)
dryc® = —3fa‘cc (2.267)

It is clear that on the gauge-orbit (smaller than the constraint surface ¥ ! but inside) this is just the
ordinary exterior differential, because the X, build a local frame on it and c* are their duals. However,
in the second line we have already extended its action on c¢ off the surface. In addition, the action on
y-dependent coefficient functions of differential forms finally will be given by the action on the coordinate
M
Y
dryy™ = Xay™ = XM (2.268)
e This is enough to uniquely determine the action of d;z) on longitudinal differential forms, i.e. forms
which are monomials in ¢® with coefficient functions that depend on the coordinates y:

(2.269)

=c* XKoo —Lf,cctc®—
d<L) a 2fa dee

{Gaﬂi}

9Note that d# e L 4, in contrast to what I had claimed during the lecture. However, almost:
@ = Lld(etrw) =
= %(deA)zAw(p) — %eA &, WP =
—1adt+Ly
= l(deMraw® + Let dw® —LeAL @)
P D\ , D

(p+1)dw(P)
w® = eAL w® — (de?)s w®
For the case where w(® itself is just a basis vector e, this implies
d&? = eAL, el — (de?)rpel
o3
=def = %eA[,AeB 3
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This will be enough for our purposes, but in principle one can define the action of d ) also on more
general differential forms[H

e Let me stress again that the coefficients f4p® are not constant in general, but depend on y* (the
coordinates on T*M). This implies that the Jacobi identity as an identity for the coefficients gets
slightly modified to the ususal f[AB‘DfDm = 0 (repeated boldface indices at the same level stand in the
following simply for antisymmetrized indices):

0 = [Ea,[Ea,Ea]l = (2.270)
= [Ea,fan’Ec] = (2.271)
= —faa%fcaEp+ (Lafaa”)Ep (2.272)
So
EaMon faa® — faa®foa” =0 (Jacobi) (2.273)

For the subframe {X,} the situation is slightly more subtle, at least when leaving the constraint surface.
Let us first have a look at the Poisson-Jacobi-identity:

!

0 = {Ga,{Ga,Ga}} = (2.274)
= {Ga, faa“Gc} = (2.275)
= (_faacfcad + {Gaa faad}) Ga~0 (2276)

This yields a condition for f only off the surface but not on the surface! And off the surface the bracket
does not need to vanish by itself, but instead the general solution is of the form

- faacfcad + {Gau faad} X f((L%L)abCGC (2277)

Instead for the corresponding Hamiltonian vector fields we obtain a condition on the surface:

0 = [Xa[XaXa] = (2.278)
~ [Xa, faa"Xc] = (2.279)
~ (_faacfcad + (Xafaad)) Xd (2280)

So we get on the constraint surface a condition that is in agreement with the condition that we had
obtained from the Poisson bracket only off the surface:

— faa“fea® + (Xafaa®) = 0 (2.281)

e It is nilpotent, but only on functions restricted to the constraint surface:

&y = du)(e'X.") = (2.282)
~ =Lt XK + et Xph oL XK = (2.283)
————
z%fbaCXcK
~ 0 (2.284)

10Choose a parametrization in which close to the constraint surface ¥ the coordinates y™ split into coordinates y™ of the gauge
orbit (C X) and remaining coordinates y#. Then the definition of the longitudinal exterior derivative on the constraint surface ¥
is simply such that
dz) =&y 0m

Introducing the local orbit-frames ¢® = dy™c2, leads to (Z267) with the dual vector field X, = XMy = X™0y,. If now the

local orbit frame is completed to a frame {ec} = {c®,e7} of the whole cotangent bundle of phase space with e” = dyMeX{, then

the action of di;) on €7 depends very much on the choice of the coefficients eX/I, so on the way in which {c®} is completed to
{e®} = {c°, e7}. In general one just obtains

dpe’ = —dMe X o], =
—E%XglaneyweAcb
For a suitable choice of €7 with e” = dyMeX/[ = dy“el (so with e}, = 0), this would reduce to

v _ noyn v ,A b

d(L)e ——EaXbaneue c
—_—
=—fapvech

Only in such a basis one can consistently assign ghost number 0 e® while keeping ghost number 1 for ¢* and d;z). ¢
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The action on c€¢ is likewise nilpotent only on the surface:

&t = du (~3fac’c) (2.285)

= LfuCfaclete® — te? Xq® O farC e = (2.286)
{Gafur®}

= L (fo'faa® — {Ga, far©}) e = (2.287)

% 0 (2.288)

e Note that the longitudinal exterior derivative on phase space functions F'(y) is generated by ¢*G:
dp) ={c"G4,—} (2.289)
Compare BRST (Becchi, Rouet, Stora and Tyutin)-nilpotence ¢*G, — % faptctch,.

< = —3f"ec’c (2.290)
gM = XM (2.291)

e Consider the 1-forms c® = ¢%,(y)dy™ as independent Grassman variables (not y-dependent). In other
words, consider it to be an anticommuting vector

(y,e) e IT(T*M) (2.292)

Then functions in y and ¢ are in 1:1 correspondence with longitudinal forms C Q*(T*M)

yM

~ =
F(T* M) @ Rle] = Q*(T(,, M) (2.293)
N— ——

FIIT(T*M))

e Pure ghost-number operator:

L0
¢ (2.294)

Eigenvalues are called the pure ghost number and correspond to the longitudinal form degree of a form.

e Want to reduce functions on phase space T*M to the physical constraint surface via the homology of a
differential, namely the Koszul-Tate differential §.

6( b, = G, 2.295
(ba ) (2.295)
=dG,or X7
5(20%dG,dG,) = QG.dG, (2.296)
Compare BRST
s, =G, + ... (2.297)

2.2.5.4 Reducibility / ghosts for ghosts

If the constraints (and thus the corresponding Hamiltonian vector fields) are not independent
Zy0Gay =0 (2.298)

introducing as many ghosts as constraints leads to constraints between the ghosts. These constraints can be
treated in the same way as before and thus lead to new “ghosts for ghosts”. ....

For example in the Lagrangian formalism the constraints are the equations of motion. If there are gauge
symmetries, one has the Noether identities, which show that the eom’s are not independent. This will require
ghosts for ghosts. We will most probably come back to this.
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2.3 Homological Perturbation Theory

2.3.1 Resolution

e N-graded (Zpn+1-graded) algebra A = Ay @ A®...®AN_1, ag)agg) = A(ity) ,fli/_lj C AH_J‘. An element
of A that is entirely in one of the spaces A; can be assigned a grading

| a |=deg(a) =i forae€ A; (2.299)

Induced Zs-grading:
0 for deg(a)even

€= 0 for deg(a)odd (2.300)
e Differential: odd nilpotent (of order two) derivation &
6> =106,8]=0, €d)=1 (2.301)

Definition 2.1. A homological resolution of an algebra A is a N-graded differential algebra A=A A O
... ® Apn with differential 6

r(8) =deg(d) = -1, &(x)=0Vr € A (2.302)
such that the homology
Ha(6) = H.(54) = K50 (2.303)
ST ~ Im(9) '

is nontrivial only for degree 0 and is isomorphic to the original algebra A
H.d) = 0 Vr>0 (2.304)
Hy(d) = A (2.305)
= H,(6)=(PH = Hy6)=4 (2.306)

The grading r of the homology space Hq(d) = @, H, and of the underlying graded algebra A = EBiV:o A, is
called resolution degree .

Remark The grading of the algebra A induces also a grading on the space of endomorphisms mapping A onto
itself, depending on how it changes the grading of the element it acts on. (the following is a bit sloppy, as one
would need to first split z into its components of definite grading and then also Z(z) into its components. This
induces a splitting of Z. But the essence should be clear from below):

r(E)=deg(Z) =|Z|: |E(@) |=|E|+|x| forZ€End(4), zc€A (2.307)

In contrast to A, this grading extends also to negative values (because endomorphisms can lower the grading):

N
End(4) = € End(A), (2.308)

r=—N

Together with the composition of endomorphisms as algebra-product (matrix-product), it becomes a graded
algebra. . Based on this grading of End(A) we can define the subspace of graded derivations Der(A) on A
which are given by those endomorphisms which obey a graded Leibniz-rule.

End(A) D Der(A)>0: o(zy) =0z -y+ (=) 20y Yo,y A (2.309)

Derivations are not closed under ordinary composition, but using instead the commutator as algebra product,
Der(A) becomes also a graded algebra. For a given differential § of degree F1 acting on A (§ € Der(A)z1).
Due to the Jacobi-identity of the commutator, every element of Der(A) acts like a derivation on Der(A) via the
commutator:

[01, [02, 03]] = [[o1, 02], 03] + (—)7*%[09, [01, 03]] (2.310)
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(Also on End(A) with the composition product, the commutator acts like a derivatior_l). This property implies
that any differential § on A induces a differential [§, —] acting on Der(A) (and on End(A)). That it’s a derivation
has already been shown in the previous equation. But it is also nilpotent:

[6,[0,0]] = [[d,d],0] —18,[8,0]] (2.311)
ey
=[6,[6,0]] = 0 (2.312)

This allows to define also a homology on the algebra of derivations

Ker([d, —])

Ha(8) = Hu([8]Der(d)) = 7wy

(2.313)

Definition 2.2. Let A € End(A) be a diagonalizable linear operator
A=PAa, =6pAa (2.314)
A T

such that R -
Ay C Ap (2315)
A (0dd) linear operator o € End(A) is called a contracting homotopy for A w.r.t. the differential & iff
[6,0] = A (2.316)

This means that A is d-exact.

e Compare: in topology, curves are homotopic (equivalent) if they can be continously be deformed into
each other (corresponds to the difference being exact). The deformation is called a homotopy (this would
rather A make the homotopy than o!7)

Theorem 2.1. If 3 a contracting homotopy o= the differential § is acyclic in degree r > 0, i.e. H.(d) =0.
If o is a derivation, also [8,—] acting on the algebra of derivations is acyclic in degrees r # 0.

Proof. The fact that A is d-exact implies that it is also closed, i.e. commutes with §
[6,A] =0 (2.317)

Therefore § stays in the eigenspaces Ay. So in particular if a € A is decomposed as a = 5 @), then assuming
that it is closed

da=0 (assump) (2.318)
implies that
day=0 VA (2.319)
Assuming further that
A#0  (assump) (2.320)

we can use the eigenvalue-equation Aay = Aay to write ay as

1 §,0]=A 1 ax= 1
ay = XAG/\ ol X[&U]a/\ 20270 5 (XU(IA) (2.321)

This means that every closed a) with A # 0 is also exact. This means that any nontrivial cycles can lie only in
Ay C AQ .

If o is a derivation, then also A will be a derivation on A (§ is in any case) and they will induce corresponding
derivations on Der(A), namely [0, —], [A,—] and [§,—]. And indeed these obey the defining properties of
an ordinary contracting homotopy: First [A, —] is diagonalizable with the zero eigenvalue-space contained in

Der(A)p (make more explicit!) and also
7 [[67 _]a [0’, _]]” = [67 [0'7 _]] + [0'7 [(5, _]] = [[67 U]v _] = [Av _] (2322)

Now the proof given before for A holds the same for Der(A). O

39



Hamiltonian picture:

The algebra A is the algebra of functions on the constraint surface ¥ C T*M
A=F(X) (2.323)

Its homological resolution is

A= F(T*M) @ R[b,] C F(T*ITM) (2.324)

oL

(Sba = Ga (y) (— 77pa - 6qu‘

) ;o sy =0 M =(¢"pm)) (2.325)

d
0= Gagy- (2.326)

e resolution degree: antighost number, i.e. eigenvalues of

0
b, — 2.32
b, (2.327)

e Split phase space coordinates y™ into those o™ parallel to the surfacd] and those G, perpendicular to
it:

™M = (6M,G,) (2.328)
)

6 = Gaa—ba (2329)

Locally analytic functions on ¥ correspond (Taylor-expansion) to the polynomial algebra R[o™].
Claim: The differential algebra (R[c™, G, b,],8) provides a resolution of RjoM]

Ho(6) = R[o™M] (2.330)
H.(8) = 0 ¥Yr>0 (2.331)
Furthermore:
Ho(6) = Derivations on R[o?™] (2.332)
H () = 0 Vr#0 (2.333)

(always when a contracting homotopy is a derivation. Note that the derivation homology H, in contrast
to H, also has negative degrees)
Proof: of the first ones

- HO :
* Kerg(R[o™M, Gy, ba],8) = Rlo™M, Gy, ba]o = Rlo™M, G
* Img:
0

Gagp- (A (0,G)be) = A(0,G)Ga (2.334)

' K
- €rp ~ M
Ho = 3% = Rlo™ (2.335)

The choice of the capital calligraphic character M seems a bit weird, but like for y™ = (g™, pm), it would be useful to have
the possibility to split also the coordinates on the constraint surface into configuration space variables and momenta, and then this
notation is conventient:

oM = (", pp)

Not sure, however, if we will ever use this split... ©
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— H, = 0Vk > 0: It suffices to show the existence of a contracting homotopy. As diagonalizable
operator A, we can choose a counting operator which counts the number of b,’s and G ’s:

B 0 0
A = bog-+Gage (2.336)

Ab, = by, AG,=G, Ac™M=0 (2.337)

This is clearly chosen in such a way that Ay = R[o™] C Ay = R[o™, G,] and that it is exact

A = [8,0] (2.338)
withe = b, aga (2.339)

o is almost the inverse of 6. O

Lagrangian picture:

The algebra A is the algebra of functionals on the paths on M
A= F( ProhysM ) (2.340)
—————

—— 3S[qpnys]
:Z:{thySI quny :0}

while its homological resolution is

A="F(PM)®R[g} (1) = FIUT*PM) (2.341)
[ ]
oq,, = (S,q,,) = —;—i, 0¢™ =0 (2.342)
q

resolution degree: antifield number, i.e. eigenvalues of

0
_Z 2.343
qdm 6(];79 ( )

Corresponds to multivector-degree. g, has ghost number -1.

HO(‘s) = ]:( PphysM )
———

3Slaphysl

5qT =0

ghosts diz)¢™ = ¢*Jaq™. (same as in Hamiltonian!). Come with antifields c; .

a m ! 6F
dof = [ [ewnare o (2.344)
dpe = [ [Lrnene) (2.345)

Constraints are not independent (Noether-identities). Reducibility! = ¢/ .

2.3.2 Relative cohomology & extension of the Poisson-bracket

e differential d(z,y modulo 4§ :

d(L) = CaaMGawMNaN — %fabccacb 6(ZC (2346)
&, = 6(.)=-[6,$Y], r(dr) =0, (2.347)
r € H¥d): de=06y, z~z+de+07 (2.348)
r(z) =0=r(z), r(y)=1=r() (2.349)
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Example

s = 0+d+... (2.350)
¢ = &2 +[0d+d+[5dV]+... (2.351)
total ghost number
gh(z) = deg(x) —r(zx) (2.352)
——

pure gh=formdeg

gh(d) = gh(d) =1 (2.353)
antgh(d = 0, antgh(d)=-1 (2.354)
ghost number operator
o9 9 _(a
J = ¢ Dea — baa—ba = {C ba; —} (2355)

Geometrically it makes sense to identify the antighosts b, with the Hamiltonian vector fields X, (with
the wedge product as anticommuting product between them).

Functions of y™, ¢® and b, are then formal sums of (particular) multivector valued differential forms:

fly.eba) = [O)+ Y S [P0 P(y)e.. . by by (2.356)

p,q>1

A natural generalization of the interior product of vectors acting on differential forms is the following
interior product of multivector valued forms acting on forms:

p
q
2 = Lf(p,q)bmb( YEEA ... cC NG (2.357)
p!lq! FEOb b (e cepyb, T plgldc.c Yy \b;/ by .

a

S1Xp= 5

The map from the multivector valued form f(y, c%, b,) to this operator can be seen is the quantization
(in Schrodinger representation) of the ghost-variables ¢, b,.

The commutator of two such operators induces an algebraic bracket between multivector valued forms

[ 2] = s (2.358)
< P < p
0 d\" Nt 0 d\’
- A 12 (L (k=R [ 9} (L
with [K, L] p§>1 <P’K<6ba> (aca) L—(-) K(aba> (aca> L>(2.359)

—

Each pair 8%8% has pure ghost number —1, antighost-number —1 and total ghost number 0. The lowest
term with just one derivative (which therefore has the highest antighost number) obviously has the form
of a Poisson-bracket

< —

0 0 Ny P 0
W g (9 (22 o (ye=ma-ig [ 9 (2
K,V = K <8ba> (aca) L—(-) K (am) (aca) L (2.360)

It yields to the contraction of one index pair between the multivector valued forms. The full algebraic
bracket [—, —]? is thus the quantum version of the Poisson bracket!

In particular for the 1-vectors b, = X, and the 1-forms c® we have zXacb = 62.

x,,c’\] = 68 =[X,, " ={X, "} (2.361)
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2.3.3 Main Theorem

Theorem 2.2 (main theorem). (a) if the derivation homology classes Hi(8) =0 Vk # 0 then there exists a
differential s that combines § with d

(=1 ()
s = 6 +d+)y ¢ (2.362)
r>1
g =0 (2.363)
() =k, gh(d®) =1 (formdeg — multivec deg) (2.364)
(b) any such differential s obeys
HY(9) = H*(d Ho(5)) (2.365)
r € H¥d): de=6y, z~z+dz+62 (2.366)
rix) =0=r(z), r(y)=1=r(z) (2.367)

Proof. i) Existence: Need to show that the equation 0 = & = 3 o _,(§)") is solvable for given &,d and V)

( = —[8,¢Y)]). We will show this by induction over the resolution degree r (either antighost degree or antifield
degree). At the lower degrees we have

D=6 = 0 (2.368)
&V =pd = 0 (2.369)
()0 =& +[8,4Y)] 0 (2.370)
At positive degree r > 1 we have
r—1
()7 = [0+ [d )+ Y LY T 20 (2:371)
k=1

The equation (52)(7"71) = 0 involves maximally €. So if we assume for the induction that this degree r — 1-
equation already holds, it does not put any restriction on "+, We therefore can see the equation at degree
as an equation for 1) which is solvable if the rest is d-exact. This is equivalent to showing that the complete
(52)(T) is exact. Being at resolution degree r > 1 with trivial derivative-cohomology classes H,., it is enough to
show that it is d-closed:

6,7 = s (2.372)
By induction assumption & is zero up to degree r — 1, i.e. & = [sﬂ Zk>r( )(")| 50 that the above equation
can be rewritten as
(r) _ (r—1) _
[0, (s)™)] CONG (2.373)
P ()
LY (2.374)

This completes the proof of the existence of a solution.

ii) Calculate H*(s) L H*(dH.(3)) (k is the ghost number). In the following ~ means equal up to J-exact.
Take € F(T*M) @ R[c*] ® R[b,] with fixed ghost-number k. It is in general a sum of components of different
antighost-number.

x = Zx(r =k, r@")=r (2.375)
r>0

Define a map
F(IT*M)@R[c| @R[bs] — F(IT* ) (2.376)
r = 7(z) =20 (2.377)

From
(s0)
—_—~

st = de® 4 62V +higher (2.378)
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it follows

rse o~ de(® (2.379)
= TS ~ .
dr (2.380)

So 7 is compatible with the differentials. It thus induces a map between the cohomologies
m: HFS — HFdH.)) (2.381)
[2] = 7([z]) = [=©] (2.382)

We want to show that it’s an isomorphism:
First m preserves the algebra product

m(zy) = m(z)7(y) (2.383)

Remains to show that it’s surjective and injective.
a) surjective: Take [#(9] € H*(dH.()), i.e.

& = _520. 520 = (2.384)

We need to show that for any such () there exists an z with st = 0 and 7z = 2°. So it suffices to find z(")
(r > 1) such that s(ac(o) + 31 x(r)) =0:

0 = sla@+ 2| = (2.385)
r>1
= [o0+d+) 7] [20+> 20| = (2.386)
>1 r>1
= 02 4 (62 + &) + 2 <6:C(T+1) +de™ + z; s(i):v(T_i)> (2.387)
=0 -0 r> 7=

It has to vanish for each resolution degree r (antighost number or antifield number) separately. Assume that we

have managed to make all resolution degrees up to r — 1 vanish, giving equations for z(*), ..., z(") but leaving
undetermined 2", z("+1) . The resolution degree expansion of st thus starts at degree r:
seo= Y (st)) (2.388)
T>r

Nilpotency of the differential s (S = 0) then implies that (sr)(™) is d-closed:

0 = (fo)7 Y= (2.389)
(r=1)

_ ( Z NS (g2) ™) = (2.390)
_ 5(Sr)?r> ) (2.391)

Triviality of H,(8) for nonzero r then implies that (sz)(") is not only closed, but also §-exact. Now the s
invariance equation at degree r reads

d—exact
d—exact
\ —— r . .
0 = (s0)) =082l 4 4+ Dzl (2.392)
=1
=d—exact

and is solvable for z("*1) because of the d-exactness of dv(™ +3°7_ §9Dx("=9 (if (sv)(") is §-exact, also (sr)(™) —
d2("t1) is §-exact. This shows that every element in H*(d H,(8)) can be written as 7[z] with [z] € H*(s) and
completes the proof of surjectivity.
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b) For injectivity, we need to show that the constructed x is unique. But as the map 7 is obviously linear,
it is enough to show that the kernel is [0], i.e. that [0] € H*(s) is the only element which is mapped to
[0] € H*(dH.(d)). So assume [y] € H*(s) is mapped to [0] € H*(dH.(9)):

y = 0 (2.393)
my = y O =@ +6:0, 820 =0 (x([y]) =][0]) (2.394)
We need to show that y = [0], i.e. that y is sexact. Again this will be shown recursively in the resolution

degree. So first expand y in the degree:

y o= &® 4603 0 (2.395)

(S(Z(O)Jrzu)))(o) r>1

At resolution degree 0, we obviously have

y® = () (2.396)
Now define
Y= oy 4 0) = (2.397)
S <y(r) N (S(Z«n N Z<1>))(”> _ (2.398)
r>1
_ (yu) _ 0,0 dz(1)> +3 (ym EPONON S(T—Uz(l)) (2.399)
r>2

Certainly 3’ is sexact iff y is sexact. Next sinvariance of 3" at lowest resolution degree will give us a condition
on yM) that will allow us to see that y(!) is exact:

-5 (yu) 41,0 dz<1>) (2.401)

This implies (trivial homology) that the bracket is dexact, i.e. 32(?) such that

y M =623 4 & 4 4V,0 = (2.402)
(1)
_ (S(Zw) 1M Z<2>)) (2.403)
Now we can define
y' = oy —H?) = (2.404)
(r)
S (ym _ (s(z<0> RNV +Z(2>)) > - (2.405)
r>2
_ (y@) _ 42,0 _dn, ) _ dz<2>) +3 (y<r> — gm0 _dr=1,1) _ s(T_2)z(2)> (2.406)
r>3

sinvariance of y” at lowest resolution degree 1 yields

0

(") (2.407)
5 (y@) _d2),0) _ g1, _ dz(?)) (2.408)

which implies (trivial homology) that there is a 23) with
y? = 820 4 @ 4 V0 L 2.0 = (2.409)

(2)
= (s(z(o) +20 4@ 4 z(g))) (2.410)

Obviously this can be continued recursively and used to make a complete induction, showing that y = sz is
indeed exact and thus [y] = [0] which in turn shows that the kernel of 7 is {[0]} and therefore 7 is injective. O
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Remarks

e The grading of the scohomology is the total ghost-grading. It can either be seen as cohomology, or if one
inverts the sign of the grading, as homology. In particular for d = 0 the differential s coincides with the
Koszul-Tate differential § and it is then more natural to regard the scohomology as a homology. In finite
dimensions the grading is in any case bounded from below and above (in the bosonic case), and there is
no need for a distinction. In infinite dimensions in general the d-grading is bounded from below and the
d-grading from above, while the sgrading is not bounded. Only when d = 0, it becomes bounded from
above.

2.4 BRST formalism classical

If we apply the above homological perturbation theory to the Hamiltonian system, we obtain the so-called BRST
(Becchi, Rouet, Stora and Tyutin) differential s build from the Koszul Tate differential § (whose homology
restricts phase space functions to the constraint surface) and from the longitudinal exterior derivative dp
(whose cohomology restricts to gauge invariant functions).

2.4.1 Mapping the dynamics to extended phase space

e In the proof of the main theorem we have defined the isomorphism
7: F=FO4+FO 4 s nF)=FO (2.411)

between the dz)—Cohomology (which contains at zero ghost number just the gauge invariant functions
on the constraint surface: 0 & d)FO = c*{G,, F(O}) and the s-cohomology (BRST-cohomology) in the

extended phase space (which contains BRST-invariant functions on the extended phase space 0 LR ). The
extended phase space is parametrized by the variables (y,c?, b,) where y™ = (¢™, p,n) parametrize
the original phase space T*M which contains also the constraint surface X.

e The existence of this isomorphism implies that every gauge invariant function on the constraint surface
can be lifted to a sclosed (BRST invariant) function on the extended phase space.

e The isomorphism further respects the bracket structure at ghost number 0. In order to see this, expand
two functions F' and G on the extended phase space in the resolution degree

F(y,c®, b,) 0>+Z ) F) beb(by)" (2.412)
n(F) r>1

Their Poisson bracket reads

(F.G) = {FO £ 37 () FO 2 (by), GO + 3 L (e9) Gl b b(by)" § = (2.413)
r>1 s>1
_ (g A 1 (eeys [ pO) Als) bob ) {0 bb GO)
= {E/vg/} + Z sls! (Cc) {F 7Gc...c } +Z T|T| { G }( ) —+
TF  nG s>1 r>1
resoldeg s>1 resoldegr>1
3D it { (€T b () GE) 0 (b) (2.414)
r>1s>1

resoldeg >r+4+s—1>1
Clearly only the first term has resolution degree 0, so that we indeed obtain

m{F,G} = {nF, G} (2.415)

e Remember the consistency conditions {H;.t, Go} ~ 0 (constraints are conserved in time) which were
used to derive secondary constraints. As also previously discussed, the same equation implies that Hyor =
HO 4 \o» Ga, (we denote the original H now by H (0) as it has resolution degree 0) is gauge invariant on X.
Because of {Gy, Gy} =~ 0 (or simply because Hyo; =~ H®)), it further implies that the basic Hamiltonian
HO itself is gauge invariant on the constraint surface:

{Go, HO} = 0 (2.416)
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We can therefore use 7= to map H® (or equivalently Hyor =~ H (0)) to its BRST invariant extension H
in extended phase space.

sH = 0 (2.417)

H = @+H“>+... (2.418)
w(H)

H = H®O (2.419)

e In other words we can use the isomorphism 7 (see proof of the main theorem) to map the whole dynamics
of gauge invariant functions on the constraint surface in original phase space to an isomorphic dynamics
in the extended phase space:

F = {HF} (2.420)

The BRST cohomology defines the physical space, so the dynamics on s-closed objects is all what matters.
Nevertheless it is convenient to extend the dynamics to non-closed functions as well, by simply the same
equation of motion as above. This even assigns a dynamics to the ghosts

& ={H,c"}, b,={Hb,} (2.421)

e The extension H (in extended phase space) is unique as a BRST-equivalence class [H]. So in BRST
cohomology also time evolution is unique and there is no gauge invariance. On the other hand, in the
underlying algebra of functions on the extended phase space, H is not unique, but can be modified by
arbitrary BRST-exact terms

H— H+sK (2.422)

For any particular choice of K (choice of a representative of [H]) we obtain a unique time evolution without
gauge invariance. Therefore K is called the gauge fixing fermion. (“Fermion” because it has to be
Grassman-odd although it is a scalar). One could recover the gauge ambiguity of the total Hamiltonian
by introducing a family of gauge fixing fermions Ky = A*b, depending on the Lagrange multipliers A®.

sK = s(A%,) = \(GV) +..) (2.423)

Choosing one representative then corresponds to fixing the A®’s to a certain value, e.g. 0. This would lead
also in the original phase space to a unique (gauge fixed) time evolution.

e According to [Henneaux, p.240] there is no geometric interpretation of the ghost dynamics, but I doubt
this. Maybe one should change from active to passive transformations or the other way round. I.e., taking
a function F(y) whose coordinates y change in time can also be seen as a function which changes in time
itself, i.e. F'(y) = F(y’). The same for multivector valued forms given as functions on the extended phase
space. Then one can think of the time evolution as a time evolution of the section of multivector valued
forms.

2.4.2 BRST differential as a canonical transformation

e Claim: the BRST-differential is a canonical transformation, i.e. can be generated by a BRST-charge of

the form
_ c _1l,.c,c b (=)" c\r+1 ¢(r) b...b r_
Q =€ \G;Cz 2€¢ € f\c’cd by + ; r!(rJrl)!(c ) fc...c (bb) = (2424)
o Ap AR
= et (€)LD P b ()" (2.425)
r>0

The fc(,r,),cb'“b are called the higher order structure functions. A set of constraints is said to have
rank r if the fc(,’f,)cb"'b vanish for all n > r. Examples

— rank 0: abelian {G,, Gy} =0,
Q=c"Gq (2.426)

— rank 1: group {Gq,Gp} = fap°G. (with constant fu;°!)
Q = c°Ge — 2 fecbby (2.427)
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— The rank is not an intrinsic classification of the constraint surface, as it can change upon choosing
different G, for the same surface.

e In order to prove the claim, it is enough (according to the main theorem) to observe that it generates
0 +dz) in the lowest orders and that it can be made square to zeroi?

0 = {Q.Q)}= (2.428)
=Y e (€ S b (€ ) B (b)) = (2.429)
r,s>0
- 9 Z (_)rJrsmﬁ(cc)rJrlfc.r.).cb...ba(bb)rfl {ba,cd}( E) (S) cb...b(bi’)s_i_
r>1,5>0
+ Z T+S’I" T1+1)| s'(s]:i»l) (CC)T"'rl(bb) { (r) b.. bvf(S) b.. b} (C&)S-‘rl(bg)s _ (2.430)
7,520

2 ) ()T e i U P ) P (el () +

r>1,5s>0

+ Z T+S+T (41 r’(T+1)’ s’(S-‘rl)’ { ér)c ) éS)cbb} (cc)r+s+2(bb)r+s (2'431)

r,s>0

Finally we reparametrize the sum, keeping s as a summation variable, but replacing r by the power of
bp’s, so in the first sum by R=r+s—1 (R > 0,0 < s < R) and in the second sum by R = r + s
(R > 0,0 < s < R) and obtain as condition for nilpotency of Q@

! Rs 1 1
0 = ZZ(—) (R (R—s12)! s+ 1)1 <

% ()2 s 4 DSV L) B (R— s 4 2) { SO0 FL) B0 ) ()R (by) P (2432)

Having sorted now by resolution degree, we can read off the equations for each degree R seperately:

R
! s
0 = Z(_)R (Rfs)!(}%fs+2)!s!(s%kl)! X
0
X (—()Fo2s 4+ 1) fRGTFDEbe gD b (R s 4 2) { LRGP0, g1, 0L ) VR (2.433)

For the lowest degrees, this reads

=0: 0 £ (-2 +2{c0,c0}) v (2.434)
! a o
R=1: 0 & & (2/@0¢0 +3{s0% G0} - 11 (-2 27D +2{GO, s} = (2.435)
1 .
= SIEAPGY + fO gt = {GO, WP /(Jacobi) (2.436)
! a o
R=2: 0 = op|-2f8*G +4 {fc(ilbb,GEO)D + g (52 + 3 {rPr s ) +
—_———
x§f(3)
oty (—65e 2 +2{GO, s ) (2.437)

Equations are always of the form § f(™ 4 (...) = 0 where the (...) need to be shown to be d-closed which
is sufficient to make them exact. So works like previous proofs.

2Note that Q is a formal sum of multivector valued forms and that {Q, Q} = 0 corresponds to the vanishing of some algebraic
and some differential brackets between them. In topological sigmal models this can be used to implement integrability conditions
of a Poisson structure or a complex structure or similar in target space via a BRST charge. ¢
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e The complete BRST transformations read

— r+1 C\T T ...0cC T
< = -3 Cabcacb+2r£!(2+2)!(c )2t (by) (2.438)
N————’ >1
dizye®
o = Ga —5falbp+ Y Sor(co) 1) b (by) (2.439)
b, d(1)ba r=2
Y™ = XY by Y () ) { £ M) (2.440)
— r>2
d<L)yM =

e Being a canonical transformation makes the BRST differential (and thus its cohomology) compatible with
the Poisson bracket:

S(F,G} = {sF,G} + (=)' {F, G} (2.441)

This means that if F' and G are BRST-closed, also {F,G} is closed. Furthermore, if F' = sK is BRST
exact and G is closed, the result is also exact, as it should be

{sK,G} = (-)5s{K,G} forsG =0 (2.442)

2.4.3 BRST differential as a symmetry-transformation

e The gauge fixed action

Sk[y™,e* ba] = /dt( §"pm +¢'be —H —{Q,K}) (2.443)

M A (y)

is invariant under the global BRST symmetry
sSk =0 VK (2.444)

Similarly as for a conventional gauge fixing (like just putting A* = 0 in the original first-order Lagrangian),
the constraints G, = 0 are not obtained from the equations of motion any longer (although they now hold
on the cohomological level).

e If we had started from the beginning with a first order action S{g, p, \] = [ ¢p — Hy — A\*G, , then (apart
form the second class constraints m, = 0,7, = p) we would obtain first class constraints 7, = mya = 0
on the momenta conjugate to the Lagrange multipliers. They can be dealt with the introduction of
corresponding ghost fields p® and conjugate momenta ¢, together with the BRST transformations

S, = ma, STa=0 (2.445)
s\* = p% =0 (2.446)
They form a so-called topological quartet which drops out of the cohomology completely, because each

variable is either exact or not invariant. The auxiliary variables (A%, 7., p%, €,) are known as non-minimal
sector (one could add more...). So the non-minimal contribution to the BRST charge is

Qun = PN (2.448)
The gauge fixed action extends to
SK[yM’Ca,ba,Aa’ﬁa,pa,éa] = /dt( q.mpm _'_éaba_i_xaﬂa +paéa - H_ {Q7 K}) (2'449)
——"
M A (y)

A very common type of gauge fixing fermion is now

some constant
K = X'(y)ea+Xbat § Cg”m (2.450)
~—~—

some metric
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Let us first ignore the last term (i.e. take = 0). The BRST transformation of the second term will
reintroduces the term A*G, (which we had in the original first order action) and the first term will
effectively induce a derivative gauge for the gauge degrees of freedom A* of the form A* = xy*:

Sk[y™M, e, by, A\, w4, p%,C0] = /dt G"pm +€%ba + \q + ple, — H + (2.451)

M A (y)

— (Xm0 + A(Ga + € fur e +..) + 8¢ (y) - € + P bu + %mg‘“’m))

e Only if a # 0, one can use the equations of motion for m,
0SK

0T

=\ —ar® (2.452)
to integrate out m, (replace it in the action by the solution 7, = é/\“) Always if K is such that one can
eleminate 7, it is called a propagating gauge.

e If the higher terms ... in (G +¢®f4,°b.+. . .) are not present (happens when f,;° is constant), the situation
simplifies, because one can then integrate out b, and p® in pairs

0S
— = &+ i+ p° (2.453)
6b,
05 e, (2.454)
op®
Can eliminate b, = —¢. and p° = ¢ — ¢ f,,°
SK[va N\ T, éa] = /dt q"pm —H— X" (Ga - (beabcéc)) +
~———
M Anm (y) BRST—inv extof G,
@ - s ) e+ (3 = X)) 7o —%m“bm> (2.455)
(A =x"(v))ea)
where we used
S, = Tq, ST,=0 (2.456)
S\ = & —cfu’ (2.457)
S\ = & —ébfa (2.458)

The above gauge fixing make contact to the original Faddev-Popov ghosts, where ¢* were the ghosts and
¢, were the antighosts.

e Remark on the Bosonic string: One BRST-exact term is added to the Lagrangian, which at the same time
fixes the gauge and introduces a ghost-kinetic term:

S 2z __ pzZ C.. _ 2z __ 2z Tos +(§Czézz 2.459
(9" —§°%)ez2) 7 g 0ce: (2.459)

Leauge—fix Lgn

2.4.4 Some more comments

e If the structure “constants” f,;° in the constraint algebra {G,, Gp} = fup°Ge are not constant, then the
corresponding symmetry transformations close only on the constraint surface:

(60,0 = 2{G,{Gy,—}} = (2.460)

Tegobt G, Gy} =1 = (2.461)

{fap°Ge, =} = (2.462)

= fabcéc + Gc{fubcu _} (2463)
N————

~0
The last term vanishes in general only on the constraint surface. The algebra is then said to be off-shell

non-closed or open. Together with the previously mentioned fact that every on-shell vanishing gauge
symmetry is a trivial gauge symmetry, this last term has to be a trivial transformation.
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For a closed algebra one can according to [Henneaux, p.47] complete every weekly gauge invariant function
to a strictly gauge invariant function: [G,, F] = 0= 3F' ~ F with [G,, F] =0

The generator jj of a global symmetry is a first class function, i.e. commutes with all constraints. (solutions
of eom’s are mapped to solutions). jo can thus be (via the isomorphism ) extended to be BRST-invariant
and then generate a symmetry that commutes with BRST

The higher ghost number cohomologies H(s), H%(s) are related to anomalies.

The BRST generator @ is BRST exact, because it has ghost number 1:

{Jgn.Q} = Q (2.464)
orsly, = —-Q (2.465)

The BRST charge is unique up to canonical transformation in extended phase space Q@ — Q + {X, Q}.
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