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Chapter 1

Introduction

1.1 Some general BlaBla

• Usually have determinism in physics: Given some fields (tensor fields, sections of fiber bundles, position
of point-particle, etc), initial conditions and equations of motion uniquely fix the time evolution (the
solution in spacetime).

• Gauge Invariance of a Physical system:

– time evolution contains time-dependent arbitrary functions (i.e. not fixed):
e.g. q1(t) = v1t+ ε(t), q2(t) = v2t− ε(t).
Can be seen as coming from local symmetries of the action:
Symmetries map solutions of eom’s to solutions.
⇒ local symmetries (i.e. with time-dependent transformation-parameter) thus allow arbitrary time
dependent parameters in the solution, i.e. solution is not fixed.

– determinism can be reinstalled by identifying solutions that differ by this shift (mod out gauge
orbits)

– or by ’fixing the gauge’, i.e. choosing a representative of the orbit.

– In most cases one can think of these symmetries as a change of coordinates or change of reference frame

– Note that one can also mod out discrete symmetries (e.g. dualities∼= Z
2: mirror symmetry (T-

duality), S-duality: electric magnetic duality, T-folds, U-folds)

• Examples:

– YM: Yang Mills theories (including Maxwell U(1), QCD SU(3), electroweak SU(2)xU(1)):
standard class of examples. Relation to fiber bundles manifest. Gauge trafo=transition functions
(choice of basis in the fiber)

– classical mechanics:
Mostly related to implementation of reparametrization invariance, e.g. relativistic point particle
(geodesic equations).
But one can easily construct plenty of artificial examples.

– GR: General relativity :
Again reparametrization invariance. Metric (instead of connection) plays the role of the gauge field.
⇒In flat space, metric can be gauged away completely (by fixing an orthonormal coordinate system).
One then says that the metric is “pure gauge”.
In curved space this is possible only for a given point of the manifold (where one can even bring the
Christoffel symbols to zero).

– Pure math example: geodesic equations (minimal volumes) from variational principle. (Nambu-Goto
action with Euclidean signature):
Worldvolume-diffeomorphism-invariance

– Similar, but with Minkowskian signature:

∗ Relativistic point particle.

∗ Or even superparticle (particle propagating through superspace)⇒super-diffeomorphism-invariance
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∗ ST: (bosonic) string theory:
Worldsheet diffeo invariance. (with gauge field(metric): Polyakov-string, without: Nambu-Goto)
Local Weyl-invariance (without gauge field)
Gauge-constraints: Virasoro-Constraints -> Virasoro-algebra

∗ Dp-branes (world-volume diffeomorphism invariant Dirac Born Infeld action + other gauge sym-
metries)

– gauged WZW: Wess Zumino (Novikov) Witten theory (2dim sigma-models with (coset) group
manifold target space):
Fields live in the group G itself. Can act on them with other group elements by either left or right
multiplication.
One of these is realized for a subgroup H ⊂ G as local symmetry (gauge symmetry), the other just
a global symmetry. Modding out the local symmetry leads effectively to a sigma-model on the coset
G/H.

– higher gauge fields (B-field, TQFT):

δB(2) = dΛ(1) (compare δA(1) = dΛ(0))
Fiber bundles not enough. Need gerbes.
(Čech-2-Cocycles: gαβγ : Uα ∩ Uβ ∩ Uγ → S1, δg = gβγδg

−1
αγδgαβδg

−1
αβγ = 1 (0?),

Aαβ +Aβγ +Aγα = g−1αβγdgαβγ , Bβ −Bα = dAαβ , dBβ = dBα = H |Uα
. Hitchin-talk)

– topological models (Poisson sigma-model: no propagating degrees of freedom, →Kontsevich star
product)

– can gauge any global symmetry (Noether-method)
⇒was used to derive SUGRA from SUSY

1.2 Plan

• Definition of gauge transformations

• Examples (including a first glance on Yang Mills)

• Back to general discussion: Noether theorem and Noether identities

• Hamiltonian description:

– Phase space T ∗M with natural Poisson bracket

– H : T ∗M → R

– Constraints in the phase space (1st and 2nd class).
(presymplectic Hamiltonian systems)

– Koszul Tate differential δ reduces to the corresponding submanifold.

– BRST differential (longitudinal exterior derivative) mods out gauge transformations (generated by
the BRST charge via the Poisson bracket).

• For both l need: homological perturbation theory: s
︸︷︷︸

BRST

= δ
︸︷︷︸

Koszul Tate

+ dl
︸︷︷︸

longitudinal exterior derivative

+ . . .

• Lagrangian description (Legendre-transformation T ∗M → TM)

– Tangent space TM a priori without natural Poisson bracket

– L : TM → R

– Space of paths PM in M (determined by initial conditions on TM and eom’s).

– Eom’s are constraints in PM
– extend M to antifields. Functions on extended space∼= Γ

(∧• TM
)
(multivector-fields)

Graded Lie algebra with natural “odd Poisson bracket”: Schouten-bracket or antibracket

– Koszul tate differential δ reduces to the surface given by the solution to the equations of motion
(“on-shell”)

– BRST differential mods out gauge transformations (generated by the action S via the antibracket).
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• Fiber bundle geometry and relation to YM

– characteristic classes (fiber bundle obstructions)

– Index theorem (anomalies)

• Maybe more on:

– Anomalies

– Fermions

– Solitons (magnetic monopole)

– ...

1.3 Definition of a gauge transformation

• [Henneaux,p.67]: Consider a manifold (?) M and the space of all paths PM . I.e. an arbitrary path
q ∈ PM is of the form

q : R ⊃ [a, b] → M

t 7→ q(t) (with coords qi(t), i ∈ {1, . . . , dimM}) (1.1)

where we assume the paths to be smooth. Consider further a functional on this space

S :

all paths onM
︷︸︸︷

PM → R

q 7→ S[q] ≡
∫ b

a

dt L(q(t), q̇(t), q̈(t), . . . , t) (1.2)

which will be called an
✿✿✿✿✿✿

action
✿✿✿✿✿✿✿✿✿✿✿✿

functional . (It is called local if the integrand contains only a finite
number of derivatives)

• The equations

0
!
= δS[q] =

∫

dt δqi(t)
δ

δqi(t)
S[q] ∀variations δq (q̃(t) = q(t) + δq(t)) (1.3)

which extremize S are called the equations of motion (eom)

• If there exists a particular (infinitesimal) variation δεq (parametrized by some transformation param-
eters εa) with

δεS[q] = 0 ∀q (1.4)

it is called a symmetry transformation of the action.

• Or finite (more general, as there might not be an infinitesimal version, e.g. for discrete symmetries):
A map

f : PM → PM (1.5)

q 7→ q̃ = f(q) (= q + δεq) (1.6)

with
S[f(q)] = S[q] ∀q (1.7) finite-sym

is called a symmetry trafo.

• Symmetry transformations of an action form a group:

– identity is always a symmetry

– Composition of two symmetries is always a symmetry

S[f(q)] = S[q], S[g(q)] = S[q] ∀f, g ⇒ S[f(g(q))] = S[g(q)] = S[q] (1.8)
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– Inverse is always a symmetry (plug f−1(q) into (1.7)

S[q] = S[f−1(q)] (1.9)

– counterexample to last: S[q1, q2] =
∫
dt L(q1, q̇1) (action does not depend on q2). The function

f : q2 7→ 0 is a non-invertible symmetry transformation of this action.

– In order to avoid this:

∗ Restrict to trafos generated by infinitesimal ones (which are always invertible)

∗ Or restrict the trafos to be elements of the diffeomorphisms on PM . Then the symmetry group
is a subgroup

• A symmetry of the action is also a symmetry of the equations of motion, in the sense that it maps solutions
of the equations to other solutions:

δ

δqi(t)
S[qc + δεq] =

δ

δqi(t)
S[qc] +

∫

dt′ δεq
j(t′)

δ2

δqj(t′)δqi(t)
S[q] = (1.10)

=
δ

δqi(t)
S[qc]

︸ ︷︷ ︸

=0

+
δ

δqi(t)
δεS[q]

︸ ︷︷ ︸

=0

= 0 (1.11)

• On shell = either on the “shell” defined by the equations ofmotion (that’s how I will call it, while probably
writing ”eom”), or on the constraint surface (I will say “on the constraint surface”), in particular on the
mass-shell p2 = −m2 (which I will call – if ever – “on mass-shell”).

• Off shell = Not on the “shell”.

Definition 1.1. Assume we can expand the symmetry transformation δεq
i(t) in some (infinitesimal) and maybe

time-dependent parameter ε and its time derivatives:

δεq
i(t) = εa(t) δ(0)a qi

︸ ︷︷ ︸

Ri
(0)a

(t) + ε̇a(t)δ(1)a qi(t) + . . . = (1.12)

=

∫

dt′ εa(t′) δaq
i(t′, t)

︸ ︷︷ ︸

Ri
a(t

′,t)

(1.13)

If δεq
i(t) is a symmetry transformation for any (infinitesimal) function εa(t) of t, i.e.

δεS[q] = 0 ∀ε(t) (1.14)

then δε is called a local symmetry of S or (in particular if those q’s related by a local transformation δε are
identified) a gauge transformation.
(some ambiguity for the latter: as soon as one uses a symmetry to identify solutions – could also be a discrete
symmetry like dualities – one can call these symmetries gauge transformations, even in the discrete case.
However, as a local symmetry enforces the identification, one tends to identify gauge symmetry with local
symmetry)

Remarks:

• Allowing ε(t) to be an arbitrary function of t is quite a strong condition on the symmetry. It is quite
common that one has some restrictions on ε(t). For example, δεq

i(t) might be a symmetry transformation
only if ε(t) = ε = const, in which case all the derivative terms drop. Such a symmetry is called a global
symmetry.

• The definition of a local symmetry requires arbitrary ε, but not arbitrary form of δεq
i(t). In particular

there can be also local symmetries that don’t have derivative terms, i.e. that are of the form δεq
i(t) =

εa(t)δ
(0)
a qi(t). Still they differ from global symmetries by the fact that ε(t) has an arbitrary t-dependence.

• Remark on the notation: Note that M can not only be finite dimensional (for example for a point
particle moving in space-time), but also infinite dimensional, like in field theorey where one should replace
the discrete index i by a continuous (perhaps combined with a discrete). Take for example a co-vector
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field A in spacetime (section of the cotangent bundle of R3,1, where “3,1” means that the signature of
the metric is (−1, 1, 1, 1)). Its components are Aµ(x

0, x1, . . . , x3) ≡ Aµ(t, ~x). One can think of ~x as a
continous “index”, i.e. qi(t) ≡ Aµ,~x(t). Many of the statements derived for finite dimensions carry over
for infinite dimensions. Sometimes, however, it is nice to avoid the split of the spacetime coordinates into
time t and space ~x. So some of our discussion will be made explicitly for the field-theory case. When
we don’t want to specify, whether we are talking about vector fields or other tensor fields or whatever,
we will collectively denote all the fields of some theory by φI(x) (where x is now space and time). One
then obtains the particle case by splitting spacetime into time and space and taking the space-dimension
to be zero. So qi(t) in these notes can be both, either the point particle case (space-dimension=0) of the
general field theory or a condensed notation of the general field theory:

qi(t) ≡ φIall
,~x(t) ≡ φIall(x) (i is then a cont ∞-dim index :

∑

i

(. . .) =
∑

I

∫

ddim~x(. . .)) (1.15)

or qi(t) ≡ qi(t) = φIall(t) (i is discrete and finite dimensional) (1.16)

Rarely we might use even more condensed notation, where also time is included in the index:

qi=̂qi,t,
∑

i

=̂
∑

i

∫

dt (1.17)

1.4 Examples

A few examples which we might use from time to time to illustrate some general concepts / techniques.

1.4.1 Stupid example

•
S[q1, q2] =

∫ b

a

dt 1
2 (q̇1 − q̇2)2 − V (q1 − q2) (1.18)

• Local symmetry
δεq1(t) = ε(t), δεq2(t) = ε(t) (1.19)

• Eom’s (δq|a = 0 = δq|b general variations, but with fixed end-points)

0 =

∫

dt (δq̇1 − δq̇2)(q̇1 − q̇2)− (δq1 − δq2)V ′(q1 − q2) = (1.20)

=

∫

dt (δq2 − δq1) ((q̈1 − q̈2) + V ′(q1 − q2))
︸ ︷︷ ︸

δS
δq2(t)

=− δS
δq1(t)

(1.21)

• equations of motion are dependent (Noether identities):

δS

δq1(t)
+

δS

δq2(t)
= 0 (1.22)

• Solutions to eom’s are not unique. Only the difference is unique after fixing initial conditions

q1(t) = 1
2q0 +

1
2vt+ f(t) (arbitrary f(t)) (1.23)

q2(t) = − 1
2q0 − 1

2vt+ f(t) (1.24)

q1(t)− q2(t) = q0 + vt (1.25)

• Physically identify solutions that differ by a gauge transformation (equivalence relation)

(q1, q2) ∼ (q1 + δεq1, q2 + δεq2) (1.26)

• Can gauge fix (= choose a representative of the equivalence class of paths) e.g. via

f(t)
!
= 1

2q0 +
1
2vt (q2(t) = 0, q1 as effective variable) (1.27)

• This is an example for a gauge symmetry without the explicit appearance of a gauge connection (δA =
dε+ . . .).
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1.4.2 Geodesic equation from the variational principle

• Embedding Σ
X→M

• dimΣ = 1: Geodesic:

S[X ] = −
∫

Σ

dσ

√

| Ẋmgmn(X)Ẋn |
︸ ︷︷ ︸√

X∗g

(1.28)

Variation yields in proper-time parametrization (affine parametrization) the geodesic equation:

δS = 0 ⇐⇒ Ẍm − ẊkẊ lΓmkl = 0 (1.29)

(e.g. point-particle in GR-background)

• dimΣ arbitrary:

S[X ] = −
∫

Σ

ddσ
√

| det (∂µXmgmn∂νXn) |
︸ ︷︷ ︸√

|det(X∗g)|

(1.30)

(e.g. bosonic string, Dp-brane). Variation yields a generalized geodesic equation (again in a particular
parametrization)

∂µ∂
µXm − ∂µXk∂µX

lΓmkl = 0 (1.31)

• Gauge symmetry: local worldsheet-reparametrizations:

δεX
m = LεXm = εκ(σ)∂κX

m(σ) (1.32)

• E.g. for 1-dim case can gauge fix σ0 = X0 ⇒ Ẋ0 = 1, and assume that the remaining Ẋ i ≪ 1 (where 1
can be thought of as the speed of light). Then we can expand the square root as follows:

√

| Ẋmgmn(X)Ẋn | =
√

1− Ẋ igij(X)Ẋj = 1− 1
2Ẋ

igij(X)Ẋj + . . . (1.33)

The second term is just the kinetic energy of a point particle in Newtonian mechanics which serves in this
case as a Lagrangian.

• Above examples are without worldvolume metric. So one has gauge invariance without a “gauge field”.

• With independent worldvolume-metric (Polyakov-action, works at least in 2dim)

S[X ] =

∫

Σ(2)

d2σ
√
h 1

2h
µν∂µX

mgmn∂νX
n (1.34)

In 1d one has to add an extra term containing only h (or the vielbein e).

0
!
= δS

δhmn
⇒ eom for hµν , can be plugged back. One obtains back the old action.

Remark on condensed notation:

In case of the worldsheet (dimΣ=2)
Σ(2) ∼= R× Σ(1) (1.35)

δεX
m( σ0
︸︷︷︸

τ

, σ1) = εκ(σ0, σ1)∂κX
m(σ0, σ1) = (1.36)

δεX
m,σ1

(τ) =

∫

dσ̃1εκ,σ̃
1

(τ) δ(σ′ − σ1)∂κX
m(τ, σ1)

︸ ︷︷ ︸

δ
(0)

κ,σ̃1X
m,σ1 (τ)

(1.37)

Compare to

δεq
i(t) = εa(t) δ(0)a qi

︸ ︷︷ ︸

Ri
(0)a

(t) + ε̇a(t)δ(1)a qi(t) + . . . = (1.38)

Local in σ0 →gauge symmetry. Local in σ1 →infinite global symmetries (conserved charges). Usually local in
both.
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1.4.3 General Relativity

Einstein-Hilbert action without matter

SEH [g] ≡ 1
16πG

∫

ddx
√

| det g | R
︸︷︷︸

Ricci− scalar corresp togmn(x)

(1.39)

It is diffeomorphism invariant (gauge invariance)

δξgµν(x) = Lξgµν(x) = ξκ(x)∂κgµν(x) + 2∂(µ|ξ
κ(x)g|κ)ν(x) (1.40)

Equations of motion give Ricci-flatness

0
!
=

δ

δgµν(x)
S ∝ Rµν − 1

2gµνR (1.41)

⇐⇒ 0 = Rµν (1.42)

1.4.4 Yang Mills I - a first glance

The aim of this subsection is to quickly introduce the Yang Mills action in order to have it at hand as an
example. This will be done without introducing in detail fiber bundle geometry (this will be done later). Some
names will be dropped in order to specify what the objects are, but without yet carefully defining these.

• Conventions:
here [Nak] [Kugo] [Hitchin] [thesis]

A,D, F A = iA,D,F = iF g
i
A,D, g

i
F A,D, F −Ω,∇,−R

tr 1
2 tr

• A: Lie algebra valued one form, or to be more precise a local section of T ∗M ⊗ g.
In fact it is the pullback of the so called connection 1-form (which is an element of Ω1(P (M,G)) ⊗ g) of
a principle fiber bundle along a local section.
F : pullback of the corresponding curvature 2-form [Nak, 355]

• Action1

S[A] ≡
∫

RD−1,1

(−)p(D−p)ǫ(D,p) 14 trF ∧ ⋆F = (1.43)

=

∫

RD−1,1

dDx 1
4 trF

mnFmn (m,n ∈ {0, 1, . . . , D − 1}) (1.44)

with [Nak,p.353]

F = dA+A ∧A (1.45)

Fmn = ∂mAn − ∂nAm + [Am, An] (1.46)

1[thesis, p.169, (D.24)] Define the components of the ε-tensor (volume-form) for Minkowskian signature via

εm1...mD ≡
√

| g |ǫm1...mD , ǫ01...(D−1) ≡ 1 = iǫD,1...(D−1) = (−)D−1iǫ1...D
︸ ︷︷ ︸

≡ǫ
(E)
1...D

The last step defines the Euclidean version. The actual D-form thus reads

ε ≡ 1
D!

εm1...mDdxm1 · · ·dxmD = (−)D iε(E)

Its components obey the following identity:

1
p!
ǫa1...aD−pc1...cpǫ

b1...bD−pc1...cp = −δ̌
b1...bD−p
a1...aD−p

, 1
p!
ǫ
(E)
a1...aD−pc1...cpǫ

b1...bD−pc1...cp
(E)

= δ̌
b1...bD−p
a1...aD−p

Using this tensor, we can define the Hodge dual as ([thesis,p.171,fn3], with redef ω
(p)
mmm → 1

p!
ω
(p)
mmm, ε → d!ε)

(⋆ω(p))m1...mD−p ≡
ǫ(D,p)

p!
εm1...mD−p

k1...kpω
(p)
k1...kp

(⋆(E) with ε(E))

where ǫ(D,p) is some p and D dependent sign-factor which can be chosen in any convenient way. Natural choices are

1, (−)p(D−p), (−)
p(p−1)

2 or (−)
p(p−1)

2 (−)p(D−p) . The second is most common in literature ([Nak]), the last was used by my-
self in [thesis]. (The factor (−)p(D−p) corresponds to contracting ω(p) with the first instead of the last p indices of the ε-tensor,

the factor (−)
p(p−1)

2 reverses the order of ω(p)’s indices.)
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or expressed in terms of the covariant derivative

F = [D,D] (1.47)

D = d+ [A, .] (1.48)

• Bianchi identity for general (nonabelian) group

dF = [dA,A]∧ (1.49)

= [F −A ∧A,A]∧ (1.50)

DF ≡ dF − [A, F ]∧ = 0 (⇐⇒ [D, [D,D]] = 0) (1.51)

• Gauge transformation (bundle transition maps)

Ã = gAg−1 + gdg−1
︸ ︷︷ ︸

−dg g−1

, F̃ = gFg−1 (1.52)

Or for an infinitesimal gauge transformation g = 1 + α:

δA = [α,A]− dα = −Dα , δF = [α, F ] (g = 1 + α) (1.53)

• Equations of motion
δF = dδA+ [A, δA] = DδA (1.54)

δS =

∫

− 1
4 tr δF ∧ ⋆F − 1

4 trF ∧ ⋆δF︸ ︷︷ ︸

tr δF∧⋆F

= (1.55)

=

∫

− 1
2 trDδA ∧ ⋆F (1.56)

=

∫

− 1
2 tr δA ∧D ⋆ F +

∫

d
(
1
2 tr δA ∧ ⋆F

)
(1.57)

The Hodge-dual of 1 is simply

(⋆1)m1 ...mD ≡ ǫ(D,0)εm1...mD (⋆(E) with ε(E))

⋆1 = ǫ(D,0)ε = ε (for all above versions of ǫ(D,p))

The square of the Hodge-star operation is either +1 or -1, depending on dimension D and (convention-dependent) also on the
form-degree p.

⋆2 = −(−)p(D−p)ǫ(D,p)ǫ(D,D−p) (⋆2(E) = (−)p(D−p)ǫ(D,p)ǫ(D,D−p))

⋆21 = − ǫ(D,0)ǫ(D,D)
︸ ︷︷ ︸

∈{1,ǫ(D)}

, ⋆ε = − ǫ(D,D)
︸ ︷︷ ︸

∈{1,ǫ(D)}

The Hodge dual of a wedge product of two forms leads to the contraction of its indices. If we denote by ω̃ the p-vector obtained
by raising all p indices of the p-form ω(p), then we can write

⋆(ω(p) ∧ η(q)) = (−)pq+p(D−p)ǫ(D,p+q)ǫ(D,q)(−)p(p−1)/2ıω̃(p) ⋆ η(q) = (−)q(D−q)ǫ(D,p+q)ǫ(D,p)(−)q(q−1)/2ıη̃(q)ω
(p)

Replacing η(q) by ⋆η(p) (of degree q = D − p) and acting with another star, yields a symmetric inner product

(ω(p) ∧ ⋆η(p)) = (−)p(D−p)ǫ(D,p) (ı(−)p(p−1)/2ω̃(p)η
(p))

︸ ︷︷ ︸

posdef for Euklid

ε = (η(p) ∧ ⋆ω(p))

Above we actually have a volume form, so that the proper inner product is its integral over the manifold.
For ǫ(D,p) = (−)p(D−p)(−)p(p−1)/2 we have

(⋆ω(p))m1 ...mD−p ≡ 1
p!
ω
(p)
kp...k1

εk1...kp
m1...mD−p (⋆(E) with ε(E))

(⋆1)m1 ...mD ≡ εm1...mD (⋆(E) with ε(E))

⋆2 = −(−)D(D−1)/2

(ω(p) ∧ ⋆η(p)) = (ıω̃(p)η
(p))ε = (η(p) ∧ ⋆ω(p))

For ǫ(D,p) = (−)p(D−p) (e.g. [Nak])

(⋆ω(p))m1 ...mD−p ≡ 1
p!
ω
(p)
k1...kp

εk1...kp
m1...mD−p (⋆(E) with ε(E))

(⋆1)m1 ...mD ≡ εm1...mD (⋆(E) with ε(E))

⋆2 = −(−)p(D−p), ⋆2(E) = (−)p(D−p)

(ω(p) ∧ ⋆η(p)) = (ı(−)p(p−1)/2ω̃(p)η
(p))ε = (η(p) ∧ ⋆ω(p)) ⋄
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δS[A] = 0⇒ D ⋆ F = 0 (DmF
mn = 0) & Fmnn

n|∂M = 0 (1.58)

• Gauge group U(1) (commutative, linear eom’s): Maxwell electromagnetic field E :1-form on R
3,

Ei = Fi0 (1.59)

B :Hodge dual of a 2-form B(2) (in 3dim: 1-form ∼=1-vector),

Bi = 1
2ǫ
ijk Fjk
︸︷︷︸

≡Bjk

(1.60)

So F written in terms of electric and magnetic field reads

F = B + cE ∧ dt (1.61)

This is a closed 2-form in R
4 upon some of the Maxwell-equations (the Bianchi-part of Maxwell eqs)

dF = dB + dt ∧ dE = (1.62)

= dt ∧ dxi ∧ dxj
(
1
2∂tBij + c∂iEj

)
+ dxk ∧ dxi ∧ dxj(12∂kBij) (1.63)

dF = 0 ⇐⇒ ∂t ~B + ~∇× ~E = 0, ~∇ ~B = 0 (1.64)

Similarly
d⋆ F = 0 ⇐⇒ ∂t ~E − ~∇× ~B = 0, ~∇ ~E = 0 (1.65)

• Noether identities: (see later)
0 = Dµ (DνF

µν) = [Fµν , F
µν ] = 0 (1.66)

• Remark on “gauging”: fermion action with global invariance -> gauge field action,

S[ψ, ψ̄] =

∫

d4x ψ̄(Γµ∂µ −m)ψ (1.67)

or S[φ, φ∗] =

∫

d4x ∂µφ
∗∂µφ− V (φ∗φ) (1.68)

Invariant under global U(1) transformations

ψ̃ = eiθψ, θ = const, δψ = iθψ (1.69)

or φ̃ = eiθφ (1.70)

Not invariant under local transformation, because of derivative. Introducing gauge field Aµ (“minimal
coupling”) leads to locally invariant theory:

S[ψ, ψ̄, A] =

∫

d4x ψ̄(Γµ (∂µ −Aµ)
︸ ︷︷ ︸

Dµ

−m)ψ + LMW (1.71)

S[φ, φ∗, A] =

∫

d4x Dµφ
∗Dµφ− V (φ∗φ) + LMW (1.72)

Similarly: S is invariant under global Poincaré-transformations (translation+SO(1, 3)). Can make the
local by introducing metric and vielbeins (local diffeo-invariance+local Lorentz invariance). Adding some
kinetic term for metric ⇒general relativity coupled to fermions+Maxwell;
Note that Aµ is coupled to the current jµ = ψ̄Γµψ. This is the starting point of the “Noether procedure”
to “gauge” a global symmetry.

1.5 Noether Theorem and Noether identities

Consider a quite general action functional of the form

S[φIall] ≡

∫
R
dτ

∫
Σ(d−1) d

(d−1)σ

︷ ︸︸ ︷∫

Σ

ddσ
︸︷︷︸

µ

L(φIall, ∂µφIall, ∂µ1∂µ2φ
I
all, . . .) (1.73)
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Theorem 1.1 (Noether). To every transformation δ(ρ)φ
I
all

which leaves the action S invariant, i.e. transforms
the Lagrangian as

δ(ρ)L !
= ∂µKµ(ρ) with nµKµ(ρ)

∣
∣
∣
∂Σ

= 0 (1.74) symmetry-cond-Lagr

there is an on-shell divergence-free current jµ(ρ) whose explicit form can be chosen to be

jµ(ρ) ≡ δ(ρ)φ
I
all ·

∂L
∂(∂µφIall)

+
∑

k≥1

k∑

i=0

(−)i∂ν1 . . . ∂νk−i
δφIall · ∂νk−i+1

. . . ∂νk
∂L

∂(∂µ∂ν1 . . . ∂νkφ
I
all
)
−Kµ(ρ) (1.75)

Its off-shell divergence is given by

∂µj
µ

(ρ) = −δ(ρ)φIall
δS

δφI
all

(1.76) eq:noet:currentdivergence

The such defined Noether current is unique up to trivially conserved terms of the form ∂νS
[νµ].

In turn, for any given on-shell divergence-free current j̃µ with

∂µj̃
µ = −yI(0)

δS

δφI
all

− yIµ1

(1) ∂µ1

δS

δφI
all

− . . .− yIµN ...µ1

(N) ∂µ1 . . . ∂µN

δS

δφI
all

(1.77)

which is furthermore itself on-shell neither vanishing nor trivial, there is a corresponding nonzero symmetry
transformation δφI

all
of the form

δφIall ≡
N∑

k=0

(−)k∂µ1 . . . ∂µk
yI µ1...µk

(k) (1.78)

The simple form of the off-shell divergence given in (1.76) can be recovered upon redefining

jµ ≡ j̃µ +

N∑

k=1

k−1∑

i=0

(−)i∂µ1 . . . ∂µiy
Iµµ1...µk−1

(k) · ∂µi+1 . . . ∂µk−1

δS

δφI
all

(1.79)

Proof. See [thesis, p.182]. Let’s prove only the mechanics-case φIall(σ)→ qi(t) and even there further restrict to
Lagrangians of the form L(q, q̇) without higher derivatives. We start from the symmetry requirement (1.74)

K̇(ρ)
!
= δ(ρ)L = (1.80)

= δ(ρ)q
i ∂

∂qi
L+ δ(ρ)q̇

i ∂

∂q̇i
L = (1.81)

= δ(ρ)q
i

(
∂

∂qi
L− d

dt

∂

∂q̇i
L

)

︸ ︷︷ ︸
δ

δqi(t)
S

+
d

dt

(

δ(ρ)q
i ∂

∂q̇i
L

)

(1.82)

⇒ d

dt

(

δ(ρ)q
i ∂

∂q̇i
L−K(ρ)

)

= −δ(ρ)qi
δ

δqi(t)
S (1.83)

The main difference for higher derivatives is that one needs to use a generalized formula for partial integration
which is of the form

∂ka · b = ∂

[
k−1∑

i=0

(−)i∂k−1−ia · ∂ib
]

+ (−)ka · ∂kb (1.84)

Instead for L(q, q̇) we just needed simple partial integration. The inverse direction is left as an exercise...

Fact. Every Noether current with on-shell vanishing divergence leads to a conserved Noether charge :

Q ≡
∫

Σ(d−1)

dd−1σ j0 (1.85)

∂

∂t
Q =

∫

Σ(d−1)

dd−1σ ∂0j
0 = −

∫

Σ(d−1)

dd−1σ ∂ij
i no bdry

= 0 (1.86)

12



Theorem 1.2 (2nd Noether theorem). If δρφ
I
all

is a symmetry transformation for arbitrary local (gauge)parameters
ρa(σ) of the form

δ(ρ)φ
I
all
≡ ρaδaφ

I
all

︸ ︷︷ ︸

δ0
(ρ)
φI
all

+ ∂µρ
aδµaφ

I
all

︸ ︷︷ ︸

δ1
(ρ)
φI
all

+ ∂µ1∂µ2ρ
aδµ1µ2
a φI

all
︸ ︷︷ ︸

δ2
(ρ)
φI
all

+ . . . (1.87)

then the following Noether identities hold and are equivalent to (1.76)

δaφ
I
all

δS

δφI
all

− ∂µ1

(

δµ1
a φIall

δS

δφI
all

)

+ . . .+ (−)N+1∂µ1 . . . ∂µN+1

(

δµN+1...µ1
a φIall

δS

δφI
all

)

= 0 (1.88)

Proof. Plugging (1.87) into

0
!
=

∫

ddσ δ(ρ)φ
I
all(σ)

δ

δφIall(σ)
S[φall] = (1.89)

=

∫

ddσ
(
ρaδaφ

I
all + ∂µρ

aδµaφ
I
all + ∂µ1∂µ2ρ

aδµ1µ2
a φIall + ...

) δ

δφIall(σ)
S[φall] ∀ρ (1.90)

This shows the Noether identities.
Similar to δ(ρ)φ

I
all, we can expand also jµ(ρ):

jµ(ρ) ≡ ρajµa + ∂µ1ρ
ajµµ1
a + . . .+ ∂µ1 . . . ∂µN−1ρ

ajµµ1...µN−1
a (1.91)

Plugging (1.87) and the expension of the current (1.91) into (1.76), one can show the equivalence of the Noether
identities to (1.76).

Example: Noether identity for Yang Mills: The equations of motion where

δS

δAcµ
∝ DνF

νµ
c (1.92)

The variation of the gauge field was:

δAµ = [α,Aµ]− ∂µα = (1.93)

= αa[Ta, Aµ]− ∂νaaδνµTa (1.94)

δAcµ = αafab
cAbµ − ∂νaaδνµδca (1.95)

Compare to
δ(ρ)φ

I
all ≡ ρaδaφIall

︸ ︷︷ ︸

δ0
(ρ)
φI
all

+ ∂µρ
aδµaφ

I
all

︸ ︷︷ ︸

δ1
(ρ)
φI
all

+ ∂µ1∂µ2ρ
aδµ1µ2
a φIall

︸ ︷︷ ︸

δ2
(ρ)
φI
all

+ . . . (1.96)

The Noether identities are in general

δaφ
I
all

δS

δφIall
− ∂µ1

(

δµ1
a φIall

δS

δφIall

)

+ . . . = 0 (1.97)

So this translates for Yang Mills into

0
?
= fab

cAbµ
δS

δAcµ
+ ∂ν

(

δνµδ
c
a

δS

δAcµ

)

= (1.98)

∝ fab
cAbµDνF

νµ
c + ∂µ (DνF

νµ
a ) = (1.99)

= fab
cAbµ

(
∂νF

νµ
c +AdνfdecF

νµe
)
+ ∂µ

(
∂νF

νµ
a +AcνfcbaF

νµb
)
= (1.100)

= fab
cAbµ∂νF

νµ
c + fab

cAbµA
d
νfdecF

νµe + ∂µA
c
νfcbaF

νµ
b +Acνfcba∂µF

νµb = (1.101)

= fab
cAbµ∂νF

νµ
c −Abµfbca∂νF νµc

︸ ︷︷ ︸

=0

+




∂µA

c
νfcea −AbµAdν fab

cfced
︸ ︷︷ ︸

− 1
2 fea

cfcbd




F νµe = (1.102)

= F cµνfceaF
νµe = 0

√
(1.103)

Probably boils down to (exercise: check)

0 = Dµ (DνF
µν) = [Fµν , F

µν ] = 0 (1.104)
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prop:currentOnshellZero Proposition 1.1. : The Noether current of a gauge symmetry vanishes on-shell up to trivially conserved terms

jµ(ρ) =

N∑

k=0

λµIµ1...µk

(ρ) ∂µ1 . . . ∂µk

δS

δφI
all

+ ∂νS
[µν]
(ρ) (1.105)

In turn, if a given global symmetry transformation has an on-shell vanishing current (compare [Henneaux, p.95])

jµa =

N∑

k=0

λµIµ1...µk
a ∂µ1 . . . ∂µk

δS

δφI
all

(1.106)

then one can extend the transformation to a local one

δ(ρ)φ
I
all ≡ ρaδaφIall − ∂µρaλµIa +

N∑

k=1

(−)k+1∂µ1 . . . ∂µk

(
∂νρ

aλνI µ1...µk
a

)
(1.107)

Proof. Quite technical to prove. We’ll skip that as well as the proof of the next statement.

thm:trafoOnshellZero Theorem 1.3. Every on-shell vanishing symmetry transformation is a trivial gauge transformation as
defined below:

δφIall
on−shell

= 0, δS = 0 ⇒ δφIall =
∫

ddσ AIJ (σ, σ′) δS

δφI
all
(σ′)

withAIJ (σ, σ′) = −AJI(σ′, σ) (1.108)

Proof. See in [Henneaux] (theorem 17.3 on page 414 or theorem 3.1 on page 70 - see also proof(p.229) of thm
10.1(p.209)) for a proof of this theorem. See [Henneaux] p.69 for a discussion of trivial gauge transformations.

Remark

• Shortcut to calculate Noether current:

δ(ρ,η)φ
I
all ≡ η(σ) · δρφIall (1.109)

δρ,σ =

∫

ddσ ∂µη · jµ(ρ) (1.110)

Where jµ(ρ) vanishes on-shell. Can instead also use δ
(0)
(ρ)φ

I
all ≡ ρaδ

(0)
a φIall.

• Conserved Noether Charges = Integrals of Motion
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Chapter 2

Constrained Hamiltonian/Lagrangian
Systems – Classical

2.1 Formulations with brackets (without gauge symmetry)

2.1.1 Legendre Transform without constraints

• The Lagrangian is a function on TM (assuming that it depends maximally on first time derivatives of q)1:

L : TM → R (2.1)

(qm, vm) 7→ L(q, v) (2.2)

• The Hamiltonian instead is a function on T ∗M :

H : T ∗M → R (2.3)

(qm, pm) 7→ H(q, p) (2.4)

• The Legendre transformation brings one from one to the other by assigning a momentum (cotangent
vector) p for a given q and v as follows

pm ≡ ∂L(q, v)

∂vm
(2.5)

Assuming that the resulting relation between pm and vm is invertible, i.e.

det

(
∂2L(q, v)

∂vm∂vn

)

6= 0 (2.6)

one can build the following function on the cotangent bundle as follows (Legendre transform)

H(q, p) = pmv
m(q, p)− L(q, v(q, p)) (2.7)

• One can calculate the partial derivatives of H without knowing the explicit form of the inverse transfor-
mation vm(q, p), because δvm(q, p) drops from the variation of H :

δH(q, p) = δpmv
m(q, p) + pmδv

m(q, p)− δqm ∂

∂qm
L(q, v(q, p))− δvm ∂

∂vm
L(q, v(q, p))

︸ ︷︷ ︸

pm

= (2.8)

= δpmv
m(q, p)− δqm ∂

∂qm
L(q, v(q, p)) (2.9)

1For Lagrangians that depend on higher derivatives of qm, see either the comment at the end of the subsequent subsection on
first order Lagrangians (suggesting to iteratively replace q̇ by momenta and build a “first order Lagrangian” which might not be
first order yet, but can be used again to define momenta and so on) , or see [Henneaux, p.47, exercise 1.26]: simply introduce one
new variable for each of q̇, q̈ and so on:

p(1) ≡
∂L

∂q̇
, p(2) ≡

∂L

∂q̈
, . . .

H ≡ p(1)q̇ + p(2) q̈ − L(q, q̇(q, p), q̈(q, p), . . .) ⋄
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The partial derivatives of the two functions thus read:

∂H

∂qm
= − ∂L

∂qm
(2.10)

∂H

∂pm
= vm , pm =

∂L

∂vm
(2.11)

2.1.2 Hamiltonian eom’s with Poisson bracket

• From the Lagrangian eom’s

∂L

∂qm
− d

dt

∂L

∂q̇m
= 0 (2.12)

one can easily obtain the Hamiltonian ones (using the above relations):

q̇m =
∂H

∂pm
= {H, q} (2.13)

ṗm = − ∂H
∂qm

= {H, p} (2.14)

The Hamiltonian thus generates the time evolution via the Poisson bracket.

{F,G} ≡ ∂F/∂pm
∂

∂qm
G− (−)FG∂G/∂pm

∂

∂qm
F = (2.15)

= ∂F/∂pm
∂

∂qm
G− ∂F/∂qm ∂

∂pm
G (2.16)

{F,G} = −(−)FG{G,F} (2.17)

{pm, qn} = δm
n (2.18)

• Hamiltonian vector field

XH ≡ {H,−} = ∂H

∂pm

∂

∂qm
− ∂H

∂qm
∂

∂pm
=

∂H

∂yM
PMN ∂

∂yN
(2.19)

or equivalently

dH = ıXHω (2.20)

∂MH = XN
HωNM (2.21)

So
ẏM = XHy (2.22)

• The Hamiltonian equations of motion can also be obtained from an action principle (first order action)

L̃ : T (T ∗M) → R (2.23)

(q, p, q̇, ṗ) 7→ L̃(q, p, q̇, ṗ) ≡ q̇mpm −H(q, p) (2.24)

∂L̃

∂qm
=

∂L

∂qm
(2.25)

∂L̃

∂q̇m
= pm =

∂L

∂q̇m
(2.26)

∂L̃

∂pm
= q̇m − ∂H

∂pm
(2.27)

• If the original Lagrangian depends on higher derivatives of q, say q̈, then L̃ will also depend on ṗ. But
not on q̈ any more. Then one can do the procedure of defining momenta again. If one has even higher
derivatives, one does this iteratively.
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2.1.3 Schouten-Nijenhuis bracket on Γ(Λ•
TM)

• Generalization of Lie-bracket of vector fields and of Lie-derivative

• Remember for vector fields v = vm∂m the Cartan formulae:

[ıv, ıw] = 0 (≡ ı[v,w]alg
) (2.28)

[d,d] = 0 (2.29)

Lv ≡ [ıv,d] (2.30)

[Lv,d] = 0 (2.31)

[Lv,Lw] = L[v,w] (2.32)

[[ıv,d]
︸ ︷︷ ︸

Lv

, ıw] = ı[v,w] (2.33)

• Last line shows that the Lie bracket is a derived bracket. Inherits the Jacobi-property.

• Take now multivectors

v(p) ≡ 1
p!v

m1...mp∂m1 ∧ . . . ∧ ∂mp (2.34)

ıv(p)ρ
(r) ≡ 1

p!(r−p)!v
k1...kpρkp...k1m1...mr−pdx

m1 ∧ . . . ∧ dxmr−p (2.35)

• Define Lie derivative in the same way

Lv(p)ρ
(r) ≡ [ıv(p) ,d]ρ

(r) = (2.36)

=
1

(p− 1)!(r − p+ 1)!
vk1...kp∂kpρkp−1...k1m1...mr−p+1dx

m1 ∧ . . . ∧ dxmr−p+1 +

−(−)p 1

p!(r − p)!∂m1v
k1...kpρkp...k1m1...mr−pdx

m1 ∧ . . . ∧ dxmr−p (2.37)

• The Cartan formulae then hold exactly in the same way and define a generalization of the Lie-bracket of
vector fields, namely the Schouten-Nijenhuis-bracket of multivector fields

[[ıv(p) ,d]
︸ ︷︷ ︸

L
v(p)

, ıw(p) ] ≡ ı[v(p),w(p)] (2.38)

[v(p),w(q)] =
(

1
(p−1)!q!v

[m1...mp−1|k∂kw
|mp...mp+q−1] +

−(−)(p−1)(q−1) 1
(q−1)!p!w

[m1...mq−1|k∂kv
|mq...mp+q−1]

)

∂m1 . . .∂mp+q−1 (2.39)

• It is a Lie bracket of degree -1 :

deg[v(p),w(q)] = p+ q − 1 (2.40)

[v(p),w(q)] = −(−)(p−1)(q−1)(w(q),v(p)) (2.41)

[v,[w,u]] = ((v,w),u) + (−)(v−1)(w−1)(w,(v,u)) (2.42)

[v,w ∧ u] = [v,w] ∧ u+ (−)(v−1)ww ∧ [v,u] (2.43)

• Alternative approach: Start by identifying the bracket of a vector v with a general tensor T with the
Lie-derivative of the tensor T with respect to the vector:

[v, T ] ≡ LvT (2.44)

In particular for a scalar φ or a vector w we have

[v,φ] ≡ Lvφ = vm∂mφ, [v,w] ≡ Lvw = (vk∂kw
m − wk∂kvm)∂m (2.45)

Note that this definition implies a Leibniz rule for tensor products in the right argument of the bracket

[v,(w ⊗ y)] = [v,w] ⊗ y + w ⊗ [v,y] (2.46)
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Next one can try to generalize also the lefthand side of the bracket [v, T ] to tensors, by demanding some
Leibniz rule for tensor products [v ⊗ w,T ]. For some reason (which I cannot reproduce at the moment)
this turns out not to be possible for general tensors and for the general tensor product v ⊗ w. However,
if one restricts T to multivectors y(p) and demands the graded Leibniz rule

[v ∧ w,y] = v ∧ [w,y] + (−)(y−1)v[v,y] ∧w (2.47)

when acting on the wedge product of two other multivectors, then this works and one obtains precisely
the SN-bracket. The above Leibniz rule is of course equivalent to (2.43) when taking into account the
graded antisymmetry of the bracket.

• Application: the SN-bracket appears in the criterion for integrability of a Poisson-structure:

0 = [P ,P ] = P [m1|k∂kP
|m2m3]∂m1∂m2∂m3 ⇐⇒ Jacobi of Poisson-bracket (2.48)

If the Poisson bivector P is non-degenerate, then this condition is equivalent to closure of its inverse ω
which is a symplectic structure

if P invertible⇐⇒ dxmdxndxk∂mωnk = dω = 0 (2.49)
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2.1.4 Lagrangian eom’s with antibracket

• Note first the formal isomorphism
Γ(Λ•TM) ∼= F(ΠT ∗M) (2.50)

where
ΠT ∗M : T ∗M with ”parity-inversed fiber”: RN → ΛN(odd), F : into ΛN (2.51)

Take coordinates (qm, q+
m) on ΠT ∗M and f ∈ F(ΠT ∗M). It can be expanded as

f(q, q+) =

D∑

k=0

1
k!f

m1...mk(q)q+
m1

. . . q+
mk

(2.52)

Each of the expansion coefficients corresponds to a section of ΛkTM .

• The Schouten-Nijenhuis bracket of above now corresponds to a bracket [q+
m,qn] = δnm. However, as we are

actually interested in paths on M (∈ PM) we will actually need to extend this bracket from F(ΠT ∗M)
to F(ΠT ∗PM) (i.e. functionals) which will be denoted by round brackets and defined by simply setting

(q+
m(τ),qn(τ ′)) = δnmδ(τ − τ ′) (2.53)

This bracket is called the antibracket. The q+
m are known as antifields.

• For general functionals on ΠT ∗PM the antibracket thus reads

(F ,G) ≡
∫

dτ δF/δq+
m(τ)

δ

δqm(τ)
G− (−)(F−1)(G−1)δG/δq+

m(τ)
δ

δqm(τ)
F (2.54)

(q+
m(τ),G) =

δ

δqm(τ)
G (2.55)

(qm(τ),G) = − δ

δq+
m(τ)

G (2.56)

(F ,G) = −(−)(F−1)(G−1)(G,F ) (2.57)

(F ,(G,H)) = ((F ,G),H) + (−)(F−1)(G−1)(G,(F ,H)) (graded Jacobi) (2.58)

It is a graded Lie-bracket of degree -1.

• Using this bracket, the equations of motion appear in the bracket of the action with the antifields:

(q+
m(τ), S) =

δ

δqm(τ)
S (2.59)

This can be either seen as q+
m acting on the action functional S or as S acting on q+

m. The latter
interpretation is interesting, because

s≡ (S,−) (2.60)

defines a differential (of degree −1) which (as a differential should) squares to zero

s2 = (S,(S,−)) Jac
= ((S,S)

︸ ︷︷ ︸

=0

,−)− (S,(S,−)) (2.61)

⇒ s2 = 0 (2.62)

s can thus be used to build a homology (as it reduces the multivector degree). In this homology the
equations of motion δ

δqm(τ)S are apparently s-exact and are thus implemented homologically

δ

δqm(τ)
S = −sq+

m(τ) (2.63)

In other words the functionals on the physical subspace of ΠT ∗PM (consisting of those paths PphysM on
M that obey the equations of motion) is given by the zero-degree homology

F(PphysM) = H0(s|F(ΠT ∗PM)) ≡
(
Ker(s)

Im(s)

)∣
∣
∣
∣
deg0

(2.64)
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• At degree 1 we have2 we have vector fields which we can identify with symmetry transformations along
these vectors

U [q, q+] ≡
∫

dτ ′ V m[q](τ ′)q+
m(τ ′) (δ(ε)q

m(τ) ≡ V m(ε)[q](τ)) (2.65)

And indeed the requirement of s-invariance (BRST invariance) of the vector field is equivalent to invariance
of the action under the corresponding transformation

sU [q, q+] = −
∫

dτ ′ V m[q](τ ′)
δS

δqm(τ ′)
!
= 0 (⇐⇒ δ(ε)S = 0) (2.66)

So it’s the symmetry transformations which are BRST invariant. Instead the exact ones are obtained
from

s

∫

dτ ′
∫

dτ 1
2Ω

mn(τ, τ ′)q+
mq+

n (τ
′) = −

∫

dτ ′
∫

dτΩ[mn][q](τ, τ ′)
δS

δqm(τ)

+

︸ ︷︷ ︸

−δVm[q](τ ′)

q+
n (τ
′) (2.67)

So the exact functionals contain just the trivial gauge transformations.

• If we have a local symmetry, then the Noether identities imply that there are also non-integrated BRST-
invariant (and non-exact) vertices

0
NI
= δ(0)a qm

δ

δqm
S − d

dt

(

δ(1)a qm
δ

δqm
S

)

+ . . . = (2.68)

= −s
(

δ(0)a qmq+
m −

d

dt

(

δ(1)a qmq+
m

)

+ . . .

)

(2.69)

Trivial gauge transformations can also be written in an unintegrated form

s




∑

r,s≥0

1
2Ω

mn
(r)(s)[q]q

(r)+
m q(s)+

n



 = −
∑

r,s≥0

1
2Ω

mn
(r)(s)[q]

((
d

dt

)r
δS

δqm
q(s)+
n −

(
d

dt

)s
δS

δqn
q(r)+
m

)

=(2.70)

= −
∑

r,s≥0

1
2

(

Ωmn(r)(s)[q]− Ωnm(s)(r)[q]
)( d

dt

)r
δS

δqm
q(s)+
n (2.71)

• Noether current

∂µj
µ(τ) = −δ(ε)qm(τ)

δS

δqm(τ)
= s
(
V m[q](τ)q+

m(τ)
)

(2.72)

For a typical global symmetry, only the integrated vertex U =
∫
V is s-invariant. The integrand V instead

induces descent equations

sV = dj (2.73)

sj = 0 (2.74)

2If one sticks to the finite dimensional manifold M (instead of the space of paths PM) together with the Schouten-Nijenhuis-
bracket on Γ(Λ•TM) ∼= F(ΠT ∗PM), then we have

[v,w] = ∂v/∂(∂m)
∂

∂qm
w − (−)(v−1)(w−1)∂w/∂(∂m)

∂

∂qm
v, [∂m,qn] = δnm

In the same way as in the infinite dimensional case let us define a functional s generated by a 0-vector (a function on M) S(q) via

s≡ [S,−]

Then at 0-grade all 0-vectors (functions) are in the kernel. They are s-exact (the image of some 1-vector) if they are the Lie-derivative
(directional derivative) of the function S along that vector:

sf = 0 ∀f ∈ F(M), f(q) ∼ f(q) + s(ξm∂m) = f(q) − ξm∂mS
︸ ︷︷ ︸

ıξdS

(q)

So

H0(s|Γ(Λ
•TM)) ≡

(
Ker(s)

Im(s)

)∣
∣
∣
∣
deg0

= F({q ∈ M |∂mS(q) = 0})

At grade 1, for a vector to be in the kernel it has to be a symmetry-direction (flat direction) of the function S

v ≡ vm(q)∂m

sv = −vm(q)∂mS = −LvS = [S,v]

v ∼ v + s( 1
2
ξmn(q)∂m∂n) = (vn − ξmn(q)∂mS(q))∂n = v + ξ(dS,−) ⋄
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The current is thus the non-integrated s-invariant vertex corresponding to the symmetry transformation
V min the integrated vertex.

• We can also generate the transformation itself with the antibracket

δqm[q](τ) = (

∫

dτ ′δqk[q](τ ′)q+
k (τ
′),qm(τ)) = (U,qm(τ)) (2.75)

What do the non-integrated vertices induce? E.g. (j, F [q]) = 0.

Remarks

• Future: BRST-differential
s= δ + dl + . . . (2.76)

– δ:Koszul-Tate-differential: homology puts you on the constraint surface (Hamiltonian formalism=BRST-
formalism) or on the equations of motion (Antifield-formalism=BV=BFV). (Different δ’s!)

– dl: longitudinal exterior derivative: cohomology restricts to gauge invariant objects

– combining them to s is known as homological perturbation theory

H•(s| . . .) = H•(d|H•(δ| . . .)) (2.77)

– in the above antifield-discussion the differential s= (S,...) did not yet take care of any gauge sym-
metry. So we had just s= δ. Indeed we observed that s just put us on the equations of motion.

• Manifold: MD looks locally like R
D (charts map to R

D)
Supermanifold: MDc|Da looks locally like R

Dc
c ×R

Da
a where Rc and Ra are commuting/anticommuting

supernumbers respectively, where the supernumbers Λ∞ ≡ Rc⊕Ra are the formal limit of a Grassmann
algebra ΛN with ∞ generators: see next item. It can be expanded as follows:

z =

∞∑

k=0

1
k!zi1...ikη

i1 · · ·ηik (2.78)

≡ zB
︸︷︷︸

body

+
∞∑

k=1

1
k!zi1...ikη

i1 · · ·ηik

︸ ︷︷ ︸

≡zS (soul)

(zB, zi1...ik ∈ R) (2.79)

≡ zeven
︸ ︷︷ ︸

∈Rc

+ zodd
︸︷︷︸

∈Ra

(2.80)

Transition functions for the supermanifold have to be superanalytic functions Λ∞ → Λ∞.

• Grassmann algebra: ΛN generated by ηi, i ∈ {1, . . . , N} with

ηiηj = −ηjηi, 6∑(ηi)2 = 0 ∀i (2.81)

∑N
k=0

(
N
k

)
= 2N dimensional (e.g. real or complex) vector space. (think of exterior algebra of differential

forms ηi = dxi).

• Cotangent bundle with parity reversed fiber ΠT ∗M

T ∗M
local
= MD × R

D, &transition functions (2.82)

ΠT ∗M
local
= MD × R

D
a , &same transition functions (2.83)

• Schouten-Nijenhuis-bracket (partial derivative)

[−,−] : Γ(Λ•TM)× Γ(Λ•TM) → Γ(Λ•TM) (2.84)

F(ΠT ∗M)×F(ΠT ∗M) → F(ΠT ∗M) (2.85)

[q+
m,qn] = δnm (2.86)

qm ∈M, (qm, q+
m) ∈ ΠT ∗M (2.87)
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<-> antibracket (variational derivative):

Γ(Λ•TPM)× Γ(Λ•TPM) → PΓ(Λ•TPM) (2.88)

F(ΠT ∗PM)×F(ΠT ∗PM) → F(ΠT ∗PM) (2.89)

qm ∈ PM, (qm, q+
m) ∈ PΠT ∗M (2.90)

qm(τ) ∈M, (qm(τ), q+
m(τ)) ∈ ΠT ∗M (2.91)

• graded commutator

[ıv, ıw] ≡ ıvıw + (−)vwıwıv | ıv |=| v | (2.92)

Lv ≡ [d, ıv] | Lv |=| v | +1 (2.93)

2.1.5 More about symmetries

• A symmetry δq(q, q̇, q̈,
...
q , ..., t) of a Langrangian L(q, q̇) can always be split into a symmetry δq(q, q̇, t)

plus a trivial symmetry! (Henneaux, Exercise 3.8, page 96). This allows to write symmetries in the
Hamiltonian formalism as functions of q and p (and maybe t) only.

• Similarly for the Noether charge, see exercise 3.28, page 100

Moment map

• Noether theorem ↔ moment map? [Silva,p.131]

– Action ψ of a Lie group G on a (symplectic) manifold M

ψ : G → Diff(M)

g 7→ ψg (2.94)

Similar to embedding (group homomorphism, so a representation? right-action: ψ is an antihomo-
morphism). The associated evaluation map is

evψ :M ×G → M

(p, g) 7→ ψg(p) (2.95)

Action is called smooth, if evψ is smooth.

– symplectic action

ψ : G → Sympl(M,ω) ⊂ Diff(M) (2.96)

– a symplectic action ψ of S1 (or R) on (M,ω) is hamiltonian if the vector field generated by ψ is
hamiltonian (∃H s.t. X = {H,−} or dH = ıωX)

– a symplectic action ψ of G on (M,ω) is a hamiltonian action if there exists a map

µ :M → g
∗ (2.97)

satisfying:

∗ ∀X ∈ g let
µX :M → R, µX(p) := 〈µ(p), X〉 be the component of µ along X .
X# be the vector field on M generated by the one-parameter subgroup {exp tX |t ∈ R} ⊆ G
Then

dµX = ıX#ω (2.98)

i.e. µX is a hamiltonian function for the vector field X#.

∗ µ is equivariant with respect to the given action ψ of G on M and the coadjoint action Ad∗ of
G on g

∗:
µ ◦ ψg = Ad∗g ◦ µ ∀g ∈ G (2.99)

The tuple (M,ω,G, µ) is then called a hamiltonian G-space and µ is a moment map.

– It would be nice to translate the last general definition of a hamiltonian action of a nonabelian group
into the Poisson-bracket language. For me it would be natural to call such an action hamiltonian, if
there exist generators Ga such that δε = εa{Ga,−}.

22



2.2 Hamiltonian system with constraints

2.2.1 Primary phase space constraints

• Remember that the Legendre transformation

H(q, p) = pmv
m(q, p)− L(q, v(q, p)) (2.100)

with the assignment of a momentum (cotangent vector) p for a given q and v via

pm ≡ ∂L(q, v)

∂vm
(2.101)

needs a nondegenerate Hessian (for the relation between pm and vm to be invertible), i.e.

det

(
∂2L(q, v)

∂vm∂vn

)

6= 0 (2.102)

• If instead det
(
∂2L(q,v)
∂vm∂vn

)

= 0, it means that the relation between pm and vm is not invertible and therefore

that the pm are not all independent. So the map from TM to T ∗M is not surjective but will instead map
only onto a constraint surface Σprim within T ∗M (phase space). They will be defined by some functions

φa(q, p) = 0 (2.103)

• Examples:

–

L(q1, q2, q̇1, q̇2) = 1
2 q̇

2
1 − V (q1, q2) (2.104)

p1 = q̇1, p2 = 0 (2.105)

⇒ φ(q1, q2, p1, p2) = p2 (2.106)

–

L = q1q̇2 (2.107)

p1 = 0, p2 = q1 (2.108)

φ1 = p1 φ2 = p2 − q1 (2.109)

• Def: A function F : T ∗M → R is called first class if

{F, φa} = 0 ∀a (2.110)

otherwise it is called second class.

•

{φa, φb} = Cab

?≈ 0
?≈ det 6= 0

(2.111)

• All constraint functions are second class ⇐⇒

{φa, φb} = Cab is nondegen (2.112)

• All constraint functions are first class

{Ga, Gb} = fab
cGc ≈ 0 (2.113)

Constraints generate gauge transformation. Each constraint removes 2dof’s!

• The constraints so far are called primary as they were obtained just from the definition pm = ∂L
∂q̇m

without taking into account the equations of motion which can imply further (secondary) constraints.
For their treatment, this distinction is not at all essential.

• Constraints are called reducible, if they are not (linearly) independent
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2.2.2 Total Hamiltonian

In the presence of constraints, the map vm 7→ pm = ∂L(q,v)
∂vm

is not invertible. In order to better understand
what happens, let us split the Legendre transformation into
- building the difference vp− L(q, v)
- and only then identify (parts of) p and v via p = ∂L(q,v)

∂v
.

So a priori we will obtain a function H which depends on qm, vm and pm. Geometrically one could say it is
defined on the fiberwise direct product of TM with T ∗M , which we will denote simply by TM × T ∗M).

H(q, p, v) ≡ (vmpm − L(q, v)) (2.114)

As noted already earlier, the variation of vm drops completely if we restrict to the subspace of {(q, p, v)} where
p = ∂L(q,v)

∂v
. This is true even if p(q, v) is not invertible:

δ H(q, p, v)|
p= ∂L(q,v)

∂v
=

(

vmδpm + δvm
(

pm −
∂L(q, v)

∂vm

)

− δqm ∂L(q, v)
∂qm

)∣
∣
∣
∣
p=

∂L(q,v)
∂v

= (2.115)

= vmδpm − δqm
∂L(q, v)

∂qm
(2.116)

This means that H(q, p, v) does not depend on v when we restrict to a subspace Ξ ⊂ TM × T ∗M defined via

p = ∂L(q,v)
∂v

. Remember that the same equation p = ∂L(q,v)
∂v

implies also the primary constraints Σprim ⊂ T ∗M
in phase space. This means that the we can define a well-defined q, p-dependent Hamiltonian on Σprim ⊂ T ∗M
by restricting3 H(q, p, v) to Ξ:

H(q, p)|Σprim
≡ H(q, p, v)|

p= ∂L(q,v)
∂v

(2.117)

As H(q, p) coincides only on Σprim with H(q, p, v), also their p and q-derivatives coincide only when they are
along the surface. So we can say something about the variation of H(q, p) if we restrict in (2.116) not only the
variables to the surface, but also the variations to be along Σ. Any such constrained variation δΣ has to obey
δΣprimφa = 0 or any linear combination thereof::

0
!
= uaδΣprimφa(q, p) = (2.118)

= δΣprimq
m · ua∂φa(q, p)

∂qm
+ δΣprimpm · ua

∂φa(q, p)

∂pm
(2.119)

Therefore to a variation of H(q, p)|Σ which stays on the surface one can always add (or for later convenience
subtract) these vanishing terms and obtains in general a variation

δΣprimH(q, p)
∣
∣
Σprim

(2.116)
= δΣprimpmv

m − δΣprimq
m ∂L(q, v)

∂qm
= (2.120)

(2.119)
= δΣprimpm

(

vm − ua ∂φa(q, p)
∂pm

)

+ δΣprimq
m

(

−ua∂φa(q, p)
∂qm

− ∂L(q, v)

∂qm

)

(2.121)

This tells us that independent from how we extend H off the surface Σprim, the partial derivatives on the surface

3A different approach might be to work immediately with H(q, p, v), instead of first restricting to the constraint surface and
then extending again with the help of Lagrange multipliers. The function H(q, p, v) already provides the partial derivatives that
one wants, in order to reformulate the Lagrangian equations of motion in terms of Poisson brackets:

∂H

∂qm
= −

∂L(q, v)

∂qm
,

∂H

∂pm
= vm,

∂H

∂vm
= pm −

∂L(q, v)

∂vm

I.e. Lagrangian equations of motion ∂L
∂qm

− d
dt

∂L
∂v

= 0 (with vm ≡ q̇m) are equivalent to

pm =
∂L

∂vm
⇐⇒

∂H

∂vm
= 0

ṗm =
∂L

∂qm
= −

∂H

∂qm
⇐⇒ ṗm = {H, pm}

vm =
∂H

∂pm
⇐⇒ q̇m = {H, qm} ⋄
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will be of the above form4

∂H(q, p)

∂qm

∣
∣
∣
∣
Σprim

= −ua∂φa(q, p)
∂qm

− ∂L(q, v)

∂qm
(2.122)

∂H(q, p)

∂pm

∣
∣
∣
∣
Σprim

= vm − ua ∂φa(q, p)
∂pm

for some ua (2.123)

It should be clear that the first naive extension H(q, p) can be redefined by arbitrary linear combinations of
the constraints φa(q, p) as this does not change H(q, p)|Σ. In particular we can define an extension for which
the partial derivatives reduce to the ones we are used to from the non-degenerate case. Remember that the
coefficients ua can be completely arbitrary. So if we act on them with derivatives, we might allow also a q or p
dependence, but we might also treat them as new independent variables. The two different points of view are5

Htot(q, p) ≡ H(q, p) + ua(q, p)φa(q, p) (i) (2.124)

or Htot(q, p, u) ≡ H(q, p) + uaφa(q, p) (ii) (2.125)

The variation of this so-called total Hamiltonian becomes for both approaches (remember ≈ means on the
constraint surface, so for φa = 0)

δHtot(q, p , u
︸︷︷︸

(ii)

) =
( ∂H

∂pm
+ ua

∂φa
∂pm

+
∂

∂pm
uaφa

︸ ︷︷ ︸

(i)

)

δpm − δqm
(

− ∂H
∂qm

− ua ∂φa
∂qm

− ∂u
a

∂qm
φa

︸ ︷︷ ︸

(i)

)

+δuaφa
︸ ︷︷ ︸

(ii)

(2.126)

(2.122)(2.123)≈ vmδpm − δqm
∂L

∂qm
(2.127)

So the definition of the total Hamiltonian is such that on the constraint surface it has precisely the above
simple partial derivatives ∂

∂pm
Htot = vm and ∂

∂qm
Htot = − ∂

∂qm
L. Now we can translate the original Lagrangian

equations into Hamiltonian language:

0 =
∂L(q, v)

∂qm
− d

dt

∂L(q, v)

∂q̇m
︸ ︷︷ ︸

pm

= − ∂Htot(q, p)

∂qm

∣
∣
∣
∣
Σprim

− ṗm (2.128)

(q̇m ≡)vm =
∂Htot(q, p)

∂pm

∣
∣
∣
∣
Σprim

(2.129)

Or in terms of brackets and explicitly demanding the constraints:

ṗm = {Htot, pm}, q̇m = {Htot, q
m} (2.130)

φa(q, p) = 0 (2.131)

This can be obtained from a first order action, containing ua a priori as independent Lagrange multipliers which
force the constraints φa = 0.

S̃[q, p, u] ≡
∫

dt q̇mpm −H(q, p)− uaφa(q, p) (2.132)

Indeed the variation yields

δS

δqm
= −ṗm −

∂H

∂qm
− ua ∂φa

∂qm
(2.133)

δS

δpm
= q̇m − ∂H

∂pm
− ua ∂φa

∂pm
(2.134)

δS

δua
= φa(q, p) (2.135)

4The appearance of v on the righthand side of ((2.122))-((2.123)) seems to contradict the statement that H(q, p) is a function
of q and p only. v on the righthand side has to be understood as inverting p = ∂L

∂v
as much as possible and removing the remaining

v’s by choosing ua(q, p) appropriately. So in fact one might want to give the coefficients ua an explicit v-dependence. Take for
example the extreme case where L(q, v) = L(q) and thus pm = ∂L

∂vm = 0. In this case the v-dependence in the first line drops

explicitly, while in the second we have
∂H(q,p)
∂pm

∣
∣
∣
Σ

= vm + un ∂pn
∂pm

= vm + um for some um which in fact is just um = −vm. ⋄
5Note that the two ansatzs i) and ii) for Htot both don’t mean any loss of generality. If we have ua(q, p), it contains also the

possibility of taking ua to be a constant. Then the definition of Htot depends on the choice of this constant, and we are basically at
ii). Instead if we start from ii), we can always plug a q,p-dependent function u(q,p) as third argument. This would mean restricting
the (q, p, u) space to a subspace where u = u(q, p). Then we are back at i). The difference is thus more a notational one and the
decision if a total derivative (or variation) should contain the derivative (variation) with respect to u or not. ⋄
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The equation q̇m = ∂H
∂pm

+ ua ∂φa

∂pm
should be the “inverse” of pm = ∂L

∂q̇m
. If the latter is not invertible, the ua

have to make up for it.
This indicates already what we will see in the discussion of the secondary constraints: some of the Lagrange

multipliers can be integrated out via their equations of motions (those corresponding to 2nd class constraints),
while others cannot and correspond to the gauge symmetries induced by 1st class constraints.

Altogether we have from the Lagrangian to the Hamiltonian formalism a coordinate transformation (qm, vm) 7→
(qm, pm, u

a) with

qm = qm (2.136)

pm =
∂L(q, v)

∂vm
(2.137)

∂H(q, p)

∂pm

∣
∣
∣
∣
Σprim

+ ua
∂φa(q, p)

∂pm
= vm (2.138)

2.2.3 Secondary Constraints

• Secondary constraints are obtained as consistency conditions on the equations of motion. Namely the
time evolution should stay on the constraint surface:

0
!≈ φ̇b = (2.139)

= {Htot, φb} = (2.140)

≈ {H,φb}+ uaCab (2.141)

Whenever possible, we use the freedom in the functions ua(q, p) to impose this equality.

• Sometimes it is not possible and leads to new secondary constraints on the phase space which we add
to the set {φa} of primary constraints (while in the total Hamiltonian we keep a priori only the primary
constraints). These new constraints again must obey the same consistency condition which can again lead
to new constraints (still called secondary). And so on.

• Example for secondary constraints

L = L0 + λf(q) (2.142)

pλ =
∂L

∂λ̇
= 0 φ1 = pλ (2.143)

Htot = pq̇ − L0 − λf(q) + upλ (2.144)

ṗλ = {Htot, pλ} ≈ −f(q)
!≈ 0⇒ φ2 ≡ f(q) (secondary) (2.145)

• Assume now that {φA} are all constraints (not just the primary ones} that we obtain in this way and
define a submanifold Σ. Let us now focus on the constraints that we get on the functions ua(q, p):

0
!≈ {H,φB}+ uaCaB (2.146)

• If all {φA} = {GA} are all first class, then CaB ≈ 0, so ua drops from the equation and we would get
a new constraint on q, p, but by assumption all these constraints are already part of {GA}. This means
in the first class case there is no condition on the ua’s! They are thus completely free parameters in the
time evolution and thus correspond to gauge symmetries of the system. The time evolution using the
total Hamiltonian makes only part of these gauge symmetries manifest. If one wants all of them manifest
one can add also the remaining ones to the the total Hamiltonian and obtain the so-called extended
Hamiltonian

Hext ≡ H + uAGA (2.147)

• Instead if all {φA} = {χA} are second class we can solve explicitly (at least on the constraint surface) for
ua:

ua ≈ −{H,χB}(C−1)Ba (2.148)

However, for the remaining indicex-values of A, where we don’t have a corresponding ua, we obtain also
consistency relations of the form

(uα ≡)0 ≈ −{H,χB}(C−1)Bα (2.149)

These should be automatically fulfilled, if the original Lagrangian was well-defined (as the two systems of
equations were equivalent).

26



2.2.4 Second class constraints and Dirac bracket

• For purely second class constraints

{χa, χb} = Cab detC 6= 0 (2.150)

one can define a bracket which is compatible with the constraints. It is called the Dirac bracket

{f, g}D = {f, g}PB − {f, χa}C−1 ab{χb, g} (2.151)

Indeed the bracket of a constraint with anything yields a vanishing result:

{χc, g}D = {χc, g}PB − {χc, χa}C−1 ab{χb, g} = 0 (2.152)

• The Dirac bracket is defined also off the constraint surface Σ, but what actually matters is only what
happens on the surface. The claims are that

– second class constraints define a surface on which the symplectic form ω of T ∗M induces a symplectic
form (nondegenerate) on the constraint surface

– and that the Dirac bracket restricted to the surface agrees with the the Poisson bracket defined with
the induced symplectic form ([Henneaux],p.57):

Proof: Take the coordinates yM in M such that we extend the coordinates on Σ to M and take the
constraint-functions χa as orthogonal coordinates

yM = (σM, χa) (2.153)

in such a way that
{χa, σM} ≈ 0 (0 on Σ = {χa = 0}) (2.154)

If a first naive choice σ̃M leads to {σ̃M, χb} 6≈ 0 then redefine

σM = σ̃M − {σ̃M, χc}P caχa (2.155)

which leads to the desired relation:

{σM, χb} = {σ̃M − {σ̃M, χc}P caχa, χb} (2.156)

= {σ̃M, χb} − {σ̃M, χc}P caCab
︸ ︷︷ ︸

=0

−{{σ̃M, χc}P ca, χb}χa
︸ ︷︷ ︸

≈0

(2.157)

The remaining Poisson brackets are

{χa, χb} = Cab rank 2N ≤ D on Σ (2.158)

{σM, σN } = (ω−1)MN rank 2(D −N) (2.159)

The fact that we were able to implement {χa, σM} ≈ 0 together with {yM , yN} and {Ca, Cb} having full
rank, implies that also (ω−1)MN has full rank on Σ as indicated above. This proves the first claim.
Our choice of coordinates immediately provide the explicit embedding function of Σ into M :

XM : σM 7→ XM (σ) = (σM, 0) (2.160)

The pullback of ω onto the constraint surface then reads

(X∗ω)MN = ∂MX
MωMN∂NX

N = ωMN (2.161)

Now build the Poisson bracket that is built using the inverse (ω−1)MN of the induced 2-form ωMN and
rewrite it in terms of the Poisson bracket in the ambient phase space

{X∗F,X∗G}D ?
= ∂MF (ω−1)MN∂NG

∣
∣
Σ
= (2.162)

= ∂MF (ω−1)MN∂NG
∣
∣
Σ
− ∂aF Cab∂

bG
∣
∣
Σ
= (2.163)

= {F,G}|Σ −{F, χc}(C−1)caCab(C−1)bd{χd, G}
∣
∣
Σ
= (2.164)

= X∗ {F,G} −X∗{F, χc}(C−1)cdX∗{χd, G}
√

(2.165)

This indeed coincides with the Dirac bracket as we defined it.
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• Second class can always be seen as gauge fixed first class and vice versa ([Henneaux,p.31, p.46)

• regularity condition for constraint (example of 1st-class=2nd class):

{χa, χb} = Cab (assume 2nd class) (2.166)

{χaχb, χcχd} = Cacχbχd + Cadχbχc + Cbcχaχd + Cbdχaχc (looks 1st class) (2.167)

Condition: Constraints χa should define local coordinates around the constraint manifold.

• Use of Dirac-bracket: Let us demonstrate that the Dirac-bracket allows to calculate with H instead of
Htot. To this end, let us again split the phase space coordinates yM = (qm, pm) into Σ-coordinates
σM (coordinates of the constraint surface) and the constraint functions χa themselves as orthogonal
coordinates. As shown above, the Poisson-brackets can be chosen to be

{χa, σM} ≈ 0 (0 on Σ = {χa = 0}) (2.168)

{χa, χb} = Cab rank 2N ≤ D on Σ (2.169)

{σM, σN } = (ω−1)MN rank 2(D −N) (2.170)

The time evolution of a general phase space function generated by the total Hamiltonian reads

Ḟ (q, p) = {Htot, F (σ, χ)} = (2.171)

≈ {H,F}+ ua{χa, F (σ, χ)} (2.172)

Now we can use the previous result ua ≈ −{H,χB}(C−1)Ba to obtain

Ḟ (q, p) ≈ {H,F} − {H,χB}(C−1)Ba{χa, F (σ, χ)} (2.173)

Using 0 ≈ −{H,χB}(C−1)Bα, we can extend the sum over a (primary constraints) to a sum over A (all
constraints) and obtain precisely the Dirac bracket

Ḟ (q, p) ≈ {H,F}D (2.174)

Now H(q, p) was a priori only one naive extension off the constraint surface and therefore quite ambiguous.
But any other Hamiltonian, differing just by a linear combination of the constraint functions would work
as well, in particular the total Hamiltonian: {H,F}D = {Htot, F}D = {Htot, F} 6= {H,F}.

Main 2nd-class example: Dirac bracket directly from first order action

See also [Henneaux, p.59]

Dirac bracket for a general first order action

Consider now a first order Lagrangian of the form

S[yI ] =

∫

dt
(
ẏIAI(y) +B(y)

)
(2.175)

(We call the variables yI instead of qi , because a typical case is yI = (qi, pi).)
Its momenta are all constrained

πI := ∂̇IL(y, ẏ) = AI(y) (2.176)

⇒ ΦI = πI −AI(y) (2.177)

CIJ := {ΦI ,ΦJ}PB = {πI −AI(y), πJ −AJ(y)}PB = (2.178)

= ∂IAJ (y)− ∂JAI(y) (2.179)

If we define

A := AIdy
I (2.180)

C :=
1

2
CIJdx

IdxJ
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then A is a symplectic (pre)potential 6 in the sense

dA =
1

2

(
∂IAJ − (−)IJ∂JAI

)
dxIdxJ = C (2.181)

The Dirac bracket belonging to a first order action of the upper type implements a symplectic structure within
the coordinate-space (so actually the coordinate space is already a phase space):

{F (y), G(y)}D := {F,G}PB
︸ ︷︷ ︸

0

−{F,ΦI}PB CIJ {ΦJ , G}PB = (2.182)

= −
(

∂KΦI
︸ ︷︷ ︸

δKI

∂KF − ∂KF︸ ︷︷ ︸

0

∂KΦI

)

CIJ
(

∂KG
︸ ︷︷ ︸

0

∂KΦJ − ∂KΦJ
︸ ︷︷ ︸

δKJ

∂KG
)

= (2.183)

= ∂IFC
IJ∂JG (2.184)

Poisson bracket <-> Dirac bracket of first order Lagrangian

If the first order action is just the first order formalism of a second order action, then the Dirac-bracket on this
“extended phase space” coincides with the Poisson bracket of the original phase space:

(

S̃[qi, pi] ≡
)

S[yI ] =

∫

q̇ipi −H(q, p) (2.185)

⇒ AI = (Ai, A
i) = (pi, 0), ∂I = (∂i, ∂

i) (2.186)

CIJ = ∂IAJ (y)− ∂JAI(y) = (2.187)

=

(
0 −∂jpi

∂ipj 0

)

=

(
0 −δij
δij 0

)

(2.188)

CIJ thus coincides with the symplectic two form ωIJ of the Poisson bracket of the original action!

Calculation of the symplectic 2-form via variation of the action (Witten’s method)

Consider now the variation of a first-order action

(

S̃[qi, pi] ≡
)

S[yI ] =

∫

dt
(
ẏJAJ (y) +B(y)

)
(2.189)

δS[yI ] =

∫

dt
(
δẏJAJ + ẏJδyI∂IAJ + δyJ∂JB

)
= (2.190)

p.I.
=

∫

dt
(

ẏJδyI (∂IAJ − ∂JAI)
︸ ︷︷ ︸

CIJ

+δyJ∂JB
)

(2.191)

One can thus read off the symplectic two form of the variation of the first order action. In the point particle
case there seems no advantage over just reading off AJ and then calculating its exterior derivative. However, in
field theory we enter the ∞-dimensional case with continous index ~σ over which is integrated. The method of
partial integration then becomes quite convenient. In particular in the 2-dimensionalWZW -sigma model which
has the special property that part of it can only be locally written via a 2-dimensional integral, for a global
description instead requires a 3-dimensional one. This mixture of dimensions makes it quite challenging to read
of AJ (y), while the above method to determine CIJ still works. (see Wittens “nonabelian bosonization”-paper).

6The symplectic prepotential of the canonical phase space symplectic 2-form ω = dqidpi is A := −dqipi for which clearly

ω = dA ⋄
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2.2.5 First Class Constraints and longitudinal exterior derivative

2.2.5.1 First class constraints generate gauge symmetries

• Claim: The following transformations generated by the first class constraints

δε ≡ εa{Ga,−} = εaXa = εa∂KGaω
KN∂N (2.192)

δεq
m ≡ εa{Ga, qm} = εa

∂Ga
∂pm

(2.193)

δεpm ≡ εa{Ga, pm} = −εa
∂Ga
∂qm

(2.194)

are gauge transformations!

• (higher derivative gauge trafos can be written as canonical(as above)+trivial)

• To see that they are gauge transformations, let us show that they are a symmetry of the first order action

S[q, p, u] =

∫

dτ (q̇mpm −H(q, p)− ucGc) (2.195)

The generators Ga act on the various terms as follows:

{Ga, H} = νa
bGb ≈ 0 (this was the cons-cond leading to 2ndary constr’s) (2.196)

{Ga, ucGc} = ucfac
bGb (2.197)

{Ga, q̇mpm} = {Ga, q̇m}pm + q̇m{Ga, pm} = (2.198)

=
d

dτ

∂Ga
∂pm

pm − q̇m
∂Ga
∂qm

= (2.199)

=
d

dτ

(
∂Ga
∂pm

pm

)

− ∂Ga
∂pm

ṗm − q̇m
∂Ga
∂qm

= (2.200)

=
d

dτ

(
∂Ga
∂pm

pm −Ga
)

︸ ︷︷ ︸

Ka

(2.201)

Need to transform also Lagrange-multipliers

δau
c = −ubfabc − νac (2.202)

The corresponding Noether charge is indeed Ga:

Qa = δaq
m ∂L

∂q̇m
+ δap

m ∂L

∂ṗm
−Ka = (2.203)

= {Ga, qm}
∂L

∂q̇m
−Ka = (2.204)

= Ga
√

(2.205)

• Global symmetry with Noether current Ga which is on-shell vanishing. Has a local extension.

δεS[q, p, u] =

∫

dτ ε̇aGa

As ua is coupling to the current, it is the natural candidate of a gauge field

δεu
c = ε̇c − εa

(
ubfab

c + νa
c
)

(2.206)

and indeed with this choice we obtain δεS[q, p, u] = 0. At least for νa
c = 0 the above transformation looks

indeed like a transformation of a gauge field.
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2.2.5.2 Gauge orbits with Hamiltonian vector fields as frame

• Remark on notation: Remember we used coordinates yM on the phase space T ∗M . In Darboux-
coordinates, these are just

yM = (qm, pm) (2.207)

As we will quite often deal with the exterior algebra over T (T ∗M) and T ∗(T ∗M) (where basis elements
are multiplied with the antisymmetric wedge product ∧), I will treat the 1-form basis elements dyM as
well as the vector basis elements ∂M as anticommuting variables (and print them boldface). So also vector
fields are denoted boldface

X = XM∂M (2.208)

The interior product with a vector field reduces the degree of a p-form by 1 and is thus an odd operation
which is still stressed by printing the vector (but not the symbol of the interior product) boldface

deg(ıX) = deg(X) (2.209)

Instead the Lie derivative with respect to a vector field does not change the grading of a tensor (it maps
vectors to vectors, 1-forms to 1-forms and so on). This is because the grading of the vector field is
compensated by the grading of the exterior derivative in the definition of the Lie derivative

LX ≡ [ıX ,d] (2.210)

When the Lie derivative acts on a scalar field F , it reduces to a directional derivative which looks precisely
like the vector field, but it doesn’t carry a grading. It will thus be denoted simply by X

X ≡ XM∂M , XF ≡ LXF = XM∂MF (2.211)

• The relation between Poisson bracket and Hamiltonian vector fields has to be understood in the above
sense:

Xf ≡ {f,−} (actually LXf
) (2.212)

⇐⇒ XM
f = ∂Nf(ω

−1)NM (2.213)

Multiplying from the right with the matrix ωMN yields the version that is more common in symplectic
geometry literature

ıXf
ω = df (2.214)

The vector field Xf is called ”Hamiltonian”, because the time evolution in Hamiltonian mechanics is
given by the Hamiltonian vector field with respect to the Hamiltonian H :

Ḟ = {H,F} = XHF ≡ LXH
F (2.215)

• Hamiltonian vector fields obey the following product rule and/or linearity

Xfg+h = {fg + h,−} = (2.216)

= gXf + fXg +Xh (2.217)

Note that if we simply identify Xf with the Lie derivative LXf
(which is true for scalar fields) this would

read

LXfg+h

?
= gLXf

+ fLXg
+LXh

(2.218)

However, we have to be more careful for Lie derivatives acting on general tensor fields where we also get
derivative terms on the vector field and thus on any scalar field multiplying the vector field. In particular
when we act on general forms, we obtain7

LXfg+h
= LgXf+fXg+h = (2.219)

on forms
= gLXf

+ fLXg
+LXh

+ dg ∧ ıXf
+ df ∧ ıXg

(2.220)

7Remember, the Lie derivative LX of a general tensor with components t
N1...Nq

M1...Mp
with respect to a vector field X = XK∂K ,

fn:Lie-derivative
can be written in terms of partial ([thesis,p.159]) or covariant derivatives ([thesis, p.208]). For the latter, one gets additional
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• Lie brackets between Hamiltonian vector fields are in 1:1 correspondence with the Poisson-brackets of
their defining functions8

X{f,g}F = {{f, g}, F} = (2.221)

= {{f, F}, g}+ {f, {g, F}} = (2.222)

= {XfF, g}+ {f,XgF} = (2.223)

= [Xf , Xg]F (2.224)

This holds for all F , so we obtain
[Xf ,Xg] = X{f,g} (2.225)

• Let us denote the Hamiltonian vector fields which correspond to the gauge constraint functions Ga by Xa

and the corresponding Lie-derivative on scalar fields by Xa :

Xa ≡ XGa = {Ga,−} = ∂MGaω
MN∂N (XaF ≡ LXa

F ) (2.226)

Then the first class constraint algebra {Ga, Gb} = fab
cGc translates into

[Xa,Xb] = Xfab
cGc (2.227)

According to (2.217) we have

Xfab
cGc = fab

cXc +GcXfab
c ≈ fabcXc (2.228)

torsion-terms:

LX t
N1...Nq

M1...Mp
= XK∂K t

N1...Nq

M1...Mp
−

∑

i

∂KXNi t
N1...Ni−1KNi+1...Nq

M1...Mp
+

∑

i

∂Mi
XK t

N1...Nq

M1...Mi−1KMi+1...Mp
=

= XK∇K t
N1...Nq

M1...Mp
−

∑

i

(

∇KXNi +XL (ΓLK
Ni − ΓKL

Ni )
︸ ︷︷ ︸

TLK
Ni

)

t
N1...Ni−1KNi+1...Nq

M1...Mp
+

+
∑

i

(

∇Mi
XK + (ΓLMi

K − ΓMiL
K)

︸ ︷︷ ︸

TLMi
K

XL
)

t
N1...Nq

M1...Mi−1KMi+1...Mp

From the first version we can read off a product rule if X is multiplied with a scalar function α

LαX t
N1...Nq

M1...Mp
= αLX t

N1...Nq

M1...Mp
−

∑

i

∂KαXNi t
N1...Ni−1KNi+1...Nq

M1...Mp
+

∑

i

∂Mi
αXK t

N1 ...Nq

M1...Mi−1KMi+1...Mp

This can be written in a nice coordinate independent form when the tensor t is a differential p-form ω(p)

LαXω(p) = αω(p) + dα ∧ ıXω(p)

If X = X(R) is the r-th basis vector of the coordinate frame, so with constant (not covariantly constant) components XK
(R)

= δKR ,

the Lie derivative LR ≡ LX(R)
reads simply

LRt
N1...Nq

M1...Mp
= ∂Rt

N1...Nq

M1...Mp

If X = E(A) is the A-th basis vector of a local frame with components EK
(A)

= EK
A , the Lie derivative LA ≡ LE(A)

in terms of

partial derivatives reads

LAt
N1...Nq

M1...Mp
= EK

A ∂K t
N1...Nq

M1...Mp
−

∑

i

∂KENi
A t

N1...Ni−1KNi+1...Nq

M1...Mp
+

∑

i

∂Mi
EK

A t
N1...Nq

M1...Mi−1KMi+1...Mp

For objects with “flat index” A we will use the convention where the covariant derivative ∇K includes (in addition to the Christoffel
Symbols ΓKM

N ) also a structure group connection ΩKA
B acting on the flat index. With respect to this covariant derivative, EA

M

is covariantly constant, but the above general tensor formula gets modified by the connection terms

LAt
N1...Nq

M1...Mp
= EK

A ∇K t
N1...Nq

M1...Mp
−

∑

i

(

∇KENi
A

︸ ︷︷ ︸

=0

+ΩKA
BENi

B +EL
ATLK

Ni

)

t
N1...Ni−1KNi+1...Nq

M1...Mp
+

+
∑

i

(

∇Mi
EK

A
︸ ︷︷ ︸

=0

+ΩMiA
BEB

K + TLMi
KEL

A

)

t
N1...Nq

M1...Mi−1KMi+1...Mp
⋄

8Note that the vector fields act on functions via the Lie derivative, i.e. XfF ≡ LXf
F . The commutator of vector fields acting

on a function therefore actually means the commutator of Lie derivatives, which as we remember from the Schouten Nijenhuis
bracket discussion, is the Lie derivative with respect to the Lie bracket of the vector fields.

[Xf ,Xg]F =
[

LXf
,LXg

]

F = L[Xf ,Xg ]F = [Xf ,Xg]F

So in (2.221) we started with [Xf ,Xg] meaning the commutator of the corresponding Lie derivatives and in (2.224) we ended up
with the Lie bracket of vector fields which acts as a Lie derivative on F . As they coincide, it is not necessary to distinguish in
notation, but one should keep the conceptional difference in mind. ⋄
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From this follows that
[Xa,Xb] ≈ fabcXc (2.229)

This corresponds to Frobenius integrability , i.e. the vector fields are surface forming and generate
the so-called gauge orbits. In this form they cannot be integrated to coordinates though, because then
we would need commutativity of the vector fields at least on the constraint surface (this differs from the
Poisson-algebra of Ga’s which commutes on the surface).

• The Hamiltonian vector fields are ‖ to the constraint surface Σ. In order to see this, assume y ∈ Σ and
make an infinitesimal shift in the direction of Xa. Is the new y still in Σ?

Ga(y + εbXb) = Ga(y)
︸ ︷︷ ︸

0

+εbXbGa(y) = (2.230)

= εb{Gb, Ga} ≈ 0
√

(2.231)

Or a more sophisticated way to argue: Remember first that Σ is the zero locus of Ga

Ga : M ⊃ Σ→ {0} ⊂ R
n ∼= g

∗, Σ = G−1a (0) (2.232)

and therefore TΣ is the zero locus of the push-forward-map Ga∗ (the Jacobian)

Ga∗ : TM ⊃ TΣ → {0} ∼= T {0} ⊂ TRn ∼= Tg∗ (2.233)

ẏM (t) 7→ d

dt
Ga(y(t)) =

∂Ga
∂yK

ẏK
y∈Σ
= 0 (2.234)

So TΣ is the Kernel of Ga∗:
TΣ = Ker(Ga∗) (2.235)

Now we just need to show that indeed Xb is in the kernel:

∂Ga
∂yK

XK
b =

∂Ga
∂yK

{Gb, yK} = {Gb, Ga} ≈ 0 (2.236)

• Off the constraint surface in general no integrability: gauge orbits exist only on-shell.

2.2.5.3 Dual frame, ghosts and longitudinal exterior derivative

• In other words, {Xa} build a local frame of half of TΣ (namely of the gauge orbits). Let us define dual
1-forms ca = dyMcaM ∈ T ∗Σ via

ca(Xb)
︸ ︷︷ ︸

=ıXb
ca=XM

b caM

≡ δab (2.237)

In physics language they are called ghosts.

dıXb
ca

︸ ︷︷ ︸

dyM(∂KcaMXM
b +caM∂KX

M
b )

= 0 (2.238)

They are a subset of the frames of TM and T ∗M :

{Xa} ⊂ {EA} (2.239)

{ca} ⊂ {eA} (2.240)

where ıEA
eB = δBA

(
d(ıEA

eB) = 0
)

(2.241)

The interior products ıEA
and ıXa act like a derivative with respect to the dual 1-forms

ıEA
=

∂

∂eA
, ıXa =

∂

∂ca
(2.242)

This allows to build a counting oberator that counts the number of eA’s (counts form degree) or in
particular of ca’s (counts the so-called pure ghost number, i.e. the longitudinal form-degree)

eAıEA
= eA

∂

∂eA
= ”eA-counting operator” (form-degree) (2.243)

caıXa
= ca

∂

∂ca
= ”ca-counting operator” (pure ghost number) (2.244)
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• The Lie bracket between two basis vectors EA is again a tangent vector which can be written again as a
linear combination of the basis vectors

[EA,EB] = fAB
C(y)EC (2.245)

with some y-dependent coefficients fAB
C . It is a well-known fact for local frames (see e.g. [Lee, p.311])

that then the corresponding dual frame obeys

deA = − 1
2fAB

CeAeB (2.246)

Although well know, let us still prove this formula in three different ways, in order to get a good feeling
for it:

– direct proof in coordinates

EKA ∂KE
L
B − EKB ∂KELA = fAB

CELC |eDL (2.247)

EKA ∂KE
L
Be

D
L

︸ ︷︷ ︸

−EL
B∂Ke

D
L

−EKB ∂KE
L
A · eDL

︸ ︷︷ ︸

−EM
A ∂Ke

D
M

= fAB
D | · (−eA[MeBN ]) (2.248)

∂Me
D
N − ∂NeDM = −fABDeA[MeBN ]

√
(2.249)

– or using Cartan formulae:

ı[EA,EB ] = fAB
CıEC

(2.250)

[[ıEA
,d], ıEB

] = fAB
CıEC

|eAeB(. . .)eD (2.251)

eAeB [[ıEA
,d], ıEB

]eD
︸ ︷︷ ︸

−ıEB
ıEA

deD

= eAeBfAB
C ıEC

eD
︸ ︷︷ ︸

δDC

(2.252)

Now we note that eBıEB
is a counting operator that counts the form degree 1 of ıEA

deD. So we
obtain on the lefthand side −eAıEA

deD. Now the counting operator eAıEA
counts the form degree

2 of deD so that indeed we precisely obtain the claimed result.

– finally, using footnote 7, we can relate the Lie bracket of vector fields (or better the commutator of
their corresponding Lie derivatives) to the commutator of covariant derivatives. Because of the pre-
viously mentioned convention that the covariant derivative ∇K contains also an action of a structure
group connection ΩKA

B on “flat indices”. In particular when one acts twice with a Lie derivative e.g.
on a scalar field, i.e. LALBφ, then the second action also sees the index B. Any covariant derivative
on LBφ would then act also on B, which was not taken into account in footnote 7 and has to be
removed manually:

[LA,LB]φ = 2EM[A∇M (ENB]∇Nφ) + 2EM[AΩMB
C(ENC]∇Nφ) = (2.253)

= 2∇[A∇B]φ+ 2EM[AΩMB]
C∇Cφ (2.254)

Using that the commutator on covariant derivatives([thesis,p.190]) acting on scalars reads

[∇A,∇B]φ = −TABC∇Cφ (2.255)

the commutator of Lie derivatives becomes

[LA,LB]φ =
(
2Ω[AB]

C − TABC
)

︸ ︷︷ ︸

≡fAB
C

∇Cφ (2.256)

Now we compare to the “definition” of torsion (at least in the vielbein-formalism, this is how torsion
is defined)

deA = TA −ΩC
AeC = (12TBC

A − Ω[BC]
A)

︸ ︷︷ ︸

−1
2 fAB

C

eBeC (2.257)

This completes the last proof.
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• The exterior derivative on a general p-form ω(p) ≡ 1
p!ωA1...Ap(y)e

A1 · · · eAp can be completely defined by

giving its action on the on the coefficient-functions ωA1...Ap(y) (or equivalently just on the coordinate yM )
together with the above action on the cotangent basis eA.9

dyM = eAEA
M = eALAyM (2.258)

dωA1...Ap(y) = eAEA
M∂MωA1...Ap(y) = eALAωA1...Ap(y) (2.259)

deA = TA −ΩC
AeC = (12TBC

A − Ω[BC]
A)

︸ ︷︷ ︸

− 1
2 fAB

C

eBeC (2.260)

Let us check that this indeed reproduces the correct exterior derivative (repeated boldface indices at the
same level stand in the following simply for antisymmetrized indices):

dω(p) = 1
p!ω

(p)
A...A(eA)p = (2.261)

Leibniz
= 1

p!EA
M∂Mω

(p)
A...A(eA)p+1 + 1

(p−1)!ω
(p)
DA...A

(
TD −ΩC

DeC
)
(eA)p−1 = (2.262)

= 1
p!∇Aω

(p)
A...A(eA)p+1 + 1

(p−1)!T
Dω

(p)
DA...A(eA)p−1 (2.263)

Compare with coordinate basis:

dω(p) = 1
p!∂Mω

(p)
M ...M (dyM )p+1 = (2.264)

= 1
p!∇Mω

(p)
M ...M (dyM )p+1 + 1

(p−1)! ΓMM
KdyMdyM

︸ ︷︷ ︸

TK

ω
(p)
KM...M (dyM )p−1

√
(2.265)

• Because of the integrability of the Hamiltonian vector fields Xa, we can use the same formulas to define
a differential, which acts only in the directions of the gauge orbit, the so-called longitudinal exterior
derivative d(L):

[Xa,Xb] ≈ fab
cXc (2.266)

d(L)c
c ≡ − 1

2fab
ccacb (2.267)

It is clear that on the gauge-orbit (smaller than the constraint surface Σ ! but inside) this is just the
ordinary exterior differential, because the Xa build a local frame on it and ca are their duals. However,
in the second line we have already extended its action on cc off the surface. In addition, the action on
y-dependent coefficient functions of differential forms finally will be given by the action on the coordinate
yM :

d(L)y
M ≡ Xay

M = Xa
M (2.268)

• This is enough to uniquely determine the action of d(L) on longitudinal differential forms, i.e. forms
which are monomials in ca with coefficient functions that depend on the coordinates yM :

d(L) ≡ caXK
a ∂K

︸ ︷︷ ︸

{Ga,−}

− 1
2fab

ccacb
∂

∂cc
(2.269)

9Note that d 6= eALA, in contrast to what I had claimed during the lecture. However, almost:

dω(p) = 1
p
d
(

eAıAω(p)
)

=

= 1
p
(deA)ıAω(p) − 1

p
eA dıA

︸︷︷︸

−ıAd+LA

ω(p) =

= 1
p
(deA)ıAω(p) + 1

p
eAıAdω(p)

︸ ︷︷ ︸

(p+1)dω(p)

− 1
p
eALAω(p)

dω(p) = eALAω(p) − (deA)ıAω(p)

For the case where ω(p) itself is just a basis vector eB , this implies

deB = eALAeB − (deA) ıAeB
︸ ︷︷ ︸

δB
A

⇒ deB = 1
2
eALAeB ⋄
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This will be enough for our purposes, but in principle one can define the action of d(L) also on more
general differential forms.10

• Let me stress again that the coefficients fAB
C are not constant in general, but depend on yM (the

coordinates on T ∗M). This implies that the Jacobi identity as an identity for the coefficients gets
slightly modified to the ususal f[AB|DfD|C] = 0 (repeated boldface indices at the same level stand in the
following simply for antisymmetrized indices):

0
!
= [EA,[EA,EA]] = (2.270)

= [EA,fAA
CEC ] = (2.271)

= −fAA
CfCA

DED + (LAfAA
D)ED (2.272)

So
EA

M∂MfAA
D − fAA

CfCA
D = 0 (Jacobi) (2.273)

For the subframe {Xa} the situation is slightly more subtle, at least when leaving the constraint surface.
Let us first have a look at the Poisson-Jacobi-identity:

0
!
= {Ga, {Ga, Ga}} = (2.274)

= {Ga, faa
cGc} = (2.275)

=
(
−faacfcad + {Ga, faa

d}
)
Gd ≈ 0 (2.276)

This yields a condition for f only off the surface but not on the surface! And off the surface the bracket
does not need to vanish by itself, but instead the general solution is of the form

− faacfcad + {Ga, faa
d} ∝ f (2)

aaa
bcGc (2.277)

Instead for the corresponding Hamiltonian vector fields we obtain a condition on the surface:

0
!
= [Xa,[Xa,Xa]] = (2.278)

≈ [Xa, faa
cXc] = (2.279)

≈
(
−faacfcad + (Xafaa

d)
)
Xd (2.280)

So we get on the constraint surface a condition that is in agreement with the condition that we had
obtained from the Poisson bracket only off the surface:

− faacfcad + (Xafaa
d) ≈ 0 (2.281)

• It is nilpotent, but only on functions restricted to the constraint surface:

d2(L)y
M = d(L)(c

aXa
K) = (2.282)

≈ − 1
2fbc

acbccXa
K + cbcaXb

L∂LXa
K

︸ ︷︷ ︸

≈ 1
2 fba

cXc
K

= (2.283)

≈ 0 (2.284)

10Choose a parametrization in which close to the constraint surface Σ the coordinates yM split into coordinates ym of the gauge
orbit (⊂ Σ) and remaining coordinates yµ. Then the definition of the longitudinal exterior derivative on the constraint surface Σ
is simply such that

d(L) ≡ dym∂m

Introducing the local orbit-frames ca = dymcam leads to (2.267) with the dual vector field Xa = XM
a ∂M = Xm

a ∂m. If now the
local orbit frame is completed to a frame {eC} = {cc,eγ} of the whole cotangent bundle of phase space with eγ = dyMeγM , then
the action of d(L) on eγ depends very much on the choice of the coefficients eγM , so on the way in which {ca} is completed to

{eC} = {cc, eγ}. In general one just obtains

d(L)e
γ = −dyMcbXn

b ∂ne
γ
M =

= −EM
A Xn

b ∂ne
γ
MeAcb

For a suitable choice of eγ with eγ = dyM eγM = dyµeγµ (so with eγm = 0), this would reduce to

d(L)e
γ = −Eµ

αX
n
b ∂ne

γ
µ

︸ ︷︷ ︸

≡−fαb
γeαcb

eAcb

Only in such a basis one can consistently assign ghost number 0 eα while keeping ghost number 1 for ca and d(L). ⋄
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The action on cc is likewise nilpotent only on the surface:

d2(L)c
c = d(L)

(
− 1

2fab
ccacb

)
(2.285)

= 1
2fab

cfde
acdcecb − 1

2c
dXd

K∂Kfab
c

︸ ︷︷ ︸

{Gd,fab
c}

cacb = (2.286)

= 1
2c
d (feb

cfda
e − {Gd, fabc}) cacb = (2.287)

Jac≈ 0 (2.288)

• Note that the longitudinal exterior derivative on phase space functions F (y) is generated by caGa:

d(L) = {caGa,−} (2.289)

Compare BRST (Becchi, Rouet, Stora and Tyutin)-nilpotence caGa − 1
2fab

ccacbbc

sca = − 1
2f

a
bcc

bcc (2.290)

syM = caXM
a (2.291)

• Consider the 1-forms ca = caM (y)dyM as independent Grassman variables (not y-dependent). In other
words, consider it to be an anticommuting vector

(y, c) ∈ ΠT (T ∗M) (2.292)

Then functions in y and c are in 1:1 correspondence with longitudinal forms ⊂ Ω•(T ∗M)

F(
yM

︷ ︸︸ ︷

T ∗M)⊗ R[c]
︸ ︷︷ ︸

F(ΠT (T∗M))

∼= Ω•(T ∗(L)M) (2.293)

• Pure ghost-number operator:

ca
∂

∂ca
(2.294)

Eigenvalues are called the pure ghost number and correspond to the longitudinal form degree of a form.

• Want to reduce functions on phase space T ∗M to the physical constraint surface via the homology of a
differential, namely the Koszul-Tate differential δ.

δ( ba
︸︷︷︸

=̂dGa orXa?

) ≡ Ga (2.295)

δ(12Ω
abdGadGb) = ΩabGadGb (2.296)

Compare BRST
sba = Ga + . . . (2.297)

2.2.5.4 Reducibility / ghosts for ghosts

If the constraints (and thus the corresponding Hamiltonian vector fields) are not independent

Za0a1Ga0 = 0 (2.298)

introducing as many ghosts as constraints leads to constraints between the ghosts. These constraints can be
treated in the same way as before and thus lead to new “ghosts for ghosts”. ....

For example in the Lagrangian formalism the constraints are the equations of motion. If there are gauge
symmetries, one has the Noether identities, which show that the eom’s are not independent. This will require
ghosts for ghosts. We will most probably come back to this.
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2.3 Homological Perturbation Theory

2.3.1 Resolution

• N-graded (ZN+1-graded) algebra Ā = Ā0 ⊕ Ā1 ⊕ . . .⊕ ĀN−1, a(i)a(j) = a(i+j) ,ĀiĀj ⊆ Āi+j . An element
of Ā that is entirely in one of the spaces Āi can be assigned a grading

| a |≡ deg(a) = i for a ∈ Ai (2.299)

Induced Z2-grading:

ǫa =
0 for deg(a)even
0 for deg(a)odd

(2.300)

• Differential: odd nilpotent (of order two) derivation δ

δ2 = 1
2 [δ, δ] = 0, ǫ(δ) = 1 (2.301)

Definition 2.1. A homological resolution of an algebra A is a N-graded differential algebra Ā = Ā0⊕ Ā1⊕
. . .⊕ ĀN with differential δ

r(δ) ≡ deg(δ) = −1, δ(x) = 0∀x ∈ Ā0 (2.302)

such that the homology

H•(δ) ≡ H•(δ|Ā) ≡
Ker(δ)

Im(δ)
(2.303)

is nontrivial only for degree 0 and is isomorphic to the original algebra A

Hr(δ) = 0 ∀r > 0 (2.304)

H0(δ) = A (2.305)

⇒ H•(δ) ≡
⊕

r

Hr = H0(δ) = A (2.306)

The grading r of the homology space H•(δ) ≡
⊕

rHr and of the underlying graded algebra Ā =
⊕N

r=0 Ār is
called resolution degree .

Remark The grading of the algebra Ā induces also a grading on the space of endomorphisms mapping Ā onto
itself, depending on how it changes the grading of the element it acts on. (the following is a bit sloppy, as one
would need to first split x into its components of definite grading and then also Ξ(x) into its components. This
induces a splitting of Ξ. But the essence should be clear from below):

r(Ξ) ≡ deg(Ξ) ≡| Ξ |: | Ξ(x) |≡| Ξ | + | x | for Ξ ∈ End(Ā), x ∈ Ā (2.307)

In contrast to Ā, this grading extends also to negative values (because endomorphisms can lower the grading):

End(Ā) =
N⊕

r=−N
End(Ā)r (2.308)

Together with the composition of endomorphisms as algebra-product (matrix-product), it becomes a graded
algebra. . Based on this grading of End(Ā) we can define the subspace of graded derivations Der(Ā) on Ā
which are given by those endomorphisms which obey a graded Leibniz-rule.

End(Ā) ⊃ Der(Ā) ∋ σ : σ(xy) = σx · y + (−)σxxσy ∀x, y ∈ Ā (2.309)

Derivations are not closed under ordinary composition, but using instead the commutator as algebra product,
Der(Ā) becomes also a graded algebra. For a given differential δ of degree ∓1 acting on Ā (δ ∈ Der(Ā)∓1).
Due to the Jacobi-identity of the commutator, every element of Der(Ā) acts like a derivation on Der(Ā) via the
commutator:

[σ1, [σ2, σ3]] = [[σ1, σ2], σ3] + (−)σ1σ2 [σ2, [σ1, σ3]] (2.310)
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(Also on End(Ā) with the composition product, the commutator acts like a derivation). This property implies
that any differential δ on Ā induces a differential [δ,−] acting on Der(Ā) (and on End(Ā)). That it’s a derivation
has already been shown in the previous equation. But it is also nilpotent:

[δ, [δ, σ]] = [[δ, δ]
︸ ︷︷ ︸

=0

, σ]− [δ, [δ, σ]] (2.311)

⇒ [δ, [δ, σ]] = 0 (2.312)

This allows to define also a homology on the algebra of derivations

H•(δ) ≡ H•([δ,−]|Der(Ā)) ≡ Ker([δ,−])
Im([δ,−]) (2.313)

Definition 2.2. Let Λ ∈ End(Ā) be a diagonalizable linear operator

Ā =
⊕

λ

Ãλ (=
⊕

r

Ār) (2.314)

such that
Ã0 ⊂ Ā0 (2.315)

A (odd) linear operator σ ∈ End(Ā) is called a contracting homotopy for Λ w.r.t. the differential δ iff

[δ,σ] = Λ (2.316)

This means that Λ is δ-exact.

• Compare: in topology, curves are homotopic (equivalent) if they can be continously be deformed into
each other (corresponds to the difference being exact). The deformation is called a homotopy (this would
rather Λ make the homotopy than σ!?)

Theorem 2.1. If ∃ a contracting homotopy σ⇒ the differential δ is acyclic in degree r > 0, i.e. Hr(δ) = 0 .
If σ is a derivation, also [δ,−] acting on the algebra of derivations is acyclic in degrees r 6= 0.

Proof. The fact that Λ is δ-exact implies that it is also closed, i.e. commutes with δ

[δ,Λ] = 0 (2.317)

Therefore δ stays in the eigenspaces Aλ. So in particular if a ∈ Ā is decomposed as a =
∑

λ aλ, then assuming
that it is closed

δa = 0 (assump) (2.318)

implies that
δaλ = 0 ∀λ (2.319)

Assuming further that
λ 6= 0 (assump) (2.320)

we can use the eigenvalue-equation Λaλ = λaλ to write aλ as

aλ =
1

λ
Λaλ

[δ,σ]=Λ
=

1

λ
[δ,σ]aλ

δaλ=0
= δ

(
1

λ
σaλ

)

(2.321)

This means that every closed aλ with λ 6= 0 is also exact. This means that any nontrivial cycles can lie only in
Ã0 ⊂ Ā0 .

If σ is a derivation, then also Λ will be a derivation on Ā (δ is in any case) and they will induce corresponding
derivations on Der(Ā), namely [σ,−], [Λ,−] and [δ,−]. And indeed these obey the defining properties of
an ordinary contracting homotopy: First [Λ,−] is diagonalizable with the zero eigenvalue-space contained in
Der(Ā)0 (make more explicit!) and also

”[[δ,−], [σ,−]]” = [δ, [σ,−]] + [σ, [δ,−]] = [[δ,σ],−] = [Λ,−] (2.322)

Now the proof given before for Ā holds the same for Der(Ā).
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Hamiltonian picture:

The algebra A is the algebra of functions on the constraint surface Σ ⊂ T ∗M

A = F(Σ) (2.323)

Its homological resolution is
Ā = F(T ∗M)⊗ R[ba] ⊂ F(T ∗ΠTM) (2.324)

•

δba = Ga(y)

(

= ”pa −
∂L

∂q̇a
”

)

, δyM = 0. (yM = (qm, pm)) (2.325)

δ = Ga
∂

∂ba
(2.326)

• resolution degree: antighost number, i.e. eigenvalues of

ba
∂

∂ba
(2.327)

• Split phase space coordinates yM into those σM parallel to the surface11 and those Ga perpendicular to
it:

yM = (σM, Ga) (2.328)

δ = Ga
∂

∂ba
(2.329)

Locally analytic functions on Σ correspond (Taylor-expansion) to the polynomial algebra R[σM].
Claim: The differential algebra (R[σM, Ga, ba], δ) provides a resolution of R[σM]

H0(δ) = R[σM] (2.330)

Hr(δ) = 0 ∀r > 0 (2.331)

Furthermore:

H0(δ) = Derivations on R[σM] (2.332)

Hr(δ) = 0 ∀r 6= 0 (2.333)

(always when a contracting homotopy is a derivation. Note that the derivation homology H• in contrast
to H• also has negative degrees)
Proof: of the first ones

– H0 :

∗ Ker0(R[σ
M, Ga, ba], δ) = R[σM, Ga, ba]0 = R[σM, Ga]

∗ Im0:

Ga
∂

∂ba
(λc(σ,G)bc) = λa(σ,G)Ga (2.334)

∗
H0 =

Ker0
Im0

∼= R[σM] (2.335)

11The choice of the capital calligraphic character M seems a bit weird, but like for yM = (qm, pm), it would be useful to have
the possibility to split also the coordinates on the constraint surface into configuration space variables and momenta, and then this
notation is conventient:

σM = (qµ, pµ)

Not sure, however, if we will ever use this split... ⋄
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– Hk = 0∀k > 0: It suffices to show the existence of a contracting homotopy. As diagonalizable
operator Λ, we can choose a counting operator which counts the number of ba’s and Ga’s:

Λ ≡ ba
∂

∂ba
+Ga

∂

∂Ga
(2.336)

Λba = ba, ΛGa = Ga, ΛσM = 0 (2.337)

This is clearly chosen in such a way that Ã0 = R[σM] ⊂ A0 = R[σM, Ga] and that it is exact

Λ = [δ,σ] (2.338)

withσ = ba
∂

∂Ga
(2.339)

σ is almost the inverse of δ. �

Lagrangian picture:

The algebra A is the algebra of functionals on the paths on M

A = F( PphysM
︸ ︷︷ ︸

≡Σ≡{qphys|
δS[qphys]

δqm =0}

) (2.340)

while its homological resolution is

Ā = ”F(PM)⊗ R[q+
m(τ)]” = F(ΠT ∗PM) (2.341)

•

δq+
m = (S,q+

m) = − δS

δqm
, δqm = 0 (2.342)

• resolution degree: antifield number, i.e. eigenvalues of

q+
m

∂

∂q+
m

(2.343)

Corresponds to multivector-degree. q+
m has ghost number -1.

•
H0(δ) ∼= F( PphysM

︸ ︷︷ ︸

δS[qphys]

δqm =0

)

• ghosts d(L)q
m = caδaq

m. (same as in Hamiltonian!). Come with antifields c+a .

d(L)F =

∫ ∫

ca(t)δaq
m(t, t′)

δF

δqm(t′)
(2.344)

d(L)c
a =

∫ ∫

1
2f

a
bc(t, t

′)cb(t)cc(t′) (2.345)

• Constraints are not independent (Noether-identities). Reducibility! ⇒ c+a .

2.3.2 Relative cohomology & extension of the Poisson-bracket

• differential d(L) modulo δ :

d(L) = ca∂MGaω
MN∂N − 1

2fab
ccacb

∂

∂cc
(2.346)

d2(L) = δ(...) = −[δ, s(1)], r(d(L)) = 0, (2.347)

x ∈ Hk(d) : dx = δy, x ∼ x+ dz + δz′ (2.348)

r(x) = 0 = r(z), r(y) = 1 = r(z′) (2.349)
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• Example

s = δ + d+ . . . (2.350)

s2 = δ2
︸︷︷︸

0

+ [δ,d]
︸︷︷︸

0

+d2 + [δ, s(1)]
︸ ︷︷ ︸

0

+ . . . (2.351)

• total ghost number
gh(x) = deg(x)

︸ ︷︷ ︸

pure gh=formdeg

−r(x) (2.352)

gh(d) = gh(δ) = 1 (2.353)

antgh(d) = 0, antgh(δ) = −1 (2.354)

• ghost number operator

J = ca
∂

∂ca
− ba

∂

∂ba
≡ {caba,−} (2.355)

• Geometrically it makes sense to identify the antighosts ba with the Hamiltonian vector fields Xa (with
the wedge product as anticommuting product between them).

• Functions of yM , ca and ba are then formal sums of (particular) multivector valued differential forms:

f(y, ca, ba) = f (0)(y) +
∑

p,q≥1

1
p!q!f

(p,q)b...b
c...c (y)cc . . . ccbb · · · bb (2.356)

• A natural generalization of the interior product of vectors acting on differential forms is the following
interior product of multivector valued forms acting on forms:

ı 1
p!q! f

(p,q)b...b
c...c (y)cc...ccbb···bb

≡ 1
p!q!f

(p,q)b...b
c...c (y)

p
︷ ︸︸ ︷

cc ∧ . . . cc ∧
q

︷ ︸︸ ︷
ıbb
︸︷︷︸

≡ıXb
= ∂

∂cb

· · · ıbb
(2.357)

The map from the multivector valued form f(y, ca, ba) to this operator can be seen is the quantization
(in Schrödinger representation) of the ghost-variables ca, ba.

• The commutator of two such operators induces an algebraic bracket between multivector valued forms

[ıK , ıL] ≡ ı[K,L]∆ (2.358)

with [K,L]∆ =
∑

p≥1

(

1
p!K

( ←−
∂

∂ba

)p(
∂

∂ca

)p

L− (−)(k−k′)(l−l′)K
( ←−

∂

∂ba

)p (
∂

∂ca

)p

L

)

(2.359)

Each pair
←−
∂
∂ba

∂
∂ca has pure ghost number −1, antighost-number −1 and total ghost number 0. The lowest

term with just one derivative (which therefore has the highest antighost number) obviously has the form
of a Poisson-bracket

[K,L](1) = K

( ←−
∂

∂ba

)(
∂

∂ca

)

L− (−)(k−k′)(l−l′)K
( ←−

∂

∂ba

)(
∂

∂ca

)

L (2.360)

It yields to the contraction of one index pair between the multivector valued forms. The full algebraic
bracket [−,−]∆ is thus the quantum version of the Poisson bracket!

• In particular for the 1-vectors ba ≡Xa and the 1-forms cb we have ıXac
b = δba.

[ıXa
, cb∧] = δab = [Xa, c

b]∆ = {Xa, c
b} (2.361)
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2.3.3 Main Theorem

Theorem 2.2 (main theorem). (a) if the derivation homology classes Hk(δ) = 0 ∀k 6= 0 then there exists a
differential s that combines δ with d

s =
(−1)
δ +

(0)

d +
∑

r≥1
s(r) (2.362)

s2 = 0 (2.363)

r(s(k)) = k, gh(s(k)) = 1 (formdeg −multivec deg) (2.364)

(b) any such differential s obeys
Hk(s) = Hk(d|H0(δ)) (2.365)

x ∈ Hk(d) : dx = δy, x ∼ x+ dz + δz′ (2.366)

r(x) = 0 = r(z), r(y) = 1 = r(z′) (2.367)

Proof. i) Existence: Need to show that the equation 0 = s2 =
∑

r≥−2(s
2)(r) is solvable for given δ,d and s(1)

(d2 = −[δ, s(1)]). We will show this by induction over the resolution degree r (either antighost degree or antifield
degree). At the lower degrees we have

(s2)(−2) = δ2 = 0
√

(2.368)

(s2)(−1) = [δ,d] = 0
√

(2.369)

(s2)(0) = d2 + [δ, s(1)] = 0
√

(2.370)

At positive degree r ≥ 1 we have

(s2)(r) = [δ, s(r+1)] + [d, s(r)] +

r−1∑

k=1

1
2 [s

(k), s(r−k)]
!
= 0 (2.371)

The equation (s2)(r−1) = 0 involves maximally s(r). So if we assume for the induction that this degree r − 1-
equation already holds, it does not put any restriction on s(r+1). We therefore can see the equation at degree r
as an equation for s(r+1), which is solvable if the rest is δ-exact. This is equivalent to showing that the complete
(s2)(r) is exact. Being at resolution degree r ≥ 1 with trivial derivative-cohomology classes Hr, it is enough to
show that it is δ-closed:

[δ, (s2)(r)] = [s, (s2)(r)](r−1) (2.372)

By induction assumption s2 is zero up to degree r− 1, i.e. s2 = 1
2 [s, s] =

∑

k≥r(s
2)(r), so that the above equation

can be rewritten as

[δ, (s2)(r)] = [s, s2
︸︷︷︸

∑
k≥r(s

2)(k)

](r−1) = (2.373)

Jac
= 0

√
(2.374)

This completes the proof of the existence of a solution.

ii) Calculate Hk(s)
?
= Hk(d|H•(δ)) (k is the ghost number). In the following ∼ means equal up to δ-exact.

Take x ∈ F(T ∗M)⊗R[ca]⊗R[ba] with fixed ghost-number k. It is in general a sum of components of different
antighost-number.

x =
∑

r≥0
x(r), gh(x) = k, r(x(r)) = r (2.375)

Define a map

F(T ∗M)⊗ R[ca]⊗ R[ba] → F(T ∗M) (2.376)

x 7→ π(x) = x(0) (2.377)

From

sx =

(sx)(0)

︷ ︸︸ ︷

dx(0) + δx(1) +higher (2.378)
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it follows

πsx ∼ dx(0) (2.379)

⇒ πs ∼ dπ (2.380)

So π is compatible with the differentials. It thus induces a map between the cohomologies

π : Hk(s) → Hk(d|H•(δ)) (2.381)

[x] 7→ π([x]) ≡ [x(0)] (2.382)

We want to show that it’s an isomorphism:
First π preserves the algebra product

π(xy) = π(x)π(y) (2.383)

Remains to show that it’s surjective and injective.
a) surjective: Take [x(0)] ∈ Hk(d|H•(δ)), i.e.

dx(0) = −δx(1), δx(0) = 0 (2.384)

We need to show that for any such x(0) there exists an x with sx = 0 and πx = x0. So it suffices to find x(r)

(r ≥ 1) such that s
(

x(0) +
∑

r≥1 x
(r)
)

= 0:

0
!
= s



x(0) +
∑

r≥1
x(r)



 = (2.385)

=



δ + d+
∑

r̃≥1
s(r)







x(0) +
∑

r≥1
x(r)



 = (2.386)

= δx(0)
︸ ︷︷ ︸

=0

+(δx(1) + dx(0))
︸ ︷︷ ︸

=0

+
∑

r≥1

(

δx(r+1) + dx(r) +
r∑

i=1

s(i)x(r−i)
)

(2.387)

It has to vanish for each resolution degree r (antighost number or antifield number) separately. Assume that we
have managed to make all resolution degrees up to r − 1 vanish, giving equations for x(1), . . . , x(r) but leaving
undetermined x(r), x(r+1), . . .. The resolution degree expansion of sx thus starts at degree r:

sx =
∑

r̃≥r
(sx)(r) (2.388)

Nilpotency of the differential s (s2x = 0) then implies that (sx)(r) is δ-closed:

0 = (s2x)(r−1) = (2.389)

=



(
∑

r′≥−1
s(r

′))
∑

r̃≥r
(sx)(r)





(r−1)

= (2.390)

= δ(sx)(r) (2.391)

Triviality of Hr(δ) for nonzero r then implies that (sx)(r) is not only closed, but also δ-exact. Now the s-
invariance equation at degree r reads

0
!
=

δ−exact
︷ ︸︸ ︷

(sx)(r) =

δ−exact
︷ ︸︸ ︷

δx(r+1) + dx(r) +

r∑

i=1

s(i)x(r−i)

︸ ︷︷ ︸

⇒δ−exact

(2.392)

and is solvable for x(r+1) because of the δ-exactness of dx(r)+
∑r
i=1 s

(i)x(r−i) (if (sx)(r) is δ-exact, also (sx)(r)−
δx(r+1) is δ-exact. This shows that every element in Hk(d|H•(δ)) can be written as π[x] with [x] ∈ Hk(s) and
completes the proof of surjectivity.
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b) For injectivity, we need to show that the constructed x is unique. But as the map π is obviously linear,
it is enough to show that the kernel is [0], i.e. that [0] ∈ H•(s) is the only element which is mapped to
[0] ∈ H•(d|H•(δ)). So assume [y] ∈ H•(s) is mapped to [0] ∈ H•(d|H•(δ)):

sy = 0 (2.393)

πy = y(0) = dz(0) + δz(1), δz(0) = 0 (π([y]) = [0]) (2.394)

We need to show that y = [0], i.e. that y is s-exact. Again this will be shown recursively in the resolution
degree. So first expand y in the degree:

y = dz(0) + δz(1)
︸ ︷︷ ︸

(s(z(0)+z(1)))
(0)

+
∑

r≥1
y(r) (2.395)

At resolution degree 0, we obviously have
y(0) = (sz)(0) (2.396)

Now define

y′ ≡ y − s(z(0) + z(1)) = (2.397)

=
∑

r≥1

(

y(r) −
(

s(z(0) + z(1))
)(r)

)

= (2.398)

=
(

y(1) − s(1)z(0) − dz(1)
)

+
∑

r≥2

(

y(r) − s(r)z(0) − s(r−1)z(1)
)

(2.399)

Certainly y′ is s-exact iff y is s-exact. Next s-invariance of y′ at lowest resolution degree will give us a condition
on y(1) that will allow us to see that y(1) is exact:

0 = (sy′)(0) = (2.400)

= δ
(

y(1) − s(1)z(0) − dz(1)
)

(2.401)

This implies (trivial homology) that the bracket is δexact, i.e. ∃z(2) such that

y(1) = δz(2) + dz(1) + s(1)z(0) = (2.402)

=
(

s(z(0) + z(1) + z(2))
)(1)

(2.403)

Now we can define

y′′ ≡ y′ − s(z(2)) = (2.404)

=
∑

r≥2

(

y(r) −
(

s(z(0) + z(1) + z(2))
)(r)

)

= (2.405)

=
(

y(2) − s(2)z(0) − s(1)z(1) − dz(2)
)

+
∑

r≥3

(

y(r) − s(r)z(0) − s(r−1)z(1) − s(r−2)z(2)
)

(2.406)

s-invariance of y′′ at lowest resolution degree 1 yields

0 = (sy′′)(1) (2.407)

= δ
(

y(2) − s(2)z(0) − s(1)z(1) − dz(2)
)

(2.408)

which implies (trivial homology) that there is a z(3) with

y(2) = δz(3) + dz(2) + s(1)z(1) + s(2)z(0) = (2.409)

=
(

s(z(0) + z(1) + z(2) + z(3))
)(2)

(2.410)

Obviously this can be continued recursively and used to make a complete induction, showing that y = sz is
indeed exact and thus [y] = [0] which in turn shows that the kernel of π is {[0]} and therefore π is injective.
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Remarks

• The grading of the s-cohomology is the total ghost-grading. It can either be seen as cohomology, or if one
inverts the sign of the grading, as homology. In particular for d= 0 the differential s coincides with the
Koszul-Tate differential δ and it is then more natural to regard the s-cohomology as a homology. In finite
dimensions the grading is in any case bounded from below and above (in the bosonic case), and there is
no need for a distinction. In infinite dimensions in general the d-grading is bounded from below and the
δ-grading from above, while the s-grading is not bounded. Only when d= 0, it becomes bounded from
above.

2.4 BRST formalism classical

If we apply the above homological perturbation theory to the Hamiltonian system, we obtain the so-called BRST
(Becchi, Rouet, Stora and Tyutin) differential s, build from the Koszul Tate differential δ (whose homology
restricts phase space functions to the constraint surface) and from the longitudinal exterior derivative d(L)
(whose cohomology restricts to gauge invariant functions).

2.4.1 Mapping the dynamics to extended phase space

• In the proof of the main theorem we have defined the isomorphism

π : F = F (0) + F (1) + . . . 7→ π(F ) ≡ F (0) (2.411)

between the d(L)−Cohomology (which contains at zero ghost number just the gauge invariant functions

on the constraint surface: 0
!≈ d(L)F

(0) = ca{Ga, F (0)}) and the s-cohomology (BRST-cohomology) in the

extended phase space (which contains BRST-invariant functions on the extended phase space 0
!
= sF ). The

extended phase space is parametrized by the variables (yM , ca, ba) where y
M = (qm, pm) parametrize

the original phase space T ∗M which contains also the constraint surface Σ.

• The existence of this isomorphism implies that every gauge invariant function on the constraint surface
can be lifted to a s-closed (BRST invariant) function on the extended phase space.

• The isomorphism further respects the bracket structure at ghost number 0. In order to see this, expand
two functions F and G on the extended phase space in the resolution degree

F (y, ca, ba) = F (0)
︸︷︷︸

π(F )

+
∑

r≥1

1
r!r!(c

c)rF (r)
c...c

b...b(bb)
r (2.412)

Their Poisson bracket reads

{F,G} =






F (0) +

∑

r≥1

1
r!r!(c

c)rF (r)
c...c

b...b(bb)
r, G(0) +

∑

s≥1

1
s!s! (c

c)sG(s)
c...c

b...b(bb)
s






= (2.413)

= {F (0)
︸︷︷︸

πF

, G(0)
︸︷︷︸

πG

}+
∑

s≥1

1
s!s! (c

c)s
{

F (0), G(s)
c...c

b...b
}

(bb)
s

︸ ︷︷ ︸

resol deg s≥1

+
∑

r≥1

1
r!r! (c

c)r
{

F (r)
c...c

b...b, G(0)
}

(bb)
r

︸ ︷︷ ︸

resol deg r≥1

+

+
∑

r≥1

∑

s≥1

1
r!r!

1
s!s!

{

(cc)rF (r)
c...c

b...b(bb)
r, (cc)sG(s)

c...c
b...b(bb)

s
}

︸ ︷︷ ︸

resol deg≥r+s−1≥1

(2.414)

Clearly only the first term has resolution degree 0, so that we indeed obtain

π{F,G} = {πF, πG} (2.415)

• Remember the consistency conditions {Htot, Ga} ≈ 0 (constraints are conserved in time) which were
used to derive secondary constraints. As also previously discussed, the same equation implies that Htot =
H(0)+λapGap (we denote the originalH now by H(0) as it has resolution degree 0) is gauge invariant on Σ.

Because of {Ga, Gb} ≈ 0 (or simply because Htot ≈ H(0)), it further implies that the basic Hamiltonian
H(0) itself is gauge invariant on the constraint surface:

{Ga, H(0)} ≈ 0 (2.416)
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We can therefore use π−1 to map H(0) (or equivalently Htot ≈ H(0)) to its BRST invariant extension H
in extended phase space.

sH = 0 (2.417)

H = H(0)
︸︷︷︸

π(H)

+H(1) + . . . (2.418)

πH = H(0) (2.419)

• In other words we can use the isomorphism π (see proof of the main theorem) to map the whole dynamics
of gauge invariant functions on the constraint surface in original phase space to an isomorphic dynamics
in the extended phase space:

Ḟ = {H,F} (2.420)

The BRST cohomology defines the physical space, so the dynamics on s-closed objects is all what matters.
Nevertheless it is convenient to extend the dynamics to non-closed functions as well, by simply the same
equation of motion as above. This even assigns a dynamics to the ghosts

ċa = {H, ca}, ba = {H, ba} (2.421)

• The extension H (in extended phase space) is unique as a BRST-equivalence class [H ]. So in BRST
cohomology also time evolution is unique and there is no gauge invariance. On the other hand, in the
underlying algebra of functions on the extended phase space, H is not unique, but can be modified by
arbitrary BRST-exact terms

H → H + sK (2.422)

For any particular choice ofK (choice of a representative of [H ]) we obtain a unique time evolution without
gauge invariance. Therefore K is called the gauge fixing fermion. (“Fermion” because it has to be
Grassman-odd although it is a scalar). One could recover the gauge ambiguity of the total Hamiltonian
by introducing a family of gauge fixing fermions Kλ ≡ λaba depending on the Lagrange multipliers λa.

sKλ = s(λaba) = λa(G(0)
a + . . .) (2.423)

Choosing one representative then corresponds to fixing the λa’s to a certain value, e.g. 0. This would lead
also in the original phase space to a unique (gauge fixed) time evolution.

• According to [Henneaux, p.240] there is no geometric interpretation of the ghost dynamics, but I doubt
this. Maybe one should change from active to passive transformations or the other way round. I.e., taking
a function F (y) whose coordinates y change in time can also be seen as a function which changes in time
itself, i.e. F ′(y) ≡ F (y′). The same for multivector valued forms given as functions on the extended phase
space. Then one can think of the time evolution as a time evolution of the section of multivector valued
forms.

2.4.2 BRST differential as a canonical transformation

• Claim: the BRST-differential is a canonical transformation, i.e. can be generated by a BRST-charge of
the form

Q = cc Gc
︸︷︷︸

f
(0)
c

− 1
2c

ccc fcc
b

︸︷︷︸

≡f(1)
cc

b

bb +
∑

r≥2

(−)r
r!(r+1)!(c

c)r+1f (r)
c...c

b...b(bb)
r ≡ (2.424)

=
∑

r≥0

(−)r
r!(r+1)!(c

c)r+1f (r)
c...c

b...b(bb)
r (2.425)

The f
(r)
c...c

b...b are called the higher order structure functions. A set of constraints is said to have

rank r if the f
(n)
c...c

b...b vanish for all n > r. Examples

– rank 0: abelian {Ga, Gb} = 0,
Q = caGa (2.426)

– rank 1: group {Ga, Gb} = fab
cGc (with constant fab

c!)

Q = ccGc − 1
2c

cccfcc
bbb (2.427)
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– The rank is not an intrinsic classification of the constraint surface, as it can change upon choosing
different Ga for the same surface.

• In order to prove the claim, it is enough (according to the main theorem) to observe that it generates
δ + d(L) in the lowest orders and that it can be made square to zero:12

0
!
= {Q,Q} = (2.428)

=
∑

r,s≥0
(−)r+s 1

r!(r+1)!
1

s!(s+1)!

{

(cc)r+1f (r)
c...c

b...b(bb)
r, (cc̃)s+1f

(s)
c̃...c̃

b̃...b̃(bb̃)
s
}

= (2.429)

= 2
∑

r≥1,s≥0
(−)r+s 1

(r−1)!(r+1)!
1
s!s! (c

c)r+1f (r)
c...c

b...ba(bb)
r−1 {ba, c

d
}
(cc̃)sf

(s)
dc̃...c̃

b̃...b̃(bb̃)
s +

+
∑

r,s≥0
(−)r+s 1

r!(r+1)!
1

s!(s+1)! (c
c)r+1(bb)

r
{

f (r)
c...c

b...b, f
(s)
c̃...c̃

b̃...b̃
}

(cc̃)s+1(bb̃)
s = (2.430)

= 2
∑

r≥1,s≥0
(−)r+s+(r−1)s 1

(r−1)!(r+1)!
1
s!s!f

(r)
c...c

b...baf (s)
ac...c

b...b(cc)r+s+1(bb)
r+s−1 +

+
∑

r,s≥0
(−)r+s+r(s+1) 1

r!(r+1)!
1

s!(s+1)!

{

f (r)
c...c

b...b, f (s)
c...c

b...b
}

(cc)r+s+2(bb)
r+s (2.431)

Finally we reparametrize the sum, keeping s as a summation variable, but replacing r by the power of
bb’s, so in the first sum by R = r + s − 1 (R ≥ 0,0 ≤ s ≤ R) and in the second sum by R = r + s
(R ≥ 0,0 ≤ s ≤ R) and obtain as condition for nilpotency of Q

0
!
=

∑

R≥0

R∑

s=0

(−)Rs 1
(R−s)!(R−s+2)!

1
s!(s+1)! ×

×
(

−(−)R−s2(s+ 1)f (R−s+1)
c...c

b...baf (s)
ac...c

b...b + (R− s+ 2)
{

f (R−s)
c...c

b...b, f (s)
c...c

b...b
})

(cc)R+2(bb)
R (2.432)

Having sorted now by resolution degree, we can read off the equations for each degree R seperately:

0
!
=

R∑

s=0

(−)Rs 1
(R−s)!(R−s+2)!

1
s!(s+1)! ×

×
(

−(−)R−s2(s+ 1)f (R−s+1)
c...c

b...baf (s)
ac...c

b...b + (R− s+ 2)
{

f (R−s)
c...c

b...b, f (s)
c...c

b...b
})

∀R (2.433)

For the lowest degrees, this reads

R = 0 : 0
!
= 1

2

(

−2f (1)
cc

aG(0)
a + 2

{

G(0)
c , G(0)

c

}) √
(2.434)

R = 1 : 0
!
= 1

3!

(

2f (2)
ccc

baG(0)
a + 3

{

f (1)
cc

b, G(0)
c

})

− 1
2
1
2

(

−2 · 2f (1)
cc

af (1)
ac

b + 2
{

G(0)
c , f (1)

cc
b
})

= (2.435)

=
1

3
f (2)
ccc

baG(0)
a + f (1)

cc
af (1)
ac

b −
{

G(0)
c , f (1)

cc
b
} √

(Jacobi) (2.436)

R = 2 : 0
!
= 1

2!4!

(

−2 f (3)
c...c

b...baG(0)
a

︸ ︷︷ ︸

∝δf(3)

+4
{

f (2)
ccc

bb, G(0)
c

}
)

+ 1
3!

1
2!

(

4f (2)
ccc

baf (1)
ac

b + 3
{

f (1)
cc

b, f (1)
cc

b
})

+

+ 1
2!

1
2!3!

(

−6f (1)
cc

af (2)
acc

bb + 2
{

G(0)
c , f (2)

ccc
bb
})

(2.437)

Equations are always of the form δf (n) +(. . .) = 0 where the (. . .) need to be shown to be δ-closed which
is sufficient to make them exact. So works like previous proofs.

12Note that Q is a formal sum of multivector valued forms and that {Q,Q} = 0 corresponds to the vanishing of some algebraic
and some differential brackets between them. In topological sigmal models this can be used to implement integrability conditions
of a Poisson structure or a complex structure or similar in target space via a BRST charge. ⋄

48



• The complete BRST transformations read

scc = − 1
2f

c
abc

acb

︸ ︷︷ ︸

d(L)c
c

+
∑

r≥1

(−)r+1

r!(r+2)!(c
c)r+2f (r+1)

c...c
b...bc(bb)

r (2.438)

sba = Ga
︸︷︷︸

δba

− 1
2c

cfac
bbb

︸ ︷︷ ︸

d(L)ba

+
∑

r≥2

(−)r
r!r! (c

c)rf (r)
ac...c

b...b(bb)
r (2.439)

syM = caXM
a

︸ ︷︷ ︸

d(L)y
M

− 1
2bcc

acb{f cab, yM}+
∑

r≥2

(−)r
r!(r+1)!(c

c)r+1(bb)
r
{

f (r)
c...c

b...b, yM
}

(2.440)

• Being a canonical transformation makes the BRST differential (and thus its cohomology) compatible with
the Poisson bracket:

s{F,G} = {sF,G}+ (−)F {F, sG} (2.441)

This means that if F and G are BRST-closed, also {F,G} is closed. Furthermore, if F = sK is BRST
exact and G is closed, the result is also exact, as it should be

{sK,G} = (−)Ks{K,G} for sG = 0 (2.442)

2.4.3 BRST differential as a symmetry-transformation

• The gauge fixed action

SK [yM , ca, ba] =

∫

dt( q̇mpm
︸ ︷︷ ︸

ẏMAM (y)

+ċaba −H − {Q,K}) (2.443)

is invariant under the global BRST symmetry

sSK = 0 ∀K (2.444)

Similarly as for a conventional gauge fixing (like just putting λa = 0 in the original first-order Lagrangian),
the constraints Ga = 0 are not obtained from the equations of motion any longer (although they now hold
on the cohomological level).

• If we had started from the beginning with a first order action S[q, p, λ] =
∫
q̇p−H0 − λaGa , then (apart

form the second class constraints πp = 0, πq = p) we would obtain first class constraints πa ≡ πλa = 0
on the momenta conjugate to the Lagrange multipliers. They can be dealt with the introduction of
corresponding ghost fields ρa and conjugate momenta c̄a together with the BRST transformations

s̄ca = πa, sπa = 0 (2.445)

sλa = ρa, sρa = 0 (2.446)

They form a so-called topological quartet which drops out of the cohomology completely, because each
variable is either exact or not invariant. The auxiliary variables (λa, πa,ρ

a, c̄a) are known as non-minimal
sector (one could add more...). So the non-minimal contribution to the BRST charge is

Q → Qmin +Qnm (2.447)

Qnm = ρaλa (2.448)

The gauge fixed action extends to

SK [yM , ca, ba, λ
a, πa,ρ

a, c̄a] =

∫

dt( q̇mpm
︸ ︷︷ ︸

ẏMAM(y)

+ċaba + λ̇aπa + ρ̇ac̄a −H − {Q,K}) (2.449)

A very common type of gauge fixing fermion is now

K = χa(y)c̄a + λaba +
some constant

α
2 c̄a g

ab

︸︷︷︸

somemetric

πb (2.450)
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Let us first ignore the last term (i.e. take α = 0). The BRST transformation of the second term will
reintroduces the term λaGa (which we had in the original first order action) and the first term will
effectively induce a derivative gauge for the gauge degrees of freedom λa of the form λ̇a = χa:

SK [yM , ca, ba, λ
a, πa,ρ

a, c̄a] =

∫

dt

(

q̇mpm
︸ ︷︷ ︸

ẏMAM (y)

+ċaba + λ̇aπa + ρ̇ac̄a −H + (2.451)

−
(
χa(y)πa + λa(Ga + cbfab

cbc + . . .) + sχa(y) · c̄a + ρaba +
α
2 πag

abπb
)

)

• Only if α 6= 0, one can use the equations of motion for πa

δSK

δπa
= λ̇a − απa (2.452)

to integrate out πa (replace it in the action by the solution πa = 1
α
λ̇a). Always if K is such that one can

eleminate πa, it is called a propagating gauge.

• If the higher terms ... in (Ga+cbfab
cbc+. . .) are not present (happens when fab

c is constant), the situation
simplifies, because one can then integrate out ba and ρa in pairs

δS

δbc
= −ċc + cbfab

c + ρc (2.453)

δS

δρa
= − ˙̄ca − ba (2.454)

Can eliminate bc = − ˙̄cc and ρc = ċc − cbfab
c

SK [yM , ca, λa, πa, c̄a] =

∫

dt

(

q̇mpm
︸ ︷︷ ︸

ẏMAM (y)

−H − λa
(
Ga − (cbfab

c ˙̄cc)
)

︸ ︷︷ ︸

BRST−inv ext of Ga

+

+(c̈a − sχa(y)) c̄a +
(

λ̇a − χa(y)
)

πa
︸ ︷︷ ︸

s((λ̇a−χa(y))c̄a)

−α2 πagabπb
)

(2.455)

where we used

s̄ca = πa, sπa = 0 (2.456)

sλc = ċc − cbfab
c (2.457)

sλ̇c = c̈c − ċbfab
c (2.458)

The above gauge fixing make contact to the original Faddev-Popov ghosts, where ca were the ghosts and
c̄a were the antighosts.

• Remark on the Bosonic string: One BRST-exact term is added to the Lagrangian, which at the same time
fixes the gauge and introduces a ghost-kinetic term:

s((gzz − ĝzz)c̄zz) = (gzz − ĝzz)πzz
︸ ︷︷ ︸

Lgauge−fix

+ ∂̄czc̄zz
︸ ︷︷ ︸

Lgh

(2.459)

2.4.4 Some more comments

• If the structure “constants” fab
c in the constraint algebra {Ga, Gb} = fab

cGc are not constant, then the
corresponding symmetry transformations close only on the constraint surface:

[δa, δb] = 2{G[a, {Gb],−}} = (2.460)

Jacobi
= {{G[a, Gb]},−} = (2.461)

= {fabcGc,−} = (2.462)

= fab
cδc +Gc{fabc,−}

︸ ︷︷ ︸

≈0

(2.463)

The last term vanishes in general only on the constraint surface. The algebra is then said to be off-shell
non-closed or open. Together with the previously mentioned fact that every on-shell vanishing gauge
symmetry is a trivial gauge symmetry, this last term has to be a trivial transformation.
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• For a closed algebra one can according to [Henneaux, p.47] complete every weekly gauge invariant function
to a strictly gauge invariant function: [Ga, F ] ≈ 0⇒ ∃F ′ ≈ F with [Ga, F ] = 0

• The generator j0 of a global symmetry is a first class function, i.e. commutes with all constraints. (solutions
of eom’s are mapped to solutions). j0 can thus be (via the isomorphism π) extended to be BRST-invariant
and then generate a symmetry that commutes with BRST

• The higher ghost number cohomologies H1(s), H2(s) are related to anomalies.

• The BRST generator Q is BRST exact, because it has ghost number 1:

{Jgh,Q} = Q (2.464)

or sJgh = −Q (2.465)

• The BRST charge is unique up to canonical transformation in extended phase space Q→ Q+ {X,Q}.
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