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Superstrings in General Backgrounds

In der vorliegenden Arbeit werden einige Aspekte des Superstrings im allgemeinen Hintergrund betrachtet.
Die Arbeit besteht im Wesentlichen aus drei Teilen: Der erste studiert die Vorraussetzungen, unter denen man
bosonische Strukturgleichungen in graduierte (z.B. im Superraum) iibertragen kann und formuliert diese in
einem Satz. Auf diesen Betrachtungen basierend werden Konventionen verwendet, die graduierungsabhingige
Vorzeichen absorbieren und die als Grundlage der Rechnungen des zweiten Teils dienen.

Der zweite Teil beschreibt den Typ II Superstring mithilfe von Berkovits’ “pure spinor” Formalismus. Die
darin u.a. enthaltene Einbettung in einen Target-Superraum ermdglicht im Gegensatz zum iiblichen Ramond-
Neveu-Schwarz Formalismus eine direkte Kopplung des Strings an Ramond-Ramod-Felder. Er eignet sich damit
gut fiir ein Studium des Superstrings in allgemeinen Hintergriinden. In der Arbeit wird die Herleitung der “Su-
pergravity Constraints” aus der klassischen BRST-Invarianz sorgfiiltig rekapituliert. Die Herangehensweise un-
terscheidet sich dabei in einigen Punkten von der urspriinglichen Herleitung von Berkovits und Howe. So
bleibt die Betrachtung im Unterschied zu deren Rechnung vollstindig im Lagrange Formalismus und zur
besseren Strukturierung der Variationsrechung wird ein kovariantes Variationsprinzip eingesetzt. Hinzu kommt
die Anwendung des im ersten Teil formulierten Satzes. Auch die Reihenfolge, in der die Constraints erzielt
werden, weicht von Berkovits und Howe ab. Als neues Resultat werden die BRST Transformationen aller
Weltflichen-Felder hergeleitet, die bisher nur fiir den heterotischen Fall bekannt waren. Ein entscheidender
weiterer Schritt ist schlieflich die Herleitung der lokalen Supersymmetrie-Transformation der fermionischen
Targetraum-Komponenten-Felder.

Dies liefert den Ubergang zur sogenannten verallgemeinerten komplexen Geometrie (GCG), die Bestandteil
des letzten Teiles der Arbeit ist. Die vierdimensionale effektive Supersymmetrie innerhalb einer zehndimen-
sionalen Typ-II Supergravitation bedingt eine “verallgemeinerte Calabi Yau Mannigfaltigkeit” als Kompakti-
fizierungsraum, welche wiederum mit Methoden der GCG beschrieben werden kann. In der vorliegenden Arbeit
wird gezeigt, dass Poisson- oder Antiklammern in Sigmamodellen auf natiirliche Weise sogenannte “derived
brackets” im Targetraum induzieren, darunter auch die Courant Klammer der GCG. Weiters wird gezeigt, dass
der verallgemeinerte Nijenhuis Tensor der GCG bis auf einen de-Rham geschlossenen Term mit der “derived
bracket” der verallgemeinerten Struktur mit sich selbst {ibereinstimmt, und eine neuartige Koordinatenform
dieses Tensors wird prasentiert. Der Nutzen der gewonnenen Erkenntnisse wird dann anhand von zwei Anwen-
dungen zur Integrabilitét verallgemeinerter komplexer Strukturen demonstriert.

Der Anhang der Arbeit enthilt eine Einfilhrung in einige Aspekte von GCG und “derived brackets”. Des-
weiteren werden u.a. das Noether Theorem, Bianchi Identititen, WZ-Eichung und I'-Matrizen in zehn Dimen-
sionen besprochen.
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Superstrings in General Backgrounds

In the present thesis, some aspects of superstrings in general backgrounds are studied. The thesis divides
into three parts. The first is devoted to a careful study of very convenient superspace conventions which are a
basic tool for the second part. We will formulate a theorem that gives a clear statement about when the signs
of a superspace calculation can be omitted. The second part describes the type II superstring using Berkovits’
pure spinor formalism. Being effectively an embedding into superspace, target space supersymmetry is manifest
in the formulation and coupling to general backgrounds (including Ramond-Ramond fields) is treatable. We
will present a detailed derivation of the supergravity constraints as it was given already by Berkovits and Howe
some years ago. The derivation will at several points differ from the original one and will use new techniques
like a covariant variation principle. In addition, we will stay throughout in the Lagrangian formalism in contrast
to Berkovits and Howe. Also the order in which we obtain the constraints and at some points the logic will
differ. As a new result we present the explicit form of the BRST transformation of the worldsheet fields, which
was before given only for the heterotic case'. Having obtained all the constraints, we go one step further and
derive the form of local supersymmetry transformations of the fermionic fields. This provides a contact point of
the Berkovits string in general background to those supergravity calculations which derive generalized Calabi
Yau conditions from effective four-dimensional supersymmetry. The mathematical background for this setting
is the so-called generalized complex geometry (GCG) which is in turn the motivation for the last part.

The third and last part is based on the author’s paper on derived brackets from sigma models which was
motivated by the study of GCG. It is shown in there, how derived brackets naturally arise in sigma-models via
Poisson- or antibrackets, generalizing an observation by Alekseev and Strobl. On the way to a precise formulation
of this relation, an explicit coordinate expression for the derived bracket is obtained. The generalized Nijenhuis
tensor of generalized complex geometry is shown to coincide up to a de-Rham closed term with the derived
bracket of the structure with itself and a new coordinate expression for this tensor is presented. The insight is
applied to two-dimensional sigma models in a background with generalized complex structure.

The appendix contains introductions to geometric brackets and to aspects of generalized complex geome-
try. It further contains detailed reviews on aspects of Noether’s theorem, on the Bianchi identities (including
Dragon’s theorem), on supergauge transformations and the WZ gauge and on important relations for I'-matrices
(especially in ten dimensions). A further appendix is devoted to the determination of the (super)connection
starting from different torsion- or invariance constraints.

IThese transformations were presented already in the original version of August 16, 2007. In the meantime another paper
[1] independently presented BRST transformations for the type ITA string, although in a very different setting, based on free
differential algebras. Note also another interesting paper on the pure spinor string in general background [2] which has appeared
in the meantime and takes into account recent developments in Berkovits’ formalism. ¢
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Some remarks in advance

e The part about the superspace conventions is interesting in itself and was a significant part of my research
work. This is why it was not put into the appendix. However, you can read the other parts without this
one. Only if you want to follow some calculations in detail, you might miss some signs. Latest at this
point you should study the part about the superspace conventions before you assume that you have found
a mistake.

e Capital indices M in the part about derived brackets and generalized geometry contain tangent and
cotangent indices, while in the context of superspace they contain bosonic and fermionic indices. In the
latter case we have M = {m, u, 1}. The two fermionic indices are sometimes collected in a capital curly

index M = {p, 1}.

e The thesis-index at the end contains also a list of most of the used symbols. So in case you start somewhere
in the middle of the document and would like to know, where some symbols or notations were introduced,
have a try to look at the index.

e There are a couple of propositions contained in this thesis. They simply contain more or less clear
statements that one could have given in the continuous text as well. In particular, their formulations
and proofs are mostly not of the same rigorousness as one would expect it in mathematical literature. In
addition, there is no clear rule which statements are given as proposition and which are only given in the
text. The ones in propositions are important, but the ones in the text can also be ...

e Everything in this thesis has to be understood as graded. Graded antisymmetrization will just be called
‘antisymmetrization’ and the square brackets [...] will be used to denote this, no matter if the graded
antisymmetrized objects are bosonic or fermionic. Likewise, the supervielbein will often just be called
‘vielbein’. Only at some points the terms 'graded’ or ’super’ will be explicitly used.

e It is a somewhat strange habit to desperately avoid the word “I” in articles, in order to express ones
own modesty. Writing instead “the author” seems unnecessary long and writing instead “we” resembles
the pluralis majestatis, and T don’t see how this can possibly express modesty (although one then calls
it pluralis auctoris or even pluralis modestiae). In spite of this, I got used myself to use frequently (and
without thinking) the word “we”. Understanding it as pluralis modestiae is probably only possible if one
can replace “we” with “the reader and myself”, for example in “we will see in the following ...”. However,
you, the reader, would probably loudly protest when I write things like “we think ...” or “we have no
idea why...” and claim that the reader is included. Nevertheless, I am afraid that sentences like this will
appear quite frequently and in order to avoid inconsistencies, they have to be understood as the pluralis
magestatis ...

e The symbol ¢ marks the end of a footnote. If this mark is missing, it means that the footnote is continued
on the next page or that I simply forgot to put it . (This remark was simply copied from my diploma
thesis, but at least I have changed the footnote symbol and the language)

e This document was created with LyX which is based on ETEX.

vii
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Introduction



CONTENTS 9

This thesis is devoted to superstrings in general backgrounds, but it will of course restrict to only some
aspects, leaving out many important areas.

Apart from a few other simple cases, the quantized superstring is well understood only in a flat background
where the worldsheet fields have basically free-field equations of motion. The physical spectrum of a string in flat
background, however, contains itself fluctuations around this background. A huge number of strings therefore
can sum up to a non-vanishing mean background field, for example a curved metric or even Ramond-Ramond
bispinor-fields. The worldsheet dynamics for the individual strings then has to be adjusted. In other words,
it is very natural to study the superstring in the most general background. Consistency conditions from the
worldsheet point of view implement constraints and/or equations of motion on the background fields. On the
worldsheet level, the form of the consistency conditions depends very much on the formalism one is using to
describe the superstring. In general, the gauge symmetries or alternatively BRST symmetries of the action in
flat background should be present in some form also for the deformed action (string in general background),
especially after quantization. For the Ramond-Neveu-Schwarz (RNS) string, with worldsheet fermions, this
boils down to the quantum Weyl invariance of the action, which also yields the critical dimension. For the
Green Schwarz (GS) string and for the Berkovits pure spinor string (to be explained later), there are instead
additional conditions. For the Green Schwarz string, the so called x gauge symmetry has to be preserved, while
for the Berkovits pure spinor string one has to guarantee the existence of a BRST operator which has the form
Q = §dzA%d,o in the flat case. In fact, in the latter two cases, the BRST symmetry and the x-symmetry
are already strong enough to implement the background field equations of motion at lowest order in o/, i.e.
supergravity, such that quantum Weyl invariance does not give additional constraints at this order.

There are of course backgrounds which are more interesting than others for phenomenological reasons. First
of all, as we are observing four spacetime dimensions, we expect to live in a solution to the background field
equations where 6 of the 10 dimensions are compactified on a small radius, such that they are effectively not
visible. This compactification has to be compatible with the supergravity equations, but without restrictive
boundary conditions there are infinitely many possibilities. For a long time, people were hoping that there is
a dynamical mechanism, preferring precisely the compactification (or ’vacuum’) that corresponds to our world.
By now it seems more and more likely that there is no such mechanism or at least not such a strong one.
Instead, the picture might be that we are simply sitting in a huge ’landscape’ of possible vacua, where some of
them are more probable than others. As there is such a huge number of effective four dimensional theories, it
seems improbable that ’our world’ is not contained in them. Of course, being able to derive the real world from
string theory is a necessary requirement, if this theory is supposed to be more than just interesting mathematics.
By now there exists a huge model building machinery. People are considering orbi- and orientifolds and are
putting intersecting D-branes into the compactification manifold. The number of possibilities is huge. Quite
a lot of models come reasonably close to the standard model, but none of them really matches. But even if
there might be a lot of justified criticism to string theory, this particular problem of finding the real world is
rather a matter of time. So far, only a very tiny, mathematically treatable subset of solutions has been studied
and it would have been a lucky coincidence to find a suitable vacuum in a simple setting. The bigger problem
might show up only after finding a vacuum which effectively reproduces the standard model: there might be
a still big number of different models which likewise reproduce the standard model. Without knowing all of
them and their common properties, one cannot really make predictions about so far unknown physics. This is,
however, not an argument against string theory. If there is another theory, unrelated to string theory, which
also describes correctly the standard model and gravity, then this model simply has to be added to the set of all
models which describe the so far observable physics consistently. There is no reason to throw out the ones that
might have been obtained from string theory. Any approach that can consistently describe the so far observable
physics is of course admissible.

It is not the immediate aim of this thesis, however, to describe observable physics, but to study the string
in a general background in ten dimensions. As argued above, one can be optimistic that someone will find real
physics within string theory. But sometimes it is easier to recognize simplifying structures in the general setting
and not in some particular cases. Moreover, considerations like this should survive changes in the communities
opinion of what is an interesting model to look at. This was the idea, but in the end, not everything in this
thesis is as general as it should be. First of all, mainly classical closed strings in a type II background are
considered. At some places we keep boundary terms for later studies of open strings. Secondly a whole part
of the thesis is inspired by generalized complex geometry. This in turn is related to a not very special but still
special type of compactifications. Let us recall this in the following lines:

Again for phenomenological reasons, in particular the hierarchy problem, it is reasonable to expect that the
four dimensional effective theory resulting from compactification is N = 1 supersymmetric. For that reason,
Candelas, Horowitz, Strominger and Witten introduced in 1985 [3] Calabi Yau manifolds into string theory.
These manifolds are Ricci flat and obey therefore the Einstein field equations in vacuum. The supersymmetry
constraint then corresponds to the existence of a covariantly conserved (w.r.t. Levi Civita) Spin(6)-spinor.
Soon after, Strominger realized in [4] that a background B-field, in combination with a non-constant dilaton, is
also consistent with supersymmetric compactification. Nevertheless, there has been very little activity on this
more general case while the Calabi-Yau case was intensively studied. This intensive study lead to invaluable
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insights concerning dualities and the form of the landscape in the Calabi-Yau case.

Only quite recently the importance of the general case including fluxes was properly noticed. It was realized
that the Calabi-Yau condition gets replaced by a “generalized Calabi-Yau” condition, which brings the so-called
generalized complex geometry into the game. See the introduction to part III on page 117 for the relevant
references. The derivation of this is mainly based on supergravity calculations. Starting from ten dimensional
type II supergravity one demands effective N = 1 supersymmetry in four dimensions after compactification
[5, 6]. The results could in general be modified by string corrections. In order to study this, one has to set up
the problem in the worldsheet language. In other words, the superstring has to be placed into a general type II
background.

The first striking fact is that there is so far no treatable way to couple the RNS string to Ramond-Ramond
fields. Ramond-Ramond fields can be either seen as bispinors (fields with two spinorial indices) or equivalently
(expanding in I'-matrices) as a collection of differential p-forms. Pullbacks of p-forms with p bigger than two
vanish on the worldsheet. Likewise we do not have elementary fields with spacetime spinor indices in the RNS
description. This is in short the reason why coupling to the RR-fields is an open issue in the RNS formalism.
The natural alternative is the GS string which is basically an embedding of the string into a target superspace.
The fermionic superspace coordinates or their momenta provide natural candidates for the coupling to the
RR-bispinor-fields. This formalism, however, happens to have a fermionic gauge symmetry whose constraints
are infinitely reducible and would require an infinite tower of ghosts for ghosts in the standard BRST covariant
quantization procedure. It can be quantized in flat space in the light cone gauge and shown to be equivalent to
RNS, but higher loop calculations are difficult because of the lack of manifest covariance.

The problem of covariant quantization of the GS superstring was bothering people for many painful years
without real progress until Berkovits came up in 2000 with an alternative formalism [7], based on commuting
pure spinor ghost variables, which can be covariantly quantized in the flat background. It is similar to the GS
string in that the target space is a supermanifold, but the origin of the pure spinor ghost is still a bit mysterious.
This ghost field and the corresponding BRST operator are related to the k-symmetry of the GS string, but the
relation is not very transparent. In addition, the pure spinor condition is a quadratic constraint on the spinorial
ghosts, which seemed in the beginning not very attractive. For this reason there were several attempts to get
rid of this constraint or at least to explain its occurrence. The beginning of my PhD research was devoted to
a promising approach by Grassi, Porrati, Policastro and van Nieuwenhuizen|8, 9, 10, 11| and I will give a few
remarks about this at a later point. By now the need for an alternative formalism has decreased, as Berkovits
managed to give a consistent multiloop picture in [12]. In any case the pure spinor formalism seems to provide
the adequate tool to study the superstring in curved background. On the classical level this has already been
done in [13]. It was shown that classical BRST invariance of the pure spinor string in general background
already implies the supergravity constraints on the background fields.

One major subject of the thesis is to rederive this important result with different techniques. All steps will
be carefully motivated and the calculations given in detail. Most importantly the calculation given in this thesis
can be seen as an independent check, as it is done entirely in the Lagrangian formalism in contrast to [13].
Moreover, a covariant variational principle will be established and used to calculate the worldsheet equations
of motion. Some results are obtained in a different order but match in the end. One new result is the explicit
form for the BRST transformations of the worldsheet fields of the type II string in general background, which
were so far only presented for the heterotic string in [14]. After the derivation of the constraints, we go one
step further and derive the supergravity transformations of the fermionic fields. The transformations are in
principle well known, but the idea is to obtain them in the parametrization of the fields in which they enter
the pure spinor string. The supersymmetry transformations of the fermionic fields are the starting point for
the derivation of the generalized complex Calabi-Yau conditions for supersymmetric compactifications. Having
a closed logical line from the pure spinor string to generalized geometry hopefully opens the door for the study
of quantum or string corrections to this geometry. There is still a part missing in this line from the Berkovits
string to generalized complex geometry, as we will end with the presentation of the supergravity transformations
and not proceed with the derivation of the generalized Calabi-Yau conditions. Again, this calculation would
not deliver new results (following [5, 6]), but it would be important to have everything in the same setting and
with the same conventions. One might expect in addition that the superspace formulation will give additional
insight to the geometrical role of the RR-fields. They are so far only spectators in generalized geometry. A
bispinor is from the superspace point of view just a part of a rank two tensor, and it seems natural to include it
into geometry by establishing some version of generalized supergeometry. See also in the conclusions for other
possible extensions.

Another new feature of the re-derivation of the supergravity constraints from the pure spinor string is
the rigorous (and in some sense very unusual) application of some powerful superspace conventions. To be
more precise, we are going to use conventions where all the signs which depend on the grading are absorbed
via the use of a graded summation convention and a graded equal sign. This a not a completely new idea and
northwest-southeast conventions (NW) or northeast-southwest conventions (NE) already reflect this philosophy.
Nevertheless most of the authors still write the signs and take the rules of NW and NE only as a check. Only
in [15], T have found an example where the signs were likewise absorbed. However, a careful study, under
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which circumstances this is possible seemed to be missing. This is the subject of part I on page 6. This
part is more than just the declaration of the used conventions. The upshot is the formulation of a theorem
about when the grading dependent signs may be dropped. The application to supermatrices shows that the
underlying ideas lead to slightly different definitions of e.g. supertraces or some matrix operations. Using these
definitions, all equations take exactly the form they have for bosonic matrices. In particular the equation for
the superdeterminant reduces to an equation which holds in the very same form for purely bosonic matrices.

Applying this philosophy to the Berkovits string calculation has some strange effects. Most importantly,
the commuting pure spinor ghosts are treated as anticommuting objects. And likewise confusing, the chiral
blocks vg of the 10-dimensional I'-matrices are treated as antisymmetric objects although they are in fact
symmetric. This nevertheless makes perfect sense and the confusion is not, because the conventions themselves
are confusing, but because of the difference to what one is used to. It is therefore a very nice confirmation
of the consistency of the conventions that the quite lengthy calculation with the pure spinor string in general
background went through and led to the same results as the original calculation. No single grading dependent
sign had to be used. The part about the superspace conventions — although very interesting in itself — is not
needed to understand the basic steps and ideas of the other parts. Finally it should be mentioned that the
appendix about I'-matrices in ten dimensions is written in ordinary conventions for ’historical reasons’. It is,
however, simple to translate the equations to the other convention where needed.

There is finally part IIT on page 117 of the thesis, which is dealing basically with so called derived brackets
and how they arise in sigma models. This part is based on my paper [16]. The efforts to understand some aspects
of the integrability of generalized complex structures have led to the observation that super Poisson brackets and
super anti-brackets of worldsheet-supersymmetric or topological sigma models induce quite naturally derived
brackets in the target space. A more detailed introduction and motivation for this part is given at its beginning.

The structure of the thesis is as follows: We start in part I on page 6 with the discussion of the superspace
conventions. In part IT on page 39 we will consider Berkovits pure spinor string. After a short motivation for
the formalism — coming from the Green Schwarz string — the derivation of the supergravity constraints will
be given and the supergravity transformations of the fermionic fields will be derived. In part III on page 117
the appearance of derived brackets in sigma models and the relation to integrability of generalized complex
structures is discussed. All parts contain their own small introduction. After the Conclusions on page 143 there
are a number of more or less useful appendices. It starts with notations and conventions in appendix A on
page 145. This appendix does of course not contain the superspace conventions which are treated in part I. Note
also that there is an index at the end of the thesis (page 233) which should contain most of the used symbols.
Appendices B on page 148 and C on page 159 give introductions to some aspects of generalized complex geometry
and derived brackets, respectively. Appendix D on page 167 summarizes some important facts and equations
for I'-matrices with an emphasis on the ten-dimensional case. In particular the explicit representation is given
and the Fierz identities for the chiral submatrices are derived. Appendix E on page 181 presents the Lagrangian
version of the Noether theorem and the Noether identities. Additional statements which are important for
our BRST invariance calculations of the pure spinor string are likewise given. Appendix F on page 189 recalls
the general definitions of torsion, curvature and H-field (valid as well in superspace) . It likewise recalls the
derivation of the Bianchi identities and gives the proof for a slightly modified version of Dragon’s theorem [15]
about the relation of second and first Bianchi identities. Appendix G on page 199 contains a general discussion
on how the connection is determined by invariance conditions and certain constraints on torsion components.
The simplest example is of course the Levi Civita connection which is given by invariance of the metric and
vanishing torsion. In ten dimensional superspace there is no canonically given superspace metric. In this
appendix it will be discussed how the connection is reconstructed from more general constraints, like a given
non-metricity or preserved structure constants. In addition the Levi Civita connection will be extracted from a
given general superspace connection. And finally, in appendix H on page 206, the Wess Zumino gauge will be
reviewed in a general setting. This gauge is useful and natural to eliminate auxiliary gauge degrees of freedom.
By fixing part of the superdiffeomorphism invariance, one recovers ordinary diffeomorphism invariance and local
supersymmetry. This will be used in part IT on page 39 to determine the supergravity transformations of the
fermionic background fields of the pure spinor string.
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Chapter 1

The general idea and setting

Most bosonic definitions or equations have a natural generalization to superspace. There are, however, always
sign ambiguities in the super-extensions of the definitions. For this reason, bosonic structural equations only
hold up to signs in the superspace or graded case. The information that they hold up to signs is already a useful
qualitative statement, but it can be very cumbersome to determine the correct signs. Rules like northwest-
southeast or northeast-southwest were introduced to fix the sign ambiguities. These rules in principle allow to
reconstruct the grading dependent signs from the structure of the equation. It is then a natural step to drop
all the signs during the calculations and reintroduce them only at the very end. Or in other words, simply take
over the results from a bosonic calculation and decorate it with the appropriate signs. But as usual, there exist
some subtle cases in which a strict application of the sign rules compromises some other philosophy or is simply
not possible. For this reason a large majority of people working in that field prefer to carry along all the signs
and leave them away only in intermediate steps where it is obvious that no problems will occur. A paper by
Dragon [15] is the only example I know, where the parity-dependent signs are left away completely. Nevertheless
a precise formulation of the conditions under which this is possible still seems to be missing. Statements like
“everything works basically the same in the fermionic case, but one has to be careful with the signs” are used
frequently in talks. This is the reason, why we want to find out the precise form of the above conditions. In
addition, this idea can probably be applied to many more situations than it was done so far. In this first part
of the thesis, we try to fill part of this gap.

1.1 Leading principle, graded Einstein summation convention

The leading principle of our conventions is that every abstract calculation looks formally exactly the same as in
the bosonic case. All modifications (signs etc) which are due to the fact that there are anticommuting variables
involved should be assigned only in the very end, to the result of a purely bosonic calculation.

The conventions will be based on either northwest-southeast (NW for short) or northeast-southwest (NE for
short) conventions, which we will explain a bit below. The NW convention is used for example in some standard
references as [17, 18] while in B. DeWitt’s book on supermanifolds [19] the NE convention is used (although
this is not immediately obvious, due to his notation with some indices on the left). It is important, however,
that we will in the end have a formalism which looks exactly the same for NW and NE.

Our considerations will mainly treat objects with indices, for example - but not necessarily - coordinates
or tensor components. We assume that there is an associative product among the objects being distributive
over a likewise present abelian group structure (the sum). Sometimes we have even several of such products
(tensor product or wedge product, product of components, ... ), which all will be treated in the same way. The
described setting simply forms a general associative algebra. But let us start with the motivating example.

Let 2 be the coordinates in a local patch of a supermanifold. Assume that the first components are bosonic
and the following are fermionic (anticommuting).

M = (@™ = (2™, 0M) (1.1)
The somewhat unusual choice of a curley capital letter for the fermionic indices will be convenient for part IT on

page 39. There we have two different spinorial indices that we combine in the capital curled one: ™ = (x#, 2#).
As usual, we assign a grading to the indices according to the split into bosonic and fermionic variables.

Mo _ 0 for M =m
For grading-dependent signs we use the shorthand notation
(Y = (= (1.3)
(_)K(M+N) = (_1)IKI(IM\+\NI) (1.4)
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A general object of interest is an object with r, upper and r; lower indices (e.g. a rank (r,,r;)-tensor, but
our conventions should also extend to non-tensorial objects like connection-coefficients). The overall grading of
such an object is

|TMl...MuN1le| = |T|+ | M |+...+ | My |+ | N |+...4+ ]| N | (1.5)

where a nonvanishing grading | T | of the “body” of the object (let us call it the rumpf, in order not to mix it
up with the body of a supernumber) makes sense when there are ghosts involved, i.e. objects, with the same
index-structure as the coordinates, but opposite grading.

1 for M =m
0for M =p

c is a ghost

M =lel +| M| 4] 07 = { (16)
Also for differential forms we will have in general a grading that differs from their index-grading. E.g. for the
cotangent basis elements, we will assign the grading | &™ |=|d| + | M |= 1+ | M |.

Superspace coordinates ™, the element dc? of the exterior algebra and the classical ghost field ¢ are
examples of graded commuting objects which are the main motivation for the following discussion. Let us

therefore give the definition:
a,b are graded commuting : <= ab = (—)"ba (1.7)

For objects where part of the grading is assigned to the indices, this simply becomes
a™ bY are graded commuting : <= oMp" = (—)(a+M)(b+N)bNaM (1.8)

Before we come to our conventions, let us quickly remind the existing ones which already have the basic
idea inherent. The generalization of definitions from the commuting (bosonic) case to the graded commuting
case is not unique. A very simple example is the interior product which has in local coordinates the form
LW = Zm V"W, = Zm wmv™. If one wants to extend this definition to vectors and forms that have graded
components as well, the order makes a difference. In the northwest-southeast convention (NW for short)
the extension is chosen in such a way that there is no additional sign if the contraction of the indices is from the
upper left (northwest) to the lower right (southeast), i.e. 2w = >, vMwy = 3 ,,(—)MwpoM. Within the
northeast-southwest convention (NE for short) instead, there is no sign when contracting from the lower
left to the upper right: 1,w =3 ,, wpmv™ =3, (=) MvMw)y,.

It is also possible and sometimes very convenient to use a mixed convention with different summation
conventions for different index subsets. One could for example define 1,w =3 (V"wp, + vFwy + (=) 0wy ).
We will come back to this below.

The above definitions are ’definitions by examples’. There will be additional examples in what follows. In
any case, the philosophy of NW and NE is that for every new definition, possible ambiguities are fixed by the
contraction directions. This should give a unique way of generalizing bosonic equations and already implies the
possibility that one can calculate in a purely bosonic manner and reconstruct the signs at the very end, at least
under certain conditions.

In our convention, we will completely omit those signs which are encoded in the structure of the terms. NW,
NE or mixed conventions then formally look the same, and there is no reason to decide a priori for one of them.
During the derivation and motivation we will always give the signs for NW and only in important cases for NE.

One of the main ingredients of our conventions will be what we call the graded Einstein summation
convention: repeated indices in opposite positions (upper-lower) are summed over their complete range, taking
into account additional signs corresponding to either NW, NE or mixed conventions.

S ()M aMpy, for NW boaM = { Sy (—) MMy aM for NW
M =

M _
= { S ()M gMp, for NE S (=) MbyraM for NE (1.9)

The factor (—)™ appears always in the “wrong” contraction direction (i.e. in a NE contraction in NW conventions
and vice verse). The factors (—)* and (—)* bring the contracted indices next to each other. This definition of
the graded summation convention guarantees (in both cases, NW and NE) the following important properties:

e All signs which depend on the grading of the dummy-indices, disappear in the equation for graded com-
mutativity. If ¢ and by; are graded commuting objects with aby = (—)(a+M)(b+N)bNa”1 then the
definition (1.9) simply implies for their contraction

by = (=) ®bpra™ (1.10)
e In an associative algebra it is important that the definition of the graded sum is compatible with associa-

tivity. Taking a third algebra element ¢ (which may or may not have an index) and multiplying from left,
we have

c(@™by) = (ca)Mby (1.11)
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This is kind of trivial, because the grading of the first rumpf-symbol in the sum in (1.9) does not enter
the definition. The other way round, however, we learn that the above property forces the definition of
the graded sum to avoid the grading of the first element.

In fact one can see the above properties as the defining properties of the graded summation convention. We could
have made a more general ansatz with a sign depending on the rumpfs a, b, the index M and the contraction
direction \, or

aby = Z(—)‘z’(“’b’M’\)aMbM, bya™ = Z(—)¢(b’“7M’/)bMaM (1.12)
M M

Demanding the associativity property (1.11) implies that ¢(a,b, M,\.) = ¢(b, M,\.), &(b,a, M, ) = ¢(a, M, ).
The graded commutativity property (1.10) then puts an additional restriction

(_)¢(b,M,\)+bM+M _ (_)¢(a,M,/‘)+aZ\/I (1_13)

This fixes the a and b dependency of (—)? completely, namely (—)?®MN) = (=)Po(MN)+OM g ()o@ M. 7) —
(—)Po(M)+aM T addition we have (—)?0(MN) = (= )M ()?o(M.”) with some ¢o. The most general definition
of the graded summation convention which has the above properties (1.10) and (1.11) therefore reads!

aMbM = Z(—)bM(*)(bO(M)aMbM, bMaM = Z(*)MJFGM(*)(%(M)I)MQM (1‘14)
M M

For ¢o(M) = 0, we arrive at NW-conventions, while for ¢o(M) =| M | we are in NE. In general the function
¢o(M) may depend arbitrarily on the index M. A natural condition is of course that for M being a bosonic
index, the summation should reduce to the ordinary one, so that we require ¢o(M) = 0 for | M |= 0. For
the fermionic indices, we could in principle define the sign differently for every single index. In superspace
applications, however, the result would then in general not be Lorentz invariant and therefore not very useful.
But as mentioned already with the introductory example of the interior product, it is consistent e.g. in extended
superspace to switch the sign between different subsets, each corresponding to a representation of the Lorentz
group. A mixed convention is also useful in phase space considerations, where we combine configuration space
coordinates ™ and momenta py; to Darboux coordinates z = (z pys). The definition of the graded
summation convention for the combined indices M will then change by (—) when the index range goes from
the coordinate index to the momentum index.

By now we have defined in (1.9) or (1.14) only an index contraction between two graded commuting objects.
The first generalization is to allow a™and by, to be not necessarily graded commuting. The definitions (1.9) or
(1.14) make still sense and (1.11) is still fulfilled, if a™ and by, are elements of an associative algebra. There is
no good argument to modify the definition in this more general case. Finally, we go one step further and assume
that b in a™ by, is not necessarily an algebra element, but simply a placeholder for either indices or rumpfs which
can carry gradings. Likewise a will also be allowed to contain indices in addition to one or more rumpfs. Ie.,
we could replace b by an index b — , to get a definition for a™ xj,. We could even remove b completely
b — {} to obtain a™ j;, or replace both by s.th. more complicated: a — Agr, b — @ By yields the definition
for Ak, M po Brar- This allows to define almost all possible contractions. Unfortunately, we are in this way
restricted to expressions which end with the dummy index M. To close this gap we can introduce a third
placeholder and define aMbyre = 3 ,, ()M (=) M aMpy e and bpraMe = 3, ,(—)MFeM ()P, oM,
Similar to a, c is just a spectator and does not enter the signs in the sums. We should now check that with this
general definition the graded sum is well defined, in particular when two index pairs are contracted.

e The graded summation for more than one index pair is well-defined in the sense that the contraction-
operations commute.

In order to verify this statement, let a,b,c,d and e be placeholders in the above sense. In the following two
examples of index contractions over M and N we will first start with the M-contraction followed by the N-

1Some people prefer to have not one single Zp-grading which governs the signs in a graded commutative algebra, but to
have several distinct Zo-gradings. For example one can distinguish between the Zo grading | ... |q of differential forms (even
and odd) and the fermion grading | ... |; (fermion or boson). The graded summation convention can then be extended to
aMbyr = 3, (=) PlalMla () Ple Mg (_yoa(M) ()5 (M) qMp,  One could even introduce a seperate grading for ghost fields
| ... ]g. Although the present discussion uses only a single Zs grading, basically everything works the same for distinct gradings.
As the summation convention swallows all the grading dependent signs anyway, one can even decide only at the end, which picture
one prefers. ¢
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contraction and then reverse the order. The simple case is when one contraction encloses the other:

aMpyeNdy, M Z(_)¢0(M)(_)M(b+N+C+N+d)aMchNdM = (1.15)
M
_ Z (_)¢O(M)+¢0(N)(_)M(b+N+c+N+d)(_)Nc+NaMbNCNdM (1.16)
M,N
ﬁrséN Z(_)¢O(N)(_)cN+Na]\/IbNCNdM _ (117)
M
= D ()RR OD (NN (MM Ny, (118)
M,N

There is certainly no problem with the above case. But also for the case where the contractions intersect,
everything goes fine if indices which are already contracted are not taken into account in the second contraction:

anb™cNdy first M Z(_)¢0(M)(_)M(c+N+d)aNchNdM _ (1.19)
M
— Z (_)¢0(M)+¢0(N)(_)JVI(C+N+d)(_)N(b+c)+NaNchNdM (1.20)
M,N

(7)¢0(N)(f)N(b+M+C)+NaNbMCNdM = (1.21)

2
=
=z
N

(_)¢0(N)+¢0(M)(_)N(b+M+C)+N(_)M(chd)aNchNdM (1.22)

I
EM S

Let us give one last example in (NW) (upper line) and (NE) (lower line)to clarify the general treatment:

M M. N3N LNy
A e N, AN B v, = (1.23)
Z (_)Ml(K+N2+M2+B)+M2(B+N1)+N1(1+N2+B)+N2(1+B+L)+N3(1+B)AM1
My,M2,N1,N2,N3

LN,
= { > (_)Ml(1+K+N2+M2+B)+M2(1+B+N1)+N1(N2+B)+N2(B+L)+N33AM1
My ,M2,N1,N2,N3

M. N3N
KNiN; 2 Ng B2
M. N3N LN.
2Ny B v vy

KNiN»

The terrible signs in the lower lines of (1.23) are exactly those which we want to omit during calculations. We
thus will define every calculational operation in such a way that it is consistent with this graded summation
convention, s.th. one can calculate only with expressions as in the upper line of (1.23) and assign the signs only
in the end of all the calculations.

By definition all the signs which depend on dummy indices are swallowed by the definition of the graded
summation. As mentioned, the equation a™by = (—)@+ME+N)p M for graded commuting algebra elements
reduces in a sum to aMby; = (—)®bpra?. The same simplification occurs for terms with several contracted
indices, like in (1.23). Assuming that the objects there are graded commuting as well, we get

MstBNgNlMlM LNy — (_)(A+K)(B+L)BN3N1M1M2LN2AM1 Mo (124)

M
A NN, ) KNyNo' 2Ns

Although there are still signs depending on the naked indices, this is far better than without the graded
summation convention, where we would have obtained instead the full sign factor

(7)(A+M1+K+N1+N2+M2+N3)(B+N3+N1+M1+M2+L+N2) (1 25)

1.2 Graded equal sign

The graded summation convention takes care of all dummy indices. But we can still be left with naked indices
and/or graded rumpfs, which likewise produce inconvenient signs. Also the summation convention on its own
might be dangerous. To show this, look at the following example: Consider graded commutative variables
aM bM M and dM with bosonic rumpfs. Then the following equations, which are obviously correct (using our
graded summation convention)

aMvNendy — aMbNdyen = 0 Vgraded comm. a™ N, dar,en (1.26)
= aMpN (endy —dyen) = 0 Vgraded comm. a™ N dar,en (1.27)

could lead to the — in general — wrong assumption
endy —dyey = 0 Vgraded comm. dpy,cny (not true in general!) (1.28)

We therefore introduce a graded equal sign =,, which states that the equality holds if for each term a
mismatch in some common ordering of the indices is taken care of by an appropriate sign factor:

endy — dyen =g 0 <= endy — (—)MNdMCN =0 (129)
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If we imagine objects like in (1.23), the graded equal sign allows one to write down quickly correct equations
without bothering all the involved signs. And it will also lead as a guiding line for all definitions of new objects,
which should all be writable in terms of the graded equal sign, in order to make them compatible with the
graded summation convention.

The idea of how to define the graded equal sign should be clear from (1.29), but in order to be able to write
down a definition for the general case, we have to be a little more careful. For practical purposes it should be
enough to have a look at the examples following the general definition, to convince yourself that everything is
very natural and intuitive.

Let us introduce the graded equal-sign for the most general case in two steps. At first we look at equations
with only bosonic rumpfs, like in (1.26).

Graded equal sign for bosonic rumpfs

Any term T(;y of the equation (which can be a product of a lot of objects with indices) has some nonnegative
integer number k of naked indices (the vertical position of the indices does not play a role for this definition,
so we write them all upstairs, but the very same definition holds for any position). We take the first term in
the equation, call it T(l)Ml"‘Mk, as reference term. Any other term T{;) in the equation has to have the same
index set but perhaps with a different order or permutation P(; of the indices. A permutation of an index set
{Mi,..., My} is defined via a permutation of the set {1,...,k}

P(i)(Ml,...,Mk) = (MP(,i)(l)a"'7MP(i)(k))7 P(l)E]l (1.30)

In order to assign the appropriate signs to the terms, we introduce for any of the %k indices M; an auxiliary
graded commutative object o™i which carries the grading of the index

oMioMi = (—)MiMJ oMi oM (1.31)
If M; are just supercoordinate-indices, then the supercoordinates 2 themselves can be taken instead of defining

new variables 0™. Let us now define something which we call a grading structure for a given term, namely
a product of those objects o with as many factors as the term has naked indices:

gS(T(J\f)l'”]VIk) = 0M1 L OMk (132)

In the grading structures of different terms, we can rearrange the objects until all the naked indices have some
common order. For example for two terms with 3 naked indices we have

gS(T(J\14)1]v12M3) _ 0M10M20]WS (133)
gS(T(J\Q4)3M2M1) = oMs Mz, M1 _ (_)M1(1V12+]\/[3)+1\/12M30M10M201\/13 (]_34)

We call the resulting sign the relative sign of the grading structures

MP(,,)(l)"'MP(i)(k))

gs (T(l.)

) Mp, ;) 1)--Mp, (k)
= 51gn?(ﬁ§1___kfk (T(Z.)P( e Ptk ) ~gs(T(J\14)1 M’“) (1.35)

. .. . . . Mp ;) MPp;y (k)
As the rumpfs carry no grading so far, it is notationally more convenient to replace 51gngT My (T(i) ® “7)
&5

by? sign?wlmM}c (Mpm(l)...Mp(i)(,c)). For the above two terms with three naked indices we thus have

g (TM3M2M1

SignﬂM)lM?Ms (2) ) = signfy, aar, (Madadry) = (=) M MAMa)TMRMs (1.36)
1

Using this definition of the relative sign of grading structures, we can now define the graded equal sign for an
equation with general terms (but still bosonic rumpfs) as

Mp, . 1y--Mp, . (1) . . g Mp, . (1y--Mp, . (k Mp, . (1y--Mp, . (k
§ Tuy "o O® =0 <= § s1gnTMl___Mk(T(i) (i @®) Ty P ®® =0| (1.37)
- . 1)
1 T

This definition does not depend on the choice of the reference term (above it is T%”“M *), because only the rela-

L . Mp . 1)--Mp,, . Mp . 1)--Mp,,
tive sign is relevant. One can replace sign? ,,,  , (T(5)" @70 ®) by sign? WM (T Fo® T rm )
Ty T S ()
()
for any j. As mentioned above we can also replace it by simply sign?wl”_Mk (Mp(i)(l)..‘Mpm(k)).

2Note that this sign does not in general coincide with the signature of a permutation. The relative sign
signihka (P(i)(Ml,...,Mk)) coincides with the signature of the permutation F(; (which is given by minus one to the number
of switches one needs to build the permutation) only if all indices carry an odd grading. o
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In the following sections we will always give definitions and important equations with the graded equal
sign and with the ordinary one. The somewhat long-winded definition of above should therefore become more
transparent in numerous examples later on. But let us first complete our definition to the case involving graded
rumpfs. One could get rid of all graded rumpfs by shifting the grading to the indices (if present), or create a new
index with only one possible value. As this would be notationally not very nice, we stay with graded rumpfs,
but we keep in mind that a graded rumpf is similar to a naked index. Problems for including the rumpfs in the
definition of the graded equal sign appear, when the same rumpf appears several times in one term, which is
thus similar to to having coinciding naked indices:

Problem of coinciding indices:

The graded equal sign above (1.37) is only well defined if all naked indices can be distinguished. In general
calculations one usually uses different letters for each index, even if they are allowed to coincide, and then there
is no problem. What, however, if one looks at some special case with two coinciding indices? Consider the
following relations (which simply apply the definition of the graded equal sign):
(@) ToyMY =, To)" = Ty"N = (—-)NMTp) MM (1.38)
(b) T(l)MN =4 T(Q)MN = T(l)MN = T(Q)MN (1.39)

For M = N (no sum) this reads

(a) T(l)MM =4 T(Q)MM = T(l)MM = (—)N[T(Q)NIM no sum over M (1.40)
(b) T(l)MM =4 T(Q)MM <~ T(l)MM = T(2)MM no sum over M (1.41)
Now (a) and (b) obviously contradict themselves and the graded equal sign is therefore ill-defined. There are
two options to solve this notational problem. The first is to always rewrite the equation with an ordinary equal

sign before looking at any special case. The second is to make apparent the original name of the index in the
following way (this is also useful to suppress summation over repeated indices if it is not wanted)

(a) T(l)M(N:M) -, T(Q)(N:M)M — T(l)M(N:M) _ (_)MT(Q)(N:]\/[)M (1.42)
(b) T(I)M(N:M) =, T(Q)M(N:M) — T(l)M(N:M) _ T(Q)M(N:M) (1.43)

Graded rumpfs

A grading of a rumpf is like a naked index grading at the position of the rumpf. The lesson from above is, that
we can only include the rumpfs completely into the definition of the graded equal sign, if in each term every
rumpf appears exactly once. As we can’t rely that this is the case in all equations of interest, we will include the
rumpfs only partially in the definition of the graded equal sign. Namely, the graded equal sign will not compare
the order of the rumpfs, but the position of the indices with respect to the rumpfs. This is again necessary
to stay consistent with the graded summation convention. Consider therefore the same trivial example as in
(1.26), however, now with graded rumpfs

aNeydy — (=)aMbNdyey = 0 Vgraded comm. o™ 6N dyr, en (1.44)

= a"b" (endy — (—)““dpren) = 0 Vgraded comm. a™ bV, dys, ey (1.45)
We now want to simply read off
endy — (—)“dyey =, 0 Vgraded comm. dy, ey (1.46)

In order for this to be correct, we have to extend the definition of =, appropriately to the case of graded rumpfs.
Let us therefore write out the summation convention in (1.45) explicitely (in NW-conventions):

Z aMpN ((—)M(b+c+d)+NCcNdM _ (7)M(b+N+d)+N(d+c)(7)cdndN) -0 (1.47)
M,N
= (—)Meendpr — (=)MNVENY ) Mdpren = 0 (1.48)
= (_)NchdM _ (_)MN+MC(_)cddMCN - 0 (1.49)

Comparing the last line with (1.46) we get
endy — (—)CddMCN =g 0 <= (—)NdCNdM — (—)MN+MC(—)CddMCN =0 (1.50)

The graded equal sign therefore takes care of the order of the naked indices via (—)M* and of the order of the
naked indices with respect to the rumpfs, i.e. it puts their grading to the very right of all rumpfs via (—)V¢ and
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(—)Me. Only the order of the rumpfs among themselves is taken care of by hand via (—)°?. As stated before,
the correct order of the rumpfs cannot a posteriori be figured out, when some of them coincide. E.g. for d = ¢,
the above equivalence would become

eney — (—)emeny =4 0 <= (—)NdCNCM - (—)MN+MC(—)CCMCN =0 (1.51)

There is no way to deduce the sign (—)¢ from the structure of the equation itself, if one doesn’t see it as a
special case of (1.50). The relative order of the rumpfs is not visible in (1.51). For that reason we did not a
priori include the order of the rumpfs into the definition of the graded equal sign, as it can be ill-defined in such
situations. Nevertheless we will make a suggestion a bit later, how to include the rumpfs to some extent into a
graded equal sign. The nice observation so far is that we got rid of all index-dependent signs! The use of the
graded equal is in particular useful to define composite objects of the form

AMN =, BNKCKM e AMN _ (_)CN+MNBNKCKM NwW (_)CN+MN Z(_)KCBNKCKM (1.52)
K

This makes sure that the notation AM? is consistent with the position of the gradings. This is again necessary

to guarantee consistency with the graded summation convention. I.e. for every Dy;n we have (ordinary equal
sign, all indices contracted)

AMNDy N = BNECkMDyn (1.53)

which would not be true for the definition AMY = BNKCxM without the graded equal sign or the appropriate
signs in front.

For a more general definition of the graded equal sign in the case of graded rumpfs, we can again introduce
auxiliary graded commuting objects o and extend our previous definition of the grading structure, i.e. the
product of these objects o with as many factors as there are naked indices and rumpfs in a given term. For
every rumpf which appears twice in a term we have to introduce a second graded commuting object (call it o'),
because sticking to only one object would lead to 0% = 0 for | ¢ |= 1. Instead of giving a general definition,
let us give two examples:
gs(cMcNTEL P o°oMooN o ¥ ol 0% of (1.54)

KEAMPN Ly - = 7oK pAoM P oN ook (1.55)

gs(z

In the grading structure, we can now rearrange the objects until all the rumpfs are in the front (with unchanged
relative position) and the naked indices have some common order. E.g.

gs(MNTKLGPY = (L)eMFT(M+N)+a(M+N+E+L) e e, T o L oM N oK oL 6P (1.56)
gs(zK AMPN Ly — (L )AK+e(K+M+P+N) sz A e | oK oM oP N oL (1.57)
(= JAK+(E+M+P+N) (Y ME+N(K+P)+LP 5254 5 . oM N oK oL P (1.58)

We call the resulting sign the relative sign of the grading structures
SiEny vprr,r (IKAMPNCL) — (=) eMATMAN)+2(MAN+EAL) (YAK+e(K+M+P+N)(_)MK+N(K+P)+LP

(1.59)
This definition of the relative sign reduces to (1.35) in the case of bosonic rumpfs. In order to write down
the general definition for the graded equal sign, let us replace the terms of an equation (like ¢McNTHLzP and
B AMPN cLabove) by placeholders T;) (where i just labels the different terms). In the same way as for the
bosonic rumpfs in (1.37) we can finally give the definition for the graded equal sign in the general case:

Definition 1 (graded equal sign ’=;’)

ZT@ =0 = Zsign%(l)(Tm) Ty =0 (1.60)

Sometimes we call =, also the “small graded equal sign”.

In our example of above, this reads

CMCNTKLCEP—ZEKAMPNCL :go . CMCNTKL.%‘P (:I?KAMPNCL) -J}KAMPNCL:O

(1.61)

— Signcj\lcNTKLIP

Proposition 1 (Equivalence relation) The such defined graded equal sign obeys transitivity (X =, Y, Y =,
Z = X =4, Z) as well as reflexivity (X =, X) and symmetry (X =, Y = Y =, X) and is therefore an
equivalence relation.
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Proof: Reflexivity: If the expression X is a sum of terms T(;), i.e. X =), T(;y then the claim that ), T{;) =,
> 1) is equivalent to ), sign%(l)(T(i)) Ty =, signgT(l) (T(s)) - T(s) which is obviously true. The symmetry
is induced by the fact that signT(i)T(j) = signT(j)T(i). Transitivity finally is seen as follows: Assume that we
have Zz T(z) =g Zl T(l) (equivalent to Zz SIgng“(l)(T(z)) . T(z) = Zz Slgn‘g«(l)(f’(z)) . T(z)) and Zz T(z) =g Ez T(z)

(equivalent to ), sign% )(T(i))f(i) =3 sign% )(T(i))f(i)). Then it follows (using transitivity of the ordinary
1 1

equal sign) that . sign%(l)(T(i)) Tuy = sign%(l)(f(l)) > signgf(l)(f(i))f(i) =, sign%(l)(f(i))f(i) which is in

turn equivalent to ), T(;) =, Z(i) T(i). a

Remark: In part II, beginning with chapter 5 on page 43, we will throughout use the graded summation
convention (based on NW) and the graded equal sign =,. The latter will then simply be denoted with an
ordinary equal sign =, in order to keep the notations simple.

Next we go one step further and define a big graded equal sign =¢ which also takes care of the order of
as many rumpfs as possible. Let us give some simple examples:
(AB)T =¢ BTAT .+ (AB)T = (—)"BBTAT (1.62)
(AB)' =¢ BTAT :«—= (AB)! = (-)ABBTAT (1.63)
(ab)" =g a*b* <= (ab)* = a"b" (1.64)
Dy(AB) =g (DyA)B+ A(DyB) <= Dy(AB) = (DyA)B + (—)PTMAA(DyB)  (1.65)
The above examples are well-designed. Every rumpf or naked index appears in every term exactly once and a
comparison of the order in each term is possible.

e In more general situations, the big graded equal sign =g will be defined by first adding the signs
corresponding to the use of the small graded equal sign =, and then taking care of a maximum of common
(to all terms) and distinguishable (among themselves) rumpf-symbols. For all remaining rumpf-symbols,
a sign will be included that assumes that their standard position is to the very left (not changing their
relative order).

Writing down a more formal definition of this idea in general would probably be lengthy and not very illumi-
nating, so let us again consider some examples (which are not necessarily meaningful in real calculations):

ABAC =g CB :<= (—)P4ABAC = (-)“BCB (1.66)

The maximum set of symbols common to each term is {B, C'}. Their relative order is different in the two terms,
so that we get the factor (—)“?, while the factor (—)B4 is the sign that compares to the structure where all
A’s (which do not belong to the common set) are to the very left. Another example (with explanation right
afterwards):

0=¢ AyuBNAKCr+ByANALCk + ANByCrAp @ <—
0 = (=)BMHAMENFOMANGE)(_)BAL B AL Oy

(=) AMAAMANIFO(MANFL) (VLK R A AL Cre +

+(_)BN+C(N+M)+A(N+]V[+K)(_)NM(_)(B+C)AANBMCKAL (167)

In a first step we have applied the small graded equal sign, which includes moving all rumpf-gradings to the
very left without changing their relative order. This leads to the sign (—)BMFTAM+N)FCMENFK) for the
first, (—)AMFAMEN)+C(MENEL) for the second and (—)BNFCWNFM)+AN+MAEK) for the third term. The small
graded equal sign also takes care of the relative order of the naked indices in all terms. If we take the first term
as reference term, this yields the factors (—)“¥ for the second and (—)V™ for the third term. The additional
contribution from the big graded equal sign is obtained as follows: This time the set of all rumpf-symbols
{B,C, A} is common to all terms, but A appears in two indistinguishable copies. The maximum set of common
(to all terms) and distinguishable (among themselves) rumpf-symbols is thus again {B,C}. The gradings of
the remaining A’s are put to the very left, which yields a factor (—)Z4 for the first term, (—)Z(A4+4) =1 for
the second and (—)B+4 for the third term. Finally the relative order of B and C in each term is compared
which gives no extra factor in this example.

Note that the naked index in (1.65) was treated on equal footing with the rumpfs. The big graded equal sign
simply compared the relative order of all involved symbols, no matter if they were rumpf or naked index. In this
case, where all rumpfs appear in each term exactly once, this is equivalent to applying our more general definition
(given below (1.65)), where we first apply the small graded equal sign, which moves all the rumpf-gradings to
the very left. Indeed the example (1.65) can equivalently be written as

Dai(AB) =g (DyA)B+A(DyB) : <= (—)ATBM Dy (AB) = (—)ATBM (D A)B+(—)BM(—)PAA(Dy B)
(1.68)
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There is a serious drawback of the so far given definition of the big graded equal sign: it does not in general
obey transitivity. We will below modify the definition such that transitivity is guaranteed, but let us first give
examples where it is violated. If one defines composite objects, like A =¢ ba, using the big graded equal sign,
it does not have any effect. The maximum set of symbols common to all terms is empty. The symbol A’ on
the lefthand side doesn’t appear in the term on the righthand side, and the symbols ‘a’ and b’ do not appear
in the term on the lefthand side. The same reasoning holds for B =¢ ab:

A=¢g ba < A=ba, B=gab < B=ab (1.69)

Assume that we have A =g B (which is equivalent to A = B, i.e. ba = ab). Transitivity would then imply that
ba =g ab which is equivalent to ba = (—)"@ab and does in general not agree with the starting point A = B. A
way out is to define the big graded equal sign not for a single equation, but for the whole system of equations
under consideration.

Definition 2 (big graded equal sign '=¢’) Given a system of equations, we first determine for each equa-
tion i the set M; of rumpf-symbols which appear either exactly once in each term or mot at all in the given
equation. Call the intersection of these sets Ml = N; M;. The big graded equal sign =g’ in a system of equa-
tions is now defined by first applying the sign rules corresponding to the small graded equal sign ‘=, and then
adding a sign that compares the relative order of all rumpf-symbols which are in the set M. For all remaining
rumpf-symbols, a sign will be included that assumes that their standard position is to the very left (not changing

their relative order).

In the previous example this works as follows: The equations under consideration are A =4 ba, B =g ab and
ab =g ba. The symbol ’A’ in the first equation appears once in the term on the lefthand side, but not at all in
the term on the righthand side. It is thus not in the set M;. The same is true for the rumpf symbols B’ in the
second equation and for ’a’ and ’b’ in the first and second equation. We thus have M = {}, My = {}. Only
for the last equation the rumpf symbols ’a’ and ’b’ appear exactly once in each term so that M3 = {a,b}. The
intersection, however, is still empty M = M; N My N M3 = {}. The big graded equal sign compares only the
relative order of the symbols in M. In this case it therefore reduces to an ordinary equal sign and transitivity
is trivially preserved.

Proposition 2 (Transitivity) In addition to symmetry and reflexvivity, the above defined big graded equal
sign =g obeys transitivity within the given set of equations that was used for its definition and is therefore an
equivalence relation within this set.

Proof: Under the conditions of the definition (all rumpf symbols appear for any given equation either exactly
once in each term or not at all in this equation) one can replace every rumpf by a bosonic rumpf with an
auxiliary naked index which carries the grading. The big graded equal sign then reduces to the small graded
equal sign whose transitivity we have seen already. [

1.3 Calculating with fermions as with bosons - a theorem

Now we are equipped with the main tools that are necessary to turn bosonic structural equations into graded
structural equations. The set M in the definition of the big graded equal sign contains all symbols whose relative
positions in a system of equations can be uniquely determined. This is precisely the property that allows to
assign a grading to such a symbol and therefore deserves its own definition.

Definition 3 (Gradifiable) We call a naked index or rumpf of an algebra element gradifiable in a given
equation iff it either appears in every term of this equation exactly once or it does not appear in the equation
at all. We call it gradifiable in a system of equations iff it is gradifiable in each of them. In addition, every
dummy indez (one which appears in a single term twice, once in upper and once in lower position) is also called
a gradifiable indez.

Example In the equation a™by = bya™ all indices {M, N} and all rumpfs {a,b} are gradifiable, because
they appear in every term exactly once. However in the set of equations aMby = bya™, AMy = oMby
only the indices {M, N} are gradifiable, while the rumpfs {A,a,b} are not gradifiable any longer, as they all
appear in the second equation, but not exactly once in each term. The same set of equations, with the second
one written as A(a,b)™ y = aMby, however, has gradifiable rumpf-symbols a and b. The notion ’gradifiable’
therefore depends on the way how objects are denoted.

Definition 4 (Gradification) The gradification of an index K’ or rumpf ‘a’ assigns an undetermined parity
| K| or|a| to it, which will enter the graded summation convention and the graded equal sign. The gradification
of a given set of algebraic equations is defined to be a new set of equations with all gradifiable objects gradified,
the equal sign replaced by the big graded equal sign and the sum over dummy indices replaced by the graded sum
(using an arbitrary but well-defined sign rule like NW or NE) over graded dummy indices.
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More or less by definition, the following theorem holds:

Theorem 1 If a set of algebraic equations implies (perhaps via some intermediate equations) a second set of
algebraic equations, then the same holds true for the gradification of the whole system.

Remark: According to the definition of ’gradifiable in a system of equations’ only those indices and rumpfs
which are gradifiable in each equation (even the intermediate ones) are gradifiable in the whole system.

Comment on the proof: All definitions were chosen precisely with having in mind that the theorem should hold.
Therefore it seems that there is nothing to prove and the theorem just holds by definition. Nevertheless, any
attempts of mine to make this statement more rigorous, failed so far. One might therefore insist on calling the
above theorem a ’conjecture’ only. Calling it a conjecture, however, would somehow implement that the proof
is difficult. But as argued above, I suspect that it is rather a triviality as soon as an appropriate setting is
used. A naive idea for a proof would be that the gradification provides an isomorphism from one algebra to
another. However, the gradification map is not in general invertible. For example a commutative but otherwise
freely generated algebra is mapped to a graded commutative (and otherwise freely generated) one. For odd
generators, the square is zero and therefore the gradification has less basis elements than the original algebra,
if the number of generators is the same. What is mapped one to one is therefore not the algebra itself, but a
certain (sub)set of equations which characterize the algebra, namely the gradifiable ones. O

Further remarks:

e The example given after the definition of ’gradifiable’ demonstrates that the power of the theorem depends
on how the original equations are written. If one introduces auxiliary variables for composite objects (like
AM = aMby), the number of gradifiable objects may reduce, if the elementary variables are not denoted
as an argument (like in A(a,b)™ 5). The theorem gives no statement about the best notation to use. It
rather gives a statement which holds for any notation, but the notation has an influence on the number
of gradifiable objects. Sometimes rumpf-symbols can be turned gradifiable by a change of notation but
sometimes this seems impossible. It would be useful to characterize the ’best notation’ which makes as
many symbols as possible gradifiable.

e This theorem provides the possibility to use existing bosonic tensor manipulation packages for Mathemat-
ica or other computer algebra systems also for the graded case!

e It is not excluded a priori that the original set of equations contains fermionic variables which are then
made bosonic (or are assigned an undetermined grading). However, one has to make sure that equations
like

6-6 = 0 (1.70)

are not contained in the set of equations that were needed to derive something. In the above equation, 8
obviously appears twice in one term and is thus not gradifiable. This is also the reason why anticommuting
variables cannot be replaced completely by commuting ones. In particular the sum of two nilpotent objects
is not necessarily nilpotent any longer in the commuting case. A recent paper [20] studies the properties
of nilpotent commuting variables where some further differences (e.g. in the Leibniz rule) appear w.r.t.
the anticommuting case.

Counterexamples

In the rest of this part of the thesis we will give a lot of examples and applications of the theorem. There will,
however, also be some rather subtle examples which seem to be counterexamples at first sight. One of those
“counterexamples” is the graded inverse of a matrix with graded rumpf, treated in subsection 2.4 on page 22.
Another “counterexample” is the derivative with respect to Grassmann variables: the bosonic equation

0

—x=1 1.71

p (1.71)
suggests to define

9 2

—0=1 1.72

50 (1.72)

for fermionic variables. This definition makes perfect sense, but results using this derivative cannot be derived
via the theorem from the bosonic case, as the rumpf theta does not appear excatly once in every term. This
problem can be omitted, if one introduces a new index and puts the grading into the index. We discuss such
derivatives in subsection 3.1 on page 28.

Finally, a quite disturbing counterexample, which demonstrates that intermediate equations have to be taken
into account in the process of gradification, is discussed on page 30.



Chapter 2

Graded matrices (supermatrices) and
graded matrix operations

Supermatrices are the perfect objects to study the effects of our considerations. We will drop the word ’super’
or 'graded’ in every definition, since everything in this part has to be understood as graded. The equations of
this section will all be written in two ways: once in the left column with the help of the (small) graded equal
sign and the implicit graded summation conventions and once on the righthand side with ordinary equal sign,
and the sum written out explicitely (in NW conventions), in order to make the reader familiar with the new
conventions.
Within this chapter, we will always consider four different kinds of matrices, which differ in their index-
positions:
AMN BM o O™, Darn (2.1)

Remark: In case that we have several matrices of one type, e.g. type B, we will denote them by By, Bs,... .
It is important to have in mind that we consider B; as a rumpf by itself and not as a rumpf B together with
an index ’1’.

2.1 Transpose and hermitean conjugate

Let us start with the definition of a transposed matrix and a hermitean conjugate matrix in each of the four
cases. The simple rule is to take the bosonic definition and replace the equal sign by the big graded one (which
reduces to the small graded one in the below cases):

(AT)I\/IN Eg ANM (AT)]MN = (_)MNAN]\/I (22)

(BMY =, BYum BHMY = (H)MVBYy (2.3)

(CT)MN Eg CN]M (CT)]V[N — (—)MNCNM (24)

(DYun =, Dnum (DHYun = (MY Dy (2.5)

(AT)I\/IN =, (ANM)* (AT)]WN — (_)MN(ANM)* (26)

BHYMY = (BYu)* BHYMY = ()MY(BYM) (2.7)

CHMn = (CNM) CHMy = ()M¥(enM (2.8)

Cloa] . (DYun =5 (Dym)* (DYun = (MY (Dym)* (2.9)

early we have

MHT = M (2.10)

(MHT = M (2.11)

for all matrices M, which is a first simple confirmation of the theorem.

2.2 Matrix multiplication

We meet a first deviation from usual definitions when we consider matrix multiplications." The definition of
the matrix multiplication will depend on the index structure of the matrix. Both, graded equal sign and the

L Although they seem to agree with the definitions in [19], when one moves there all indices which are to the left of a rumpf to
the right with the corresponding sign according to that reference. 3

16
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graded summation convention have an influence now:

N:VV (7)MC’ Z(*)KCAMKCKN (212)
K
N:VV (_)MD Z(_)KDAMKDKN (213)
K
(ABT)MN =, AMK(BT)KN (ABT)MN = (—)MBAMK(BT)KN _
NW
= (MEI R PEIANEBN - (2.14)
K
(BAMN =, BM AN (BAMN = ()MABM  AKN -
NW
Al (_)MA Z(_)K+KABMKAKN (215)
K
(BIBQ)MN =g BlMKB2KN (Ble)MN = (—)MB2B1MKB2KN =
_ (_)MB2 Z(_)K+K32311VIKB2KN (216)
K
Associativity

Up to now, we have used the graded equality and summation mainly for definitions (apart from (2.10) and
(2.11)). Now we can apply our theorem by stating that the (graded) matrix multiplication as defined above is
associative

(B1B2)Bs)™ v = Bi(B2B3s)My (2.17)
((C1C2)C5) N = C1(CaCs) ™ (2.18)

The graded equal sign has no effect in these equation. Associativity is guaranteed by theorem 1. The full
reasoning in the B-case would be the following:
In the bosonic case we have

(BlBQ)MN = BlMKBQKN = ((BlBg)Bg)PQ = Bl(Bng)PQ (219)

The dummy indices are by definition gradifiable. Each of the naked indices M and N appears in every term of
the first equation exactly once and not at all in the second and is therefore gradifiable. One could have written
the second equation also with the same indices M and N and they still would be gradifiable. The same reasoning
holds for P and Q. Finally, By and By each appear in every term of the first as well as of the second equation
exactly once, while B3 does not appear in the first at all, but it appears in the second in every term exactly
once. All the rumpfs By,Bs and Bs are thus gradifiable in this system of two equations. The gradification of
the whole system then reads

(BiB)M n =¢ By k By v = ((B1B2)Bs)" ¢ =¢ B1(B2Bs)" (2.20)

where By, Bs , B3, M, N , P and @ have been assigned an undetermined grading, the sum over dummy indicies

now has to be understood as the graded sum and the equal signs were replaced by the big graded equal sign

(which reduces to the small graded equal sign in the first equation and to the ordinary equal sign in the second).
For this example it is still quite simple to check the validity of the statement explicitly, e.g. in NW

()M 3 ()t (()MBZ Z()KBM&MKBQKL) Byhx =

L K

= (,)M(BﬁBz) Z(i)K(BerBg)JrKBlMK <()KB3 Z()L33+LBQKL33LN> (2.21)
K L
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Unit matrix
The definition of the unit matrix is
M1 = M VM (2.22)

which implies via associativity (for the matrices of type B and C) that M(I1N) = (M1)N = MN VM, N and
thus

IN = N VN (2.23)

For the different types of matricies A, B,C' and D, we have in fact different types of unit matrices:

(ADMN = AMEg N Lo quN (AWM DN AME N L 4NN (2.9)
K
! NW | ,
(BI[)MNE BMK§KN ; BMN (B]l)MN = Z(—)KBMK(SKN ; B]VIN (225)
K
CcHuN = oo = ouV (C1) N NEWZCMK(SKN = oy (2.26)
K
!
(D)yn= Duxd®n = Dun (D) pr N gl Z(—)KDMK(SKN < Dun (2.27)
K
From the righthand side we can see
5% for NW
N _ M
Om o { (—)YMN§N for NE (2.28)
with 04} being the numerical Kronecker delta, and
My =, oM My = (=) MNgyM (2.29)

This graded Kronecker (the lefthand side shows that both versions are graded equal anyway) of course also
fullfils its task for vectors and arbitrary rank tensors:?

aMoyN = aV (2.30)

Tatyont, k05N = Toanom, N (2.31)

2.3 Conjugations of matrix products — hermitean scalar product

Other simple applications of theorem 1 are statements about the transpose and the hermitean conjugate of a
matrix product. Both, transposition and hermitean conjugation, were defined as gradifications of the bosonic
versions and thus the equations for their action on matrix products will simply be the gradification of the
corresponding bosonic equation. We will start with the transposition. The hermitean conjugation will follow a
bit later after the discussion of complex conjugation and hermitean scalar product.

2.3.1 Transpose of matrix products

The transpose of a matrix product in terms of the big graded equal sign has the familiar bosonic behaviour.

(A =4 (cTaT)MY (A = (o)A (cTaT)MY (2.32)
(D))" y =¢ (DTAT)My (AD))" y = ()AP(DTAT)My (233)
(BT =g (ATBT)MN (BT = (ABATBT)MN (2.34)

21f the capital index combines two subsets of (small) indices with different position, we might insist on NW (or any other
convention) for the small indices which leads to different definitions for the Kronecker delta:

a™ = (a™, an)
CLA/[(sMN _ amsmN 4 G,M(;I'LN _
mixed conv. !
=T am e N 4+ 3 () apet N = o
m w
™ = sy

N
s = (ks o
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Let us again verify explicitly that this is indeed true for e.g. the first line (in NW conventions):

= (M A =
_ (_)MN(_)NC Z(_)CKANKC«KM —

((AC)T>MN

K
_ (_)MN+NC Z(_)CK+(C+K+M)(A+N+K)CKMANK _
K

— E (7)CA+KA+KN+K+JWA+MKCKMANK _

K
= ()M Y (AT g (AT)EN =
; K

— (_)AC(_)MA(CT)MK<AT)KN —
= ()" (cTa)MY (2.35)

2.3.2 Complex conjugation of products of (graded) commuting variables

Before we come to the discussion of hermitean scalar products and hermitean conjugation of matrix products,
we will have a short look at complex conjugation of graded commuting variables (we will often call them graded
numbers, or just numbers) and products of them. The reason to do so, is that the complex conjugate of a
product of two Grassmann variables is often defined differently to our way, and we therefore want to motivate
it carefully.

Complex conjugation of usual complex numbers is just what it is. For a (graded commuting) algebra based
on a complex vector space one usually defines some basis to be real, so that the complex conjugation acts only
on the expansion coefficients. Different definitions of the action on the basis elements are possible and simply
a matter of convenience. However, the definition of the conjugation of the basis vectors should at least obey
the conjugation property ()** = (). For an algebra whose vector-basis is generated by some generating set, the
reality properties of the composite objects are determined by the reality properties of the generating set and the
action of the complex conjugation on the product of elements. It is natural to define (ab)* = a*b*, but using the
opposite sign (ab)* = —a*b* for vectors a, b would also be consistent. Indeed, in the case of an anticommuting
algebra this definition is very common because it can then be written as (ab)* = b*a* and resembles the bosonic
version of hermitean conjugation where the order of objects is interchanged. Although there is thus good reason
to make this choice, we want to convince the reader in the following that there is even better reason not to
make this choice. For a graded commuting algebra, where a and b are of arbitrary grading, the choice

(ab)* = a*b* (2.36)

is certainly the one which fits into our philosophy, as it is the gradification of the usual choice for (bosonic)
commuting algebras. This choice implies that the product of real objects is real again and the real elements
thus form a subalgebra. Indeed the above conjugation rule can be derived from this reality condition. We could
thus go the other way round and define the complex conjugation simply by saying that the product of two
real products is always real. To derive the above conjugation rule from that condition, consider the (graded)
commuting variable a and decompose it into its real part $(a) and its imaginary part $(a), defined by (use of
a graded equal sign makes no difference here)

Ra) = ¢ +2a* (2.37)
a) = = ;Z,“* (2.38)
Both are real because a * * = a
R(a)* = R(a), S(a)* = S(a) (2.39)
and we have
a R(a) 4+ iS(a (2.40)
a* R(a) —iS(a (2.41)

We thus can seperate any number into a real and imaginary part, and complex conjugation flips (as usual) the
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sign of the imaginary part. Consider now the complex conjugation of the product of two graded numbers

(ab)* = [(R(@)R(b) — I(a)I(b)) +i(R(a)I(b) + I(a)R(D))]" =
= (R(a)R(O) — I(a)I(b)) — i(R(a)I(b) + I(a)R(D)) (2.42)
a*b® = (R(a) —iS(D)) R(a) — iS(b)) =
= (R(a)RO) — S(a)S(b)) — i(R(a)S(b) + I(a)R(D)) (2.43)
= (ab)* = a*b" (2.44)

From the first to the second line we have used that the product of two real variables is real again. From our
definitions of real and imaginary part in (2.37) and (2.38), which are just graded versions of the bosonic case,
we could have deduced (2.44) as well via our theorem. We just want to stress that in our context this is the
only natural complex conjugation. In order to allow a comparison with the ’usual’ definition®, let us for the
moment denote the alternative version of complex conjugation by (...)*.

(ab)* = b'a* = (—)%a*b* (2.45)

As mentioned, this behaviour would not at all fit into our philosophy. The same is true for the hermitean
conjugation of the product of graded matrices in the next but one subsection (as well as of graded operators
in the infinite dimensional case). How can we easily switch in applications from one definition to the other?
Instead of redefining the complex conjugation itself, the switch of the behaviour from (2.44) to (2.45) can also
be achieved by redefining the algebra product appropriately:

aob = i“%aq-b (2.46)
= (aob)* = (—=i)“%a*b* = (—)"a* o b* (2.47)
We used here the symbol ¢, to denote the parity, in order to emphasize that the exponent of ‘i’ really should

take only values 0 and 1, while for our usual prefactors (—) = (—)lell!l the grading | a | does not need to be
a Zs grading. The parity is given by €, =| a | mod 2.

2.3.3 Hermitean scalar product

Using our above definition of complex conjugation also fixes the behaviour of the graded version of a Hermitean
scalar product. We use the index notation (v*)M = (vM)*. The scalar product (in a finite dimensional vector
space for the beginning) then will be defined as

Wlw) =¢ @M Hyyw" (v | w) Y E (=) NN ()M g e
S~—— = ——
(vM)= M,N (vM =
with (Hy )" =¢ Hywy with (Hyn) = ()N Hy,, (2.48)

where H is a matrix of type ’D’ which is (graded) hermitean. Strictly speaking, the rumpf H appears only on
the righthand side and is therefore not gradifiable. However, if we identified on the lefthand side the vertical
line ’]” as a placeholder for the H-rumpf and also identify their grading, then it would be fine to even grad-
ify the rumpf H. For the following considerations we will nevertheless stick to a bosonic rumpf H, i.e. Hyy
should be considered as a bosonic supermatrix. The resulting scalar product is (graded) sesquilinear in the sense

(Mg + vy | pwy +we) =¢ (A + vy | pwy +wsa) =
=¢ A'plvr | wi) + A (v | wa) + = ()" AN plor | wi) + Ao | we) +
(v | wi) + (v2 | wa) (=) v | wr) + (v | wa) (2.49)

for A and p being complex supernumbers. It is furthermore (graded) hermitean, i.e.
(vlw) =¢ (w|v)* (wlw) = (=)"(w|v)" (2.50)

The last equation implies that a scalar product of a vector with itself obeys

(o) = (=) v]v)” (2.51)

and is therefore real only for even vectors and purely imaginary for odd vectors. Note that a scalar product
(])o which obeys (v | w)o = (w | v)* is obtained by either replacing * by % of the previous subsection or by
defining (v | w)p = (=) (v | w).

The adjoint Bt of a matrix B with respect to our scalar product is defined as

3Tt seems that in the last decade, the definition (ab)* = a*b* has already become more popular (see for example [21]), while in
[19] it was still defined with the opposite order. Another discussion of complex conjugation can be found in [22]. o
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(v| Bu) =g (B'v|w) (| Buw) = (0)7(Blvw)  (252)
Assume that the hermitean matrix is non-degenerate in the sense that it has an inverse
HyHEY = 65N, HMEHp ="y (2.53)

Although it is more common to use only the symmetric part of a scalar product to pull indices up and down, we
will in this section use H;y and HM¥ to pull indices. For a vector v™ we thus have the following additional
possibilities of index-position and form:

vy = HyyoV (2.54)
() = (om)° 7 7 7 (2.55)
W) = M) = @INET (= (Hypo™ ) HYY =5 Hey HYY (07)7) (2.56)

W
S M

Using the inverse matrix H N , we can now give an explicit expression for the adjoint matrix of B:

- = > * !
(v | Bw) = (v)M Hyn (BN gw™) = (v)M (Hyn BY LH™Y) Hpew™ =¢ ((B*)u” o™) Hpw™= (Blv | w).

=By " =(ByP)*
From this calculation we can read off
(BYx =y (Bu®) = (HunBYLH™) =, HPF (BN 1) Hyy (2.57)
——
(BY) N

Up to pulling indices with H this agrees with our earlier definition of the hermitean conjugate of a matrix
(BN =4 (BNL)".
Having used indices all the time, we have implicitely chosen some basis

\eM > = |M > (2.58)
Every vector |v > of definite grading can be written as a linear combination
v >= oMy > (2.59)

The complex conjugate basis is |y; >= |y >*, so that |v* >= v >*= (v*)M|;; >. Bra-vectors involve a
complex conjugation. Because of < vMeys| = (v*)M < ey it is convenient to denote

<eml = <l (2.60)
such that
<vl= ()" <yl and  (w) = Hygy (2.61)
The dual basis will be denoted by < M| and it is defined via
M|y = My (2.62)

After pulling down one index with H one arrives at the equation (47 | ) = Hj;ny which we just had before and
which is in turn consistent with (v | w) = (v*)™ Hy; yw®. The dual basis < | thus agrees with the “hermitean
conjugate” < y;| of |7 > up to raising the index with HM¥,

Clifford vacuum The above recall of some basic linear algebra will help us to understand the graded version
of creation and annihilation operators acting on some Clifford vacuum. Let us denote just for this paragraph the
index of the creation operators by k,l,m,..., although we used those indices before for bosonic indices, while
now we still assume them to be graded and not purely bosonic. The creation operators generate a complete
basis from the Clifford vacuum, s.th. the indices k, I, m, ... are just a subset of the basis-indeces M, N, .... Let
us denote the annihilation and creation operators by a* and (a'); respectively and the corresponding vectors
or states by

‘k > = (aT)k ‘0 >, ‘k1k2 >= (a'T)’fl (aT)kz |0 >, |k11€2k3 >= (aT)kl (at)kz(aT)kg, |0 PEREE (263)

The basis is then given by
|k >€ {10 >, |k >, [kiks > [kikaks >, -} (2.64)
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Finally we need the annihilation property of a* and their commutator with the creation operators:
a*|0 >=0, [a*, (a");] =, &% (2.65)
Assume that the Clifford vacuum is bosonic, so that we can normalize it to one
0]0y=1 (2.66)

This equation is not gradifiable, which is the reason why a bosonic vacuum is preferrable. The dual basis is
then given by the dual vacuum < 0| and its descendents

k 1

<k = <ol L<kFki=1<0d"a & < Fikebs ) = Lo 0la* aM2aks, (2.67)

Fl1y = <0la* (a0 >= 6" (2.68)

<k1k2 | 2l1> = % < k1|ak2(aT)lz‘ll >=y % < kll(aT)lQak2|ll > +% < k1|6k212|11 >=y 6k1(125k2l1) (269)

g (R ) =g 0, 0%0,0%0,) (2.70)
<Kl e <o, <, 3 <Mk & < Pukeks) (2.71)

In the literature the indices of creation and annihilation operators are usually put at the same vertical position,
and the corresponding states are normalized to be (i | ;) = dx;. The Kronecker delta on the righthand side
corresponds to a special choice of the scalar product and should in our context be replaced by

Rl = Hy (2.72)

which agrees with (2.68) after pulling one index with H.

Note that the definition of a norm induced by the scalar product will not be possible under the conditions
of theorem 1. The bosonic definition || v || = (v, v) has the rumpf v appearing twice on the righthand side which
is therefore not gradifiable. Still it makes sense to define a norm, but it will not simply have gradified properties
of the bosonic one. In order to get a real norm, (while (v | v) is imaginary for odd v), we have to include an
imaginary factor in the fermionic case and fix the arbitrary overall sign: E.g.

vl =7 (v,v) (2.73)

Ouly at this point (choosing an appropriate H,; ) we make contact to the usual definitions in the literature.
Physical observables and probabilities should of course not depend on the conventions in the end. In the same
way as above, the definition of the probability of some transition (which contains an absolute value square and
is therefore also not gradifiable) has to include an appropriate complex factor. We are not going to work with
Hilbert spaces in the second part of this thesis anyway and therefore leave the details for further studies. The
leading thought was just to keep the idea of gradification as long as possible and break it only in the last step,
in the definition of the norm and of probabilities.

2.3.4 Hermitean conjugate of matrix products

From our definition of a hermitean conjugate and of complex conjugation of products of numbers, we get via
the theorem the natural rules for complex conjugation of (graded) matrix products:

((Ac)H™™ =4 (ctan)™™ (A" = (e (ctah)™ (274
(D))" v =¢ (DTANMy (D))" y = ()*PDFANMy  (2.75)
(BN = (AlBHMN (BN = ()AB@AIBHMY  (2.76)

Similarly we expect for operétors in the infinite dimensional case

(ABYr =¢ BTAT (AB?)T = (—)ABBTAT (2.77)
As mentioned in the context of complex conjugation, it is simply a matter of redefining the operator product
with a factor (—¢)4°5 if one wants to make contact to the usual definition without sign.

2.4 Graded inverse - a nice “counterexample” to the theorem

Consider for the beginning matrices with even rumpf only

| A= BI=|C|=|DI[=0 (2.78)
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We say A is the (graded) inverse of D, By the inverse of B; and C? the inverse of C iff

Dy AEN = 5N (2.79)

AMEDpn = My (2.80)

BMgBENy = My (2.81)

ey ey = o (2.82)
with

SN = (H)MNN Y, (2.83)

The so defined inverses in general do not coincide with the naive inverses.*

From our theorem we can e.g. deduce that for matrices M N of any type (with even rumpf) we have
(MN)™' = (N7'M™Y) (2.84)

\M|=:‘>N|=O (MN)—l _ (N—lM—l) (285)

This is easily directly verified using associativity of our graded matrix multiplication.

Counterexample

If we take the rumpfs arbitrarily graded and still define an inverse via M ~'M = 1, then we still have®

(MN)Y(N"*M~Y) *2* M(NN HYM'=1 (2.86)
= (MN)?* = (N'M™'), forany|M |and | N | (2.87)

There is no expected prefactor (=)™ in the lower line! This looks strange in terms of the big graded equal

sign, which should swallow the rumpf-dependend signs, but produces one here:
(MN)™' =g ()MM(N~IM (2-88)
The theorem thus is not applicable here! What went wrong? Our definition of the inverse
(MM~ = 1 (2.89)

is a non-valid gradification of the bosonic one: The theorem allows us to assign a grading only to rumpfs which
appear exactly once in each term. The rumpf M appears twice on the lefthand side and not at all on the
righthand side. Thus, the theorem does not allow to give M a grading. If we do so nevertheless, we can’t
derive known rules from the bosonic case. The definition itself is of course ok, but in order to stress that it is
not simply a gradification of a bosonic definition, we should better give it a new name, like special graded
inverse.

The naked indices in (2.79) to (2.82) appear excactly once in each term and can therefore be generalized to
graded indices.

4To verify this statement, write out the equations (2.79)-(2.82) in NW-conventions, using 53, = 63}:

> Dur(=)FAKN = s
S A DY = oY
Y. BYk()VBI N = &Y
oo ooufcERN = oy

Only in the last case C? is the naive inverse of C1. o
5Note that although a Grassmann-variable has no inverse, a matrix with fermionic rumpf can have an inverse. Take e.g. z,y # 0

bosonic and ¢ fermionic, then we have
(U 1 0
c =z
y _
(y0)<18><0 1) (#)
T Ty

The matrix multiplication above, however, is not according to our graded matrix multiplication rules, which are

(CC*l)MN =, OB NN =g ou Y

= (Cc—l)MN N:VV Z(*)KA+AIACA1K(C_1)KN _ 51\/11\7
K

The following choice of matrices therefore correspond to the equation (#):

c - (fy —Ox) 01:<

Bl= O
| |
R

@‘“

N———
<&
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2.5 (Super) trace

We now come to another important deviation from usual supermatrix-definitions which will enter an interesting
result for superdeterminants. The trace is the sum of the diagonal entries and makes sense for matrices of type
C and B only (matrices with one upper and one lower index, i.e. endomorphisms)

M ZMBMM NW
Y=o NW
>u CuM NE

tr B

trC = C’MM:{ (2.91)

The (—)M is familiar from usual definitions. We have it here, however, either only for NW for matrices of type
C or for NE for matrices of type B while the other cases do not have the familiar (—)™ in the trace-definition.
The reason is that e.g. for B-type matrices in NW (where the trace has no sign factor) the (—)™ instead is
hidden in the matrix multiplication of two matrices. Thus, either the matrix multpilication contains an extra
(—)M and the trace doesn’t, or the other way round. In any case, the graded cyclicity property of the trace
holds:

trB1By = BMB.Xy = (—)PPrr BBy (2.92)
< tr [Bl,BQ] = 0 (293)
For matrices of type A and D, we need a metric, in order to define a meaningful trace:

trA = AMNGyn (2.94)
trD = DynGMY (2.95)

2.6 (Super) determinant

We finally come to the so far most interesting demonstration of the use of our conventions. Namely the definition
of the superdeterminant. As usual, we start from the definition via the exponential:

detC = e"MC detB=etrnB (2.96)

Remember that in NW-conventions for a matrix of type B, the definition of the trace matches the bosonic
definition, while the definition of the matrix product differs. For NE or for matrices of type C the situation
is just the other way round. In both cases the above definition thus differs from the bosonic one, even if the
matrix is purely bosonic (but having two fermionic indices). Let us derive this in detail.

Consider the decomposition of B in bosonic and fermionic blocks:

an Bmy . amn me
(BMy) = (Bun B );( S ) |m|=0,|u|=1 (2.97)

Assuming that the matrix (a) is invertible (which implies that a (and thus the rumpf of B) is bosonic, because a
matrix with purely fermionic entries cannot be inverted), one can seperate C' in a product of two block-triangular
matrices

B — BB, (2.98)
B = ( . ]? ) ( g d(a;b)lb> (2.99)

Now we will use two facts. One is that the trace of the logarithm factorizes:

eFeG BCH L HG+5FGl+.. (2.100)
B, B, _ e11{1 Bi+In B+ 3 [In By, In By]+... (2101)
S tr (B1B:) 2 truBi +trInBy (2.102)

And the other fact is that an arbitrary power of a block-triangular matrix stays a blocktriangular matrix with
the powers of the diagonal blocks in the block diagonal:

G (e
( > _ <“O” d*") Va,b,c,d (2.104)

S e o e
QU T o O
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In particular

(B, —1)" = ( (e—1)" 0 ) (2.105)

* 0
no 0 0
-1 = () e ) (2.106)
Now we use the power series for the logarithm
=1 = "
In(1 = — M)z =Y ()T 2.107
a0 = 3w = (2.107)
> _4 tr (Bl - Il)n
trn(By) = = = 2.108
Fn(B) = 30) . (2108)
e}
_ "t (a=1)m 0 _
= Z:l —tr . 0 )= (2.109)
= i (7)n71tr (a—1)" = (2.110)
n
n=1
= trlna (2.111)
trin(B;) = trln(d —ca 'b) (2.112)
We thus get
det B = detBj-detBy = (2.113)
= deta-det(d — ca™'b) (2.114)

This result is true for every block-decomposition. a,d do not necessarily have to be bosonic as well as b and ¢
do not have to be fermionic. At first sight this seems to contradict the expression that one usually finds in the
literature, namely sdet B = det a/ det(d — ca™'b).

The reason for this mismatch lies simply in the graded definition of the matrix multiplication (or the trace)
and thus of the determinant of a bosonic matrix with two fermionic indices. For NE-conventions, the trace of
the type-B submatrix (d*,) gives an extra minus w.r.t. its naive bosonic trace. Its determinant defined via the
exponential and the graded trace is thus equal to ”1/ det(d)”, where now the determinant is the naive bosonic
one, built with the naive trace. The same is true, if we consider the corresponding submatrices of a matrix
of type C in NW-conventions. For the determinant of a matrix of type B in NW (or likewise type C in NE),
however, the comparison between our and the usual convention is a bit more subtle. In the following we write
terms in the usual convention in quotation marks. At first, let us define the dimension of a square matrix (or
of the vector space it is acting on) as the trace of the corresponding unit-matrix:

dim(B) = 6™, =7 dim(a) — dim(d)” (2.115)
dim(d) = 7 —dim(d)” (2.116)

Le., fermionic dimensions are negative dimensions!® The logarithm in the definition of the determinant has to
be understood as a power series, so that we first should look at simple powers of the block d:

2, = dhd, = (2.117)
Nt () (2.118)

A
=d" = 7(-1)""'d" =—(=d)™ mnaive matrix mult in quot (2.119)

Logarithm and determinant of d*, can thus be written as

o (! 1= 17
In(d = d—1)" = 2.12
n(d) ngl n ( ) and (2.119) (2.120)
=117 i (Sl (—d —1)™ (2.121)
and (2.119) ot n
= ” —In(—d)” naive matrix mult in quot (2.122)
det(d) = exptr Ind =71/ det(—d) = (=1)3™(D1/det d” (2.123)

6 The observation that fermionic dimensions can be considered to be negative dimensions has been made in literature at several
places and with several arguments. From the group theoretic point of view, this has been studied in [23, 24]. o
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The sub-matrix (d — ca™'b) is of the same type as d, so that we finally get

—1_»n_—1» .
det(d — ca™'b) a_lbffa o ?(=1)4m( D1 / det(d — ca™'b)” (2.124)
det B = ?(=1)4™(4) det a/ det(d — ca™'b)” naive matrix mult in quot (2.125)
For matrices of type C'in NW-convention, the situation is the same as for matrices of type B in NE-convention:d" =
"d" g ="1y4", Ind="1nd”, tr Ind =" — tr Ind”. We thus get
B . iy (=1)dm@ deta/ det(d — ca”'b)” NW
det B =deta-det(d —ca™'b) = { > det a/ det(d — ca—1b)” NE (2.126)
a b \M
for BM y = ( e d ) . (2.127)
and
_ ” det a/ det(d — ca'b)” NW
— . — 1 — .
det C' = deta - det(d — ca™"b) { 7(—1)4m(d) det q/ det(d — ca~1b)” NE (2.128)
a b N
N _
for Cy™ = ( e d )M (2.129)
al T al T
As a check, let us take C = BT = ( bT gm ) =7 < bT gl > ”. Then we expect, following our theorem:
det B = det BT (2.130)

Indeed, in NW-conventions this becomes in naive matrix-notations:

!

7 (=13 det(d — ca™th)” = " det(—dT — b (a7 H)TTY = (2.131)
= 7det (—d” — (—)ca ) 7 = (2.132)
= 7det(—d+ca'b)” = (2.133)
= 7(=1)4D det(d — ca”'b)” (2.134)

2.7 Graded gamma-matrices

Gamma matrices and some of their properties are discussed in appendix D on page 167. Usually, they are
considered to be ordinary bosonic matrices with the anticommutator relation

{re, 1%} = 2p*°1 (2.135)

There are two ways how a grading can be introduced into the gamma-matrix algebra. Either via the rumpf or
via the indices. Let us start with the rumpf.

The anticommutator is for general matrices not a very natural object. It does not automatically have
derivative properties or a Jacobi identity like the commutator. However, the gamma matrices can (in even
dimensions) be represented by off-diagonal matrices. This offers the possibility to regard them as fermionic
supermatrices T'* whose fermionic diagonal blocks simply vanish. The anticommutator above then simply
becomes the graded commutator

[r“,rb} — 21 (2.136)

Terms like ¢)T'*0,1) in a Lagrangian still stay bosonic, because 1) = 1/1*1‘0 contains another odd gamma-matrix.
This interpretation of a graded algebra appears naturally in the RNS-string, where the spacetime spinors are
generated by acting with fermionic creation operators on a Clifford vacuum. Linear combinations of these odd
creation operators then correspond to the (odd) gamma matrices.

It is interesting that in the graded picture the chirality matrix plays a different role than the other gamma-
matrices, because (as a product of all gamma-matrices in even dimensions) it is an even object T'# ro...pé-t,
The anticommutation of it with the other matrices stays an anticommutation even in the graded picture

{T#, 1%} =0, {I*# T#} =21 (2.137)

This is actually also a hint that s.th. like the RNS string could not work in the same way in odd (e.g. 11)
dimensions, where one of the gamma-matrices (and thus one of the generators acting on the clifford vacuum)
needs to be even.
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The second possibility to re-distribute the grading, is to consider the fermionic (Dirac) indices of I'*“g to
carry an odd grading. (The underline simply shall distinguish the Dirac-indices from Weyl indices, which are
mainly used later on.) As the fermionic indices come in pairs it does not change the overall grading. We still
assume the rumpf to be odd, too. The graded commutator then becomes (in NW-conventions)

[r“ rb}g = oo rbyg 4 rbe porg — (2.138)
) B = B ¥ BT :
= Y0 ()T (T, T 4 P reYg) = (2.139)
4 +T%s
X 1
— gy (- Qé) (2.140)
(SCY

The algebra thus changes the sign. It would not do so, however, if we would grade only the indices and not the
rumpfs. In any case, in appendix D on page 167 we took the conventional point of view of ordinary gamma-
matrices with ungraded indices, because people are more familiar with the equations in the conventional picture.
For our application to the Berkovits string in the second part of this thesis, it is then necessary to make a grading-
shift in the indices to get the correct equations. However, for future applications in superspace it might be more
favourable to have all the equations in the graded picture with graded rumpfs and indices. In this picture it
would also be more natural (though it was not done in this thesis) to adjust the definition of the antisymmetrized
products of gamma matrices according to the graded summation. E.g. I'1*225 =/ F[“l‘gyl"‘“"’]l@ with the
graded summation convention and the graded equal sign instead of the ordinary ones. B N



Chapter 3

Other Applications and Some Subtleties

3.1 Left and right derivative

Bosonic rumpfs

In the bosonic case we have for a variation of some function

—
0 0
§ = dax"—f=f— o™ .1
f(x) e e = fgm 0v (3.1)
——
af joxm
There is no difference between left and right derivative here, except that we write it either on the left or on the
right of the function.
0

oxm

= 3f/da™ (3.2)

For the graded case with bosonic rumpfs, the situation is very similar. We define (using graded summation; no
need for graded equal in the beginning, as there are no naked indices, but in the third equation it is essential)

0
5f(z) =, oM 500 = of JoxM sxM (3.3)
0
= if =, Of/0x™ = if = (—)™Mof/oxM (3.5)
OxM g dxM '
For f = 2™ we have
sxM = &UKaxinM = 0zM |9z K 52K (3.6)
. axinM I (3.7)
oxM oz = Mg (3.8)
In the case of coordinates with bosonic rumpf, we will also use the following symbols for derivatives
of 0
omf = M = gl ! (3.9)
E]
TMN,K = T]MNW = 8TMN/895K = (7)K(T+M+N)8KT1\4N (310)

We will not use the notation dp; for derivatives with respect to ghosts or other objects with rumpf of odd or
undetermined grading, as the rumpf becomes invisible.

Graded rumpfs

For fermionic indices a the above equations imply

0
D5 = (Yorjoe (3.11)
0
B _ _5Bia_s B
ppt 0z’ |0x . (3.12)

28



CHAPTER 3. OTHER APPLICATIONS AND SOME SUBTLETIES 29

This would for fermionic objects ¢ without indices also suggest to define left and right derivative such that

0 c

Jdc
However, written without indices it is less intuitive and also not common. We thus follow the literature and
use the following definition of left derivative and right derivative (now for ¢ being of undetermined grading

lel)

[~

—dc/de (3.13)

0F(c) = 5C%F(C)58F(c)/ac§c (3.14)
LFe) = (FFor()/oc (3.15)
0
3¢ = Oc/Oc =1 (3.16)

Although (3.14) and (3.16) seem to be quite intuitive, (3.15) unfortunately is less intuitive. The factor (—)"®
is expected, because we interchange the order of F' and the derivative with respect to ¢. This factor could be
absorbed by using the big graded equal sign. The extra factor (—)¢, however, stems from the fact that in (3.14)
the order of 9/0c and dc is exchanged, and the big graded equal sign cannot figure that out, so that (3.15)
becomes %F(c) =L (=)°OF(c)/0c. Thus for graded rumpfs, left and right derivative are simply not the same
operation (just written in a different order), but they differ by a sign depending on the grading of the rumpf.
The above definition is thus not simply a gradifcation of a bosonic one. Indeed the rumpf 'c’ was not gradifiable
from the beginning. If one wants to use statements derived via the theorem, one has to introduce an extra index
which carries the grading, like in (3.11).
The generalization to the case with graded indices, however, is straight-forward again:

0 0

57 FQ) =g (2)(=)"0F(c)/oc" s Fe) = (D)) oF(e)/oct  (3.17)
an o=y ou® (=)™ an No= o (Nzw 61\’2) (3.18)
acMjocN =, My =g ou™ (=) MacM jocN = My (3.19)
oM jocN =, &%CM (—)MacM jocN = (—)CN+NMaciNCM (3.20)
This implies (using as always the graded summation convention)
0F(c) = 5cKaciKF(c) = OF(c)/9ck 5c* (3.21)
3.2 Tensor and wedge product
Let us consider the wedge product
""" =™ A" = % (™ @ de” — de" @ &™) (3.22)
(The normalization % implies that p-forms are written as w® = Winy...m,de™! - - - dz™r without the usual

prefactor %) The wedge product is antisymmetric if ™ are the coordinates of a bosonic manifold. If one

considers de™ to be an odd object (w.r.t. the form grading), the wedge product is a graded commuting
product. As 2™ itself is even, the grading has to sit in ’d’, and it is therefore printed boldface. The form
grading is a priori independent from the Fermion grading but one can consistently combine them to have only
a single Z, grading, where e.g. an odd differential form which is at the same time Fermionic is considered to be
even. We will take exactly this point of view throughout the thesis, although one should keep in mind that it
is especially fitted to the exterior algebra of forms. One can certainly define a symmetrized tensor product as
well, for which it would be more natural to consider dx™ as an even object. However, it plays a less important
role than the wedge product. As argued already in the very beginning, it does not really matter which point
of view one takes, as the use of graded equal sign and graded summation convention swallows all of the signs
anyway. One can therefore do all of the calculations without fixing this issue and only in the end choose one or
another version of graded summation or graded equal sign.
Let us now consider some tensor of rank (2,1):

7Y =T, " d&™ @ ™ ® 8y (3.23)

Already before bringing any Fermion-grading into the game, we have a graded equation which should match
our philosophy of notations. The grading on both sides is | 7>V |=| T | +2 | d| + | 8 |. It is therefore essential
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that we do not denote the tensor simply by 7', because then the tensor 1" is odd while the rumpf T is even
which would lead to confusions. The superscript ’(2,1)’ therefore should carry the grading 2 | d| + | 8 | of the
basis elements. Although we might not always write this superscript, it is always understood that | T' | is the
grading of the rumpf and not of the tensor.

All the indices in the above equation are dummy indices and are thus gradifiable. The rumpf 7" appears in
every term exactly once (with the above explanation) and is thus gradifiable as well. The rumpf z, instead, is
not gradifiable. The gradification of the tensor definition reads

T(2,1) N:VV Z (_)M+N(_)M(N+K)+NK(_)Md+K3 >

T(Z’l) =G TMNKC]IL’M ® d:ZZN ® BK M,N,K
xTunEdeM @ & @ o (3.24)
A two form e.g. takes the following form:
W@ = wynde AN ST ()MVEN Gy vde A de (3.25)
M,N
The grading of a p-form w(® is | w® |=| w | +p and the graded Leibniz rule for the exterior derivative acting

on the wedge product w®n(® = w®) A p(@ thus reads
wP @Yy = qu®) p@ L H® gD (P) (@) — o) p(@) _\wl+p,,(®) gD
dw®n'?) =¢ do'P)n'? + WP dy dw™'n'?) = dn'? + (=) PP dy (3.26)

A subtle counterexample to the theorem Gradification of the exterior algebra is subtle, because we
start with something anticommuting and turn it in something commuting, which is less restrictive. One of the
problems one meets is the observation that there is no gradification of the definition of the epsilon tensor, which
provides the volume form in the bosonic case. The more severe problem is the related to the nilpotency of
1-forms:

We start from the gradifiable anticommutativity equation de™ de™2? = —de™*de™2 (the indices are gradifi-
able) and the gradifiable definition of the dimension d = §,,,"*. In the bosonic case it follows that de™? - - - de™d+1 =
0. Also this last equation is gradifiable in the indices but is wrong in the general graded case and thus seems
to contradict our theorem. But the theorem includes also intermediate equations into the gradification. In
the above case, the reasoning goes from de™'de™? = —de™ de™? via de™de™ = 0 (no sum) to the conclusion
de™t ... de™d+1t = (. In the intermediate equation dc™de™ = 0, the index m is not gradifiable.

Originally there was the hope that intermediate equations are irrelevant. In particular, if all indices are
fermionic, the dimension is negative. The condition de#! - - - dz#4+* = (0 then simply would not be a restriction
and everything is fine. For mixed fermionic and bosonic variables, however, this mechanism breaks down.

It might be that including intermediate equations in the gradification can be omitted by saying that an
index is only gradifiable if the number of copies in which it appears does not exceed the dimension. We leave
this for future studies.

3.3 Graded Poisson bracket

For bosonic rumpfs ’¢’ and ’p’ of the phase space variables ¢™ and pys, the bosonic Poisson bracket is easily
generalized to the graded case. The overall sign, i.e. whether one first takes the derivative with respect to the
momenta py; and then with respect to the configuration space variables ¢ or the other way round is already
an ambiguity at the bosonic level and is only a matter of taste. As it is just an overall sign, it is easily changed
if preferred differently. Our choice (pjs first) was made in order to have the Hamiltonian as the generator of
time translations on the left of the bracket. We always try to let generators or operators act from the left. In
any case the graded Poisson bracket is a simple gradification of the bosonic one:

_ 9 M 9

0 0
= aF/apMaq—MG - (—)FGaG/apMaq—MF = (3.28)

0 0 0 0

= apMFaqM G- aqMFapM G (3.29)
{F.G} = —(=)"°{G,F} (3.30)
{pm,dV} = ou® N (3.31)
{Mopn} = oMy 2 (MY, (3.32)

Like always, the sum over the index M’ has to be understood as graded sum. The left and right-derivative
with respect to variables with bosonic rumpfs coincide (w.r.t. the graded equal sign) and the generalization is
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therefore unique, as soon as the underlying summation convention (NW or NE) is chosen. The sign (—)F¢ in
the second and fourth line of the above equation array would disappear upon the use of the big graded equal
sign. The rumpfs '¢’ and ’p’ are a priori not gradifiable in these equations.

Nevertheless the case of graded rumpfs ¢’ and ’p’ can be covered by just gradifying the indices. Assume for
example that we have in addition to ¢™ and pj; (with bosonic rumpfs) also some ghost variables ¢ and by,
with the same indices. In general, the indices of ghost variables would just cover a subset of the index range of
the original phase space, but this subtlety does not matter for the present discussion. The rumpfs of the ghost
variables carry a grading and it is thus not uniquely fixed how to extend the definition of the Poisson bracket
to the ghost variables. A natural way (having in mind the conditions for our theorem) is to introduce some

variables with two indices z* containing ¢ as well as ¢™ and the same for the momenta:
2M = (M M), M = M MM (3.33)
miv = (pa,by), mim = pum,  mam = by (3.34)
The grading is now sitting in the additional index i, i.e. | i |= (1) iglrr i z ; . One still has the freedom to

decide whether this index should be upstairs or downstairs for z or equivalently whether we choose NW or NE
for the graded summation of this index. Choosing the position as above and NW for the summation yields

ZiMﬂ'i]w = Z(—)lMZZM’ITlM = Z (quM + (—)MCMbM) = quM + CMbM (335)
iM i, M

w2 ™ = Y ()M M =N ()Y parg™ = bare™) = prrg™ = bage™ (3-36)
i, M i, M

Note the sign change of the last term from the first to the second line. Now we can also write down the graded
Poisson bracket for this case, which looks in terms of the variables (ZZM , i) the same as the one before in
terms of (¢™,pas), but contains an additional graded sum over the index i

i 0
NwW _\iM ) 0 o NiM+i+M im0
i %( YMOF/Oming —EMMG (—) OF/0z —amMG (3.38)

Before we rewrite this Poisson bracket in terms of ¢, pas, ¢ and by, let us recall the definition of left and
right-derivative of page 28. With the graded equal sign, left and right derivative w.r.t. z'* are simply given by
ﬁzﬂv =g 5950 =g 027N /02*M | The same is true for the derivatives w.r.t. m;3;. Written with the ordinary
equal sign, this reads

DM AN = (=P 57 o = (m) U 9N g M (3.39)
NW:s]
) _ . . _
Gy = (P 8 My = () gy oy (3.40)
NW:féji.
For i = j = 1 this agrees perfectly with the definition of left and right derivative w.r.t. ¢™ or pys. Fori =j =2
instead (remember 22M = ¢M and may; = bys), we observe some mismatch (in NW for the right-derivative
w.r.t. ¢M and for the left-derivative w.r.t. by, in NE the other way round)
acaMcN _ (—)JM(SMN — (—)M+N+MNaCN/8CM JEN
0
o3 Z2N _ (_)M 522 5MN _ _(_)N+M+NJVI@Z2N/6z2M (341)
NW:1
0
——by = (—)MeMy = (—)MENTMN by /9byr
obyy
0
— 87T2M ToN — (7)]\/1 (522 5MN = 7(7)M+N+MN8’/T2N/({9’/T2M (342)
NW:—1

The definition of left and right derivative therefore depends on the notation we use (¢, by or 22M 7ap/). In
NW-conventions (for the index i) we have

0 NW 0 9 NW 9
9cM T 92M0 9eM T T 2M (343)
— —
0 NW 0 0 NW 0 (3.44)

81)]\/[ - _871'2]\/[, 8bM 87T2M
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In NE conventions (for the index i), we would have the opposite signs. In the Poisson bracket, these signs
always cancel (for NW and for NE), because the left derivative w.r.t. bys comes with the right derivative w.r.t.
c™ and vice verse. Looking at (3.38) one can see that the only additional sign which is not absorbed by the
graded summation of the index M is the (—)® in the second term due to the wrong’ contraction direction. This
sign would come with the first term, if we had NE conventions for the index i. The Poisson bracket given

before in terms of 2*™ and ;s can therefore be rewritten (in graded summation conventions) as

{F,G} OF [Opas aa G — 9F/dq Maiei <8F/8bM 88 G+ OF/dc 88 G) = (3.45)
M

i(@F/abM O - (- )FG8G/8bM8MF) (3.46)

The upper sign is for the choice of NW-conventions for the index ¢ while the lower sign is for NE. This is in
principle independent of the summation convention for the index M. If one prefers overall NE, where the minus
in front of the bracket might be annoying, it might be more natural to define the Poisson bracket with an overall
minus (or take NW only for the index 7). If one wants to apply the gradification theorem in order to derive
true statements about the graded Poisson bracket, it is in principle necessary to reintroduce the extra index ¢
which carries the grading and rewrite the result again in terms of the graded rumpfs after having applied the
theorem. In practice this is rarely necessary. For example, in order to show the Jacobi identity for the graded
Poisson bracket, it is enough to know that one can write it as a gradification of a bosonic Poisson bracket. The
Jacobi identity itself does not explicitely contain the variables z* and therefore has the same form in terms of
the variables ¢™ and ¢™. The same is true for Leibniz rule when acting on products of phase space functions:

{FAG.HY} = {{F.G}H}+ (9" {G.{F H}} (3:47)
{F,GH} = {F,G}H+ (—)'YG{F H} (3.48)
The sign (—)"¢ would disappear when using the big graded equal sign. Let us now fix the sign-ambiguity in

(3.46). We will throughout use the more convenient upper sign for the definition of the Poisson bracket. This
implies

(F,G} = —()f%{a,F} (3.49)
{oar. eV} =g ou™. {pw.d} =g 0u” (3.50)
{Mbn} =, MN, {d"on} = —0M N (3.51)

Note again that this does not fix the summation convention for the index M. We had only made a convenient
choice for the auxiliary index ¢ which is now absent anyway. The above equations further imply

{br,...} = an (...), {pr..}:%(...) (3.52)

{...0by} = 0(.)/0cM, {....pu}=-0(..)/0¢™ (3.53)
)

{M ..} = m(...), {q™ }ffapiM (...) (3.54)

{....cM} = 0(..)/0by, {...,qM}:a...)/apM (3.55)

Antibracket A bracket which is closely related to the Poisson bracket is the antibracket. It is defined in an
extended configuration space with as many odd variables (antifields) g}, as even variables ¢
(F,G) = OF/d O G () FEt) e aqt -0 F

) - qMa M ( ) / qMa M (356)
Note that this bracket is not simply a gradification of the Poisson bracket. We had discussed before that
the rumpfs ’p’ and ’¢’ in the Poisson bracket were not gradifiable but that this problem can be removed by
introducing an auxiliary index. However, this implies that still ¢ and p have the same parity, while here they
have opposite parity. On the other hand, the above equation can be seen as the gradification of an antibracket
defined for purely bosonic rumpfs ’F’ and G’ and bosonic dummy index M. Rewriting it in terms of the big
graded equal sign =g, the sign —(—)(F DG+ would get replaced by a + sign. Writing the antibracket without
the big graded equal sign better demonstrates its relation to the Poisson bracket. In a sense, it behaves as if
the gradings of "F” and ’G’ were shifted by 1. The antibracket will be further discussed at a later point (see e.g.
footnote 13 on page 131 or footnote 1 in the appendix on page 160).
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3.4 Lagrangian and Hamiltonian formalism

The structural equations of the Lagrangian or Hamiltonian formalism are good examples for the application of
the gradification theorem. Graded versions of the Lagrangian equations of motion will most probably be very
familiar to the reader. The intention here is only to carefully demonstrate how at the one hand the choice of
the summation convention fixes all ambiguities and how on the other hand this choice need not to be done a
priori (apart from the choice for the auxiliary index i to be introduced again below).

Let us consider a Lagrangian L(q, ¢, ¢, ¢) which depends on variables ¢™ with bosonic rumpf and ghost
fields ¢Mwith fermionic rumpf and their time derivatives. The indices of ¢ and ¢ will in general differ, but
the assumption of the same index simplifies the presentation. The variation of the action will contain also

derivatives w.r.t. ¢™ and it is thus useful to introduce again the variable 2™ = (21 22M) = (¢M M),
- 0 ; 0
= ML+ 6 —— I = :
08 /dt 0z 50 +4z2 530 (3.57)
) 0 d, 0
— M

The equations of motion thus have the form
0 d, 0
——L——(=—L)=,0
07M dt(az'lM ) =

(3.59)

where the graded equal sign has no effect here. As discussed earlier, left and right derivative are graded equal
and because L is always bosonic (at least in usual examples) they are in fact equal and there is no arbitraryness
of choosing left or right derivative. If we have NW conventions for the auxiliary index 4, the derivative w.r.t.
22M becomes the left derivative w.r.t. ¢™ or minus the right derivative w.r.t. ¢, although an overall minus
in the equations of motion is of course irrelevant.

In a similar way the definition of the conjugate momentum is already fixed by the choice of the summation
convention. The definition is simply

P )
Tirr = gl = Ly (3.60)

Again, left and right derivative coincide for bosonic rumpf z (when L is bosonic) and their definition is fixed by
the choice of the summation convention. If we have NW conventions for the auxiliary index 4, this definition
becomes

) 9
M= —aqML = LiaqM (3.61)
) 9

For the choice of NE for the index 4, the right derivative would be without sign. Remember again that the
choice of the summation convention for the index ¢ does not fix the one for the index M.

The Legendre transformation to obtain the Hamiltonian is of course also fixed by the summation con-
vention

H(z,m) = /dt 5 Mg — L(z, 2(z, 7)) (3.63)

Although writing '™ at the first position seems to fix NW-conventions, this is not true. The signs are as
usual hidden in the summation. We thus have 2*™ ;s = m 2™ and are still free to decide in the end, which
convention will enter the actual summation. As before we have to make a choice for the summation convention

of the auxiliary index i, if we want to write this explicitely in terms of ¢ and ¢ and its momenta:

NW for i . . . .
H(qacapv b) = \/dtL quM +chM - L(Q7Caq(qvcvpv b),C(q,C,p, b)) (364)

The same reasoning is applied for the second Legendre transformation which yields the first order action
L(z,m 2,7) = [dt  #Mm — H(z, 7).

We had already mentioned that the summation convention for ¢ could differ from the one for M and that
even within M we could have different summation conventions for different index-subsets. Applications where
the advantage of such mixed conventions becomes obvious, are those where one joins several variable with
different index position to one variable, but wants to keep the summation conventions of before. This is the
case for example for the introduction of Darboux coordinates to parametrize the phase space. Let us forget for

the moment about the ghost variables. We can then define for example

2% = (¢M, pur) (3.65)
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The Poisson bracket is then written with a mixed summation convention for the index M (based on NW for
M) as

—
0 PMN 0 Gmlxed conv

9 9 P 8
= (IMF— PN — G + (-)M NP —PM y —G +
My NN oM aqN oM Opn
9 9 9 9
+F—pPyN Np_—_p )
Dot M 8NG+( ) Opar MNapNG (3.67)

If we had NW conventions for the indices M and N, the definition of the graded summation would have a
(—)M in front of every of the four terms. For the special choice of coordinates (with split in configuration space
coordinates and momenta), the Poisson bivector is simply

PMN _ ( s 0 (3.68)

where the relation of the graded Kronecker deltas in NW-conventions to the numerical §1 is given by dp Y =
5 = ()N

3.5 Lie-groups and -algebras

3.5.1 Gradifiable and not gradifiable group definitions

The positive experience with the graded definition of matrix multiplication demands its application to super-
groups. The first question arising is, which supergroup definitions have a natural gradification and which do
not. Let us just give a few examples to make the idea transparent.

The general linear group, i.e. the group of all invertible matrices GL(n) is easily gradifiable, because
we know how to gradify the matrix multiplication and we have (for bosonic supermatrices, i.e. matrices with
bosonic rumpf) a clear notion of invertability. If the index of the matrix runs over b bosonic and f fermionic
indices, the resulting group is denoted by GL(b|f)(see e.g. [25, p.90]). Also the definition of the special linear
group is gradifiable, because the definition of the determinant is gradifiable as we discussed earlier, and the
condition det M = 1 thus makes sense in the graded case as well. Because of det(M - N) = det M - det NV, this
condition defines a subgroup which is denoted as SL(b|f).

For bosonic matrices, the unitary group is defined via

Ut =1 (3.69)
Or with indices
(UT)mkéklUln - 6mn (370)

We have a well defined notion of graded hermitean conjugation and also of a graded unity in the sense of a
graded Kronecker delta with one lower and one upper index. There is no natural gradification, however, of a

Kronecker delta with two indices at the same position. It is strictly speaking a metric and not a unit operator.
In even dimensions we could use ( _0]1 g > as metric for the fermionic subspace, but this would be an ad-hoc
choice. The problem is that there is no characteristic property of d,,, which is gradifiable in our sense to
uniquely give its graded version. The characterization that it is a diagonal matrix with only 1’s in the diagonal
is certainly not suitable for gradification, because for fermionic dimensions the metric should still be graded
symmetric (i.e. antisymmetric) and is therefore necessarily off-diagonal. There is thus at first sight no natural
gradification of the definition of the unitary group. Note that there exists nevertheless the notion of a unitary
supergroup U (b|f) in the literature (see e.g. [25, p.90]) .

The practical meaning of the unitary group is that it leaves the canonical scalar product 6, in C? in-
variant. Suppose we have a more general scalar product (a,b) = (a)™gmnb™ and make a basis change.
a™ = U™k, b = U™B'. Then we obtain (a,b) = (U™,a*)*gmn U™ b = (@)*Gs,b'. The hermitean scalar
product g, therefore transforms like

g = U™ gmnU™ = U™ gmn U™ (3.71)
We could define a matrix to be unitary with respect to gy, iff

(U™ 9mnU™ = Gmn (3.72)
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This is a gradifiable definition, because it is based on some generic g, instead of the specific §,5,. As discussed
above there is no defining property of 4,7, which is gradifiable.
The situation is the same for the Lorentz group (or likewise for the orthorgonal group) with

(AT) i Ay = Ny (3.73)

where we are again missing a gradification of the definition of 7,,,.

The situation is a bit different for the symplectic group, although its definition is very close to the above
two. Symplectic structures need even dimensional spaces. Assigning upper indices * to the first d dimensions
and lower indices j to the second d dimensions and combine both into one index £ = (*, ), then the canonical
symplectic form (being the matrix-inverse of the canonical Poisson structure of the previous section) can be

written as Ny
_ 0 k
B = < sk 0 > (3.74)

In contrast to the metrics of before, the symplectic form is gradifiable, because it contains two unit operators
in subspaces of which we know the gradification. Elements S of the symplectic group SP(2d) are then given by

(ST)mEBMSLQ = B (3.75)
Simply gradifying the indices yields the graded definition of the symplectic group. The body S of the symplectic
matrix, however, is not gradifiable, as it appears twice in the term on the left and not at all on the right. If the
index k runs over b bosonic and f fermionic indices, the resulting group could be denoted by SP(2b|2f), while
in literature it is common to introduce instead the notion of an orthosymplectic group which differs, however,
a bit from this group (see e.g. [25, p.90]). The precise form of the group elements S € SP(2b|2f) depends on
the choice of either NW or NE for the definition of the matrix multiplication and of the position of the indices
at the matrix (first index up and second down or vice verse).
Having seen the above example, it is obvious that gradification also works for O(d,d) or SO(d,d) based

0  d,"
My, 0
the signature (d,d). Containing two off-diagonal Kronecker deltas, the graded version of the metric looks just
the same. If d splits into b bosonic and f fermionic dimensions, the resulting supergroups could be denoted as
O(b,b|f, f) and SO(b,b|f, f). For the fermionic subspace we have §*, = —§,#, and the corresponding matrix
block of the metric is numerically just the matrix of a bosonic symplectic form. In this sense, O(d,d) and
SP(2d) interchange their role in the bosonic and fermionic subspaces:

on the metric 1., = . If the indices m,n take d values, this metric has in the bosonic case

0(d,d|0,0) = SP(0,0|d,d) and O(0,0|d,d) = SP(d,d|0,0) (3.76)

Note finally that all supergroups which cannot be seen as a gradification of a bosonic group, of course still
make perfect sense. The message is only that properties of those supergroups must be studied independently
and cannot be deduced from the corresponding bosonic groups via the gradification theorem. The main example
are groups of fermionic supermatrices. The bosonic definition of a group requires the existence of an inverse
matrix. As we discussed already in the chapter on supermatrices, the notion of an inverse matrix can only be
gradified in the case of a bosonic supermatrix, while the definition of a ’special graded inverse’ of a fermionic
supermatrix cannot be used to take advantage of the gradification theorem.

In [23, 24] it was observed that SO(d) can be seen as SP(—d) (with d fermionic, i.e. negative dimensions — see
page 25) and that SP(d) can be seen as SO(—d). Understanding SP(—d) = SP(0|d) and SO(—d) = SO(0|d),
this does almost but not completely match with our above observation (3.76) which holds only for split signature.
This might be due to different definitions of the supergroups and it would be interesting to make the comparison
in more detail.

3.5.2 Graded Lie algebra

In the previous subsection we have just discussed a few examples for the gradification of some Lie groups,
although a more detailed study would be a very interesting subject. Likewise we are not going to discuss
(graded) Lie algebras in any detail in this subsection, but instead want to stress a few minor points, related to
the summation convention. In the previous subsection we were only discussing supergroups whose elements are
bosonic supermatrices, i.e. graded matrices with bosonic rumpf, because only there we have a natural gradified
version of an inverse matrix. Nevertheless, even when the group matrices of a Lie Group are all bosonic, its
infinitesimal generators (when based on the module of supernumbers) might well be expanded in a basis Tx
that contains fermionic matrices. Each of the T'4’s is a supermatrix, and it depends on the index A, whether it
is a fermionic or a bosonic one:

|(T)Y N = A+ | M|+ | N| (3.77)
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Like in the bosonic case, group elements in the connected component of the unity can be parametrized by!

g(z) = e Ta (3.78)
where 24 are some coordinates whose grading | A | is the same as the one of the generators T4, so that the
group element is a bosonic supermatrix. For example, for g(z) to be in GL, the exponent can be any (small)
supermatrix, while for g(z) to be in SL, it has to be traceless (det i’ Ta = expiz?tr T4). One possible basis
of the algebra of all supermatrices consists of the matrices with one entry 1 and zero everywhere else. If the 1
is in one of the diagonal blocks, the corresponding basis matrix T; is a bosonic one, while if the 1 is in one of
the off-diagonal blocks, T 4 is considered as a fermionic supermatrix (although it has bosonic entries only). The
fermionic supermatrices 7.4 are contracted with a fermionic parameter 04 = x4, so that the resulting group
element g(x) is a bosonic supermatrix.

The algebra is determined by providing the structure constants for the (graded) commutator

[Ta,Tp] =4 ifas°Tc (3.79)

The graded equal sign has no effect here again, because the naked indices A and B are in the same order on
both sides. If one is dealing naively (see remark in footnote 1) with (graded) hermitean matrices (or operators)
T:[1 = T4, then the commutator is always graded antihermitean [T, T5]" =, [T;g, Tj‘] =4 TB,Tal =¢ —[Ta,T5],
no matter whether the indices A and B are bosonic or fermionic. Extracting the imaginary unit i’ then leads
to real structure constants. Note that in most of the literature, fermionic and bosonic operators are treated
differently in this issue, because of the different definition of hermitean conjugation. An immediate application
of the gradification theorem is the Jacobi identity in terms of the structure constants, which has of course
the same form as in the bosonic case, but with graded summation and graded antisymmetrization:

fusPfoc® = 0 (3.80)
An invariant metric
(Ta,T) = Han (3.81)
is defined to obey
((Te,Tal, Tp) + (Ta,[Tc, T8]) =4 0 (3.82)

In terms of the structure constants (with fapc = fas?Hpc), this reads

feap+ feca =4 0 (3.83)

which means that the structure constants are also (graded) antisymmetric in the last two indices and therefore
in all indices. Indices are pulled up again with the graded inverse of H 45 which is defined by

HacHE =647 (3.84)

or equivalently HAYHop = 64 5. The graded inverse HAP differs from the naive (numerical) inverse by a factor
(—)4 in NW and by a factor (—)? in NE.

The defining equation for the structure constants (3.79) seems to suggest that we already have fixed NW
conventions, but it can also be rewritten to enfavour NE. To this end we need the fact that in the case of the
existence of a group invariant metric to pull up and down the indices A, B and C, the structure constants with
all indices down are completely (graded) antisymmetric fapc =4 fcap. The commutator (3.79) then reads

[Ta,Ts] =4 iTcfCas (3.85)

INote that due to our definition of complex conjugation and hermitean conjugation T is hermitean if T4 is hermitean and z4
is real: (z4T4)T = (:BA)*T:[\ = 24T 4. The group element = Ta thus would correspond to a unitary group element. This would
disagree with the statement before that there is no natural gradification of unitary matrices. In fact, already for the hermiticity we
were too sloppy in the above reasoning: A graded hermitean matrix is defined only when both indices are at the same position. If
one index is upstairs and the other is downstairs, one needs a metric to define hermiticity, and this is again missing in general in
the graded case.

Note further that sometimes it is convenient to parametrize the group element differently, namely by exponentiating seperately
the bosonic and the fermionic contributions:

iwh Ty L ¢V Ta iy To —

g(z)=e =g(y)

The relation between z and y is obtained by using the graded version of the Baker-Campbell-Hausdorff formula, which is simply

ApB _ JA+B+1[A,Bl+ (A, [A,B]l+15[[4,B],BI+0([.,.]%)

the gradification of the bosonic one, i.e. e o
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In both versions of the equation, the actual summation convention has not yet been fixed. Let us finally write
down the original form (3.79) of this commutator explicitely in NW-conventions, including the matrix indices:

3 {(_)(M+K)B(_)K(TA>MK(TB)KN B (_)AB(_)(M+K)A(_)K(TB)MK(TA)KN} =S ifanC(Te) My
K C
(3.86)

The position of the supermatrix indices (first one upstairs, second downstairs) is more natural for NE conven-
tions, where the sign (—)% would not appear in the terms on the lefthand side.

Natural applications of the above considerations appear in the study of WZNW-models based on graded Lie
algebras (e.g. in our study [11] of a WZNW-like model [10], where we however not yet rigorously applied the
present conventions).

3.6 Remark on the pure spinor ghosts

In part II, we will make frequent use of the presented conventions. In particular, we will always use the graded
summation convention and the small graded equal sign without denoting it explicitely! There are some effects
that one needs to get used to. The formalism contains among others the variables ™, 8%, 6" and a commuting
ghost variable \*. When we want to describe the first three as just components of a supercoodinate ™, we
have to assign all the grading to the indices: 8% — 0#* = z#*. We call that a “rumpf-index grading shift”. The
fermionic variable 8% = 0¥ can be treated in both ways, either as odd rumpf with even index or as even rumpf
with odd index. The boldface notation should serve as a reminder, which point of view we take. When we are
considering the combining object 2, we have no choice, because all entries share the same rumpf 'x’. Therefore
we have to assign the grading to the index and have to do the same for the ghost index, because it simply is
the same index:

A — AP (3.87)

When we leave away in calculations all index-dependent signs, the pure spinor ghost will effectively be treated
as an anticommuting variable, because the rumpf is anticommuting! Another similar effect is the switch of the
symmetry properties of bispinors. E.g. the chiral v-matrices

Vas) = Vs (3.88)

which are symmetric before the grading shift, become effectively antisymmetric afterwards. As an example,
consider the following term

(MNDN) = A0V = 0N A = (OX°N) (3.89)

The calculation goes through in the same way after the shift, because the antisymmetry of the y-matrix is
compensated by the “anticommutativity” of the ghosts.

AN = A%, 50N = OAS g A = OA°A (3.90)

As one of the summations is over a graded rumpf and another is in the wrong direction, the contraction coincides
with the one for ungraded indices. This is not true for 6, where we have a sign change (for NW as well as for
NE):

AYOXN = AYCOA (3.91)
0v°00 = —6~+°00 (3.92)

Note finally that the rumpf of ¢ (the off-diagonal block of I'“) stays bosonic, even when I'® — T'“ is reinterpreted
as a fermionic supermatrix as suggested in section 2.7 on page 26.



Part 11

Berkovits’ Pure Spinor String in General
Background
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Chapter 4

Motivation of the Pure Spinor String in
Flat background

4.1 From Green-Schwarz to Berkovits

The classical type II Green Schwarz (GS) superstring describes the embedding of a string worldsheet into a
target type II superspace with coordinates 2 = (2™, 8", é“). The bosonic coordinates ™ locally parametrize

the ten-dimensional spacetime manifold, while the fermionic coordinates 8% and 6" have the dimension of
Majorana Weyl spinors and thus have each 16 real components. The Lorentz transformation of spinors is from
the supermanifold point of view a structure group transformation in the tangent space of the supermanifold. In
the flat case, where one can identify the manifold with its tangent space, the 8’s are clearly spinors themselves.
In the context of a curved supermanifold that we will treat later on, this will not be the case a priori. The 0’s
then only transform under super-diffeomorphisms and not under structure group transformations. However, the
supergravity constraints will allow to choose a gauge (WZ-gauge) in which the two transformations are coupled
and the 0's likewise transform under a structure group transformation. This is just a remark on the use of
the “curved index” p. Objects that transform a priori under the structure group carry the flat index A or in
particular a.

The cases type ITA and IIB will be treated at the same time via the choice 0" = éu for TIA and 8" = 8"
for IIB. The supersymmetry transformation in flat superspace reads

56" = e, 50" =¢" (4.1)

ox™ = ey +éeymo (4.2)
The small v-matrices are discussed in the appendix D. In order to build a supersymmetric theory, it is reasonable
to consider supersymmetric building blocks, in particular supersymmetric one-forms (vielbeins)

~ O

Er=dMEy” = (& + B0+ B0 , B , B) (4.3)

IIe

Its pullback to the worldsheet will be denoted by
2, =0.,:aMEy? (4.4)

We do not distinguish notationally between the coordinates of the superspace and the embedding functions.
The bosonic components II¢ are known as the supersymmetric momentum

Z/Z = az/ixa+az/207a9+az/ié'yaé (4.5)

The introduction to the Green Schwarz string and the motivation for the pure spinor formalism will be
rather quick and sketchy. We will be much more careful when we start to discuss the pure spinor string in
general background.

The classical Green Schwarz superstring in flat background consists of the square of this momentum plus a
Wess-Zumino term which establishes a fermionic gauge symmetry. This gauge symmetry, called x-symmetry,
guarantees the matching of the physical fermionic and bosonic degrees of freedom. The GS action has in
conformal gauge the following form:

1
Sgs = /dzz §Hg77abﬂg + Lwz (46)

Lwz = —%Hzm (oymée - éyméé) + %(owae)(éyméé) — (2 2) (4.7)
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It is covariant and almost manifestly spacetime supersymmetric. In this last feature it differs from the RNS
string, where space time supersymmetry only comes in after GSO projection. The problem for the Green
Schwarz string on the other hand is that a covariant quantization with the standard BRST procedure does
not work. The reason for this misery is a set of 16 mixed first and second class constraints d,, that cannot
be split easily into first and second class type in a covariant manner. The conjugate momentum p,, of 6%
can be entirely expressed in terms of other phase space variables and the corresponding fermionic phase space
constraint is just d.,. It has the following explicit form (the form of conjugate momentum to ™ was already
plugged in)

1 1. -
die = Py — (7a0)a (axa - 56790 - 2076@0) (4.8)

Half of these constraints are first class and correspond to the above mentioned fermionic x gauge symmetry.
The fact that they have a second-class part can be seen in a non-closure of the Poisson-algebra, which has the
following schematica form:

{d.o(0),d.5(c")} 27351_[2&5(070') (4.9)

Siegel [26] had the idea to make d., part of a closed algebra by just adding the generators that arise via the
Poisson bracket, which leads to a (centrally extended), but otherwise closed algebra

{deoo .0} X 2740p00°5(0 — o) (4.10)
{Hza7 sz} X nab(sl(a - OJ) (411)
{d.q,00°} < 088 (0c— o) (4.12)

The important observation is now that the same chiral algebra can be obtained from a free-field Lagrangian,
where the variable p,,, is independent and cannot be integrated out:

1 _ _ A
Stree = /dzz iﬁxmnmnax" +00%p,,, + 80aﬁ2d = (4.13)
1 ~ A G
_ / Po ST + Ly +00° dog + 00"z (4.14)
Las

In the second line we have used the original definition (4.8) for d.,. Remarkably, this action coincides with the
Green Schwarz action for d, = dg = 0. In the above free theory, however, d.,, is a priori not a Hamiltonian
constraint, but still a generator of a chiral (not local) symmetry. In any case, the reformulation does not remove
the mixed first-second class property of d,, but it provides a simple free-field Lagrangian. Berkovits [7] had
the idea to implement the constraints cohomologically with a BRST operator disregarding its non-closure. The
corresponding current (Q = § dzj,) for the left-moving and the right-moving sector take respectively the simple
form

Jj. = Ad.a, Jz:=0 (4.15)

J: = X%z, J,=0 (4.16)
where A% is a commuting ghost. For first class constraints the BRST cohomology can be built, because the
BRST operator is nilpotent due to the closure of the algebra. For second class constraints, however, the non-
closure implies a lack of nilpotency of the BRST operator. To overcome this problem, Berkovits put a constraint
on the ghost field A and A, the so called pure spinor constraint

MA=0, M°A=0 (4.17)

This enforces nilpotency of the BRST operator and provides a well-defined theory. The pure spinor constraint
and the ghost kinetic term have to be added to the original free action:

1 = = N
Sy = / P S0 00"+ 007+ 00Dy + Ly (4.18)
1 _ N
_ / Po ST + Ly +00°deq + 00" dea + Ly (4.19)
¢ = 9z%+ 06v°6 + 96+°9 (4.20)
1 1. R
doe = Do~ (VmB)a (83:"‘ — 507’”60 - 207’”80) (4.21)
1 m 9 N~M AN 1 m a a0 =
Lwz = —5MLm (07 56 — 0 ao) + 5(04700)(87,00) — (= = 2) (4.22)
_ ~ 5 1 1- ~ ~
Lo = Nuwg+0No,+ 5 Leza(M"N) + 5Lz (M) (4.23)
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The pure spinor constraints seem like a replacement of one problem by another. The constraints turn now out
to be first class but infinitely reducible. They generate antighost gauge symmetries of the form

5(u)wzo¢ = Hza (’Ya)\)om §(u)w2d = ﬂia(fyaA)a (424)

accompanied by some transformation of the Lagrange multipliers. We will discuss this in more detail in the
general background-case. In spite of this, the pure spinor constraint can be better handled than the original
constraint. One can solve the pure spinor constraint explicitely in a U(5)-parametrization and calculate operator
products. Although the U(5) coordinates break manifest ten-dimensional Lorentz-covariance, the resulting
gauge-invariant OPE’s all have a Lorentz covariant form and the quantization is effectively Lorentz covariant.
Berkovits showed in the above cited papers the equivalence to the ordinary string. In [12] he presented a
consistent description for the calculation of higher loop amplitudes. There are still many conceptual problems.
The pure spinor formalism starts in the conformal gauge and does not have worldsheet diffeomorphism invariance
any longer. Attempts to construct a composite b-ghost (as homotopy for the energy momentum tensor) always
involved inverse powers of the gost field. In [27], Berkovits recovered a N = 2 algebra by the introduction
of additional worldsheet fields, which is now known as “non-minimal formalism”. Multiloop calculations were
described or performed by Berkovits, Mafra, Nekrasov and Stahn in [28, 29, 30, 31] (Since the last version of
this thesis new results were obtained. A recent detailed review is provided in [120]). However, there is still a
clear picture of the origin of the pure spinor constraint missing. Attempts to relate the pure spinor string to
the Green Schwarz string via similarity transformations and redefinitions were successful in [32], but not very
enlightening. An additional task is the resolving of the tip-singularity of the pure-spinor-cone. These questions
were adressed in [33] and [34].

We should finally mention that the pure spinor approach of Berkovits differs significantly from the hybrid
formalism[35], which was developped by the same author and shares only some of the properties of the pure
spinor approach. Two recent presentations of this formalism including the numerous relevant references can be
found in [36][37].

4.2 Efforts to remove or explain the pure spinor constraint

There were plenty of efforts to get rid of the pure spinor constraint in the years after Berkovits presented his
approach the first time. A quite natural ansatz was followed by Chesterman[38, 39], who implemented the
first-class pure spinor constraint cohomologically, via a second BRST operator. Due to the infinite reducibility
of this constraint, there arises an infinite number of ghost for ghosts. Nevertheless he was able to extract the
most important information and avoided solving the pure spinor constraint explicitly.

Somehow related are the considerations of Aisaka and Kazama[40, 41, 42, 43, 44]. They were able to
construct a BRST operator with five additional ghost fields and no pure spinor constraint, using however U(5)
parametrization and breaking manifest Lorentz invariance. The relation to Chesterman’s approach can be
established as follows: The infinitely reducible pure spinor constraint can be replaced by an irreducible one in
an U(5) parametrization. This constraint can be implemented cohomologically via a second BRST operator in
a relative cohomology, and via homological perturbation theory one can replace the two operators by a single
one. Within their ’doubled spinor formalism’, they provided in [43] a derivation of the pure spinor string from
the Green Schwarz String on the quantum level.

Another enlightening approach by Oda, Tonin et al.[45] was the interpretation of the pure spinor formalism as
a twisted and gauge fixed version of the superembedding formalism. This led to a slightly modified version of the
pure spinior formalism, the Y-formalism, and to new insight about the missing antighost b-field[46, 47, 48, 49].

There was finally yet another approach by Grassi, Policastro, Porrati and van Nieuwenhuizen, at that time
most of them in Stony Brook, which we will discuss shortly in a seperate section, as it was subject of my early
PhD studies.

4.3 Some more words on the Stony-Brook-approach

In a series of papers [8, 50, 51, 9, 10, 52, 53] Grassi, Policastro, Porrati and van Nieuwenhuizen have removed
the pure spinor constraint by adding additional ghost variables. They realized in [10] that their theory has the
stucture of a gauged WZNW model with the complete diagonal subgroup gauged. It is based on the chiral
algebra above. A current can be set to zero by gauging the corresponding symmetry and thus making it a first
class constraint. However, d,, does not form a subalgebra and thus cannot be gauged on its own. So if one
starts gauging d,, and tries to make the resulting BRST-operator (4.15) nilpotent by adding further ghosts,
one automatically arrives at a BRST operator that corresponds to a theory where also I1,,, and 00% are gauged
(see e.g. [9, p.7] or [10, p.4]; this fact was later also used to describe a topological model in [54]). In the gauged
WZNW description this means that the complete diagonal subgroup is gauged. Therefore a grading or filtration
had to be introduced, in order to obtain the correct cohomology. In [53] it was argued that for any (simple)
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Lie algebra one can in general gauge a coset (in our case the algebra that corresponds to d.,, modding out
the subalgebra) by gauging the complete algebra and later undo the gauging of the subalgebra by building the
relative cohomology with respect to a second BRST operator. This corresponds to the former grading. Despite
its elegance there are some puzzling points about the WZNW action:

e For the heterotic string one starts with a chiral algebra and gets from the WZNW model a chiral as well
as an antichiral algebra. Somehow one has to get rid of the antichiral one.

e For the type II string one starts with a chiral and antichiral algebra. Both of them double and the Jacobi
identity forces one to mix those algebras. Thus it has not been possible yet to produce a WZNW model
for the type II string.

e The classical WZNW theory is not a free field theory which might cause problems for calculating OPEs.

For those reasons, we avoided in [11] the WZNW action. Although the cited paper contains the work of the
early stage of my PhD, it will not be presented in this thesis in detail. The reason is that it would open yet
another field, whereas the presented parts share some common aim. Let me therefore just sketch the results:
We started in [11] with the free field action of above, discussed its off-shell symmetry algebra generated by
the current d,, and gauged it, in order to turn d,, into a constraint. Before actually gauging the algebra via
the Noether procedure, we had to make it close off-shell. To this aim we introduced auxiliary fields P,,, and
Ps,,. There still remained double poles in the current algebra, which caused trouble in the gauging procedure.
They were be eliminated by doubling all fields as it was done in [10], in order to establish nilpotent BRST
transformations. Gauge fixing leads to the BRST-transformations as they are given in [10].

Finally, we had a closer look at the final BRST operator proposed in [10], which includes diffeomorphism
invariance by adding a topological ghost quartet. We came to the conclusion that this operator has to be
modified via a second quartett of ghost fields in order to become nilpotent. More details can be found in [11]
and [55].

A last major progress was achieved in [56] by establishing an N = 4 algebra in this formalism. There exist
also independent studies of WZNW models based on supergroups like for example on PSU(1,1|2) in [57] .



Chapter 5

Closed Pure Spinor Superstring in general
type 11 background

The pure spinor string in general background was first studied by Berkovits in [13]. The one-loop conformal
invariance of the heterotic version was studied in [58]. The classical worldsheet BRST transformations of the
heterotic string in general background were derived in [14]. The one-loop conformal invariance of the type II
string finally was shown in [59] where also the derivation of the supergravity constraints was reviewed. Note
also [60, 61, 2] for another useful presentation of some aspects of the pure spinor string in general or AdS5xS5
background. In the following we will present again the derivation of the supergravity constraints as it was
done in [13],[59] but we will explain in more detail several steps and also we will use a different method to
derive the constraints. In particular we will not go to the Hamiltonian formalism in order to derive the BRST
transformations as generated via charge and Poisson bracket but we will stay in the Lagrangian formalism and
will use what we call “inverse Noether”. In addition we will use a spacetime covariant variation in order to derive
the classical equations of motion in a spacetime covariant manner and we will present the BRST transformations
of all the worldsheet fields for the type II string in general background. This has so far been done only for the
heterotic string in [14]. Having derived the supergravity constraints we will finally go to the Wess Zumino gauge
and derive the local supersymmetry transformations of at least the fermionic fields in order to make contact to
generalized complex geometry.

Note that there was a carefull study in [62] of how to construct type II vertex operators in the pure spinor
formalism. This is at least for massless fields directly related to the deformations of the action that we are
going to study now. (After the first arXiv-version of this thesis, another thesis by O. Bedoya [121] studying and
reviewing many aspects of the pure spinor string in general background has appeared).

5.1 Ansatz for action and BRST operators and some EOM’s

In the following we will consider the closed pure spinor string coupled to general background fields. One
can either add small perturbations (integrated vertex operators) to the action or simply consider the most
general classically conformally invariant action with the given field content and the same antighost gauge
symmetry (generated by the pure spinor constraint). The action, however, is not enough to specify the string
completely. In addition, we need two (one left-moving and one right-moving) BRST operators in the general
background. The existence of two such BRST operators which have to be nilpotent and conserved (holomorphic
and antiholomorphic respectively) turns out to be equivalent to supergravity constraints on the background
fields. The important steps of this calculation will be carefully motivated in the following.

The idea is to start from the most general renormalizable action with the given field content. It is convenient
to throw away immediately the tachyon term which is allowed by renormalizability, but which is not even BRST
invariant for the undeformed BRST transformations, at least for a non-constant tachyon field. The starting
point then reduces to the most general classically conformally invariant action. In order to write down a
classically conformally invariant action (ghost number zero in each sector), we have to combine elementary
fields to terms with conformal weight (1,1). There are no fields with negative conformal weight. The a priory
possible elementary building blocks of ghost number (0,0) are thus

weight (0,0) M

weight (1,0) 1M d s A*w .3

weight (0,1) 9™, dza A"y

weight (1,1) 5‘5xM,5Aawzg,85\dcb23, Id.er, Odza
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We now can combine an arbitrary function of 2 (background field) with either a (1,1)-building block or with
one (1,0) combined with one (0,1) building block. Via partial integration, a 90z -term with an arbitrary x-
dependent coefficient can always be rewritten as a 92 9z -term'. Before writing down the resulting action, let
us note that we will immediately absorb the z-dependent coefficient coming with 9A®w. g in a reparametrization
of w.g so that we simply get the free ghost kinetic term OA*w. . Likewise for the hatted variables.

The most general classically conformally invariant (or renormalizable, adding Tachyon term) action with the
same field content (including the pure spinor constraint on the ghosts) with independently conserved left and
right ghost number now reads

S = /dzz %BxM(GMN(E)+BMN(§))5;UN+5xMEM°‘(?E)dm+8xMEM6‘(§)J,gd—k

=Oun(7)
. & -

o T ) o Lea o )
+doa P (1) d g+ AYCoV (2) wopdzy + X CaV(8) @ gdey + AA 506" (7) w2pd 5 +

+ (5)\3 + AQS‘ZMQMQB(E)) w:p + <85\’3 + j\dal’MQ]ud’é(z)) (.:sz:‘ +

=V:AP

Lza(A*A) (5.1)

N =

1
5 Laza(XN) +

Note that we denote with 2 the complete set ™ of superspace coordinates, while = will only denote the
bosonic subset z™. As stated already above, the kinetic ghost term INP w3 can always be brought to this
simple form by a redefinition of w. We will discuss this and other worldsheet reparametrizations below in detail.
The motivation for the definition of the covariant derivative VAP will also be given at a later point. For
the moment, Q)74 (7) is just an arbitrary coefficient function or background field. Like in the flat case, we
implement the pure spinor constraints via two Lagrange multipliers.

In order to complete the theory, we need two BRST operators which reduce to the well known ones in the flat
case. Their nilpotency and (anti)holomorphicity will be checked later and lead to the supergravity constraints.
For the moment, let us just write down the most general ansatz of their currents, which have to be of conformal
weight (1,0) and (0,1) and ghost number (1,0) and (0,1) respectively

j. o= A% (dm + Y op(2) 0™ + A"’T“)Mﬁ@?)wzg) , §:=0 (5.2)
5. = A° (dm +TY@ (7)) 0:aM + X”Tg’gﬁ(f)aza) . 3.=0 (5.3)

Like for the ghost kinetic term, we have immediately absorbed any z-dependent coefficient T(l)aﬁ(f) coming
with X*d.g and its hatted version in a redefinition of d.g and d, [3.2 Of course one can further redefine d.o and

dza, such that we arrive at the standard form j, = A%d,, and j; = Xadgd. This does not change the general
form of the action. We will discuss the reparametrizations more carefully in the next section.
The following observation is important to reduce the computations one has to do. Let us first define

Oun = Onu. (G —G,B=-B,H= —H) (5.4)
P = pry (5.5)
S& ’é’B = Saa’e'é (5.6)

Then — rather obviously — the following statement holds

Proposition 3 (left-right symmetry) The complete theory (action +BRST operators) is invariant under
the exchange of hatted and unhatted objects if at the same time their indices are flipped from hatted to unhatted
and from z to Z and vice verse, and O is exchanged with O:

dedAoAweoo, Lo L,0s0P-P,S—5C-0,0-0VoV,TOoTO 5435

0« 0, indices: o — &,z — Z (5.7)
In particular the replacement O — O implies due to (5.4) that
Bo-B,  GeoG (5.8)

IThis, however, contributes to the surface term. In the case of open strings, adding a 89z -term is therefore equivalent to the
modification of the boundary part of the action. o

2Tf one wants to study degenerate limits of the theory, one should remember and reintroduce the coefficients OR T@ and the
one coming with the ghost kinetic terms. <
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Simple eom’s Before we close this section, let us quickly give the equations of motion of those worldsheet
variables (all but %) which can be seen from the target superspace point of view as tangent or cotangent
vectors. This refers to the form of their reparametrizations that will be discussed on page 49. Their equations
of motion are comparatively simple:

08

54 = (§$MEM7 + 'P’Y‘?d}a’ + Xdédﬁ"’dzgﬁ (5.9)
zy
1) . . .
5 e ENT 4+ P 4 A CaP (5.10)
5d=4
0S & 5
— (v \Baxe (o By . _ BB, = _p.\B
S (vzx A (Ca dzs — A" Sua wm)) = _D.\ (5.11)
(5(.02,3
65 7 A a — a
W - = (viwza - (Oa di‘y - Sad w*A) wz,@) + ina(7 )\)a = *’Diwza + ina('—Y A)a (513)
) N A A A -
:S; = - ( zd)id - (Oa dz - )\aSad'Bﬁwzﬂ) d)gg) + ina(fya)\)a = *’Dzdjid + ina('ya )d (514)
oA
38 1, ., 55 1,5 as
6Lura 50‘7 A), @ = 5()\V A) (5.15)

In (5.11)-(5.14) we have introduced yet two other “covariant derivatives” D; and D,:

DA = NP 4 ALPAY, AP = 05M e + CuPVdas — S\dsa&ﬁ%gﬁ (5.16)

’[)ZXB = 5&5 +Azd’95\d, Azd'é = axMQMd’é + C’dﬁ'ydm — )\aSa&’@szﬁ (5.17)

These covariant derivatives are introduced simply for calculational convenience and we do not give a geometric
interpretation — although this might be interesting. For the covariant derivatives V3 and V. defined in (5.1)
instead, there exists a simple geometric interpretation. They are pullbacks of the covariant target super tangent
space derivatives with connection coefficients 2 e and @) ma? to the worldsheet. The reason why these two
background fields can be seen as connections will be given in the following.

Note that the derivation of the still missing variational derivative with respect to ¥ is quite involved and
will only be given in section 5.5 on page 54 using a covariant variational principle.

5.2 Vielbeins, worldsheet reparametrizations and target space sym-
metries

There are several ways to reparametrize the worldsheet fields in the above action and the BRST currents. One
can use such reparametrizations to simplify the form of the action (as we did already implicitly in order to get
a simple ghost kinetic term) or of the BRST currents.

Before we come to the first convenient reparametrization, let us observe the following: The two background
fields Ey©® and Ejp®, combined to a 42 x 32 matrix EpA,A € {a, &} have maximal rank 32 in a small
perturbation around the string in flat background. Or in other words, the quadratic block Eaq” is invertible?.
It can thus be completed by some Ej;® to an invertible 42 x 42 matrix which we can interpret as (super)vielbein.
The only requirement for E;® to be a valid completion is that its bosonic sub-matrix F,,® is invertible*. The
“background field” Ej;* does not appear in the action and nothing should depend on it. Let us from now on
use the completed vielbein E;# and its inverse E4™ to switch from curved to flat indices and vice verse. In
particular we define

Gap = EAMGunEBY (5.18)

For later usage we denote the components of the pullback of the vielbein E4 to the worldsheet as
mt = 02MEy" (5.19)
md = 0ME, (5.20)

In flat space, I1¢ /z will just be the supersymmetric momentum and the fermionic component will reduce to the

worldsheet derivative of the fermionic coordinates: Hf}z fAa 0, /20“4.

Let us now study the possible reparametrizations of the worldsheet variables systematically.

3 Again it might be interesting to study also degenerate limits. 3
Em®  Ep?

. . . . . . A . .
Fag®  EpqgA ) is invertible, iff its bosonic blocks (Em®) and (Eaq) are invertible. o

4The bosonic supermatrix (
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Possible reparametrizations We denote by ¢Z; the collection of all worldsheet fields. If we make some
reparametrization ¢Z, = f[¢Z,], the Jacobi matrix has to be invertible in order to lead to equivalent equations

of motion:
iS — /dQ& 5¢a]l( ) ) (521)
¢ (o) 5¢all( 0) 5%11( )
The following reparametrizations are the most general ones which respect the conformal weight as well as the
left and right-moving ghost numbers (note that the Lagrange multipliers have ghost number (—2,0) and (0, —2)
respectively):

JNJM _ fM( E) (5.22)
AT =A@, AT = R%(E)A] (5.23)
La = EVP(2)dp+EP an ()02 + 20 0 (7) N w.s (5.24)
o = EWP(F)d5+E0(7)02N +283(H)N @ (5.25)
Do = EVP(Flwsp,  Ga=EPP(7)04 (5.26)
ina = E<5)ab( E)inba iiza = éaS)b( E)i/izb (527)

fM has to be an invertible function and A, 21, =(* =) and their hatted equivalents have to be invertible
matrices. For a general reparametrization, Ao can be a general invertible matrix, but if we want to leave the
form of the action invariant, it has to be an element of the spin group or a simple scaling. We will discuss that
below. Note also, that we have already used Z(*) and Z(") and their hatted versions to get a simple ghost-kinetic
term in the action and a simple first term of the BRST operator.

Shift reparametrization Let us first study the effect of the shift-reparametrizations

dooe = oo —EPopr(7)02™M — 2O 0 (2) N w.s, EW P =6,° (5.28)
Lo = dea—E0(8)0eN —2@ ()W o, BB = 5.0 (5.29)

on the form of the action. Plugging the above reparametrization into (5.1)-(5.3), the form of the action and the
BRST currents does not change if the background fields are redefined accordingly. The shift-reparametrization
thus induces an effective transformation of the background fields:

ExY = ExY—P7EQLENE, By = EyY — EO G aEy AP (5.30)
Qe = Qua? — Oy Bdé(g) EMA _ Ezv175(3)-,aﬁ +E(3)7aﬁpyaégAEMA (5.31)
Dia? = QP — CaPE® qaBy? — By VEGDP + 2O 4By APTELR)B (5.32)
CoPY = CPY - =0 BprY, Co B = (P paﬁégi;ﬁ (5.33)
5.aPP = S.aPP+ édé@(z)mﬁ + Ca@ﬁég/%é _ E(3>7aﬂpvﬁ§g3;ﬁ (5.34)
TE, = YO, —E@4,  TO.y =18 -22), (5.35)
@B — r®, B =08 ~§<3>MB _ Tg»glia _ ggé (5.36)

Finally we have the transformation of Oy;n = Gy + By which we split after the transformation again into
its symmetric and antisymmetric part:

éMN = EMAENB X (537)
fm) ( ) = = (2) = 2) = Aﬁ‘<2)
Gap + 2235 PTYER) Gap = B ga +283) (o PYTEL, Gop —Zp, + 2205 PEL )
(2) e} fm) ( ) L= L &(2) = > ﬁ'(Q)
Geop — ((> ) ab + 223 |73'w< )‘ ) Gop — 2_<2>(a3)<.;_2_(2) (alpv‘v 'f?) Gup _(2)‘1!3( ) 25 + 2“@)‘1(&\737(7)“:,\3)
(2 = (2 - (2 - 5 (2
Gdb_—‘db +2_(2> vy(& "P‘Y‘Y_Mlb) Gag —:.(2)3@ _:’d,B +2:(2) vy (& ‘7777._“‘3) Gdf} - :'(df}) +2‘:<2)‘y(d\7)77 518)
BMN = EMAENB X (5.38)
= =(2) = =(2) =(2) = =(2)
By + 223 yla l’pv'v St Bug — (2)5 4 2_(2)7[(1'7)'7'7 IB] Baﬁ 4 Zha 1 2=(2) ~la lp'w 1Bl
= ~(2) =) = =(2) = =(2)
Bap +2Pap + 2500 PYEN Bap +22@ag) + 25,0 PIIEL, Bap +E() 5+ 50 + 280, PTIEL,
=(2) = ~( =(2) = =(2) =(2) = =(2)
Bav = Eap + 22050 PYER Bap —E®pa —E5p + 220,10 PYTE ap ~ Eap T ED @ PE

Interestingly, looking at (5.37), one can bring Gap to the block diagonal form G4p = diag(Gap,0,0) at least
for vanishing P7. For general P77, this is less clear because the equations become at first sight quadratic®

5Note that the matrices in (5.37) and (5.38) do not yet correspond to Gap and Bap given by Gy = EyfAENBG ap and the
equivalent equation for BMN7 as we have expressed Gy and By in terms of the untransformed vielbeins. Due to (5.30), the

AB

AB
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in the transformation parameters. It is thus more convenient to use the shift reparametrization to bring the
BRST-currents to their standard form, i.e. simply shift Y2, Y3 and their hatted counterparts to zero. From
now on we will thus use the simple BRST-currents:

j. = A%.a, j.=0 (5.39)
dsay 3.=0 (5.40)

In [13] the authors start with both, the simple form of the BRST currents as well as the above mentioned
special form of G4p and thus a reduced rank of Gj;n. As we cannot reach both at the same time with the
shift reparametrizations, the simplified form of the symmetric two-tensor has to be a result of BRST invariance
or likewise on-shell holomorphicity of the BRST-current. We will discover this result soon. Only then we will
use the freedom of the choice of the auxiliary vielbein components Fj® (which do not appear in the action),
in order to fix Ggp t0 M4, Or at least proportional to it. For the moment, however, we do not assume any
restrictions on Gy, Ep® and G ap apart from the invertability of E,,°.

Local target space symmetries There are still many reparametrizations left and we could try to further
simplify the form of the action. It is, however, convenient not to fix all freedom. As we do not want to destroy
the form of action and BRST currents that we have already obtained, the freedom consists of ’stabilizing’
reparametrizations. I.e. we have to restrict to those reparametrizations out of (5.22)-(5.27) which leave the form
of the action (5.1) and the simple BRST currents (5.39) and (5.40) invariant if one transforms the background
fields accordingly. These reparametrizations are in general not symmetries from the worldsheet point of view as
the compensating transformation of the background fields corresponds to a change of the coupling constants.
However, as the action remains formally invariant, all the constraints on the background fields which will be
derived later will also remain formally invariant. From the target space point of view the transformations of the
background fields (going along with the z-dependent reparametrizations) thus correspond to local symmetries
of the target space effective theory. What we have done so far by e.g. eliminating the coefficient fields Y in
the BRST operator, corresponds to a target space gauge fixing of auxiliary background fields.

Residual shift symmetry Any further shift reparametrization of d,, and dsa changes off-shell the form
of the BRST currents (5.39) and (5.40). But we may still allow changes of the current up to the pure spinor
constraint. The pure spinor constraint generates a gauge transformation as we will see in the next section. Any
change of the BRST currents proportional to the pure spinor constraint thus can be compensated by a gauge
transformation. Under the reparametrizations

dia = doa —ED2(2)(VN)awzs, = EPay® =95,E0),° (5.41)
dea = doa- 5;(,3)3(5)(’71’5\)&@53, = éfi’? = 72@31()3)3 (5.42)
the BRST currents change to
j. = A%ia —EP(2) M A)w.s, §.=0 (5.43)
b = Az —E3(5) (M N, . =0 (5.44)

Global symmetries like the BRST transformation can always be redefined by a gauge transformation without
changing their physical meaning. Doing this brings us back to the simple form of the BRST currents. The
transformation of the background fields under this reparametrization is

Qe = Qua® — Ex",E®,P (5.45)
éMdﬁ — Qs - EM;’vffidél(,S)ﬁ (5.46)
CoPY = CoBY — b 2@, 8P, Co B = (1 B P 28 (5.47)
5.aP8 = 5.a°0 + édﬁ%ygag(i%)bﬁ + caﬁ‘wgdéf’)@ _ ﬂag(?))aﬁpw%g&ggf)ﬁ (5.48)

This target space gauge symmetry will be fixed at a later point in section 5.11 on page 71.

vielbeins transformation has the form

R _fPaS é((”;i) _5(2)6CP5&
En?* = (E]MC7 Enm7, EM:Y) 0 9y = Pasé?) —E@);, Pi
0 77)(16@((;?) 6’961 _ 5(2)5:YIP56L

For non-vanishing 79’W,~ the inverse of this matrix would enter the final form of Gap and make the problem of finding a
reparametrization with G4 p = diag (Ggp, 0,0) more complicated. o
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Superdiffeomorphisms  Let us now consider the general reparametrizations (5.22) of the superspace-
embedding functions 2™ which correspond to target space super-diffeomorphisms.

M= M) (5.49)
The worldsheet derivatives of the embedding functions transform like target space vectors
oM = 9zM JogN - OxN (5.50)

For the action and the BRST-operators to remain form-invariant, the background fields have to transform
tensorial according to the appearance of the curved index M, e.g. Qua?(z) = Qna?(z) 02N /0zM. All

objects with only flat indices or no indices have to transform like scalars. In this way we observe that the
resulting effective equations for the background fields will be superdiffeomorphism invariant.

Gauge transformation of the B-field One of the gauge transformations of the background fields is a bit
special, as it is not related to a worldsheet reparametrization. It is the shift B — B + dA with some one-form
A. This does not change the action at all, as the total derivative term simply drops out (for closed strings). It
is, however, again not a worldsheet symmetry, as we do not transform the worldsheet fields but the coupling
constants. The background field-constraints will in the end be the same for the transformed B and we thus
have again a gauge symmetry from the target space point of view.

Local Lorentz transformations and local scale transformations Next we consider reparametrizations
of the ghost A®. An admissible reparametrizations (5.23) of A* turns the pure spinor term L.z, (AT 7%A) into

~T ~
L.zo(A A='2AT=1X). In order to obtain the old pure spinor term also in the new variables, the reparametriza-

tion of the ghosts has to be accompanied by an appropriate reparametrization L.z, = Ay®(x) - L.z, of the
Lagrange multiplier L,z,. The condition for the invariance of the pure spinor term under the reparametrization
then reads®

! arn— _
Vag = MAATaTEs(ATHg0 (5.51)

For infinitesimal reparametrizations we can rewrite it as

! a . .
2L’ V85 = Iv"vaps  (infini (5.52)
with Ao® = 0P +LaP, AL =60+L,° (5.53)

6The fact that we use the index structure Ag® instead of A%g is only for later notational convenience. It is not necessarily
related to using NW-conventions, although A = )ﬁAﬁ" contains a nice NW-contraction. For us the reason is simply that the
alternative index position would be very inconvenient for the associated connection. The symbol Q3;3% is just much simpler to
type (and looks better) than Q5% 3. o
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To obey this, both reparametrizations are restricted to local Lorentz transformations and local scale transfor-
mations’. The infinitesimal generators thus have the following explicit form:

L = OB WA b= Db (b (5.54)
1 1
DPP = TIPS, IBe = iDyes, 1 = D (5.5
L) ¢[e L L
L = poge g - fWglepds L g (5.56)

The reparametrization so far reads

>
I

AP (5.57)
L.za = ALy (5.58)

Note that in our notation A contains both, Lorentz transformations and scale transformations (dilatations).
In order to maintain the special form of the ghost kinetic term and of the BRST-operator, we likewise have
to transform

doo = (A HaPd.p (5.59)
J-’za = (A_l)aﬁwz,ﬁ (560)

with infinitesimally (A™!)o? = 64” — L. The background fields can again be reparametrized in a way that
the complete action plus the BRST operators remain form-invariant: Just transform every background field
with unhatted spinorial indices accordingly. E.g.

CPY = (A HAPCY, L (5.61)

Only the field Q3/4” must not transform like a tensor, but like a connection, in order to keep the form-invariance
of the action

Qua® = —0mAeP + (A7) AP0 (5.62)

This is exactly the reason why we have combined it to a covariant derivative in the ghost kinetic term right
from the beginning. For the effective field equations all this means that they will be invariant under a local
Lorentz transformation and dilatation acting on all the indices of the background fields which are coupled to
the ghosts, the ghost-momenta and the variables d.q, or in other words, acting on all unhatted flat spinorial
indices.

"The 32 x 32 unity and the antisymmetrized T-matrices T%1-?» (see appendix D on page 167fF) form a basis of the vector space
of all 32 x 32 matrices. The 16 x 16 sub-matrices 6%, 71929, ..., 4%1--210,9 in the block-diagonal (they vanish for an odd
number p of bosonic antisymmetrized indices, see (D.110) on page 177) therefore span all the 16 x 16 matrices. And due to the
relations (D.128)-(D.131) on page 178, i.e. y[P) oc v["~P] already the matrices 6%, 7%1924% and 49149 form a complete basis
of all 16 x 16-matrices. We thus can expand the infinitesimal generator L& 8 of the reparametrization matrix (i.e. Aa® =649 +La‘s)
as follows:

1 1
Lazs _ 5L(D)(;azs + Zngzlz,yalagas +La1.“a4,ya1..4a4a5
Plugging this expansion into the condition (5.52) yields
! 1 @
LbaVZla = 2L[a|67§‘3] = L(D)’ygﬁ + §L((11212 7ala2 [a|67g‘ﬁ] +2La1...a4 'Yal“‘a4 [a\J'ng] (*)
N —_— N— ———

1 _ 08 [3] 5]

°<’Yaﬁ+/y[aﬂ] °<’y[a,6] +“/QB
—— ——
0 0

Below the curly bracket, we have indicated the schematic expansion (D.112) of page 177. Due to (D.111), all the ~Bls vanish
because of the graded antisymmetrization. We can thus concentrate on the v[* and ~[®)-part:

(D.114)
[a\57g|,3] = 27[a1aﬁ77

ajasz asla

Y

(D.114)
,yal...a4[a‘5,yg,lﬁ] = ,ya14..a4aaﬁ

The righthand side of (*) has to be a linear combination of v%’s which is not true with a remaining 'y[‘r’]—term Lay...ay7*1 %% 3.
We thus have to demand

!
La1.4.a4 =0

With this condition, (*) and therefore (5.52) are fulfilled and the relation between the reparametrization of the ghosts and of the
Lagrange multipliers is given by

1 1
Loz(s = 5L(D)6a5 + ZLt(zlll()lz'Yalaaaé

L = L®Psp+LPpee o
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We get an equivalent but in the beginning completely independent local Lorentz transformation and scaling
AaP acting on the hatted indices. In addition we may redefine the bosonic vielbein E¢ = de™ E),?, which we
introduced by hand. Remember, it is related to Gap via Gy = En?*GapEnE and we did not yet restrict
G ap. The matrices Ep® (of maximal rank 10) can thus be redefined by an arbitrary GL(10) transformation
on the index a, accompanied by a compensating transformation of G 4p5. At a later point, we will obtain a
restriction on G 4p which then allows only Lorentz and scale transformations [\ab acting on the index a of
Ep®. This transformation, acting on bosonic flat indices only, is again independent of the other two local
structure group transformations (acting on the spinorial indices). The relation of the three transformations will
in the end be fixed (see page 92) by a convenient gauge fixing of some torsion components. In contrast to the
fermionic transformations, the bosonic local Lorentz transformation is not coupled to a reparametrization of an
elementary field (from the worldsheet point of view), but only to the transformation of Gp:

Eyv® = AJSEy© (5.63)
Gab = (Ail)achd(Ail)bd (564)
The transformation of the background fields is determined by their flat indices. Combining the bosonic and

fermionic flat indices to A = (a, o, &), we have a block diagonal structure group transformation acting on
the target super tangent space:

AL 0 0
A = 0 AP 0 (5.65)
0 0  AgP

All three blocks are independent. A," instead, which is acting on the Lagrange multiplier (but on no background
field!), was induced by Ao”? via the invariance of Yap- Also keep in mind that A,b is so far not restricted to
Lorentz transformations or scalings. It will be so at a later point.

5.3 Connection

We have seen in equation (5.62) on the preceding page that Ml and 0 maP transform like connections under
structure group transformations. Let us introduce some auxiliary target space field Qp7,° which transforms like
a connection under the transformation A,’ of the bosonic tangent space. As the field Q,7,% does not appear
in the worldsheet action, nothing should depend on it in the end. We can now combine the three objects to a
structure group connection on the target super tangent space (let’s call it the mixed connection)

Qua® 0 0
Qua® = 0 Qua® 0 (5.66)
0 0 Qua®

The underline will help us later to distinguish this connection from alternative choices. This underline will
decorate all objects referring to this connection. The corresponding superspace connection coefficients I, n %
are now given via

0 = VuBEn*=0uEN? —Dyun®Ex? + Q5 En® (5.67)

Due to the block-diagonal form of the connection, the curvature R, % = d2,2 — Q,¢ A Q. is block diagonal
as well

R, 0 0
R, = 0 R” 0 (5.68)
0 0 RaP

and the upper index of the torsion 7 = dE4 — E€ A Q,* tells us by which block of the connection it is
determined:

T4 = (T°,7%,17%) (5.69)

Remark Although the connection coefficients which act on the spinorial indices have the correct transforma-
tion properties, we did not yet check that they are Lie algebra valued, i.e. that the matrices 25,." and Q. are
not general matrices, but are restricted to the structure group algebra of Lorentz and scale transformations. We
will show this partwise below in section 5.4 when we discuss the antighost gauge symmetry and will complete
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the argument when we study the holomorphicity of the BRST current in section 5.7. Let us already here give
the result for completeness:
Q B8 _ 1Q(D)5 I¢] 1Q(L) aiaz B O B _ 1Q(D)5 B IQ(L) ataz P 5.70
Ma = §M a +Z Majas a Mé& _§M & +Z Majas Y & ( )
The labels (D) and (L) distinguish the dilatation (or scaling) part from the Lorentz part.
This special form of the connection of course induces a special form of the curvature (see (5.68) and

(F.88),(F.90) and (F.92) on page F.90). The curvature is blockdiagonal in the last two indices (5.68) and
each block decays into a scale (or dilatation) part and a Lorentz part:

Rync? = diag(Rune?, Ranq?, RMN-?/;s) (5.71)
Runet = Fot+ REN A PP = ERMNC (5.72)
Runy’ = % Aoy + ERE\Z\NM R R T —éRMNw7 (5.73)
RMny[; = ; 5 S+ 435\41\[@ Mbar V" %5 63 Fﬁfj\)/ = —éRMN»ﬁ (5.74)

with the scale field strength
FO) —gy® PO —gq®) FD) — g (5.75)

The major part of the covariant derivation of the last equation of motion in section 5.5, where we have not
yet completed the argument that the mixed connection is structure group valued, does not refer to this fact.
Only the variation of the pure spinor term will be affected and this will be discussed carefully.

5.4 Antighost gauge symmetry

The pure spinor constraints Ay*A = 5\7‘15\ = 0 are first class constraints at least in the flat case and thus
generate gauge symmetries. The same should be true in the curved case. We can see this fact, however, without
referring to the Hamiltonian language, simply as a consistency condition on the equations of motion.

For the ghost field we have two equations of motion which have to be consistent in order to allow any
solutions:

615 = = (0N 2 (M + CaPrdzy deadﬁ@azﬁ)) — DA (5.76)
203

55 1.
il (LSO (5.77)

Every linear combination of the second line, %*(Ay®X), obviously is still on-shell zero for any set of local
parameters fi,. When we act with 0 on this expressmn the result still has to vanish on-shell. Le. for any pu,,
we need to have:

| Lha _
0 = O =20 = Ve (z, 2
on-shell ( 2 7 ) Hal2,2)
(5.16) 1 a B a
= 8“@ ' 5()‘ )‘) +/~La(}‘7 )ﬂ D; }‘ﬁ _Ma)\ (HCQC + C 5'7d27 - A Sa|a 5[3) 75|,8]AB (578)
H/—/ 58
STass b= Azfal®

The first two terms in the last line vanish on-shell, so we may concentrate on the rest. Following footnote 7 on
page 49 (with AEM‘S taking the role of L[a|5) we can expand AEM‘S in antisymmetrized y-matrices and obtain
for the last term in (5.78)

— 1 X Az G A = —ua>\°‘< AP Yap T 5 Aztnaz ‘“aﬁn‘”]a+Aza1...an“1'“‘"‘“aﬁ> AP =
= (AP ALY i OGN praAsay g () (5.79)
=Azq0 Misia

Tt is natural to view As,? as the connection coefficients corresponding to Dz when acting on bosonic indices.
It is built from the expansion coefficients of Az, which are in turn built from the expansion coefficients of
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QuraP, CaP¥ and SaaPP (all seen as matrices in o and B — compare again to footnote 7 on page 49)3

Di;u/a = 5,“(1 - Aiabﬂ‘ba Aiab = 5xZMQMab +Cab;Y v 5\ Sadbﬁwgﬁ (580)
HgQCab
1 1

with Qo' = O+ 00" < Quaf = 20467 + 10" + Qurara 1P (5.81)

=0 (later)

N N N N 1 - 1 - N
C" = CV65 4+ Caen® =0 = 5075‘1'6 + chalﬁabaﬁ +C%0 a7 (5.82)
=0 (later)

R . . . N 1 . 1 . .

Sadbﬁ = Saﬁ52 + S&Bacnd) <~ Sadﬂﬁ = §S&ﬁ6aﬁ + ZSd'Bac’yaba'B + S&'Ba1ma4 ’yalma40‘ﬁ (583)

=0 (later)

The coefficient Q/q,...4, and the other y[4-coefficients do not enter the definitions of Q;,%, C,*Y and S.abB.
At a later point we will find that the y!4-coefficients actually have to vanish, which then implies Dzvap = 0.
This is the actual motivation for this choice of bosonic connection. It is tempting to argue that

Afal...a4 = HgQC’al...cM + dAE'AyCA/al...az; + X Sd'éal...ml‘;)EB (5'84)

has to vanish already at this point, in order for all the terms in (5.78) to vanish on-shell. But the condition
will be a bit weaker, as there is yet another equation of motion applicable’. We can replace I} (appearing in

((5.84)) and (5.80), and defined in (5.20)) with the equation of motion (5.9):I17 = % —7?7'735;, —)A\QCA},B’YGJEA

B
. Putting now all the last equations together, we arrive at

08
_ Q ai...aqa
5w26 ,ua Yai...aq (Ary A) 5dz'y +

—Ha |:H§C7;Y}Q{c,;y}a1“.a4 + dAZ‘y (C’?a1...a4 - ,PFY:YQ'yal...aA;) +

0 (%Xya)\> = Dszug,- % — pra (A7)

+X°‘ (S&Bal...tu - é&'BWQ"/al...a4> L’:’gﬁ} (A'Yalma‘la)\) (585)

The dummy indices in curly brackets {c,4} in the second line simply should indicate a sum over ¢ and %
only, and not over . The first line on the righthand side vanishes on-shell. The next two lines also have to
vanish for every pu,, because the left-hand side vanishes on-shell. At this point we cannot make use of further
equations of motion. In particular the equation of motion for #*, which we have not yet derived, would be of
conformal weight (1,1) (containing terms like 992™) and would therefore not be applicable. For consistency of
the equations of motion, we thus get the following restrictions on the background fields

Qcal...a4 = Q‘yal...m; =0 (586)
C’yal...a4 = ,P’Y’YQ'yalA..cm (587)
Séﬁ'@al...tu = Cvdla’yﬂ7a1.“a4 (588)

This condition is weaker as the one given in [13] (see footnote (9)). It coincides exactly iff we impose in addition
Qyq,...as = 0 (see the remark at the end of this section). This additional restriction will, however, only be a
result of BRST invariance.

According to Noether, every symmetry transformation corresponds to a divergence free current and vice
verse. For a given current j¢, we can calculate the corresponding transformations by reading of the coefficients

8The coefficients Q%?) and Qg\?alaz

(graded version of (D.140) on page 178)

can be extracted from the given Qps? using 6o ® = —16 and ¥9192 4Py, & = —326,‘;11;22

1
*gQMaa
1

QMara, = *§7am2ﬁ"‘ﬂzwa" o

Qs

91n the original derivation of the supergravity constraints from Berkovits’ pure spinor string in [13] it is argued that the action
has to be invariant under the gauge transformation dwa = pa(Y*A)a (the gauge symmetry generated by the pure spinor constraint
in flat space). In our notation this implies exactly Azq,...a, = 0. However, there is no reason a priory, why the form of the gauge
symmetry should not be modified in curved space, as long as this modification vanishes for the flat case. We will indeed discover
such a modification in the following, and with this modification the restriction on the background fields is weaker. Nevertheless we
will obtain the same result in the end, as Azq;...a, = 0 Will be a consequence of BRST invariance later. o
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of the variational derivatives of S in the off-shell divergence of the current (see (E.7)):

r 05 085
* 5¢all
If we take j. = #:2(Ay*A), jz =0, the condition (5.78) tells that the current is on-shell divergence free. We

have chosen a parameter of weight (1,0), in order to get a current of correct weight. From (5.85) we can now
read off the corresponding symmetry transformations:

0, = —0(p)® (5.89)

6(u)wza = ,LLza(A’Ya)a (590)
5(M)Lz2a = —D:piza (591)
Sdey = Pzalyar. 0 (A" HIA) (5.92)

The current is divergence free for arbitrary (local) u,, and we therefore have a gauge symmetry. This is
the antighost gauge symmetry generated by the pure spinor constraint. For a flat background we have
Qya,...a, = 0 and the transformation reduces to the usual form. As stated several times already, we will obtain
Qy4,...a, = 0 also in the curved background, but only later as a result of BRST invariance.

With the same reasoning we get a gauge transformation corresponding to the pure spinor constraint on the
hatted ghost fields. This leads to equivalent restrictions on the hatted connection QO MQ'B and also on C el (seen
as matrix in & and 5). The background field Saaﬁﬁ is special, because the hatted version of the expansion
(5.83) together with the condition (5.88) is again a condition on the expansion of S, now in its hatted indices.
Once it is seen as matrix in « and 3 and once as matrix in & and ,@ This is better treatable in the special case
considered in the following remark.

Remark on Q.4 . a4, Qﬂ,al a, = 0:  Although we will discover these two additional constraints only later

in (5.153) on page 60, it is nice to have everything at one place. So let us continue the discussion of S,m»/m in
this case. As indicated above, we can expand it in two steps:
X lobs o lgp aaw p
Sad = ES(& 5(1 + ZSd aras”Y a =

1/1 53 1 5
= 3 <256d'6 + 4Sa1a27a1a2dﬁ> 5(1'6 +

[\

1/1, 5 1 A
+Z <2Sa1026dﬁ + 4Sa1a251527b1b2dﬁ> ’YalaQaﬁ (593)

Let us summarize the result for all the involved fields:

D L aja A 5 1 D 5 1 L aras [
QMaﬁ — Q( )5 B L ngl)llarz 1 2(157 QMdB _ 79( )5d'8+ 79%42:1@7 1 zdﬁ (5.94)
C.BY = 5075 B Calarz’yala?aﬁ? C B = C"‘/é B Ca1a2,ya1a2d,é (5.95)
Sadﬁﬁ — i&;aﬁ%éﬁ + *Salazfsaﬁ’valazdﬁ +
+= Sa1a ’7a1a2 '86 ﬂ + 165a1a2b1b27a1a2a'8’yb1b26/é (596)

Seen as a matrix in « and B (or & and B respectively), they are sums of generators of Lorentz and scale
transformations. Remembering the definition of D; given in (5.16) and its extension to bosonic indices in
(5.80), it leaves invariant the y-matrices:!°

D:vig = 0, D, i5=0 (5.97)

The expressions A%w.o and A%y?192,Pw. 5 are the only gauge invariant quantities (on the constraint
surface Ay*X = 0) which are linear in ghost and antighost. The reasoning is as follows: the most general
combination is X"Xaﬁwzﬁ with some general matrix Xq” which can be expanded in v, 42 and v, Upon
acting with a gauge transformation on this term, we get the products 0y = A0 4RIy o A1 4 4B] - and

10

Divdp = s+ (05M0un® + Gy dsy — XN 516Pa5) vhs — 2 (05M Qs + Clo PV sy — A% S(a1a®P@.g) ge ©
——
=0
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AT o 48] 4 401 As 48] does not vanish when contracted with two ghosts, the v*-part of the expansion
has to vanish and we have shown the above statement. The gauge invariant expression A*w .., is nothing but
the ghost current (5.143), while X192, Pw_g is part of the Lorentz current, which is discussed in Berkovits’
papers.

5.5 Covariant variational principle & EOM’s

Remember the form of the action (5.1):

1 JEA JAN
S = /dQZ 51_[? (Gap + Bap) HEB + Hgdz,y + Hng:Y + dz.y'P’degry +
N ——

=0aB

NG 1 ~ ~
VN w5+ VA Gy + = Loza(AA) + 5 Laza (A7 A) (5.98)

+/\"C’a5'7wzgcfga, + j\aédé’yd)gﬁdzpy + Aaﬂasadﬁﬁwzlglﬁzé +
1-
2 2

In order to check if the BRST currents (5.39) and (5.40) are on-shell conserved (holomorphic and antiholomorphic
respectively), it is first of all necessary to calculate the remaining classical equation of motion, the variation
with respect to #¥€. Remember, the other equations of motion were given already in (5.9)-(5.15) on page 45.

Covariant variation Deriving the variational derivative with respect to z is quite involved if we do not
organize it properly. In the end we want to have equations which transform covariantly under superdiffeomor-
phisms and local structure group transformations. We therefore want to introduce a method where we stay
covariant right from the beginning, e.g. a target space covariant variation of the action. In order to motivate the
following definitions, let us consider only the variation of one simple term of the Lagrangian, e.g. the RR-term:

5 (deyPT(7)dy ) =

= 0denPVVdoy + denda™ Oy PV dzg + doy PT 524 = (5.99)
= (0dory — 2™ QuraPd.g) PV dzsy + dom 02™M Y 3 PV dgy + don PV (&Zga, - 5xMQM$ch) (5.100)
N———
=dcovday =0conPYY =6eoudas

In order to arrive at the target space covariant expression V,,P77, it is thus convenient to group part of the
xX -variation to the variation of d. or dz as done above. Of course we could have chosen any connection for
the above rewriting, as long as we use for each contracted index pair the same connection. For the variation of
the complete action, however, it is most convenient to choose the mixed connection, defined in (5.66),

Qua® 0 0
Qi = 0 Qo 0 (5.101)
0 0 Oual

Like for the structure group transformation, the connection 2 meaP acts on the unhatted fermionic indices and
(1) on L.z,, while Qy;4” acts on the hatted indices and (!) on Lz.,. The third independent block Q4° acts
only on the bosonic indices that appear via the bosonic vielbein and not on elementary fields.

Similar considerations as for the RR-term hold for the other terms of the action. This motivates the definition
of the covariant variation of the elementary fields in the above spirit:

Seood® = A +02M 0N, GeoWia = 0w.a — 02 QraPuw.s (5.102)
Seovloa = 0doo — 05 Qn1aPd.g,  Scovlzza = 0Lz — 02™M Qpra" Loy (5.103)
S = AT 4 5xMQMBd5f’ L Beouza = dwaa — oM el (5.104)
Scovdza = Odza — 6™y 3% 6,  Ocovlzza = 0Lzza — 6™ Qnra”Laz (5.105)
Seont™ = 62K (5.106)

Unfortunately this idea is not completely new. Similar versions of covariant variations have been presented in
[63, 64] which in turn refer to [65, 66]. As already indicated in (5.100), we understand the covariant variation

acting on arbitrary background tensor fields T35 (z) as
Seo T R(2) = 025V THE = (5.107)

= O0Tyh +6x™ (EKLNTjeli + Qe PTHS — D" T — QKACTJ\JZg) (5.108)
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In the last line we discover that the covariant variation acts on background fields in the same way as it acts on
elementary fields if the index structure is the same. Note that the covariant variation cannot be understood as
a variation (of e.g. 2€) in the ordinary sense. The covariant variation is simply a derivation which only reduces
to an ordinary variation when acting on target space scalars, e.g. on the Lagrangian.

From the target space point of view, also objects like VAP (target space covariant worldsheet derivatives
of worldsheet variables) transform tensorial under structure group transformations and diffeomorphisms. The
covariant variation is then simply defined according to their target space transformation properties:

b VAP = VAP 4 02K 0o PVA (5.109)

500aV X = 6V 400 e aPVA" (5.110)
This is also the reason why the Lagrange multiplier is varied with help of the connection Qra’ (defined in (5.81)
on page 52) which is induced by Qy;”, and not with the independent Q,,," that we have introduced to act
on the bosonic vielbein indices: In the reparametrization corresponding to the structure group transformations,
the transformation of the Lagrange multiplier is directly coupled to the transformation of the ghost.

Next we define the covariant variational derivatives %C;vs via
all
ScovS
5S = / A’z Seontiy(2,2) —— (5.111)
b all 6¢all( )

We will soon give a statement about the relation to the ordinary variational derivative. But let us first collect
some tools to calculate it. In order to arrive at the righthand side of (5.111), we need to extract the covariant
variations of the elementary fields. In expressions like 5COUV5)\B in (5.109) this would require to commute
e.g. the covariant variation d.,, with the covariant derivative V3 and then do some partial integration. It
was probably already noticed by the reader that the covariant variation resembles very much the target space
covariant worldsheet derivative V, ; anyway. In fact the latter can be seen as a special case of it, namely when
we have §¢Z; = 0, /2¢§11- Let us therefore consider the commutators of two arbitrary covariant variations which
will contain the desired commutator [0s0,, V3] in the mentioned special case:

{6&1)2” 6%2)] - [6(1)’ 6(2)} o 4 26WaM Ty, K 5PN (5.112)
|:5cov7 (ng} B = [5(1)’ 5(2):| SDAMB +
2802 8% " (EKLCALPCMB J'_EKLNMSOANB — EKLBCSOAMC) (5.113)

Here oAM 5 is just a representative example for some elementary or composite field which transforms tensorial
under the target space transformations (super-diffeomorphisms and local structure group transformations).

The covariant variation of the complete action coincides with the ordinary one as all indices are contracted.
However, the covariant variational derivative defined in (5.111), differs from the ordinary variational derivatives.
The important thing is, that nevertheless they define a set of equations of motion which is equivalent the usual
one — and target space covariant. Let us see the equivalence explicitly and reformulate the ordinary variation
into the covariant one:

55 = /d2z 5dz,,(;;i 1 bdos 5(:; + 5}\,1(;5)\75& + 5>\°‘;j 4 5%552*; + M%ﬁ&g; +
+5Lm% + 5£m§ia +4 K% = (5.114)
= [ b 5‘;2 T 5‘;‘: Ao 6covxd$ + Grputwap 515 T S 5‘f5
+0covLzza 5?1& + 0covlzza 5ia (;i + Qg 0d.s 6(312 + QK-ygcizg(;;i — Qg™ (;;Sa +
¢ K,@dﬁ\ﬁ;f + Qkp Wz 5556 + QK,@dwza 6;:; + QoL 525;& + QKablizzbagil) (5.115)
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We can now read off the covariant variational derivative 6&,";’ w.r.t. % as the coefficient of 5z %11
OcovS 0S oS A~ zs 0S8 0S A 4B 0S8
SV = Ol + Qs fd s —— — QAN — QYN
S K 52K + K~ Uz4 (Sdz'y + K4 Z(S(Sdg:y KpB G Kp (sAa +
S A 5 0S A - S
QrpWoa—— + Qe y®wea—— + VoL Qra’Lozp— 5.116
* Kp @ (Swzﬁ + KB “ 5(;)2[3 oK béLzZu K ’ zZa ( )

All the other variational derivatives (5.9)-(5.15) remain untouched:

SeonS 5S SecsS 6

R - 5.117
5dza 5dza 6L2za 6L22a ( )

According to (5.116), 8c0uS/d2X coincides with §5/62% when all the other equations of motion are fulfilled.
This leads to the following obvious but important statement:

Proposition 4 Setting the covariant variational derivatives defined via (5.116) and (5.117) to zero, leads to a
set of equations which is equivalent to the equations of motion obtained by the ordinary variational derivatives:
(%LUSA,Q i L0 e A&S _ i ~0
o (xK’ dza; )\&7 Wea, dida A 7‘;)2647 inaa Liza) 0 (xK’ dzou )\047 Weas Azés A ,‘:‘)Zda L22a7 LEZ@)
(5.118)
The covariant variational derivatives in turn are obtained by using the covariant variation defined in (5.102)-
(5.109) and the commutators (5.112) and (5.113).

The last equation of motion We are now ready to calculate the last equation of motion, the variation with
respect to 2. Admittedly introducing a new tool like the covariant variation for just one equation seems a bit
of overkill. However, in any case we would have been forced during the calculation to organize the result into
covariant expressions and the covariant variation gives a general recipe how to do that. Although we described
the covariant variation for the Berkovits string, it is a tool which is very useful in any other nonlinear sigma
model. In addition it should be noted that the above concept works for an arbitrary connection and not only
for the connection Q,, 47 or the corresponding I';, 5. The calculation just simplifies at some points, if one
restricts to connections with special properties, or to connections which are already present in the action. E.g.
only because we are choosing Q,,,7, we can make use of (5.112) and (5.113) in order to commute the covariant
variation with the target space covariant worldsheet derivative. In addition we will make use of the fact that
the covariant variation annihilates the vielbein:

Seon B () =0 (5.119)

Note also how the antisymmetrized covariant derivative of the B-field can be written in terms of its exterior
derivative H and the torsion:

VB=VpByn =dB — 1B = Hynane — 2T prne™ B (5.120)

The important contributions to the (covariant) variation of the action come from the covariant variation of the
(spacetime covariant) worldsheet derivatives of the elementary fields, like .o, VzA* and 5MH;4/2' For the latter

we have (compare to the equation before (2.12) in [59])

SeoT12s CEY 500 ma B = (5.121)

(5-112) V.00 Eg? 4 202M T "0, s (5.122)

For the ghost terms we obtain curvature expressions instead of torsion expressions:

(5.113)

Seov VAP V:0c0u AP + 2005 02L Ric 1o P A (5.123)

G G 5 A 4200500l Ry paPAS

Seon VA’ (5.124)

H'Note the analogy to the tangent space covariant derivative of some multivector valued form
K(z,e,&) = Ka1~<~akb1“‘b’“’ (z)-e...e%ey, - 'ébk/

written in the following way

d d
VinK = 0mK(w,e8) —e" Qna’ —K+eQm—K o
86 8eb
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As alast ingredient, before we vary the action, we should note a specialty of the pure spinor term. The covariant
variation on the Lagrange multiplier is chosen in such a way that the covariant variation of v2 g is almost zero.
But as we discussed at length in section 5.4 on page 51 the structure group is not yet for all components of
the connection reduced to Lorentz plus scale transformations and we have in general a non-vanishing v*-part
Qray...as- At least formally we therefore obtain a non-vanishing covariant derivative on ”yg‘ﬁ (with e acting

on the spinorial indices and Qy7,° of (5.81) acting on the bosonic one):

D.114
VM"YZQ == *QEMVQVM...M’YGI"'M[a\‘s’h‘sl\m( = )72EZ\/IFYQVal...a4’}/a1ma4aa,8 (5125)

Due to (5.116) and (5.117) we know already that only the variational derivative with respect to = gets
modified while the others remain untouched. We therefore collect the terms which are proportional to the z-
variation only. In particular we do not need to consider the first term respectively of the above two equations.
For completeness, however, we keep the total derivatives coming from the corresponding partial integration.

Apart from the variation of H:‘/i, V:AP and @ZXB we only have covariant variations of the background fields.
The (covariant) variation of the action (5.98) thus takes the following form

1 A
5S = / d?z 6z [§H52K0A3H5 + doy NV PV Vd 54 +
+)\°‘2KC’aﬁ:’wzgcfg:, + XayKéd37w25dz., + )\aj\ayKSadﬁ’éwzﬁ(ﬁzlé} +
1 1
+5 (V.02 - Eg® + 2627 y20.2N) O4pTI2 + 5HQOAB (V.02 - BB +262™T ) P0:2™) +

SconllZ Seou 1B

dcoull? 6ﬂnj

+ 2(51’K5£L'LRKLQ’B)\OL w:3 + 251’K81'LRKLQBS\Q ‘biﬁ +

8cov VAP =V :8c00 AP Sosn T AP 5.5, 3P

_6xKEKpYQ'7 ai...aq ()\,yal...auzA) . ina - 6$KEK;YQ'? aj...aq (S\,Yal...m;aX) . [A/Z,za +

+5covdza£ + 5c6vdid§i + 5COUAOLLSOL + 5c6v5\dLSA + 6covwza£ + 5cévw2d§7‘s +
3. d S SAS 3w ar 3@za,

58 .48 s B
zEa@ + 6cévLizaf + 82 (5cov)\ wzﬂ) + az <6cév)\ w23> (5-126)

zza

Za

+0covL

We finally make a partial integration for the terms in the third and fourth line (keeping again the total derivatives
as a reference for future studies of the open string) and arrive at

1 1
58 = /d2z 5xKEKC[— 500B¥.1IE — SV T 0,0 +

1
+§Hf (VeOup —V40cp —NVOac + 2L ,"Opp +204pT 57 ) IE +

—607"V oy — 667V o dzg + 2L 0 p M dory + 2T 0 T dzs +

+2M8 RopaP A% w.p + 24 ReasP A @ g +

+dey Y PV doy + XV o CaPrw.pdey + A"V OsPV_sdey +

+Aaxa205adﬁ3wzﬁ‘bga - 5C’YQ'7 aj...ay (A,yal...a4a>\) : Lzéa - 50’7@% aj...aqy (X,yal...azla}\) : i/iza +

+5covdzoc 05 +5c€)vd2d (SAS +6cov)\a 65:1 +5c€)v5\d 551 +6covwza 05 +5cév‘;)2d Cfs +
5dza (Sd;ga oA 55\01 (Swza 6“-’2&
) - )
L,sqg— svLlzra—
+5cov zZZa 6L22a + 6001; zZza o +

1
+0; <5cm,>ﬁwzg + §H;40AK51«K + 02’ EK“YdZ.,> +
~ 1 JEN
+0. <5d,v>\ﬁ @5+ §6xKOKBH23 + o2 - EK“’dZ:,> (5.127)

Now we can read off the covariant variational derivative with respect to 2. But let us note two further relations
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first:
VcOuap —NV4O0cp —NVpOac =
L 3Hoap — 2T 45" B — 2TcsP Bop — 2T 5" Boa + Ve Gap — VaGop — ¥ Gac (5.128)
and
vu? CLY g nb o oninbr, P (5.129)
In addition we define
Type = Tap"Gpo (5.130)

Note that we use the symmetric rank two tensor G 45 only to pull indices down. Pulling them up again is in
general not possible as G4p might be degenerate. In fact we will learn soon that it has to be degenerate.
The final result of the variation now reads

OconS 68 P
6 = d2 5 K= 6covdza7 5c6ud2dA7
> / SR bdoe sd T
+5COU>\& 65:1 + (sCCAJ'UXd(Si‘S1 + 6co7jwza£ + §c6vw2d(§7‘s +
oA SA” Wz dwza
6S . 6S
+5covL22a@ + 5cévL22aZ +

1

+05 (5%)\%,23 + §H;“OAK6:CK + ok - EK'Vdm) +
N 1 -

+0, <6cév)\lad)zé + §6£EKOKBH5B + sz Eprdz,:/) (5131)

with the following covariant variational derivatives or equations of motion (remember (5.9)-(5.15)):

OcorS 3 1
ol Ex®| -V 1P Gpe + 112 (HCAB —Typjc +2Lcap) + 5VcGan — V(AGB)C> e +
T —— 2 2
~V . nP 2 niT, 5P
7507V5dz,7 — 50’?62625:7 + QTCB‘YHgdZ,Y + QTCA:YH‘?CZE:Y +
+dy Y P oy + AV CaPlw.pdss + A"V CaP0_gdoy +
FAATY 0SaalPw.p@ s — 667D a1 AV N - Lza — 06700,y (M 48) - Losg +
LT RepaPA%w. 5 + 2HfRCAd@5\ad;2ﬁ} (5.132)
S . N
6dz,y = HFY + P‘Yﬁydi'\/ + A CQ'B‘YQJEB (5133)
oS . : o B4
(Sdgiy
6S c & P
o = " (vgxﬁ L (Cc,ﬁmg7 “A Sadf’%m)) = _D.A° (5.135)
0S ~ o e o NRYC
o - <vz)\ + A (Oaﬁ‘fczz7 - Saaﬁﬁwzﬁ)> =-D.\ (5.136)
oS 5 . a a
5)\701 = - (Véwza - (Ca diﬁ' - )\ Saa W ) wzﬁ) + Lz%a(’y )\)a = _Diwza + Lzéa(’y A)a (5137)
oS - . . . R
& = - ( za’éa - (Ca dz - )\aSaa'B wzﬁ) a’g@) + Lz%a('ya)‘)a = _Dz&-’éd + ina(’yaA)a (5138)
oA
oS 1 68 1 . =
= —(AM*A — = =(AY*A 5.139
ST BN, =50 (5.139)

Note that we used for the covariant variation an independent connection 257, for the bosonic subspace. This
connection is a priory not a background field of the string metric. We are free to choose it in a convenient way.
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5.6 Ghost current

Let us assign ghost numbers (1,0) and (—1,0) to the fields A* and w,q. The corresponding transformation
(with some global transformation parameter p) is

OAY = pA=, 0W.q = —PW o (5.140)
For the action to remain unchanged, we also need to transform the Lagrange multiplier
(SLzEa = _QPLZEU, (5141)

which therefore has ghost number —2. Varying the action with a local parameter, we arrive at
0SS = / d?z dp- (MNPw.g) + bdry-terms (5.142)
b

According to (E.42) and footnote 4 on page 186, we can read off the ghost current as
"= A0 (5.143)

It has the same form as in flat space.

In section 5.7, we will derive the BRST transformations of the worldsheet fields from the given BRST current
via “inverse Noether” (see (E.7)). The idea is to calculate the divergence of the current and try to express it
in terms of the equations of motion. The transformations of the worldsheet fields can then be read off as
coefficients. This avoids switching to the Hamiltonian formalism and using the Poisson bracket to generate the
transformations. It might be instructive to see, how “inverse Noether” works for the simple example of the ghost
current before we come to the BRST current later:

05 =
-9 z = A% za) —
Pan 5‘?%11 I(Aw.a)

= DAY w,q + A Dsw,q =

55 o[ 05 i\
= —@wza"‘A <—6Aa +La('y A)a) =
58 . 689 59
= wzam - A W + 2L22a@ (5144)

From this one can read off the transformations with which we had begun.
The ghost current and the corresponding transformations for the hatted variables are obtained via proposition
3 on page 44.

5.7 Holomorphic BRST current

We now come to the main part of the derivation of the supergravity constraints from the pure spinor string.
The pure spinor string in flat background had two (graded) commuting and nilpotent BRST differentials which
defined the physical spectrum. Putting the string in a curved background is a matter of consistent deformation.
I.e., gauge symmetries and BRST symmetries have to survive. They may be deformed, but the number of
physical degrees of worldsheet variables cannot simply change as soon as there is a backreaction from the back-
ground that was produced by the strings themselves. This is a similar consistency like the demand for vanishing
quantum anomalies. It is therefore legitimate to demand (apart from the two antighost gauge symmetries) also
two (graded) commuting BRST symmetries. Remember, we already have simplified in (5.39) and (5.40) the
general ansatz for the BRST currents by reparametrizations to the simple form

jz = Avdz'yv jzzo (5145)
3. = Ndy, 3.=0 (5.146)

Instead of deriving the corresponding BRST transformations in the Hamiltonian formalism using the Poisson
bracket, we stay in the Lagrangian formalism and apply Noether’s theorem (see (E.15)) inversely in the sense
that we try to express the divergence of the given currents as linear combinations of the equations of motion in
order to derive the corresponding transformations:

- | 5S SeonS
Dj, = —spl—r = —Souiy—— (5.147)
s gu routall 5¢§11
| 5S SeonS
03: = L7 = Rl 5.148



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 60

Here ¢Z; is the collection of all the worldsheet fields. BRST invariance of the action is according to Noether
equivalent to having this special form of the divergences of the currents. These two equations thus do three
things at the same time: The possibility to write the divergence of the currents as linear combinations of the
equations of motion fixes the precise form of the BRST current. At the same time it puts constraints on the
background fields: all terms not proportional to equations of motion have to vanish. And finally it determines
the form of the (covariant) BRST transformations.

After determining the BRST transformation, the nilpotency conditions & = 0,[s§ = 0 and ¢ =0 put
further constraints on the background fields including the torsion. Some torsion components can then be
further simplified by using two of the three local Lorentz transformations and scale transformations which leads
to only one remaining local Lorentz transformation and one local scale transformation. Putting these restrictions
on some torsion components induces via the Bianchi identities further constraints on other components. All
the constraints on the torsion and other functionals of the background fields combine finally to the target space
supergravity equations of motion. Note that our approach differs from the one in [13] in two major points.
First of all we stay in the Lagrangian formalism throughout. Second, we first check the holomorphicity and
then the nilpotency. In fact, we need to do so, because only in the first step we can determine the BRST
transformations of the worldsheet fields which we need in the Lagrangian formalism to check nilpotency. The
BRST transformations have so far been given only for the heterotic string in [14], so that the transformations
in the type II case are a new result.

Let us now perform in more detail the program sketched above:

03, = D:XNVdpy +A"Dsd,y = (5.149)
59
= —d.y S +A"Dzd,, (5.150)

In the following we will replace all occurrences of Dzd.~, Hj, 7, D: A%, ﬁzj\a, D:w,a, ﬁzcb z60, AV A and 5\7“5\
by the equations of motion (5.132)-(5.139). In the end, all terms which are not proportional to the equations of
motion have to vanish which leads to some of the supergravity constraints while the terms proportional to the
equations of motion tell us the BRST transformation of the elementary fields. In order to extract Dzd,~ from
the X -equation of motion (5.132), let us project (5.132) to a flat spinorial index « using some index relabeling:

OcovS

Didza - *EaK (SJ}K - ZEHZDGDQ +
o3 1 D
+1I; §HaCD —TLepla+2Locip) + EyaGCD —VcGpya | 117 +

+2T0p NP dy + 2T NS d2s +

"'dzv (zap'r‘r _ Ca'r’r) d%’ + )\azzacazﬁ’ywzﬁdﬁ + j‘a (Zaé&&y + Saa'rff) ‘_;_,Zhdzﬂ/ +

A ATV o Sasa® w2005 — Qavar.as A 54N) - Loz +

+2H2DRaDa2ﬂ)\a2wzg + 2Hgéa0dﬁﬂa(ﬁzﬁ (5.151)
Already at this point we can determine some constraints on the background fields. The divergence of the BRST
current given in (5.150) has to become a linear combination of the equations of motion. The term V.I1?G pq
in (5.151) cannot be compensated by any other term and it also cannot be replaced by a further equation of

motion. The same is true for our beloved Qg 4. .ay (AY**4%X) - L,5,. Using in addition proposition 3 for the
constraints from the antiholomorphicity of the right-mover BRST current, we can demand

Gas = 0 (only Gy #0) (5.152)

Qaaycar = 0, Qsay.a, =0 (5.153)

With (5.153) we have finally obtained the missing ingredient for the reduction of the spinorial connection
coefficients to Lorentz plus scale transformations as it was summarized already in the remark on page 53 at the
end of the section 5.4 about the antighost gauge symmetry.

Equation (5.152) allows us to choose a frame where G = e2®n,p, such that we reduce also the bosonic
structure group to Lorentz plus scale transformations. Let us discuss this in more detail in the following
intermezzo.




CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 61

Intermezzo about the reduced bosonic structure group

Due to (5.152) we know that G ap is of the block-diagonal form G4p = diag (Gap,0,0). This means that the
symmetric rank two tensor is of the form

Gun = Exv®GapEn® (5.154)

In particular we have Gpp = En®GapE,°. As the Ep® were introduced by hand, we may choose E,,*
orthonormal as usual, i.e. such that G, becomes the Minkowski metric. This is at least for the leading

component Gy, (z) (i.e. 6= 0) a familiar thing to do, but it holds_also in the é—dependent case:
{z,
=~ .
Proposition 5 For all symmetric rank two tensor fields Gy, ( x ) whose real body (0 = 0-part) has signature

(1,9), there exists locally a frame E,,*(z), such that

—

Grmn(Z_) = B (2 )1 En"(2) (5.155)
(7,6}

Note: In contrast to the ordinary bosonic version, the entries of the matrices are supernumbers.

Proof  Due to usual linear algebra, there is an orthonormal basis with respect to the real symmetric matrix
Gmn(T), i.e. we can always find locally E,,*(z), s.t. (5.155) is fulfilled for @ = 0. In order to prove the same
for 6 # 0, we will make a -expansion of (5.155) and show that we can always construct a solution E,,*(z , 6)
for arbitrary 6 from the bosonic solution E,,%(z). Remember the notations 2™ = 0™ and Gmnl = Gmnlg_o-
The 6-expansion of (5.155) then reads

1 !
Z ﬁle ™M (Omy - Op, )| =
n>0

! 1 . 1
= Z gl”cl ~~~:L‘K:k (8;c1 -~~8ICkEm )| nabﬁﬂjﬁl ~~~x£l (851 ...8£lEnb)| =

k,1>0
1 - n o
= ;ﬁle co M ZO( m > (OM, -+ Or Em®)| ab (OMisys - - Ona, B (5.156)
n> m=

At n = 0 we have the solvable bosonic equation G, (7) = E,,*( 7 )nap Enb(7) to start with. At higher orders
n we have

(Onm, - - Onn, Con) é]

Z ( :77; ) (8M1 ...8MmEm“)|77ab (8Mm+1 ...6M,,LEnb)] =
m=0

n—1

= 2 Ema| Nab (8./\41 . 6MnEnb)‘ + Z ( ’ZL ) (8./\41 ...(9MmEma)‘ Nab (8M'rn+1 ...(9M7LEnb)’ (5157)

m=1

We thus have the iterative explicit expression for the n-th @-derivative of the vielbein in terms of the (n— 1)-th
and all lower derivatives.

(Om, - Orm, En®) =| (5.158)

n
m

n—1
= %ncd E.™| |: (Omy -+ Oam, Gn)| — Z=1 (

) Orts 00 B i Ot O, )

This completes the proof of the proposition. a

In spite of the above proposition, we will not fix G4, to 745, but only up to a conformal factor. This is of
course possible by a redefinition of Ej;* with the square root of this conformal factor. The reason for us to
do this is the fact that we have for the spinorial indices not only Lorentz-, but also scale transformations. It
seems natural to keep this scale invariance also for the bosonic indices, as long as we do not fix the fermionic
one (in particular if we aim at structure group invariant ~y-matrices vgﬂ). We thus introduce an auxiliary

compensator field ®(z) and choose E,,% such that
Gap = eQ(I)nab (5159)

As soon as E,,*(x) is chosen appropriately, the remaining vielbein components Eaq® are uniquely determined

via:

! a a n _ — a
GMn = EM 62<I>’I7abEnb #EM ZGMnEb e 2(I>’I7b (5.160)
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In summary this means that there is locally always a choice for the bosonic 1-form E® = de™ Ey;, such that
Gun = En®e®®nuEn® or Gun = Exf®napEn®, if one does not introduce the compensator field. The latter
form of Gp/n was the starting point in [13], probably motivated by the integrated vertex operator of the flat
space.

With the compensator field included, the bosonic structure group with infinitesimal generator L,” (compare
to page 50 with A,® = 6% + L,%) is — like the fermionic ones — restricted to Lorentz plus scale transformations.
We should of course also restrict the auxiliary connection accordingly.

Lt = P&+ L0 Luy = Lane = Lo, (5.161)
Q]\/jab = QS\?)(SZ + Q((ZL)b, Q]VIab = QMaCncb = _QMba (5162)

The compensator field is a scalar with respect to superdiffeomorphisms. With respect to the structure group,
however, it has to transform in a special way, in order to make G, transforming covariantly. The infinitesimal
transformation of Gy, under structure group transformations is 6Gy; = —QL(a\Cch;) = —2L(P)G,, (see (5.64)
on page 50). This transformation results in a simple shift of the compensator field. For the same reason, also
the covariant derivative contains a shift of ®:

60 = —LW (5.163)
Vud = oy - (5.164)
VuGap = 2Vu®Gap (= 0uGap — 224 Geyn)) (5.165)

Let us return to the calculation of the divergence of the BRST current and let us finally replace Dzd,qin
(5.150) by the 2% equation of motion given in (5.151) (already using (5.152) and (5.153))!2:

~ 88
Jj. = —dwéw——)\"‘EaK =

3 .
+A°‘Hg <2HaCD + QIa(C\D) + VQCI)GCD> HED +

=YacCcD
AT p TP d oy 4+ 22T I dosy +
FA oy (Vo P = Ca™) dy + X*X® Vo Ca, w2y + XA (V0 CaP7 4 Saa™) Gy +

AN AT 0,6 PPup s +

+2A°TI? Rapa, P A% w.p + 23T RacaP A 0 (5.166)
Before we plug in further equations of motion (replacing I1Z and ITY) we should notice that we can already read
off some more constraints. Namely Yocq = Y, .5 = Yana = Y, 5 = 0. The first constraint Y,.q = 0 can be

separated into symmetric and antisymmetric part of the indices ¢ and d. In addition, we already add everywhere
the constraints coming from the right-moving BRST current , using proposition 3 on page 44 (H — —H, T — T,
VvV — V),

12The comparison of the rewritten bosonic ¥ -equation
1 1
522(H2G6ﬂ) + 522 (HgGea) =

5CO'US
sz kK

+day VPV dzg + A*V,CaPVw.gdz5 + j\azaéaﬂ‘y‘:’gﬁdz‘y +

3 - PN N
= —E* +1¢ (5HGCD + 2T, cp) + va<1>GCD> N2 + 27, p M dury + 2Tac T dz4 +

+A* Xazasadﬁﬁwzﬁa)gﬁ + QHZDRaDaﬁAawzg + QHZCRaCdBXaGJZé
K OcovS

with ngza = *Ea 6IK

3 . SN
+1¢ <§HaCD + 2T o0y + VQQGCD) P + 2T, p " N1Pdoy + 270 NI dzsy +

+den Vo P Vdzg + A2V, Car Pl wopdzs + NV, CaPV@_sdey +
+>\a25\a2a Sarzd'aﬁwzﬁ‘bgﬁ + 2H5DRaDa2ﬁAa2“’zﬁ + 2HzCRaCd65\a‘:’5@

and with V.dzg suggests the introduction of

1
dra = §H§Gea, dza = —lI$Geq o

N | =

13 At first we should remember that IACB = diag (Tac®, Tac?, TACE). As Gpq are the only non-vanishing components of Ggp,
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Haw = 0 (5.167)
. 1.
Taelay = —§VA‘I>ch (5.168)
3 . 2R _
5%“‘1;‘”0 _ 8 } = Hppo=Tog,=0 (5.169)
—odlacs &d|c =
3 . 3 .
5 Ha~d ayld — ) —5lladd ayld = :
“Hona + 1T, 0 SHasa +1 0 (5.170)
Hyp = 0, Hays=0 (5.171)

So far we have used only the equations of motion obtained by the variational derivative with respect to
the antighosts and with respect to €. There still remain the ones with respect to the ghosts, with respect to
the Lagrange multipliers and with respect to d.o and dsa. The first ones simply will not enter the calculation
and the pure spinor constraints (coming from the Lagrange multipliers) will be used at the very end. So let us
remind ourselves the variational derivatives with respect to d.o and dsg ((5.134) and (5.133)):

)

M= — —d P - ACPw, 5.172
zZB 5d2‘y vy B8 ( )

Together with the new constraints (5.167)-(5.171) we plug them into the divergence (5.166) of the BRST current
In a last effort we sort all the terms with respect to the appearance of the elementary fields and finally arrive at

08

zZ
750.12,,

—AYEK Oeon g

0j. = —d oxK

o3 o éS
A (T Hoys o+ 2Toag g — 2N o002 + 10 3H oy ) o+

2T s (5.170)

S TUUNCT I 3s
A 2T %d s + 2A T Rosa P s ) —— +
( Y Tz i zﬁ) 5d5~”y
+ANIE ( — 3Hacs PV + 2Tac")d5ﬁ + AT <2Ta77 _ QHM‘SPM) dzs +

2T 5 (5.170)
FXd oy (2T g ™) TS+ 22%d.y (T,57) IS +
FAY o (Vo PV = Ca ¥ — 2T057 P — 21}5"7"’3) ds5 +

< A3 - 3 C& ~ 3 A 86\ -
FACNIIS ( — 3Haes CaP + zRacdﬁ)wEB +ACATIIY (QRMdﬂ -5 a.,(;cdm) @5+
2T s (5.170)

d.r (zaé&f"f + Saa ™ — 2as7CaP® - 2}?&%3?‘*‘1) G5+ AYA? X0, (5.173)

&

+FAC

the contraction of the upper torsion index with Gpp projects out the first block-diagonal and we can write
T scip =Tacip

The next important observation is that the constraints are independent of the choice of the auxiliary bosonic connection Qara?, as
it should be . The only condition is that it obeys QM(au,) = QE\?)GQI, which we used during the derivation by taking V,,Gap =
2V ®Gap (see (5.165)). Remember also that Vo ® = Eq ™y ® ngD) (5.164). Qpsq® enters the terms Yoo p (defined in (5.166)
and containing the constraints) only in the combination QTa(C\D) — Q(OLD)GCD7 where it completely cancels:

= < (D = = = (D
2T (c|p) — oPGep = 2(dE") o (c|Gop) + Qa(c1D) — QClalD) -0 Gop =
N——
=0
= 2Ea BN 0mEN) Gy p)
In particular the connection does not enter at all the following torsion component:
T, = (dEd)af;Gdc

adlc
The constraints (5.168)-(5.170) are therefore independent of the choice of Qp7,°. In particular, we can choose Qp," (defined by
QMaﬂ via VJVI'Y;g = 0) or Q]Mab (deﬁned by Q]\/[d’@ via @M'yg‘é = 0). <&
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where we defined an extra symbol for the terms coming quadratic in the ghost A%:

_ 5
Xewas = 2 (Rlayjaian®) Wwog + 218 (R 5107 ) w20 +

~ A ~ 8 ‘SA
+ (Yo Cant™ = 2y 157 Claas™ — 2R, 510a) PP ) digwrzp +
~& N . . R N B5 A
+A (z[a15a2]dﬁﬂ + 2R[a1|ﬁ&5qa2]ﬁﬁ + 2R[a1|5|a2]ﬁ0d5 ) wW.pW 5 (5.174)
Summarizing, we observe that we managed — with the help of the equations of motion — to turn the simple

equation (5.150) into a quite lengthy one ... We are not going to copy the whole long equation again for the
next step. The only equation of motion that we may still apply, is the pure spinor constraint

5S 1, .,
T = 3N (5.175)

We therefore can concentrate on the term A*' X4, o,A*?, where the pure spinor combination Ay*A might
appear. As discussed in footnote 7 on page 49 (see also the appendix-subsection D.3.3 on page 178), all graded
antisymmetric 16 x 16 matrices can be expanded in v* and ~%:

Xalaz = Xa’yilaz + Xal.“a5'ygll'&gs (5176)
(D.143) 1 1
Xa = E’y:zlzalXalo‘Q <: _m,y:lllazXala2> (5177)
(D.143) 1
Xal...a5 = 39. 5!7%%?;1Xa1a2 (5178)

We can use this to rewrite the quadratic ghost term as follows:

55 1 a2 a as
e s + 39. 5!7(112...55)(0:1&2 (Ay* %) (5.179)

1
AalXoﬂOLQ)‘az = 7%731(12)(
This was the last ingredient to determine all remaining constraints on the background fields and also to be able
to read off all BRST transformations (including the one for the Lagrange multiplier). Let us start with the
constraints. In addition to (5.167)-(5.171), we get the following constraints on the background fields:
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Tac;y = Ta5|c ,P(S;Yv Tdc‘y = 0‘5|(' ’P‘YJ (5180)
~—— . ,
3 Hees (5.170) —2H, 5 (5.170)
4 3 55 3 5
Ta77 = 1 a~sP 7, fo’y ZHa'yérp’Y (5.181)
Toad” = 0, Tag” =0 (5.182)
Tasﬁy = 0, Tdéﬁy =0, (Sgig) IadK =0 (5183)
Ca™ = Y P - 2To"P%Y —2 1,7 PP (5.184)
~——
=0(5.183)
Ca¥’ = VPV 2T, VP (5.185)
- 5 3 3
Racdﬁ = 5 acd Cd ) Rdccxﬁ - 2Hac60 p8 (5186)
—— ——
Tesc (5.170) Tys). (5.170)
S 3 5 B6 3 5
Ra’yd'@ = ZHa'ytSCdﬁ 3 Réﬁ/aﬁ = H‘l')’éc B (5187)
Sea™ = -V, Cal 2057 Ca + 2Resa”PTY (5.188)
~——
V4 PYB—2T, sBPY5 (5.185)
Sea® = —Va  Ca®Y 4215704 + 2Rana P (5.189)
——
A Pﬁﬁszaaﬁpé‘r (5.184)
’yl?llot2 Rda1a2'8 = 0’ ’yt?lla2 Rdala2 =0 (5.190)
1 R, = 00 925 Roaan” =0 (5.191)
70122 (Vg CaPY) = 290192 (Raﬂsal POy — Talgﬁ Cagﬁ‘g), plus hatted version ... (5.192)
——
=0(5.183)
Varcas (Yazsmdﬁ'é) = 2ygr% (Raﬁa'écazﬁ;y = Ra25a1ﬁéd'é‘s) , plus hatted version ... (5.193)

Note that on the constraint surface the condition 71?2 X4, 0, = 0 is equivalent to the vanishing of Xy, a,
when contracted with two ghost fields:

o (Ay*A)=0

1

v A X g 0, A% =0

(5.194)
The above equivalences hold for general bispinors, not only for the one defined in (5.174). It is not necessary to
memorize the constraints (5.192) and (5.193) as they are a consequence of other constraints anyway. We will
show this fact at the end of section 5.11 on page 71.
Let us now devote a new section to the BRST transformations that we can likewise read off from (5.173).

(5.176)—(5.178)
,Yalon Xa1a2 — 0 é X[a1a2] == 3X0¢3a4)731a2

5.8 The covariant BRST transformations

Remember that we started on page 59 with the demand 95, = S:ov¢a]1 . The covariant BRST transforma-

6¢I
tions s.0,07; have to be understood in the sense of the covariant variation defined in (5.102)-(5.106). We have
for example SM)\Q = stm,)\ = S)\ +sM Q °‘/\ When the constraints of the end of last section are fulfilled,
we can read off the covariant BRST transformatlons Sov®Ly from equation (5.173) together with (5.179). Again
we give at the same time (using proposition 3 on page 44) the results for the right-mover BRST-symmetry §

. PPN OcovS
defined via' 93, = *Sﬂﬁbazuvzni

14 Another way to write down the BRST transformations for d,s and d}:y is the following

3
Sovdzs = 7§AaHiC,W}Ha{c,’y}ﬁ — AT s 1OTHGGIY | 2dany} + 22X A2 Ry, 50 P wap
” 3 d,$ S ~
Sovdsy = —5)\"‘112 } Hy g5y —A% Loy 1 P0{Gac 1S, 2d 5} — 2X*N *Ras @5
——

=0 =0
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aM = ANEM, &M =X"EM (5.195)
Sco’LJ)\a = 0= AS;ovAaa Qévj‘a =0= Scévj\a (5196)
SovWza — dzaa S?owzwza - 0, AS?&U‘:JEd = dAZda S"fm‘bid =0 (5197)
« C 3 « [a73 «@ «
Sovdes = —AME3Haes ~ S AT Horys — 2X*Tas oy + 2A"A™ Ray50 w29 (5.198)
2T 05|
o LE . 3.a_4 PSPPI cE LAy A 7
Sovdsg = A TE3Hg5 +0X T Hggs = 20 Tas7doy + 20 X Ry 55 w5 (5.199)
——
72To’¢8|c
Sovdzy = —2A%Tas®ds — 2X°A" RasaPo s (5.200)
~——
Sovday = =23 Tay?dos — 2A°A%Ranalw.p (5.201)
——
=0
1 aan P P T 1 &by v 7
%oszZ(L = é’ya Xa1a27 ScovLZEa = O» ScévLE.za = g’Ya Xdldgy Scé’ULEZ =0 (5-202)

The composite object Xq, o, is given in (5.174). Let us for completeness also give the BRST transformation of
the supersymmetric momentum

sl CEY VA% 4+ 2xe T, (5.203)
SoulT2), LG, A% + N 1 (5.204)

All these BRST transformations are similar to those for the heterotic string, given in [14]. There it was also noted
that the BRST transformations always contain a Lorentz transformation (multiplication with the connection).
We have absorbed this term into the definition of the covariant variation. The advantage is that we then have
expressions all the time that are covariant with respect to the target space structure group. Although the
ordinary BRST differential sis needed to calculate the cohomology (as it squares to zero), the calculations are
simpler if they are performed with s.,, and only in the end transferred to s When acting on a target space
scalar, the two coincide anyway.

5.9 Graded commutation of left- and right-moving BRST differential

We have started in flat background with two independent BRST symmetries, the left-moving and the right-
moving one, which both squared to zero and graded commuted. As they define the physical spectrum and
identify physically equivalent states, these facts should not change in a consistent theory, at least on-shell. This
is similar to the fact that gauge symmetries should not be broken. We have already derived the constraints
coming from a vanishing divergence of the BRST currents. The ansatz for the currents was such that this
corresponds to holomorphicity for 7, and antiholomorphicity for j;. Having on-shell a holomorphic 7, and an
antiholomorphic j; is in a conformal theory already enough to make the corresponding symmetries commute.
For example on the level of operators, the operator product between a holomorphic and an antiholomorphic
current, always vanishes on-shell. The same is true for the charges which generate the symmetry. The on-shell

In the second line for the first two terms, we have just used a complicated way to write zero. The reason was to bring it to a form
similar to the one in the first line. In any case, at least the first line suggests again the introduction of the variables

1 1
dze = JGally,  dze = Gedlls
that we already proposed in footnote 12 on page 62. Indeed, their BRST transformation takes the form
3 .
sovdze = —S AN Hage = 2X*Tac’da

Using Hyg. = Twe® = 0 and at (least for Ay?X = 0) A* )\"QROLQda'B = 0, the transformation of d . takes the same form as the
one of d,s and we can write

3
Sovdz{d 6} = j"aniw}Ha{cn}{d,a}*2>\"Ia{d,a}{c”}dz{cn}*2>\“1>\“2R{d,a}a2a1ﬁwza for (Ay*X) =0

We suggest to introduce d.4 as an independent variable into the action, with an on-shell value d.. = %G’cng. Doing this, one
would arrive at a formalism where the Gjsn term is replaced by a first order term, while the Bp;n term remains. This would
therefore be a mixed first-second order formalism which would be suitable to couple it to e.g. the components of a generalized
complex structure. o
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vanishing of the commutators is all that we can demand for consistency. Therefore we do not expect any
additional information from the graded commutation of left- and right-moving BRST differential. Nevertheless
it is instructive to calculate the graded commutators and consider it as a further check. In particular it is
interesting to see the terms which prevent an off-shell commutation of the differentials. The starting point is
the request that we have

N !
Bdom = Odan + 0 Pan + StrivPan (5.205)

where 5triv¢azll is a trivial and thus on-shell vanishing gauge transformation (see page 186 in the appendix) while
d(u) and J(;) are the antighost gauge transformations. Spelled out in words, (5.205) means that the graded
commutator [§ 9 has to vanish on shell up to antighost gauge transformations. There are at least two ways to
check this. Either we calculate the commutator of the transformations on each worldsheet field or we calculate
the transformations of the Noether currents. This is directly related to calculating the Poisson brackets of the
generating charges in the Hamiltonian formalism.

Determining [s§ via the transformation of the currents We start with the defining equations of the
BRST currents:

= ) 08

9i. = —sp* 93. = Z

J a7 5k’ 9z = —Sans 7 0%,

The current for the graded commutator [§d is given only on-shell by &j, or §); (one would expect this from
the Hamiltonian formalism). A correct off-shell expression can be obtained by acting on (5.206) with s or s
respectively. The derivation of the current jig corresponding to [s§ was too simple and indeed not correct in
the original version of this thesis, so that by now I have moved a more careful and general derivation into the
appendix. From there we can adopt the result from equation (E.55) on page 188:

68 O(spp) (88 0k -
((ba (zcban)) ST Jagz <5¢In 3(a¢all)> all (5.207)

(5.206)

Jsdz = 9.+
or equivalently (interchanging the role of sand §

(05 SR\ kg
][Séz ( ¢all ( z¢all)) b j[s,éz vz +( (bgll 8(a¢all)

For consistency we need only that [s § vanishes up to trivial and other gauge transformations. It is thus enough
to demand that the corresponding current jjzg vanishes on-shell, because on-shell vanishing currents correspond
to gauge transformations (see proposition 6 on 184 in the appendix). If we take the expression for jjzgq. from
(5.208) and the expression for ji gz from (5.207), we can observe that both components of the current vanish
on-shell without any extra conditions on the background fields! As claimed at the beginning of this section
this happens due to the fact that left- and right-mover BRST currents j, and ), are on-shell holomorphic and
antiholomorphic respectively.

In principle we are already done with the commutator [s §, but it is a good check to see, whether we obtain
the same result if we do it the other way round and take the expression for j54. from (5.207) and the expression

38 A(sphy) ) < (5.208)

892
on shell ~ on shell

for jiggz from (5.208). This corresponds to demanding &, ~ = 0, sj; 0. In order to calculate &j,,
remember the form of the BRST current j, = A%, (5.39) and also note that it is a target space scalar. The
BRST differential can thus be replaced by the covariant one:

Y. = AN Rouday = 22N A Raralw.s = == A" Ranalw.s (MY A) (5.209)
. N—_——

Using the left-right-symmetry of proposition 3 on page 44 we get the corresponding expression for sj;. Both
vanish on the pure spinor constraint surface (Ay*A) = (Ay*A) = 0 so that indeed the Noether current belonging
to [§ § vanishes on-shell and thus [s § will vanish on-shell up to gauge transformations.

If we wanted to know also the non-trivial gauge transformations that appear in the commutator, we would
have to calculate also the additional on-shell vanishing terms that are added to &, in the expression of jigg.

n (5.207). It turns out that only ( 05 g((a;s))) sz = g B /\"‘)\VH 45 is contributing a priori. However, we

z8
will see later that H, 55 is required to Vanlsh from the mlpotency demand of the BRST transformation as well
as from the Bianchi 1dent1tles
The (non-trivial) gauge transformations that will appear in the commutator [s § are thus given precisely by

the above off-shell non-vanishing term (5.209). Namely if we take u,, = 1)\ ol Ra.yaﬁwzg we obtain

Y. = 3h:a(MN) (5.210)
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which is precisely the current of the antighost gauge transformation given on the lefthand side of (5.78) with
corresponding antighost gauge transformations 0(,)w.a = pza(A7*)a (5.90) and () L.za = —Dzpiza (5.91).
Having a current that coincides with the one of a gauge transformation, the form of [s§ can only differ by a
trivial gauge transformation. In any case we have obtained the result that the commutator vanishes up to gauge
transformations. A safe way to figure out potentially appearing trivial gauge transformations in the commutator
is to calculate it on each single worldsheet field separately.

Acting on each field separately Although this method would lead to the precise off-shell form of all the
commutators, we are for now satisfied with the result we already obtained and give the explicit commutator only
for the most simple cases. Starting with the covariant BRST transformations of the elementary fields (given in
(5.195)-(5.202) on page 66), we will first calculate the commutator [§.0v,S0v] and only after that determine the

ordinary commutator via the relations (5.112) and (5.113). For the embedding functions 2%, the ghosts A%, A%
and the antighosts w.o and wz4 the calculation is very simple and we immediately obtain

[So0; Sou] 2 = 0 (5.211)
Bow s ] X = 0, [son 0] AT =0 (5.212)
[Gov S00] Wer = Bovdin = 28 A%Ranalwis,  [Son 8ou] @25 = —22°A" Ranala 5 (5.213)

The transformations of the remaining fields are much more complicated and we prefer not to study them. Let
us now derive the ordinary commutators:

8925 P2 (800800 25 <207 ToK A% =0 (5.214)
— ~——
=0 =0 (5.183)
SaA )‘7 (51:13) StovyAS;ov )\7 _2 AaXaRad 7>\ﬁ - 0 5215
cov Tov s rov, B8
=0 =0(5.191)
~ 5.113 n ~&
[Sécou Way ( = ) [%ovasﬂ] Wy +2XFA Rad'yﬁwzﬁ =
~——_———
=—2 %A% RaraBuw.p
= 45‘a>‘aRd[a'y]ﬁwzﬁ (5.216)

Again we get the corresponding equations for A% and wz4. The last line corresponds excactly to the gauge

transformation with gauge parameter ., = —%S\Q’y;’”Rdvaﬁ w.g that we found already above. This is strictly
speaking true only if H, 5. = 0 (remember the off-shell terms that were mentioned after (5.209)), a constraint
that we will obtain only in the next section from nilpotency. The explanation is that the different ways of
calculating the same quantity [s§ certainly assume the validity of the Bianchi identities which already at this
point would imply the above extra constraint. However, we will do a careful analysis of the Bianchi identities
only in the end, after having obtained the additional constraints from nilpotency. It is further interesting to see
in (5.214), that some holomorphicity constraints like T, % = 0 are needed for the commutation. In fact, in [59]
this constraint was derived by demanding a vanishing Poisson bracket between the two generators of the BRST
symmetries. The constraint T, % = 0 did not appear in our derivation via the currents above. The reason is
that we already started the derivation in (5.206) from an equation which assumes on-shell holomorphicity.

5.10 Nilpotency of the BRST differentials

While the last section was rather a check than bringing much new information, the nilpotency of the BRST
differentials will give us additional constraints on the background fields. The nilpotency is essential to define the
physical spectrum as in the flat case via the cohomology. It would be inconsistent if this prescription breakes
down, as soon as a nonvanishing background is generated by the strings. Demanding nilpotency at least on-shell
and up to gauge transformations is thus legitimate.

Nilpotency constraints from the BRST transformation of the current In the same way as in the
previous section, we can examine the BRST-transformation of the BRST-current instead of studying nilpotency
on every single worldsheet field. Start from the defining equation of the BRST current

Gi. — s, 08

—sp —— 5.217
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Again the current for the graded commutator [s§ = 2¢° is given only on-shell by sj, (what one would expect
from the Hamiltonian formalism). To obtain the off-shell expression one can act with sfor a second time on the
above equation. From the appendix we can adopt the result from equation (E.55) on page 188:

_ ) 58 O(sph , §S O(spf
Jsg= = Y.+t (%M) sl Jisdz = (%a((a¢,§))) O (5.218)

all all

The BRST transformation of the BRST current sj, is therefore at least on-shell the Noether current for the
transformation 2s*. For consistency we need only that s vanishes up to trivial and other gauge transformations.
Due to proposition 6 on page 184 in the appendix, every gauge transformation has (up to trivially conserved
terms) an on-shell vanishing Noether current. Demanding that sj, vanishes on-shell is therefore a necessary
condition.!® Also due to proposition 6 it is a sufficient condition, as we know already that sj, is a Noether
current for a symmetry transformation and if this current vanishes on-shell, the transformation can be extended
to a local one, i.e. it is a gauge transformation.

As the BRST current is a target space scalar, we can replace the BRST differential with the covariant one
when calculating sj,:

sz = Sov (Aadzﬁ) = *A(s&ovdzé ==
(5~£)8) Sya c 35a ~y Sya ~ dyayao Jé]
= —A° A 3Hqaes 11 — — A" A Hans11) — 22X AT o057 doy + 2A°ATA Ro 50" w2 (5.219)
N—— 2

2Ta5|c

The only equations of motion, which can make sj, vanish on-shell are the pure spinor constraints Ay*A = 0.
We therefore get the following conditions on the background fields

= N HacsA* = 0,  AATa57 =0,  AAMA™R4.50,° =0,  (onshell)  (5.220)

Remembering that we have the constraints Ta5|c = %Hac,; (5.170) and Ta(;:’ = % a(;ﬁ??ﬁ:*, we can extend the
above condition on the torsion on all indices

AT € =0 (on-shell) (5.221)

All these on-shell conditions can be formulated in an off-shell version with the help of y-matrices by using
(5.194) on page 65. Either we write that the terms are linear combinations of ~[s. or equivalently we can
write that the v°l-part vanishes. We thus can rewrite the constraints on torsion and H-field as

. 1
Tap® = Aapld with i€ = 7298°Ts." (5.222)
. 1
Heap = HoaYap With Hoo = JoHose?s (5.223)

In particular for C' = =, due to the (graded) total antisymmetry of H.,qg, this should at the same time be
proportional to 75, and v3.:

(5.223) o (5223) 1 5. o (5223) 1 b es. o (Da08) 1 “
Hyap =" HylaVag = EHM!SS% Napl = TGHEWMJ% VBl 5 160) gH[—y\a7|ag](5-224)

In the last step we used the Clifford algebra (D.108) for the first two 7’s and then the Fierz identity (D.160)
to throw away one of the resulting terms. Remember that the appendix about I'-matrices doesn’t use the
graded summation convention. For the Fierz identity we thus have a (graded) antisymmetrization, instead of
the symmetrization and for the Clifford algebra we get an extra minus sign because of the NW-definition of the
Kronecker-delta.

The second and the last term of the above equation (5.224) contradict each other if they do not vanish
and thus Hcng has to vanish. The components Heng were constraint to be zero already before. Of the
components in (5.223), we thus have only H.qp nonvanishing. Because of Thg. = —2H.ap (5.170) and

Taﬁ:’ (5.181) %Haﬁ(spﬁ =0, we have in addition

3

fae = —GHea, a7 = (5.225)

15 There are no trivially conserved parts in sj,. A trivially conserved part is of the form 6CS[55] for some rank two tensor S¢5.
In the conformal gauge this would take the form 9.S|z,; which is of conformal weight (2,1). Such a term is certainly not present
in our current. <
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The new constraints on H and on the torsion thus read (the constraints in brackets follow from the other ones
in combination with (5.170) and (5.181) and are thus redundant):

2
Heap 0, Heap = —3%apfac (5.226)
Tag” vaglds  (Tap®=7lfs,  Tap? =0) (5.227)

As aremark let us note that the action in flat superspace with the ordinary WZ-term of the GS-string corresponds
to Heap = —§% ap and thus to fuc = 74 We can now analyze in a similar way the constraint on the curvature
in (5.220). As the pure spinor constraint is quadratic it can be equivalently written as )\al)\a2R[a25al]ﬁ =0
(on-shell). For this expression, one can do the same reasoning as above with H.og and arrives at

Riysa)® =0 (5.228)

We will get the same constraint from the Bianchi identities later in (5.586) in case one feels uncomfortable with
that line of arguments.

Of course we get all the correponding constraints also in the hatted version from the right-mover BRST
current according to the left-right symmetry of page 44:

2 .
Heap = 0, Heap=3%pS0c (5.229)
Tag” = vaplds  Tapt =naples  Tap" =0) (5.230)

Ris5a (5.231)

Remember that the curvature is structure group valued in the last two indices and decays into Lorentz and scale
part (see (F.90) in the appendix on page 195): R0 = %F,(Y?)éaﬁ+R£fgLﬁ with RE/L&)aﬁ = 1RW) 5010:71 %2 0P,
The constraint (5.228), i.e. 0 = Rhga]'a x Ra,(;aﬁ + 2Ra[75]5, therefore implies that Rah,;]ﬁ is Lie algebra

valued in « and 3 as well. This means in particular that Ra[_y,s]ﬁfyal"'“‘lga = 0. Let us finally give the trace
(in ¢ and B) of (5.228) and its hatted equivalent (5.231):

0 = Rhga]a (5.232)
L D) o, pl) a

= §F[75 So)™ + Ry 3o ™ = (5.233)
9.0, 2,50 «

= 3By +3Rals (5.234)

The scale curvature can be expressed in terms of the Lorentz curvature as

(D) _2,0L) o a0 _ 250 a
Fy5' = 5Rahe™ - Ei5 = 5R4ls (5.235)

Nilpotency on the single fields Just to get a flavour of how the calculation would work if we act on each
field twice with the BRST differential, we perform this for the simplest cases. One discovers immediately that

acting on ¥ and A twice with the covariant BRST transformation yields zero. The reformulation of &,, in

terms of the square of the ordinary differential & gives a torsion or a curvature term respectively. These terms
have to vanish on-shell in order to have an on-shell vanishing &*:

0 = &2 =feK 12N T 35N 5 AT, KA =0 (on — shell) (5.236)
<0 (on — shell)
0 = A% = ()eooA® +2X N R55%N? = AN R55°A? 20 (on — shell) (5.237)

——

20 (on — shell)
On the antighosts we have &, w.q = Sovd.o Which will not vanish, but which will correspond to a gauge
transformation. The same should be true for L.z,. The calculation of s2dz,y is quite involved to calculate and
will probably contain also constraints that follow from the earlier ones via Bianchi identities. We will calculate
the identities anyway in sections 5.B on page 91 and 5.C on page 100.
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5.11 Residual shift-reparametrization

Before we are going to collect all the constraints on the background fields which we have obtained so far, let us
eventually make use of the residual shift-symmetry discussed in the paragraph on page 47 (which in turn refers
to the paragraph about shift-reparametrization on page 46). It is a target space symmetry that is based on a
residual shift reparametrization of the fermionic momenta:

o = doo —ED0(2)(VA)aw:s (5.238)

The BRST current gets changed under this reparametrization by a linear combination of the pure spinor
constraints (5.43), but this change can be undone by a redefinition of the BRST transformations with the
corresponding antighost gauge transformations. This does of course not change the on-shell holomorphicity of
the BRST current, as the pure spinor term vanishes on-shell.

Apart from the change of the BRST current, we have the following induced transformations of the background
fields coming along with this reparametrization:

Qe = Qua® — Ex"5,E®,P (5.239)
Col = CaPY AP 20, Sp (5.240)
F0sP? = SaaPP + CaPrrL 2@)P (5.241)

Note that the transformations of C,®Y and S,4PP are in agreement with the holomorphicity constraints (5.184)
and (5.189), relating them to Q;4®. It is thus enough to memorize the transformation of the connection Q;4°.
Remember now the definition of the torsion as T’ A —dgA—EB AQY BA. This implies the following transformation
of the corresponding torsion component (see also (F.66) in the appendix on page 193):

Ta1a2,6 = Ta1azﬁ_')/g¢1a23(3)b,6 (5.242)

Due to the nilpotency constraints we have Ty, q,” ’yglm. In addition, the left-right symmetry of proposition 3

on page 44 induces the same statements for Talazﬁ and the second residual shift symmetry related to the
reparametrization of ds. We can therefore completely fix the two residual gauge symmetries by choosing the
(obviously accessible) gauge

Top” =0,  Tgp" =0 (5.243)

We can now immediately take advantage of this additional (conventional) constraint and check the validity of
the constraints (5.192) and (5.193) on page 65.

5.12 Further discussion of some selected constraints

There are some constraints which deserve further examination, before we move on to study the Bianchi identities.
First, the four constraints (5.192), (5.193) and their hatted versions on page 65 do not look very useful as they
stand. We will show that they are actually consequences of other constraints. Second, with (5.188) and (5.189)
we have two equations for Sqs?? and it is interesting to know whether they are equivalent or not. Let us start
with this last problem:

Consistency of (5.188) and (5.189) In the following we will (actually just for convenience) frequently use
the new conventional constraint TogY = 0 =T, 57 (5.243). Starting with (5.188), the tensor of interest is given
by

53 (5.188) 2 A Bon B4
Saa™ ey TLaMaP  2asa P =

V29 W Vo P 42T, P VPP — 2RaasPPOP — 2R PP 4 2RasaPPPY  (5.244)
——
—0(5.183)

In order for this to be compatible with (5.189), i.e. with

Sadﬁé EZ%Zzi—ydzaPBﬁ + QR,&.yaﬁ'Pﬂ'lB (5.245)
the curvature has to obey R o
Rajas)?P? — Ryya57P% =0 (5.246)

In fact, this condition will be a simple consequence of the torsion Bianchi identities that we will obtain in (5.595)
and (5.596).
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Check of (5.192) The constraint (5.192) contains the covariant derivative of C,®Y for which we can use in
turn the constraint (5.184) together with our new constraint (5.243).

Via,Cai)” = 2Rjas )50, PP =

(5.184) . .
=" Vi,V PP = 2R, 500, P27 =
(F£8) _IagquzD,PB;Y +3 R[agalts]'a ,Pé:y + Rafzalé’y ,Pﬁa (5247)
—— ——
=0(5.228) =0 (5.187),(5.226)

Only the first term remains, but recalling the nilpotency constraint (5.221) in combination with (5.194), we
observe that also this term vanishes, when contracted with 512 . The constraint (5.192) therefore does not
give new information and will be omitted in future listings. The same is true of course for its hatted version
due to the left-right symmetry.

Relating (5.193) to a Bianchi identity For the constraint (5.193) we have to consider the following
combination

Vi, Sar)a?® = 2R(a,156P Clay)?T + 2Ry 5lan P CaP® =
(5.188)
(5.184)
(F.28)

Vool (L ZaP? = 2R1a,156PPPY) = 2Ria,146P Y 0 PP + 2R 5100 "L a PP =

a20ﬁ1

OVoVaP + Rayara” VPP — Royars® VPP +
N—— N——
=0 (5.187),(5.226) =0 (5.187),(5.226)
+22[a2|R\a1]’:/dB,Pﬁ7 + 2R[°‘250¢1]B zdpaﬁ =
————
=0 (5.228)

= fagalcvcv Pﬁﬁ +QV[Q |R|a1]7a /P'B;Y (5248)

The first term vanishes again when contracted with yg1%2  ((5.221) and (5.194)) and the constraint (5.193)
reduces to

78192 T RlaagaPPY =0 (5.249)

We will see in a second that this equation is automatically fulfilled when the Bianchi identity for the curvature
is fulfilled. We will study the Bianchi identities at a later point, but not all of those for the curvature, because
we intend to make use of Dragon’s theorem, relating second to first Bianchi identity. Let us therefore write
down at this point the Bianchi identity that we have in mind (see (F.52) on page 192):

. al A D A 2
0 = 2[042\R|061’:/]dﬁ + 22[a2a1| RDW]&B =
2 A 5, 1o 4 5 4 ) .
== ﬁ N B _ D D L B
= §Z[a2|R\a1]’?(x + gZﬁ, Ra2a1a +3 I‘/[o@\ RD|a1]a + 3Ta2a1 RD’Ya (5250)

=0(5.187),(5.226) " (5.183)

Once again the last torsion term vanishes when contracted with 12 , so that the above Bianchi identity
implies

182%2 Vg Rlanjga’ = 0 (5.251)

...as

which is even stronger than (5.249). Of course we also get a hatted version of this constraint.

5.13 BI’s & Collected constraints

The next step ist to study all the Bianchi identities. The logic is as follows: We have obtained certain constraints
on the H-field, on the torsion and on the curvature. As these objects are defined in terms of B-field, vielbein
and connection via H = dB, T = dE* — EB A Qp? and R4% = d48 — Q4° A Qc?, the constraints can
be seen as differential equations for the elementary fields. If one solved these equations and calculated again
H-field, torsion and curvature, one would observe additional constraints that one had not seen in the beginning.
Solving the differential equations is a very hard problem, but the additional constraints on the derived objects
(H-field, torsion and curvature) can be obtained by the Bianchi identites, without knowing the explicit solutions
for the elementary fields. Indeed the Bianchi identities can help to derive the solutions. Depending on the point
of view, the identities are a direct consequence of either the nilpotency of the de Rham differential d® = 0 (see
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appendix F on page 189) or of the Jacobi identity for the commutator. Their explicit form, using the schematic
index notation of 147, reads:

VaHaaa+3C40“Hoan = 0 (5.252)

!
Valaa” +2T4a“Toa” = Raaa® (5.253)
VaRaap® +20aa"RBpas® = 0 (5.254)

Repeated bold indices at the same altitude are simply antisymmetrized ones. Dragon’s theorem (see page 197)
tells us that — when the torsion Bianchi identity is fulfilled — we can replace the curvature Bianchi identity by
the weaker condition
A
RoopToc® =
= VeVeToo® +Tec”Vploo® +2(Nolee” +2Lcc”Tpe”) T (5.255)

We will anyway concentrate on the Bianchi identities for H-field and torsion, because they provide most directly
useful new algebraic constraints. A
Note that all constraints so far were obtained for objects based on Q,,,7 = diag (QN[ab,QMaB,QMd'B),
the mixed connection defined in (5.66) on page 50. It contains three a priori independent blocks which all
decay further in a Lorentz and a scale connection. One of the important results from the study of the Bianchi
identities is that the torsion components Tagc and T& 5" are related to vg 4 and V4 3 respectively by a Lorentz
plus scale transformation. It is discussed in an intermezzo on page 92 (and was also used in Berkovit’s and
Howe’s original work [13]) that this can be used to fix two of the three independent blocks. One is thus left with
one independent copy of Lorentz plus scale which should leave invariant g5 and *yc?x 5 After this partial gauge
fixing, the mixed connection is not an appropriate choice any longer, as it does not in general respect the gauge.
We therefore introduce three alternative connections, namely the left-mover connection (defined by Qp7°
and invariance of the gamma-matrices), the right-mover connection (defined by QaaP and invariance of
the gamma-matrices) and the average connection (see beginning of appendix G on page 199 for more details)

Qua® = diag (Qra’, Qua® QsP), Vavas = Vi =0 (5.256)
Qua? = diag (e’ Qua® Qua?), Vuis = ﬁM'V:;@ =0 (5.257)
1 A
B _ B B
Rva” = 3 (QMA +Qna ) (5.258)

In addition we define the difference tensor
AMAB = QMAB —QMAB :diag (AMab,AMaﬂ,AMdB) (5259)

The Bianchi identities (5.252)-(5.254) should of course also hold when all objects are based on the above
newly defined connections. This does not put restrictions on Ap;4”2. All different versions (based on different
connections) of the Bianchi identities will lead to equivalent information (see proposition 7 on page 193). As
they are most conveniently written down in terms of the mixed connection, we will follow this path. Only the
bosonic block Q7,” will, depending on possible simplifications, be chosen to coincide with either the left-mover
connection Q7% or the right-mover connection Q,7,°. The corresponding calculations are lengthy and mostly
not very elluminating, so we put them into the local appendices at the end of this part of the thesis. There we
first start with collecting all constraints that we have derived so far in appendix 5.A on page 88 and then discuss
the Bianchi identities in detail starting from page 91. Some conceptually more interesting discussions within
these appendicies are seperated in intermezzi. The first intermezzo on page 92 is, as already mentioned, about
the fixing of two of the three copies of Lorentz plus scale transformations. The next on page 97 is about how to
determine the complete difference tensor from the obtained constraints. There is finally a third intermezzo on
page 104 which discusses the relation between constraints on the RR-bispinors and constraints (or equations of
motion) for the corresponding p-forms.

After all this work in the local appendices, we will now collect all the constraints on the background fields
that we have obtained, including the ones from the Bianchi identities. If we later, within the derivation of
the supergravity transformations of some component fields, make use of some explicit form of components of
torsion, curvature or other background fields without giving the explicit equation number, the corresponding
equation should be among the following ones.

Not all equations that we are going to write are independent. It is sometimes convenient to have them in
different versions and grouped in different ways. In particular we will give for later convenience the explicit form
of the torsion components based on left-mover, right-mover and average connection, although this contains a
lot of redundancy.
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Restricted structure group constraints The first set of constraints is related to the restriction of the
structure group (of the supermanifold) to a a block diagonal form with three copies of Lorentz and scale
transformations. This was discussed in a paragraph on pages 50-48, in the remark on page 53 and in the
intermezzo on page 61. The following equations are taken from (5.94)-(5.96), (5.152) or (5.154) and (5.159)

Qo = S0P+ ol ymelf Qe = Lo Lol el (as)
0BT — %Cﬁgaﬁ i ioglaz'Yalwaﬁv OB = %Crn;dﬁ + iégla{yal“z&ﬁ (5.261)

Saa®® = iSéaﬁédﬁ + ésamaa%al%'@ -
+%S§a1an“1“2aﬁ5a[’ + %Salazblbﬂ“l“aﬁvblbzdﬁ (5.262)
Gun = Eu"GaEN’,  Gay=ena (5.263)

The above equations (without the last one) are equivalent to

7o S Val.--médQM&B -0 (5.264)
LA g BY = 7czl---tlzlﬁézéd@'r -0 (5.265)
7al...MBOLSMM _ Val...m[aasadﬁfa -0 (5.266)

Further constraints on C and S and indirectly on P The constraints (5.184) and (5.185) on C and
(5.188) and (5.189) on S (all on page 65) can be regarded as defining equations. We have already shown in
section 5.12 that the two equations for S are equivalent up to Bianchi identities.

CYY = v P (5.267)
CaV7 = VP (5.268)
Sad"h@ = -V, C'dﬁ’v +2Ra;yd57)’¥’7 (5.269)

YV, PB
Sas’’ = V4 Ca® +2Rara”P7? (5.270)

ZQPB‘V

In addition we have from the Bianchi identities the equations (5.637) and (5.638):
aB 1 ady o B8 o le ad; ~\ zcd B
yd? = —57) V:,‘P “0a” + | Ted™ — §V'Y(I)P Yed & T & (5271)
5 1__a P | .

Yapﬂa = _§7D’YOLV7(I) : 6046 + (Tcda - QVWCI)IPaa&ch’Y) :}’Cdaﬁ (5'272)

In the intermezzo on page 104 we give a qualitative discussion how these equations are related to field equations
for the corresponding RR-p-form-field-strengths. The above expressions for the spinorial derivatives of the
RR-bispinors (which coincide with C' and C' according to (5.267) and (5.268)) already take into account the
restricted structure group according to (5.261). In addition they imply upon taking the trace that

VPO = 8PYVWad or V(e 32Pad) = (5.273)
V P2 = 8PV,d or V(e 8P =0 (5.274)

Constraints on H Due to (5.167)-(5.171), (5.226), (5.229), (5.476), (5.477) and the total antisymmetry of
H, its only nonvanishing components are

Hype # 0 (in general) (5.275)
2. 2
Ha,Bc = *gf)’caﬁ = *§€2¢ncd7iﬁ (5276)
2 _ 29 d
Hape = 3Veap =3¢ Medlap (5.277)

The vanishing components are thus (written a bit redundantly)

Hupe = Hopo=Hase=0 (5.278)
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Note that the constraints for Hage and Hgp, (coming from (5.476) and (5.477)) are related to the torsion
constraints for Tog¢ and T, 5" and thus (as mentioned in the beginning of this section) contain the gauge fixing
of two of the three initially independent Lorentz and scale transformations (5.65). This is explained in detail
at page 92.

Further conditions on H, coming from the Bianchi identities (5.580), (5.581) and (5.582), are

VsHape = 74T[ab|éﬁ/|c]é8 (5.279)

VeHare = AT(ap*¥|cles (5.280)
9 €

VieHyea) = —5Hap" Helca (5.281)

More information on the torsion components Ty;° and Top will be given in the corresponding paragraph below.

Constraints on the torsion Let us now collect the information of the constraints (5.168)-(5.170), (5.180)-
(5.183), (5.227), (5.230), (5.243) and the Bianchi identities (5.474), (5.475), (5.521), (5.522), (5.527), (5.528),
(5.538), (5.539), (5.634) and (5.635). The only (a priori) nonvanishing components of the torsion T4z are

Tap® = Yap  Tap® =% (5.282)
, 1 1, A P 1 . 4e
Tap® = —§Va<1>6§ — §%°aﬁVﬁq’, Tar® = —§Vd@5§ - §7b°dﬁvg‘1> (5.283)
3 . 3
T’ = SHap' T =—oHuy® 5.284
b 9 b b 9 b ( )
Ta 7= :)/Cdstpvéa Tac:y = :)’coaS'Pé;Y (5285)
1 ;o . ) 1 ) )
Ta? = o (VP +8V50P7) 5,57, 1w = 16 (L4 P27 48V, 8P%7) 5057 (5.286)

The remaining components vanish, which can be written (again a bit redundantly) as

Tag® = Toas® =Tad” =Tad” = Tap’ =Tap® =0 (5.287)

ac

We obtain some additional constraints from the Bianchi identities (5.701), (5.689), (5.705) and (5.706):

VaTo? = =2%345V1gP% — 3Hpee155 P (5.288)
Valve® = —293asYqP°® + 3Hpee Vo5 PP (5.289)
ViThg® = 73H[ab|eTe‘c]5fQT[abf%‘c] :5P% (5.290)
Vielog® = 3HwyTe1q° = 2T10p/5 ) s P%° (5.291)

Difference tensor With the help of the constraints obtained from the Bianchi identities the explicit form
(5.543)-(5.549) of the difference tensor is derived in the intermezzo on page 97. The components with bosonic
structure group indices are given by

AAbC : Aab|c = _3Habc (5.292)
Aab|c = Va@Gipc + 'S/bcadvé(p (5293)
ANapje = —Va®Gie — %casﬁgfb (5.294)

They determine the components with fermionic structure group indices to be of the form

3 3

AAB'A . Aa57 = 71 abc;}/bcﬁ'y 5 AQB:Y = 71Habc’;/b63:y (5295)
1 1 . . 1. | 5 . A
Aa[{y = §VQ<I>557 + Z’}/bca(SVJ(I)’yb 57 s Ad37 = 7§vd@5ﬁﬁy - Z’chd(sv;;q)’yb 37 (5296)
le 1 5 be s 1 v L 5 be 4
Ad57 = —ivdfbég" — Z%’Cd Vs@’y ﬁ7 s Aaﬁﬁy = §VQ<I>5@7 + Z’cha V(;(Iw @7 (5297)
The above equations imply in particular for the scale part (via taking the trace)
=AD) = 0 (5.298)
AP = v,o (5.299)

AP = Va0 (5.300)
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As we meet here the covariant derivatives of the compensator field, it is useful to add at this place also the
constraints (5.527),(5.528) and (5.529) on the covariant derivative of the compensator field coming from the
Bianchi identities:

Va® =Va® =V, 0=V,0=0 (5.301)

Remember that the covariant derivative of the compensator field is given by Va® = EaM (9y,® — Q%?)).

Torsion constraints rewritten in various ways Due to the explicit knowledge of the difference tensor,
we can write down all components of TABC, TABC and (Z)ABC (using e.g. TagY = TAB'AV — A[AB]'A*). They
will be needed to derive the supersymmetry transformations in the corresponding gauge. Before we start, let us
stress once more that the scale transformations (or dilatations) are still part of our superspace structure group.
If one prefers to fix the compensator field ® to zero immediately (which would correspond to [13]), one needs
to restrict to the Lorentz part Q(, 2, Q%) B or Q (%) B of the corresponding connection. The Lorentz part of
the torsion can be obtained via

TEC = Tap® -y with Qff)° = Q767 and Q{72¢ = 1047 65° (5.302)

This will be made more explicit below for each case.
Let us now start with the left-mover torsion, whose components T4z are

To® Tup® T,5° 1 3 o $VP; + $7.°6°Vs® 0
Tap® = Tar® Tap® Top® | = —7Va®dy — 571 Vs ® Yas 0 )(5.303)
Tar® Tap® Tap 0 0 Tap
T Tus? T,5° 5 (VeP +8V0P¥) 5,55 0 =5, 5P
TAB’Y = To” Toz[i'7 Taﬁ7 = 0 0 0 (5304)
Tap? Tap? Typ” FasP? 0 0
T Tup? T,5°
Tag? = | Ta? Tap? Top" | = (5.305)
T Tdﬁ‘:/ T. ﬁ*/
75 (¥, P + 8V~,<IA>P‘W) Yabs’ —Ya gs P>V §Hade? )
s PO 0 (- Svdea 5 Vs® — 1Va<1>53”)
f%Hbd@"de(x;/ (%'Ydeﬁap)/ded;/v&q) + %V,G(I)éd:y) (4’7(16 [& ’V B]qu@ + §v[d©6§]ﬁ)

If we want to extract the Lorentz part, only a few of the components change. Remember V,® = 0 and V4® =0
and assume only for this step that ® was fixed to zero, which implies V¢ — —QS\?) and thus Q((ZD) =0 and
Qf&D) = 0. According to (5.302) we then have

e =0 e 1oP)6, = 1y,°, 80P (5.306)

T = T 10 D>5ﬂ v = _,Q D)5 (5.307)
L)4 =0 5 e D

T "2 17 - 0055 = fraea’y 57057 (5.308)

All other components of T2 coincide with T for ® =0 (and V& — —Q ).
The right-mover torsion components TupC are

) /ljabc Jja;sc 7:13 —3Hu* 0 %%éég 2%‘335@3<I>
Ta¢ = Town® Taﬁc TQBC = . 0 L 73[3 0 (5309)
Tar® Tap® Tapt —3Va®d; — 31°a°Vs® 0 Yih
TwY Tug” T,57
Tap” = | Ta? Tap” T,5" | = (5.310)
Tdb’r leg’y Td,37
%s(YaPV‘SﬂLW&‘I’P“’J) Favs” —§Haae7 " 8" ~YapsP’
%Hbde:ydeg"’ (ivde[aaydegﬂva@vL%V[a@@af’) (%Vdeg Yl IV ® + 1 lv ©is7)
Tras P’ (—574ea’1%a7V5® — {Va®ig?) 0
. Lo Top? 1o s (VeP% +8V0P) J0y5* —upsP? 0
TapY = Top? Tap? To57 | = Ab s POY 0 0 (5.311)
Tap? Tag? T.zY 0 0 0
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In order to extract the Lorentz part, remember @aq) = 0 and @atl) =0. For ® =0 (Vy® — —QSV?)) this
implies Q) = 0 and O = 0. According to (5.302) we then have

T "2 Tar® = 30075 = $0 6’05 (5.312)
ALy h 4 _16Ds 4 _ _15(D)s 3

Tos" = Tap”’ =29 057 = —3a 05 (5.313)
- =0 ~ N 5 de ~

Te” Tag” = 5007067 = $aea’" 70" (5.314)

All other components of 75 coincide with 7" for ® =0 (and V& — —Q'2)).
Finally we give the components of the average torsion <Z>,4}30 =1 (TABC + TABC>:

La® Lap® L.
Las® = | Lo’ Las® Lap” | =
Lar® Lap® Lap
0 1VBP0E + 17.°a°Vs®  1V5P65 + 17a°5° VP
_ —1Va®5f — 175’ Vs s 0 (5.315)
—iVa®d; — 156 V@ 0 Yia
La? Lap” I.5"
I ap" = Lo’ Tap” T,.5" | = (5.316)
La” Tap” TLsp"
& (VP 4 8V.0P18) 5, 8 — & Hua %" ~3, 5P
1%15deegydep¢7 (%'Vde[a&’}ideﬁ]vviiq’ + iVLaCMﬁ]”) (Tl(;ydeﬁls’ydea’yﬁfsq) + é@@‘mav)
Yy as P (—157dea’ %8 V5P — §V4®ig?) 0
A La? Las”  Lap?
I ap" = La? LTap” Lo | = (5.317)
Lo Tap” Tsp"
15 (YP%T + 8V OPOY) Fup 5° ~%aps P 16 Haae 7" 57 A
'?baé,pay 0 (*%’Y[je?é’}/de,@’yvts@ — éva@%“/)
-2 Hyae Y% (157de8° 76T Vs® + tVaP0aY) (Ve [a%de@f’vs@ + iV[a‘I’%ﬁ)

The unfortunate situation that neither L ap” nor T dﬁﬁ vanish raises the question whether the conventional
constraints T,g7 = T&Bﬁ = 0 were a clever choice or better should be replaced by a constraint on the average

torsion.
Once more, in order to extract the Lorentz part, we need (for ® = 0) the constraints £ ,(ZD) =0, &aD)

%QSID) and &ng) = %Qg}). According to (5.302) we then have

I = T = 10P06° = 1yt (5.318)

@y =0 p oy 1P v 1 s de D) 1(D)g ~ (5.319)

—ap PEINEYE 4% 98] gVdeloe VB8] s 2% 98] :
(L5 2=0 y D)s 4 _ 5. de _4((D)

gaﬁ‘y - ga[ﬂ‘y - %QSX )5ﬁ7 - T16’Ydea Y @795 (5320)

L " Lar =000 = e’ (5521
L)y 2=0 y_1D)s 4 _ 1 s.de_4A(D) _ 1HMD) ¢ 3

l@f = Tap” — 16 05" = —5Yaela" 7 " — 3805 05 (5.322)
L $=0 A (D 5. de _~@D

Lap” "= Lap” = §95706" = f510ea’7" 670" (5.323)

The remaining components of A(L) coincide with T for @ =0 (and V) ® — —Qg\?)).

Constraints on the curvature Induced by the restricted structure group constraints on the connection, we
have such constraints likewise for the curvature (see (5.68) on page 50 and (F.88),(F.90) and (F.92) on page
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F.90. The curvature is blockdiagonal and each part decays into a scale part and a Lorentz part:

R, pc” = diag(RABcd,RAB-ys,RAB—y3) (5.324)
Rap’ = Fé?é%f?fféf, P = TORABC (5.325)
Rapy® = 5 (D5,° + R(AL;al Mbas V™%, F,E;%)Z—éRAB{’ (5.326)
Rapa® = %F D>6a"+ZRf4§al May 6P, F) :—éRAB.ﬁ (5.327)

with the scale field strength
FO =g D) =g0®  pD) = P (5.328)

The bosonic field strength is also obtained via the commutator of covariant derivatives acting on the compensator
field ®. Only the bosonic block €74° of the mixed connection Q42 acts on @, because ® is a compensator
for the transformation of Gyp = €2®1,, (with bosonic indices only). But as the different blocks of the structure
group got related by partial gauge fixing, we may as well act with the left- or right-mover connection on it:

FJE/IDJ\)I = _Z[MvN]‘I) —Tyn"Vk® (5.329)
Fz(\fjx)r = —VuVn® - Tun"Vi® (5.330)
B = —ViuVn® — Tun* Vo (5.331)

Finallly we collect the holomorphicity (5.186),(5.187),(5.190),(5.191) and nilpotency constraints (5.228),(5.231)
on the curvature, together with the Bianchi identities (5.586), (5.587), (5.595), (5.596), (5.609), (5.610), (5.689)
and (5.690):

Race® = 9,05YaP?  Raca® = FcasVaP? (5.332)
Rasa® = 0,  Rava”=0 (5.333)
Riag = vapTuc”s  Ryap” =vasTa’ (5.334)
Ryjag’ = —apTessP Boap’ = —723%757’53 (5.335)
Riaeses® = 0, Riayasay® =0 (5.336)
Riea’ = YoTollg g+ 4’7[b|a-,777é’y|0] 337’53, Roca® = Vo The® o T 4 4PV sP% (5.337)

Taking the trace of the first two curvature constraints (using (5.274) and (5.273)) gives further informations on
the Dilatation-Field-strength (and thus indirectly also on the Lorentz curvature)

ED) = 3,45P%%Va0,  F =5 PV, (5.338)
(D) _ (D) _
R =0, F2 =0 (5.339)

Remaining BI’s Finally we get a couple of constraints on curvature components where the structure group
indices are bosonic. They are related to the above ones as we shall discuss after presenting them:

5.719 e .
Rage! T2 V0V @6, 10100V Vs® + 37ag Hee + 7 o) V4871 V5 (5.340)
A (5.720) PN FYESN . e A 5
Rap’ = —ViaVg @8 + 76" Vg Vi® — 398 s Hee +7c(a) V7?57 V5@ (5.341)
. 1 1 . )
Ra,@cd © ;27) 7VA va(I)(Sd + 7’Vcda’yvA v'y(I) - Qﬁcaﬁfp'ge’)’gA + 2’?6@37)56’750( (5342)
Raged Y NV@éd 1 IVeVad — 25 PP 2
&Bc = B + ’Vc & B Ve & ap 7513"‘ '70357) Wea (5343)
(5.741) 1
Rapeia =" —g¥y P2 Va6 Viclea + GV as P V. (5.344)
S (5.740) 1 5 _
Rafpga = —*Eﬂ’s Aap) 3 Velear + Gappl V) s P V.0 (5.345)

8
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4 (5.748) 3 4.9 . d d
R[abc] = iv[aHbc] + §H[ab| He|c] + 2T[ab|ET€|C] (5346)
S 4 (5.749) 3 a9 . d A a4
Biarg® =" =5 Viatg” + 5 Hiar " Heiq” + 2jap " Teiq (5.347)

From the structure group constraints on the curvature, we know that the components split into Lorentz and
scale part Rap.t = F{2)57+RE) 4. The same is true for the componets with fermionic structure group indices,
where we had the split RA§75 = %F@ 5.,5 + %R;Lgcdvcd.,‘s. The coefficients Fjg%) and R(AL];Cd are the same,
when the bosonic block of Q/,° was chosen to coincide with the left-mover connection. They can be extracted
from Rap.? just as % of the trace part and as the antisymmetric part respectively. To extract the coefficients

instead from RA375, we need the fermionic trace §,7 = —16 which yields F,lef);) = —éRAB.,'Y and the identity
Yabs V745 = 326 that allows to extract the Lorentz part as R4 = 14,97 Rap,?. Then we can relate

both curvature blocks directly in the following way:

1 1

Rape” = —gRapy"0 + 37" Rapy’ (5.348)
1 1

RAB’76 = %RABcc(s'ya + ZRABcd’YCd'yé (5349)

In the same way we can relate R Ape® and R A B:YS and compare their constraints which should reveal additional
information. This was used for example in footnote 28 on page 111 to derive the constraint

V5Va® = wdapppéygé (5.350)

on the compensator superfield.

5.14 The dilaton superfield

While we have found the covariant derivatives V,® = V,® = V4® = Vo® of the compensator field ® to
be forced to vanish, the remaining components Vo® = Eo (0y® — st?)) and Va® = Ea™M (0 ® — Qg\?))
seem to contain physical fermionic degrees of freedom. Indeed, the leading components of the scale connections
Q) and Qg‘D) were identified in [13] up to a constant factor with the dilatinos. As we have not yet fixed the
local scale invariance (guaranteed by the compensator field ®), those connections are not covariant and we take
instead the just mentioned covariant derivatives of the compensator field. That is, we define the dilatinos as

Aa = Va®lg_,, Aa=Va® 5o (5.351)
We are still completely missing the dilaton itself, whose appearance is a bit hidden. It does not show up
explicitely in the action. Although we did not manually include it via the Fradkin Tseytlin term, its physical
degrees of freedom should already be present in this setting.'® Usually one would suspect the dilatinos to be
components at first order in 8 of a scalar dilaton superfield instead of being the component of a (non-covariantly
transforming) compensator field. The idea to recover such a scalar superfield is to equate its spinorial derivative
with the covariant spinorial derivatives of the compensator field and let the algebra fix the missing bosonic
derivative. So let us simply “define” the scalar dilaton superfield @, via

Va®un) = Va®, Valin = Va® (5.352)

The different behaviour of the fields under scale transformations is reflected in the different action of the
covariant derivative. While for the dilaton it acts like a partial derivative Vo ® () = E M Om®pn), the action
on the compensator field — as mentioned already above — includes a shift V,® = EaM(8M<I>(ph) — QSV?)). of
course we have to make sure that this definition does not put additional restrictions on the already present
field content, in particular on the scale field strength. As ®(,;) is supposed to be a scalar field (where the

commutator of covariant derivatives does not contain any curvature terms), while ® is a compensator field

16Thanks to N. Berkovits for clarifying this issue. In [13, 59] the dilaton was added as an extra field via the Fradkin-Tseytlin
term Sppr = [ a’r<I>(ph> (with r being the worldsheet curvature) and then related to the already present field content via a

quantum consistency argument. Their result was EQMBMCD(ph) = 4Qq and E4 M(9M<I>(ph) = 414 . Because of the introduction of
our compensator field ®, their relations would modify in our case to

EaMBM(Cb(ph) + 4<I>) = 4Qq < —4Va® = Vau q)(ph)
Eg MBM(Q(ph) + 4<I>) 4(2& <~ 74%@@ = @d¢(ph)

Our definition (5.352) of the dilaton is thus consistent with this result, although the definitions differ by a factor —4. o
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(where the commutator of covariant derivatives contains the scale field strength), it is instructive to compare
the derivative commutators acting on them:

C c
Via¥aPn) )Qz ~ Taplgoq VoPen = —1asVeln)

Q
_ c (D) _ (D)
ViaYg|, = —TLapCly Ve - FLY = —F (5.353)
Similar equations hold for the hatted indices. Consistency then requires
c _ (D) c _ (D)
’Yaﬁch)(ph) = Faﬁ s ’yaﬁch)(ph) = Fd,@ (5354)

In contrast to V.® and ?Cé, the bosonic derivative V. ®(,) of the dilaton superfield is in general nonzero.
For the validity of the above ’definition’ it is important to observe that because of the constraints (5.571) the

equations (5.354) do not put an additional artificial restriction on F ég) and ﬁ:ig) Instead (5.354) consistently

completes (5.352) to a complete superspace derivative of the superfield and we can use the supervielbein to
switch to curved coordinates where the covariant derivative V;®(,,) on the scalar field coincides with the
partial derivative 0n;®(,p). Integrating it, we are just missing a constant, the dilaton zero mode (responsible
for the string-coupling in the loop-expansion). The dilaton superfield is thus well-defined by (5.352) up to an
integration constant.

5.15 Local SUSY-transformation of the fermionic fields

In order to make contact to generalized complex geometry, we are interested in the local supersymmetry trans-
formations of the fermionic fields, i.e. the gravitino and the dilatino. Note that the superdiffeomorphisms and
the local structure group transformations contain a huge number of auxiliary gauge degrees of freedom in the
ﬁ—expansion of the transformation parameters. The physical fields are recovered by choosing a gauge, in partic-
ular the so-called WZ-gauge. Remaining bosonic diffeomorphisms, local structure group transformations of the
bosonic manifold and local supersymmetry are then part of the stabilizer transformations of the chosen gauge.
In the appendix H on page 206, this procedure is carefully explained and the supergravity transformations are
derived for a general setting, following roughly [17].

5.15.1 Connection to choose

As mentioned above, in the appendix H on page 206 we describe the ususal procedure of choosing the Wess
Zumino gauge Ea”| = 0am® and Qaqa®| =0 (see (H.76) and (H.92)). This gauge fixing is possible with any
connection as long as it takes the same values (in the Lie algebra) as the gauge transformations (Remember, a
connection is a Lie algebra valued one form). However, the present case is a bit special in the following sense:
We have derived the supergravity constraints using the connection

Qura® 0 0
Qual = 0 Qua” 0 (5.355)
0 0 Qe

After that we have coupled the independent structure group transformations of the three blocks by a gauge
fixing s.t. Tag® = 75 and Tdﬁc = '72[3' The remaining gauge symmetry has to leave this gauge fixing
invariant which reduces the structure group to only one copy of the Lorentz group plus one scale group. The
above connection however does not leave the gauge fixing invariant (the covariant derivatives do not vanish
in general). In order to be consistent, we thus have to reformulate the equations in terms of a connection
which leaves 7 5 and ’yg 3 invariant. Possible choices are either the left mover connection Q3742 (defined by

Qupef and Vumves = VMV‘;B = 0) or the right-mover connection QuaB (defined by QMdB) or the average
connection

1 A 1
Q ra® 5 (2007 + Qara®) = Quia? + S A" 5.356
ova 5 \Mima + A MA~ + g AMA ( )
We will study the choices Q3,47 and & v 2. The first has the advantage that at least the left mover equations
stay simple while the second has the advantage that the symmetry between left and right movers is preserved.
Corresponding to the the first choice the connection part of the WZ gauge simply reads

Qm AB‘ =0/| (gaugel) (5.357)

In this gauge all the equations derived in appendix H on page 206 hold literally. The average connection be-

. . B _ l B . . . . B _
comes in this gauge (Q)MA =35AMma |, while the mixed connection can be written as Q4 4 ’Q:sz,s:o =
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diag (0,0, Aar ,5/::‘ ). Alternatively to gauge-I we could put O AB’ = O orequivalently £ aq AB‘ = f% AMAB|
which would be the same type of gauge with simply the role of hatted and unhatted variables interchanged.

However, a qualitatively different but likewise natural gauge fixing (preserving the symmetry in hatted and
unhatted variables) is

Qm AB’ —0/| (gauge II) (5.358)

In this gauge we have to replace in all equations of appendix H on page 206 the objects Qs 42, Vs, Tarn? and
Rarna® with (Q)MAB, <ZM’ g}MNA and (E)MNAB respectively. The mixed connection in this gauge becomes

sl gm0 = diag (—38ana" ~3Brta” $AMaP)|

5.15.2 Denoting the physical component fields

We will try (where possible) to use a small letter to denote the leading component of a superfield. One should
keep in mind that the notation for the component fields is a bit subtle, because the bosonic vielbein offers a
second useful possibility to change from flat to curved indices. We will also make use of this possibility for the
component fields, but one has to be careful. Defining for example h,nx = Hpnk| and then changing to flat
indices with the bosonic vielbein, is different from first changing to flat indices with the supervielbein and then
taking the leading component: hgp. # Hape|. In the following we will provide the definitions of the component
fields. If the same component field is given later with changed indices (flat to curved or vice verse), then this is
done via the bosonic vielbein.

A — ema 1/}mA
Ey?| = ( 0 SaA ) (5.359)
Qna®| = wma® (Qma®[=0) (5.360)
o = 6 Pu ()| = dpm () (5.361)
Gmn' = 82¢gmn = emaenb32¢77ab (5362)

The second line which defines the bosonic connection certainly has to be adjusted according to the superconnec-
tion on which the WZ-gauge is based. For gauge II the definition of the bosonic connection would thus change to

(Q)mAB‘ = &mAB, (&MAB = 0). In the fourth line we see that we can use the bosonic compensator field ¢

to switch from string frame (vanishing ¢) to the Einstein frame where ¢ should be gauge fixed to be proportional
to the dilaton. In the third line we have defined the bosonic dilaton ¢,;) as the leading component of the
dilaton superfield. In contrast to the compensator field, it contains a physical degree of freedom which cannot
be gauged away.!” )

For the definition of the leading component of the RR-bispinor P*? we first need a motivating observation.
Because of the definition of the dilaton superfield in (5.352) via the spinorial covariant derivative of the com-
pensator field, the latter can be replaced in (5.274),(5.273) by the spinorial derivative of the dilaton superfield

7There are some more words to say about the remaining scale invariance. The fact that the definition of the bosonic metric
includes the compensator field leads to a loss of the correspondance between scaling behaviour and flat index. Define alternatively

Gmnl = Gmn =em®en’Jap (= em®en’e®nap),  §7" =ea"ep"9"" (= eae e ™)

For a scale transformation d¢p = —¢, we have the following transformations of the other fields:

Sem® = em®, el = —peq™

8gay = —2pJab, 63%° =205 < Snap=06m""=0

8Gmn = 03" =0 < Ogmn = 20gmn, Og""

Sbmn = Shmnk = 0P(pn) =0

opoP = ppP

pm™ = Lopmt
Sda = —30da

While for the use of gmn and ggp the scaling behaviour is coupled to the flat indices, this is not the case for gmyn and n4,. Before
the scale invariance is not fixed, we thus should not use gmn or 14 to lower or raise indices.

Similar considerations hold for the covariant derivative. Denote for the moment the bosonic spacetime-connection with ~,,z".
We will use it only in this footnote and should not mix it up with an antisymmetrized product of three y-matrices. This spacetime
connection will not be defined as the leading component of T',,,;¢, but via

Vmer® =0 with Vi = Om £ voui® £+ wma®

which implies v, en® = kaN} En®|. The scaling part of the so defined bosonic covariant derivative acts on gmn and ggp
according to their indices but not on gmn and 7gp. o
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and those equations can be rewritten as
V(e 8emPiey =g = | V(e 5wmPpad) = (5.364)
This is the motivation to define the RR-fields as

peB = 800 73‘13‘ (5.365)

We had defined the dilatino already in the previous section in (5.351). Having now the scalar dilaton superfield
at hand, it is convenient to use (5.352) in order to write them as components of this superfield:

A= VAP (5.366)

The subtleties of having bosonic and superspace vielbein at the same time were mentioned already in the
beginning of this subsection. An example for the issues is provided by the inverse vielbein whose leading
components are given by

eam - aM
EsM| = ( 0 ﬁm ) (5.367)

where e, is the inverse of e,,* and the indices of the gravitino were converted via bosonic vielbein and fermionic
Kronecker delta respectively:

eaen = &° (5.368)
Y™ = "YUt a™M (5.369)
In the same way we define
bav = €a"ep " bmn (5370)
habc = eamebnecnhmnk (5371)
Gab = eamebngmn = Tab (5372)

As mentioned above, these expressions do in general not coincide with the leading components of the corre-
sponding superfields

Garl = € nay — 2e" V™ Gounr| + 0™ Gran| = (5.373)

= € nap — 203" Gus| — Va0 Gas| (5.374)

Bal = bab — 2¢a" VN Bun| + o™ Baan| = (5.375)

= bap — 203" Bys| — va*® Basl (5.376)

Hapel = have — 3¢ " ) Hpnxc| + 30 MPN ek Haann| — 0a™ N 10/ Hpaansc| = (5.377)
= hape = 3018 Hapje| = 301 0n® Hamig| — va™0" ¢ Hancl (5.378)

Note that for vanishing gravitino 1,,”* there is no difference between the usage of bosonic vielbein or su-
pervielbein to change from flat to curved indices. For non-vanishing gravitino the expressions already simplify
significantly, if we take into account the WZ-like gauge Baar| = Bmar| = 0 for the B-field and the supergravity
constraints of H-field and rank-two tensor G4p. The latter has G, as only nonvanishing component.

Gl = €N (5.379)
Bap| = bap (5.380)
Hapel = have + 262(lbe[amebn’)/c] aﬁﬂ/’mawnﬁ - 262¢e[amebn76] d[ai/;mdd;nﬁ (5.381)

Let us eventually see how the bosonic torsion
' =de® — e Aw.” (5.382)
is related to the leading component of the superspace torsion:

Tl = O Bn®| + Ep®| Qunte?| + Epn®| Quuic?| = (5.383)
= 8[men]a + e[ncwm]ca = tmna (5384)

Rewriting the superspace connection in terms of components with flat indices yields

tmn® = em®en? Tea®| + 2¢(n V) P Tep?| + 90 Tep”| (5.385)
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which implies
tea” = Tea®| + 2e()" b Teia®| + ec™ea " bmn” Tep| (5.386)
Similarly we have for the bosonic curvature
ro? = do,’ — W, A wL (5.387)
the following relations to the superspace curvature:

Rmnab‘ = rmnab (5388)
’I"Cdab = Rcdab| + 26[C|m1/}mc Rc‘d]ab| + ecmednwmc@bnp R(;Dab| (5.389)

For gauge II the above expressions again have to be understood in terms of the average connection. As we have
not yet plugged any torsion or curvature constraints into the equations, they are still valid for both gauges.

5.15.3 The gravitino transformation
5.15.3.1 General form

In the appendix, the general form of the gravitino transformation is given in equation (H.209), which we repeat
here for convenience:

6EwmA = e + wnee€ +2:%¢,,° TCbA| + 24, B TCBA‘ (5.390)
—_———

VomeA

where wpA® = Q48 ’ The connection appearing explicitely and implicitely (in the torsion) in this transfor-
mation has to be the same connection as the one on which the WZ gauge fixing condition was put. The above
equation can thus be understood literally if we choose gauge I (based on the left-mover connection 2, 4B ) while
for gauge II (based on the average connection (Q) 1A P) every implicit or explicit appearance of Q4P has to

be replaced by £2 42, We can continue the considerations for a while without deciding, whether we are in

gauge I or gauge II, although the notation will suggest that we are in gauge I (with connection Qp747).

For the transformation of the gravitino(s) given above, we still need additional information about the con-
nection wy,e**, which does not necessarily coincide with the Levi Civita connection. In bosonic manifolds, the
connection is completely determined by torsion and (non)metricity, if a metric is given. If no metric is given, one
can likewise demand the preservation of other structures or structure constants. In particular in 10-dimensional
superspace we do not have a non-degenerate superspace-metric. Only the bosonic block G, of the symmetric
rank two tensor G op has full rank. In order to determine the full superspace connection, one thus needs more
than the information about the covariant derivative of the symmetric rank two tensor. A natural candidate is
the covariant derivative of the gamma-matrices, the structure constants of the supersymmetry algebra. This
logic is carefully described in appendix G.

The derivation of (5.390) in the appendix did not assume any restrictions on the structure group, apart from
being blockdiagonal w.r.t. bosonic and fermionic indices. Right now, we make use of the fact that we have (for
gauge I as well as for gauge II) a connection with

Vites = Vars =0 (5.391)

which relates the three blocks of Q3,47 and restricts the structure group to local Lorentz and local scale
transformations. It is convenient to write

Yop 0
Yas = ( . 72g> (5.392)

Ouly in type ITA this matrix coincides with AT (where A is the intertwiner responsible for the Dirac-conjugate:
U = wfA).

We can then make use of equation (G.57) of appendix G, which relates the leading components of the
superspace connection, in particular the ones with fermionic structure group indices

wma® = Qna®|, (5.393)
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to the Levi Civita connection and a somewhat lengthy rest:

LC
ompt = WA

1 _ _ n
+46m“{26 2 Tuwie)] = €722 Toeta| = 2(Vip @] — ep* k) 010 — 260" N0 ¥n (Ve®)| +

+ (Qeake[bnnc]d - ebkecnnad) wkcwnD TC’Dd’ +
+e 2 (2%”1%0 Tewple)] — 266" ¥n€ Te(a)o)| + 2600 TC(ab)|>}7bczsA
1
=5 (¥m Ve®| +en Val| — 9no) 057 (5.394)

where the Levi Civita connection wfnLBC )A is the one with respect to the metric gimn = em®Napven’. We should

note that the Levi Civita connection is not a suitable connection for scale transformations, because it is only
Lorentz group valued. The terms Ox¢ with the partial derivative of the compensator field do not transform
covariantly under scale transformations and are the minimal extension of the Levi Civita connection to make it
a structure group valued connection. On the other hand, if one decides to simply fix ¢ to zero and thus ending
up only with Lorentz transformations, these terms disappear. The last line which is dilatation-valued can then
not any longer be seen as part of the connection.

Together with (5.390) the above expression for the connection determines the supergravity transformation
of the gravitino. In order to plug in the explicit constraints for the torsion, we have to decide in which gauge
we work.

5.15.3.2 In gaugel

In gauge I, we can take the above equations literally and plug in the corresponding torsion constraints (5.303)-
(5.305). We will need in addition that according to (5.381) the leading component of the H-field with flat coordi-
nates is related to the bosonic h-field via Hape| = habe+2€2€(a™ 5™ Ve) ap¥m *1n” —262‘1’6[@’”6(,"%] dézﬁmé‘@nﬁ.
The connection becomes

wmB” = Wy Tt g€ 3 hapee 2 + 2e " 0u b0 + dea" e Ngathr Y Vn’ Vs +

A woa L afsy
4 m
—26bk€cnnad¢3kw§n5’¥g3 - 6a"¢n77bc76)\6}7b66'4 +
+% (8m¢ - ¢m7/\~y) 5BA (5.395)

The constraints needed for the left-mover version of the transformation (5.390) are rather simple. In particular
all the components Tep® vanish. The local supersymmetry transformation of the left-mover gravitino turns
into

Bethm®™ = Ome™ + Wiy e +26V ey, P20 T80y, operd (5.396)
—_— ———

Vme™

If we want to fix the local scale invariance by setting the compensator field to zero, this gauge has to be respected
by the supersymmetry transformation which then has to be redefined according to (H.193) with a dilatation
with parameter e\, , which would add a term %(67)\7)%,10‘ to the above transformation.

For the right-mover transformation, the torsion constraints are more involved and we arrive at

5E¢md = améd'f‘wmﬁdé:y“r
N
Vme&
+ren (=32 hgpe — Ger ey @ B 4 Bery ey 1 ~ i &b, P
26m e abe €la €b ’Yc]aﬁwm n €la €b 'Yc]aﬁq;[}m " +
+eanwnﬁ’%0ﬁa)‘5 - eanqﬁnﬁw’bcﬁ S\S)éﬁq/bc’?d +
+%(¢mﬁ>\6 - qumﬁj\,@)éd +
+257€mbe2¢+8¢(ph),yb75p5d+

+ %(éR”yde:fs;\g — Ev’yde.y&)\a)?/;mﬁ’ydeﬁ& + %(éﬁj\q — E’Y/\—y)llimd (5.397)

Lorentz trafo dilatation

It is obvious that “gauge I” prefers the left-movers and destroys the left-right symmetry. The last two terms
correspond to a Lorentz and a scale transformation of the gravitino with gauge parameters (é"vde,:,‘s)\s —
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57'yde7‘s)\5) and (é"}\;, — 7)) respectively. They could be removed by redefining the local supersymmetry
transformation, but then they would show up for the left-mover. For the right-mover one can combine some
terms, if we plug the explicit expression of the connection into the above equation:

betbm® = VD 4 Lo (= Shapee™ + 20 Oy +
—2e"" €. Ya apthm “Un” + dea e, ’yc]aﬁwm DB — "B Yoo j\) Apbe &
+1 (Ot — PP Az)E% +
+2e7e,,b 2¢+8¢(M)% 5135&
+ 1740 4% 35 — € e A6 )PPy 3% + F(EV Ay — €A )™ (5.398)

Lorentz trafo dilatation

Comparing the first three lines with the left-mover connection (5.395), we recognize its hatted version, i.e. the
right-mover connection. The first three lines thus combine to V,,é%. We would have obtained the same result
without the last line if we had started with the right-mover super-connection instead of the left-mover one.
Using a different gauge thus corresponds to redefining the supersymmetry transformation by a local Lorentz
and scale transformation. Also this transformation needs to be modified in the case that ¢ is fixed to zero. The
stabilizing dilatation with parameter €Y\, would add the term %(£YA,)¥,,* and thus cancel the last term.

5.15.3.3 In gauge II

For gauge II, we need to replace the connection Q747 everywhere in the gravitino transformation (5.394) and
(5.390) by the average connection &MAB (with &mAB = (Q)mAB ). This implies that we also have to replace

the torsion components T4 5% by (Z} 45°. The constraints on the corresponding torsion £ 45° are collected in

(5.315)-(5.317). The explicit form of the transformation becomes quite lengthy if we split the fermionic index
A into the left and right-mover spinorial indices o and &. For that reason it is advantageous to try to rewrite
the constraints (5.315)-(5.317) with the combined fermionic indices. To this end we define

1 A=«
“Aa = { -1 forA=a& (5.399)
_ 0o P
D _ ( o7 ) (5.400)

In order to keep the left-right symmetry we should think of € 4) = —€(4). Remembering also the definition of
Yap in (5.392) and the relation of the spinorial derivative V 4@, of the dilaton superfield to the one of the
compensator (5.352), the torsion constraints (5.315)-(5.317) can be written as

T c _ (z)abc (z)ch -
AR = L T as”
1 J 1 D
— ( ) % $VBLEnO e BTV P0n ) (5.401)
ZVA(I)(ph 5 — 1 APV Yans
T o T .8€
T A = ( (; T anC ) =
>
_ (ngpcp + Ve PP) Yap D& —G(C) H de:YdeBC — Ya8DPCP
- H ~de C X CD (A E(B) C (5402)
€)1 Hoae V" AC + Yo 4D P A (Yae AP B VD Py + 2V AP (1) 08 )

In case that one has fixed the compensator superfield ® already to zero, the Lorentz part of the above torsion
differs according to (5.318)-(5.323) only in the following components:

c ©=0 c c c
£>.(ib) == (Z)Ab + %VA(p(ph)(sb = 7%"}% ADVD@(ph) (5403)
L @ 0
I595° L5+ 1Via@umis© =
= S o) aeta” T B Vo n + LV 4 @i (5.404)

For the components T 8% at 6 = 0 (appearing in (5.390)) we need to remember the dilatino-definition
VAq)(ph)’ = A4 (5.366) and for £>.Abc at 6 = 0 we need Hapel = hape + 2e2¢e[ameb"%] ABE(A)’Q/Jm'A'Q[JnB
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(5.381), P‘AB| = 80empAB (5.365), 79 4¢ = €279 4, Ay ap = €>®Fpap and ®| = ¢. Now we can plug
the constraints into (5.390) to arrive at:

Sotbm™ = Omet+ g)che?c +1e€ec)vaeie) PADYm Bem 1™ gt + 36U Pecr e Niedm ™ +

Tmeh
3 _ e

If we instead have ® = 0 and restrict to the Lorentz-part of the torsion, the last term in the first line has to
be replaced by %scz/;m's(e(c)e(g) + 1))\[053]'4 and the bosonic connection &ch by its Lorentz part (g)gfé"‘
In order to determine the connection from (5.394) we make use of further torsion constraints from (5.401) and

(5.402) and the constraint V ,® = 0. The result is

meA =
C a n n n c
= wfrfB JA + ienz {2€[b|kak¢n|c]a + (2eake[b Neld — ebkec nad) wkcw’anYéD - %ea erC’chcD)\D}’Yb BA
L (¢ — 20,m0) 057 (5.406)

where the second line is the Lorentz part wf,fl);A of the connection. Some terms in the gravitino transformation

can be further combined if we plug back this explicit expression for the connection into (5.405):

Gutpm A = VUCILA | 9204800 B by AD |
+i€ma{2€[b\k3k¢mc]a + U8 p (20 e nea — e e Naa + 3ecayedei e Nga) Un T +
—ea" U3 (1 + ecayee)) WweeTAD + %G(A)habc€_2¢}7chAEB +
~3{3 (14 o) ¥mCAc — Omo e

+ éE(A) (EBG(B)’ydeBD)\'D)il)mc’ydecA + iE(A) (EBE(B))\B)1/Jm'A (5.407)

Lorentz trafo dilatation

Note that we still have local structure group invariance, so that we can change the last terms by simply redefining
the supersymmetry transformation with a Lorentz transformation and a dilatation. However, we cannot remove
the terms for left- and rightmovers at the same time, because the corresponding gauge parameter differs in sign
due to the factor €(.4) which is +1 for « and —1 for a. Note also that if the compensator superfield ¢ was fixed
to zero already in the beginning, the dilatation part changes to %53 ABtm? and thus corresponds to
a redefinition of the supersymmetry transformation by a dilatation with parameter %53 Ap. This is the same
minimal modification which is necessary when we only fix the leading component ¢ to zero in the end and need
to stabilize it with a compensating dilatation according to according to (H.193). The above transformation can
be seen as the final result, but it is at this point instructive to introduce eventually the split of the collective
fermionic index into left and right-mover:

Sethm® = VD> 4 262¢+8¢<Ph>566mb’yb35p“8 +
+%€ma{2€[b|k8k¢n|5]a + e e nea (Un® Ve 5s) — 257 e aa (Ql;n‘si/;k;’ﬂ(;) +

_eanwnﬁy’)/bc'yé)\é + %habc672¢}7bcﬂagﬁ - % (wm7A7 - m¢) Ea +

+3(Praep® s — EP7ae 5 s bm V4% + 1(€PAs — E2X5) ™ (5.408)
Lorentz trafo dilatation
557,/;7”& = V%C)éd + 262¢+8¢<P")6’66mb7b ,55]35& +

+iema{2€[b|k8k¢mda +deatep " nea (7&”%’“%728) —2ey"ec ad (Vn V17 75s) +
—ea" P ey Ag — %habce_%}Wbcza%ﬂ - %{ijmﬁa - mqﬁ}éd +
+ 3(EPYae5° A5 — P vaes® Xa)hm VY5 + F(EP A5 — P Ag) U™ (5.409)

Lorentz trafo dilatation

Comparing these results with the ones obtained in “gauge I, i.e. with (5.398) for 0.0,,% and with (5.396)
together with the left-mover connection (5.395) for d.4,,, we recognize that they again differ just in the last
lines and are related by a local Lorentz and scale transformation.
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One can rewrite the result a bit using (D.166) whose graded version reads

Va8’ = Yarr 7™ + 875,750 + 2005%6,)° (5.410)
This leads to
%(EﬁWabﬁ6A5)¢m77abqa = é(wm'y%byé)\s)vabgasﬁ + (EB’ngwm’y)W’gé)\a +
+3(Wm A)e™ = 3P A) P ™ (5.411)

but is of no real advantage. However, the above gravitino transformation simplifies significantly, if we consider
it at ¢,,* = Aa = 0 which is of special interest when we want to consider a string vacuum with vanishing
vacuum expectation value of the fermionic fields. In addition we finally fix the bosonic compensator field ¢ to
zero and arrive at

6awmA|w:)\:0 = VEODA 4 e ayem hapec®y s + 2e520m Be,, by gpp P (5.412)

For convenience of the reader we present the result again with the split of the fermionic index:

65¢ma|w:)\:0 = V%C)aa + %emahabcgﬁ’}/bcﬁa + 268¢(Ph)éﬁ€mb’}/b,33pa6 (5413)
Sebm®| = VRO~ Femhasee 5% 4 26 0m Py s (5.414)

This differs from the form that one can find in the literature (e.g. [67]) by a redefinition 8¢,n) — d@n),

p"‘gs — E,)—lzp"‘5 and by a redefinition 3H,,nx — Hpmnk where the latter discrepancy was simply due to our
different definition of the wedge product.

5.15.4 The dilatino transformation
According to (5.366), the dilatinos are related to the dilaton superfield via
A = Va®un| =Y a®un (5.415)

Note that for the dilaton @, (in contrast to the compensator field ®) it does not make a difference with which
connection we act, because it is a scalar field. As described in the appendix, the covariant derivative of the
scalar field transforms like a vector under supergauge transformations which leads to the following simple local
supersymmetry transformation of the dilatino (see in the appendix on page 227):

5. 4 =€ VeVa®n (5.416)

For the second action of the covariant derivative the connection of course plays a role and V¢ has to be replaced

~2
by V. c in gauge II. The transformation can be rewritten in terms of the # component of the dilaton superfeld
according to H.239 on page 227 as

S da = —€Tea’| e Okdpn) + €€ Tea’| ™A — €€ Tea®| As +
+€C($CM(5_A’C 8M8;cq)(ph)| (5417)

In any case we need more information about constraints on the dilaton superfield, in order to write down the
explicit transformation. In footnote 28 on page 111 we have derived a constraint on VyV,® = vﬁ,va%h),
and in a similar way it should be possible to extract more information on VgV o ®(,5). Without such constraints
it is therefore not yet very useful to write down the transformation in both gauges. An interesting difference of
the two gauges, however, is the location of the dilatinos in the compensator superfield, which we will quickly
discuss:

(D)

Gauge I In gauge I we have in particular 2 ,”| = 0. The constraint V4® = 0 and the relation V,® =
Va®(pn) thus imply
0p® = 0 (5.418)
O® = 0uPun| =M (5.419)

The relation Vg ® = Va®pn (together with the above 9;®| = 0) and the constraint Va® = 0 (together with
the above 8,®| = 0,®(,n)|) on the other hand imply

QE?.D)‘ = - aﬁ‘b(ph)| = _5\/3, (5420)

QLD)‘ = 0uPm| =M (5.421)
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Only one of the dilatinos is thus part of the compensator field, while both are contained in Q_(,a) which should
in this gauge not be seen as scale part of the connection but as scale part of the difference tensor

D A(D D A(D
alP| = 07| - o] = o) (5.422)

Let me add one more step in this new version of the document. With the information that we already had in
the first arXiv version (namely the constraint V5Va® = —YiapP? Ewgﬁ of footnote 28), we can actually write
down explicitely at least half of the supersymmetry transformation of the dilatino. Simply start with (5.416)
and plug in everything we know

0cha = &7 V»yvaq)(ph)| + &7 v-”yVOL‘I)(ph)| =
= VA VaBn| — 87X g et pPoyd
bcda = &7 V.,qu)(ph)\ + &7 V:yvaq’(ph)‘ =

= g7 V@V7<I>(ph)‘ — 2e7 T.YdCVC‘I)( h) ‘ +<€A'AY V‘VA(b(ph)‘ =
= =&Yy peBempPiad 4 e (1 0% s + 100057) Mg + €7 V4 Va@in|

The second term of the last line would vanish for A = ¢ = 0. As mentioned before, we need some addi-
tional constraints on V4 Va®(,4) and V45 Va®(,p) to determine the missing second half of the transformations
respectively.

Gauge IT In gauge II the situation is fortunately more symmetric and we have &f) =0 and Vad =

% (VA<I> + @ACI)) = %VAé(ph). This (together with Va® = Vad = 0) implies

IM®| = Fim (5.423)
Qﬂ = u=- Q;m\ = Am - A (5.424)
AP = =-oP| = aP| = (5.425)

According to the first line both dilatinos are contained in the compensator superfield in this gauge. Their
local supersymmetry transformation could thus also be determined by the transformation of the compensator
superfield which is, however, of no advantage and gives the same result.

Again we add one more step with respect to the 1st arXiv version of this document, in order to obtain at
least half of the SUSY transformation in an explicit form. In the gauge II, (5.416) becomes for 4 = a

Sda = €7 gvvaq%,,h)‘ +&7 gﬁva%m‘ =
= ¢'V,V @(ph)’ — 167 A'yadvéq)(ph)’ + &7 V4Va (I)(ph)‘ - *57 Ao V5<I)(ph)‘ =
= TV Va®m | — (REA) A + 2 er ) 0O Ns) +
—&7*P Y4 ape® P pPEyL, + (Z(éﬁ\s,))\a + é(éﬁ%cﬁéj\éhbcaaka)

For A = ¢ = 0 the terms in the brackets disappear and we end up with the same expression as in gauge I. In
gauge II the transformation of Aa can be simply obtained by the unbroken left-right symmetry.

The transformation of the remaining fields in a general form (constraints not yet plugged into the equations)
can be found in the appendix after page 225.

5.A Constraints before the BI’s

Reduced structure group constraints The following equations are taken from (5.94)-(5.96), (5.152) or
(5.154) and (5.159)

Qua® = 79“’5 By QMam aaz B QMJ’:%Q D)5aP + QMW wex P (5.426)
Bt = 70"5 Py C;’m aaz B (B 7075 By 021a2 aaz B (5.427)
Sas® = 1502904 + SSuarba®r " aP +

+é§a1an‘““2aﬂ5aﬁ N %Salazblm“maﬁvmaﬁ (5.428)

Gun = Eun"GaEN’, Gab = € nap (5.429)
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The above equations (without the last one) are equivalent to

’Yal.”a‘L,BaQMaB — ’Yal.“aélfadQM&,é — 0 (5430)
yaigaOePY = qaas &0 B = (5.431)
Y% GagPP =yt &G, PP = (5.432)

As discussed in the appendix G on page 199, the spinorial left-mover connection Q7 induces via invariance of
the small gamma-matrices a whole superspace left-mover connection Q374 7. Likewise the spinorial rightmover-
connection €2 Mdﬁ induces a superspace right-mover connection QaaB. The constraints (5.430) then apply in
the same way for Qara® and Q4P

SRRl 0) ON 7‘11"'“4ﬁ6‘QMd3 =0 for any Q which is Lorentz plus scale (5.433)
Let us denote the difference one-form between the left-mover and the rightmover connection by
AT 0 0
Apa® = Qua® —Qua® = 0 Auma” 0 (5.434)
0 0 ApaP?

The above restrictions on the spinorial connections induces the same restrictions on the difference tensor
,Yal...a4ﬁaAca6:,Yal...a4[3dAcaﬁ = 0 (5435)
Further constraints on C and S and indirectly on P The constraints (5.184) and (5.185) on C and

(5.188) and (5.189) on S (all on page 65) can be regarded as defining equations. We have already shown in
section 5.12 that the two equations for S are equivalent up to Bianchi identities.

Co = g (5.436)

Ca¥7 = v, P (5.437)

Saa™ = Yo CaP? +2RaraP P (5.438)
VP8

S.aPY = *zaggf_i+23dvaﬁpﬁ (5.439)
Y PPy

Combining them with the reduced structure group constraints (5.430),(5.431) and (5.432), we obtain:
,yal...a4ﬁaya7)ﬁ;7 — 07 ,yal"'a‘ladyd’])'YB =0 (5440)

The reduced structure group of S instead doesn’t provide additional information. It is induced'® by the reduced
structure group property of C' and of the curvature R.

Constraints on A Due to (5.167)-(5.171), (5.226), (5.229) and the total antisymmetry of H, its only nonva-
nishing components are

Hape 7é 0 (in general) (5441)
2. 2
Hape = —3Taple = —3%ap/fac (5.442)
°o. 2 ..
Hape = 3Tapic = 374p (5.443)

The vanishing components are thus (written a bit redundantly)

Hoye = H,c=Hasc=0 (5.444)

18We have V j;y%192 aszas P = @Mq/‘“a? azaa aP = myalazag_w «f = 0 by definition, because Vs and the others are defined
via VM’YZQ = 0. Therefore we have for the mixed connection

VM:Ya1a2a3a4aB = AV ®- ,70102113&40‘5 + 4(Q _ Q)Mc[all:ye\azaa%]aﬁ
All terms on the righthand side are proportional to ~M] and therefore we have schematically
S o /W (—VC + 2RP) x —V (11 C) + (WO +2~+HRP =0
—— —_———— ——
=0 0(7[4]0:0 =0

The reduced structure group condition y41.S = 0 is thus a consequence of y4C =0 and y¥R=0. o«



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 90

Constraints on the torsion Let us now collect the information of the constraints (5.168)-(5.170), (5.180)-
(5.183) and (5.227),(5.230),(5.243). The only (a priori) nonvanishing components of the torsion T 4z are

. 1.

Talay = —§VA<I>GC¢1 (5.445)
. 3 . 3 A
Taple = —5Hape = Yaplic:  Tape= Hape = Vaplie (5.446)
Tac;y = Ta6|c7)6;y = ’Yidfdcpa;y7 T&c‘y = T¢3¢¢A5|c7)’y:s = ’YZ[;.]ECICP'YS (5447)
T, # 0 (in general) (5.448)

The remaining components all vanish, which can be written (again a bit redundantly) as
Tas® = Too® =Tad’ =Tad’ =0 (5.449)

The above constraints are constraints on the torsion IABC = (TABC,TAB”’,TABﬁ), which is based on the
mixed connection Q45 defined in (5.66) on page 50. When solving the Bianchi identities in the next local
appendix, the bosonic block 5/, of the connection will be chosen for convenience to sometimes coincide with
the left-mover connection Q7. (induced by Qy7?) or with the right mover connection (induced by 742
see appendix G on page 199). Not only for the bosonic block, but also for the fermionic blocks, information
on torsion based on left-or right-mover connection, instead of the mixed connection will be important later.
This information is in principle given by the difference-tensor A4 2, introduced above in (5.434). Complete
knowledge of the difference tensor, allows to calculate the corresponding torsion components via

Tap® —Tag® = Aup®© (5.450)

Due to the block diagonality of the connection and the difference tensor, some of these torsion components do
not contain the connection at all. If we denote by Q1,47 the connection which is induced by the bosonic block
of the mixed connection (i.e. it is block diagonal and Lorentz plus scale, but otherwise arbitrary), then we have

Tag® = Tas®=Tas" = (dE)as (5.451)
[ e LY = LY — Y N
Taarws” = Tuares =Teaws = ([Ewa s (5.452)
Tla,erv8y = Tiaarn8y = Tiaarvne” = (AE7"){0,a}6.8} (5.453)

The brackets {a, a}{b, 3} shall denote that the equation holds if the index A is either a or v (but not &), while
the index B is either b or 8 (but not 3).

Constraints on the curvature Induced by the restricted structure group constraints on the connection, we
have such constraints likewise for the curvature (see (5.68) on page 50 and (F.88),(F.90) and (F.92) on page
F.90. The curvature is blockdiagonal and each part decays into a scale part and a Lorentz part:

Rapc® = diag(Rap.”, Rapy’, Raps®) (5.454)
. . . . 1 .
Rape! = Fol4 RYSS FLY) = (5Rane (5.455)
1 D 1 L aia D 1
Rap,’ = iFgB)a,ﬁ + ZR&, ) o by 92,0, F) = —gRasy” (5.456)
I 1. 5 1. ; ) 1. .
Rapy? = §F(D)5dﬁ + ZR,(LxLB)albnbaz'YalmdB’ F,Z%) _ —gRAB‘yV (5.457)

with the scale field strength
FP) = g0 FO =g FP) = 40P (5.458)

The bosonic field strength is also obtained via the commutator of covariant derivatives acting on the compensator
field ®. Only the bosonic block €,/,° of the mixed connection Q,, 42 acts on ®, because ® is a compensator
for the transformation of G, (with bosonic indices):

FJ(V?]\)I = _Z[MvN](I) —Tyn Vi (5.459)
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Finallly we had a couple of holomorphicity (5.186),(5.187),(5.190),(5.191) and nilpotency constraints (5.228),(5.231)
on the curvature:

Rach = Ta5|c Cvd367 Rdcaﬁ = ng‘c C’aﬁ;s (5460)

—_— R , N——

7&sfac VaPoP ,Yd’fd‘lapﬂ‘s

ad’ e

Rana” 0,  Rasa®=0 (5.461)
ryg;l‘XQ RquOtQB 07 7@11a2 Rda1¢12 0 (5462)
V%2 Rigias” = 0, 721%2 Rsana” =0 (5.463)
R[a1a2a3]ﬂ 0, R[dlo@ag]ﬁ =0 (5.464)

Taking the trace of the first two curvature constraints gives further informations on dilatation-Field-strength
and Lorentz curvature

1 1.

Fo(zg) = 7§Ta¢s|czA P5d7 Fég) - 7§Td5‘cf Pa(s (5465)
D =0, F2=o0 (5.466)

The trace of the last curvature constraint we had provided already in (5.235):

(D) _ 2,0 « (D) 5L &
F5 = SRt EL ngW] (5.467)

5.B Bianchi identities for H

In this local appendix we will study explicitly all the Bianchi identities for the H-field. They are of the form

0 = VaHaaa+3T44Hcaa (5.468)

This is equivalent to dH = 0 and is independent of the connection, in particular independent of the precise form
of ). Sometimes it is thus convenient to calculate with the left-mover connection 0.0 = Q.0 (‘Ehe latter defined
via Vvgs = 0, see appendix G on page 199) and sometimes we set Q. = Q,° (defined via VM’y:;ﬁ =0).

Let us now go back to the Bianchi identity (5.468), where we make use of T4 5 instead of T4 or Ta5®
What we have just discussed is thus for the moment only relevant for the the third index being bosonic C' = ¢,
as we might choose T 43¢ = TapC to be either Tup¢ or Tagt.

Every index A of the Bianchi identity (5.468) can be either a, o or &. As all indices are antisymmetrized,
we can distinguish the cases by specifying how often each type of index appears. We denote in brackets first
the number of bosonic indices, then the number of unhatted fermionic indices and finally the number of hatted
fermionic indices:(#a,#a,#¢). The sum has to add up to four: #a+#a+#da& = 4. Each number isin {0,...,4}
which has five elements. If #a is 0 there are five possibilities left for #« which fixes #& =4-#&. If #a is 1, there
are four possibilities left for #a, and so on. Altogether there are 54443+ 2+ 1 = 15 distinct cases. However,
some of them are related by the symmetry between hatted and unhatted indices: (#a,#a,#&)—(#a,#&,# ).
This map has “fixed points” only for (#&,#a)e {(0,0),(1,1),(2,2)}. The effective number of equations we
have to calculate is thus % + 3 =9. In the following we go through all these cases.

o (0.4.0)aB~68 «—((0,0,4)&B58):°

!

0 = Vi Hgys) +3T(as Heye) = (5.469)
N——
=0 (5.226)
(5.226)
= T 5 H s = 5.470
(5.227) *[0‘:6‘ |’76] ( )
= =2l fai Vs e (5.471)

19Tt might be confusing that we obtain in (5.470) a constraint not only on some components of Hapc, but on a bilinear
combination of Hypc and ZABC. At first sight this seems to contradict the equivalence to dH = 0 which is clearly only a
constraint on H. However, H pc depends on H (with components Hysng) AND the vielbein. And the torsion component
Top° = (dE®)ap + Q,p° = (dE€)qp happens to depend only on the vielbein. The bilinear constraint thus boils down to
(dH)ap~s = 0, as it should be. o
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The last line can only reduce to the Fierz identity ’Y[dagﬂdh]a = 0 for?°

FaGanf = (F - G- fT)de % Gae X Tae (5.472)

The same is true for f: R X
(f- G- fT)ab x Gap (5.473)

That means, f and f are proportional to a Lorentz transformation. In other words, If nonzero, f and f are a
composition of a Lorentz transformation and a scaling.

Intermezzo on the fixing of two blocks of the structure group

The above result provides a possibility to relate the three (a priori independent) blocks of the structure group
on the tangent space of the supermanifold. We can thus use the local Lorentz transformation (acting only on
the unhatted spinor indices) and the local scale transformation (likewise acting only on the unhatted spinor
indices) to fix f to unity and likewise use the hatted transformations to fix f to unity as it was done in [13].
We will do the same, although — regarding the subtleties discussed below — one should keep in mind that other
kinds of gauge fixing might also have their advantages. The gauge fixing leads to the following constraints:

Tap® = Yapr  (fa"=00) (5.474)
Top" = Yoy (f"=00) (5.475)
2 4 2 20 _d _ 2.
= Haﬁc = _g/yaBGdc = _ge ’yaﬁndc = _gﬁYcaﬁ (5476)
2 2 2.
Hd[-}g = g 2ﬁGdc = §€2®Viﬁndc = g%dg (5477)

The constraints (5.474) and (5.475) have to be valid for any bosonic connection-block Qara?, in particular for
the left and right-mover connections: Tag® = Tag® = 755- Due to Ajpg” = A[aﬁ]c = 0, the constraints for

Taﬁc and Tdéc are constraints on the vielbein only. Having fixed the torsion components to the chiral gamma
matrices, the latter should remain invariant under the reduced structure group. If we act with an infinitesimal
transformation

Ly = 1™ + b with L) = — (P (5.478)

on the bosonic index, it has to be compensated by the appropriate actions on the fermionic indices (compare
to footnote 7 on page 49 for a derivation):

La? = %L(D)‘saﬁ + %Liﬁ)v“baﬁ (5.479)
LaP = SLP6P + 1L DyaP (5.480)
This guarantuees
Sy¥ap = Le"vap — 2L, =0 (5.481)
Sag = Le™ip—2Lia"7g, =0 (5.482)

20Let us make this somewhat fishy argument more precise and contract (5.471) with two chiral gamma matrices. In order to
be able to apply some equations of appendix D we will switch for a moment to ungraded summation conventions (or equivalently
perform a grading shift of the fermionic index). We also multiply the whole equation by —% for convenience:

! 5
0 = 3"/aa"/bw"/gamfd67|e,y)§fec =

S 8 5
= B g Vs Fa Fee + ANy Vs Fd Fee + VA ) Vo5 faC fee =

(D.137) c e e c
(D108) (16)* fa foe +2- (6§65 +’Yadﬁw> (51353 + 7 7,8) faCfee =
D.135

e (L6)2 fa” e + 32000 fu Fee 232Gy 0 15 Fu =

= 16-18Fa foe — 32Gap feSfC + 32fpC fae =
16 - 20 - facfbc - 32Gabfecfi

We can now read off fo,€fr. = (%fecfec)Gab or fnfT = %tr (fnfT) -n, which means simply that fab is proportional to a Lorentz
transformation. o
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It is important to realize that vg 5 and 'yg 5 are not covariantly constant with respect to the mixed connection
Q,, 47 that we have used so far. For the choice Q" = Qura® we get ZM'yfm £ 0, for Qara® = Qe we get

Vvas # 0 and for any other choice of €3, none of the y-matrices will be covariantly conserved in general.
Although all the equations written in terms of 2,, 47 remain of course formally valid, it is geometrically not
a suitable connection any longer. Parallel transport would destroy our gauge. As mentioned at the beginning
of section G on page 199, there are at least three natural choices for connections which leave the gamma
matrices invariant, for example Q3,47 (defined by the left-mover connection), Q3742 (defined by the rightmover

connection) and the average Q u 4B = %(QM 4B+ Qu AB). These will be in particular relevant for the

discussion of the WZ-gauge. For the further discussion of the Bianchi identities after this intermezzo, however,
we stick formally to Q,,45.

Type ITA/IIB Let us also give an important remark about the differences of type ITA and type IIB which
become important only at this point. In type IIB, the hatted index ¢ should be of the same chirality, while in type
IIA, @ should be of opposite chirality as ®. This statement makes only sense, when the Lorentz-transformations
of hatted and unhatted indeces are coupled, which was done only in the last steps above. Before, the distinction

between ITA and IIB was merely deciding whether g, a is numerically equal to v5,5 (IIB) or to v° a8 (IIA).

The transcription from the general equations (with hatted indices) to the case of type IIB is quite simple
and direct, as the index positions do not change. The conditions Vivag = 0 and VM'y:;B = 0 become

numerically the same and imply that Qp76” = Qe (same for the average connection). The hatted indices
thus indeed transform with the same chirality (w.r.t. Lorentz) and in addition with the same representation of
the scale transformation and the hats of the indices can simply be dropped.

For type ITA the situation is a bit more involved and requires some familiarity with the graded summation
convention discussed around page 7 in the first part of the thesis. A downstairs hatted index 4 should in ITA
in the end correspond to an upstairs unhatted index and vice verse. In a first step, we will still distinguish
it from the unhatted index and write it (just for this paragraph) as a tilded index & at opposite vertical
position. NW conventions for the hatted indices would then correspond to NE conventions for the tilded index.
We could stick to such mixed conventions (NW for the unhatted indices and NE for the tilded indices), but in
order to make a comparison of the tilded with the undecorated index, it is better to switch back to NW for the
tilded index as well. In principle this works as follows: spell out the NW summation conventions for the hatted
indices explicitely, replace the hatted by the tilded in opposite vertical position and write it again in terms of
the graded summation convention based on NW. We call this an index-position-shift. For example for the
action of the covariant derivative on a spinor with upper hatted index, this yields

Vu® = O™ + Qs ™YY = (5.483)
= oMY+ ) ()Y QT = (5.484)
Y
= Omtha— 3 (=) Tars = (5.485)
;~Y
= Ouva — sty (5.486)

In order to get back our usual index position for the connection (first fermionic index down, second up), we
finally define

Qus® = Qu%% (= s®) (5.487)

where the equalities should be understood as graded equalities in the sense of (1.29) on page 9. Upon this
identification, the action of the covariant derivative on a lower tilded index takes the usual form Vg =
Oma — Qe 5. Equation (5.487) also guarantees that the action of a covariant derivative on a lower hatted
index becomes the correct action on the corresponding upper tilded index, i.e. Vb = Optha — QMdﬁl/}:Y =
O™ + Q%Y = Vyp®. Now we are finally able to compare the connections Qy6° and Qu° and
see whether we can identify them like in type IIB. First note that like for the symmetry algebra generators
(5.479) and (5.480) themselves, the invariance conditions V755 = 0 and VMfy;B = 0 determine the spinorial

connections to be of the form (see again footnote 7 on page 49 for a derivation)

G = 3050+ 10t 459
Y U A ) (5.489)
The Kronecker delta in the second line will be rewritten upon the index-position shift as 5d[3 = 6(’2 = 53‘ = 755‘[3.

ab _ &

j 1s graded equal to v* 5 (according to (D.110) in the appendix),

abé&

Finally we make use of the facts that ~



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 94

(55‘[3 is graded equal to 535‘ and of the identification (5.487) to arrive at
Qua® = —10400: + 1000 1" (5.490)

Therefore the tilded indices transform in the same way under Lorentz, but with opposite sign under scale
transformations as the untilded indices. Only when the scale transformations are fixed, tilded and untilded
indices can be identified. This can be seen differently, by simply doing the identification and imposing Vg5 =

Vv ®? = 0 which implies via the Clifford algebra (! “77,‘:’2, = —n3*g, the graded version of (D.108) of
page 176) that V7% = 0. But scale transformation do not leave invariant the Minkowski metric. In summary,
keeping the (anyway auxiliary) scale transformations unfixed seems a bit artificial in type ITA and is more

natural in type IIB.
Let us now proceed with the discussion of the Bianchi identities for the H-field.

o (0.3.1)aB~é —((0,1,3)aB38):

0 = VioHg,s +3Lap " Heps =0 (due to (5.169), (5.171), and (5.226)) (5.491)

No new constraints from this one.

Remark: As in the above equation we will make use of all the constraints that we have derived from the
BRST invariance and nilpotency. As it is cumbersome to specify each time explicitely which constraint we have
used, we will not do it everywhere. Every constraint that we use without referring to its equation number will
be taken from (5.167)-(5.171) (page 63), (5.180)-(5.193) (page 65), (5.226)-(5.231) (page 70) and (5.243) on page
71. These are all the framed equations. However, to the newly gained constraints within this local appendix
(which will be framed as well) we will refer explicitely.

o (0.2.2)a376:

! c
0 = Niallgss) +3Ljap Hepe) = (5.492)
X TopHy5+ L5 Heap = (5.493)
o« vaplasfoe =15 Vapfae = (5.494)
= vl (faoe = fofac) =0 (5.495)

o (13.0)aByd —((1,0,3)aB4d):*!
!
0 = ViaHgya + 3L (op Holya) = (5.496)
3 3 .
= e pya+ 5 Tig1a Helya) = (5.497)
1 c T c
= _iy[a(’Yﬁ'y]ch) —T181d|cV |ya] = (5.498)
QMabiQMa,b c V.-G T — 4
= Ny | V@ - Gea + ald|c = (5.499)
~——
Tajldlc)— 3 Va® Gic=—Ta)c|a—Va® -Gac
= Vigy Laeld (5.500)
21Remember Ta(c|d) = —%va PG g = %EQM(QS\?) — OpP)Gegq. This can be reformulated as a condition on the vielbein only:
Tac\d = (dEe)Dthed + Q[ozc]eGed
_4,—/
=Qac]ld
- 1.
Taeldy = (dBE®)qGaye + EQa(dd) =
= (dEe)a(ch)e + %Qt(xD>ch
1
= (dE)a(c\d) = (dEe)a(ch)e = _5Ea Iwan) Gea

Reparametrizing EyA = e‘bEMA, this can be rewritten as

1 <
(dB)a(clay = (E[a\MaM‘? e®Gga — Eeq)EaMaM‘I’ ch) =0 or Ty(lay =0

in accordance with [13]. ©
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In the fourth line we made the choice of {257,? in such a way that ya'yfh = 0. In the following calculations we
will use a lot of gamma-matrix identities from appendix D where we did not use graded conventions. We will
therefore temporarily switch to non-graded conventions (or equivalently perform a grading shift of the fermionic
indices).

As a first step to solve the constraint (5.500), let us contract it with 427

! afl ¢ af . c ap ¢
0 = ’Y(Iﬁf}/aﬁT’Yc‘ld —+ Ya BFY’YOLTBCId + ’Yaﬁ’YB»YTadd = (550]‘)
D.108),(D.110 .
( ) ) 16T g1 + 2 (5;55 + ,ycavﬁ> Tpeja = (5.502)
= 97T 01 = Ya s Tpea (5.503)

Although the contraction with 72‘5 looks like a projection, the new equation (5.503) still contains all the informa-
tion of (5.500) (in the nongraded version, the graded antisymmetrization becomes an ordinary symmetrization):

(5.503) 1

c c e J
YigyLayela = 9B Ye o) Tocla = (5.504)
(D.108),(D.110) 1 . .
) S (%mﬁ K 565@)) Theq = (5.505)
(D.160) 1
= gl (5.506)

Comparing the first and the last line leads back to (5.500). This was just to argue that we can forget now
about (5.500), and take (5.503) as new starting point. Remember that we have already a constraint for the
symmetrized part (in ¢ and d) of T,.jq and let let us in addition introduce a temporary notation for the yet
unknown antisymmetrized part:

1 .
Ta(c\d) = —iva@ch, Ta[c\d] =Thed (5.507)
Now we split (5.503) into its symmetric and its antisymmetric part in a and d (the symmetric part is multiplied
by (-2) for convenience):?2
QV,Y(I)Gad = 2’5/6(ahﬁTﬂc‘d) = ’S/C@.YﬁTﬁcd + ’Nycd.yﬁTﬁca (5508)

. 3 . 1.
Thad = Faler T5%a — §’Yad'yﬁvﬁ¢) (5.509)

In order to solve this kind of equations, it always helps to take traces (we will use the trace of (5.508) soon)
and to contract with several combinations of y-matrices. Here it turns out to be useful to contract (5.508) with
4% 7. The antisymmetrization in the bosonic indices of the result will produce a term similar to the one in
(5.509), s.th. the equations can then be combined. But let us first perform the contraction. We will use the

following gamma-matrix identities (see (D.117) on page 177):

Pea = 087 e =001 e — 009 0 + 6500 — 62001 = 87", + 95,1 (5.510)
B30 = APeq 4+ 00 + 8940 — 68y — 6%4b g + 64601 — 52851 (5.511)

=N

The 4 part in the second equation could be removed by taking a symmetrization. This, however, would in
the end only lead back to (5.508). Instead, note that the same 4 is produced in the product v4°y.%*. And this

combination is more useful, as we can then apply fycaaﬁTﬁCa (5.508) 45V ,®:
92" = Y%ea+ 88y — 857 e + GP e + Gead™ — 85081 + GeaG™ 1L (5.512)
= 7%%q = a7 + 2057 e — 65 e — 659° 0 — GP4e — GeaA" + (20568 — 6205 — GeaG™™) 15.513)

22The tilde on gamma matrices or antisymmetriced products between them just takes into account the correct scaling weight:
'ygﬁ is invariant under scale transformations, if the transformations acting on bosonic and fermionic indices are coupled as in
(5.478)-(5.480), i.e. if the fermionic scale transformation has an extra factor % The bosonic metric Ggp = e2®n4; and its inverse
G = ¢=2%pab ysed to lower and raise bosonic flat indices, however, are not scale invariant. Lowering an index of the gamma-
matrix yields Y408 = Gab’ygﬁ = 2%, ag- The reason for the tilde is thus only to indicate that the gamma matrix is not the
numerical one but has a Weyl factor in it which corresponds to the weight indicated by the index structure. Similarly we have

~aba6 = 672<I>

v ’Yabaﬂ ¢
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The contraction of (5.508) with 4°,” then yields (using (5.510), (5.513) and 7.%,”T3¢,

994"V, ® =
!

= (87Pea” +96208) Ts¢q +

(5.508)

96

(5.514)

+ (=" + 2057 e — 6577 — 029° 4 — G Fae — Gea¥™ + (20368 — 6265 — GeaG™) 1), PT5¢0 =(5.515)

= g’ybcaﬁTﬁcd + 9Tabd +
_457dbaﬂvﬁq) + Q’chaBTﬂcd + 4562Vaq) - ’de Taa +
~—~
=0
_:chaﬂTﬂCb - :}/baaﬁTﬁda + 2Tabd - 63 Toecc - .(ydb =
—~—
=0
= 459°3, 7V, ® + 4505V, @ + 127,04 +
+10’7bcaﬁTﬁcd + ’?bcaﬁTﬁcd - ﬁ/dc aﬁT,@Cb

Putting everything on one side and taking the antisymmetric part (in b,d) of this equation leads to

!

0 = 54940 V4@ + 12T 0pa + 1290 T5%)a) =
‘ : : 1
G2 54500V @ + 12T + 12 <9Tabd + z%da"vﬂ<1>>
) 1
= Tapa = —i%doﬂ%@

(5.516)

(5.517)

(5.518)

(5.519)

(5.520)

Let us switch back to the graded conventions. After this somewhat tedious calculation, we only need to combine
this antisymmetric part (Tq[p|q) = Tabd) With the symmetric one Tq b0y = —%VQCIDde, in order to end up with

the final result for the Bianchi identity (5.500)

1 1
Tgca = —§Vﬁ@56a — 5%”3"V7<I>

Via the left-right symmetry, we get correspondingly

™ooa 1 a
Tp." = —5 V00" -

o (12.1)aB3d —((1.1.2)aB~d):

! E
0 = ViaHpya +3Lap Helydg =

1 1. . 1.
= ZY&,HQ,Bd + §TaﬁsHé~7d + §T~ydeHea,3 =

1 1.
= —62” (’chxﬁfcd) - gTﬁde’Ygﬁfce =

fee=Gee (5.474) 1
~ —3%a (V4 ®Ged + Tyalc)

Q=0 3
Ty (5.168)
A —0, Vy0=0

Likewise we have

Tap® =0, V, =0

These results can also be used to determine V,®:
@[a ﬁﬁ]@ = — Aagcﬁc‘b — F‘iD) =
——

=0

=Vas =0 =0 =0 (5.466)

The above equation and its hatted counterpart imply

V. ®=V. =0

(5.521)

(5.522)

(5.523)

(5.524)
(5.525)

(5.526)

(5.527)

(5.528)

(5.529)
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We can play this game once more and consider the commutator

ViaVp® = —Tuy Ved — F) = (5.530)
———
=0
= Ty Ve® T Vb — Top? Vid— B (5.531)
~—~ —~— ——
=0 =0 =bas PV

Due to (5.465) we have Fc(xf) = —%%MY:,PM and therefore

Vs P =8PV ;0 (5.532)
The hatted version of this equation reads
YV, P = 8PPV 50 (5.533)
o (2.2.0)abaB —((2,0.2)abaB):??
!
0 = YiHiap + 3L Hejap = (5.534)
1 1. 1.
= §Z[QHb]aﬁ + §Tabchaﬁ + §TQBCHcab = (5535)
1 2 . 1 2., .
= oV (= 3%ap o) — 57343 <3Tab fac = fa Hcab) = (5.536)
=Gl 1 3
Tz oy o (Tuja — 5 Haab +2 Via® Gia) (5.537)
Q=0Q 3 2 ——
0 (5.529)
Using {575575° = 04 we get
3
Tab\d = §Habd (5538)
Likewise we have?*
. 3
Tapja = —5Haba (5.539)

Intermezzo on the difference tensor

We have finally obtained the last ingredient to calculate the explicit form of the difference tensor (5.434) between
the connections (2 and (2. The difference tensor is block-diagonal like the connections and we have in particular
Apag)® = 0. Using Ajap)® = Tap® — Tap® with Type = 3Hape, Tapje = —5Hape and Tapje = Tape = 0, we
can give a simple expression for Aj4p°. At the same time we have information about the difference tensor

23Combinatorically [ab][c3] arises 4 times in all 24 possibilities= % =1 o

24As a consitency check, we compute the BI’s for the index-combination ab&/3 explicitely with T (not T):

= C _
0 = ViaHyap) + 3TMab|~ Hejap) =

1 1 1
= 5v[aHb]&,@ + 5TabCHCdB + ET&@CHcab =

1 2 A 1 2 ~ .
= Vil (375 5 ep) + 572,@ (gTabCfdc + fchcab> =

2 3 ap
Fa=Gey 1 1 3
b=re gv[a\(ygéGc\b]) + 572[3 (Tab\d + 5Hdab) =

1 1, 3
= 5V[a\(vg@)6‘c|b] +3%5 (Tab\d + 5 Haay + 2Va‘I>Gb]d> =

1 3
= 572[3 <Tab\d+ inab —Alq1d|b] ) =
———

+Aab]|d =280 Gpla

1 A 3
= 5’72[3 (Tab\dJr ngab) ¢
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when it is symmetrized in its last two (bosonic) indices: Age) = (Q(AD) — Q(AD))GbC = (VA<I> — @ACI)) G with
Va® = @OL(I) =V,® = @GCID = 0. We can thus write down explicitely the antisymmetrized (in the first two
indices) and the symmetrized (in the last two indices) difference tensor between left and right-mover connection

—3Hu" —Tap® T3¢

Aap© = — b’ 0 0 (5.540)
Tap® 0 0
Auply = 0, Aaple) = Va®Gre, Aaple) = —VaPGic (5.541)

As A45% is block diagonal in the last two indices, we know that A 4,¢ = 2A45°.For Agp® we can use (see
(G.31))

Aaple = Alabjle T Aleallp = Appella + Da(els) T Db(cla) = De(bla) (5.542)
The difference tensor with bosonic structure group indices is thus completely determined to be
AAbc : Aab\c = _3Habc (5543)
Aab\c = _2Tab\c (5.5:21) va(prc + ’?bcaav(?@ (5544)
Aspe = 2Tape R % Te %ca‘g@g@ (5.545)

This is consistent with (5.541) as well as with the left-right symmetry, if one defines A = —A. The components
of the difference tensor with fermionic group indices are induced by the ones with bosonic group indices via
A ’Y_EA(D)(; 'V—|—1A sbe ¥ A A'?_EA(D)(;:‘V_'_EA sbe A (5.546)
ABT =554 98 4 DAY B A T 954 9B 12ApIT B .
Remember that this is due to the fact that both connections Qx4 F and 0 wmal are defined to leave the chiral
~v-matrices invariant. The components with fermionic group indices are accordingly

3 ~be =~ 3 ~bc A
AABA : Aeg? = 4 abC'Vb g7 ) Aa@7 = _ZHabc,yb f‘)‘y (5.547)
1 1 . 1. 1 s .
Aap? = 3Va®ds” + e’ Va®r" 7, AgsT = —5Va®s7 — 2 mea’Vy"516.548)
~ le vl sy gabe 5_1 5.1 be %
Ad,ﬁ = —§qu)(5g - Z’chd VS(I)’Y B Aaﬁ = §vaq)6[3 + ZVbca V5‘I)’7 B8 (5549)

We will use this difference tensor from now on frequently to change from one connection to another. Let us
take immediate advantage of the difference tensor to rewrite some constraints on the curvature with the help
of equation (193) of the appendix.

R:y:,dﬁ = Raya/aﬁ +@A,A:Ydﬁ + ’Y:Y:YCAC&B + A:ydaA;ysﬁ = (5.550)
——

1. = A 1 5 & ab 3 c ~ab 3
= —ivﬁv—y‘ﬁaﬁ + Z'Yab‘yav‘yv{sq)'y PaP — 173y Hear baP +

1. 5 1 A 3 1 5 1 A ~
+ (_QV‘?(I)(S&& - 4’yab»fv,::¢>'y“bd5> (—QVA/‘I)(SSﬁ - 47¢dﬁ¢V¢@7Cdsﬁ) = (5.551)
lg ¢ B 1 5y ab B 3 c ~ab B
= —3VaVaPia” + 17a5 V4 Vs®ra — 2955 Heat Y " +
1 By 2o ab & _cd [
+E(7ab‘y Ve®)(Yeas?Vp®)7a 7" (5.552)

In order to simplify the last term, let us suppress the fermionic indices for a moment. The last line then reads
3 ((%N‘@)(%N@) - (%N(I’)(%Né)) 7*%y°¢. Now we can use

’}’ab’}/Cd — ,yabcd + nbc,yad + nad,ybc _ nac,ybd _ nbd,yac + nbcnad _ nacnbd (5553)

Due to the contraction with (7eqV®) (74, V®) — (ab < cd), the y¥-term and the v%-term (nlen@4) disappear.
We are left with

1 3 . 1 . .
= (1 V®)(7eaV®) — (ab = cd) ) "7 = = (3 VO (7eaV @)y (5.554)
32 4
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The curvature component in question and its hatted version thus become

o 1. . .

Ry36P = —§Vﬁvg,<1>5dﬁ +

(’Yad‘yé@fy@[;@ + (Yabs = Ve®)n*(7ea4 V@) — 3%»*76Hcad6_2<b) v9&P | (5.555)

Ryva? = —§V7v7¢>5aﬁ +
1

+1 (Yadr’ Vo V@ + (Yaby Ve ®)n* (Yedy? V@) + 374y “Heage >?) 770 P (5.556)

We can compare this result to the nilpotency constraint R[.,(;a]ﬁ = O or at least to its trace Fo(z) = %R,(YL[; m": Scal-

ing and Lorentz component of (5.556) are

FiP) = -V,V,® (5.557)
1 - a
RBP = 1(%dwav.,w«b+(%bfv,;.q:)nbcmcdﬂ,%’vq,é)+37§7dee 22) yod B (5.558)
with trace
L) g L wd . 5 L wi B s
Rﬂ“/a = g'y o' Vadp V—YVJQ)—g’}/ o' Yad~ VﬁVJq)+
1 3 _
+7(aby Ve )00 (aca? Vo @) + 17" 0 V5 Heae ™" (5.559)

Now we use 70 Yaer® = 87%a? + 962642 (D.118) and Y% Y Vaq~P = —905,° (D.120) to arrive at
Yy c Y

Ry.P = %’Omva@ — évada%dy“vgva@ +
+27% 45V PY4ca Vo @ +
+Zvc"davH¢ade*2q’ (5.560)
The antisymmetric part (in o, 7) is
Bgoa” = _Tgovhva@ - éVad[aﬁ%dmaV[ﬁVa@ =
= DRD - e FR) (5.561)

Now we expand the scaling curvature in y-matrices. Because of the graded antisymmetry, only [ and ~[!
appear: Fég) = FC(D)W(%B —&—Fc(f,),cswgb'“cs. In 'y“da,‘sFég) we then need the following multiplications of y-matrices
(D.115):

%8s = 5E +n"s — " Yae = (5.562)

= g ol (5.563)

,yad’yts,ygb--% _ 7’321361-»-05 + 5nd[01|,yz|§2~~05] _ 5na[01|7‘j’|ﬁc2~~05] _ 20na[c1\nd|027§%~05] _ (5.564)
— ,ygt’lycy»-% _ 577d[cll7;|§2m65] + 577a[01|72|§2m65] _ 20na[c1\nd|cg,y;3’7---65] (5.565)

For the expression 'yad[av@y“dm‘sFég) in (5.561), we can make use of (D.121)-(D.123) and of the fact that

B _ .1
Vo) = Vo) = O

Vadla PV = T2 Vadia T Vgl = 9y (5.566)
Wad[a\ﬁvgﬁ]l”'% = 207557, %d[a\ﬂn“[cl"vg‘ﬁf]”%] =55 (5.567)
Yadia Pt Ileoqginesl = g (5.568)
The equation (*) thus becomes
Rype® = %nyg) + %FC(D)WSW - %OFC(R).CSV&&;“C"’ = (5.569)
= §F§Z>+%F£P2cnf,;”% (5.570)
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From our nilpotency constraint (5.235) we can now deduce that Fc(f.?cs = 0 or equivalently that

1P W Fo =0, 8P L ED =0 (5.571)
o (2.1.1)abaf3:
L N c L
0 = NgHyg T 30w Hejag = (5.572)
c c
= _I[a|a HC\b]B _I[b‘,@ HC|a]a = (5573)
fae=Gac 2~ O~ ~ 2~ 3~
=" 3 alas P Ny 45 T 31887 Valva = (5.574)
2. ~ 56 56
= g’)/[a|a67‘b] 53 (*,P +P ) =0 (5575)
e (3,1.0)abcd <((3,0,1)abcd):
! E
0 = ViHygs+ 3L Hys = (5.576)
1o 3. & 3, &
= — VéHave + 5Liar) " Hpjgs — 5150 HEjpe = (5.577)
Q=0 1 3. 3 .
=~y VeHave = 5T " H e — 5 Ti10) Help) = (5.578)
far=Ga 1 P 3 .
= _Zv[sHabc - T[ab| Vces — 5 T[;[a| He|bc] (5.579)
——
=0(5.527)
VsHae = —4T0ab*ge5 (5.580)
likewise VsHope = AT(up*F|cles (5.581)
e (4,0,0)abcd :
R 7 e
0= v[a-H—bcd] + 3T[ab\ He\cd] (5582)
5.C The Bianchi identities for the torsion
The Bianchi identity for the torsion reads
0= VATan? +2T 4 s Tea” — Rasa® (5.583)

Again, depending on what is more convenient, the bosonic part of the connection €,° will be chosen to be either
Q,° or Q,°. Due to proposition 7 on page 193, both are equivalent. The index A can again be either a, a or
&. For fixed upper index the numbers of their appearance as lower index are #a, #a, #& € {0,1,2,3}. In
analogy to the Bianchi identities for H, we have for each fixed upper index 4 + 3 + 2 + 1 = 10 possibilities and
thus altogether 30 possibilities. The symmetry between hatted and unhatted indices relates the 10 with upper
index & to the ten with upper index §. The remaining 10 have again an internal symmetry with fixed points
(#a, #a&) € {(0,0),(1,1)}, so that there remain effectively 1%-2 4+ 2 = 6 of those 10. Altogether we have thus
effectively 16 equations to study. A
o (deltal0,3.0)np,’ < ((hdeltal0,0.3) 5. %).dim1:

: 4 E 6 5
0 = ViaTpy" +2Ljap| Tel)” — Rlapy” = (5.584)

= 2o Loy’ ~Riap’ (5.585)
——
=0
Riapy® = 0 (5.586)
N 5 .
R’ = 0 (5.587)
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This is a confirmation of the nilpotency constraint (5.228) that we had derived earlier. Taking the trace yields

0 = Ragy” +2Ryag” = (5.588)
= —9F( + 2R\ (5.589)
F(D) 2 QR(L) ¥ 5.590
L E R (5590
and
5(D) L 2 AL 4
Fo = SR (5.591)

o (delta]0.2.1)np5° —((hdeltal0,1.2), 5. %)dim]:

!
0 = ViaTpsy)’ +2Map T’ — Ry’ = (5.592)
2 2
= gTaﬁ,eTe;,‘s - gR.A,[am‘s = (5.593)
Je©=6¢ 2 ex 55 2 5
= 378955 — 3 R5lap) (5.594)
Rijap’ = —7ap.45P% (5.595)
R ap° Vo AersP? (5.596)

Again taking the trace gives additional information on the Dilatation part

Ryas® = Rysa’ = 27a5°P*°4,55 (5.597)
o _loo  pws _ e85~

80— 5Fha B = 2728 P54 (5.598)
o) 4 . ss- 2 L) s

Fia' = = 17%asP Yo sy — 178560 (5.599)
D) 4 o ss. 2 505

Fia =~ 1777 Gesy — -1 5, (5.600)

o (delta]0.1.2),5.% < ((hdelta]0.2.1)aa,%)dim1:

: 3 E [ 3

0 = ViaTpy° + 2L Tem” — Riapy” = (5.601)
2 1
= 375y Tea’ =5 Bsa” =0 (5.602)
37 By \;,O, 2 ﬁl)a
o (delta0.0,3),5.% —((hdelta|0.3.0)np,)dim1:

! 5 E 5 5

0 = ViaTps" +2Lap Tep® = Riapy)” = (5.603)
=0
= Wiap Ty’ = (5.604)
- 5 Fier
= ey TepsP? = 0 (5.605)
o (delta|1.2,0)0a." < ((hdelta]1.0,2), 5, 5)dim3;
|
0 = ViaTpy’ + 2L 1ap " Trig” — Riapa® = (5.606)
2 4 2
= gzaﬁETEca + gIC[a\E TEW]J _ch[aﬁ]a = (5607)
——
=0
2

2
= 3% e’ = S Refap)’ (5.608)
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Rc[aﬁ]a = ’VaﬁeTec(s (5609)
Rysp’ = Vap e (5.610)
Taking the trace yields
0 = Rca56 - R05a5 - 270456Tec6 = (5.611)
17
= F<D> RS 2 5T, 0 (5.612)
2 4
(D) _ (L) s
FLD =~ 25— TrasTee’ (5.613)
(D) 2pws A e g5
F..l=—-——=R Tec .614
17R056¢ 17 7as (5.614)
o (deltal1,1,1) 5 % —((hdelta1,1,1)55.0)dim3:?
L 8 _E 5 _ L6 _
0 = ViuTpg" +2Lp Telg” — Blapg” = (5.615)
=0 1 6§ 27 eqm 6, 24 s_ 1 5
=0 IV, T30 ATt T 45T T3 — S Ryl = (5.616)
3= B 3 ép 3\:0_, 8 3 B
:},656736[5 =0 - ,Ycﬂéc 56
1 - 5 -
= 3V (7.557%) — $.ps¥aP” = (5.617)
1 _ N
- oV (.0) P* = (5.618)
= 29.55Va®P? =0 (5.619)
o (delta|1,0,2),5.% < ((hdelta]1.2,0)na.5)dim3;
L 8 . E _
0 = ViaTsy" +2L,p TEI] R[aﬂc] (5.620)
2 s | 27 s 4s . B
= gz[d Tg. 3Taﬂ Tee +§Tc[a| T,5° = (5.621)
~rﬁ‘]'v735ﬁ
= v 5, 55 P v Po T, 7 P98 = 5.622
-3 Ve P+ 3Via %ﬁh+37 ec +3 [l Ve 367" = (5.622)
AW 2
= <3 (V @6 +Ta\(' )Pé‘y + V ‘PJ 5 )’Y \,8] + 37 /I’ec(s - (5623)
= 2 (2 PO 4 Y PG 200 T8 5.624
- g - [&le|c Y& ec)’VIB],Y + 3’}0 ec ( . )
Alalele
Contracting the above with y®8 (using %&nyz;é = —5 Bﬂyﬁa = -2 ﬂm = —1661), we get
T..° L (9,0 P3G — 2T a0 PP &8 — 5.625
ec TG <7[0"¢‘ cd — [&]d:c )’ylﬁ](;’ye - ( . )
1 5 .
- = (2Tad| P VéP“ch) 5P (5.626)

25

Yrdeas }Q:Q

zMﬁ/Caﬁ }Q:Q

And equivalently
YaVeap )Q:Q

ZM’?C&@)Q:Q

2;}‘/1: &B

2'Yigvlwq>Gdc =2%agVMm®
2% agVu® — A Fgap =
ves [2VMPGyc —

d S (L)
YaB [(VM(I) + VM‘I)) Gac — A]ch]

AMc|d} =

Vud

L)

22 (Ve 4 Vue) Gut AEL] o
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1 . R . .
5 L (or 586 _ o s d &b

L = 1o (2anP™ = LaPGea) v (5.627)

.2 1 5 5

T.o = (zTad|C7>55 _ yap&sacd) g e? (5.628)

The product of y-matrices can be further expanded.

1 5 ~ N
Tecé — 16 (2Tad| 7355 z&P(sach) ((SZ(%OL +’7de[§a) _ (5629)
1 A I A 5 s ~
= T (2T 401 PP — Vg PP%Gee + 2T a7, 5% P2 — Vo P24 5%) (5.630)
——

—18T}, |, (5.503)

The result should be antisymmetric in e and c¢. Remember now

VaP?eGeo = 8PPV 0G,, = —16PP Ty, (5.631)
and we get
1 . X . L
LS = & (—16T36 P 167355135(“ — V. P%5,, 304) - (5.632)
_ 1 86 65~ &
= 1 (1675, PP — ¥ P75, 5%) (5.633)
Using T&[e\c] = —%vecsﬁﬁxyfb leads to
T = — (v P31 80,0P%) 5,57 (5.634)
s 1 5 N
b= (2, P% +8V,0P%) 5,057 (5.635)
Instead of solving for the torsion component, we can also solve for the covariant derivative of the RR-field:
- 1. L
ELP&S s = T — 5%‘1’7"”%0 i (5.636)

Together with (5.532) and the fact that Co®¥ = VPPV is structure group valued in e and 3 (as well as ),
we get

N 1 o P 1. 5

yd’P‘lﬁ = —§PQ¢V¢,<I> . 5&ﬁ + <ng §V P ¢'~Yfg¢ ) 'Yfgcxﬁ (5-637)
. 1 N PN N

VPP = = PPV,0 - 6a” + (nga - 2v¢¢>7>¢“&fg¢‘”> 719aP (5.638)

Due to the algebra of covariant derivatives, the above equations also contain informations on the spacetime
derivative of P8, Tt is thus of interest to study the commutator V, V. ]Pﬁa

& & & & &
_Vwazdfpﬁ =+ E’yaéﬁp + E.-Ya[; Pﬁ = y['yza]’Pﬁ =
=0

1 . 1,
= Y PPV 0 — SPOAV L Vs® - dja)” +

Al 1 & x ~bc Al 1 A ~be
+Viy <Tbca - 2V5¢P€a7bcsé) 71a1® + (Tbca - 2V5<I>P€a“/bcsé> Vi 7 0a0?) (5.639)
In particular, we obtain a Dirac-like operator acting on the first index of PoB if we contract the indices o and
3:
_’ysaz(jpad + R‘yatsa rpéd _
——
—4F () =4V, V5 B+455V D
17 & 17 & 1 oG 1 ed ~bc a
= 'P Vs® + ’P V,\,V(sq) — iya Tpe™ — §V5<I>P ’ybcg ¥4+

1 /ale 1 X~ ~bc o
5 <Tbca - 2v5(blpea7bcsé) ya’}/b ¥ (5640)
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In the same way we can obtain an equation for Dirac-like operator acting on the second index of P#, if we
consider the hatted version of the above equation.

Plugging further torsion constraints into these equations yields rather lengthy expressions and we thus
restrict ourselves to a qualitative discussion of the further steps which would lead to field equations for the
RR-p-forms, to be presented in the following intermezzo.

Intermezzo on the RR-field-equations

As just mentioned above, the equation (5.640) and its hatted equivalent together with some other torsion
constraints of before determine the equations of motion of the RR-field strengths. We will make a qualitive
discussion and assume that the fermionic fields vanish so that the equations in WZ gauge basically reduce to
%yvdpw =0 and %avdpw = 0 where p®® is the leading component of P*% in the 6- expansion (see page
81

In order to see that this corresponds to reasonable equations for the RR-p-forms, let us first recall the
translation of field equations on the bispinor fields p®? into the equations on the level of differential forms in
the flat case. On the form level one expects for the RR-field strength’s ¢(?) s.th. like dg(®) = 0 and d* g(») = 0.
As it is discussed in the appendix on page 172 and in the following, this corresponds on the bispinor level precisely
to two Dirac equations, one acting on the first index and one on the second, i.e. ﬂ,,apo‘ﬁ :/B,yapaﬁ = 0 with
Dap = YopOm- Of course the equations are not yet the full truth, as they do not reflect the curved background.
In order to show the above correspondence, we need to distinguish between IIA (where « and & are of opposite
chirality) and type IIB (where o and & are of the same chirality). We will frequently use equations from the
appendix D on page 167 where we did not use the graded conventions. We will therefore consider in this
intermezzo the spinorial indices ungraded in the summations (this refers to the graded summation convention
discussed in the first part of this thesis; if you have not read that part, you can safely ignore the comment).

Assume we are in type ITA where we can expand the RR-bispinor in even antisymmetrized products of
~y-matrices:

P = 20 05 200 3" 2 hnse, Y (5.641)

+10] +12] Al
29 = %Pawﬁ (5.642)
200, = %p“ﬁ%zalﬁa (5.643)
29\ hsasas = 161. P P asasana (5.644)

Usually the coeficients g(p ) .a, Which correspond to p-forms (or better p-form field strengths) are denoted with

a capital G, but we want to keep the capital letters reserved for superfields. The matrices %, 12 and [ are

the chiral blocks of the antisymmetrized products of the Dirac gamma matrices T?¥! which is block diagonal.
Similarly, T'?*+1] is block off-diagonal and defines the chiral blocks ~!2++11;

[2k] e 0 0 ,Y[Qk]aﬁ
riHe; — < LA ) riitia, — < (5.645)
B g /> 8 [2k-+1]
0 fy[ }a ryaﬂ O
#e 0 5% 0
The chiral blocks can be extracted via the chirality matrix I'" 25 < 0 #B ) < 0 —3f ) which
acts (when multiplied from the right) on the first coloumn as the identity and on the second one as minus the
identity:
1 a [2k]a 0 1 a 0 0
= (1[2#] # — T 2 (TR _1# —
- (F (L+T )) s = ( 0 ) > (r (1-T )) 5= ( 0 248 ) (5.646)
1 @ 0 0 1 o 0 [2k+1]aB
5 (F[%“](IHP#)) 5 = < g > D5 (F[Q’““](]l —r#)) 5= ( o ) (5.647)

Via the clifford map, the I'?* get mapped to even forms. In addition we define the Hodge star operator such
that it corresponds via this mapping to the multiplication of the chirality matrix from the right (see page 169).
The chiral blocks thus get mapped as follows

1 -1

2kl = T+ H)e™ AL Ae®n, 4121 B o L1 —%)e™ AL Ae* (5.648)
—1 —1

'y([fﬂkﬂ] = LA+ H)e™ AL Ae™r, Al2kF1]ab = (1 —%)e™ AL A e (5.649)
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and the bispinor field p®z therefore corresponds to an even self-dual formal sum of differential forms:

-1 1 1
P8 =4 ( g=g" (1 €y bg€ A A ebm) + 9((121)@ (e’“ A2 ——hdzy el ...ebs) +

10! 8!
*1 +*(er1 Ne2)
1
+g((;f)(12a3a4 (6“1 R geal“'““bl.,_bﬁebl ~-~eb6) (5.650)

*(€¥1A...Ne%)

According to (D.46) and (D.47) in the appendix, the action of the Dirac operator 75, V. on the first or v REAVS
on the second index (with a covariant derivative that leaves the gamma-matrices invariant) yields

1
VaVep®s = Vg++V xg (5.651)
——
g
—1
Vep®s 7% s Vg — %V xg (5.652)
——
g

When wg,© = w(L €+ 3h w6 one might expect to get something like the h-twisted differential on the righthand

side, but this is not true for a connection that respects the gamma-matrices as we assumed in the two equations
above. The expression in (5.651) does not coincide with the h-twisted differential for this choice of connection.
It is important therefore that we act with our “mixed” connection which acts on the first fermionic index

with weg? = 3 ( (LC)e + 3hab ) 'ybc[ﬂ and on the second with djaﬁv = i (wiﬁc)c — %habc> vbcﬁv. This mixed

connection does not leave both gamma-matrix blocks 75 5 and ~¢*# invariant at the same time. Depending

on the sign we choose for the action on the bosonic index, it either leaves invariant only the first or only the

second. The calculation of above therefore does not go through in the same way and gets modified as follows
Let us act w1th the left-mover connection wg,¢ = w(Lc)

°+ 3h4° on the bosonic indices and rewrite ©,°5 =
wals+ Ad’s = wa’s — 2hap°7’.° 5. We then have®

’Y'(;a chaﬁ‘wzw = ’yf/avCpa Vyahcab’yabéﬁp 6= (5653)

= Ve — Shealdpsy ¥ (5.654)

In the last term, we have two matrix multiplications between three matrices (in the spinorial indices), which
corresponds on the form side to two Clifford-multiplications. According to (5.649), the chiral gamma matrix
Y5 can be seen as the Clifford map of the self-dual projection of the vielbein %(1 + %)e. The even form g,
corresponding to p%s, is given in (5.650) and v**°4 corresponds according to (5.648) to 3(1 + *)e® A e’. Now
we need the explicit expression for the Clifford multiplication on the form-side and the fact that the Clifford
multiplication of two self-dually projected forms yields either zero or the self dual projection of their Clifford
multiplication (see equation (D.51) and below in the appendix):

— —
/7t l 0 0 a1by apby 9 9
bF = D g g G gt (B0
SOOI 4 TH) fOL(1 4 ) w®) LW+ T#) for r even (5.656)
2 2 0 for r odd '

26Tn order to better understand the sign in (5.653), note that the action of the connection on the fermionic indices was defined
via graded conventions according to the first part of the thesis and that the second (lower) index of the RR-bispinor used to be an

upper hatted index p"‘fa = p*g. The action of the covariant derivative is thus
Zmpaﬁ =g 8mpaﬂ + Wméapéﬁ + @msﬁpaé
In this second part of the thesis we ususally did not denote the graded equal sign explicitely. It had to be understood as such,

whenever graded indices appeared. For this explicit comparison, however, it is useful to make a distinction. In terms of ordinary
equal sign and explicitely written summation (NW-conventions), this becomes:

Zmpo‘é = o, paﬂ+z Yoo, s p53+ a,BZ 6+3<B+a)‘;’m8épa5

71 -1

In other words, if we consider the indices to carry no grading, we have
Vb = 0 w0 4@, 5790
or V,,p% = Omp%s+wms®p’ s +om’sp%s o
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The differential forms g and e Ae® both are even so that now we can write down (using also (5.651)) the inverse
Clifford map of (5.654)

-1
Yoo Vb slo_e, - Vg++V *g

1 E] 0 o Y\ 9 9
3 le] aib arpb
,4h (1+* ll k;i eal...aeTkn11...nkkaebk...aeblg 8@01.”86ch
1>0 k>0
wperds e 90 (" ne) ) (5.657)
8edl " De
= (1+%Vg+
1 o \ o 2
_3 1 [c] [clb
4hcab2(1 +*){§ l' ( /\!]+77 ! 8€b1 g> aecl aecl X
(& C a 8 a
wyeidi .. peds AT B (e\ Agﬂ)} - (5.658)
= (1+4%Vg+
0 d o 9 0
-3 hAg—e“ehay~—g—e"h,"— hobe — — 5.659
s +*)(\\,.g ¢ Nab geed T gk I Beaaebaecg) ( )
thg %Ztg %wg:%w*g 1R g=1jp*g

In the last line below the underbraces we have considered the h-field h = hgpee®ele’ as a 3-form, the correspond-

ing torsion t = %hubceaeb ® e, as a vector-valued 2-form, t= %habcea ® epe. as a two-vector valued 1-form and
h = h*ce epe. as a three-vector and have used the generalized definition of an interior product with respect to
a multivector valued form, given in (6.13). Now we can use the result given in the appendix in equation (D.36)

on page 171 and in the discussion below, which implies that
Xuxg = g, *xyxg=1wmg=hAg (5.660)

Remembering that V = d— 1;, we thus get the final result

. /1
Voo Tebslocy b (L4 0{ (A= 3hA) g = § ug | (5.661)
~—
Or *14xg
with 1pg = 76 ebhabca‘zcg and % x g = ;9 = %e“ha“%%g.

Let’s do the same analysis for the Dirac-operator acting on the second index, which turns out to be a bit
simpler, with only one Clifford multiplication:

ycpaﬁb:w VCIBV = vcpaﬁ . 7CB7 - %Paé habc'yab6[3')/0/87 (5662)
—
hapeyabe oy

According to (5.647), hapey*¢%7 = (3 A(1 — F#))M. Using (5.652) and the explicit expression (5.655) for the
Clifford multiplication on the form-side, the above derivative operator is mapped to the following:

—1

Vb slow 7 (a (5.663)

-1

AN (Vg—+V *g )+
~

g

— —
1 9 0 0 0
3 a1by apbg
_g(l_*)kgﬁgaealm@" ...nkk@...@h (5.664)
>0
= (1=-%)Vg+
0 o 0 o 0 0
_3 _ __q,a,b c Y ap be Y _ pabc I
2(1 *){h/\g 3e%e’hap aecg—&—i‘le he et 5! Bei Db aecg} (5.665)
thd 2149 217%g 15 *g
Using again that xi; x g = %9, *1;; xg = 1,9 = h A g, and Vg = dg — 1,9 we end up with
A€ /_1
Y b, (1 —*){(d— ShA) g+ 5 ug } (5.666)
O —*11%xg
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with 2,9 = *6 ebhab Lg and % x g = 179 = 7eah bc b 30 9_g. If both actions of the Dirac operator vanish, we
thus get the followmg condition on the form 51de (addlng and subtracting (5.661) and (5.666) lead to equivalent
equations)2”

Voou Vb sloy =77 Vs, =0 < (d=3hA)g—Lxuxg=0 (5.667)

Next we consider the type IIB case where we can expand the RR-bispinor in odd antisymmetrized products
of y-matrices (see (D.142) on page 179):

paﬁ — 29((11) ,yaaﬁ +29((13;)(12a3 ,yauzzasaﬁ +g((l?)azl13{l4a5 7a1a2a3a4a5aﬁ (5668)
—~— —— —_—
(1] 18] ~15]
1 «
20 = —p*"vapa (5.669)
16
1 «
29((131’)112(13 = 16 - 3'p B'Yalazag Ba (5670)
1 «
gt(lgl))azaslmas = 32 ) 5']3 ﬁ’y{ls(uasazal Ba (5671)

This is mapped to an odd anti self-dual form on the form-side

1 1
ps = (1—%) (gfll)ea + g((l?;)azasea1 Ae®? Ne® + ig,g??__GSeal Ao A e“5> =g (5.672)
on the form-side. According to (D.46) and (D.47) in the appendix, the action of the Dirac operator v5,V. on
the first or on the second index (with a covariant derivative that leaves the gamma-matrices invariant) yields
for an antiselfdual and odd g

—1
Ve Vep™ s (1-%)Vg (5.673)
/—1

Vep™® .96, = —(1+%)Vyg (5.674)

Instead of a connection that leaves the gamma-matrices invariant, we have again the mixed connection acting
differently on left- and right-movers. We thus act on the first fermionic index of p®? with weg? = 1( (LC)C +
%habc)'ybcg7 and on the second with &,57 = (w(ic)c — %habc)vbcg"ﬁ Again we decide to act on the bosomc
indices with the left mover connection wg,® = ((lic)c + %habc and rewrite Ous? = wes® + Aus® = wes® —

3heq"y"6”. We then have for the action of the Dirac operator (based on the mixed connection) on the second
index

chaﬁ‘di:w ’ ,yé'y =

= cha[-} ’ 7;7 - %paéhabc'}/abcév (5675)
[ c ‘ o /71
= Vep* a5, - 304 h)Y - (5.676)
N 3 1 3 3 a1by apby 9 9 h =
) 0
= —(+Rd=u)g+ FA+H)hAg—F(1+%) e e hay 5 — g+
g 211 g
o 0 0 o0 0
3 1 a be _3 1 abe o ]
5 (14 %)3¢"ha deb dec? —s(lAx)h e et ec” (5.678)
21;9=2x14%g 15 g=XUpxg

27We could try to absorb the somewhat disturbing contribution of x2¢ x g or ;g by reintroducing Vg via 1,9 = —Vg + dg. The
result, however, looks even less natural and the twisted differential gets modified at intermediate steps. The equations (5.661),
(5.666) and (5.667) take the following form

Vo Tob s, 1a+0{vg+(d-3hr) g}

-1
Vo sl,_ B AN %(1—*){—Vg+3(d— %h/\)g}
2

Voo Vop 5|w ; chaﬁb:w’ycmzo — (d*%h/\)g+*V*gf*d*g=0 o
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After collecting all the terms, we arrive at

o . /7 f
V™| = (0 {(d=3an) g+ 4 g } (5.679)
O —x*gxg

For the action of the Dirac operator on the first index, finally, we have

Voo Ve[ _
C « (0% a / !
= YaVep™ = BhapeS o0y 5" (5.680)
-1
R (1-%x)Vg+
1 o\ 9 B 0
3 c cd a1b arb L. a b
—ghabe(1 —*)];)H <e ANg+n aedg) FearDear I S 5o (e® Ae’) (5.681)
= (I-%) Vg +
~—
dg—1tg
0] o 0 g 0 0
31— {h/\ — e%ethay® ——g — eyt pove £ < } 5.682
sl =N n g ha 500 90 9! T Gea gt pec? (5.682)
thg 2 2 oo
Futg gz{g:§*zt*g 1, g=*th*g
The terms then combine to
C « /71
Vou Vop™| e (1 *){(d— 3hA) g —%ztg} (5.683)
~—
or —%*@t * g
The equations on the form side thus look the same as for type ITA. In particular we have
Vou Vb _ = V™| _ 75, =0 < (d=3hA)g—§xu*g=0 (5.684)
o (delta)2,1,0) 0% < ((hdelta]2.0,1)) 5% )dim:
0 = v[ Tyy® + 2T 0 P T1° — Riav® = (5.685)
4 1
= v Tl + Ta[,,| Tpq® — gRbm‘; = (5.686)
4 e 4 e s 1 5
= gzaTbc +§ alb| Te|c] +§Ta[b\ Té\c] 7§Rbca = (5687)
1 4o 4 . 5 1
- gyaTb,f + 3 Va®Tap) T’ + 30l ar Py 5P - gRbm& (5.688)
=ofor Q=0
Rbca(; - zaTbca |Q:Q + 45/[b| orylp‘yé;?‘c] églp&s (5689)
Bra® = YaThel| + 470 ayP Tl esP” (5.690)
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Plugging in Tj.% = %6 (Z,}P‘;S + 8@:,@7758) %cg’gyields
1 .
Rica® = 15V (T4P% 4 8V40P%) 5,075 +
1 A A N
T ( V. P 4 80,0 P55)2VQ<I>%073+
0 =
+49p) ar P51 5P = (5.691)
8 8 o
56 56
= @
(16vv7> +16vv PP+ 15 V5
+49p ar P F) 5P = (5.692)

V50V 79‘”) e T+

1
_ (1627V pss _ ngeapsa n 8RM€57355

D)pss . 2v OV PY) 5 V5 +

+4?[b| oy P94 5P (5.693)
Taking the trace yields
_ 8Flf?) (167’7 70[:])046 _7R’Ya€arpeé + Ra’ysézpae

8PSV 5P

. 2 1. X
FELDP 4+ SV 0 Do P ) n 75+

SPESVJ@
+ 471 0 P79 5P (5.604)
o (delta|2,0.1)4n% < (hdeltal2.1,0)an. . dim2:
!
0 = ViaTg® + 2L "I’ — Riasg’ = (5.695)
1 P 4 2
= 3¥%aDe’ + 3V Tua’ + 3Law " Teg” + 5Th" Toa’ = (5.696)
1 P 4. 2.
- gszbc‘*—gy[b( a5P%) + 5 Tap Tea® + $The"Tea® = (5.697)
a=a 1 ~ 4.
= 52&7}’05’9:@"’57@&824? +§ &lbl Te|c] + Hp.® ’yeaﬁp‘sﬁ (5.698)
or
o= 1 5 2 4 . 55
= 3 VaTi |Q:Q—§7as[( Vip® + V@ )Gd|c1+A[bc]d}7’ +
=0(5.529) =0 (5.529) —3Hpeq
2 N
+37 T a5 P — Hieen 5P = (5.699)
1 2 55
= 3V Tbc +3’y[b|a5v\c]P +Hbce’y 5P (5700)
5 ~ 56 e Db
VaTye = 727[b|d82\c]7) *3Hbce’)’d87) (5.701)
VaTli’ = 2914 as Y| P?® + 3Hyce Vs P (5.702)
o (delta]3.0.0)an.® < ((hdelta]3.0,0),5.%)dim2:
!
0 = ViTq® + 2T “Tp10® — Riava® = (5.703)
= YiuToa® + 2T1an Tet® + 2T0abi % 5P (5.704)
Vielva’ = —3Hja Teq)® = 2Tjab*7)y 5P (5.705)

Vielvg® = 3HapTe1g® — 2T0ap) ") s P° (5.706)
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e (d|0,3.0)agy? —((d]0.0.3), 5. dim?1:

0 ViaTpy)" + 2Tjap “Tem ! = Rlapy)? = (5.707)
———
=0
= Y[a (,Yﬁ"/]cfcd) + Q’Yfaﬁ‘fecjjc\'y]d = (5708)
fcd_(;d .

Via (7571) ~29fug Ty (5.709)

N——— —

=0 =0 (5.500)

e (d|0.1,2) z.% <((d|0.2.1)43,")dim:

! pood ch o d_ T d
0 = ViaTpy +2£[a[a| Tep)" = Riapy = (5.710)
1 ; ;
= 3¥aTp +3 Tps Tea = (5.711)
> .
= 3%y T =0 (5.712)

o (d1.2,0)05.% <((d]1,0,2) 5 Y)diml:

| L
0 = ViIp d+2T[aﬁ|ETE| q% = Riapg® = (5.713)
2 2 4 1. 4 2 J
= 32[ ] —|—3V Tag —|—3 1.3 TEC +3Tc[a| TE|5] _gRch —ch[alg] = (5714)
=0
fel=sd 2 1 d
.= *v[aT,@] + = Vc’Ya,3+ fyaﬁ Tec +-= T[alc T|5]e + - Tc[a| ’yelﬁ] Raﬁc (5715)
o= 3 3 eo— 3 3 S N 3
=0 gH d =0
I e e
Rap? = zv[aTg]Cd+3yaﬁHecd+4T[a‘c Tig." (5.716)
D d e d fooeqrd
Ryp.t = 2V[a B]c —37gpHee" + 47161 T g, (5.717)
Taking the trace (using Rarare’ = =FD i MO0+ RMMa ) yields
W0EY = 10V Vg,  true (5.718)
Plugging in the torsion constraints yields
Rap” = —VaVg 00 + 770’V Vs® + 395 gHee +
7 1ol "V ‘I’%dW]‘SVa‘I’ (5.719)
S a4
+7e el V4 87 8] V;sfb (5.720)
This agrees with (5.556) and (5.555).
o (d|L11)_g “diml:
2 . Efp d_p o d_
0 = Valgy +2L4 TElc] R[aﬁc] = (5.721)
_ 1 nod, L BT L a_
=0 1 4, 27 e d a1 d
= gvléTca + gTC T + 3Tﬁc ex + gTI@CETea — gRch (5723)
1 2 2 N 1
= 3Vala" = 39casP? i + 390paP o0 — 3 Rape” (5.724)
Rop = VaTea' = 29capP?y; + 27, 55P Via (5.725)

R&Bcd = @chad - 29, dBPE%gB + 279, 55735&75& (equivalent) (5.726)
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Plugging the explicit expression for Too® and T.a? into (5.725) and (5.726) yields?®

1 1 ) i
Raécd = ivl@vaq)(sg + §’cha‘yvﬁv'yq) - Q’YCaﬁPﬁe'Ygé + 2’YC55,PE6'YEQ (5727)

R 1~ 1 A a p ;
Rap:! = VpVa®d! +57:a VaVs® = 27, 45P% 105 + 27eps P 0la (5.728)

Taking the trace of (5.727) yields

(D) _ 5
WED) = 5V5Va® — 250apPP35, + 27, 5P ea (5.729)
D) _ Iyg.
> P2 = 2vﬁva¢> (5.730)
This does not give new information as it follows from T a,@} =0, V5® = 0 and the algebra V[aV o =
Q= Q
_ c (D)
T.5%,_ Ve® —FLp).
L4 (d|21170)abr ((d|21071)db(’d)dim%:
! Food Ef d_ P d
0 = ViuTg" + 2000 Telg" — Riand” = (5.731)
1 rod 2 T d 4 E d 2 EF d 2 - d
= gzaTbc + gy[b Tya +§Ia[b| Tg" + gzbc Tpa® — gRa[bc] = (5.732)
——
=ofor O=0
R PO 2.
= —§VaHbc + gTa[ |s &l d4 3Tbc ’yea — gRa[bC] (5.733)
28From this constraint on R 4 we can also derive a further constraint on some spinorial components. Remember that we have
D L
Ra67 = %Fié)&y‘s ZRix[a)cd a~? and therefore
Rop,’ = 3939a®’ +1 (375 V,Ve® - 270anPPe02, + 23, 55P*0 00 ) 14n"
The last terms can be combined and we arrive at
Raé7 = vﬁva<1>675+§%da yed Jvﬁvs@ 7S PEy eﬂym
Next we can compare whether this is consistent with our earlier constraint Rﬁ[a'y] = —Ya~ 7, 357355 :
5 5 cd & d é.c = 5
Ritar’ = 1V5VaP05)° + §7cda "7’ V5 Ve ® + 75 P Ted 1]

Being graded antisymmetric in « and ~, it can be expanded in 7§, and 73%,‘"‘157 where the coefficient for (%! should vanish and
the other coincide with the old expression. Before projecting the coefficients by brute force one can do a first step in this direction
by using the identities ¥*° (4% Yap|4]® = —475%7%, — 1064 °5,)° (graded version of (D.166)) and Veje| Ted I = =378y Feae® —

%’?davég‘s - :Yda[a|5\-y]6; which are both immediate consequences of the Fierz identity V[Cam“/c |16 =0

) _ ed_a
R,B[a'y] = 7VéV[a¢)5,y] - §'ya 'yavvﬁvsé+

1 ~ 4 < d 1= x 6. d é
—5Vary Vede ’YBé'PEE - §'Yda'y'YBé7) * — Ydela|Oy] ’YBéPEE

Now let us write the expansion in 'y[l] and 7[5] as R,é[a—y]& = Ré] aYay + R[ 15 al,‘,aﬂg‘;g““ﬁ. The second term has to vanish, so

that the first condition is (projecting with 7577 a5 ):

V3 (v Va® + 7gae Py /3)_0

The other coefficient can be projected with v7 < via R[Bl]’sa = %673"‘3,@[&7]5, which should coincide with 'Ya,éfspéa' We thus
obtain as second condition
~ 56 e - 8.d 5é
—Ya 5P = —372°V5Ve® ~ $7ade ’)’Bépee = 2% P°°
5 So ~
7E7aavﬁva¢' - %'Yaa’}/dsa'}/@épss

which can be further simplified to

~ g _d
a (vaa<b +”/dap7”)5”é,a> -0

For this last equation we can finally use that yg”ga = —106g* which implies that already the bracket itself has to vanish and we
get the following constraint on the compensator superfield (and likewise on the dilaton superfield):

VaVa® = —FaapP?yly | o
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. 3. B A
Ra[bc]d = 71vaHbcd + 27[b\ a6P6€Té|c]d + TbCEnga (5734)

3 5 3 .
Rapg® = ZVaHbcd+2v[b|d3P55Ts\c]d+Tbcev§d (5.735)

At this point it is convenient to plug the constraints (5.580) and (5.581) into the above equations to obtain
slightly simplified expressions

Rajpeja = —QTd[b|€W|c]m+2ﬁ[b\a5735éfé|c]d (5.736)
Rapea = —2Tap*vdea + 273 a6 P Tejela (5.737)

Let us plug the explicit expressions for the torsion components into the first equation:

Rapa = —é (2;,7758 + 8@&‘1)7353) Fapp) 6 Velea +
T L (@é‘l’G\c]d + ‘Y\c]dé‘%@gq’) = (5.738)
- _éyﬁps%[b‘ 57 Velear + G T1e) as P*E Ve ® (5.739)
Including the hatted version, we thus get in summary
Rafpga = —éiapssid[b\ 5 Vea T Gap Y as PPEVed (5.740)
Rapga = —ézﬁjéé%[b\ 57 clea + Gapp| Vg d37’€3V5<I> (5.741)

Finally we take the trace of the first equation in the indices ¢ and d

9. 1. 1 f 9. .
gFgf) - gR&L,}bd = —TGZ@P“‘M{WSQ — §7ba6P6€véq) (5.742)

with F(if) = —Z[a@b]q) — Iabcﬁc@ = —%a@PB;’@&(I) or eventually:

AL 1 N
R, = gza,Pﬁ%cé”%a (5.743)
L 1 2. c
Rl(ia)bd = §2773€€7b5577éa (5.744)
o (d|3.0,0).5.%dim2:
! ~ -~ o
0 = YV Tg’+ 200 " Teig” — Riag” = (5.745)
Q=0 e
=" ViaTog" + 210y “Terg + 2Tiap)*Teig* = Rian* = (5.746)
3 9 .
= §v[aHbc]d + iH[ab\ He\c]d + QT[ab\eTs\c]d - R[abc]d (5747)
3 9 .
R[abc]d = iv[aHbc]d + iH[aM He|c]d + 2T[ab\eTs|c]d (5748)
. 3. 9 . A
Rigpg® = —§V[aHbc]d + 5 Hia Hejo* + 2T T2 (5.749)
Taking the trace yields
1 2
0 = —VgHu'+3 Ho) “He)* +=Tap" Teq +
2 Zdlal TeM T3
=0
4 8 2
5 TaloTepy — gFéf) + ngi[La)b]d = (5.750)

10

1 4 8 p
- 5vdHabd — 5 T Ve + gTd[a‘eTe‘b]d - gF;Z?) + nglﬁjb]d (5.751)
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with FI?) = — v, v, ®|
ab [a==0 " _q
the bosonic left-moving and right-moving (via the left-right-symmetry) Lorentz curvature:

— IabC|Q:Q Ve® = —T,,"Vy®. We thus get the following trace constraint on

3

_Rgﬁz)b]d = ZVdHabd — T 'Vy@ + 2Td[a|€Te|b]d (5.752)
~ 34 A . .

*Rfiﬁfb}d = *ZVdHabd — T "V4® + 2T 510 * T2 (5.753)

5.D Identities for the scaling field strength

Instead of extracting in a clumsy way the information about the dilaton field strength, we can obtain the
information in a more direct way. At some points this should also serve as a check of equations that we have
already obtained. From the torsion Bianchi identity (5.253) we cannot easily extract the dilatation part, because
the group indices are antisymmetrized. Instead, we will study the algebra of covariant derivatives acting on the
compensator field. We start with the constraints

Va® =Va® =V, 0=V,0=0 (5.754)
Remember, that on the compensator field the commutator of covariant derivatives reads
VuVg® = -TapVed — F) (5.755)
Now we can plug in various indices:
e (a,b):
VVy® = —TuVed — T "Va® — 1, 7V50 — £ = (5.756)
0
= 1, v, - B = (5.757)
1 2 ~ 2 N
= 15 (WP 4 8V50P),57V, 0 FP (5.758)
1 vé Y ¥8\z A
Ey = —1—6(&79 +8V4PP7°)7,,57 VP (5.759)
Fup = — = (VP 4 8V BP%) 7037V 5.760
ab — _176(7’7 + ~ )’Vab(s ol ( ' )
[ ] a — (a 3
VVa® = —TupVel —Tog"Va® — T V50 — B = (5.761)
N—_——
ofor Q=0
R A (5.762)
= FupsPOIV50 — EL) (5.763)
FG = %apsP V50, FD) =5, 5PV, @ (5.764)
For 0 =Q instead, we obtain
Vi Vg @ =t _FD (5.765)
——
1v.vgefor =0
O _lg ve, PO 13 9.0 5.766
aB T g VveVB® Sup T VeV (5.766)
o (a.f)« (&.B):
VaVa® = —TapVed —Toag'Vay® — Tup V5@ — F) = (5.767)
——
o for Q=0

-F

s (5.768)
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Fap=Fya5=0 (5.769)
[ ] a,[} .
= fed N BAE (D) _
ViaVpy® = T, Vctb—Taﬁ'VV.,(I)—Taﬁ"’V,;(I)—FaB = (5.770)
N—_——
%@O‘@ﬁtb for 0=0

Q=0 (D)
= —Faﬁ (5.771)
Pty $e PO _Lly,v,e 5.772
aB — pvevBT tap T Tovavp (5.772)

5.D Recovering flat-space action / comment on linearized SUGRA

If all curvature components vanish, all higher components (in the é—expansion) vanish in the extended WZ-gauge
due to (H.116) and (H.118) and the remaining bosonic local Lorentz and scale transformations can be used to
fix Q48 } = 0 such that all connection components vanish. The only torsion components which are forced to
be nonzero are Tog® = (dE)apg = V55 and T, 5° = (dE°) 45 = 'Y:;@' A solution which is compatible with the
extended WZ-gauge (H.117), (H.119) and (H.120), and which fixes also the remaining bosonic diffeomorphism
invariance is given by

5 0 0 gm 0 0
Ev® = | (0P80 0™ 0 | M| —(0PyE) a0 (5.773)
(0°v5,) 0 da® —(0Py2) 0 bat

The supersymmetric invariant one -forms thus read
EA = &ME,A = (dz“ + P00, + 0P A d§‘3‘) (5.774)

which agrees with (4.3).
The reasoning is similar for the B-field and its field-strength H. The only components of H which are
forced to be nonzero are Hoag = —g%a,@ and H 5 = %%aé' A simple solution for Hoap = (dB)cap =

VicBap) + 2Tic4/” Bp ) (which is compatible with the WZ-like gauge (H.142), (H.146) has the form

0 x‘”ya B _‘xﬁwa’}ﬁ
BAB = —$77b7a 0 - (’Y(Cl'yx'y) (x'ﬁyc’?é) (5775)
Rl TP (72‘;733") (z77c5a) 0

All other fields which appear in the Lagrangian can be chosen to vanish. The curved-background action (5.98)
thus reduces to

1 1 _ o
Sy = / d?z 5H‘;nabng - 5H;“BMH? +007d.n + 007dz5 +
_ ~ 3 1 1- ~ ~
+ONw.p + 0N @y + 5LazaA"A) + S Loz (A7) (5.776)

The B-field term takes the explicit form

1 1 o1 ;
STABApIE = CI (Baﬂné’ + Baﬁng’) + SIS BI2 — (2 - ) = (5.777)
1 . 5 1 . N
- e (m%.,gng’ - QWMBH@ - 5 (1296,0”) (W%,YBHQ —(ze2) = (5.778)
1 - 1 5
- e (ng’m%w - H?&MMB> -5 ("2, (ngmmﬁ,) —(ze 2 (5.779)

Upon a shift of the grading from the fermionic indices to the rumpfs, this coincides precisely with the form of
the WZ-term given in (4.22). Only the antighost field has to be redefined with a minus sign, in order to match
the flat-space Lagrangian.
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The BRST transformations (5.195)-(5.202) reduce in flat space to

9™ = A%EE0P, 0" = A¥i* (5.780)
IWea = dia (5781)
S()dzzs - _2>\aH27ca6 (5782)

The corresponding hatted equations are obtained for the hatted fields. All other transformations vanish. In
particular, the Lagrange multiplier doesn’t transform (the complicated Xog vanishes in flat space). The pure
spinor constraint guarantees the nilpotency of § when acting twice on d,s. The BRST transformation of the
supersymmetric objects reduce to

ol = 2X%02P455, 902 = 0A* (5.783)
We can see the BRST transformation sof curved background as a perturbation around the one in flat background
s = (p+u) (5.784)

From the point of view of the string in flat background with action Sy, the difference U = S — .Sy to the action in
curved background is simply a vertex operator which should be BRST-invariant. The condition of a conserved
BRST current (which enforced the supergravity constraints) corresponds to the invariance sS = 0 of the action,
or written as a perturbation:

0 = (9+u)(Se+U)= (5.785)
= 5 +uSy+ U +uU (5.786)
—~—
0
At linearized level, we thus have
uSy+U =0 (5.787)

In the antifield formalism (which we did not really discuss in this context), the BRST transformations are
generated by the actions themselves (enlarged with an antifield content) via the antibracket. The above equation
then reads '

(U,S0) + (So,U) = 2(S0,U) =29U =0 (5.788)

This explains the well-known fact that the vertex operators of the flat space pure spinor string have to obey
linearized supergravity constraints.



Part 111

Derived Brackets in Sigma-Models

"Don’t make a break, make a bracket" (Kathi S.)
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Introduction to the Bracket Part

This part of the thesis is based on the author’s paper [16]. See also [68] for a short article which contains some
of the basic ideas. In the meantime a paper by Klaus Bering [69] was brought to my attention. Although it
follows a different aim, its geometrical setting, especially in its section 5, is very close to the one presented here.
Moreover, the geometrical meaning of the variables is nicely presented there, e.g. in its table 7, and can thus
serve as a useful supplement to the reading of the present part of the thesis.

There are quite a lot of different geometric brackets floating around in the literature, like Schouten bracket,
Nijenhuis bracket or in generalized complex geometry the Dorfman bracket and Courant bracket, to list just
some of them. They are often related to integrability conditions for some structures on manifolds. The vanishing
of the Nijenhuis bracket of a complex structure with itself, for example, is equivalent to its integrability. The
same is true for the Schouten bracket and a Poisson structure. The above brackets can be unified with the
concept of derived brackets [70]. Within this concept, they are all just natural extensions of the Lie-bracket of
vector fields to higher rank tensor fields.

It is well known that the antibracket appearing in the Lagrangian formalism for sigma models is closely
related to the Schouten-bracket in target space. In addition it was recently observed by Alekseev and Strobl
that the Dorfman bracket for sums of vectors and one-forms appears naturally in two dimensional sigma models’
[71]. This was generalized by Bonelli and Zabzine [73] to a derived bracket for sums of vectors and p-forms
on a p-brane?. These observations lead to the natural question whether there is a general relation between
the sigma-model Poisson bracket or antibracket and derived brackets in target space. Working out the precise
relation for sigma models with a special field content but undetermined dimension and dynamics, is the major
subject of the present part of the thesis.

One of the motivations for this part of the thesis was the application to generalized complex geometry. The
importance of the latter in string theory is due to the observation that effective spacetime supersymmetry after
compactification requires the compactification manifold to be a generalized Calabi-Yau manifold [74, 72, 6, 3,
75, 76]. Deviations from an ordinary Calabi Yau manifold are due to fluxes and also the concept of mirror
symmetry can be generalized in this context. There are numerous other important articles on the subject, like
e.g. [77, 78, 79, 80, 81, 82, 83, 84, 85, 86] and many more. A more complete list of references can be found
in [76]. A major part of the considerations so far was done from the supergravity point of view. Target space
supersymmetry is, however, related to an N = 2 supersymmetry on the worldsheet. For this reason the relation
between an extended worldsheet supersymmetry and the presence of an integrable generalized complex structure
(GCS) was studied in [87] (the reviews [88, 89] on generalized complex geometry have this relation in mind).
Zabzine clarified in [90] the relation in a model independent way in a Hamiltonian description and showed that
the existence of a second non-manifest worldsheet supersymmetry @, in an N = 1 sigma-model is equivalent to
the existence of an integrable GCS 7. It is the observation that the integrability of the GCS J can be written
as the vanishing of a generalized bracket [7,J]; = 0 which leads to the natural question, whether there is a
direct mapping between [J, 7]z = 0& J? = —1 on the one side and {Q,, Q,} = 2P on the other side. This
will be a natural application in subsection 7.2 of the more general preceding considerations about the relation
between (super-)Poisson brackets in sigma models with special field content and derived brackets in the target
space.

A second interesting application is Zucchini’s Hitchin-sigma-model [91]. There are up to now three more
papers on that subject [92, 93, 94], but the present discussion refers only to the first one. Zucchini’s model is a
two dimensional sigma-model in a target space with a generalized complex structure (GCS). The sigma-model
is topological when the GCS is integrable, while the inverse does not hold. The condition for the sigma model
to be topological is the master equation (S5,S) = 0. Again we might wonder whether there is a direct mapping
between the antibracket and S on the one hand and the geometric bracket and 7 on the other hand and it will
be shown in subsection 7.1 how this mapping works as an application of the considerations in subsection 6.5. In
order to understand more about geometric brackets in general, however, it was necessary to dive into Kosmann-
Schwarzbach’s review on derived brackets [70] which led to observations that go beyond the application to the
integrability of a GCS .

The structure of this part of the thesis is as follows: The general relation between sigma models and derived
brackets in target space will be studied in the next section. The necessary geometric setup will be established
in 6.1. Although there are no new deep insights in 6.1, the unconventional idea to extend the exterior derivative
on forms to multivector valued forms (see (6.34) and (6.37)) will provide a tool to write down a coordinate
expression for the general derived bracket between multivector valued forms (6.51) which to my knowledge does
not yet exist in literature. The main results in section 6, however, are the propositions 1 on page 128 and 1b
on page 139 for the relation between the Poisson-bracket in a sigma-model with special field content and the
derived bracket in the target space, and the proposition 3b on page 133 for the relation between the antibracket
in a sigma-model and the derived bracket in target space. Proposition 2 on page 130 is just a short quantum

n [71], the non-symmetric bracket is called ’Courant bracket’. Following e.g. Gualtieri [72] or [70], it will be called "Dorfman
bracket’ in this thesis, while ’Courant bracket’ is reserved for its antisymmetrization (see (B.31) and (B.38)). ¢
2The Vinogradov bracket appearing in [73] is just the antisymmetrization of a derived bracket (see footnote 8 on page 164). o
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consideration which only works for the particle case. In section 7 the propositions 1b and 3b are finally applied
to the two examples which were mentioned above.

Another result is the relation between the generalized Nijenhuis tensor and the derived bracket of 7 with
itself, given in (7.12). The derivation of this can be found in the appendix on page 154. In addition to this,
there is a new coordinate form of the generalized Nijenhuis tensor presented in (B.58) on page 153, which might
be easier to memorize than the known ones. There is also a short comment in footnote 3 on page 151 on a
possible relation to Hull’s doubled geometry.

This part of the thesis makes use of only three of the appendices. Appendix A on page 145 summarizes the
used conventions, while appendix C on page 159 is an introduction to geometric brackets. Finally, appendix B
on page 148 provides some aspects of generalized complex geometry which might be necessary to understand
the two applications of above.



Chapter 6

Sigma-model-induced brackets

6.1 Geometric brackets in phase space formulation

In the following some basic geometric ingredients which are necessary to formulate derived brackets will be given.
Although there is no sigma model and no physics explicitly involved in this first subsection, the presentation
and the techniques will be very suggestive, s.th. there is visually no big change when we proceed after that with
considerations on sigma-models.

6.1.1 Algebraic brackets

Consider a real differentiable manifold M. The interior product with a vector field v = v*8; (in a local
coordinate basis) acting on a differential form p is a differential operator in the sense that it differentiates with
respect to the basis elements of the cotangent space:!

T r m My a m Moy
wp = R (@) ™ de = gy (P A ) (6.1)
Let us rename®
c" = de™ (6'2)
b, = 0., (6.3)

The vector v takes locally the form v = v™b,, and when we introduce a canonical graded Poisson bracket
between ¢™ and b,, via {b,,,c"} = I , we get

wp = {v,p} (6.4)

Extending also the local z-coordinate-space to a phase space by introducing the conjugate momentum p,,
(whose geometric interpretation we will discover soon), we have altogether the (graded) Poisson bracket

{bm, Cn} = (5;7:7( = {Cn7 bm} (65)
{Pm, 2"} = 0y =—{2", pm} (6.6)
9 9 9 9 D9 9 9 9
A B = A—m—— A~ ~ B (VAP B—— B——A .
{4, B} abr 0 T Agp i B~ ) ( by 05 TP opr 0 ) (6.7)

and can write the exterior derivative acting on forms as generated via the Poisson-bracket by an odd phase-space
function o(e, p)

o(c,p) = cpy (6.8)
{00} = & (b pus o, () €™ e = (6.9)

The variables ¢™,b,,,2™ and p,, can be seen as coordinates of T*(IIT' M), the cotangent bundle of the tangent
bundle with parity inversed fiber.

o

INote, that a convention is used, were the prefactor % which usually comes along with an r-form is absorbed into the definition

of the wedge-product. The common conventions can for all equations easily be recovered by redefining all coefficients appropriately,
€.8. Pmy..m, — ﬁpmyumr- <

2The similarity with ghosts is of course no accident. It is well known (see e.g. [95]) that ghosts in a gauge theory can be seen
as 1-forms dual to the gauge-vector fields and the BRST differential as the sum of the Koszul-Tate differential (whose homology
implements the restriction to the constraint surface) and the longitudinal exterior derivative along the constraint surface. In that
sense the present description corresponds to a topological theory, where all degrees of freedom are gauged away. But we will not
necessarily always view ¢ as ghosts in the following. So let us in the beginning see ¢™ just as another name for de”. We do not
yet assume an underlying sigma-model, i.e. b,, and ¢™ do not necessarily depend on a worldsheet variable. <
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Interior product and “quantization”

Given a multivector valued form K**) of form degree k and multivector degree k’, it reads in the local
coordinate patch with the new symbols

K®EF) = K(k’k/)(x,c, b) = Kppom, "™ (2)c™ ™ by, by, = K™ " (6.10)

The notation K (z,c,b) should stress, that K is locally a (smooth on a C° manifold) function of the phase
space variables which will later be used for analytic continuation (z will be allowed to take c-number values of
a superfunction). The last expression in the above equation introduces a schematic index notation which is
useful to write down the explicit coordinate form for lengthy expressions. See in the appendix A at page 147 for
a more detailed description of its definition. It should, however, be self-explanatory enough for a first reading
of the thesis

One can define a natural generalization of the interior product with a vector 2, to an interior product
with a multivector valued form 15 acting on some r-form (in fact, it is more like a combination of an interior
and an exterior product — see footnote 6 on page 163 —, but we will stick to this name)

T — r el
ZK(k,k’)p( ) = (k/)l ( k' > -Krn...ml1 i plk/“.llm...m = (6-11)
—_———

r

= Kpyom, "™ ™ {bm, { - {bnk, , p(r)}}} (6.12)
0 9
dcn ger P

It is a derivative of order k' and thus not a derivative in the usual sense like ¢,,. The third line shows the reason
for the normalization of the first line, while the second line is added for later convenience. The interior product
is commonly used as an embedding of the multivector valued forms in the space of differential operators acting
on forms, i.e. K — 1x, s.th. structures of the latter can be induced on the space of multivector valued forms.
In (6.13) the interior product 25 can be seen, up to a factor of /i/i, as the quantum operator corresponding
to K, where the form p plays the role of a wave function. The natural ordering is here to put the conjugate

niy...ngps M1 .. mig

C - C

(6.13)

= Kml...mk

momenta to the right. We can therefore fix the following “quantization” rule (corresponding to b = %%)
e "
R () — (6.14)
)
s
Wlth ZK(k,k’) — Km...mnl.“nk/ (615)

dc™ - - O™

The (graded) commutator of two interior products induces an algebraic bracket due to Buttin [96], which is
defined via

[’LK(k,k'),ZLu,,l/)] = ’L[K7L]A (6.16)

A short calculation, using the obvious generalization of 97 (f(z)g(x)) = >/, ( Z ) O f(2)07Pg(x) leads to

KL = E Zz$>L:ZKAL+E L) g, (6.17)
p=20 p=>1

where we introduced the interior product of order p

/ P
(p) — ( k >Km.”mn...nl1‘..lp a — (618)

bty = P et - - . Py
1 EL or
- -K 6.19
Pl Bb, - Dby, e - Dt (6.19)
! !’ 4
= g L0 = O () () Koy L ™ (620

which contracts only p of all k' upper indices and therefore coincides with the interior product of above when
acting on forms for p = k&’ and with the wedge product for p = 0.

z%;lyk,)p = Upeh i) P, z(Ig)L =KAL (6.21)
Using (6.17) the algebraic bracket [, |* defined in (6.16) can thus be written as
I i o)
= =L,
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(6.20) provides the explicit coordinate form of this algebraic bracket. From (6.19) we recover the known fact
that the p = 1 term of the algebraic bracket is induced by the Poisson-bracket and therefore is itself an algebraic
bracket, called the big bracket [70] or Buttin’s algebraic bracket [96]

1 —K)(1-1"),.(1 (6.19)
KL, = WL ()N P2y ¢ (6.23)
(620) (7)(k',1)(l71)k/l Km...mn‘“nllLllm...mn“.n+ (624)

_(_)(kfk’)(lfl’) (_)(l/,l)Ucfl)l/k memn...nllKllmmmn...n

For k/ =1’ = 1 it reduces to the Richardson-Nijenhuis bracket (C.63) for vector valued forms. In [70] the big
bracket is described as the canonical Poisson structure on A*(T @ T*) which matches with the observation in
(6.23). The bracket takes an especially pleasant coordinate form for generalized multivectors as is presented in
equation (B.77) on page 154.

The multivector-degree of the p-th term of the complete algebraic bracket (6.22) is (k' + 1’ — p), so that we
can rewrite (6.16) in terms of “quantum”operators (6.14) in the following way:

f((k,k'),ﬁ(z,l’)} _ ; (?)p [IZLT@) - (6.25)
- CL) (K, L} + 2 (?)p K, L), (6.26)

The Poisson bracket is, as it should be, the leading order of the quantum bracket.

6.1.2 Extended exterior derivative and the derived bracket of the commutator

In the previous subsection the commutator of differential operators induced (via the interior product as em-
bedding) an algebraic bracket on the embedded tensors. Also other structures from the operator space can be
induced on the tensors. Having the commutator at hand, one can build the derived bracket (see footnote
3 on page 162) of the commutator by additionally commuting the first argument with the exterior derivative.
Being interested in the induced structure on multivector valued forms, we consider as arguments only interior
products with those multivector valued forms

rcsare] =[x, d] L] (6.27)

One can likewise use other differentials to build a derived bracket, e.g. the twisted differential [d+ H, ...] with
an odd closed form H, which leads to so called twisted brackets. Let us restrict to dfor the moment. The derived
bracket is in general not skew-symmetric but it obeys a graded Jacobi-identity and is therefore what one calls
a Loday bracket. When looking for new brackets, the Jacobi identity is the property which is hardest to check.
A mechanism like above, which automatically provides it is therefore very powerful. The above derived bracket
will induce brackets like the Schouten bracket or even the Dorfman bracket of generalized complex geometry
on the tensors. In general, however, the interior products are not closed under its action, i.e. the result of
the bracket cannot necessarily be written as 25 for some K. An expression for a general bracket on the tensor
level, which reduces in the corresponding cases to the well known brackets therefore does not exist. Instead
one normally has to derive the brackets in the special cases separately. In the following, however, a natural
approach is discussed including the new variable p,,, introduced in (6.6), which leads to an explicit coordinate
expression for the general bracket. This expression is of course tensorial only in the mentioned special cases,
that is when terms with p,, vanish. This is not an artificial procedure, as the conjugate variable p,, to = is
always present in sigma-models, and it will in turn explain the geometric meaning of p,,.

The exterior derivative dacting on forms is usually not defined acting on multivector valued forms (otherwise
we could build the derived bracket of the algebraic bracket (6.22) by d without lifting everything to operators via
the interior product). But via {o, K (k”“l)} we can, at least formally, define a differential on multivector valued
forms. The result, however, contains the variable p, which we have not yet interpreted geometrically. After
extending the definition of the interior product to objects containing p,,, we will get the relation [d, 1x] = 1{6 K},
i.e. {0,...} can be seen as an induced differential from the space of operators. For forms w(@, this simply reads
[d,2,] = 2d,- The definition dK = {0, K} thus seems to be a reasonable extension of the exterior derivative to
multivector valued forms. Let us first provide the necessary definitions.

Consider a phase space function, which is of arbitrary order in the variable pj

T(t7t/)t”)(x7 C, b,p) = Tm1...mt Mt Ry ('T) cmt. e bm1 e bmt/plq o 'pk‘t// (628)
T is symmetrized in k; ... kys ,while it is antisymmetrized in the remaining indices. Using the usual quantization
rules b — %% and p — %8% with the indicated ordering (conjugate momenta to the right) while still insisting
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on (6.14) as the relation between quantum operator and interior product, we get an extended definition of the
interior product (6.12,6.13):

Z. t/+t// . , .
(et ') = <h> T(t’t ) = (629)
atl at//
= Tm m nl...nt/kl...ktu mi o, Mt — 6-30
Lot ¢ ¢ oecnt - .. Oene Oxkr . Qxker ( )
lT(t,t’,t”)p(T) - Tml‘..mtnlmntlklmkt” le et Cmt {bnlv { Tty {bnt/ ) {pkla { Tty {pktu ) P(T)}}}}}} == (631)
r Nt K1 Ryt at,/

The operator 7 will serve us as an embedding of T' (a phase space function, which lies in the extension of the
space of multivector valued forms by the basis element py) into the space of differential operators acting on
forms. Because of the partial derivatives with respect to x, the last line is not a tensor and 7" in that sense not a
well defined geometric object. Nevertheless it can be a building block of a geometrically well defined object, for
example in the definition of the exterior derivative on multivector valued forms which we suggested above.
Namely, if we define?

) = o KM (6.33)
— amemnn - (*)kik,k/ : Km...mnmnkpk (634)

We get via our extended embedding (6.32) the nice relation *

2V (W Lgep (6.35)

wkp = [dok]p

. r /
with Lyxp = (K)! ( W1 ) Koo'l O Pty . lyme.m +

() O 1 i (6.36)

L p is the natural generalization of the Lie derivative with respect to vectors acting on forms, which is given
similarly £,p = [t,d]p. As 1k is a higher order derivative, also Lk is a higher order derivative. Nevertheless, it
will be called Lie derivative with respect to K in this thesis. Let us again recall this fact: if p; appears in a
combination like dK, there is a well defined geometric meaning and dK is up to a sign nothing else than the Lie
derivative with respect to K, when embedded in the space of differential operators on forms. The commutator
with the exterior derivative is a natural differential in the space of differential operators acting on forms, and
via the embedding it induces the differential d on K. It should perhaps be stressed that the above definition
of dK corresponds to an extended action of the exterior derivative which acts also on the basis elements of the
tangent space

d<6m) = DPm (637)

This approach will enable us to give explicit coordinate expressions for the derived bracket of multivector valued
forms even in the general case where the result is not a tensor: In the space of differential operators on forms,
we have the commutator [1x,2r] and its derived bracket (C.51) [1x,atr] = [[tx, d],21], while on the space of
multivector valued forms we have the algebraic bracket [K, L]A and want to define its derived bracket up to
a sign as [dK, L]®. To this end we also have to extend the definition (6.18,6.19) of 2(P), which appears in the

3This can of course be seen as a BRST differential, which is well known to be the sum of the longitudinal exterior derivate plus
the Koszul Tate differential. However, as the constraint surface in our case corresponds to the configuration space (px would be the
first class constraint generating the BRST-transformation), it is reasonable to regard the BRST differential as a natural extension
of the exterior derivative of the configuration space. ¢
4The exterior derivative on forms has already earlier (6.9) been seen to coincide with the Poisson bracket with o, which can be
used to demonstrate (6.35):
[doxlp = dixp) — () Kl (dp) =
= {O,’LKp}— (_)lKllK {Ovp} =

(612) Omy K.y " €T TR {bnl, {bw, { -~ {bnk,,p(”}}} +

H()PE - Koy, €™ ---cmk{{o, bn, b, {bnz, { . ,{bnk,,p“)}}}

Pny

(6.31)

7 S
(6.34) arKp
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explicit expression of the algebraic bracket in (6.22) to objects that contain pg. This is done in a way that the
old equations for the algebraic bracket remain formally the same. So let us define®

(p)

lT(t,t',t,”) =
N " o o7
= M. MNI1...0g , 1 1 kg _
=2 < q ) < P—q > Y O VNI e, Py eraar sl G )
q=0
1 P 317 81)
Z<p>T S | (6.39)
p! 7=0 q 8pip e apiq+1ab¢q ...0b;, Ochr ...0ctaOxta+1 .. Ox'e
For p =t' +t" it coincides with the full interior product (6.32): LD (... In addition we have with
T(t.t ") T

this definition (after some calculation) zg%) = [d, zg,? )} and in particular

1 = [d, 1] (6.40)

and the equations for the algebraic bracket (6.16)-(6.22)) indeed remain formally the same for objects containing
Pm

[vpcer oy i) = Ur.1]® (6.41)
Tty = le(z))rf (6.42)
p=>0 g
[T(tvt/at”)7T({vflv{”)}A = Zlg?)f _ (—)(t_tl)(f_f/)z;f)T (643)
p>1
E[T,T](Ap)
1,718, = {TT} (6.44)

which we can again rewrite in terms of “quantum”-operators (6.14) as

[T<k,k'>7Tﬁ<z,z'>} _ Z(?)p[T/T\](Ap): (6.45)

p>1

() (), o4

p>2

It should be stressed that — although very useful — 2(P) is unfortunately NOT a geometric operation any longer

in general, in the sense that zg;gL and also Z(Lp)

(p)
K

dK do not have a well defined geometric meaning, although dK

and L have. 195 p and 15 L are in contrast well defined. zg;gL, for example, should rather be understood as a

building block of a coordinate calculation which combines only in certain combinations (e.g. the bracket [, ]*)
to s.th. geometrically meaningful.

We are now ready to define the derived bracket of the algebraic bracket for multivector valued forms (see
footnote 3 on page 162)

(K049, L00] = [KaL)® = () 4K, 11 = (647
= > —()FERLL 4 ()R, @) g = (6.48)

p=1
_ Z _(_)k—k zfﬂgl} + (_)(k—k +1)(1—1 +1)(_)l—l lffi)K + (_)(k—k VA=) +k—k d(z(Lp)K) (6.49)

p>1

The result is geometrical in the sense that after embedding via the interior product it is a well defined operator
acting on forms. This is the case, because due to our extended definitions we have for all multivector valued
forms the relation

[['LKad]aZL] = Z[K(k,k’),L(l,l’)] (6.50)

and the lefthand side is certainly a well defined geometric object. A considerable effort went into getting a
correct coordinate form for the general derived bracket and for that reason, let us quickly have a glance at the

! 1" ! 1"
sNotethath;:O(tq)(pt_q):(t;t ) S




CHAPTER 6. SIGMA-MODEL-INDUCED BRACKETS 124

final result, although it is kind of ugly:®

’ ’ !
[K,L] = Z_(_)k—k (_)(k —p)(l—p)p! < ]l) ) < k )8me...mn'”nll"'llep...llm...mn"'n+

p>1

’ ’ ’ k l,
+(7)k:+k I+k"+p+pl+pk p! ( ) ) < » >ame...mkp...klnanm...mklepnmn +

/ ! ! k l/ n n n...n
_(_)k I+k"+pl+pk p! ( . ) ) < » >ale...mkp1..4k1 memkl...kp_ll SR L

" oV(l— l kK
+<_)(k p)(l p+1)p! ( b1 > ( ) )Kmmmni..nzl.i.zp1k8kLlplml1mmmn..4n_~_

, ’
_,'_(_)(Ic —l—P)(l—P)p!(k/ _p) ( ]l) ) ( ]; )Km...mnmnll"'lpkLlp...llmu.mnmnpk +

/
7(7)’6 l+1+pk +lpk/ ,p! ( f) > < ; >Km...mkp..,klnmnkLm...mklmkpn“'npk (651)

The result is only a tensor, when both terms with p; on the righthand side vanish, although the complete
expression is in general geometrically well-defined when considered to be a differential operator acting on forms
via 2,7 as this equals per definition the well-defined [[1x,d,2z]. The above coordinate form reduces in the
appropriate cases to vector Lie-bracket, Schouten-bracket, and (up to a total derivative) to the (Frohlicher)-
Nijenhuis-bracket. If one allows as well sums of a vector and a 1-form, we get the Dorfman bracket, and also
the sum of a vector and a general form gives a result without p.

Due to our extended definition of the exterior derivative, we can also define the derived bracket of the
big bracket (the Poisson bracket) via

A

K(k,k/)yd L(l,l/)](l) = _(_)k—k’ [dK, L](Al) — (6.52)

= ()" {ax. 1} (6.53)
which is just the p = 1 term of the full derived bracket with the explicit coordinate expression

[K)d L](Al) — k—k’(_)(k/_l)(l—l)lk,lamemmn...nll Lllm...mnmn +

!’
ktk l+lkl/ame...mk1nanm...mklnmn +
!

k l+ll/alemmn...nmemln...n 4

(=)
(=)
(=)
() E IR Ko™ ™ O L™ ™+
)
(=)

n k'(l—l)(k/ _ l)lk_/Kmmmn...nllkLllmmmn...npk +
_ k/l+k/k/klle,._mk:ln.“nkLm,.,mkln“.npk: (654)
A —K A
I, = [KaLly)— ()" ) [dK, L], (6.55)
p=>2

Like the big bracket itself, also its derived bracket takes a very pleasant coordinate form for generalized multi-
vectors (see (B.79) on page 154). In contrast to the full derived bracket, we have no guarantee for this derived
bracket to be geometrical itself.

6The building blocks are

- — K l n..nij...i n..n
25112[/ = (7)(1c 20 p)p!( p ) ( p )amem e pLip4.4i1m.4.m +
—k ’_1— _ k' l i1 .4
_(_)k k (_)(k: 1-p)(l P)(p+ 1)[( Pl ) < » )KmmmnmnzlmzpkLipmilmmmnmnpk +
!’ ’ / . . .
_(_)kfk (_)(k *P)(lprrl)p! ( ]; ) < pi L ) Km...mnmnzlW’LpilzpaipLip,l...ilm...mnmn
, ’
Z(;’)dK — (_)(l —P)(k+1—P)+pp! ( 2 ) ( l ) memn.“nklmkpakapmklmmmn“.n +
’_ _ k U
+(_)(l p)(k+1 p>p!( ool )Lm n.,.nklu.kpfllalKkpil himem™™

)
— (=) K (o) =) (E=p) 7 ) (

v k1. .k k
( L™ ™ 0P K kymem T DE 0
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Let us eventually note how one can easily adjust the extended exterior derivative to the twisted case:
[d+ HA,ix] = tagx (6.56)
dgK = dK +[H,K]® =dK — (- Y PH (6.57)

p>1

with H being an odd closed differential form. It should be stressed that d+ HA is not a differential, but on
the operator level its commutator [d+ HA,...] is a differential and thus the above defined dy is a differential
as well.

6.2 Sigma-Models

A sigma model is a field theory whose fields are embedding functions from a world-volume X into a target
space M, like in string theory. So far there was no sigma-model explicitly involved into our considerations.
One can understand the previous subsection simply as a convenient way to formulate some geometry. The
phase space introduced there, however, is like the phase space of a (point particle) sigma model with only one
world-volume dimension — the time — which is not showing up in the off-shell phase-space. Let us now naively
consider the same setting like before as a sigma model with the coordinates " depending on some worldsheet
coordinates” o#. The resulting model has a very special field content, because its anticommuting fields ¢™ (o)
have the same index structure as the embedding coordinate (o). In one and two worldvolume-dimensions,
c™ can be regarded as worldvolume-fermions, and this will be used in the stringy application in 7.2. In general
worldvolume dimensions, ¢™ could be seen as ghosts, leading to a topological theory. In any case the dimension
of the worldvolume will not yet be fixed, as the described mechanism does not depend on it.

A multivector valued form on a C'°°-manifold M can locally be regarded as an analytic function of 2™, de" =
c¢™ and 8,, = b,

K(k’k/)(m,dx, 3) _ Kml.‘.mkm'"nkl(x)dxml A Ade™F A Opy N+ A 8nk/ = (6.58)
= K’rrLl..JrLk LT (x)cml e cmk bn1 e bnk/ = K(kﬁk/)('xa C, b) (659)

For sigma models, 2™ — z™(0),pm — pm(0),¢™ — ¢™(o) and b,, — b,,(0) become dependent on the
worldvolume variables o#. They are, however, for every o valid arguments of the function K. Frequently only
the worldvolume coordinate o will then be denoted as new argument of K, which has to be understood in the
following sense

K69 (0) = K& (2(0),¢(0).5(0) = Koy, ™™ (2(0)) - €™ (0) -+ " (0)byy (0) -+ by, (o) (6.60)

Also functions depending on p,,, like dK (z, ¢, b, p) in (6.34), or more general a function 7t t")(z, ¢, b, p) as in
(6.28) are denoted in this way

T (6) = T (2(0), e(0), b(o),p(0))  (see (6.28)) (6.61)
e.g. dK (o) = dK (z(0),c(0),b(o),p(0)) (see (6.34)) (6.62)
oro(c) = o(c(o),p(c)) =c™(0)pm(c) (see (6.8)) (6.63)

The expression dK (o) should NOT be mixed up with the world-volume exterior derivative of K which will be

denoted by d“K(c).2 Every operation of the previous section, like Z(I?)L or the algebraic or derived brackets
leads again to functions of z, ¢, b and sometimes p. Let us use for all of them the notation as above, e.g. for the
derived bracket of the big bracket (6.52,6.54)

KOsk L) i) (0) = [K(k,k’),L(l,l’)} Ei) (z(0), c(0), b(c), p(c)) (6.64)
And even d&&™ = ¢™ and db,, = p,, will be seen as a function (identity) of ¢™ or b,,, s.th. we denote
&c™ (o) = (o) (6.65)
db,, (o) = pw(o) (6.66)
Although dacts only in the target space on z, b, ¢ and p, the above obviously suggests to introduce a differential
— say s— in the new phase space, which is compatible with the target space differential in the sense

s(z™(0)) = & (o) =c"(0) (6.67)

s(bm(0)) = dbp(o) =pm(o) (6.68)

"The index g will not include the worldvolume time, when considering the phase space, but it will contain the time in the
Lagrangian formalism. As this should be clear from the context, there will be no notational distinction. o

8 It is much better to mix it up with a BRST transformation or with something similar to a worldsheet supersymmetry
transformation. We will come to that later in subsection 7.2. To make confusion perfect, it should be added that in contrast it is
not completely wrong in subsection 6.5 to mix up the target space exterior derivative with the worldsheet exterior derivative... 3
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We can generate s with the Poisson bracket in almost the same way as d before in (6.8):

dy —1

Q = /Edw& O(J):/d o ™(0)pm(o), s(...)={Q,...} (6.69)

The Poisson bracket between the conjugate fields gets of course an additional delta function compared to
(6.5,6.6).

{pm(d’),z"(0)} = on6% (o' —0) (6.70)
{b(c'),c"(0)} = "6 —0) (6.71)

The first important (but rather trivial) observation is then that for K (o) being a function of z(o), ¢(c), b(o) as
in (6.60) (and not a functional, which could contain derivatives on or integrations over o) we have

() = () 5y + P gy ) K (0)clo) o) = k() (672)

The same is true for more general objects of the form of T"in (6.61). Because of this fact the distinction between
dand sis not very essential, but in subsection 6.5 the replacement of the arguments as in (6.61) will be different
and the distinction very essential in order not to get confused.

The relation between Poisson bracket and big bracket (6.23,6.44) gets obviously modified by a delta function

, , , 1A
{KW )(o"), LU )(0)} = [KW ), L0 >] @) 5o — o) (6.73)
o e o i a1 A
or more general {T(t’t ("), THE )(U)} = [T(t’t ) Tt )} 0 (o) d%~1(o" — o) (6.74)
The relation between the derived bracket (using s) on the lefthand side and the derived bracket (using d) on
the righthand side is (omitting the overall sign in the definition of the derived bracket)

{SK(k’k/)(J/),L(l’ll)(o')} (622) {dK(k,k’)(o_/),L(l,l')(O_)} (624) [dK(k,k’)’L(l,l')](Al) (O’) 5dw71(0_/ N J) (675)
The worldvolume coordinates ¢ remain so far more or less only spectators. In the subsection 6.5, the world-
volume coordinates play a more active part and already in the following subsection a similar role is taken by an
anticommuting extension of the worldsheet.

Before we proceed, it should be stressed that the replacement of x, ¢, b and p by z(0), c(o),b(c) and p(o)
was just the most naive replacement to do, and it will be a bit extended in the following section until it can
serve as a useful tool in an application in 7.2. But in principle, one can replace those variables by any fields with
matching index structure and parity (even composite ones) and study the resulting relations between Poisson
bracket on the one side and geometric bracket on the other side. Also the differential s can be replaced for
example by the twisted differential or by more general BRST-like transformations. In this way it should be
possible to implement other derived brackets, for example those built with the Poisson-Lichnerowicz-differential
(see [70]), in a sigma-model description. In 6.5, a different (but also quite canonical) replacement is performed
and we will see that the different replacement corresponds to a change of the role of ¢ and an anticommuting
worldvolume coordinate @ which will be introduced in the following.

6.3 Natural appearance of derived brackets in Poisson brackets of
superfields

In the application to worldsheet theories in section 7, there appear superfields, either in the sense of worldsheet
supersymmetry or in the sense of de-Rham superfields (see e.g. [97, 91]). Let us view a superfield in general
as a method to implement a fermionic transformation of the fields via a shift in a fermionic parameter 8 which
can be regarded as fermionic extension of the worldvolume. In our case the fermionic transformation is just
the spacetime de-Rham-differential d or more precisely s, and is not necessarily connected to worldvolume
supersymmetry. In fact, in worldvolumes of dimension higher than two, supersymmetry requires more than one
fermionic parameter while a single 6 is enough for our purpose to implement s In two dimensions, however, this
single theta can really be seen as a worldsheet fermion (see 7.2). But let us neglect this knowledge for a while,
in order to clearly see the mechanism, which will be a bit hidden again, when applied to the supersymmetric
case in 7.2.

As just said above, we want to implement with superfields the fermionic transformation s and not yet a
supersymmetry. So let us define in this section a superfield as a function of the phase space fields with
additional dependence on 8, Y =Y (2(c),p(0),c(c),b(c), ), which obeys °

& (2(0), p(0), €(0),b(0),0) = oY (2(c), p(0), €(0),b(c), 6) (6.76)
with st™(0) = ™ (0),Dm(0) = pm(o) (H=0) (6.77)

9If this seems unfamiliar, compare with the case of worldsheet supersymmetry, where one introduces a differential operator

1
= 0g + 600, and the definition of a superfield is, in contrast to here, 6c¢ Y = €QgY, where dc is the supersymmetry transformation
[ ]
of the component fields (compare 7.2). o
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With our given field content it is possible to define two basic conjugate!® superfields ®™ and S,,

which build up a super-phase-space'!
®"(0,0) = z2™(0)+60c™(0) =z (o) + Osz™(0) (6.78)
Sm(0,0) = by(0)+0py(c) =by(o )Jr 0, (o) (6.79)
{Sm(0.0),2"(0",0)} = {bn(0),0'c*(0")} + 0 {pm(0),2"(0")} = (6.80)
= (0-60)6(c—0d)or (6.81)
——
=5(6—-0")
® and S are obviously superfields in the above sense
09®™(0,0) = sx"(0)+0x<™(0) = D™ (0,0) (6.82)
\\,_/\‘,0_/
C"‘(O’) =
0oSm = d)m(o') +0$m(0) = SS'm(O', 0) (683)
S——
pm (o) 0

as well as sP(0,0) = ¢(0) and sS(o, 0) = p(o) are superfields, and every analytic function of those fields will be
a superfield again.

We will convince ourselves in this subsection that in the Poisson brackets of general superfields, the derived
brackets come with the complete d-function (of ¢ and @) while the corresponding algebraic brackets come with
a derivative of the delta-function. The introduction of worldsheet coordinates o was not yet really necessary for
this discussion, but it will be useful for the comparison with the subsequent subsection. Indeed, we do not specify
the dimension d,, of the worldsheet yet. An argument sigma is representing several worldsheet coordinates o#. It
should be stressed again that the differential d should NOT be mixed up with the worldsheet exterior derivative
d”, which does not show up in this subsection.

Similar as in 6.2, equations (6.60)-(6.66),we will view all geometric objects as functions of local coordinates
and replace the arguments not by phase space fields but by the just defined super-phase fields which reduces
for 8 = 0 to the previous case.

TG (6,0) = TE) (B(0,0),58(0,0), S(0,0),55(0,0)) °=° T ) (5)  (see (6.61))  (6.84)

10The superfields ® and S are conjugate with respect to the following super-Poisson-bracket

é

é

(F(o',0),G(0,0)} = /ddwél/dé (5F(a',o’)/5sk(&,é)mc(a, 0) — 5F (o', 0') /60" (5, é)mG(a 0)) =
- dw =1 ~ ! o ~ 3 g p _ (_\FG .0 & J - F(o
_ /d o/dO (6 (0, 0)/354(5,0) 505610, 0) = ()07, 0) /58 )

which, however, boils down to taking the ordinary graded Poisson bracket between the component fields (as can be seen in (6.80)).
The functional derivatives from the left and from the right are defined as usual via

55Az/ddwél/dé SA/3S(5,8) - 5Sk(5,0) = /ddwél/dé 58:(5,0) —

0Sk(4,0)
and similarly for ®, which leads to
é ~ ~
— S,(0,0) = M(O—-0)" "o —5)=—06Sn(c,0)/Sm (5,0
55,(5.9) (0,0) n ( ) ( ) (0,0)/5m(5,6)
6 -
——®"(0,0) = (0 -0 (o —5)=5D"(0,0)/69™ (5,0
o0 (B~ 0)5™ (0 — 5) = 60" (0, 0) /68" (5,B)
The functional derivatives can also be split in those with respect to the component fields
1) 1) - =
_ % 1) . 1) _ 1) .8 1) _ o
58m(5,8)  dpm(F) by, (5) 50™(5,0) dcm(5) sz (5)

M For Grassmann variables §(8’ — 8) = 6’ — 6 in the following sense
/dB’(B’ @) = /d9’(6’ —0) (F(8) + (6 — 0)9pF(6)) =

/de' 0'F(6) — 0009 F(0) — 06/ F(0) =

F(6)
We have as usual
05(0’' — 9) 600 —0)=600 =060 —-06)=

0'5(0' — 0)

Pay attention to the antisymmetry
50 —-6) = -506-90) o
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For example for a multivector valued form we write
K®)(0,0) = K&K (0™ (0,0),0™(5,6), Sy (0,0)) = (6.85)
———
cm (0‘)
= Koy, (9(0,60)) D™ (0,0) ... D™ (0,0)8,,(0,6) ... S, (0,0) °=" K"+ (o) (6.86)
—— (6.60)

c™1 (o)

Likewise for all the other examples of 6.2:

e.g. dK(0,0) = dK (®(0,0),0(0,0),S(0,0),s5(c,0)) (6.87)
or o(c, ) o (sP(o,0), sS'(a 0)) (o ) m(0) = o(o) (6.88)

’ ’ A ’ ’ ! (A)

K &R G L) 0) = [kt 100 (00, 0),90(0,0 0 0 RN AC :
AL (0.0) = [KOEL0] T (0(6,0),58(0:0). 5(0,0).55(0.0) = | |, (@) ©89
& (0,0) = D™ (0,0) =c"(0) (6.90)
db,,(0,0) = sS,,(0,0) =pn(o) (6.91)
For functions of the type T ") (5, 0) we clearly have

artt (o, 9) = s(T(t’t/’tﬁ)(U,B)) (6.92)
in particular dK**) (0, 0) = S(K(k’k/)(o,O)) (6.93)

As all those analytic functions of the basic superfields are superfields (in the sense of 6.76) themselves, g can
be replaced by s in a @-expansion, so that we get the important relation

TG (g,0) = TE) (0) + oIttt (o) (6.94)
K®)(5.0) = K®) () +0dK®*) (o) (6.95)
This also implies that dI'(c, ) and in particular dK (o, 8) do actually not depend on 6:
dK*F) (g, 0) = AKFF) () (6.96)
Now comes the nice part:
Proposition 1  For all multivector valued forms K& L) on the target space manifold, in a local coordi-

nate patch seen as functions of ™, ™ and 0,, as in (6.10), the following equation holds for the corresponding
superfields (6.85)

(K®+) (5", 0"), L) (5,0)} = 60/ — 0)5(c — o) - [dK, L](Al)(o', 0) +0p6(0 —0") (0 — o) |K, L](l)(a, 0)|(6.97)
——— —

=1

—(=)F M KLy

where [K, L](Al) is the big bracket (6.23) (Buttin’s algebraic bracket, which was previously just the Poisson bracket,

being true now up to a 5(o — ') only after setting @ = 6’) and [K,dL](Al) is the derived bracket of the big bracket
(6.52).

Proof  Using (6.95), we can simply plug K(o’,0') = K(o’) + 0'dK (¢’) and L(c,0) = L(o) + 6dL(o) into
the lefthand side:

{K(0'.0),L(0.0)} =
= {K(0),L{0)} + 0/ {dK (o), L(0)} + (=) O {K (o), dL(0)} + (—)* "' 00/ {AK (o"), dL(0)} = (6.98)
= {K(0),L(0)} + (6' = 0){dK ("), L(0)} + 0A{K (o), L(0)} — 00'A{dK (o"), L(7)} = (6.99)
O 50— o) (1K LI (0) + 6dIK, LI () + (6 = 0)3(e — o) (1dK, LI} (o) + 6d[dK, LI} () ) = (6.100)
O 50— ') [K, LIS (0,0) + (8" — 0)5(0 — o) [dK, L]}, (0,6) O (6.101)

There is yet another way to see that the bracket at the plain delta functions is the derived bracket of the
one at the derivative of the delta-function, which will be useful later: Denote the coefficients in front of the
delta-functions by A(K, L) and B(K, L):

{K(c',0"),L(c,0)} = A(K,L)-6(0" — 0)d(c — ') + B(K, L)(0,0) 996(0 — 8") 6(c — o) (6.102)
T



CHAPTER 6. SIGMA-MODEL-INDUCED BRACKETS 129

In order to hit the delta-functions, it is enough to integrate over a patch U (o) containing the point parametrized
by 0. We can thus extract A and B via

A(K,L)(0,0) = /dﬁ’/U( )ddw}J’{K(a’,G’),L(a, )} = (6.103)
_ /de'/d"“”a]’ [K(o') + 0'dK(0"), L(0,0)} = (6.104)

= /ddw}]’{ dK (') ,L(c,0)} (6.105)

——
299K (57 ,0)

B(K,L)(0,0) = /dﬂ’/U( )ddw?r]'(al70){K(0/,0/),L(0, 0)) = (6.106)
- /ddw&]’ (K(0',0),L(5,0)} |or—0 (6.107)

= A(K,L) = B(dK,L) (6.108)

It is thus enough to collect in a direct calculation the terms at the derivative of the delta-function and verify
that it leads to the big bracket. (]

6.4 Comment on the quantum case

In (6.14) the embedding via the interior product into the space of operators acting on forms was interpreted as
quantization . In the presence of world-volume dimensions, the partial derivative as Schroedinger representation
for conjugate momenta is no longer appropriate and one has to switch to the functional derivative. Remember

O™ (0,0) ™ (o) + 6c™ (o), dd™(0,0) = c™(0) = dP(o) (6.109)
Sm(c,0) = by,(o)+ 0py(o), dsS,.(c,0) = p(o) =dS(o) (6.110)

The quantization of the superfields in the Schroedinger representation (conjugate momenta as super functional
derivatives) is consistent with the quantization of the component fields (see also footnote 10)

. hoo hoS ho§
Sm(0.0) = 5 En5.0) ~ Toeme) T 07 6o (o) (6.111)
= |S,(0o, 9),@"(0',0’)} = ? <5c"(j(0) +05$’S(0)) (a"(c") +0'c"(0")) = (6.112)
= ?5;; (6—-0")é(c—0) (6.113)

The quantization of a multivector valued form, containing several operators S at the same worldvolume-point,
however, leads to powers of delta functions with the same argument when acting on some wave functional. This
is the usual problem in quantum field theory and requires a model dependent regularization and renormalization.
We will stay model independent here and therefore will not treat the quantum case for a present worldvolume
coordinate o. Nevertheless it is instructive to study it for absent o, but keeping 6 and considering “worldline-
superfields” of the form

O™(0) = & +6cT,  dT(O) =" (6.114)
Sm(e) = bm+9pma d‘sm(e):pm (6115)

Quantum operator and commutator simplify to

Sn(@) = ?5@2(0):?327%* Lo (6.116)
= Sm(e),ci)“(o’)} = ?5;1(9—9’) (6.117)
[Sm(o),dfb”(e’)} - ?5;; (6.118)

In contrast to o, products of 8-delta functions are no problem.
The important relation K(0) = K + 0dK (6.95) can be extended to the quantum case as seen when acting
on some r-form.

(6.94)

ZK(k,k/)p(T)(e) le—i—Hd(le) = (6119)
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6.35 o
6.2 1kp+ 0 (sz,o 4 (—)Fk )dep) = (6.120)
= wx(0)(p(9)) (6.121)
with 1(0) = g +0[d,1x] (6.122)
In that sense we have (remember K = (%)kl 1K)
K®K@g) = K& 4 edK (6.123)
with ax %2 {d, K} (6.124)

where the explicit form of this quantized multivector valued form reads

2% ! h g Ny..Mp m m 4 J
K&K (g) = <Z> Koy, ™ (2(0)) dB™1(0) ... dD ’«(9)5@”1(0) 5 () (6.125)

In the derivation of (6.122), 1x and p both were evaluated at the same 6. Let us eventually consider the general
case:

K& (00 (9) = (K + e’d’f() (p+ 0dp) = (6.126)
= Kp+0dKp+ (=) "oKdp+ (—)F+06'dkdp = (6.127)
- Rp+ ed(f?p) (6 —0) (d?{,o +6d (chp)) (6.128)

The relation between quantum operators acting on forms and the interior product therefore becomes modified
in comparison to (6.14) and reads

.
ROH)(6)0(8) = (ﬁ) (150(8) + (6~ 0) 1a0(6) ) (6.120)
(=)E=H Licp

Proposition 2  For all multivector valued forms K(k”“/), LAY on the target space manifold, in a local coordi-
nate patch seen as functions of z™,de™ and 0, as in (6.10), the following equations holds for the corresponding
quantized worldline-superfields (6.125) K(0) and L(6):

R (9), L00(8)] = Z(’j)p(aeaw—e’)[ELT@)w)w(e’—ondﬁ@)(e)) (6.130)

p>1
[K®*(8"), L1 (8)]p(8) =
7 k41 ~ ~ ~

= <) (Z[K’L]Ap(r) (0) + 6(0 - G)Zd{K,L]Ap(T) (0) +

+5(6' — 6) (z[dK’L]A P (0) +5(0 — 01y p<r>(é)) ) (6.131)

=1

Again the algebraic bracket (C.44) comes with the derivative of the delta function while the derived bracket (6.47)
comes with the plain delta functions. But this time the algebraic bracket is not only the big bracket [, ](Al), but
the full one.

Proof Let us just plug in (6.123) into the lefthand side:

[K(0'),L(0)) = [K+6dK,L+6dl]= (6.132)
= KL+ 0dK, L]+ (=) MK, dL] — (-)FMe'e[dK, dL] =  (6.133)
C2Y 1R i+e [d, K, ﬁ]} (0 —9) ([d?(, i+ [d, [dx L]D = (6.134)
= [K,L)(6)+ (6 —0)[dK , L] (6.135)
Remember now the algebraic bracket (C.43)
[rcin,tpaan] = yrpa = ZZ[K’L]E‘I,) (6.136)

p>1
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with [K, L) = &P L~ (—)FE0=0,P g (6.137)
or likewise written in terms of K and L
A~ ’ A ’ h p — A
[KERD LD =3 <Z> K, L], (6.25=6.138)
p>1

Due to (6.45) we have exactly the same equation for [d/l\(, L]. Plugging this back into (6.135) completes the
proof of (6.130). The second equation in the proposition is just a simple rewriting, when acting on a form,
which enables to combine the p-th terms of algebraic and derived bracket to the complete ones. O

6.5 Analogy for the antibracket

In the previous subsection the target space exterior derivative d (realized in the o-model phase-space by s) was
induced by the the derivative Jg with respect to the anticommuting coordinate. But thinking of the pullback of
forms in the target space to worldvolume-forms, dcan of course also be induced to some extend by the derivative
with respect to the bosonic worldvolume coordinates o* (including the time, because we are in the Lagrangian
formalism now) or better by the worldvolume exterior derivative d”. To this end, however, we have to make a
different identification of the basis elements in tangent- and cotangent-space of the target space with the fields
on the worldvolume than before, namely'?

& — d"z2™(0) =d"0"0,2™(0), O — x! (o) (6.139)

m

where . is the antifield of 2™, i.e. the conjugate field to ™ with respect to the antibracket'®. Let us rename
0" = do* (6.140)
For a target space r-form
P (@™ &™) = oy, (@) dE™ ™ (6.141)
we define (in analogy to (6.85), but indicating that we allow in the beginning only a variation in o)
p6) (@) = pVE"(0),d"C"(0)) = .., (2(0))d"™ (@) - 2™ (o) (6.142)

Attention: this vanishes identically for r > dy, (worldvolume dimension).
The worldvolume exterior derivative then induces the target space exterior derivative in the following sense

d"py’ (o) = (d")e(0) (6.143)

Again both sides vanish identically for now r + 1 > d,, which means that in this way one can calculate with

target space fields of form degree not bigger than the worldvolume dimension. If we want to have the same

relation for Kék’k/)(a) (defined in the analogous way), we have to extend the identification in (6.139) by

Pm dw.’Bj;L(O') (6144)

I2This identification resembles the one in [71] with 8., — pm(z) and &™ — 92™(z), or de™ ---de™» —
et bpdy ™ (o) - Op,x™P (o) in [73]. It is observed in [71] that the Poisson bracket induces the Dorfman bracket between
sums of vectors and 1-forms (in generalized geometry) and in [73] more generally that the Poisson-bracket for the p-brane induces
the corresponding bracket between sums of vectors and p-forms (which is called, Vinogradov bracket in [73]). As dz™ and p.,, are
commuting phase space variables, higher rank tensors would automatically be symmetrized (only volume forms, i.e. p-forms on a
p-brane, can be implemented, using the epsilon-tensor). Symmetrized tensors and brackets inbetween (e.g. the Schouten bracket
for symmetric multivectors) make sense and one could transfer the present analysis to this setting, but in general a natural exterior
derivative is missing. Therefore the analysis for the above identifications is done in the antifield-formalism. The appearing derived
brackets will also contain the Dorfman bracket and the corresponding bracket for sums of vectors and p-forms and in that sense
the present approach is a generalization of the observations above. o

13The antibracket looks similar to the Poisson-bracket, but their conjugate fields have opposite parity, which leads to a different
symmetry (namely that of a Lie-bracket of degree +1 (or -1), i.e. the one in a Gerstenhaber algebra or Schouten-algebra, see
footnote 1 of Appendix C)

0

(A,B) = /d%w ((5A/w;r(&)6x:ﬁ8—6A/6xk(&) =10 B) =
_ /d%w (6A/a:2’(&)6x%(&)37(7)(A+1)<B+1)5B/m;(5)le(&)A)

(A,B) = —(0)ADBHD (B a)
@hOME) = Gt B =~ (ko)
@™(0),B) = ——2 B=(1)%(Ba"(0) o

5:1:2,(0)
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and get
Ky () = (@K)g(0) (6.145)
with
K§ (o) = KM (a7(0),d 2™ (0), @7 () (6.146)
(dK(k,k’))e(O.) = drkk) (z™ (o), d"x™(0), x ) (0), d" ;) () (6.147)

The analysis is thus very similar to that of the previous section.

Proposition 3a For all multivector valued forms K®R) LG o the target space manifold, in a local coordi-
nate patch seen as functions of ™ ,dc™ and 8,,, the following equation holds for the corresponding sigma-model
realizations (6.146,6.147)

(Ko(0"),Lo(0)) = ([K.aLl§) ) 4(0)0% (0 — 0") = (=) ¥ 0#0,6% (0 — o') ([K, LI} ) o(0) (6.148)
N——

—(—)FM [dK, L],

Proof The proof is very similar to that one of proposition 3b (6.168) and is therefore omitted at this
place. O

Conjugate Superfields With 8" = d"c* we have introduced anticommuting coordinates and it would be nice
to extend the anti-bracket of the fields 2™ and . to a super-antibracket of conjugate superfields. Remember,
in the previous subsection we had the superfields & = ™ + 6¢™ and its conjugate S,,. There we had one 6
and two component fields. In general the number of component fields has to exceed the worldvolume dimension
dy, (the number of 0’s) by one, s.th. we have to introduce a lot of new fields to realize conjugate superfields.
But before, let us define the fermionic integration measure p(0) via

[10)50) = S Bopi) = L Ll 0) (6.149)

The corresponding d,-dimensional J-function is
o0 —0) = (@' -0 (0% — %) = (6.150)
- (@7 —01) ... (@M — @t ) = (6.151)

d '6M1~~~de
we

d
- 1
— § kl(d — k)l €ir et Q'Hr ... Q'HEQHE+L L GPdw (6.152)
k=0 "NV )

£(6) (6.153)

[ ue5te - 0)1(6)
(0 —0) = (=)~ (0—8) (6.154)

For the two conjugate superfields, call them ®™ and ®;" we want to have the canonical super anti bracket
(@} (',6'),2"(0,0)) = 616%™ (0 — 0)5™ (6 — ) = — (@"(0,0), B, (07, 0")) (6.155)

From the above considerations about the fermionic delta function it is now clear, how these superfields can
be defined (they are known as de Rham superfields, because of the interpretation of 8" as d“o*; see e.g.
[97, 91]):

®"(0,0) = a™(o) +ay, (0)0"™ +ay, , (0)@M O Y oy (0)08 - 080 (6.156)
1 1
B0 0) = G, 0 0w (0) ey, 07 01 e ()
1 1

91 .. @2 g Pt (o) 4 4 @}t (o) (6.157)

d [el"l-wﬂdw m
—

+m€m..-ww

The component fields with the matching number of worldsheet indices are conjugate to each other, e.g.

(erm#z(o.')’xn (U)) = 5" 5#1#25dw(g_g’) (6.158)

m [ 282 m-rive
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For the notation with boldface symbols for anticommuting variables, the worldvolume was assumed to be even-
dimensional. In this case, one can analytically continue the coordinate form of multivector-valued forms of the
form

K& (2 de,8) = Ky ™™ de™ A Ade™ A By A+ Ay, (6.159)

to functions of superfields (in odd worldvolume dimension one would get a symmetrization of the multivector-
indices) and redefine K (o, 0) of (6.85) to

K& (50) = K& (9(0,0),d"®(0,0), 87 (0,0)) = (6.160)
= Km1mk T (q))dwq)ﬂh - dTPE @TJ’L_ : q):k/ (6161)
All other geometric quantities have to be understood in this new sense now:

TG (6,0) = T (8(0,0),5(0,0), 87 (0,0),d"®T(0,0))  (see (6.28)) (6.162)

To stay with the examples used in (6.84)-(6.91):

eg. dK(0,0) = dK (®(0,0),d"®(0,0),®"(0,0),d"®"(0,0)) (compare (6.34)) (6.163
oro(c,0) = o(d"®(c,0),d"®"(0,0)) = d"®"(0,0)d"®,! (5,0) (compare o= c"p,,)(6.164
’ ’ A ! ! (A)
KR ) L0 = [KW),LW >L) (B(0,0),d"D(c,0), 8" (0,0),d"B* (0, 0)) (6.165
1
& (0,0) = d""(0,0) (6.166
(d0,)(0,0) = (dby,)(0,0) = d"®;) (0,0) (6.167

Note that the former relation K(o,0) = K (o) 4+ 0dK (o) does NOT hold any longer with those new definitions!
Nevertheless we get a very similar statement as compared to propositions 2 on page 128:

Proposition 3b  For all multivector valued forms K(’“’k'),L(l’l') on the target space manifold, in a local coor-
dinate patch seen as functions of ™ ,dx™ and 8.,, the following equation holds for even worldvolume-dimension
d. for the corresponding superfields (6.160):

)
)
)
)
)

(K(0',0'),L(0,0)) = 6(0' — 0)6™(0' — 0) [K.aL](}(0,0) — (=) 0"9,6% (0 — o')5%(6' - 0) [K, L]} (0,0)
ﬁ,/—/
—(—)F ¥ [aK, L)

(6.168)
where [K, L] is the big bracket (6.23) and [K ,dL](Al) is the derived bracket of the big bracket (6.52).
Note that 0 and 0 have switched their roles compared to the previous subsection (6.97), where the algebraic

bracket came together with the derivative with respect to @ of the delta-functions, while now it comes along with
. of the delta-functions.

Proof Let us use again the second idea in the proof of proposition 2, i.e. first collect the terms with
derivatives of the delta function, only to show that one gets the algebraic bracket, and after that argue that the
term with plain delta functions is its derived bracket. In doing this, however, we will need to prove an extension
of the above proposition to objects like dX (or more general an object T(**") as in (6.28)) that contain the
basis element p,,, which is then replaced by d"®; as e.g. in (6.163).

(i) The antibracket between two such objects T" and T gets contributions to the derivative of the delta-function
only from the antibrackets between d"®™ and ®; and between ®” and d“®; (compare (6.155))

(@} (o,0") dW<I>”(a,0)) = 070"0,6% (o — o)™ (6" — 0) (6.169)
(d"®"(0’,0"),®, (0,0)) = 0610"0,0% (o' — o)™ (6" — ) (6.170)
(d"®} (o 0’ ),2"(0,0)) = —6560"0,0% (o' — 0)5™ (0" — ) (6.171)
(@"(0’,0),d"®} (0,0)) = —6"(2"(c",0),0,®}(0,0)) = 6.6"0,6™(c/ — 0)5™(6' — 0) (6.172)

The last case is the only one where we had to take care of an extra sign stemming from 6 jumping over the
graded comma. Comparing this to (6.5), where we had

{bp,c"} = & (6.173)
{c", by} = o (6.174)
{pm,z"} = o (6.175)
{a",pn} = -0, (6.176)
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one recognizes that the only difference is an overall odd factor 6"9,,6% (¢’ — )d% (6" — 6) (the delta-function
for @ is an even object for even worldvolume dimension dy,) and an additional minus sign for the lower two
lines, but the corresponding indices just get contracted like for the Poisson bracket. After such a bracket of
basis elements has been calculated (which happens just between the remaining factors of T (at o’) on the
left and the remaining factors of 7' (at ¢) on the right) this overall odd factor has to be pulled to the very
left which gives an additional factor of (—)'~*" (in the notation of (6.28)) plus an additional minus sign for
the upper two lines which compensates the relative minus sign of before and we get just an overall factor of
—(—)1049,6% (0! — 0)d% (6" — @) in all cases at the very left as compared to the Poisson-bracket. The
remaining terms are still partly at o and partly at ¢’, but using

A(0)B(0")0,0(0 — 0') = A(0)d,B(0)é(0c — o) + A(0)B(0)d,6(c — ') VA,B (6.177)

we can take all remaining factors in T(o’,8’) at o, while 8’ is set to  anyway by the é-function. We have thus
verified one of the coefficients of the complete antibracket:

(T(c',0),T(0,0)) = —(=)'""6"0,0% (0 —')5% (8 — 0) [T, T} i) (0,0) +

+6% (0 — 0")o% (0" — §)A(0, ) (6.178)

with A(o, 0) yet to be determined.
1A
(ii) It remains to show that A(o,0) is a derived expression of [T, TL ; A hint to this fact is already given in
1

(6.177), but this is not enough, as there is also a contribution from the (®™, ®;)-brackets. In order to get a
1A
precise relation between A(c,8) and [T, T} (0,0), let us see how one can extract them from the complete
1
antibracket. In order to hit the delta functions with the integration, it is enough to integrate over the patch
U(o) containing the point which is parametrized by o*. The last term in (6.178) is the only one contributing
when integrating over ¢’ and 0

A(o,0) = o )ddWJ' / w@) (T(c',8'),T(,0)) (6.179)

That the first term on the righthand side of (6.178) does not contribute is not obvious as U(o) might have a
boundary. However, for this term one ends up integrating a d.,-dimensional delta-function over a boundary of
dimension not higher than d,, — 1, so that one is left with an at least one-dimensional delta-function on the
boundary which vanishes as the boundary of the open neighbourhood U(o) of o of course nowhere hits o.
1A
Extracting the algebraic bracket [T , TL : is a bit more tricky. One can do it via
1

2N

for any fixed . |:T, Ti|A (J’ 0) _ _(_)t—t/ " )ddwo'//,u(el) <60 — 1) 8%2>\(T(O'/70,)7CZ~—‘(0',0)) (6180)

index A (1) eUk

eol)\

The boundary term proportional to ( g

— 1) 8% (o — o') appearing above on the righthand side after partial
integration vanishes as ¢’ in the prefactor is set to o via the delta function.

, RYN
The claim is now that A(c,0) = —(—)!* [dT, T} " (0,8). So let us calculate the righthand side via (6.180):

2N

[JF,T]A (0,8) = —()+1t o / (6 <€C’A—1> O (dr(o’,0'),(c,0) = (6.181)

o W
DN

= (=) / d™ o’ / 1(6') (e,, —1> ia'“a;(T(a/,e'),T(a,e)) (6.182)

e 06>
(T,T) contains in both terms a plain é-function for the fermionic variables €, so that we can replace 8’ by 6.

Integration by parts of a,g (where possible boundary terms again do not contribute because of the vanishing of
the delta function and its derivative on the boundary) delivers the desired result

ar, T}i) (0,0) = (=) / o’ / u(@) (T(',6'),1(0,6)) = —(-)'"" A(0,0) (6.183)

This completes the proof of proposition 3b. (]



Chapter 7

Applications in string theory or 2d CFT

In the previous section the dimension of the worldvolume was arbitrary or even dimensional. The appearance
of derived brackets (including e.g. the Dorfman bracket) is thus not a special feature of a 2-dimensional sigma-
model like string theory. There are, however, special features in string theory. Currents in string theory
(which have conformal weight one) naturally are sums of 1-forms and vectors, if one takes the identification
O12™(0) < d&&™ and pp(0) < O, as in [71] (see footnote 12), e.g. Iz™ = O1a™ — Jpz™=dr™ — ™", .
This is closely related to the identification in our previous section in the antifield formalism. In addition, only
in two dimensions a single 6 can be interpreted as a worldsheet Weyl spinor (in 1 dimension it can be seen as
a Dirac-spinor, but in higher dimensions the interpretation of 8 as worldvolume spinor breaks down). As we
ended the last section with the antifield formalism, which therefore is perhaps still more present, let us start
this section in the reversed order, beginning with the application in the antifield formalism.

7.1 Poisson sigma-model and Zucchini’s “Hitchin sigma-model”

Remember for a moment the Poisson-c-model [98, 97]. It is a two-dimensional sigma-model (dy, = 2) of the
form

1
So= [ muda™ + 3P @, (7.1
P

where n,,, is a worldsheet one-form. This model is topological if and only if the Poisson-structure P™"(z) is
integrable, i.e. the Schouten-bracket of P with itself vanishes

So topological <«— [P,P]=0 (7.2)

It gives on the one hand a field theoretic implementation of Kontsevich’s star product [97] and is on the other
hand related to string theory via a topological limit (big antisymmetric part in the open string metric), which
leads to the relation between string theory and noncommutative geometry.

The necessary ghost fields for the action can be introduced by extending = and 7 to de Rham superfields as
in (6.156,6.157)

®"(0,0) = a"(0)+ x;'(0) 0"+ z},,(0) 610" (7.3)
——
E“,,T]+V7L _%€M1H2ﬁ+ m
1 1
@; (a'/, Ol) = yelhlw xvtzulﬂz (U/) +0,H1 eumz m;z#z (OJ) +§€N1H2 0/M1 0/M2 m’j;L(OJ) (74)
. —————
=B, (0") e

One can use Hodge-duality to rename some component fields as indicated. 3,,, is then the ghost field related
to the gauge symmetry. The action including ghost fields and antifields simply reads

1
S = /d%/u(o) @jnd%mipm”(@)@,ﬁ@: (7.5)

The expression under the integral corresponds to the tensor —d,," dc™ A 9, + %P'mnam A8, and the antibracket
in the master-equation (S, .S) implements the Schoutenbracket on P, which is a well known relation. Therefore
we will concentrate on a second example, which is very similar, but less known.

Zucchini suggested in [91] a 2-dimensional sigma-model which is topological if a generalized complex structure
in the target space is integrable (see subsection B.2 on page 149 and B.4 on page 153 to learn more about
generalized complex structures). His model is of the form

5 = / d*o / 1) (&) do™+) %Pmn(@w;@; - %an@)d%md%“—J”md%mqﬁ (7.6)
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where P™" Q,,,, and J™,, are the building blocks of the generalized complex structure (B.22)
_ 7.7
j N ( _an _Jnm ( )

The first term of (7.6) can be absorbed by a field redefinition as already observed in [92]. Ignoring thus the first
term and using our notations of before, S can be rewritten as

/ d*o / J(®,d"®, &T) (7.8)

Calculating the master equation explicitely and collecting the terms which combine to the lengthy tensors for
the integrability condition (see (B.60)-(B.63)) is quite cumbersome, so we can enjoy using instead proposition
3b on page 133. For a worldsheet without boundary its integrated version reads

</dd‘"a’/u(e’)K(a',O'L/ddWU/u(G ) /dd / K,aLl5 ) (0,0) (7.9)

which leads to the relation
(5,8) = 0 = /d2 / T.aJ)5 1) (0,0) =0 (7.10)

The derived bracket of the big bracket of J with itself contains already the generalized Nijenhuis tensor (see in
the appendix in equation (B.81) and in the discussion around)

[jadj]ﬁ) = NMlMQMgt]\/IltM2tM3 — 4T T tMpy = (7.11)
2 _
T=70 Nanoian 8245 4 40 (7.12)
= (™), pr=(p),0) (7.13)
o(dv,p) = &"pn (7.14)
For J2 = —1 the last term is proportional to the generator o (remember (6.8)). In (7.10), however, it appears

with de and p replaced by the superfields as in (6.164)

0(0,0) = d'™(0,0)d"®}(0,0) = —d" (d"™(0,0)],(c,0)) (7.15)

m

which is a total worldsheet derivative and therefore drops during the integration. We are left with the generalized
Nijenhuis tensor as a function of superfields

N(0,0) = N asar (@)L 12410 (7.16)
with t¥ = (d"®™, &) (7.17)
Written in small indices
N(0,0) = Noymgms (®) d¥ ™ d"d™ d"d™ 3N, . (D)B,d O™ d ™2 +
=0
+3N, ™M (D) d D" P B 4+ N (D)D) B B (7.18)

One realizes that the first term vanishes identically (as mentioned in [91]) and only the remaining three tensors
are required to vanish in order to satisfy (7.10).

7.2 Relation between a second worldsheet supercharge and general-
ized complex geometry

In [87] the relation between an extended worldsheet supersymmetry in string theory and the presence of an
integrable generalized complex structure was explored. Zabzine clarified in [90] the relation in an model in-
dependent way in a Hamiltonian description. The structures appearing there are almost the same that we
have discussed before although we have to modify the procedure a little bit due to the interpretation of 8 as a
worldsheet spinor.

Consider a sigma-model with 2-dimensional worldvolume (worldsheet) with manifest N = 1 supersymmetry
on the worldsheet. In the phase space there is only one o-coordinate left. Let us denote the corresponding
superfields, following loosely [90], by

3" (5,0) = 2™(0)+OA(0) (7.19)
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Sn(0,0) = (o) +Opu(0) (7.20)

In comparison to section 6.3, there is a change of notation from ¢™ — A™ and b,,, — p,,, as b and ¢ suggest the
interpretation as ghosts which is not true in this case, where A and p are worldsheet fermions. Introduce now,
following Zabzine, the generator Qg of the manifest SUSY and the corresponding covariant derivative Dg

Qo = 0o+00, (7.21)
Do = 0 —00, (7.22)
with the SUSY algebra
[Qo,Qp] = 20, =—[De,Dy] (7.23)
[Qg,De] = 0 (7.24)

Qg is the sum of two nilpotent differential operators, namely Jp and 69,. Acting on the Superfields ™ and
S™, they induce the differentials s and §on the component fields, which are in turn generated via the Poisson
bracket by phase space functions € (the same as (6.69)) and 2.

Q = /da P (7.25)

Q = —/da Dox” py. (7.26)

s ={Q,2"} = N"&™, 9,={0p0,}=0mn—don), (7.27)
" = {Q,)\m} = —0,2", P =—0,p, = {fl,pk} , (7.28)
D" = Je®™, S, = DS (7.29)

2" = 00,9™, 8S,, = 00,8, (7.30)

The Poisson-generator for the SUSY transformations of the component fields induced by! Qg is thus the sum
of the generators of sand s

Q = Q+Q= /da Nepy, — 0p2% p, = —/da/dngqﬂfsk (7.31)

In (6.76) superfields were defined via dgY = &Y in order to implement the exterior derivative directly with Jg.
In that sense ®, S, dP, dS and all analytic functions of them were superfields. In the context of worldsheet
supersymmetry, one prefers of course a supersymmetric covariant formulation. Let us therefore define in this
subsection proper superfields via

Y is asuperfiled <= QY = {Q, Y} =(s+3Y (7.32)

which holds for ®, S, Dg®, DgS, all analytic functions of them (like our analytically continued multivector
valued forms) and worldsheet spatial derivatives d, thereof (but not for e.g. Qp®. This means that although we
have Qu® = (s+ 8 ® this does not hold for a second action, i.e. Qa® # (s+ 8)2®, which explains the somewhat
confusing fact that the Poisson-generator @ has the opposite sign in the algebra than Qg

{Q.Q} = -2pr (7.33)
where we introduced the phase-space generator P for the worldsheet translation induced by 0,
P = /da agmkpk+6gAkpk = /da/d@ 9,®" S (7.34)

The same phenomenon appears for the differentials s and 8 The graded commutator of J9 and 60, is the
worldsheet derivative [0, 80,] = J,, while the algebra for sand §has the opposite sign

5§Y(0,8) = —8,Y(0,0) (7.35)
1We have
Qe(bm = A" + gao'xmy QB Sm = pm + eaopm
Dg®™ = A" (0) — 09,2™, Do Sm = pm — 005p,,
bex™ = e, 0e A" = —e0x™

0ePry = EPm, OePm = —€05 Py, ©
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sﬁ:{n,ﬁ} - P=%2 (7.36)

One major statement in [90] is as follows: Making a general ansatz for a generator of a second, non-manifest
supersymmetry, of the form (some signs are adopted to our conventions)

Q, = %/da/d@ (P (9)S1 S0 — Quun (P)Dg®™Dg®™ + 2™ ,(®)S,, D®™) (7.37)

and requiring the same algebra as for @ in (7.33)

{Q2.Q,} = —2P (7.38)
(1@.@:) = 0) (7.39)

is equivalent to
TN = <_J57:n —PJT:;) (7.40)

being an integrable generalized complex structure (see in the appendix B.2 on page 149 and B.4 on page 153). On
a worldsheet without boundary, the second condition is actually superfluous, because it is already implemented
via the ansatz: The expression in the integral is an analytic function of superfields and therefore a superfield
itself. According to (7.32) we can replace at this point the commutator with @ with the action of Qg and get

{Q,Qz}:/dcr/de Qe(...):/da 8y(..) =0 (7.41)

For the other condition, the actual supersymmetry algebra (7.38), the aim of the present considerations should
now be clear. The generalized complex structure J itself is a sum of multivector valued forms

J = jMN(x)tMtN = P (2)0m A Oy — Quun (x)de™de™ + 2J™, ()8, A 2™ (7.42)
which can be seen as a function of x and the basis elements
J =J(z,d, D) (7.43)

In 6.3 we replaced the arguments of functions like this with “superfields” ™ — ®™, dc™ — 0 ®™ and 9,,, — Sy,.
The name superfield might have been misleading, as Jp® is only a superfield in the sense that it implements
the target-space exterior derivative via g, but it is not a superfield in the sense of worldsheet supersymmetry.
In a supersymmetric theory one prefers a supersymmetric covariant formulation. Working with dg® as before
is therefore not desirable and we replace 9g® by Dg®, leading directly to Q5 (7.37) which now can be written
as

Q, = %/da/d()]((b(a, 0),De®(c,0), S(0,0)) (7.44)

Apart from the change Jg® — Dg® we expect from the previous section that the Poisson bracket of Q. with itself
induces some algebraic and some derived bracket of J with itself which then corresponds to the integrability
condition for 7. This is indeed the case, but we first have to study the changes coming from dg® — Dg®. In
other words, we need a new formulation of proposition 1 (6.97) in the case of two-dimensional supersymmetry
(Proposition 1 is of course still valid, but it is not formulated in a supersymmetric covariant way. It should,
however, be applicable to e.g. BRST symmetries ). Let us redefine the meaning of K(o,0) in (6.85) for a
multivector valued form K (*:¥)

K(k’k/)(g’ 0) = K(k’k,)((ﬁm(a', 6),De®"(c,0), Sy (o, 9)) — (7.45)
= Ky ™™ (9(0,0)) Dg®™ (5,0) ... Dg®™*(0,0)S,,(0,0)...S,,,(0,0) (Z%Z)K(k’k,)(o) (7.46)

Likewise for all the other examples in (6.84)-(6.91):

T (5,0) = TG (D(5,0),De®(0,0), S(0,0),DeS(a,0)) °=" T 1) (5)  (see (6.61)) (7.47)
e.g. dK(0,0) = dK (9(0,0),Dg®P(0,0),S(0,0),DpS(0,0)) (7.48)
or0(0,8) = o0(De®(c,0),DeS(c,0)) L) D™ (0,0)Dg S (0. 6) °=° o(0) (7.49)

(6.63)
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’ ’ ’ ’ 0=0 ’ ’
K L0016 (0,0) = (KO, LEO) (0(0,0), Do (0, 6), S(0,0), DaS (0, 0)) = [K 4, L] (o) (7.50)
dc™ (o, 0 Dg®™(0,0) = A" (0) — 00,2 (0) (7.51)
CBm(07 9) = DgSm(O', 0) = DPm (U) - eao'pm (U) (752)

Expanding K in 0 yields

K(k’k/)(a,e) _ K(k’k/)((f) +0 (ae,K(k,k')(U’ o) ” 0) = (7.53)
K®&) () + 0 (QQ’K(k’k,)(U, o) ) (7.54)
6'=0
As K is a superfield, we can replace Qg by s+§
K& (50) = K®)(g)+0(s+9K*H) (o) = (7.55)

= K®)(5) 10 ((d+ zv)K(k’k/)) (0)

Vet (7.56)
This is the analogue to the non-supersymmetric (6.95) and delivers the exterior derivative which will lead to the
appearance of the derived bracket. The relation between sand the inner product with a vector should perhaps
be clarified. Remember that all multivector forms at 8 = 0, K(k’kl)(a), are analytic functions of the component
fields 2™, A" and p,,, . But among those fields, Sacts only on A™ and we can express it with partial derivatives
(instead of functional ones) when acting on K:

SK(0) = =052 s m K (2, A, p) = 1, K(0)] ez _g, o (7.57)

0]
O™
in the Poisson bracket of 8K with another multivector valued form L at @ = 0, nothing acts on v* = —d,2*
(which would produce a derivative of a delta function), as L does not contain py. Therefore we have

{8K(0"), L(0)} = 1K, L)(0)]yr—_g, 41 (0 — ) (7.58)
which we will need below. For superfields we have Y (0,0) = Y (o) 4+ 0(s+8Y (o). Applying the same to v yields

v*(0) 4+ 0(s+3vf(0) = —0,2" —O(s+80,2"(0) = (7.59)
= —0,a" — 00, \F(0) = -0, D" (7.60)

Proposition 1b  For all multivector valued forms K(k”“/), LEY) on the target space manifold, in a local coor-
dinate patch seen as functions of x™ ,dx™ and 8,,, the following equation holds for the corresponding worldsheet-
superfields (7.45)

(K™, 0), L (0,0)} = Do (50— 6)(c — ") [K, LI, (0,0) +
+5(6" — 0)(c — o) ( (K, L] (0,0) + [1,K, L]} (0, 0) k:_Mk) (7.61)

_(_)k_k’ [K,dL](Al) _(_)k—k (K0, L]

where e.g. [dK L](l)(gﬂ 0) [dK L](l) ( (07 0), DO(I)(Jﬂ 0)7 S(Ja 0), DGS(G7 0))
The integrated version for a worldsheet without boundary reads

{/da /de K®F) (o /da/doL“” o, 0 (s+~s)/da ([K,dL](Al) — ()" ¥ K, L),

mo,et)

(7.62)
Proof Let us use (7.55) for both multivector valued fields and plug into the lefthand side of (7.61)
{K ( 0),L(0,0)} =
= {K ( )+ 0 (s+9K ('), L(o) + 0(s+9L(0)} = (7.63)
= {K(0"),L(0)} + 6' {(s+ 9K (o), L(0)} + (=) O {K (o), (s+ 9 L(0)} +
+(=)*00' {(s+3K ('), (s+3L(o)} = (7.64)
6)

);
{K(0'), L(0)} + (0" = 0) {(s+§K(0"), L(0)} + O(s+ 8 {K(0"), L(0)} +
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+0'0(s+ 39 {(s+ 9K (o), L(0)} — 0'0 {(s+(s+ YK (0"), L(0)} = (7.65)
= (1+6(s+9) {K( "), L(0)} + (6" — 0) (1 +0(s+9) {(s+§K(c'), L(0)} +
-0'6{ s,ﬂ K(o'),L(0)} = (7.66)
78 ’
= 6(c—0)(1+6(s+9)[K, L](Al) (0)+ (0 —0)(1+6(s+9){(s+9K(c'),L(0)} +
—(0 — 0)00,6(c — o') [K, LI}, (o) (7.67)

Now let us make use of (7.58) and (7.60) to arrive at
{K(c',0"),L(c,0)} =

= Dg (50 —0)6(0 — o) [K, LI}, (0,0) +5(6' — 6)3(0 — o") [(d+ 1)K, L]}, (0,6) o (T6D)

which is the first equation of the proposition. Integrating over 8’ and o’ results in

/ do’ / W' (K('.0). L@.0)} = [(@+n)KL @0 = (7.69)
= (@K L @), 068 (@)K IS, ()70

A second integration picks out the linear part in € and adjusting the order of the integrations gives the additional
sign in (7.62). O
Application to the second supercharge Q,

We are now ready to apply the proposition in the integrated form (7.62) to the question of the existence of
a second worldsheet supersymmetry @Q,. Remember, we want {Q,, @5} = —2P. Due to the proposition, the
lefthand side can be written as

(@:Q) = 649 [do (17071 - T,

7.71
v:—aﬂrkpk) 7 ( )

For J2 = —1, the second term under the integral simplifies significantly

— i\/da[%j,j]é) —/dO’UKjKLjLMtM —/daﬁga:kpk = Q (7.72)

v=—0,zkp,, v=—0,zFp,

Recalling that

(s+90 = N=¥=(s+9Q=-P (7.73)
and Q = / doo(o) (see (6.63)) (7.74)
we can rewrite (7.71) as
=1{Q:.Q,} = i(SJFS) (/da [T.aJ13) +4ﬂ) = (7.75)
_ i(s—i— ) (/ do ([j,dj]ﬁ) —40) (a)> +2§% (7.76)

The righthand side clearly equals —2P for

[T.aTf) — 4o 0 (7.77)

which is again (according to (B.113)) just the integrability condition for the generalized almost complex structure

J.

Conclusions to the Bracket Part

We have seen two closely related mechanisms in sigma-models with a special field content which lead to the
derived bracket of the target space algebraic bracket by the target space exterior derivative. This exterior
derivative is implemented in the sigma model in one case via the derivative with respect to a (worldvolume-)
Grassmann coordinate and in the other case via the derivative with respect to the worldvolume coordinate
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itself. In the latter case this derivative has to be contracted with (worldvolume-) Grassmann coordinates in
order to be an odd differential. This leads to the problem that higher powers of the basis elements vanish, as
soon as the power exceeds the worldvolume dimension as it happens in Zucchini’s application. A big number of
Grassmann-variables is therefore advantageous in that approach. For the other mechanism one rather prefers
to have only one single Grassmann variable as there is no need for any contraction. There is one worldvolume
dimension more in the Lagrangian formalism and for that reason it was preferable to apply there the mechanism
with worldvolume derivatives and use the other one in the Hamiltonian formalism.

If one does not consider antisymmetric tensors of higher rank, but only vectors or one-forms (or forms of
worldvolume-dimension), the partial worldvolume derivative without a Grassmann-coordinate is enough. There
is either no need for antisymmetrization or it can be performed with the worldvolume epsilon tensor. The
nature of the mechanism remains the same and leads to the observations in [71, 73] that the Poisson bracket
implements the Dorfman bracket for sums of vectors and one-forms and the corresponding derived bracket for
sums of vectors and p-forms on a p-brane [73]. In that sense, the present part of the thesis is a generalization
of those observations.

There remain a couple of things to do. It should be possible to implement in the same manner by e.g.
a BRST differential other target space differentials which can depend on some extra-structure and repeat
the same analysis. Symmetric tensors then become more interesting as well, because they need such an extra-
structure anyway for a meaningful differential. From the string theory point of view, the application of extended
worldsheet supersymmetry corresponds to applications in the RNS string. But generalized complex geometry
contains the tools to allow RR-fluxes, which are hard to treat in RNS. It would therefore be nice to find some
topological limit in a string theory formalism which is extendable to RR-fields, like the Berkovits-string [12],
leading to a topological sigma model like Zucchini’s, in order to learn more about the correspondence between
string theory and generalized complex geometry.
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After the conclusions on the bracket part, we would like to recall the general idea of what we did. Apart
from the presentation of the explicit worldsheet BRST transformations, the result of the supergravity-constraint
calculations from Berkovits’ pure spinor string in part II is not new in itself. It is, however, a very important
result and our contribution can be seen as an independent check. This is true in particular, as we used different
techniques at several points. We established a covariant variation in this setting and derived everything in
the Lagrangian formalism, using “inverse Noether”. The argumentation and calculation was done in detail, in
order to allow checks by others, and also some subtle points like the antighost gauge symmetry where discussed
carefully. Also our starting point was more general. Last but not least, the insight from the first part about
superspace conventions served as a very powerful tool throughout. The aim of the calculation in part II was to
make contact to generalized geometry. The derivation of the generalized Calabi Yau condition has been done so
far from the supergravity point of view, and possible quantum or string corrections to this geometry require a
worldsheet calculation. We have therefore derived the supergravity transformations of the fermionic background
fields which serve as the starting point of these considerations. We did not yet calculate any string corrections,
but it could already be of big advantage to know the natural form of the supergravity transformations as they
come out from the string and not from old supergravity considerations. In particular we expect to obtain
more insight about the geometric role of the RR-fields in the super-geometrical setting. Non-commutativity
considerations for the open superstring (e.g. [99, 100, 101]), for example, assign a similar role to the RR-fields
in superspace as the B-field has in bosonic space. And the geometry of the latter (with the field strength H
either seen as a twist or a torsion), are understood much better.

There are several directions ahead. One could try to establish the tools of generalized (not necessarily com-
plex) geometry already in ten dimensions, before compactification. Having the superstring in mind (embedded
in superspace), it would be even more appealing to consider some generalized supergeometry, i.e. structures on
T & T* of the supermanifold. String statements should simplify if one uses a formulation where the structures
of interest appear manifestly. In this context it seems also reasonable to switch to a probably mixed first-second
order formalism of the pure spinor string in general background. Topological limits of this formalism might
lead to something like the Hitchin sigma-model [91] or some supersymmetric version of it. This again could
shed light on the geometric role of RR-fields. Similar to the last point would be the introduction of doubled
coordinates as suggested by Hull[102, 103, 104, 105]. Generalized complex geometry and this doubled geometry
seem to be very closely related. Deriving the first via supersymmetry conditions in a formalism with doubled
coordinates certainly could clarify this relation.

For all these considerations, our insight about brackets and sigma-models and the relation to the integrability
of generalized complex geometry that we obtained in the last part of this thesis will be very useful. What we
learned about superspace conventions should even be useful for everybody working with superspace.
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Appendix A

Notations and Conventions

Within the thesis, a lot of different types of tensors have to be denoted. The choices and sometimes some logic
behind, will be presented here.

The bracket part (III) (including appendices B and C) differs a bit in the notation from the rest, as it does
not treat a superspace. In any case we denote bosonic target space coordinates via ™. In the bracket part,
however, world-volume-coordinates are denoted by ¢*, while in the worldsheet coordinates in the rest are most
often chosen to be complex (2,Z). At some places we write the real coordinates ¢¢ with an worldsheet index
& or ¢, in order to distinguish it from the curved spinorial indices u,v,.... Our metric signature is 'mostly
plus’:ng, = diag (—1,1,...,1).

Superspace In the superspace parts we have 2 = (2™, 6, 9”), where 6 and 0 are anticommuting coordi-
nates with the dimension 16 of a Majorana Weyl spinor in ten dimensions. The hatted index should include

both versions of superspace: ITA (with 6" = éu) and ITB (with 6" = 9”). The grading of the coordinate 2
depends on the index. We therefore prefer to write 2™ = (2™, z#, z#). Writing the fermionic indices boldface
is just a reminder and will not be substantial. A vielbein Fj;* will transform curved indices (from the middle
of the alphabet) into flat indices (from the beginning of the alphabet) and vice verse, e.g. for the pullbacks
of the supersymmetric invariant form 112 = 9x™ E;;4. The entries then have a corresponding index structure
with letters from the beginning of the alphabet: 112 = (T12,T1%,11%). When we want to combine the spinorial

indices only, we write 2™ = (z#,z#) or OM = (0“,@“) or ITIA = (19, T1%). If we want to omit the indices,

(e.g. in functions of the coordinates) we write z for 2, 7 for 2™, 6 for 6™, 6 for 6* and @ for "

Notation for tensors in the bracket part In the bracket-part, we mainly denote target space vector-
fields by a,b,... or v,w,..., 1-forms by small Greek letters «, 3, ... and generalized T' & T™*-vectors by a,b, ...
or v,t,... . For an explicit split in vector and 1-form, the letters from the beginning of the alphabet are
better suited, as there is a better correspondence between Latin and Greek symbols or one can visually better
distinguish between Latin and Greek symbols. Compare e.g. a = a+ « and v = v + (7v).

Higher order forms will be in general denoted by a®, 3@ . or w® n@ o) = There will be exceptions,
however , for specific forms like the B-field B = B,,,d&™ A d&c™. Following this logic, we will also denote
multivectors (tensors with antisymmetric upper indices) by small letters, indicating their multivector-degree
in brackets: a® b@ .. or v® w@ .. .. There are again exceptions, e.g. a Poisson structure will often be
denoted by P = P™"9,, A 0,. The most horrible exception is the one of the beta-transformation, which is
denoted by a large beta ﬁmn in (B.47), in order to distinguish it from forms.

Tensors of mixed type will be denoted by capital letters where we denote in brackets first the number of
lower indices and then the number of upper indices, e.g. T, Most of the time, we treat multivector valued
forms, e.g. the lower indices as well as the upper indices are antisymmetrized. The letters denoting form degree
and multivector degree will often be adapted to the letter of the tensor, e.g. K& LG
Attention: k and [ are also used as dummy indices! Sometimes (I'm sorry for that) the same letter appears
with different meanings. However, in those situations the dummy indices will carry indices which might even
be one of the degrees k or k', e.g. K F-*vLy 4 .

Working all the time with graded algebras with a graded symmetric product (the wedge product), everything
in this thesis has to be understood as graded. l.e. with commutator we mean the graded commutator and
with the Poisson bracket the graded Poisson bracket. They will not be denoted differently than the non-graded
operations. Relevant for the sign rules is the total degree which we define to be form degree minus the
multivector degree. In the field language, it corresponds to the total ghost number which is the pure ghost
number minus the antighost number. It will be denoted in the bracket part by

| K®F) | = k- F (A.1)
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In the rest of the thesis, | ... | will only denote the parity, i.e. +1 for commuting and —1 for anticommuting
variables. As only degrees or parities appear in the exponent of a minus sign, a simplified notation is used there

(A= (~M, ()AE = ()ARIBL ()48 = ()AIBL yA B (42

Poisson bracket and derivatives For the Poisson bracket, the following (less common) sign convention is
chosen:

{pm, "y = o5 = —{2",pm} (A.3)
{bm,c"} = o = ()" {c", b} (A.4)

Derivatives with respect to ™ are denoted by axim f=0nf = fm. For graded variables left and right derivatives
are denoted respectively by

- —

of 0 0 0

Jdc

90 = 9al €)= 5.f(e),  9f(e)/oe = f

dec ~ Oc (4:5)

The corresponding notations are used for functional derivatives %.

Boldface philosophy and antisymmetrizations With respect to the wedge product, the basis element
9, is an odd object (8,, A 8, = —0,, A 8,,). The partial derivative Jy acting on some coefficient function,
however, is an even operator (it does not change the parity as long as it is not contracted with a basis element
dr®). That is why we denote the odd basis element 8,, and dc™ as well as the odd exterior derivative d with
boldface symbols. The interior product itself does not carry a grading in the sense that | 1xp |=| K | + | p |,
while for the Lie derivative Lx = [1x,d] the L carries a grading in the sense | Lxp |=| K | + | p | +1. That is
why the Lie derivative is denoted with a boldface £ which is also very good to distinguish it from generalized
multivectors IC, L, .. .. The philosophy of writing odd objects in boldface style is also extended to the combined
basis element

ty = (B, ™), M = (™, ) (A.6)

and to the comma in the derived bracket [,] in contrast to the commutator [, ]. This should be, however, just a
reminder. It will be obvious for other reasons, which bracket is meant. But we do not extend this philosophy to
vectors and 1-forms, where it would be consistent (but too much effort) to write the vectors and basis elements
in boldface style and the coefficients in standard style. We will instead write the vector in the same style as the
coefficient a = a,,dx™.

A square bracket is used as usual to denote the antisymmetrization of, say p, indices (including a normaliza-
tion factor i,) A vertical line is used to exclude some indices from antisymmetrization. An extreme example

would be
Alabledle| fglhi] (A.7)

where A is antisymmetrized only in a,b, e, h and i, but not in ¢,d, f and g. Normally we use only expressions

like Alebledlefal where a,b, e, f and g are antisymmetrized.

Wedge product A significant difference from usual conventions is that for multivectors, forms and general-
ized multivectors we include the normalization of the factor already in the definition of the wedge product

1
& de™ = ™ AL Ade™ = dr[ml ®R...0 dL'm"] = Z E(kmp(l) Q... d™mrm (AS)
—
B B 1
Oy Om, = Oy Ao+ ANBy, = By @ @By ) = Oy @ @B (A.9)
—
1
tu, b, St A Ay, =t ®.. @ty =Y —tarp, ® - @ by, (A.10)
— nl

(where we sum over all permutations P), such that we omit the usual factor of % in the coordinate expression

p!
of a p-form, or a p-vector

R Qg ™A AT = gy, 2™ (A.11)
v = V" Oy N AN O, (A.12)
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Readers who prefer the %, can easily reintroduce it in every equation by replacing e.g. the coefficient functions
1

R val"'mp. The equation for the Schouten bracket ( C.10), for example, would change as follows:
[v(p),w(q)}m1...m,p+q—1 _ pq)[ml“'mp’lIkakw‘mpmmqufl] . qv[ml,,_mp\ kwk\mp+1...mp+q71](A‘13)
1 M. Mpiq—1 1 1
L PN () <q>} _ L plmimyilkg olmpmysg-]
T a1 [U " p—Dlg" i "
1 1 mi...m Mpt1...M 1
_]7! (q_l)lv[ 1--- p‘,kwk‘ P+ p+a—1] (A14)

Schematic index notation For longer calculations in coordinate form it is useful to introduce the following
notation, where every boldface index is assumed to be contracted with the corresponding basis element (at the
same position of the index), s.th. the indices are automatically antisymmetrized.

WP = e ™ = W (A.15)
a? = ammrd, A8, =avm (A.16)
KP = Ky ' 8 =Ko = (A.17)

= MMy gy = MM (A.18)

or for products of tensors e.g.

Wm..mMm..m = w[ml...mpnm,,+1...m,,+q](ivml coedprre = (Alg)

= WnLl...mpnmp+1...mp+qdrml coederte = (7)pq77m...mwm...m (AQO)

A boldface index might be hard to distinguish from an ordinary one, but this notation is nevertheless easy to
recognize, as normally several coinciding indices appear (which are not summed over as they are at the same
position). Similarly, for multivector valued forms we define’

Ko™ ™ = Ko™ dt™ A LA™ @ By A A B, (A.21)

n...n n...n j— ny... N7 _ ny...ngr m M| —
Kmm prm...m = Kmlmk ! k lprml.‘.ml,l ! L (h: SRR CIE + 1®8m1 e amk:’+l’—1 A'22)

1Upper and lower signs are thus treated independently. For calculational reasons this is not the best way to do. We can interpret
every boldface index on the lefthand side of (A.22) as a basis element sitting at the position of the index, so that the order of the
basis elements on the lefthand side is first k& x de™, (k' — 1)8, (I — 1) X d&™ and I’ X O, s.th., in order to get the order of the
righthand side, we have to interchange (k' — 1)8,, with (I — 1) x dc™, which gives a sign factor of (=)' =1(=1) | This is a natural
sign factor which appears all the way in the equations, which could be easily absorbed into the definition. However, we wanted
to keep the sign factors explicitly in the equations in order to keep the notation as self-explaining as possible and not confuse the
reader too much. 3



Appendix B

Generalized Complex Geometry

For introductions into Hitchin’s [74] generalized complex geometry (GCG) see e.g. Zabzine’s review [88] or
Gualtieri’s thesis [72]. In the appendix of [106] there is another nice introduction with emphasis on the pure
spinor formulation of GCG. For a survey of compactification with fluxes and its relation to GCG see Grana’s
review [76].

B.1 Basics

In generalized geometry one is looking at structures (e.g. a complex structure) on the direct sum of tangent
and cotangent bundle T @ T*. Let us call a section of this bundle a generalized vector (field) or synonymously
generalized 1-form, which is the sum of a vector field and a 1-form

a = a + o = (B.].)
= a"0, + a, ™ (B.2)
Using the combined basis elements
ty = (Op, &™) (B.3)
a generalized vector a can be written as
a = aMtM (B.4)
a = (0™, am) (B.5)
There is a canonical metric G on T ® T*
(a,b) = a(b)+p(a) = (B.6)
= apb" + fpa™ = (B.7)
= aMgMNbN (BS)
with
(0 o
gun = < 5mo0 ) (B.9)

which has signature (d,-d) (if d is the dimension of the base manifold). The above definition differs by a factor
of 2 from the most common one. We prefer, however, to have an inverse metric of the same form

MN _I\MN 0 o
gt = (67 = ( o0 (B.10)
As it is constant, we can always pull it through partial derivatives. Using this metric to lower and raise indices

just interchanges vector and form component. We can equally rewrite a in (B.4) with a basis with upper capital
indices and the vector coefficients with lower indices

M = (™ 9,) (B.11)
a = aytV (B.12)
Ay = (Oém, am) (B].3)
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Note that in the present text there is no existence of any metric on the tangent bundle assumed. Therefore we
cannot raise or lower small indices. In cases where 1-form and vector have a similar symbol, the position of the
small index therefore uniquely determines which is which (e.g. wy,, and w™).

In addition to the canonical metric Gysy there is also a canonical antisymmetric 2-form B, s.th. «(b) —
B(a) = a™ By nb" with coordinate form

0 =
Bun = ( 5m 0 ) (B.14)
Raising the indices with GMN yields
m
BMy = on On = _ByM (B.15)
0 _5'm
puy = (0o (B.16)
—or 0 )
We can thus use B and G to construct projection operators Pr and Pr to tangent and cotangent space
_ 1oy M y_ [ 6 O
Pr¥n = 3 ("N +BYy) = 0 0 (B.17)
1 0 0
M M M
Pr-"'n = 5(5 N—B N):( 0 & > (B.18)
Pra = a, Pra =« (Blg)

B.2 Generalized almost complex structure

A generalized almost complex structure is a linear map from 7' & T™ to itself which squares to minus the
identity-map, i.e. in components

T8y = o) (B.20)

It is called a generalized complex structure if it is integrable (see subsection B.4). It should be compatible
with our canonical metric G which means that it should behave like multiplication with ¢ in a Hermitian scalar
product of a complex vector space!

(0,Jw) = —(Jo,w) < (GJ)" =-GJ <= Jun =-Inmu (B.21)
This property is also known as antihermiticity of 7. Because of (B.21), J can be written as
M VAT _ Qmn —JI"m

where P™" and @,,,, are antisymmetric matrices, and (B.20) translates into

J2-PQ = -1 (B.23)
JP—-PJT = 0 (B.24)
—-QJ+JTQ = 0 (B.25)

Here it becomes obvious that the generalized complex structure contains the case of an ordinary almost complex
structure J with J? = —1 for Q = P = 0 as well as the case of an almost symplectic structure of a non-degenerate
2-form Q with existing inverse PQ = 1 for J = 0. In addition to those algebraic constraints, the integrability
of the generalized almost complex structure gives further differential conditions (see subsection B.4) which boil
down in the two special cases to the integrability of the ordinary complex structure or to the integrability of
the symplectic structure.

Because of J2 = —1, J has eigenvalues +i. The corresponding eigenvectors span the space of generalized
holomorphic vectors L or generalized antiholomorphic vectors L respectively. This provides a natural splitting
of the complexified bundle

(TeT*)®C=LaL (B.26)
The projector II to the space of eigenvalue +i (namely L) can be be written as
1
m o= (1-iJ) (B.27)

! In a complex vector space with Hermitian scalar product (a,b) = (b, a) we have (a,ib) = —{ia,b). o
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while the projector to L is just the complex conjugate IT = % (1 +4J) = G TG, Indeed, for any generalized
vector field v we have

Jlv = illv (B.28)
L and L are what one calls maximally isotropic subspaces, i.e. spaces which are isotropic
(o,r0) = 0 VYo,wel (B.29)

(this is because II7 GII = GIIII = 0) and which have half the dimension of the complete bundle. As the canonical
metric (---) is nondegenerate, this is the maximal possible dimension for isotropic subbundles.

B.3 Dorfman and Courant bracket
Something which seems to be a bit unnatural in this whole business in the beginning is the introduction of the

Courant bracket, which is the antisymmetrization of the so-called Dorfman-bracket. The Dorfman bracket
in turn is the natural generalization of the Lie bracket from the point of view of derived brackets (C.51)2

[[ta,d] 2] = Ya,b] (B.30)
where [a,b] = [a,b]+ L0 — Ly +d(na) = (B.31)
= [a,b] + L8 — w(da) = (B.32)

= L.b—u(d) (B.33)

To get a homogeneous coordinate expression, we define

oy = (0m,0) =M =(0,0,) (B.34)

2 The twisted Dorfman bracket is defined similarly via
[[Za7d+H/\}7Zb] = Ya,b] gy
Remembering that HA = 1y and using [tq,tH] = Yo, H]A = 1,00 gy W get

[a,b]y = [a,b] — 2w H o
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The Dorfman bracket can then be written as®

(6] = a®0rb™ + (0Max — da™) b (B.35)
or [a,b],, = a®0kba + 200K 6" (B.36)

Apart from the term in the middle 0™ ag, (B.35) looks formally the same as the Lie bracket of vector fields
(C.1). The Dorfman bracket is in general not antisymmetric but it obeys a Jacobi-identity (Leibniz from the
left) of the form

[Cl, [b,CH = [[aab] ,C] + [b’ [Cl,CH (B-37)

Although the Dorfman bracket is all we need, most of the literature on generalized complex geometry so far
works with its antisymmetrization, which is called Courant bracket

1
[a,6] = [ab]+ LS — Ly + id(zba —1403) (B.38)
[Cl,b]_M = aKaKbM — 3KC1MbK + % (8MaKbK — aKaMbK) (B.39)

and which does not obey any Jacobi identity. As it is much simpler to go from Dorfman to Courant, than the
other way round, we will only work with the Dorfman bracket. On any isotropic subspace (1o + 2,0 = 0) the
two coincide anyway, i.e. they become a Lie bracket, obeying Jacobi and being antisymmetric.

We call a transformation a symmetry of the bracket when the bracket of two vectors transforms in the
same way as the vectors

[(b+06),(c+dc)] = [by]+d[b,] (B.40)
0[b,e] = [db,c] + [b,d¢] + [0b,0¢] (B.41)

Le. infinitesimal symmetry transformations (where the last term drops) have to obey a product rule. Similar
as for the Lie-bracket of vector fields, infinitesimal transformations are generated by the bracket itself. Let us
call the corresponding derivative, in analogy to the Lie derivative, the Dorfman derivative of a generalized
vector with respect to a generalized vector.

§b = Dgab = [a, b] (B.42)

These transformations are therefore, due to the Jacobi-identity (B.37) always symmetries of the bracket. From
(B.33) we can see that the Dorfman derivative consists of a usual Lie derivative and second part which acts
only on the vector part of b by contracting it with the exact 2-form do

Db = L,b (B.43)
D.b —1p(de) = 0" (Optn — Omavn )™ (B.44)

In fact, it is enough for the 2-form to be closed, in order to get a symmetry. If we replace —da by a closed
2-form B, the transformation is known as B-transform

5Bb = ZbB (B45)

3Tt is perhaps interesting to note that this notation of the partial derivative with capital index suggests the extension to a

derivative with respect to some dual coordinate

om = 8@m
We could understand this as coordinates of a dual manifold whose tangent space coincides in some sense with the cotangent space
of the original space and vice versa. This might be connected to Hull’'s doubled geometry [105, 103, 104, 102, 107].

To see that such an ad-hoc extension of the Dorfman bracket is not completely unfounded, note that there is a more general
notion of a Dorfman bracket (or Courant bracket) in the context of Lie-bialgebroids (for a definition see e.g. [72, p.32,20]). There
we have two Lie algebroids L and L* which are dual with respect to some inner product and which both carry some Lie bracket.
(For T and T*, only T carries a Lie bracket in the beginning. For a non-trivial Lie bracket of forms on T* we need some extra
structure like e.g. a Poisson structure which would lead to the Koszul bracket on forms.) The Lie bracket on L induces a differential
don L* and the Lie bracket on L* induces a differential d* on L. The definition for the Dorfman bracket on the Lie bialgebroid
L& L* is then

[a,6] = [ab] + Lo — Lpa + d(1par) +
+[o,8] + Lab — Lga + d* (1a)

The first line is the part we are used to from our usual Dorfman bracket on 7' @ T*, while second line is the corresponding part
coming from the nontrivial structure on L*. Taking now L =T, L* = T* and assuming that [a,8] and L, and d* are a Lie bracket,
Lie derivative and exterior derivative built in the ordinary way, but with the new partial derivative w.r.t. the dual coordinates
9™, the coordinate form of the Dorfman bracket remains exactly the one of (B.35,B.36), but with 9y = (Om,0) replaced by
(9]\/1 = (8m,(9m) <&
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Finally, we should note that the B-transform is part of the O(d, d)-transformations, i.e. the transformations
which leave the canonical metric invariant. As usual for orthogonal groups the infinitesimal generators are
antisymmetric when the second index is pulled down with the corresponding metric. The generators of an
O(d, d)-transformation can therefore be written as [72, p.6]

an _Amn
Q = mn B.4
wv = () (B.46)
A m /an
oM = n B.4
v (an L Amn) (B.47)

In addition to the B-transform, acting with €2 on a generalized vector induces the so-called beta-transform on
the 1-form component* as well as GI(d)-transformations of vector and 1-form component via A. For constant
tensors, the Lie-derivative is just a GI(d) transformation. Therefore both symmetries of the Dorfman bracket
are symmetries of the canonical metric G as well. For this reason the canonical metric is invariant under the
Dorfman derivative D,with respect to a generalized vector v, which we define on generalized rank p tensors
using (B.35) in a way that it acts via Leibniz on tensor products (like the Lie derivative) and as a directional
derivative on scalars

(DDT)]\JL“MP = UKaKTAflMp + Z(aMLUK _ aKU]\/[Z‘)T]\/fl...MiflKMr‘,l...]\/[p (B.48)
Dy(A®B) = D, ARB+A®D,B (B.49)
Do(¢) = 050k¢=0"0o (B.50)

Acting on the canonical metric, one recovers the fact, that the Dorfman derivative contains the isometries of
the metric

DG = 200Muog — oxo?)gEM2 = (B.51)

Comparing the role of Lie-derivative and Dorfman-derivative, the B-transform should be understood as an
extension of diffeomorphisms. In string theory it shows up in the Buscher-rules for T-duality ([108, 109]) and
can perhaps be better understood geometrically via Hull’s doubled geometry [105, 103, 104] (compare to footnote
3). The beta-transform is not a symmetry of the Dorfman bracket as it stands. However, if we introduce dual
coordinates as suggested in footnote 3, the beta-transform would show up in the symmetry-transformations of
the extended Dorfman bracket generated by itself.?

On an isotropic subspace L (e.g. the generalized holomorphic subspace) Courant- and Dorfman-bracket
coincide and have the properties of a Lie bracket. It is therefore possible to define a Schouten bracket on
generalized multivectors on A\* L which have e.g. only generalized holomorphic indices (compare [72, p.21]). If
we use again the notation with repeated boldface indices

AP = Ay = u‘lMl...z\/[,,fM1 ot (B.52)
we get as coordinate form for this Dorfman-Schouten bracket

[A(p),g(q)} = pAM-MEgy pM..M L (paMAKM...M _ aKAM..‘M) BEM..M (B.53)

In the first term in the bracket on the righthand side, the O™ can as well be shifted with a minus sign to B,
because in A® L we have only isotropic indices in the sense that

For this reason, the Dorfman-Schouten bracket has really the required skew-symmetry of a Schouten-bracket

[A@),B(q)} — ()@ [Bw),A(m} (B.55)

On A° L this bracket coincides with the derived bracket of the big bracket, as the extra term with pys in (B.79)
vanishes because of (B.54).

4The letter 8 for the beta-transformations does not really fit into the philosophy of the present notations, where we use small
Greek letters for 1-forms (or sometimes p-forms) only, but not for multivectors. As the transformation is, however, commonly
known as beta-transformation, we use a large ﬁ, in order to distinguish it from the one-forms 3, which are floating around. <

5Taking the Dorfman bracket of footnote 3, we get as Dorfman derivative of a generalized vector ¢ instead of (B.43,B.44) the
extended transformation

Dyc Lyc—1y(da)
Doc = —(1edr) + Lac

Ie. the first line is extended by a beta-transformation of v with ﬂ = —d*a and the B-transform of o (B = —da) in the second line
is extended by a Lie derivative with respect to a. o
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B.4 Integrability

Integrability for an ordinary complex structure means that there exist in any chart dimp, /2 holomorphic vector
fields (with respect to the almost complex structure) which can be integrated to holomorphic coordinates z*
in this chart of the manifold and make it a complex manifold. Those vector fields are then just 9/9z%. Those
coordinate differentials have vanishing Lie bracket among each other (partial derivatives commute). In turn,
every set of vectors with vanishing Lie bracket can be integrated to coordinates. The existence of such a set
of integrable holomorphic vector fields is guaranteed when the holomorphic subbundle is closed under the Lie
bracket, i.e. the Lie bracket of two holomorphic vector fields is again a holomorphic vector field.

As the Dorfman bracket restricted to the generalized holomorphic subbundle L C (T @ T*) ® C has the
properties of a Lie bracket, we can demand exactly the same for generalized holomorphic vectors as above
for holomorphic ones. The condition for the generalized complex structure to be integrable is thus that the
generalized holomorphic subbundle L is closed under the Dorfman bracket, i.e. in terms of the projectors

II Mo, IIw] = 0 (B.56)
<~ [o,w0] — [Jv,T0] + T [Jo,0] + T [0,TJ0] = 0 (B.57)
In the following two sub-subsections we will show that this is equivalent to the vanishing of a generalized
Nijenhuis-tensor [72, p.25] of the coordinate form®:”
Laananns — ginik g 7iMam) | g0l 7 M0 L g (B.58)
4

Recalling that

g = (B0 ) = (e ) -0 @

we can rewrite this condition in ordinary tensor components, just to compare it with the conditions given in
literature (for the antisymmetrization of the capital indices we take into account that in the last term of (B.58)

the indices M; and My are automatically antisymmetrized because of J2 = —1):

i/\/mlmm = plmlkg, plmamsl L g (B.60)
i/\/n““m? = é (—Jknakp[mlmﬂ + 2plmalky, glmal - plmalk jima], J[mllkPkimﬂ,n) =0 (B.61)
i/\/nmlmz = é (=P™ 0k Qpmyma] + 2% 1| Ok " jma] + 20" k¥ s ] — 2P Qiipims yma) ) 20  (B.62)
ilemm = 110k Qimama) + 7" s Qblmama) ~ Qs 6z ma] = 0 (B.63)

If we compare those expressions with the tensors A, B,C and D given in (2.16) of [91, p.7], we recognize

(replacing @ by —@Q) that our first line is just %A, the second line is f%B (using (B.24)), the third %C and the

fourth line is —%D. There, in turn, it is claimed that the expressions are equivalent to those originally given in

(3.16)-(3.19) of [87, p.7].

6This looks formally like the generalized Schouten bracket (e.g. [72, p.21]) on A® L (with L being the generalized holomorphic
bundle) of J with itself (see also the statement below (B.79)), but it is not, as J has neither holomorphic nor antiholomorphic
indices

nyg = d#J
g = —-iMl#J
In fact, we get zero if we contract both indices with the holomorphic projector
v, oM gkt = ngn? =il =0

The same happens for two antiholomorphic projectors. But we can project one index with an holomorphic projector and the other
one with an antiholomorphic one. This yields

oV 1M e 7KL = TIJI =411

Up to a constant prefactor the bracket of IT with II coincides with the bracket of J with 7. And like for the ordinary complex
structure, where we have the Nijenhuis bracket of the complex structure with itself, which has one index in T and the second in
T*, we could here take IT with one index in L and the other in L and regard the bracket as generalized Nijenhuis bracket of IT with
itself. ¢

7If instead the twisted Dorfman bracket (see footnote 2) is used, one gets the integrability condition for a twisted generalized
complex structure with a twisted generalized Nijenhuis tensor. Consider the closed three form H = Hp, ar, 0y M1 M2 (M3 wigh
Himymoms the only nonvanishing components. The twisted generalized Nijenhuis tensor then reads

H K L
Ninmams = Naymomg + 6Ha myns — 1870 ™ Himo . T Mg

Like (B.60)-(B.63) this twisted generalized Nijenhuis tensor as well matches with the tensors given in [91] if one redefines H,,pp —
1
= H, k- <
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B.4.1 Coordinate based way to derive the generalized Nijenhuis-tensor

In this sub-subsection we will see that calculations with capital-index notation is rather convenient. So we
simply calculate (B.57) brute force by using the explicit coordinate formula for the Dorfman-bracket

[lo,10]" = 0590 4 (0™ — 0™ (B.35=B.64)
The brackets of interest are:

[0, 7)Y = 0X0r TN Lok + TN poR okl + (0N v — o) (Tro)E (B.65)
(T [o,T)M = o TM ok TNt — 0" 0xw™ + TM N (0Vok — Ox0™N) (Tw)* (B.66)
[jUam]N = JKLULaKmN + (aNjKL - 8KJNL) anK + (JKLaNUL — jNLaKUL) mK (B.67)

(T [To)M = TYN(T0) oxm™ + TV N (0N Tk — 0k TV L) 0P’ +
—(jm)LjMNéNnL +8KanK (B.68)

(To, T = TENoN o TM ok + T5 oV TM Lokt +

(M T o™ — O TM o) T ol + (Ten 0™ o — TM yoxo™) TK Lo’ = (B.69)
= (Jo)KTM Lot — TM oo™ (Tw) 5 +
+(TE LM Tk + 275 (30 TV 1)) 0V 0" + Mo ” (B.70)

The underlined terms sum up in the complete expression to the generalized Nijenhuis tensor, while the rest
cancels

0 = [o]" = [J0,T10]" + (T [To,w])™ + (T [0, w0])M = (B.71)
= QIMgONT" 1 — T LM Tin + TMEOk Tin — 2T 5 810k TM 1)) 0N 00l = (B.72)
= oy (7M1 TEIENT 4 37 NIy gIME) v, — (B.73)
_ ZUNNN]VILmL (B.74)

B.4.2 Derivation via derived brackets

Eventually we want to see directly how the generalized Nijenhuis tensor is connected to derived brackets. We
will use our insight from the subsections 6.1.1 and 6.1.2. Remember, our basis t¥ = (de™, 8,,) was identified
with the conjugate (ghost-)variables t/ = (¢, b,,). One can define generalized multi-vector fields of the form

KY' = Karoa=Kagy g M- M (B.75)

They are in fact just sums of multivector valued forms:

K K

K —

Kngom =) j( L >/cm,,,m men =Y KRR (B.76)
k=0 k K—k k=0

The big bracket, or Buttin’s algebraic bracket is then just the canonical Poisson bracket

[’Cvﬁ}ﬁ) = KLKnm..m'Liv.va ={K, L} (B.77)
{tar,tv} = Gun (B.78)

The coordinate expression for its derived bracket (compare to (6.52,6.54)) reads

A

(=)<t {d’C(K), E(L)} W o K-Kar sl 0rLar. ar — ()AL Lo nl0rKne ar +

+(=)* "KLOMK s ma Linava + K (K — 1) Ln v Long..aaps (B.79)
with p; = (p;,0) and 9; = (9;,0). In the case were both K and £ only have generalized holomorphic indices,
the p-term drops and this expression should coincide with the Schouten-bracket on A® L for the holomorphic

Lie-algebroid L (see e.g. [72, p.21] and footnote 6). For two rank-two objects, like the generalized complex
structure 7, this reduces to

[/C,d E](Al) = 2. /CMI(?[EMM +2- EMI&ICMM — 48MICMI£1M + 4/CIJ[:]MPJ (B.SO)
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which reads for two coinciding tensors J

[T ,a j](Al) = 4 I 01 Tvan — 40T Ting — AT Timpy = (B.81)
B9 Nagoar + Apat (B.82)
TJ?*=-1 N——
=0 (6.8)

where o = de*pp = —d(de® A 8;). We will verify this relation between the generalized Nijenhuis tensor and
the derived bracket in the following calculation, where we calculate A" using the big bracket (B.77) all the
time. This bracket is like a matrix multiplication if one of the objects has only one index. We will use this fact
frequently for the multiplication of J with a vector

Jo = JMNnNtM:%{j,n} (B.83)
= {J.{J,0}} = 4J% = —4vo={{v,7},T} (B.84)
{0.7} AT w}} = —40%wg =—4{v,w} (B.85)

If both objects are of higher rank, however, antisymmetrization of the remaining indices modifies the result.
We thus have to be careful with the following examples

(T, T} = 4T Txkm = —4Gnm =0 (! because of antisymmetrization) (B.86)
{T AT, d}} = Tm"™ T ™ (do)pyngy # —4db (B.87)

As mentioned earlier, the Dorfman bracket (B.31) used in our integrability condition is just the derived bracket
of the algebraic bracket. L.e. we have

[b,w] = [do,w]” = (B.88)
= [do,w]j) + D [db, ]G, = (B.89)

p>2 -
= {dvo,w} ) (B.90)

where the differential d has to be understood in the extended sense of (6.9,6.33), namely as Poisson-bracket
with the BRST-like generator

o = py=c"pn "= da"p,) = —dc"by) (B.91)
d = {o,0} =0mvn + UKpK (B.93)

where p,, is the conjugate variable to ™. We can now rewrite the integrability condition (B.57) as

(do, 10} — i{d{],n} {Two)) 4 i (7.{d{T 0} w0}} + i (T Ad {70l £ 0 (B.o4)

Remember that the Poisson bracket is a graded one, and v, and d are odd, while 7 is even.
Let us now start with applying Jacobi to the second term of (B.94)

- AT (T el = (T 0}, T} o) - {7, d(,0} w0} (8.95)
so that we get
0 L {dw)— {{d(T,0), T}, w}+ { {7 (b, {70} ) = (8B.96)
= (@m0}~ {{{d70),7) 0}~ {7 &), T} om} + (T (Too}}h = (BOD
= (@m0} - ({047}, 7} o)+ (.7}, T} m)+ 4 (T b (To)}) (B9

It would be nice to separate to completely by moving it for the last term into the last bracket like in the first
three terms. We thus consider only the last term for a moment and calculate it in two different ways (first using
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Jacobi for second and third bracket and after that using Jacobi for first and second bracket):

LA (T 0} £ (T T} w4 {77 (.} = (B.99)
= T {{d. ) w}) — {d,w) (B.100)
2 ) (T} (e, {7 (T m)) = (B.101)
= T AT @) o)+ ({17}, T} o}~ {10} = (B.102

T @.T) w4 () 2 o) 4 (7)) ) (B103)

Comparing both calculations yields

@I 0} = LT T @)} ) — () (B.101)

We can plug this back in (B.98) and leave away the outer bracket with ro:
0 L - {07} T) (T} T} ST AT - = (B.105)
= AT} T+ Sl T} T} (B.106)
= o} T+ (AT} T} - (B.107)
= {7}, T+ d{{0,T) T+ ({0, T} 4T} = (B.108)
- _% {0, {d7,T}} — %dn - (B.109)
- é({ \T.aT15, 0} - 4dn) - (B.110)
- %{mdj]ﬁ)_z;o,n} (B.111)

where we used

& = {ov (B.112)

The integrability condition is thus (explaining the normalization of N of above) as promised in (B.82)

N=17aJ]3, —40=0 (B.113)

The derived bracket [7,q.J ](Al) indeed contains the term 40 = 4¢M pas which therefore is exactly cancelled.

Precisely the same calculation can be performed by calculating with the complete algebraic bracket [, ]A
instead of the Poisson-bracket, its first order part. Similarly to above, we have

Jv = %[j,n]A (B.114)
= [7,[7,0%1% = 47% = —4v (B.115)

In combination with (B.88) this is enough to redo the same calculation and get as integrability condition (using

[j,j] = _[Myj]A)

N=[T,7]-40=0 (B.116)

which also proves that the derived bracket bracket of the big bracket (which is not necessarily geometrically
well defined) coincides in this case with the complete derived bracket

[T.ad)5) = 177 (B.117)

As discussed in (C.53) and (C.55), throwing away the d-closed part corresponds to taking Buttin’s bracket
instead of the derived one. Remember that o = de*p, = —d(de* A 9y), s.th. do = 0. We can thus equally write

N = 7.7, (B.118)
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B.5 SO(d,d) pure spinors

There exists an alternative description of a generalized complex structure and its integrability with the help of
pure spinors (see e.g. [72, p.8] or in section 3 of [106]). “Spinor” here refers to the special orthonormal group
S0O(d,d) (d being the dimension of the manifold M) of transformations on T' @ T™* which leave the canonical

metric (...,...) or Gy n (which has signature (d,d)) invariant. It turns out that T @ T™* itself, embedded via
IXtap = 1xp +aAp, XeTM, aceT*M, peANT'M (B.119)
~—~—
=XvuLp

into the space of endomorphisms of A*T*M (formal sum of differential forms on M), forms a representation
of the Clifford algebra. The spinors are thus differential forms p € A*T*M and the gamma “matrices” I'
are up to a normalization factor just the interior products ¢ n = %EM with respect to the basis elements
tM = (™, 8,,) = (¢, by), i.e. TM = {V25,,v21qn = d&"A}. Indeed, the graded commutator (i.e.
anticommutator) of the basis elements reads [1g,,,dt"A] = 67, and therefore®

[I‘M,I‘N} — ogMN (B.120)

For general elements of the algebra (generalized vectors) v = v, t", o = roytY, the Clifford algebra becomes
as usual [ty 1] = 2(v, 10).

One can further define a chirality matrix I'#. It is characterized by the properties that it squares to 1 and
anticommutes with all other I'-matrices. Usually it is proportional to the product of all I'-matrices, but this is

only true in a basis where Gy;n is diagonal. In our basis t,; it is off-diagonal. The definition of the I'-matrices
M
as T = {yawm—a,): Ydem+8,,) } thus would be more appropriate in this context. The overall sign is a matter

of taste and we choose it such that the eigenvalues of rank r forms in (B.125) do not depend on the dimension.
The chirality matrix is then given by

d—1
r# = (=) H Udwh —8y) Yk +8y) = (B.121)
k=0
= (—)d (ZdEOZBO — Zaoldto) s (ldbd—l 1841 — Zad_lldtd—l) = (B.122)
= (=) (2010, — 1)+ (2gpa-110, , — 1) = (B.123)
d—1
= ()] @ra — 1) (B.124)
k=0

where ngx =Y 1g,575, counts the number of de® (with fixed k) of the differential form p(") on which T# is
acting. This number can be (in each term of the expansion in basis elements) either zero or one, because
(dr*)? = 0. The terms (2ng,x — 1) are therefore either —1 (if dz* does not appear) or 1 (if it appears). In a
form p(") of rank r, there are of course in any term of the expansion r basis elements de* which appear and
d — r which do not appear. We thus have

I#p0 = (=)= = (=1)7p"") (B.125)

The chiral and antichiral spinors (those with eigenvalues +1 or —1 ) therefore correspond to even and odd forms
respectively.

A pure spinor is defined to be a spinor which is annihilated by half of the gamma matrices. (The same
was true for the pure spinor in the Berkovits context, although it is not obvious due to the formulation via the
quadratic constraint ¢y™e = 0.) :

Ly={ae(T*M&TM)®C| igp=0}

p 15 Pure - is of dimension d = dim M

(B.126)
In other words, the Clifford action of (T'@® T™*) is maximally light-like. How is this related to an almost
generalized complex structure J? The structure J induces a splitting of (T*M @& TM) ® C into a subbundle of
eigenvalue ¢ and another one of eigenvalue —i:

(T"M & TM)®C = LyoLy
Ly = {ae(T"Ma&TM)®C|J(a) =ia} (B.127)
8Note that one can think of 19,, as ad(?:m' Another observation is that the Poisson bracket of the T' @ T™* basis elements also

forms a Clifford-algebra

{tM7tN} — gMN o
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Setting L 7 S L, , induces a map from generalized complex structures to pure spinors and one can prove that
it is well-defined and one-to-one (up to a rescaling of the pure spinor) [72]. The previosly discussed (twisted)
integrability condition can also be refomulated in the pure spinor language. Integrability of L is closed
under the action of the (twisted) Dorfman bracket. a,b € L,, = [a,b] = [[tq,d],26] € L,,. In other words
[[ta,d+ HA],26]p7 = 0 Va,b with 14p7 = 25p7 = 0. Writing the graded commutator explicitely and using
1apg7 = pg = 0, this becomes [106]

J s twisted integrable : <= 1p2.dgps =162 (d+ HA)py =0 Va,beL,, (B.128)

One can think of ps as a Clifford vacuum and of the elements of L, as annihilation operators. The creation
operators then lie in L%, and dyps must be at most at creator level two. However, as any creator changes
parity, and dp is of opposite parity than p itself, it can only be at odd creator-levels, i.e. level one. The above
condition is thus equivalent to

J  is twisted integrable : <= dypy =1.ps for somecec L7 (B.129)



Appendix C

Derived Brackets

Mathematics in this section is based on the review article on derived brackets by Kosmann-Schwarzbach [70].
The presentation, however, will be somewhat different and in addition to (or sometimes instead of) the abstract
definitions coordinate expressions will be given.

C.1 Lie bracket of vector fields, Lie derivative and Schouten bracket

This first subsection is intended to give a feeling, why the Schouten bracket is a very natural extension of the
Lie bracket of vector fields. It is a good example to become more familiar with the subject, before we become
more general in the subsequent subsections, but it can be skipped without any harm (note however the notation
introduced before (C.13)).

Consider the ordinary Lie-bracket of vector fields which turns the tangent space of a manifold into a Lie
algebra or the tangent bundle into a Lie algebroid and which takes in a local coordinate basis the familiar form

[vw]™ = VFoW™ — wh™ (C.1)

We will convince ourselves in the following that numerous other common differential brackets are just natural
extensions of this bracket and can be regarded as one and the same bracket. Such a generalized bracket is
e.g. useful to formulate integrability conditions and it can serve via the Jacobi identity as a powerful tool
in otherwise lengthy calculations . In addition it shows up naturally in some sigma-models as is discussed in
section 6.

Given the Lie-bracket of vector fields, it seems natural to extend it to higher rank tensor fields by demanding
a Leibniz rule on tensor products of the form [v,w; ® ws] = [v,w1] ® wa + w1 ® [v,wz]. Remembering that the
Lie-bracket of two vector fields is just the Lie derivative of one vector field with respect to the other

[v,w] = Lyw (C.2)

the Lie derivative of a general tensor T' = T,Zi%’p d"MR... ™R, @ --Q Bnqwith respect to a vector
field v can be seen as a first extension of the Lie bracket:

[v,T] = L,T (C.3)
[0 T = RO = T g Tk et N g R, (C4)
7 J

The Lie derivative obeys (as a derivative should) the Leibniz rule
[’U,Tl X TQ] = [’U,Tl] X TQ + Tl X [’U,TQ] (05)

In fact, giving as input only the Lie derivative of a scalar ¢, namely the directional derivative [v,¢] = v*0x,
and the Lie bracket of vector fields (C.1), the Lie derivative of general tensors (C.4) is determined by the
Leibniz-rule. Insisting on antisymmetry of the bracket, we have to define

Tw] = —[v,T) (C.6)
Indeed, it can be checked that the above definitions lead to a valid Jacobi-identity of the form
(v, [w,T]] = [[vyw],T]+ [w,[v,T]] for arbitrary tensors T (C.7)
which is perhaps better known in the form

Lo, L) T = LpyuT (C.8)

159
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We have now vectors acting via the bracket on general tensors, but tensors only acting on vectors via (C.6) .
It is thus natural to use Leibniz again to define the action of tensors on tensors. To make a long story short,
this is not possible for general tensors. It is possible, however, for tensors with only upper indices which are
either antisymmetrized (multivectors) or symmetrized (symmetric multivectors). We will concentrate in
this paper on tensors with antisymmetrized indices (the reason being the natural given differential for forms
which also have antisymmetrized indices), but the symmetric case makes perfect sense and at some points we
will give short comments. (See e.g. [110] for more information on the Schouten bracket of symmetric tensor
fields.)
Given two multivector fields (note that the prefactor 1/p! is intentionally missing (see page 146).

@) = V"G N AN Oy, wl@ = MM Omy N...\NOnm, (C.9)

their Schouten(-Nijenhuis) bracket, or Schouten bracket for short, is given in a local coordinate basis by

{v(p)’w(q)}nu...mp#rq—l . pv[mlmmp,l\kakw|mp...mp+q,1} o qv[ml.“mp|7kwk|mp+1“.mp+q71] (C].O)

Realizing that the Lie-derivative (C.4) of a multivector field w(%9) with respect to a vector v(1) is
[v,w(q)}nL..nq _ Ukak,wnl...nq _ qakv[n1\wk\n2...7Lq] (C.ll)

one recognizes that (C.10) is a natural extension of this, obeying a Leibniz rule, which we will write down below
in (C.18). However, as the coordinate form of generalized brackets will become very lengthy at some point, we
will first introduce some notation which is more schematic, although still exact. Namely we imagine that every
boldface index m is an ordinary index m contracted with the corresponding basis vector 9,, at the position
of the index:

o) = el A LA Om, =0 ™ (C.12)

This saves us the writing of the basis vectors as well as the enumeration or manual antisymmetrization of the
indices. As a boldface index might be hard to distinguish from an ordinary one, we will use this notation only for
several indices, s.th. we get repeated indices m ... m which are easily to recognize (and are not summed over,
as they are at the same vertical position). See in the appendix A on page 147 for a more detailed explanation.
The Schouten bracket then reads

[v(p)’w(q):| _ pvm.“mkakwm“.m _ qvm...m}kwkm...m — (0.13)
= pvm"'mkakwm”'m - (—)p(qil)qwkm"'mvm"'m,k = (C.14)
= pu™mk ™™ _ (—)p=D(a1) gy ymemk g gym..m (C.15)

In the last line it becomes obvious that the bracket is skew-symmetric in the sense of a Lie algebra of degree!
—1:

[v(p),w(‘I)] —  (—)PD-D [wm)w(m} (C.16)

!A Lie bracket [,(,) | of degree n in a graded algebra increases the degree (which we denote by | ... [) by n

It can be understood as an ordinary graded Lie-bracket, when we redefine the grading || ... || =| ... | +n, such that the Lie bracket
itself does not carry a grading any longer

I[Aw Bl = llAl+ 1B
The symmetry properties are thus (skew symmetry of degree n)
[A:(n) B} - _(_)(IAHn)(\AHn) [37(71) A]
and it obeys the usual graded Jacobi-identity (with shifted degrees)
[y By €l = [[Asw) B] s €] + () IAFWUAE B, (4, €]

In addition there might be a Poisson-relation with respect to some other product which respects the original grading. To be
consistent with both gradings, this relation has to read

[AmyB-Cl = [AB]-C+ ()IAFMIEIB. [4,,,)C]

This is consistent with B -C = (—)‘B”C|C - B on the one hand and the skew symmetry of the bracket on the other hand. One can
imagine the grading of the bracket to sit at the position of the comma.

For the bracket of multivectors we have as degree the vector degree. Later, when we will have tensors of mixed type (vector
and form), we will use the form degree minus the vector degree as total degree. Then the Schouten-bracket is of degree +1, which
should not confuse the reader. o
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It obeys the corresponding Jacobi identity
[’ngl)’ [Uépz),vép3)}} _ vapl),vépz)} wém)} + (_)(Pl—l)(pz—l) {Uépz)’ {U£P1),U§P3)H (0'17)

Our starting point was to extend the bracket in a way that it acts via Leibniz on the wedge product. A Lie
algebra which has a second product on which the bracket acts via Leibniz is known as Poisson algebra. However,
here the bracket has degree —1 (it reduces the multivector degree by one) while the wedge product has no degree
(the degree of the wedge product of multivectors is just the sum of the degrees). According to footnote 1, we
have to adjust the Leibniz rule. The resulting algebra for Lie brackets of degree -1 is known as Gerstenhaber
algebra or in this special case Schouten algebra (which is the standard example for a Gerstenhaber algebra).
The Leibniz rule is

vgpl)’vépz) /\véps)} _ [vgpl),véﬁnz)} /\,Uéps) + (_)(m—l)pzvgm) A [v§p1),v§m)} (C.18)

The standard example in field theory for a Poisson algebra is the phase space equipped with the Poisson bracket
or the commutator of operators or matrices.? The Schouten algebra is naturally realized by the antibracket
of the BV antifield formalism (see subsection 6.5).

C.2 Embedding of vectors into the space of differential operators

The Leibniz rule is not the only concept to generalize the vector Lie bracket to higher rank tensors. The major
difficulty in the definition of brackets between higher rank tensors is the Jacobi-identity, which should hold for
them. It is therefore extremely useful to have a mechanism which automatically guarantees the Jacobi identity.
A way to get such a mechanism is to embed the tensors into some space of differential operators, as for the
operators we have the commutator as natural Lie bracket which might in turn induce some bracket on the
tensors we started with. Vector fields e.g. naturally act on differential forms via the interior product

1w = P00k, m (C.19)

This can be seen as the embedding of vector fields in the space of differential operators acting on forms, because
the interior product with respect to a vector is a graded derivative with the grading -1 of the vector (we take
as total degree the form degree minus the multivector degree, which for a vector is just -1)

Ty (w(”) A 77(tz)) = 1,w0® Ap@ 4 (7)qw(p) A 1,1\ @ (C.20)

Taking the idea of above we can take the commutator of two interior products. We note, however, that it only
induces a trivial (always vanishing) bracket on the vectorfields

[ty,20] = 0=19 (C.21)

As the interior product (C.19) does not include any partial derivative on the vector-coefficient, it was clear from
the beginning that this ansatz does not lead to the Lie bracket of vector fields or any generalization of it. We
have to bring the exterior derivative into the game, in our notation

') = 9wm. m (C.22)
There are two ways to do this

e Change the embedding: Instead of embedding the vectors via the interior product acting on forms, we
can embed them via the Lie-derivative acting on forms. When acting on forms, the Lie derivative can be
written as the (graded) commutator of interior product and exterior derivative

L, = [w,d] (C.23)
va(P) = vk(‘)kwmmm—i—p-amvkwkmmm (C.24)

Indeed, using the Lie derivative as embedding v +— L,, the commutator of Lie derivatives induces the Lie
bracket of vector fields (a special case of (C.8)

[ﬁv,ﬁw} = [«[U’w] (0.25)

2In fact, working with totally symmetric multivector fields would have lead to a Poisson algebra instead of a Gerstenhaber
algebra. S
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e Change the bracket: In the space of differential operators acting on forms, the commutator is the most
natural Lie bracket. However, the existence of a nilpotent odd operator acting on our algebra, namely the
commutator with the exterior derivative, enables the construction of what is called a derived bracket?.

[1satw] = ([0, d] ;%] (C.26)

This derived bracket (which is in this case a Lie bracket again, as we are considering the abelian subalgebra
of interior products of vector fields) indeed induces the Lie bracket of vector fields when we use the interior
product as embedding

[Zmdlw} = Z[U,w] (027)

The above equations plus two additional ones are the well known Cartan formulae

[tv,00] = 0=][d,d] (C.28)
L, = [w,d] (C.29)
[L,,d] = 0 (C.30)
[‘va ‘Cw} = L[v,w] (031)
[ [ZU? d]? Zw“ = v,uw] (032)

N——

L,
(C.25) can be rewritten, using Jacobi’s identity and [d,d] = 0, as

([0, d] s 20],d] = [tp,0],d] (C.33)

Starting from (C.27), one thus arrives at (C.25) by simply taking the commutator with d. We will therefore
concentrate in the following on the second possibility, using the derived bracket, as the first one can be deduced
from it. Let us just mention that the generalization in the spirit of the derived bracket (C.27) (or more precise
its skew-symmetrization) is known as Vinogradov bracket [113, 114] (see footnote 8), while the generalization
in the spirit of (C.25) is known as Buttin’s bracket [96].

C.3 Derived bracket for multivector valued forms

Let us now consider a much more general case, namely the space of multivector valued forms, i.e. tensors
which are antisymmetric in the upper as well as in the lower indices. With the Schouten bracket we have
a bracket for multivectors, which are antisymmetric in all (upper) indices. There exists as well a bracket
for vector valued forms, namely tensors with one upper index and arbitrary many antisymmetrized lower
indices. This bracket (which we have not yet discussed) is the (Frohlicher-) Nijenhuis bracket (see (C.67)),
which shows up in the integrability condition for almost complex structures. Multivector valued forms have
arbitrary many antisymmetrized upper and arbitrary antisymmetrized lower indices and thus contain both cases.
The antisymmetrization appears quite naturally in field theory (we give only a few remarks about completely
symmetric indices, which appear as well, but which will not be subject of this paper). It makes also sense to
define brackets on sums of tensors of different type (e.g. the Dorfman bracket for generalized complex geometry).
Those brackets are then simply given by linearity.

3Given a bracket [’(n) ] of degree n (not necessarily a Lie bracket. It can be as well a Loday bracket where the skew-symmetry
property as compared to footnote 1 is missing, but the Jacobi identity still holds) and a differential D (derivation of degree 1 and
square 0), its derived bracket [111, 112, 70] (which is of degree n + 1) is defined by

[a,y 0] = (=)™ [Day() b]

We put the subscript (D) at the position of the comma, to indicate that the grading of D is sitting there. The strange sign is just
to make the definition nicer for the most frequent case of an interior derivation, where Da = [d,(n) a} with d some element of the
algebra with degree | d|=1—n and [d,(n> d] =0, s.th. we have

[a,a 6] = [[a,(n) d] () 0]

The derived bracket is then again a Loday bracket (of degree n + 1) and obeys the corresponding Jacobi-identity (that is always
the nontrivial part). If a,b are elements of a commuting subalgebra ([a,(,) b] = 0), the derived bracket even is skew-symmetric and
thus a Lie bracket of degree n + 1.

In the case at hand we start with a Lie bracket of degree 0 (the commutator) and take as interior derivation the commutator with
the exterior derivative [d,...]. Note that the exterior derivative itself is a derivative on forms, but not on the space of differential
operators on forms. Therefore we need the commutator. o
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So let us consider two multivector valued forms (we denote the number of lower indices and the number of
upper indices in this order via superscripts)*

K(k,k/) = K, mn n — Kml,,.mknlmnk/dr;ml cede™ ® anl . ank/ (034)
L) = [ nem (C.35)
N~

Note the use of the schematic index notation, which we used for upper indices already in subsection C.1 and
which is explained in the appendix A on page 147. Following the ideas of above, we want to embed those
vector valued forms in some space of differential operators. As we have upper as well as lower indices now, it is
less clear why we should choose the space of operators acting on forms and not on some other tensors for the
embedding. However, the space of forms is the only one where we have a natural exterior derivative without
using any extra structure®. Therefore we will define again a natural embedding into the space of differential
operators acting on forms as a generalization of the interior product. Namely, we will act with a multivector
valued form K on a form p by just contracting all upper indices with form-indices and antisymmetrizing the
remaining lower indices s.th. we get again a form as result. The formal definition goes in two steps. First one
defines the interior product with multivectors. For a decomposable multivector v(?) = v; A ... A vp set

Z1)1/\.../\1)1,/)(T) = Zvl e 711)pp(r) (036)

This fixes the interior product for a generic multivector uniquely (contracting all indices with form-indices).
The next step is to define for a multivector valued form K®E) — n*) A v*) which is decomposable in a form
and a multivector, that it acts on a form by first acting with the multivector as above and then wedging the
result with the form

’

o pen P = 18 Aryap = (=) Fr 0 00 p (C.37)

It is kind of a normal ordering that 2, acts first:

’

Inlo = Ty pp(R') = (—)kk Ly Ap(R) # iy (C.38)

For a generic multivector valued form, the above definitions fix the following coordinate form of the interior
product® with a multivector valued form

s J— r el
L (k:’)!( v )Km___mll WL time.m (C.39)
N————

r

So we are just contracting all the upper indices of K with an appropriate number of indices of the form and
are wedging the remaining lower indices. The origin of the combinatorial prefactor is perhaps more transparent
in the phase space formulation (6.13) in subsection 6.1. For multivectors v®) and w(? the operator product of
1, and ,,(o induces, due to (C.36) simply the wedge product of the multivectors

Ly Ly(@0) = () A(a) (C.40)

But for general multivector-valued forms we have instead”

k' k'
(kL) = E ll(I?)L =IgaL + E Zzgf)L (041)
p=0 p=1

. . . . see page 146
40ne can certainly map a tensor K,,"de™ ® 8., to one where the basis elements are antisymmetrized K,,"dc™ A8, =

%Km"dmm ROy, — %Km"8n®drm and vice versa. In the field theory applications we will always get a complete antisymmetrization.
This mapping is the reason why we take care for the horizontal positions of the indices. It should just indicate the order of the
basis elements which was chosen for the mapping. <

50ne can define an exterior derivative — the Lichnerowicz-Poisson differential — on the space of multivectors as well (via
the Schouten bracket), but for this we need an integrable Poisson structure: dpN@ = [P<2),N<q)] , with [P<2),P(2)] =0 o

6The name ’interior product’ is misleading in the sense that the operation is (for decomposable tensors) a composition of interior
and exterior wedge product. It will, however, in the generalizations of Cartan’s formulae play the role of the interior product. We
will therefore stick to this name. We can also see it as a short name for ’interior product of maximal order’ in the sense that all
upper indices are contracted as opposed to an interior ’product of order p’, where we contract only p upper indices. ’Order’ is in
the sense of the order of a derivative. While 1, is a derivative for any vector v, the general interior product acts like a higher order
derivative. o

"The product of interior products in (C.41) induces a noncommutative product (star product) for the multivector-valued forms,
whose commutator is the algebraic bracket, namely

K+«L = > 2L
p=>0

K, L) = Ks«L— (=) 000k o
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with
(p) L(l,l') — (k'—p)(1—p) K l K n...nll...lpL n..n C.492
ZK(k,k/) = (_) b ) P m..m lp...liym..m ( - )
For p = ¥/, z%') reduces to the interior product (C.39). Both are in general not a derivative any longer. o(P)

is, however, a p-th order derivative, as contracting p indices means taking the p-th derivative with respect to p
basis elements (see 6.18 in subsection 6.1). Our embedding ¢ in (C.39) is therefore a k’-th order derivative.
For p = 0 on the other hand, Z(I?) is just a wedge product with K

While for vectors the commutator of two interior products (C.21) did only induce a trivial bracket on vectors,
which is the same for multivectors due to (C.40), this is different for multivector-valued forms.

[ternstpaan] = g s (C.43)
(K, L)Y = Y PL— (—)Ee Pk = (C.44)
=t =[K.L]3,
o) (- K l
= Z (_)(k p) (1 p)p!( » ) ( » )Km...mnmnllMZPLZP‘.,llm...mnmn+
p=1
! ’ ! !
_(_)(k—k Y(1-1 )(_)(l —p)(k—p)p!< ; ) < ’; )memn...nh..AlpKlpmllmmmn..‘n (C.45)

where we introduced an algebraic bracket [K, L]A in the second line, which is is due to Buttin [96], and
which is a generalization of the Nijenhuis-Richardson bracket for vector-valued forms (C.63). As it was induced
via the embedding from the graded commutator, it has the same properties, i.e. it is graded antisymmetric
and obeys the graded Jacobi identity. Actually, the term with lowest p, so [K, L](Apzl), is itself an algebraic
bracket, which appears in subsection 6.1.1 as canonical Poisson bracket. It is known under the name Buttin’s
algebraic bracket ([96], denoted in [70] by [, }%) or as big bracket

K, L)) = WL~ (=)0, = (C.46)
_ (_)(k/_l)(l—l)k/l . Km...mnmnllLllm...mnmn +
_(_)(k—k/)(l—l’)(_)(l/_l)(k—l)l/k . memn.“nll Kllmmmn...n (047)

But as for the vector fields in subsection C.2, we are rather interested in the derived bracket of [K| L]A, or
at the bracket induced via an embedding based on the Lie derivative. An obvious generalization of the Lie
derivative is the commutator [¢x,d], which will be a derivative of the same order as 15 and therefore is not a
derivative in the sense that it obeys the Leibniz rule. Although it is common to use this generalization, I am
not aware of an appropriate name for it. Let us just call it the Lie derivative with respect to K (being a
derivative of order k)

Ly = [igor,d] (C.48)
r+1 ,
Lywwnp = (K) ( ¥ > Koo 0,01, tymeem) +
_(_)k—k’(k/)! ( 7‘/ ) am (Km__imll.”lk/plk/...hm-u"n) = (049)

= (k/)| ( k/i 1 )Km...mllmlk/alk/plk’/_l...llm,‘.m =+
() O i (.50

The Lie derivative above is an ingredient to calculate the derived bracket (remember footnote 3 on page 162)
which is given by®

[ZKdeL] = [[’LK, d] s ZL] = UK,L] if possible (051)

8 The Vinogradov bracket [114, 113] (see also [70]) is a bracket in the space of all graded endomorphisms in the space of
differential forms Q°® (M)

1
by = 3 (ll.d) b= ()" [, [b.dl])  Va,b € Q*(M)
It is the skew symmetrization of a derived bracket. The embedding of the multivector valued forms into the endomorphisms Q® (M)

via the interior product which we consider is neither closed under the Vinogradov bracket nor under the derived bracket in the
general case. ©
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One should distinguish the derived bracket on the level of operators on the left from the derived bracket on the
tensors [K,L] on the right. Only in special cases the result of the commutator on the left can be written as the
interior product of another tensorial object which then can be considered as the derived bracket with respect to
the algebraic bracket [, ]A. Therefore one normally does not find an explicit general expression for this derived
bracket in literature. In 6.1.2, however, the meaning of exterior derivative and interior product are extended in
order to be able to write down an explicit general coordinate expression (6.51) which reduces in the mentioned
special cases to the well known results (see e.g. C.4.2).
Closely related to the derived bracket in (C.51) of above is Buttin’s differential bracket, given by

[Lx,Lr] = Lk, if possible (C.52)

Because of [d,d] = 0 and Lx = [1x,d we have (using Jacobi)

[‘CK»‘CL] = [[2K7dZL]7 d} = [[’LK,dZL] 5 d] = [Z[K,L]Ba d] (C53)

Comparing with (C.51) s.th. in cases where [K,L] exists, the brackets have to coincide up to a closed term, or
locally a total derivative

uk.L = Y.z, +d,. ] (C.54)

Using again the extended definition of exterior derivative and interior product of 6.1.2, this relation can be
rewritten as

[K,L] = [K,L];+d(..) (C.55)

The Nijenhuis bracket (C.74) is the major example for this relation.

C.4 Examples
C.4.1 Schouten(-Nijenhuis) bracket

Let us shortly review the Schouten bracket under the new aspects. For multivectors v(®),w(? the algebraic
bracket vanishes

(Lo s @] = 0 (C.56)

The Schouten bracket [v(?),w(?] coincides with the derived bracket as well as with Buttin’s differential
bracket, i.e. we have

([tvw,d] s 2] = Yo®),w@] (C.57)
(Lo, Lopw] = L1 wo] (C.58)

Its coordinate form — given already before in (C.15) — is
[U(p)7w(q)] _ pvm...mkakwm‘..m . (_)(p*1)(q71)qwm...mkakvm.‘.m (C.59)

The vector Lie bracket is a special case of the Schouten bracket as well as of the Nijenhuis bracket.

C.4.2 (Frohlicher-)Nijenhuis bracket and its relation to the Richardson-Nijenhuis
bracket

Consider vector valued forms, i.e. tensors of the form
K& = Koo P A A Ay X Ky, AT A A ™ ® 8, (C.60)
The algebraic bracket of two such tensors, defined via the graded commutator (note that |1k |=| K |=k — 1)
ik, oL] = g g (C.61)
consists only of the first term in the expansion, because we have only one upper index to contract.

[K(k71),L(l71)]A _ {K(k,l)’L(l,l)}A _ Zg)L _ (—)(kfl)(lfl)z(Ll)K — (C.62)

(1)
(Ci) lemijmmn - (_)(kil)(lil)k me]K]mmn (063)
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It is thus just the big bracket or Buttin’s algebraic bracket but in this case it is known as Richardson-
Nijenhuis-bracket.

The Lie derivative of a form with respect to K (in the sense of (C.48)) is because of ¥’ = 1 really a (first
order) derivative and takes the form

L e x1) [ZK(k,l) , d] (C.64)
EK(k,l)p(T) = Km,,,mlalpm,,,m + (—)krame...mlle...m (0-65)

The (Froehlicher-)Nijenhuis bracket is defined as the unique tensor [K,L],, s.th.
[Lr,Lr] = Lik,0)y (C.66)

It is therefore an example of Buttin’s differential bracket. Its explicit coordinate form reads

(KLl = Kmu-mjaij..-mn + (_)klame...mijm...mn +
~()M L. 05 Ko™ = ()" (=) kOm Lon..m” K jm...m™ (C.67)
_ ”cKL _ (_)k)lELKn (068)

A different point of view on the Nijenhuis bracket is via the derived bracket on the level of the differential
operators acting on forms:

[tx,arn] =[x, d 5oz (C.69)

It induces the Nijenhuis-bracket only up to a total derivative (the Lie-derivative-term)
hkaw] = ko, — (D)L, K (C.70)

Using the extended definition of the exterior derivative in the sense of (6.37) and of the interior product (6.32),
one can write the Lie derivative as an interior product (see 6.35) L,, x = —(—)""*1q(,, 1) and [[1x,d, 2] =
(—)* [raxc, 2] = (*)kl[dK7L]A, so that we can rewrite (C.70) as

[K,L] = [K,L]y+(—)* Yd(K) (C.71)
with [K,L] = (—)"[dK,L]* (C.72)
In that sense, [K,L] is the derived bracket of the Richardson Nijenhuis bracket while the Nijenhuis bracket

differs by a total derivative. The explicit coordinate form can be read off from (6.49,6.51) (with only the p =1
term surviving)

KL = (—)MGL+ ()M ()G K+ (—) Ve K) = (C.73)
= Km.m?0iLm..m™ + (=) 10mEKm. .m’ Lim..m™ +
()™ Lun.cm? 05 Ko™ — (=) (=) kO Lam..cm? K jom.m™ +
() F A kL. Ky, ™ ) (C.74)

ZLK

where the last part is non-tensorial due to the appearance of the basis element p; (see subsection 6.1.2):
d(ZLK) = d<kmeJKJmmn) = kam (Lm..‘mjij...mn) - (_)l+kLm...mjij...mipi (075)

The remaining part coincides with the coordinate form of the Nijenhuis bracket as given in (C.67).
One can nicely summarize the algebra of graded derivations on forms as

|:LK£I¢1) +ZL(11,1) , ;CKSQ) JrZL;zQ)] =

= E[KUKQ]N-HLIKQ—(_)(lfzfl)kl 1L, K1 +Z[Kl,Lg]Nf(f)(llfl)k?[Kz,Ll]N+[L1,L2]A (076)



Appendix D

Gamma-Matrices in 10 Dimensions

D.1 Clifford algebra, Fierz identity and more for the Dirac matrices

In the following we will collect some general relations for Dirac-I'-matrices in d dimensions. In contrast to
the rest of this document, we are not using graded conventions in most of this appendix. In other words,
the spinorial indices are not understood to carry a grading and we are thus using neither graded summation
conventions nor the graded equal sign. The reason is that a lot of people (me included) are used to calculate
with I'-matrices in ordinary conventions, and it therefore seemed to be simpler for me to translate only the
results into the graded conventions. This does not mean, however, that calculating in the graded conventions
would be more complicated. Let us give two examples, how to translate the results. Remember first that in
northwest-southeast (NW) 62 = §,° = —0P,. The equation ¢ = 16 therefore becomes 16 = 6% = Y__ 6% =
Yoo ba® =2 ()%™ = —0o. When there are naked indices, we also have to take into account the graded
equal sign, which compares the order of the indices in each term: Yas = VG Decomes vg g = (—)"‘57%& = —Y8a-
Remember the form of the Clifford algebra

{re.rty = 21 — 1Y = yobq (D.1)

Define as ususal ['*1+% = Tlo1...P%] The set {I''} = {I,['*, ['*4 T@0} then builds a basis of
Gl(2[d/2]) where 2[%/2] is the dimension of the representation space.

Product of antisymmetrized products of I'-matrices One can in particular expand any product of
antisymmetrized gamma matrices in the basis {T''}:

min{p,q}
Fal..‘a,,rbl...bq _ Z k! ( i ) ( Z >n[ap[b1|nap1|b2 ...n\ap+1—k\|bk‘F|a1~uap—k]‘bk+1u~bq] (D.2)
k=0

The antisymmetrization brackets on the righthand side shall indicate that all the a;’s and all the b;’s are
independently antisymmetrized. The expressions become quite lengthy, if one spells out the antisymmetrization
explicitely. Let us write down the first terms only, using the notation where a check “above an index means
that this index is omitted:!

Fal.“akrbl...bl - T .apby.. bl+§ E k i+j5—1 aljl—\al .4jq...apby.. b bl+
i=1 j=1

i1—1  j1—1

4 E E E ( E k 7;1+j171+k‘717i2+j271nailbjlnai2bj2]:\a1...lii2.,.6.il...akbl...b]‘Q...bjl...bl 4

n=lji=liz=1 j>=1 —(=)2k+i1+igHi1+iz

+ Z k i1+j1—1+k—1—io+ja— 277‘171 7177a72 g A1 'all"'ak‘bl"'i’h"'bJQ"'bl) +... (DS)
J2=j1+1

(_)2k+i1+i2+j1+j2

For some applications the precise coefficients are not important, and a schematic version is enough. Let us
denote T'%% schematically simply by I'¥l. Neglecting all coefficients, we can write

TETE o plie=U] f plE=t+2] 4 ple+l) (D.4)

IFor the proof of (D.2) one can simply study independently the cases of how many indices a; and b; coincide. For a nonvanishing
lefthand side all the a’s are different and all the b’s are different. If even none of the a’s coincides with one of the b’s, we have simply
rai--appbi-bi — par.agbi. by If a1 = by and all others are different, we have '1---%k ror-br = —)kfln‘“bl raz---agb2.-bi If fwo
indices coincide, e.g. a1 = b1, as = ba, then we have @12k 0101 = (_)k—1+k=2pa1bipasbaas..axbs- b And so on... 1S

167
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Some simpler cases are of particular interest for us:

rearbi-be —  paibi.b +1- nal[blrb2--~bl] (D5)
pacepbicbe = paazbibe popaibilpaslbebld g pazibilpalbebld g qypailbalpazlbapbs bl (p g)

Terazbibz . paiazdbibz + nazbll“alb2 + ,r}alb21"a2b1 _ ,r’albll"azb2 _ na2b2Fa1b1 +
+na1b2,’7a2b1 . na1b1na2b2 (D?)

Contracting (D.5) with I'y, from the left yields
(- l)rbl...bl _ Falralbl...bl (D.8)
Acting instead from the righthand side yields

Fal‘\bl...bll‘\a _ F“bl'“blfa + l,',/a[blrbz...bl]ra —
()i (d—21) - To (0.9

In particular for [ =0 and [ = 1, we have

r“r, = d (D.10)
rr‘r, = —(d-2)-1° (D.11)

For even dimensions the righthand side of (D.9) vanishes for [ = d/2. We will need this fact for ten dimensions:

[ rert-T, = 0| for d = 10 (D.12)

Chirality matrix as a “Hodge star” Remember the definition and the basic properties of the chirality
matrix in even dimensions:

_ 1 . €01.. (d—1) =1
T# = /egl®- T = i =€ er. e, T, with { 0 = (f)ld(gfﬁ}g _ (e (D.13)
I#)? = 1 (D.14)
{re.r#} = 0 Vaec{0,1,...,d—1}, forevend, T# =41 foroddd (D.15)

The sign €(q) is the sign that one obtains when reversing the order of d indices of an antisymmetric object.

Likewise if we have an antisymmetric object with an arbitrary number p of indices, reversing the order yields
(p—1)

the sign €(,) = (—)>r=0 ¥ = (—)PP=1)/2 = (—)[P/2]_ Tt takes the explicit values

d ol1|2|3a|ls|6 |7 ]8]9]10]11
= T alafi[i]afafi[t]a]a (D.16)
and has the properties
2 N
cora = (e =1 € = (P eop) = i) = (Ve €@-p) = @) (-7

—€(p-1)

The prefactor ,/—¢(g) in the definition of the chirality matrix guarantees the fact that it squares to the unity. For
half of the dimensions the square root is ill-defined, because —¢(q4) is negative. It should simply be understood
via v—1 = 1, i.e. \/TW) = j30+e@) 209 Of course, a redefinition of I'# with an overall (perhaps d-
dependent) sign does not change its properties and might be useful in certain situations. Because I'# squares
to 1, it can have eigenvalues +1. The corresponding eigenvectors are chiral and antichiral spinors. For odd
dimension, when I'# coincides with unity, there is only the eigenvalue 1 and there is no such split.

There is a natural isomorphism between the antisymmetrized product of I'-matrices I'**?» and the wedge
product of the cotangent basis elements (vielbeins) e A...Ae%. The multiplication with the chirality matrix on
the one side then corresponds to the application of the Hodge star on the other. It maps p-forms to (d —p)-forms
in the following sense:

1
F#Fal...ap _ J\/Tw)ECdWCII—\cd...clthzl..ap:
. 1
BTt () ()i -
1

= @V @l e, (D.18)
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Up to a sign (—)P(?=P) ((—)P for even d and 1 for odd d) the same result is obtained when acting from the right,
s.t. we can summarize

a a 1 ay...a C1...Cqd— - ay...Qy
Dot = )/ =) G ernaean L = () TPITIT (D.19)

The above calculation is also true if we are in odd dimensions where I'# is the unity. The antisymmetrized
products I'**?» do then not correspond to e® A ... A e, but (at least in dimensions where —e(q) = 1, i.e.
d e {3,7,11,...}) to self dual forms e A...Ae% +*(e® A...Ae) (see intermezzo below for the discussion of
the Hodge star). The same will be true in the even dimensions d € {2,6,10} for the chiral blocks v%'~%» that
will be discussed in particular for d = 10 later. In order to understand better the correspondence between the
multiplication with T# and the Hodge star operation, let us give a short review of the latter.

Intermezzo on Clifford map and Hodge star operator

In order to avoid confusion about prefactors, note first that we use a definition of the wedge product that
absorbs the normalization factor i which is therefore absent at other places:

WP = W, ™ALL A (D.20)

Replacing wp,...m, — ﬁwml___mp everywhere leads to the equations in the standard convention.
In even dimensions d there is a natural isomorphism, the Clifford map, from bispinors (which can be

expanded in the complete basis of antisymmetrized products of I'-matrices) and the formal sum of p-forms in
A T*M = &, \" T*M. The basis elements map simply as

J7he TG g% = B AL A e (D.21)
where e* = de™e,,® is an orthonormal vielbein-basis. Its inverse map is often denoted by a slash

/: ette.e? s 0% (D.22)
pP= Z pa1-.4apea1 e ﬂ = me...apralmap (D23)
p p

See in particular [6, 5, 115, 116, 81] for frequent use of this map in the context of generalized complex geometry.
Operations on the one side can then be translated to the other. There is in particular the multiplication with
the chirality matrix on the bispinor side which corresponds more or less to the Hodge star operator on the other
side. The 'more or less’ statement depends on how exactly one defines the Hodge star, and we will simply define
it in such a way, that it corresponds exactly to the multiplication with the chirality matrix, at least with the
multiplication from the righthand side.

The Hodge star operation on a manifold with metric maps p-forms to (n — p)-forms using the metric and
the e-tensor?

€m1‘.,md = V ‘ g |6m1.“mda 6()“.d71 = ]- (D'24)

2In the following we will use some identities for the epsilon-symbol and for the antisymmetrized Kronecker-delta, which we
would like to recall. Remember first the definition of the antisymmetrized Kronecker symbols

C1...Cn — c1 ... sCn
6d1<--dn - 5[0!1 6d71]
If we contract one index pair, we arrive at

d—(n—1) ccr.en s

6cl~~~cn—lcn
dy...dp—1

dy...dp_1cn

n
Contracting several indices leads to

6c1...cn_pa1...ap _ (d*Z+P)

6c1...cn_p
dy...dp_pai...ap

(n) dy...dp_—p
P

In particular, if all indices are contracted (p = n) or if the original number of indices matches the dimension (n = d), we end up

with |
6(11“.0.1, _ d 6(:1...cd,pa1...a,p _ d - 601...5(1,1,
ag...ap p ’ di...dg_pai...ap p di...dqg_p
(see also [117, p.456]). The last identities are important to derive the identities for the Levi-Civita symbol e. The first observation

is that we have

by...b by...b
€ay...aq€ Lebd = _d!(sal...atfi

Both sides are completely antisymmetric in all @ and all b. It is therefore enough to check the validity for (a1,...,aq) = (b1,...,bq) =
(0,...,d—1). The minus sign is coming from the different definition of the e-symbol with upper sign, i.e. ¢y 4_1 = —€?371 =1,
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where €,,, .m, is the totally antisymmetric Levi Civita symbol. Let us define the same symbol with upper
indices with a different sign, i.e. as ¢*+9~! = —1 (corresponding to the e-tensor in flat Minkowski spacetime
where raising a zero-index yields the minus). Using that det g™! = €, 1m,9™ - g™4?~! the e-tensor with
upper indices takes the familiar form

gMmi---md _ 1 67”1---md7 60"'d_1 =_1 (D25)

Vgl

The definition of the Hodge star on a manifold with metric  : AP T*M — A% P T*M has some ambiguity
in the sign, depending on which behaviour one prefers x to have. For us it will be most convenient to define
it simply in the way as I'# acts (at least for even dimensions). One still has the freedom to decide whether it
should correspond to an action from the left or from the right, which differs by a factor of (—)(@~P)? according to
(D.19). We choose the Hodge star corresponding to multiplication of I'# from the right as given in (D.19). The
dimension dependent prefactor m , however, will not be included, because it is complex in some dimensions
(but fortunately equal one in 10 dimensions) and the definition of the Hodge dual should make sense for real
manifolds. We therefore define

* (AR AL A AR = ﬁa’“lmkﬁmlmmd_pdxml Ao A de™ar (D.26)
(—)Pld=pl¢
R p)!(p) s may ™ (D-27)

The sign prefactor €(,) = (—)P(P=1/2 is usually not present in the old definitions in the literature. At some
places (e.g. in [81]) the Hodge star is defined such that it coincides with multiplication of T'# from the left.
This corresponds to a redefinition of our Hodge star by (—)?(¢~P). Let us denote with

o) = W™, AL A Dy, (D.28)
the multivector that arises when raising all the indices of the differential form w® with the metric ¢"" and
remember the definition of the interior product (C.39) with respect to multivector fields:

(r)

15w P (T%!p)! wll'“ll’plpmllmlmmrfp ™AL AT zm(mpm =0forp>r (D.29)

lp...1
€(p)wW 1 ppll...lpvnlume,p

Using (D.17) and the identities for the e-tensor given in footnote 2 on the previous page, we obtain the following

Using the above formula for contractions of the antisymmetrized Kronecker-delta, we obtain

by...bg_
€ €b1mbd_pc1...cp — —p'(d _ p)!éallma(,ii_p;,

al...aq_pcl...Cp

This equation remains the same if replace the Levi Civita symbol e with the e-tensor (D.24) and (D.25), as the normalization
factors cancel. o
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relations for the Hodge star operator®

= —ey (D.30)

CDmyomg = %sml..,md (D.31)

*(wP AnD) = (150 x0D) = (=)P (150 xwP)), forp+q<d (D.32)

This implies x(w® A xn(@) = —€(a) (151 ?) (p < q) and *(xw® A (@) = ,E(d)(,)(dfp)q(lﬁ(q)w(p)) (q < p)

and in particular for p = ¢

1
(w(p) A *W(p))ml..»md = —€a (%<P>77(p))aam1...md (D33)

_ 1
(*w(p)/\n(”)) - —ﬁ(d)(—)(d p)p(lﬁ(Q)w(p))agml...md (D.34)

Note that wedge product and inner product play both the role as an embedding ¢ of forms or vectors into the
space of endomorphisms acting on forms. Thus the equation (D.32) can be written as (1, 7(?) = (15 *17(?).
In turn, the same equation acted upon with an overall x and in addition with n replaced by *n and & renamed
as v becomes (15 * N9) = *(1,»n'?) (where ¥ is the p-form obtained from the p-vector v by lowering all
indices). For decomposable multivector valued forms w® ® v*) (with w a p-form and v a k-multivector) the
embedding is defined as 1,y = %Wty = w A1, (see (C.39) on page 163). We thus obtain

* (Zw(p)®v(k)”7(q)) = g * (Zv(k)n(Q)) = 15 Ly (k) *n(q) (D.35)

The order of the operators on the righthand side is not the “normal order”. The wedge product acts before the
interior product, while the definition of the embedding of a multivector valued form is the other way round. In
order to write it as an embedding again, we need to apply the commutator which yields the algebraic bracket
[to0), t500] = U 58] (see (C.43)). The above righthand side then becomes U((=)Pk 50 @@ (P) +[@(P),5(M]A) *x (@,
For general multivector valued forms K (kE) of form-degree k and multivector degree k' we therefore cannot set
*(ZK(k,k/m(Q)) equal t0 1z m m * n(@ although this would be tempting. Instead, we get in the schematic index
notation of page A

d—q+F -
wlugsen®) = 0 (ITITF) RO o) 5, (D.36)

Ouly for multivector valued forms with vanishing contractions (e.g. for a torsion which is completely antisym-
metric after pulling down one index) the righthand side reduces to oz x) *1@, where K(*") is obtained from
K®F) by raising all k form indices and lowering all ¥’ multivector indices with the metric.

Finally we can use (D.32) formally also to calculate the action of xdx, if we consider the exterior derivative
as wedge product dA. In flat space and Cartesian coordinates, there is no contribution from the action of the

derivative on the metric and we arrive formally at «(dA*n(?) = —€(d) (zan(‘”), or explicitely (*d*n(q))ml...mq_l =
—qe(d)ﬁkn,(ﬁy)nmmqil. In curved space this result gets covariantized to
(*d* n(q))ml...mq,l = —qe(d)V(Lc)kr],(ﬁ,)nmmqil (D.37)

3Because of the uncommon definition of the Hodge star, we’ll provide here the equations also for a redefined *. Let us replace
the sign factor (—)P(d=Ple,y = (—)P(d=P)FP(P—=1)/2 ip the definition (D.27) of the Hodge star by some arbitrary d and p dependent
sign factor €q,p)

€(d,p) ky...kp, (P)
ey

where some natural choices for €(q,,) are 1, (—)Pld=p), €(py and (—)p(d_p)e(p). The last one corresponds to our definition, while the
second is quite common in the literature. With this more general ansatz we have

€(d,0)

(*w(p))ml.“md_p kp

(*1)m1...md = a4 E€my...myg
K= (PP ey
(WP An@) = (PP ey, (PP P00 %0 = ()T Degq o gyeap ()10 2w

In particular for (g ) = (—)P(d=P) one obtains the more familiar equations

1 1
(* )ml../md = aeml...md
2 = —(=)rld-n)
1
w®) A *n(p) — _le(p):ﬂp)n(p) afmyumd

where the last equation follows from x(w® A n(@)) = (—)que( Ja®) *x (@) = Ye () (D *w(P) with n(@ replaced by +n(®). The nice
P q

feature of our present definition (with ey ,) = (—)P(d*P)E(p)) is that the expression for %2 in (D.30) does not depend on the form
degree. o
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where the Levi-Civita connection arises from the action of the divergence on the metric (ﬁ@k(,q glpk) =

V(Lc)kpk). Note that for a Levi-Civita connection the covariant antisymmetrized derivative Vfﬁf)wmlmmp]

reduces to the exterior derivative 9j, W, ...m,] because of the symmetry of the connection. This is not true any
longer, if a torsion is present. In that case it makes sense to define a different exterior derivative via

(Vw(p))mo.ump = v[mowm1~..Mp] = (d‘u(p))mo---mp - pT[m0m1|kwk7‘m2-~mp] (D38)
orV = d—ur (D.39)

The relation for *dx then turns into

(*V *n(q))ml...mq,l = 7q6(d)vk771(€37)11...mq,1 (D.40)

Apart from the Hodge duality (induced by I'#-multiplication) there are other interesting operations on the

bispinor side which get translated to the form side via /~! (D.21). E.g. the matrix multiplications with a
C-matrix either from the left or from the right translate due to (D.5) into

a /_1 a a a
re 4 ‘'— e /\p+7}b@p: (D.41)
Ley, P
(P32 ga p p — €a) * (e Axp) (D.42)
—1
p-1re o pAet +n%dp/oeb = (D.43)
r_a T— a 6
= () e Apt ()T 5 5p = (D.44)
tey, P
= (—)" (" A p+ €@y * (e A*p)) (D.45)

The form degree r in the last line makes strictly speaking only sense if p = p(") is a form of definite degree. If
it is instead a formal sum, r should be understood as an operator (acting on p) whose eigenvalues are the form
degrees (i.e. e* 8(241 ).

In order to obtain the action of the Dirac operator on the first or on the second index of a bispinor, the
above equations can be contracted with a covariant derivative V, (whose connection is compatible with the

metric n?°, the ['-matrices and the vielbein-components, i.e. leaves each of them invariant):

I'"Vo-p = Vp—eaqyxVxp (D.46)
V.
Vo pT® = () (Vp(r) + e *V*p(r)) (D.A47)

r

Vanishing of both expressions on the bispinor side yields (because of the different relative signs in the brackets of
both results) Vp = xV % p = 0, which for vanishing torsion corresponds to do = xdxp = 0. Let us try to recover
dand *dx also in the case with torsion. According to (G.23) or (G.27) any connection which is compatible with
the metric can be written as

wcab = wt(:aLC) b + Tcab + 2Tb(0‘a) (D49)
so that
PV s = rVEOE) Tl (= )T G L (D50)
—_———
—e(a)(xVxp(™) —e() (xdp(M)ay a4 (@) (ke *p)ay . apy

As indicated below the brackets, the same result is obtained via *V * p = x(d* p — 117 * p) and then using (D.36)
for x(v7 x p), considering T as a vector valued 2-form.

As a next step we should study the effect of multiplying the bispinor with another bispinor which again can
be expanded in antisymmetrized products I'®1-% of I-matrices. Using (D.2), we obtain

min{p,r}
r p r Ck...C r a1...Qptpr_2k
69 40 = S B (DY () s g T (D)
k=0



APPENDIX D. GAMMA-MATRICES IN 10 DIMENSIONS 173

The ['%-9p+r—2kg get mapped to e - - - e%+—2¢ by /=1 For forms which are not of definite degree, the result
can then be written as

/7! l 3 (5 a1by @by 9 i
wp kzmk!“aem dear ! T hebe T gei P (D-52)

which defines the Clifford multiplication between forms. The Clifford multiplication of two self dual forms
is either 0 or another self-dual form:

@® ,,)/(T)%(]l +T'#) for r even

(p) 1 #\ 4(r)1 #\ _
A +TT) A7 (AT )_{ 0 for r odd

(D.53)

Note finally that the matrix-commutator on the bispinor side naturally defines an (algebraic) bracket on the
form-side

'—1, 0 9 ) 0 9 9 i) )
" il e by parb _ atbi o oparbe _Z 2 )
WA= D 5 (wﬁeal dear T e e P P gen e T b e
k>0
(D.54)
Although this is a valid and consistent map, it is not the most natural object from the form point of view. On the
lefthand side we have the possibility to think of the gamma matrices as fermionic supermatrices as suggested in
section 2.7 on page 26 and consider the graded commutator which would include an additional sign (—)?" in front

of the second term for forms w® and p(") of definite degree. Then one can use that w(® {Ea = —(—)pa%aw(p)
and therefore w(®) afal afak = (—)krtkeq, 8:2% ~~8€%w(p) in order to interchange the position of w and p
and arrives at
: 1 2 9 9 9
/I~ k arb arby,
1— (=) = coo—poabs | parbs_Z 02, D.55
6,4 = Z: (1= (") 9% Fear” N o e P (D.55)
with odd I'Vs k20
2 Fl Fl ) 0
_ . arby | asky1bapi e — D.56
;) 2k + 1)1“9emr " ezt ! g et g (D9Y)

This contains as a special case the anticommutator of the gamma-matrices themselves

«—

al b1 a b

a b a _ ab
{re,1°}  2e Fea g€ = 2n (D.57)

The Hodge star as defined in the previous intermezzo corresponds to a multiplication with \/j(d)l“# from
the right. It would of course be possible to absorb the prefactor in the definition of I'#. This, however, would
spoil (I'#)2 = 1 in general dimensions. Let us now continue with the discussion of the properties of the chirality
matrix. From (D.19) we obtain in particular

2
—€
- (—)p<d—p><v “’”) Ce ey TET N @ gy o, Tt (D.58)

(d—p)!
Using e“Crt10etigy oy = —€pP(d = D) Ney..cpi1,ba.byer (see footnote 2) we get
!
TH#% ® Fap...al '# = (7)p(d7p)e(d)€(p) Wrbd“'dp+l ® Tbd-dpt1 (D59)

Reversing the order of the indices of one of the I'’s on the righthand side of the equation (contributing a factor
€(d—p) = € €(p)(—)PTP)), we arrive at

]
[#ra-a @ Fap...alr# - (d f.p)'rblmbdﬂ) @ Ly 0, (D.60)
In particular in ten dimensions and for p = 5, we obtain
T#T%9 @ Ly, I =Ty @7 for d =10 (D.61)
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Trace The trace of all antisymmetrized products of Gamma-matrices vanishes in even dimensions:

tr[e1--a2k+1 — trl"alu'aZkJrl]_"#l"# evgld +tr ]_"#]_"a1ma2k+11“# =  tr[@1--e2k+1 — ()
tr T2k — 4ty [92601025—1  —  {p 0102k — ()

Vp>1 forevend (D.62)

Fierz identity (see e.g. [118]) The Fierz identity is simply a completeness relation. Given a basis {|e* >} of
a vector space, define its dual basis via < ex||e! >= 62. The completeness relation then reads

S leF ><ep=1 (D.63)
k

In our case the vector space is the space of all 2(4/2] x 2[%/2l_matrices and in even dimensions the antisym-
metrized products of D-matrices form a basis of it: {1, 1%, T'®192 ... T%-%} = {T1}. In odd dimensions this is
still a generating set, but not linearly independent. The dual basis to {I''} in even dimensions is simply given
by 2742 {1,T4,Tasars-- > Layay } = {T'1} (acting on the original basis by contracting all spinor indices). One
can convince oneself that we have indeed (using tr'*1-% = 0)

_dj2sa B
2 WQ(SE(SQ =1 (D.64)

27d/2

bi...b bi...bp, — b b
o Ta T = gty = sl -

(D.65)

The completeness relation or Fierz identity thus reads

d g9-d/2

D

p=0

p' rai---ap ggrapmallé — 5%5% (D66)

Using (D.60) it can be rewritten as

d/2—1 9—d/2 9—d/2

(d/2)!

(P25, 0, g + (=)P (T TF) 25 Ty, 0, T#)Ts ) + D02 T o an s = 05 05

p=0 P!

(D.67)
which further simplifies when contracted with chiral spinors for which I'# — 1. The identities (D.66) and
equivalently (D.67) can be rewritten in various ways. One appearance of the Fierz identity which is of particular
interest, is to contract the identity (D.66) with I'*¢,I'.7, which yields (after relabeling in the result & — a,

=)

d_ 9—d/2
> o S i A Iela, oy Pls = DT (D.68)

p=0 caj...ap clagag---ap]
r +pneieil Peap...a; TP0clapTap_q..aq)

Some relabeling yields

d —_\p
> S =2 )Ty Vs = TOE (D.69)
p=0 ’

Finally we can use again (D.60), in order to arrive at

(—)P
24/2p]

d/2—1

D

p=0

(a=2p) ((T22)2 5 (T, 0, s — (2P (05 T#)25(T,, 0, T#)75) = T°2T.75 (D.70)

Contracting the identity with chiral spinors U2 = (4/%,0) and ®® = (¢°,0) leads to

d/2-1 2(d - 2p)
D gy AT, 0, B = —() T (@) W) (D.71)
p=1, odd

ODHTD) = (=)™ (D)L T)Y (D.72)
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d=10:
1

1
~(T 0T, &)Y
(L )*(Ta, @)1+ 5

: (FalaQa:}\P)g(Fagagalq))l — _(_)@\I/(FC(I))Q(FC\I/)l (D73)

In 10 dimensions this can be further rewritten, using the symmetry properties of the gamma matrices in their
fermionic indices. We will come back to that in subsection D.3.4.

D.2 Explicit 10d-representation

In the following we will give an explicit representation of the Dirac-I-matrices in 10 dimensions which we are
using throughout this document. The presentation is based on the one given in the appendix of [9].

D.2.1 D=(2,0): Pauli-matrices (2x2)
We start with the 3 Pauli matrices

1_ (01 2
T:<10>,7‘

I
7 N
SO
o |
~
~_
\\'
w
Il
N
[ R
\
A=
~~_
—~
=
\]
>

Fird = jedkrk 4 gii (D.75)
[78, 7] = 2idk* (D.76)
{Ti7 Tj} — 92591 (D.77)
trrt = 0, det(o') =-1 (D.78)
(Ti)T = gt (D.79)

D.2.2 D=(3,1), 4x4

Define ¥ = 7" ® 72, v = 1 ® 7' 7° = 1 ® 72. The tensor product can be understood in different ways when
writing down the resulting matrices. We understand it as plugging the lefthand matrix into the righthand one:

k 0 —iTk 4 _ 0 1 — ;.0 5 1 0
{7} = 20" (D.81)
tr(v*) = 0 (D.82)
()t = " (D-83)
1.2.3 4 _ O 71.7_17—27_3 0 1 _ 1 0 _ 5
Yy - ( iTszTB 0 1 0 - 0 -1 =7 (D84)

72, +4* and 7° are real and symmetric, while ' and 7° are imaginary and antisymmetric.

D.2.3 D=(7,0), 8x8
We can define seven purely imaginary 8 x 8 matrices A\’ as follows:
No= Pertert ey el oLy @l iv’yiy’ @) (D.85)

with iv?y*’ =ir? @it =29l = < 7(-)2 7(_) >
2

AN} = 25Y1 (D.86)
tr(\) = 0 (D.87)
AHT = X (D.88)

)

A = (2903028 @ 72 = — (V) @ 1 = (ir2 @ 1) ® 78 = iin2yty® @ 73 = iA[D.89
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D.2.4 D=(8,0), 16x16

Now we can define 8 real symmetric 16 x 16 matrices o = {\' @ 72,1 ® 71}

. 0 —i\i s [0 1
ol = ( 2o ) o :< Lo ) (D.90)
{ot, 0¥} = 261 (D.91)
(eMt = ot (D.92)
tr(c#) = 0 (D.93)
x=ol---0® = )\1-~-/\7®727'1:Il®7'3:(g O]1> (D.94)

D.2.5 D=(9,1),32x32

Finally we define the real Dirac-matrices for 10-dimensional Minkowski-space as I'* = { 1®ir?o"® T, X ® 7'1}

0 — 0 I \_ .0 bo— 0 ot 9_( 0 x
| ( 1 0 )= I, ITH = o 0 N X 0 (D.95)
a o 0 vaaﬁ : aaf af _pa «@ a po «@
ree; = " 0 ,  with ~ ={6"7,0"%3,x"s}, Yap =1{-0ap, 0" 5, x5} (D.96)
The small v* (chiral gamma matrices) are thus all real and symmetric! The Dirac matrices obey
{rerty = 2p°1 (D.97)
I#* = FO---FQ:ifl---Fwzal---08x®i72(71)9:]1®7'3:(]é 0]1> (D.98)
(I#)? = 1, T#I?=_ra# (D.99)
Tyt = 1o, (T#) =1% (D.100)
trT* = 0, trI% =0 (D.101)

Intertwiners The unitary intertwiners A, B and C are defined via

(ro)t = Ar*4f,  —(r%)*=BT1"B, —(I)"=CT"C (D.102)
We can choose
3
Agg = -TT% = 0 0 (D.103)
ol 55 0
B = TI# (D.104)
C = BA"=-1#11% =1° (D.105)

The Dirac conjugate is ¥ = TA. In the Lorentz-covariant expression ¢ I'"™¢, there appears therefore the
combination

(AT%)ap = < 7‘65 ,yaoaﬁ >, Yap sym and real (D.106)

The other conjugate is the charge conjugate spinor )¢ = Cyp” = CATy* = Byp* = I'#q)*.

D.3 Clifford algebra, Fierz identity and more for the chiral blocks in
10 dimensions

Above we have defined

0 7aaﬁ )
rea, — D.107
= (e 7 (0.107)

The Clifford algebra for the I''s reads in terms of the smallo +'s:
,y(a\ oz'y%\ybg — nab(sg (D.108)
yleledy ) = 16y (D.109)
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D.3.1 Product of antisymmetrized products of gamma-matrices

Antisymmetrized products of I''s are block-diagonal for even number of factors and block-offdiagonal for odd
number of factors*. The chiral blocks read:

'yal"'a% (xﬁ = 'Y[GII a'yl,y’\ﬁ?yg . ,y";:ili]lﬁ _ (_)k’}/almazkﬁa (D].].O)
ilﬁ...a2k+1 _ (7)167;:“(1%4—13 fyalu.agk_,_l af _ (7)k,yal~~a2k+1 Ba (D]_]_]_)

The schematic expansion of antisymmetrized products of I'-matrices given in (D.4) has the same form for the
chiral blocks, if we suppress the index structure:

AN o AlIR=t] oy Ile=t+2] o [R] (D.112)

Indeed, without the spinorial indices, even the exact equations (including the correct prefactors) look identically
for the small 's:

min{p,q}
,Yal...ap,ybl...bq — Z kl < Z ) ( Z > n[am[blln\ap—l\llm‘ ~~-T]‘ap+1—k\lbk‘,-y\al---ap—k]‘bkﬁ—l---bq] (D113)
k=0
In particular we have
’yalr)/blmbl = ’Yalbl"'bl +1- nal[b17b2mbl]7 ’Yblmbl’yal = ’Yblmblal +1- 'Y[blmbl_lnbl]al (D'114)
,yalag,ybl...bl — ,}/alale...bl _ l . nal[bllrya2|b2"'bl] _|_ l . 77(12[b1|,_y(11‘b2...bl] +
—I(l - 1)na1[b1\,’7a2\b2,yba~--bz] (D.115)
,yalaz,yblbz _ ,yala261b2 _ 277a1[b1|')’a2|b2] + 277a2[b1|7a1|b2] _ 277@1[61\77112“72] =
_ ,Ya1a2b1b2 + nale,Yalbz + nale,yaZbl _ na1b17a2b2 _ 77a2b2'7a1b1 4
+nalb2na2b1 _ nalban«ZbQ (D_116)

Reintroducing the spinorial indices for the last line yields (remember that we do not use our graded conventions
in this part of the appendix):

fyala2a’y’yblb27’6 _ 7a1a2b1b2aﬁ + naZbl'Yalbzaﬁ + nalbz,yagblaﬁ . 77a1b1,.yazbzoé,3 _ nazbz,.yalbla/@ +
+na1b2na2b15g _ nalblna2b26g (D.117)

If we regard v%1*2,7 as a matrix with collected indices (a1, «) and (as2,7), we can use the above equation also
to construct an inverse to this matrix: Contracting as and by, we obtain

,yalca’y,ycbz_yﬁ — 8’7a1b2aﬁ _|_977a1b2(§g (D.118)
and therefore

1

g7 ea? (v = 8ea]) = Mg (D.119)

If two indices in (D.117) are contracted, it turns into
Y Ybar? = 90572 (D.120)

The equations (D.118) and (D.120) are special cases of the following equations (which are in turn a direct
consequence of (D.114) and (D.115)):

’Ybl'ybl.”bl - 1. 51[)111,Yb2...bl] — (11 _ l),be...bl, ,Yb1.,.bl,ybl — (11 _ l),yln...blfl (D_121)
,yalbl,ybl...bl _ (10 _ l) . ,yalbz...bl + (11 _ l) (l _ 1)na1[bz,yb3...bl] (D122)
Yogp Y = (11— 1) (12 = 1) ybs-be (D.123)

4For example, the product of two gamma-matrices reads

raaze; = F[al\glp\al]j

B B
_ ,y[a1| a'y,yJYaBZ] 0 _ Hataz aﬁ 0
0 ,7([1“71,7&2] B = _’Y[allﬂ'yﬁ"‘yao?] o 0 ez B
,yalag aﬁ — _,ya1a2/6a

'y[o]“g = 45 (no index-grading here!) o
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D.3.2 Hodge duality

In the intermezzo on page 169, we had defined the Hodge star operator such that it coincides with the multi-
plication of I'# from the right. Remember

r#ey, = 1092, ( ]é _Oﬂ ) (D.124)

1 1
F#Fal”'a” _ (10 — p)' (_)p(p+1)/2€a1-..a/p01“.C107PFC1<~~C10_T’ — 4(10 — p)!F010-..Cp+1ecwmcerlap...al (D.125)

The chiral blocks of I'#coincide either with plus or minus the unit matrix:
1 .
,y# aﬁ = 70...9(15 —_ 6/(61 —_ 170'601”.(:10,}/(:1...610 aﬁ with €01, 9 = 1 (D126)
1 C (&

130 =A"0 = o= 101 Cer-ero 110 P (D.127)

Any chiral block v of T'?! is therefore always equal (not only “Hodge-dual”) to a v!*0—7!:

1 1
yErak Sy = (10_2k)'(_)kEal---azk61'”6107%701--»5107% “p= (IO_Qk)!Vclo"'cszrl “pecro..coppr 2P (D.128)
1 1
*’Yal“'a%aﬁ = 4(10 "2k (*)kealma% c1...61072k761'”61072kaﬂ = 7(10 — Zk)!’yclomczk*laﬁﬁcw“czwrlazkmal (D.129)
1
yOLea2kt1 aB o= (_)(k+1>€a1'”a2k+1C14.40972k’}/c1“'c9_2k af _ e 2k)',ycmmcgk+g aﬁECmmc%Jrza2k+1'.'a1(D.130)
1 Cl1...Cg_ 1 C e C
—"/Zlﬁ a2k+1 (9 - 2k)' (_)<k+1>€a1ma2k+1c1...cQ_2k’Yalﬁ 9—2k __ (9 - 2k)!’7a1ﬁ0 2k+2 6610'..c2k+2a2k+1...a1 (D.131)
In particular this leads to a self duality constraint for (%
1
,yal...as af _ _geal...asclmcsvcl...cs af (D132)
ay...as _ 1 aj...as C1...C5 D 133
Waﬁ - 56 Cl---CS’YQﬁ ( . )

This is the same behaviour as for the I'lPP’s themselves in odd dimensions, where I'# coincides with the unit
matrix. This means that a bispinor with two chiral indices cannot just be seen as a sum of odd (same chirality)
or even (opposite chirality) forms, but as a self-dual sum of odd an even forms. This is also further discussed
in the intermezzo on RR-fields on page 104.

For the five-form we had T#T%1-5 Fasmall"# =14 .4 ® I‘dl"'d5, which turns into —®1-%s “57;’3“&1 =

af dy...ds 6 ai...as _ di...ds
Vay...a; Y 7% and Vap  Vas..asv6 = Vdi...ds a;;’ywl; and thus

Y B = Vel " Yag..ar v = 0 (D.134)

D.3.3 Vanishing of gamma-traces and projectors for the gamma-matrix expansion
For any even p (2 < p < 8) we have
ai...ap o

Aot =0, 2<p<8, peven (D.135)

The reason is that there is no invariant constant tensor with p antisymmetrized indices apart from the e-tensor
for p = 10 and the Kronecker delta for p = 0:

,yalu.aloaa _ _,yal...alo aa — 166(11...1110’ ’V[O]aa = ,Y[O]aa = 53 =16 (D136)
With the same argument we get 72,37? fx 07 and fixing the proportionality by taking the trace yields
Vs = 1665 (D.137)

Alternatively this can be derived from ¢ ﬁfybﬂv = n§Y +~2,7 (the Clifford algebra for the chiral blocks and
thus a special case of (D.113)) together with (D.135). In the same manner we get for all other forms (using
(D.113) and (D.135))

ygg““wfjnbl = 16plo,)y» for pe {1,3} (D.138)
NS = 16y, g, 16 - 5l (D.139)

7a1~~ap“ﬁfybpmb15a = 16p!5211:.'£: for p € {2,4} (D.140)
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The extra term in the '7[5]7[5} contraction on the righthand side of the second line is due to the fact that the
trace of 719 does not vanish according to (D.136). Any other contraction, where the number of bosonic indices
does not match, vanishes

tr(y?Plyldy = 0 forp#¢q, and p,q <5 (D.141)

The results of above can be used to project to the coefficients of y-matrix expansions:

AeB — Aa,yaa[3+Aala2a3,ya1aza3 a5+Aa1.,,a57alma5aﬂ,
. 1 o 1 .
with Auy o, = T g0 A% 01 p € (1,3} and Auy_oy = gz p0 A (D.142)
Dap = D“'ygﬁ + Dala2a37zlﬁa2a3 + Da1---a57g,18ma5a
1 1
. o Ba B o
Wlth Dal-..ap - 16])' P)/ap...alDaﬁ fOr P € {173} and Dal.._a5 - 39. 5!7a5...a1DOt,B (D143)
o o aiaz o ajazazas o 1 a
B B = B[O](Sﬂ +Ba1¢l2py 1z 5+Ba1a2a3a4’y 1azfata ﬂ, Bal...ap = Wp"}/ap_,alﬁaB 5 (D144)
1
CO‘B = C[O]ég + Ca1a27a1a2a’8 + Ca1a2a3a47a1a2a3a4a67 Cal...a acaﬁ (D.145)

p Fp!’)/ap,..alﬁ

For the first two expansions it was used that due to the restrictions (D.132) and (D.133) on v°!, the corresponding
expansion coefficients can always be chosen to obey (anti) self-duality constraints of the form

1 e
Aal...a5 = _gAcl.,‘%ECl'“Csalma5 (D146)
1
Dayoas = = Deyon€? Sy o (D.147)

5!

which lead together with (D.139) to an extra factor of two and thus to a normalization factor Si

- 1
5 instead of i6
for p = 5.

D.3.4 Chiral Fierz

Remember
10 1 .,
> st B ey ants = 0505 (D.148)
= ! B
or
4 1 )
Z 32717, (I‘al...apﬁérap~..a11§+ (F#Fal~~~ap)gé(rap_“al].—‘#)lé) + TR 5|I‘“1~~a5ﬂgfa5mallé _ 535% (D.149)
p=0 : ! B

We want to make a distinction of the different cases corresponding to the chiral indices:

1 a ap & (o7
> Top1 O " Wlaean”s) = 050 (D.150)
p€{0,2,4}
—4 1 1...a § 1...a5 5
0- +T Z 16p!,ya paﬁ,yapmal"/ + 5 5 a5 aﬁ,yasmal’Y = 0 (D.151)
pe{1,3} -0
]‘ ai...ap 1 ay...as
Z Fp"y aBYayp...a1 v + m Y afVas...a1v6 = 0 (D152)
pe{1,3} 0
1 a ap & ay...as @ (o7
Z @’Y vt @By s+ 32517 R 5,’? (D.153)
pe{1,3}
Only the first and the last give nontrivial information.
5&57 + 1 ajaz & o + l a1a2a3a4 & v _ 165&57 (D 154)
BYs 27 BYazar 6 4!7 BYasazaza; 5§ = 593 .
1 1
7 aﬁ’)’aﬂ/t? + 5,yaulzas, a57a3a2a1 5+ 2.75',}@1...@5 a57a5...a1 N5 = 1663"(55 (D155)
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Contracting «, ¢ in (D.154) yields 1665 = 1605, contracting v, 3 instead, yields®

sa 1 ajas o 1 aiazaszag ¥ 6)262 D.156

§ 2'7 142 7’7a2a176 4'7 1Hzastd vYasazazar ' § (1 )2 5 ( 1 )
aa 1 arazaz af 1 ai...as af «a

Y ﬁ')/a,@é 3"7 14248 Yasasai B + 72 E)"Y Lo @8 Yas...a1 B6 = (16)2(55 (D151)

105¢
We can also contract (D.154) with ~% 2 Vbyo B0 arrive at

ai1az & a1a2a3a4

1 1
0 = Y3, Woe+ =72V, VoyoVazar s 47 8V p Voo Yasasazas |5 —1675, 7 50 (D.158)

2

CIEEEY Y31+ ~[5] (3] Y5173

Now we use that 4[®lis antisymmetric in 3p and that 7[5]7[5} = 0 (mixed terms like ’Y[S]"}/[g] also vanish, because
some 7 are contracted with antisymmetric indices of 7[5]). Symmetrizing the above equation in [p yields

az]

[a17pﬂ 77b[a2’Ya1] od — 167§(p|'-)/b 18)e =

0 = Y3, oo +20°
= Y4 Woo + 25%172;}%1 o5 = 1675, W 18)0 =

= Y Wse + OmA VR Va1 08 — 042 Vo Var o5 — 1675, 15)0 =
= Vi Woso + VegVaos — 10Y55Yar 05 — 16950, 7 1800 =

= *8%,;%50 - 167§(p\'7b\ﬁ)a (D.159)

Y Vo 18) =0 (D.160)

We could have used directly equation (D.73) to derive this result. This is a very important identity because
it is so simple and can be used to derive many other identities. One example will be useful for us in the main
part. Consider the contraction of the bosonic indices of two v1?’s:

Y% = (Vs —n™65) (V17 Voos — Nabdy) = (D.161)
= Y bos — VP Vapsd] — 7 Ves 05 + 106567 (D.162)

In order to make use of (D.160) we symmetrize the lower spinorial indices and obtain

Y e s = (Vs — 1°85) (W7 Wes — Navdy) = (D.163)
= T e ie Y P Vape 0% = 1 Mo 0F) + 1060307, = (D.164)

— 2557 por (D.160) 10975 108
= =3 W01 Vs — 1068557, (D.165)

=87, (D.9)

We can thus express 72y by v[Uyy;) and Kronecker deltas

7 e 15) = 4ra s — 1080507, (D.166)

5As a consitency check we can in addition contract «,d and get for the first Fierz

1 1
16+1652!5g;g§+1654!5g;;;;;;g = (16)®
1+( 120 >+( 140 ) = (16)% =256
N N\ !
45 210

and for the second one

10 1 10
w0+ () (8 )=z o



Appendix E

Noether

E.1 Noether’s theorem and the inverse Noether method

Most of the following presentation is based on [95, p.67f, p.95], although somewhat modified. Consider an action
of the quite general form

S[¢azdl] = /dna £(¢31L11’ 8M¢azdl’ aul alm (sz;—lb c ) (El)

In most of the applications there appear no higher derivatives than Bﬂqbgn. Let us treat global and local sym-
metries at the same time and consider a symmetry transformation with infinitesimal transformation parameter
p(0). The transformation can be expanded in derivatives of the transformation parameter:

S(pbmn = P 0abiy + 0up® St oty + Ou, O p 2 ol + . .. (E.2)
——
6?ﬁ)¢§ll 6(1/J)¢'§“ 6(2/J)¢'§“

In order to define properly the variational derivatives for this more general case, consider first the variation of
the Lagrangian!

oL oL oL
oL = 5%11( )* >+

-9 +9,,0
a(ba]l g 8( M(ball) g

re 8(6#« 811«2 ¢all
+0,( 6%, - +° Z Oy Oy, OOE Oy, ... 0, oL (E.3)
2 a ( ;L¢I 1 k—1—i a k—1i k—1 8(8M(9,,1 ] 8 7 )

all k>2 i=0 Vk—1"Fall

The total derivative term reduces to a boundary term in the variation of the action, while the remaining term
defines the variational derivative. As the boundary of a boundary vanishes, one can further partially integrate

I In (E.3) we have reformulated the variations containing derivatives of the fields ¢a11 using schematically the following iterated
’partial integration’:

oa-b = a(a’“ 4 ) 9 la.0b=
(a’“ 14 ) <8k’2a-6b>+8k’2a-82b:
= 9" Ta b0 0b .t (—)F e 9P 0] 4 (-)Fa- R =

k—1

i=0

e]

+ (—)*a- b

This equation is applicable in (E.3), because the indices of the partial derivatives are all contracted and symmetrized and therefore
behave like one-dimensional derivatives. In our case the above formula takes the explicit form

oL
8By - Bup 05 - (B, - Op, dLy)
11 - Opg Pan

oL
T R 8

oL
e 8(8#1 e ~8Mc ¢§ll)

= au[ (7)i8V1 "'8Vk—'i—16¢az.ll‘61’k—i -..0 ] +(*)k5¢§11‘8#1 ...0

181
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the boundary term in order to obtain a convenient form that determines the boundary conditions:?

oL oL oL
5§ — /d”a 57, ( ) 6182—...>+
) ! 8¢3L11 #8( M¢all) e 8(8M 8H2¢all)

sS

7
5o

oL oL oL
+/ 5¢;’( — 20, i + 30,0y e — )x
[2)> ! ( H(ball) g 8(8 6u2¢a11) e 8(3 augaus%n)

()7

1

Xmﬁwl...unfl

& A Ade T (BA)

A general variation §¢Z; determines via §S = 0 the equations of motion 0 (and the boundary conditions

5S
6¢§11(0’)
nu (k) = 0 with n, the normal one form), while for a symmetry transformation J,) ¢%, the variation of the
action has to vanish off-shell. Then the variation of the Lagrangian has to be a divergence independent from
the equations of motion:
L 1 : i —

Skl = BMIC(p) with nHlC(p) . 0 (E.5)
The symmetry variation of the Lagrangian is thus on the one hand equal to a divergence and on the other hand
(according to (E.3)) equal to the equations of motion plus another divergence. Omne can therefore define an
object whose divergence is proportional to the equations of motion. So let us define the current

: oL
ity = 5% 50T +) Z oSN SN - YR SR 5.0 7y K,  (E6)
all k>1i=0 vyt Vk all

Note that IC?p) is determined only up to off-shell divergence free terms. The same is of course true for the
current. Using this definition, we can deduce from the above (E.3) that

05

z E.7
5T, 6¢all ( )

Ouj Fp) 5(0) ¢

This equation shows one direction of Noether’s theorem:

Theorem 2 (Noether) To every transformation 5(,))(1)5” which leaves the action S invariant, there is an on-
shell divergence-free current jé‘p) whose explicit form is given in (E.6). Its off-shell divergence is given in (E.7).

The such defined Noether current is unique up to trivially conserved terms of the form 9, SHl,
In turn, for any given on-shell divergence-free current j* (see (E.8)), which is furthermore itself on-shell

neither vanishing nor trivial, there is a corresponding nonzero symmetry transformation (5(;%” of the form given

2Stokes’ theorem reads

dv = / w(n—l)
=(n) )y

For any ¥ that can be covered by one single coordinate patch, we can write

— M1 Hn—1
= oM AL AT W

w
p1%ps...pun)
1

/ DA LA dotn )
=

where on the righthand side the coordinate differentials do# have to be understood as pullbacks dr’d;c*(r) on the boundary.
For the integral of a divergence term like

/ do vt = / At AL A ot
= =
we can use the fact that
AL AD It = dw
with 1
w= mv”euul,,,#n71®“1 A...ANdohn—1

Applying Stokes then leads to

1
/ d"o oyt = / — v eupg .y OFT AL Aot o
= on (n—1)!
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Remark: The equation (E.7) for the off-shell divergence can serve for reconstructing the symmetry transfor-
mations for a given current. In the Hamiltonian formalism , the current (or better the charge) generates the
transformations via the Poisson bracket. In the Lagrangian formalism one can simply calculate all functional
derivatives 95~ (i.e. the equations of motion) and try to express the divergence of the current as a linear

S
combination of them. This method — let’s call it inverse Noether — determines the transformations up to
trivial gauge transformations (see e.g. [95, p.69]) and we are using it frequently in the main part, in particular
to derive the BRST transformations.

Proof of the theorem: We have already shown the first part (every symmetry transformation induces a
conserved current) by deriving (E.7). The uniqueness up to trivial terms follows from the algebraic Poincaré
lemma. This does not yet show the inverse. For a given on-shell divergence-free current j* we do not necessarily
have the form (E.7), but its off-shell divergence can also depend on derivatives of the equations of motion:

5S 1., 68 Tun. 5S

—_— = _— = Y, Oy — E.8
5‘;%11 y(l) M1 5¢§11 y(N) M1 ( )

gt = —yk .
) Y0) uzv&z)gn

However, one can always redefine the current such that we get the form (E.7). This is achieved by performing
the iterated ’partial integration’ of footnote 1 on page 181. We have schematically

k—1
) i .08 6S
T ak i1, T k—1—1 kok, T
Y0 =7 = 9|2 (=)0 -0 — |+ ()" s (E.9)
W = 0[S 0 “ 5,
We can then rewrite schematically the divergence of the current as follows
N
~ 08
Oud" = _Zy(zk)aka T =
k=0 ¢all
N k-1 N
i ni _1_; 08 08
= —0|)_ D ()yhy 0! ST —Z(_)kaky%k)'ﬁ (E.10)
k=1 i=0 ¢a11 k=0 ¢all
To summarize, if we define
= p e i Lo pa e pie—1 08
=YY () O O Oy -~~%71W (E.11)
k=1 =0 all
N
505 = () By (E.12)
k=0
we get JjH = _5%111% and thus discover that the above defined d¢%, is a symmetry transformation. We
all

assumed that the current was on-shell neither vanishing nor trivial, while we redefined it with on-shell zero
terms only. Therefore the new current will not be trivial and its divergence is off-shell non-zero. The symmetry
transformations constructed above are therefore (at least off-shell) non-zero as well. This completes the proof.
d

We should add that an on-shell vanishing current does not in general imply vanishing transformations. In
fact all Noether currents of gauge transformations are vanishing on-shell. The gauge transformations will be
discussed in the following, where one discovers that the equations of motion are not independent but are related
via the Noether identities. Going back to our construction of the transformations from an arbitrarily conserved
current one can make use of these dependencies instead of only redefining the current. This avoids ending up
with an identically vanishing current after the redefinitions.

E.2 Noether identities and on-shell vanishing gauge currents

Equation (E.7) is valid for any symmetry transformation, global as well as local ones. For local ones, however, the
relation has to hold for any local parameter p® which is much more restrictive and allows to extract additional
information. Let us assume that there is some highest component j,™"“~~'"#' or in other words 3N, s.t.
A | Vk > N. The expansion of jé‘p) in derivatives of the transformation parameter p takes the

form

Gl = PG Oy G o Oy By p gl (E.13)
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Now we plug this expansion and the one of §,)¢Z; (E.2) into the equation for the current-divergence (E.7):

POl Oy (7 + D) + Dy By (142 Dyl 42) 4 =

éS 0S )
= —p*.bh — Oy, o1 L, — O, 0, p0H1H2 T — ... (E.14)
all oo 7 5¢311 [3% all o 7 5¢311 H1 2 all o 7 5926311
Depending on whether we have a local or global symmetry, we get a number of recursive relations:
i 0S8 e a
OurJa = —ba ¢a115 if p* #0 (E.15)
¢all
. s
6#2‘752“1 = jgl - 551 all ¢ 7 if 8u1p 75 0 (E]-G)
6¢a11
S 2 (p2p1) _ spzapr 4T 65 : a
Opus T = —Ja 0 by g i O Opap® # 0 (E.17)
d)all
9, jHNHEN—1--p (N1 N —2---41) UN 1.1 4T 05 : a
o G = —jb — oM Al 547 ifO0uy .. . Oupy_1p*#0 (E.18)
all
0S
0 = —jleven-rem) _gunmgl = 5T 0w Oup #0 (E.19)
all

The first equation (E.15) is present already for a global symmetry and corresponds to the Noether’s theorem
for global symmetries. If the transformation parameters are instead local and arbitrary, the complete set of
equations is forced. Taking then the divergence of the second equation, the double divergence of the third and
so on, and adding them with appropriate signs, we can remove all currents from the equations and arrive at a
version of the Noether’s identities:

08

oS
a¢a a (651 a ) + ...+ (= N+16L1 -..al,N 1 (551N+1M‘u1 g
50T, 6¢a11 15T, 6¢all ( ) ! e 15T, 5¢all

From the recursive equations above, one can also obtain an interesting statement about the current of a gauge
symmetry (compare [95, p.95]):

) = 0 (E.20)

Proposition 6 : The Noether current of a gauge symmetry vanishes on-shell up to trivially conserved terms
(see (E.21)). In turn, if a given global symmetry transformation has an on-shell vanishing current (see (E.35)),
then one can extend the transformation to a local one (see (E.40)).

Proof Start with a given gauge symmetry d p)qbgn and its corresponding current jéLp ) with the expansion given

n (E.13), which defines the number N of the highest derivative on p. We want to show that the current of a
local symmetry is of the form

N
)

[ _ } : nZpy.. pk M

gty = )\(p) 1 kam ...8,%% +t(p) (E.21)

2

for some coefficients )\é‘pz)” 1M and with a term ¢t* whose divergence vanishes off-shell: 9, t“ (o) = 0. (Due to the

algebraic Poincaré lemma, this means that there is some antisymmetric tensor S([Z ) such that t“ =0, S([’; ;’ )

In order to reduce the length of the equations, define first?

, 08

) I I ¢315¢au Bl — Et(lﬂk-uﬂl) (E.22)
A et = ke ket (e i) | A Bt = Atk () | AGi i) — 0 (B.23)
3Note that from
k'j((l#k Hk—1--p1) j(l:k R R (k- 1)j((l/»‘k—1 Hl—2---H1)HE

one can deduce

k—1
g Bk—1---B1 (B HE—1--11) 2 Jpgl pg—1-palopn
Ja —Ja = 7 § Ja ¢
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The first object is symmetric in all indices and the second is symmetric in the last k indices and vanishes when
symmetrized in all indices. Using this notation, we can rewrite the recursive equations (E.16)-(E.19) in the
following form

g = —pm - 8#2]'52“1 (E.24)
G2 =AM B2 sk (E.25)

jgN_l N —2..fb1 _ A,LaLN_l N -2 b1 _EllILN_L.»lLl _ 8MNjgN N —1---41 (E26)
RS BN—1.-p1 A’;N MN -1 p1 _ EgN"'l“ (E.27)

This set of equations can now formally be solved for all components of the current, starting from the N-th
equation. We end up with

jgl 73%‘452 B aﬂ(zaﬂg Ags H2p1 6“2 a}t36/L4AZ4 Mapapy 44
=BG + 0, EGPM — 04y 0,1y BG4 0,1, Oy Oy G121 — (E.28)
jgz 231 — Agz M1 8M3A53 K2 + aﬂg 6M4Alé4 Hap2pr +
S T ARG W oY Y LR WS W o SRR (E.29)
jgk Hk—1---f1 — A/;k Hk—1---H1 _ aﬂkﬂAgm—l A R (7)N7kaﬂk+1 o auNAgN HN—1--p1 4

S g Oy Bl ()NTRG Gy, Bl (E-30)

jt/;N*Ip‘N*?“‘Hl _ AgN*I N —2. i1 aHNAZLN UN—1.-p1 E(;ltNﬂ...m + aMNE(l;NMM (E_gl)
GHNAN=1 o AN AN=1e RN (E.32)

In order to obtain the complete current jfp 1) we have to contract the k-th term jH1#+F2 (with interchanged
w1 < pg!) with 0, ... Oy, p® and then add all the terms. Interchanging pj and p for the k-th equation affects
(because of the symmetries) only the term Ap* """ s AM1#r-k2 We will sort the A,-terms with respect
to the number of indices on A, and the F,-terms with respect to the number of derivatives on p“:

N k—2
jzlp) - < _(_)k_zauz o O 1 POy O ARFIR=1 B 0, Oy p" AR ltk.”lm) !
k=2 \i=0
=)
N N—k
— Z 8#2 o a#kpa Z (_)zamwrl o aﬂk+iEgk+i-..Mk+lﬂkn~Nl (E.33)
k=1 =0

The second line vanishes on-shell, but it remains to show that the first line tfbpl) = Zszz tfbpl) has trivially
vanishing divergence. The second term in the first line is written separately (not in the sum over i), because
in contrast to the other terms it has the p; index at the first position (which is not symmetrized like the other
positions). This difference in treatment disappears in the divergence with contracted pi. We use this fact to
show the trivial vanishing (without the use of equations of motion) of the divergence of for every single ¢!

(pk)°
Oty =
k—1 ) k—1 )
= ) ()T Oy O P Oy O AL N (TG Oy P Opany - Oy Oy AL
=0 =0
k—1 ) k—1 )
= (T O 0P Oy O ALE I N ()R TIG,Dpy p Dy e Oy AR
=1 =1
()T Oy By p AY ) ()R, LB, AL ) = (E.34)
N—————

=0 =0

This completes the proof of (E.21) or of one direction of the proposition.
Now consider that we have a global transformation (constant parameter p.) 5?pc)¢§ll = p%0,¢L, with Noether

H2
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current j(“p )= p%j#  which itself vanishes on-shell

N

gho= Y NI, Oy o5 (E.35)
k=0 5¢all
aujff = —dq ¢all o3 (E36)
6¢all

If we plug (E.35) into (E.36) we already discover relations between the equations of motion, which look like
the Noether identities for local symmetries. Indeed, if j# vanishes on-shell, also p®j# vanishes on-shell, even
for local p®. For consistent equations of motion (some which have solutions at all) certainly also its derivative
vanishes on-shell. The combination j?p = p®j# therefore corresponds to a symmetry transformation with a
local parameter, i.e. a gauge symmetry, although this current is in general not yet in the standard form of
a Noether current (where its divergence does not contain derivatives of 25~ but only the plain equations of

5¢I b
motion):
0u(pge) = Oup™ - ji + p Ol = (E.37)
N
= Z@Mp“)\g‘z”l"'“ka Oy == 05 —(pa6a¢azu—8up“/\ff) 05 (E.38)
P Lo d¢m

In order to get a proper Noether current (where the righthand side does not contain any derivatives of the
equations of motion) we can use our insights from the proof of Noether’s theorem, i.e. equations (E.8)-(E.12).
We learn that if we define the whole current to be

N k-1
; a; i ayv 08
]étp) = o~ ZZ(*) O - 0 Oup )‘azlmlmﬂk_l ’ a#i+1 e Oy (WS (E39)
k=1i=0 all
we get a proper Noether current with corresponding symmetry transformations
N
Spbm = p"0abm — Oup™ NeT 4 Y (=) 0y - Oy (D NF 1) (E.40)

The transformation (E.40) is a local symmetry transformation which completes the proof of the proposition. O

Theorem 3 FEvery on-shell vanishing symmetry transformation is a trivial gauge transformation as defined
below:

505, "= M0, 58S =0 = 6¢%, = / dlc A (0,0 )~——— with AT (5,0") = —AT (0’ o) (E.41)

oS
6¢all( )

See in [95] (theorem 17.3 on page 414 or theorem 3.1 on page 17) for a proof of this theorem. See [95, p.69]
for a discussion of trivial gauge transformations.

E.3 Shortcut to calculate the Noether current

There is a nice shortcut to calculate the current: multiply both sides of (E.7) with some local parameter n(o),
integrate over the world-volume ¥ and perform a partial integration to arrive at

/ d"o 6#77 : ]éLp) +/ ( . ) = 5(U7P)S (E42)
2 )

where 8¢, )¢5 = 1+ 6(,)¢L,. One thus obtains the current by multiplying the variation with an independent
local parameter 1 and reading off the coefficient of 9,7. This trick is better known for global symmetries*
calculating just j~.

41f one is just interested in j& one can consider a variation not with the full variation 6(p)¢afu, but only with its derivative free
part (5?p)¢ L=P (Sa(bau (see (E. 2)) and allow local p® even in the case of a global symmetry. Multiplying both sides of (E.15) with

p® we get p®Oujh = )¢a11 5<;/>I Integrating over ¥ and partially integrating finally yields

S = [ outit+ [ ()

The (conserved) Noether current thus can be read off from the derivative-free variation of the action as the coefficient of 9, p%. We
could then proceed with a variation 6(1p)¢§1] = 8Mpa6f{¢§n to derive jA*! from the coefficient of 8,9,,p%, and so on. All this is

done at the same time in (E.42). o
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E.4 Noether current for the commutator of two symmetries

Determining the Noether charge for the commutator of two symmetries is a very simple task in the Hamiltonian
formalism. As the charges generate the symmetries via the Poisson bracket, we have 610, = {Q1,¢%,} and
6205 = {Q2, ¢%, }. The Jacobi identity for the Poisson bracket then implies for the commutator of the symmetry
transformations that [61,02] 0%, = {{Q1,Q2},¢%,}. In other words {Q1,Q2} = 61Q2 = —02Q; is the charge
corresponding to the symmetry transformation [0, d2]. After dropping the integration over space, this relation
also holds for the currents, i.e. 0175 = —d271" is the divergence-free (on-shell) current corresponding to the
transformation [dy, do].

Of course one expects to obtain the same result within the Lagrangian formalism. And on-shell this indeed
has to be the case. Off-shell, however, there might be a difference to the Hamiltonian formalism. In order to
capture all the subtleties, we will therefore derive in the following the off-shell Noether current corresponding
to [01,d2] within in the Lagrangian formalism. As it turns out, the derivation is a bit more involved than one
might expect.

The current corresponding to the symmetry transformation [d1, d2] can in principle easily be computed if we
know KY and K4 with 6L = 9,K* for the symmetries 6, and 5. By acting with the commutator symmetry on
the Lagrangian, we get a simple expression for the total derivative term for this symmetry:

[01,5]C = 510,K% — 6:9,K% = 9, (26[116 ]) (E.43)

Knowing the total derivative term (up to trivially conserved terms), the corresponding current is simply (ac-
cording to (E.6))

0
jM = ) 7(5 ¢a
[61,62] [1 2] 118( /t¢all)
oL
+ZZ By - Oy, [0, 00) b - Doy - O 2y .

" 0(0u0u, - - O b))

k>14i=0

The nontrivial part is now to show that this current is (at least on-shell) equal to &1 or —dqj)', which
was suggested by the Hamiltonian formalism. We start with two currents corresponding to two symmetry
transformations

Ol = —010% 0t = —6207, E.45
nJ1 1%all ¢ 7 5¢311 wnJ2 2¥all ¢ 7 5¢311 ( )

How not to do it. = The way to derive the desired result presented in the main part of the original version
of this thesis was unfortunately wrong (although luckily without bad consequences). Let me shortly sketch it
and point out the trap. Acting in (E.45) with §; on 9,55 and subtracting 85 of 9,71, one obtains

6S

o + 2611056 E.46
W 7T 5¢311 1Pan92 < 7 5¢a11 ( )

So far everything is correct, and it is tempting to argue that the last term is vanishing. The reasoning would

Oy (6175 — d251) = —[01,02]

be 6[1¢§1152]%%l L 61105,09) ¢2§1ﬁ = 0. The last step is true for symmetry reasons, but the step before
is simply wrong, because it misses an integration of the form 5[1¢§1152] % = [do 5[1‘1551152] qSﬂl(&)W.
This integration, however, destroys the symmetry argument. Moreover, not only the derivation is wrong, but
also the result (by a factor of two). Following the wrong argument of above, d1j5 — d251" would be the current
of [01, 2] instead of §1jo = —daj1 = % (0175 — 0241") (the result from the Hamiltonian reasoning).

Correct derivation in the Lagrangian formalism. It will be very useful in the following to use a shorthand
notation in which repeated indices which are at the same vertical position are simply symmetrized, like for
example in (9,)%A, = 0,0,A,=0(,,0,,A,,). Only if they are at opposite vertical position they are summed
over. In this context one should also be aware that lower index positions in the denominator correspond to upper
index positions in the nominator. This notation is similar to the one introduced on page 147 for antisymmetrized
indices.

Let us now once more act in (E.45) with §; on 9,75 (without subtracting d29,71') and reformulate the
righthand side such that we obtain the desired result plus some rest:

. 6S oS

au (51]5) = 5152%11 5¢ 52%11 6¢> = (E.47)
all all
0S
= 01,0
[ 1 2kz)a,ll 5¢311 =+
oS oS
—020, 0%, — 02020 E.48

2 1¢all 5¢a11 2¢all 17 6¢a11 ( )
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S
S

that we study a point ¢* which is not at the boundary of the manifold ¥ (which means that the variational
derivative of boundary terms with respect to ¢Z; (o) vanishes):

This time we should be more careful about the variation §; of the variational derivative and we assume

0

58 5(5:.9) 5
) = ! 51, S = E.49
1667 (0) sehuo) T 5T o)) (£49)
525 5 5S
= s | 6,67 8107 (5)————) | = E.50
Jrr () s~ @ 1%“(”)5@5;7“(&))) e
5 5S
= — [d% —2 = E.51
/ ’ (wan( (@ >> 0¢7,(5) (551
5(o— U)M( )£5,8(0—5)- “%ll)(a)w 8,6(c— a)ﬁjﬁf‘%l)(&)m

o(01gg)) 65 koo k[ O610) 68
- al) %2 NT (kg a E.52
a(ball 6¢;711 k>1( ) ( l ) (( ) (ball) ¢311 ( )

The righthand side vanishes on-shell which shows that the symmetry transformation of an equation of motion
is always another valid equation of motion. Likewise we can expand d281¢7%, as

0(01¢ (o
5a010% = 620, 201 %) 13“ + ) (9,) 0200, - “d;a“) (E.53)
all E>1 ( ) ¢all

Plugging the above two expansions into the variation (E.48) of the current-divergence yields

05
¢all 5 ¢a11

J
B A RN SR YRR (CT AR R
k:Zl( H) Z(ball a(aﬂ) all 6¢a11 +k;21( ) 2¢a11( #) (( ) ¢all) 5¢a11 ( )

Ou (0175) = —[01,02]

Now we can use the schematic formula —0%a - b + (—)*ad*b = —0 ( ()R 6lb) from footnote 1.
The total derivative can then be added to 8175 on the lefthand side. Therefore the current defined by

5S 0(619%,) k—1—1
T el ) () 0o ¢a (E.55)
[51 82] 2 kg:l ZZ; (5(725511 8( ) all> !
obeys
il - = —[1, 8a)E (E.56)
1 (51,62] “5%

and is thus the off-shell Noether current corresponding to the commutator symmetry [d1, d2]. Remember that this
Noether current is defined only up to trivially conserved terms. The fact that the current j[‘gl 5] is antisymmetric
in 1 and 2 also implies that

§q il 5 Z kz: k 115 ¢ ( )z 6(5I2) aIm) 08 (E.57)
J2 = = 2]1 - (1]Pal - (77) :
k>11=0 * 9(0u)* ol 0oy
Only on-shell these results coincide with the ones from the Hamiltonian formalism.
Note that one could also start with equation (E.6) for the current j4 and act on it with d; (instead of acting
on the divergence of this equation). In order to turn the result into something resembling (E.44), one needs to

make use of several commutators like [W, Oy = 5;W Vk > 1 (0 for k = 0), which imply
v all

by induction [Wﬁf)] = Z ( )(5}‘; ;’,’Bﬁ) Cﬁ Vk > 1. The derivation of the latter commutators
(7"—0—1

involves the formula 3 7_ (1) = (1]). Following this path becomes extremely clumsy and I managed to follow
it to the end only if the Lagrangian depends maximally on first order derivatives.



Appendix F

Torsion, Curvature H-field and their
Bianchi identities

In the following we are frequently making use of the (super)vielbein and its inverse, i.e. a local frame in
(co)tangent space different from the coordinate basis. We denote it via

EY = &MEy”? (F.1)
Ey = EAK(‘_?K (F.3)

The one forms E4 are chosen in such a way that they obey nice properties, i.e. in a Riemannian space it is natural
to choose an orthonormal frame, while if no metric is present, it can be replaced by other requirements like e.g.
invariance under supersymmetry for flat superspace. The structure group is then the set of transformations of
the vielbein which do not change these properties.

To be a useful concept, the frame should be invariant under the covariant derivative.

0 = VuEN?=0uEN? +Qup?En? —Tyun®Er? (F.4)

This relates the spacetime connection to the structure group connection.

F.1 Definition of torsion and curvature and H-field

F.1.1 Torsion

There are at least three ways to define the torsion. Let us start with the component based one and derive
from this the more geometric (coordinate independent) definintion. So at first we define the (super) torsion
components simply as the antisymmetric part of the connection coefficients

Tun™ =™ (F.5)

The structure group connection Q47 is given by demanding that the covariant derivative of the vielbein
vanishes

!
0=VuEN® = OuEN? —Tun®Ex? + Qup?En? (F.6)

Antisymmetrizing in (M, N) and comparing with (F.5) yields!

(74— dBt — BP A Q" (F.7)

This can be used as an alternative definition to (F.5). Consider now the commutator of two covariant derivatives
on a scalar (super) field (with Vge = 0k p)

[V, Vinle = 2V0np = (F.8)
= 20N Ok (F.9)

INote that in the present text form components are defined as e.g. TA = Ty nAde™ A &V with no (") factor % in front which
corresponds to a definition of the wedge product as deM N = deM A eV = &M @ &N = % (drM Q&N —d&eM @ drN). You
will thus usually find in literature a factor of 2 on the righthand side of (F.5) and a factor % in (F.10). To go from one convention

to the other, simply replace Thyn % by 2T~ % in all equations in component form. (For a p-form the factor is of course p!).
Coordinate independent equations like (F.7) remain untouched because of the compensating redefinition of the wedge product and
the resulting redefinition of the exterior product. o

189



APPENDIX F. TORSION, CURVATURE H-FIELD AND THEIR BIANCHI IDENTITIES 190

or simply

Vi Ve = —Tun" Vi (F.10)

which is yet an alternative and equivalent definition of the torsion.

F.1.2 Curvature

For the curvature, let us start with the definition via the commutator of covariant derivatives acting on vector
fields

V[MVN]UA = —TMNKVK’UA + RMNBAUB (F.11)

This is not only a definition, but also a proposition that the commutator takes this form. Let us check this and
by doing this get a definition of the curvature in component form

ViV =
= I (Onv™ + Qa1 0%) + Qari e (O v + Qv o?) — T (O v + Qrp?o®) = (F.12)
a[MQN]BAUB + Q[N|BA6\M]'UB + Q[M\CA(a\N]UC + Q\N]BCUB) - T[MN]KVKUA = (F.13)
= ~Tun Vv + (0 ns® + Qe Q) v? (F.14)

We can thus read off
Rune® = o — Qus°nc? (F.15)

which in form language reads

’RABZCKZAB—QAC/\QCB (F.16)

We finally can rewrite this in terms of T" by using (F.6) in the simplified form

Qup? =Tup® — Egfoy Ep? (F.17)
=
Ryuns® = 0 (Oivs” — EB"OnMER™) — (T — Es"0un Er) (Tine? — Ec®OnEs®)  (F.18)
Runk®™ = 0T inx" + Ex %0 Es"T\nr" + Ea"0unEs* T \vx® — ExPEa" 0 Es" 0\ Er® +
- (F[M\KC - a[MIEKC) (F\N]CL - Ecsauv}EsAEAL) = (F.19)
= OmD\mr” = Tpnx Tinp” (F.20)
Runk" = o \m” = Do T v (F.21)

The same expression can be derived (even simpler) by acting with the commutator of covariant deriavtives on
a vector v™ with a curved index instead of the flat index.

F.1.3 Summary, including H-field-strength
Let us add the field strength H of the antisymmetric tensor field B to our considerations. We then have

H = dB (F.22)
74 = dE* — E° A QA (F.23)
RAP = d4P - Q% NQ8 (F.24)

In coordinate basis (’curved indices’) we have

Hynk = 9Bk (F.25)
Tun®™ = Tpum™ (F.26)
Runk” = 0T ivr” = T Tive” (F.27)
(F.10)

The commutator of covariant derivatives on an arbitrary rank (p,q)-tensor fields (as a generalization of (F.10
and (F.11)) reads

Vi Vats 5 =

q q

_ K Al...Aq A; Al.,.Aifch,H,l...Aq C Al.HAq

= —Tun"Vity 5+ Runcity Ty ~> " Runs.Ct5 5 opsn, (F28)
i=1 i=1
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This can be generalized yet a bit more, if we want to include fields that do not transform tensorial, like
e.g. the compensator field. If we denote the representation of the structure group transformation, or better the
representation of an Lie algebra element, by R(L.") (where L 47 is the matrix of the fundamental representation),
the covariant derivative can be written as

Vv = Ou+R(OQm.) (F.29)
The commutator takes the general form
ViuVay = —Tun®Vg +R(Run.) (F.30)

This is in particular interesting for the compensator field, where we have a negative shift as representations and
therefore?

Vud = oyd -l (F.31)
ViuVa® = —Tun"Vgd—F) (F.32)

Using the definition of the torsion, exterior derivatives of p-forms ) can be rewritten with covariant
derivatives, thus allowing to switch to flat coordinates

oMMy Myyy] = V[Mln]\/[g...l\ip+1]+pT[]L11M2|K77K\M3.‘.Mp+1] (F.33)

In particular
H = 0y Baine = VaBaa +2Taa“Bea (F.34)

F.2 The Bianchi identities

Bianchi identities all base on the nilpotency of the exterior derivative & = 0. The objects H, T4 and R4 ? are
all defined using the exterior derivative. Acting a second time with the exterior derivative (using & = 0) yields
consitency conditions (the Bianchi identities) which have to be fulfilled by any valid H, T%or R4”. While these
identities are trivially fulfilled, if the original definitions for these objects are used, the imposure of constraints
on them makes a check necessary.?

F.2.1 BI for HABC’
The most simple Bianchi identity is the one of the H-field H = dB (F.22). It just reads

dH = 0 (F.35)

The supergravity constraints on H that we will obtain, however, are all in flat coordinates, so that it is convenient
to rewrite the Bianchi identity (using (F.33)) with covariant derivatives and then contract with vielbeins in order
to turn the curved indices into flat ones:

VaHaaa = —3TaaHoaa (F.36)

Regarding the torsion as a vector valued 2-form and using the generalized definition of the interior product, this
can also be written as

VH = dH —uwrH = —rH (F.37)

2Tt is even possible now to define a covariant derivative of a connection (see (5.62) on page 49 or footnote 2 on page 209 for the
representation of the structure group and its algebra on the connection)

VuQna® = omOna® -0nQuma® — [Qu, On]a®

R(Qnr.)naB
If the two connections coincide, we obtain

Vuna® = 0uQna® —0nQua® — [, On]a® = 2Runa® o

3TLet us look at an example to make this point clear: one of the supergravity constraints that we get is Hopy = 0. As H was
defined via H = dB in the beginning, this is actually a differential equation for B of the form Ea™ EgN E, ¥ (93 Byk]) = 0. One
could try to calculate the general solution for this equation (which might be quite hard) and then calculate the H-field via H = dB
which will of course trivially obey the Bianchi identities. However, one prefers not to solve for B, but to calculate additional
constraints on H using the Bianchi identities. The idea is to get the full information about H without solving for B. The same
story holds for the other objects. o
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F.2.2 BI for T4
Remember T4 = dE4 — E€ A Qc? (F.7). Acting on this equation with the exterior derivative yields

A~ —aEC A QA 1 EC A d A — (F.38)
TO1C N Qe — BP AQp© A Qe + B AR + EC AQP AQp# = (F.39)

The Bianchi identity for the torsion (sometimes also called the first Bianchi identity) thus reads
drA + TC A QA = ECARA (F.41)
Again we want to rewrite it in terms of the covariant derivative. The “exterior” covariant derivative of T reads

VmTvm® = OmaTarne® — 2Taana ™ Tens™ + Qi Tonana® (F.42)

VT4 = dr*+ T AQpA —opTA (F.43)

The above Bianchi-identity can thus be rewritten as

VaTaa? +2TaaTca® = Raaa® (F.44)

VTP +17TP £ RP = EC ARAP (F.45)

F.2.3 BI for R,?

Remember R % = d4? — Q4¢ A QP (F.16). Acting on it with the exterior derivative yields

dRA? = -9 AQP + Q49 AP = (F.46)
= —RA“NQE QAP ANQRE AQE + QAT ARCE + QA AQP AQRE = (F.47)
—RAC N QCB + QAC A RCB (F.48)

The Bianchi identity for the curvature (also called second Bianchi identity) thus reads

dRAB-I-RAC/\QCB—QAC/\RCB L 0 (F.49)

[R,Q]aC

Again we want to rewrite this in terms of covariant derivatives and flat indices and therefore consider the
antisymmetrized covariant derivative

VmBmaa®? = OmBRamma® — 2T ™ Renea® — Qara®Raanec® + Qaic® Ryaea®  (F.50)
VR4E = dRA® — Q4% ARcB + RAC AQcB —1pRAP (F.51)

We thus can rewrite the above Bianchi-identity as

VaBRyna® + 2T ™ Repa® = 0 (F.52)
VRAZ +17RAP = 0 (F.53)

If the structure group is restricted to e.g. Lorentz plus scale transformations (see section F.4 on page 194), we
get

Rama” = F\ 60+ R0 (F.54)
1 1
and Ryvra® = §F§§’1{45aﬁ+13§\jﬂmbwbaﬁ (F.55)

The above Bianchi identity then has to hold seperately for Lorentz and Dilatation part. In particular we have

VM FE) 4 20T K FE), =0 (F.56)
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F.2.4 Alternative derivation from the Jacobi identity

The above derivations of the Bianchi identities were based on the nilpotency & = 0 of the exterior deriva-
tive. The Bianchi identities for curvature and torsion are equivalently obtained from the Jacobi identity for
commutators:

[A,[B,C|| +[C,[A,B]]+[B,[C,4]] = 0 (F.57)

Applying this to covariant derivatives, using (F.30) yields

0 = [Vm,[Vm, V] = (F.58)
= —2[Vam, Tum™Vi] + 2V, R(Rvm )] = (F.59)
= VAT ™ Vi — 2Tt ™ [Var, V] + 2R(V v Raeae ) + 2Ryt X Vie = (F.60)
= 2(Rmmm™ = VmTum™) Vi — 2T ™ (—2Tm Vi + 2R(Raprk. ) + 2R(V v Ry ) =(F.61)
= 2(Rmmm™ = VmTaum™ = 2T Tome™) Ve + 2R (VmRyvene . + 2T R ) (F.62)

Both brackets have to vanish separately, which correctly reproduces the identities (F.44) and (F.52).

F.3 Shifting the connection

Some expressions might look simpler if one changes the connection Q3,47 to some new connection QuaB. As
usual, the difference }
Anra” = Qpa® — Qua® (F.63)

transforms as a tensor (the inhomogenous term in the transformation cancels). The new torsion looks as follows:

T4 = dEA - E°AQA = (F.64)
= TA—E°ANAA = (F.65)

Or simply
Tavame™ = Tnvae™ + A ™ (F.66)

The expression for the new curvature is a bit more involved and reads*

RaB = daP — Q4 AQcP = (F.67)
= RaAP+dAL% —ALTNQP — QU NACE — AL ANALE = (F.68)
= RaAP 4+ VAAP 4+ TEARAE — A ANALE (F.69)
’ Ryva® = Rvnaa® + Vi Anea® + Tt S A a® — Appa©Anec® ‘ (F.70)
or equivalently
’ Rarna” = Runaa® + Ve Ana® + Tnnd ™ Agca® + Apra®Apac® ‘ (F.71)

Proposition 7 The Bianchi identities for T4 and RsB on the one hand and T and RA" on the other hand
are equivalent if the objects are related via (F.66) and (F.70).

40f similar interest is a change in the definition of the vielbein. Note that local structure group transformations of the vielbein
which go along with a structure group transformation of torsion and curvature also include a corresponding transformation of
the connection. Instead we want to look at an independent transformation of the vielbein and consider general local Gl(n)
transformations. ~
EA=EBjp4
with @MEA = 0. For the new torsion, we get
T4 = dEA—E°AQeA =
= dEBJgA —EP AdIg? — EBJEC AQcA =
= TBjpA - EBAVIEA

or

’TMMB =TumPIs? + Var I ? ‘

Alternatively one might be interested in shifts of the vielbein (resulting in T = T+d(AE)A —(AE)C AQc#) or linear transformations
of the connection of the form Q = JQJ ! o

The curvature remains untouched



APPENDIX F. TORSION, CURVATURE H-FIELD AND THEIR BIANCHI IDENTITIES 194

Proof In fact this is a rather trivial statement. The Bianchi identities do not put restrictions on the
elementary objects (the connection and the vielbein), but on the derived objects (torsion and curvature). In the
same way they do not put restrictions on the difference tensor. Let us make this statement more precise. If the
Bianchi identity for T4and R4® is fulfilled, then these objects can locally be written as T4 = dE4 — E€ A Q¢4
and Ra% = d24% — Q49 A QP for some E4 and some Q47. If we revert the derivation of (F.66) and (F.70),
these equations then simply imply that 74 and Ra4® can locally be written as T4 = dE4 — EC A Q¢ and
RaB =d14B—Q4° AQcB with Qpra® = QuaB+ Ay 4B and therefore necessarily obey the Bianchi identities.
This proves the proposition. O

For the first Bianchi identity, we will also provide a brute force proof: Remember the first Bianchi identity
(F.44) for which we temporarily introduce the symbol J:

!
Jaaa” =VaTaa® +2Taa“Tca” — Raaa® =0 (F.72)

The transformed J reads

- p (F.66)(F.70)(F.72)
Jaaa =

Jaaa® +VaBaa® + Dac”(Tan® +A84a) — 2844 (Tca® + Aca)®) +

+2844° (Tea® + Ajca)”) +2Taa“Aca)” +

~VaDaa® —Taa®Aca® +Aaa“Dac” = (F.73)
= Jaaa® (F.74)

This proves the proposition again for the first Bianchi identity. The brute force proof for the second is left to

the reader as an exercise ;-)

F.4 Restricted structure group

As we discussed earlier, the (infinitesimal) local structure group transformations in the type II supergravity con-

text are block-diagonal AP = diag (A,°, AP, Adﬁ) and are in addition restricted to Lorentz transformations
and scale transformations in order to leave invariant the supersymmetry structure constants ¢, RE

AL =A@ D (F.75)
1 1
A = IAPE 4 Iag) e o (770
: 1 5 1 :
AP = §A(D)5aﬁ+1A§f3ﬂ“1“2aﬁ (F.77)

Also the connection is a sum of a scaling connection and a Lorentz connection which makes perfect sense as it
is supposed to be a Lie algebra valued one form:

O = Q488+l e (F.78)
Qua’ = %Qg?(saﬁ - iagﬁlaﬂamaﬁ (F.79)
Qe = %ng?)(;d'é + iﬁg\ﬂlaﬂ‘““za@ (F.80)
with
Q57 s = 00 e = — 7 (F.81)

F.4.1 Curvature

It is well known that the curvature is a Lie algebra valued two form. Let us quickly recall the reason. The
curvature is defined to be

RAB = CK)AB — QAC N QCB (F.82)

If Q48 is Lie algebra valued, d247 is still Lie algebra valued, as the exterior derivative acts only on the
coefficient functions and not on the Lie algebra generator. In addition, the term Q4% A Qc® can be written as
%[Q, 0] 4B, and the commutator of two Lie algebra elements is again a Lie algebra element.

Let us now see how the structure group reduces into irreducible parts or in particular how the curvature
decays into the Lorentz part and the scaling part (if the latter is present). First of all, the result is clearly block
diagonal if the connection is of this type

RaB = diag(R.", Ra®, Ra?) (F.83)
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such that the curvature definition (F.82) decays into the three blocks

RS’ = d0.b—Q.cnQ0 (F.84)
R = d.° - Q7 A QP (F.85)
Rd’é = &dé - Qd:y A Q:Y’é (F86)

For the bosonic part of the curvature the seperation of scaling part and Lorentz part is quite obvious

RS = d(Q(D>5g + Q(,f)b) - (Q<D>5g + Q(,f)c) A (Q<D>5’g + Q%)b) - (F.87)
_ (D) b (L)b _ o(L)c (L)b
- @ 5a+(an Qe p QU ) (F.88)
=F(D)
R(C{u)b

Where the Lorentz curvature R(aL )b g antisymmetric if we pull down the index b with the Minkowski metric.

We can thus extract from the complete curvature the scale part and the Lorentz part (here for 10 spacetime
dimensions)

1
o) = 1T)Raa (F.89)
For the fermionic parts we get similarly (6% = —16 in our conventions)®
1 1
Ra,ﬁ = 5}7‘(13)50‘,3 + ZR(L)albnba27ala2aﬁ (F.90)
1
FO) = _gRaa (F.91)
and
) Lpwys. b Lpw v, ae f
Ra = iF P +ZR ay Tbas”Y & (ng)
1 N
o) — _nga (F.93)

F.4.2 Alternative version of the first Bianchi identity

The ordinary Riemannian curvature (without torsion) obeys Raped = —Rbacd = —Rabde; Rjapea = 0 and
Ruped = Redap (The last is a consequence of the others). For the bosonic components of our curvature we have

(using Gap = €2nqp with VarGap = 2(00® — Q7")G4p to pull down bosonic indices)

Rabcd = _Rbacd7 R(ab)cd =0 (F94)
Dil Dil
Raped = —Rapde + 2Féb DG a, Rap(cay = F,Eb DG a (F.95)
_ (Dil) E
Rigpga = ViaToeja — 2(0a® = Q") Theja + 2T{ab)” T (F.96)
5Tn order to see how the curvature decays into Lorentz and scale part, let us first consider the building blocks seperately:
1 1
ImMOma” = §8MQM5aﬁ + ZaMQMalaz'Yalazaﬁ
¥ B L et L ajaz L B L biba_ B
Qnra’ Una~ = EQMaa + ZQMu.lu.g"/ a 5QM57 + ZQMbleV ¥ =
1

byb

= OMaeQmee, 779020 =
—_—

antisym in (ajas)< (byba)

(D.117)

1 .
- ZQMachCdQMdaz'Yalazaﬁ

The curvature thus takes the form

B

1 i 1 or or) e or a1a
= RMMa 58]\/195\? l>5a5+1(8MQ(L ) _Q(L )ndQ(L ))"/ 1 2(1/35

Majaz Majc Mdas

1 : 1
EF(DZU(saﬁ + ZR(LDT)G«I bﬁbaQVEI agaﬁ o
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Let us write down the antisymmetrization of the indices in Rj4;¢)q explicitely and several times, with permuted
indices:

Rigpga = Rabed + Reabd + Ricad (F.97)
Rigatle = Raabe + Rodac + Rabde (F.98)
Ricaalp = Redab + Racdb + Raach (F.99)
Ripeqia = Rocda + Ravea + Redba (F.100)

From this we learn, how we can express the difference Rupcq — Redab (Which vanishes in the Riemannian case),
in terms of antisymmetrized and symmetrized terms. Consider the sum (F.97)-(F.98)-(F.99)+(F.100):
R[abc]d - R[dab]c - R[cda]b + R[bcd]a =
2Raped — 2Rap(cd) — 2Redab + 2Red(ab) + 2R(caypd — 2Rac(ap) + 2Rbe(da) — 2Rda(ve) — 2Rpd(ac) + 2R (dbyca =
= 2 (Rabcd - Rcdab) + 2 (_Fachd + chGab - Fachb + Fchda - FdaGbc - deGac) (F]-Ol)

The identity corresponding to Rupeq = Redap in the Riemannian case thus reads

2 (Rabed — Redap) = (F.102)
= 2 (Fachd - chGab + Fachb - Fchda + FdaGbc + deGac) + R[abc]d - R[dab]c - R[cda]b + R[bcd]a

EaDH))Tbc\d + 27100/ “ T\ a-

with R[abc]d = V[aTbc]\d — 2(8[a(1) -
F.4.3 Scaling-curvature

A covariant way to calculate the scaling field strength F' Z(VZ\), is as follows: Consider the covariant derivative

Vyu® =0u® - Qg\?) of a compensator field ® (a field transforming with a shift under scaling transformations

6® = —A(P)). We can calculate F]Ef ]2, via the ususal commutator of covariant derivatives®
ViuVa® = ~Tun"Vgd® —F{y (F.103)
——
R(Fifa )@

Note that the curvature (or field strength) appears “naked” in difference to any action on tensor fields. The
above equation will be particularly useful when we have constraints on V;® which then determine the scaling
curvature via

Fi = Vi V@ — Tun " Vi ® (F.104)

F.5 Dragon’s theorem

In the following we will need the commutator of two covariant derivatives acting on the torsion with afterwards
all lower indices antisymmetrized. Due to (F.28), it is given by’

VamuVmTrum® = T VeTum® — 2Rvnent ™ Trena™ + Raene* Tnana® (F.105)

and can, using the first Bianchi identity (F.44), be rewritten as
Ryme*Tvam® =
= VmVaTaum™® + Tt Ve Taene™ + 2 (Var T ™ + 2T “ Tond™) Tens® (F.106)
It is convenient to introduce a new symbol for the terms of the curvature Bianchi identity
14" = Iccca® = VeReea® +2Tcc” Rpca® (F.107)

so that the Bianchi identity (F.52) simply reads 14% = 0. Then the following theorem holds (originally due to
Dragon in [15]; slightly modified in order to include dilatations):

6Let us check explicitely the validity of (F.103):

V[]MVN](D = 8[1\/[VN]<D7F[MN]KVK<I>:
D
= Om(ONnP - Q§V]>) — T Vi@ =
D
= —FP —TunVed® o
70Of course (F.28) implies a more general relation than (F.105), namely one of the form [V, VN]Tk4 = .... However, the

lower indices are intentionally antisymmetrized in (F.105), in order to get the weakest possible condition that we need to proof the
theorem later on. You’ll see... o
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Theorem 4 (Dragon) Given a block diagonal structure group consisting of Lorentz transformation and dilata-
tion in a type II superspace, the torsion Bianchi identity (F.44) together with the algebra (F.105) or equivalently
(F.106) imply the curvature Bianchi identities (F.52) I, =0 up to one remaining equation for the scale part,

namely I,(wi = 0 or equivalently

(D)
Vh ,YC] +2T[77‘ FD‘C] £, (F.108)
where F]EE\)[ is the field strength of the scale connection QS\?

It is natural to proof this theorem in two steps, the first being useful enough to write it as a seperate
proposition. Let us include one more index into the antisymmetrization of 742 and define

I? = Icccc® =VeoRoee®? +2TccP Rpec® (F.109)

so that we can make direct use of the torsion-Bianchi-identity (F.44) due to the appearance of Rccc®. Clearly

BL0isa consequence of 142 <0 and is in general a weaker condition. The following proposition treats this
weaker condition:

Proposition 8 In any dimension and for any structure group, the equation IP 20 (with IB given by (F.109))
is implied by the first Bianchi identity (F.44) and the algebra (F.105) or equivalently (F.106).

Proof of the proposition:

I = VuRumm® +2Tvm™ Remm” = (F.110)
F.44
( = ) VM (VMTMMB + QTMMCTCMB) + 2TMMKRKMMB = (F.lll)
F.105
(F105) ~ T VeoTanm® — 2Rmnant € Tora® + Raanaco® Taana© + (F.112)
+2VMTMMCTCMB + QTMMCVMTCMB + QTMMKRKMMB = (F.113)
= 3Tum® (Remmn® — VieTvan®) = 2 (Rvumem© = VurTvnm©) Tem® = (F114)
F.44
T 6T CTiean P Toan ® — AT Ton C Toa® = (F.115)
= 2T TrumPTpc? =0 (F.116

Indeed I® = 0 is a consequence of the torsion Bianchi identity (F.44) Raenanmt® = VarTaene B +2Tanena € Tone B
and (F.105). O

Proof of the theorem: Let us now show that in the case of the type II superspace the antisymmetrized
version already implies (up to one term) the complete one. Remember the object Iccca® = VeRccoa®? +
2TccP Rpara® introduced in (F.107). Tt is Lie algebra valued and thus has (for our block diagonal structure
group) no mixed components in A, B:

Iccca® = diag (Iccca’, Iccca® Iccca®) (F.117)
In addition it splits into dilatation and Lorentz part
ICCCAB = I(CDC)«C(SAB + I(CLC).CAB (F.118)

with the latter term being antisymmetric in A, B for bosonic a,b. The complete object is fixed by determing®
Iccce?. Given the equation Icccc® = 0, we want to show that Iccca® = 0. Consider first B = b:

0 = 4leccq’ = Iecca’ (F.119)

Similarly, for B = 3:

0 = 45550 = I535a” =0 (F.120)
0 = 4l550)° = Ic:,:mﬁ =0 (F.121)
0 = 4lsa)® = Lesa® =0 (F.122)
0 = 4Iccca] Iccca =0 (F123)
8The following proof is based on a block-diagonal connection of the form Qa4 2 = diag (Qar4° QP Qe ) where the three

entries are related by Vg g = Vs ap = = 0 which in turn is equivalent to Qo ?P = 7QMQ Y% &P and QMaﬁ = 7QM Y& B,

The Bianchi identity for its torsion T4 = (T*, T, T%) is equivalent to the one for the Torsion T4 = (T, T™ To‘) when information
about the connection-difference Ap; 42 is available. 3
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This implies

Iey5a” = 0
Icc‘/ab =0
Icccab =0

Equivalently we get from the equations for B = B:
I b

b
Icc‘ya =0

There is thus only one component of I.,a,cab left to determine. For this we get
b
0 = Iyjea) =
(D) sb (L) b
L + 1ystea)

Taking the trace in (a,b) yields

_ (D) (L) a
0 = 91‘/’70+I‘/”7ac
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(F.124)
(F.125)
(F.126)

(F.127)
(F.128)

(F.129)
(F.130)

(F.131)

In order that they vanish independently, it is thus enough to check only one equation, namely I, g?/l < 0 which

reads explicitely

(D) D (D) 1
v[’vF»}c] + QTWH FD\C] =0

(F.132)



Appendix G

About the Connection

Let us refer to both, spacetime and structure group connection, simply as “the connection”. Properties of the
one are translated to the other via the condition of covariantly constant vielbeins V;Ex4 = 0:

FMNA = 6MENA—|-QMNA (Gl)

We will use symbols without any decoration (like hats or whatever) to describe a general connection and objects
derived from it. In our application to the Berkovits string, however, we use the undecorated symbol Q;/4”
for the leftmoving connection only, which hopefully does not lead to confusions. To be more explicit, in the
application we work with several different connections which are all blockdiagonal. In the action there appear

only Qo and QMdﬁ. The spinorial Q37 induces via VMW&Q a connection Q74" for the bosonic subspace

which in turn induces a connection 2 MdB via V MV; 5= 0. The collection of those will be denoted by Qs N

(left-mover connection). The same can be done for 0 Mdé leading to a connection Q2748 which we call the
right-mover connection.

Qv 0 0 Qma® 0 0
Qua? = 0 Qua” 0o 1, Qua® = 0 QuaP 0 (G.2)
0 0 QM&’@ 0 0 QMdﬁ
The supergravity constraints are derived from the Berkovits string using a mixed connection
Ona® 0 0
QMAB = 0 Q]\/[CX’B 0 . (G3)
0 0 Qe

where Q7. is an a priori independent connection for the bosonic part which is only at some parts of the
calculation set to either the right or the left mover connection. In order to have covariantly constant structure
constants (’ygﬁ, vga) the latter connection is inadequate and we need to use either one of the first two or s.th.

inbetween, an average connection, which we denote by

1 ~
B _ B B
Qara 3 (QMA +Qara ) (G4)
By definition the connections Q74 %, Qa8 and Qa8 (but not 2,,47) obey

Virvas = Vavap= Ymuvas =0 (G.5)
VM’Y;B = VM’Y;@ = XMW’;@ =0 (G.6)

This relates the three matrix-blocks of the connection components. E.g. for the left-mover connection the
spinorial connection Qy74°(being a sum of scale and Lorentz connection) determines the remaining two blocks
(see footnote 7 on page 49 for a derivation):

D’ = QP+ 00, with off), = -0, (G.7)
1 1
Qra? = F06706P + 000" e" (G.8)
~ 1 ~ 1 ~
Q]L{dﬁ - 595\?)§aﬁ + Zggét)lbpyab&ﬁ (Gg)

Please note again that the considerations in the following sections are for a general connection Q47 and
not specific to the leftmoving one. In particular the block diagonality and also Vaygg =V M7, 3= 0 are only

used if this is explicitely mentioned.

199
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G.1 Connection in terms of torsion and vielbein (or metric)

A given torsion and vielbein do not determine yet the connection completely. It can be determined by having
additional structures (like metric or some group structure constants) that one wants to be covariantly constant.
In the case where a metric is present, the connection is uniquely determined by the torsion and the (non)metricity
of the metric. Remember the form of the torsion:

T4 = dE* — E° AQ? (G.10)
T[MN]A = 3[MEN]A+Q[MN]A (G.ll)

Assume that there is some given symmetric tensor field G 4p (call it metric, although it might be degenerate).
In flat indices, (non)metricity (metricity for Mapc = 0) reads

Mape = VaGpe= (G.12)
= EAM (0mGpe — 20" Gpjo)) = (G.13)
= EAM (8MGBC — 2QM(B\C)) (G.14)

Here we used G ap to pull down indices, although there might be no inverse to pull indices up. It is quite
common that the metric in the comoving frame (i.e. in flat indices) is constant, like the Minkowski metric, and
then the derivative part above vanishes. This is, however, not obligatory. In any case, nonmetricity is part of
the symmetric part (in the last two indices) of Q,;p|c only. Let us directly compare (G.14) (solved for the
connection term) with (G.11) (rewritten in terms of flat indices and with one index pulled down via Gap

1
Qaiey = 3 (EaM0mGpo — Mage) (G.15)
Qupic = Tapic — EaMEs" 0 En"Gpe (G.16)

(dEP)aBGpC

From those two equations we can derive the (2, p|c without any symmetrization. To this end, write down the
antisymmetrized connection three times with permuted indices

Qapic —QBac = 2Qup)c (G.17)
Qpcia —Qopa = 2Qpc)a (G.18)
Qcap —Qacip = 2Qca)s (G.19)
Note that
QAB|C = *QAC\B + 2QA(B\C) (G20)

and consider  ((G.17) + (G.19) — (G.18)):

Qapic — QaciB) + Qomla) — Ueelay = Qanje +Qeoays — Qpoja (G.21)

or

’ Qapic = Qap)ic + Qeoays — Qpoya + Qacci) + Lscja)y — Lesla) ‘ (G.22)

with Qapic = EaMQupPGpe. Now one can plug in (G.15) and (G.16), in order to get the relation to non-
metricity and torsion. For our purpose it is, however, more convenient to use only the torsion (G.16) and leave
Q4 (B|c) instead of replacing it by nonmetricity.

Qupic = Tapic+Toas —Toeja — (AEP)apGpe — (AEP)caGpp + (AEP ) pcGpa +
+Qa(ciB) + 2B(01a) — Qo(B)a) (G.23)

Some readers might be more familiar with the derivation in curved indices (defining I'y;nx = T'is NEGLK):

Pivnixk = Tunk (G.24)
1
PNy = 5(5'KGMN*VKGMN) (G.25)
=MgKkmN

Equation (G.22) of course holds likewise for the spacetime connection

’FMN\K =Tunyx +Tigmy — Civegve + Taveevigy + Uivere vy — Uy ‘ (G.26)
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This time we replace not only the terms antisymmetrized in the first two indices with the torsion (G.24) but
also the terms symmetrized in the last two indices with the (non)metricity (G.25):

1 1
Fynik = 5 (OMGNK +ONGrM — OkGuN) + Tynix + Traviy — i — 3 (Myng + My — Mgyn)

(G.27)
If the metric Gy is nondegenerate, one can raise the index and the connection is completely determined.
In ten-dimensional superspace, however, the situation is different as we have a nondegenerate metric only in the
bosonic subspace.
Consider finally a second connection

Qura®? = Qua? + Apa® (G.28)

Due to (G.1), we also have
Tvux® = Tux®+Aux” (G.29)
= Turx® = Tur®+Apx” (G.30)

The equations (G.22) and (G.26) certainly also hold for A:

’ Aupic = Aas)ic + Ajca)s — Apejja + Aacisy + Ap(cla) — Ac(s|a) ‘ (G.31)

The vielbein part of (G.23) drops out in the difference of two connections and we get with (G.30)!

Aupic =T —T)apjc + (T —T)eap — (T —T)peja + Aacip) + Apcla) — Acsla (G.32)

G.2 Connection in Superspace

At least in the ten dimensional type II superspace, there is no natural nondegenerate superspace metric. Only
the bosonic part G/n can be inverted and the remaining undetermined connection coefficients have to be
fixed by additional conditions. The expression (G.23) for the structure group connection in flat indices is more
appropriate than (G.27), because in flat indeces we have a clear split of the bosonic and fermionic subspace
of the tangent space and the only nonvanishing components of the metric G 45 is the bosonic (and invertible)
metric Gyp. The connection is from now on block diagonal of the form Qu4? = diag (Qa7.°, Qna?, Qmaﬁ).
Due to the degeneracy of G 4p, equation (G.23) determines only the components 4,¢ or equivalently Q¢ of
the structure group connection, i.e. those with bosonic Lie algebra indices.

In order to determine the remaining components ) me? and Q Mdﬁ, we have to give additional information
on what properties we want our connection to have. In supergravity it is a reasonable demand that the structure
constants of the supersymmetry algebra, i.e. the gamma matrices, are covariantly constant:

!
Vuves = 0 (G.33)
Vmvg 5 = 0 (G.34)

This does not only fix uniquely the form of Q3;o? and QM@6 in terms of Qy7,°, but it also restricts the latter
to be the sum of a Lorentz connection and a scale (or dilatation) connection:?

1 1 o
o’ = 10ra"r"e? + 50707 (G.35)
R 1 ; 1 (b R

Qual = ZQJVIab'Yabaﬂ + 595\4)5aﬁ (G.36)

1Some of our supergravity constraints will determine Apgplle = —3Habes Afab)lc = —Tabler Djablle = Adb‘c, Agple)y = 0,
Aa(b\c) = VaPGy. and A&(b‘c) = —@d ®Gye, so that the difference tensor reads

Aa,b|c —3Hape (: _QTab|c = 2Tab|c)

Ao¢b|c = _2Ta[b|c] + Va®Gpe = _2Tab\c

Aaple = 2Tapig — Va®Goe = 2T5p)c ©

2Let us give at this point only a short argument for this. According to (D.2)-(D.4) we have schematically TIT1] oc DIE=21 4
1 vg, if TR denotes a term proportional to a completely antisymmetrized product of k gamma matrices. Let us restrict now
to ten dimensions. The same schematic equation then holds for the chiral submatrices 'y[k]. The connection can due to its index
structure be expanded in even antisymmetrized products:

Qura? o A 4 AR 4 414
When this connection acts on another gamma matrix, we get schematically

Usfa"V1e < (4P )y oy 4 (411 +ﬂ) + (l[iJrvm)
0 0
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with
Wi’ = QG+ (G.37)
——
=@

Ma

Because of the split in Lorentz and scale connection, the block-diagonality of the structure group and the
degeneracy of the superspace metric, equation (G.23) can be rewritten as

Qaple = Tapje+Teap— Theja — (AEY) 4pGac — (AEY) caGap + (AE?)pcG ga +OPG 4+ Gea — QP Gya (G.38)

or

Qab|c = Tab|c + Tca\b - Tbc\a - (dEd)abGdc - (dEd)caGdb + (dEd)chda + QEID) Gep + Ql(,D) Gea — QS;D)GQQ39)
Qctb|c = Tab|c + Tca\b - (dEd)oszdC - (dEd)caGdb + Q(aD)GCb (G4O)
Qavie = Tapje + Teapp — (AEYapGae — (dE?)caGap + QgD)Gcb (G.41)

which determines Q,° via
O’ = Ev©Q00aG with GoeG =6, (G.42)

The remaining components Qy7,° and QuraP are then fixed via (G.35) and (G.36).
Let us in the following calculate 7, more explicitely in the WZ gauge in order to extract the Levi Civita
connection of the bosonic subspace.

G.3 Extracting Levi Civita from whole superspace connection (in
WZ-gauge)

Remember our definition Gynv = Eun®e?Pn., Ex® in the application to the Berkovits string and the Wess
——

Gap
Zumino gauge (H.76,H.77,H.92):
em®  VYm® ?[Jmé‘ e —t 71[’(1’1
EMA|§:0 = 0 d.° 0 , EAM| = 0 S M 0 , QMAB| =0 (G.43)
0 0 (5[Ld 0 0 5at
with em®ed” =00, ot = e "m0k, = e P *0a"

As bosonic metric, we could either take just the leading component in the é—expansion of Gy, Or the one given
by the bosonic vielbein e,,* and the Minkowski metric:

gmn = Gmn' = ema 82¢77ab enba Imn = emanabenb = 6_2¢~mn (G44)
——

Jab

The first is naturally induced by the superspace 'metric’, while the second is by construction covariantly con-

served with respect to the connection Wimal = Qmab’ (in contrast to g, because of the scaling compensator

field ¢). We want to write the superspace connection at 6 = 0 as the Levi Civita connection w.r.t. Gmn OT Gmn
plus additional terms.

The superspace connection was derived above starting from (G.22) or (G.23), arriving at the equations
(G.39-G.41) for Qupjc, Lapec and Qgp)c in terms of the torsion and the exterior derivative of the supervielbein
dE9. We can also use the general equation (G.23), in order to determine the form of the Levi Civita connection
for gmn in terms of the bosonic vielbein. We just have to set the torsion and the symmetric part to zero.
However, as we already use the supervielbein in order to switch from flat to curved indices and vice versa, we
better should write the bosonic vielbeins explicitely in the resulting equation:

eamwﬁgd[g] *Nde = _eamebn(ded)'rrmndc - ecmean((kd)mnndb + ebmecn (ded)mn'r]da (G45)

The ~[3]-parts vanish due to the graded antisymmetrization of the indices. The ~[1 parts are fine because they can be absorbed
by acting with the bosonic connection on the bosonic index. Only the 7[5] part remains and cannot be removed. As it stems from
the y[4-part in Qp70°, we conclude that the corresponding coefficient has to vanish and only scale and Lorentz connection remain.
The sketched argumentation can be done rigorously which leads to the stated results for the relation between bosonic and fermionic
connection. o
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For the metric g, instead, the symmetric part of the Levi Civita connection is no longer zero. We still have
torsionlessness and metric compatibility as characterizing properties. The latter condition implies via (G.14)

that .
C ~ ~ ~
w'frf(b‘)c) [g] = §amgbc = Om® - Goe (G46)

Using again (G.23) with vanishing torsion, we arrive at

eamerngd[g] “Jde = —e, ey ((kd)mngdc - ecmean(d?d)mngdb + ebmecn(ded)mngda +

+6am8m¢ e + ebmamd) “Jea — ecmam¢ * Jab (G47)

In both cases (for ¢ and g) the corresponding Levi Civita connection is certainly sitting in the superspace
connection in the terms with dE¢ in (G.39-G.41) at @ = 0. Indeed one can write®

(dE“)mn| = (d")mn (G.48)
(dE“ )mn| = Tmn| (G.49)

This is consistent with the fact that Qg4 and Qg4 as given in (G.40) and (G.41) vanish at 6 = 0 in the
WZ-gauge (where EaM| = M and Q,LAB’ = 0. In order to calculate Qab|c| as given in (G.39), we need
the the exterior derivative of the vielbein (as given above) with flat bosonic indices. As the constraints on the
torsion components will also be given in flat indices, we will express everything in terms of torsion components
with flat indices:

(dEd)ab’ = eamebn((kd)mn - 2’L/}[a/\/leb]n TMnd| + waM’(/}bN TMNd| = (G50)
= e"ep” ((¢d)mn + wmAwnB TABd|) - 26[a|mwmA6b]n (enc TAcd| + 1/%8 TABd|) :(G51)
= e ((d)mn — Tas’|) - 2e (0" m™ Tapm| (G.52)

Plugging this result into (G.39) yields Q4. at 6 = 0 in terms of torsion components with flat indices and
derivatives of the bosonic vielbein only:
Qab\c| = Tab\c| + Tca|b‘ - Tbc\a’ - (eamebn ((ded)mngdc - 'l/}mA'l/)nB TAB|C|) - 2€[a|m¢mA TA\b]cD +
— (ec™ea™ () mndab — Y™ ¥n® Tasp|) — 2¢(c)™ Ym™ Tajap|) +
+ (er™e™ () mndda — Y™ n® Tasla]) — 2ep™ ¥m™ Tajdal) +
+ Qa‘ gcb + Qb| gca - Qc| gba (G53)

Now we can express everything in terms of the Levi Civita connection w.r.t. § (G.47), torsion terms with flat
indices and covariant derivatives of the compensator field:

3In the Wess Zumino gauge we can express dE®| by de® plus torsion terms as we will demonstrate now. First we have
&l
dE?| = OpnEpt| de™de™ +2 8}, Epn®| de" &N + 0jpq Epy| de™M e
As En?| = em®, we have
(AE")mn| = (d€*)mn
Now remember the definition of the torsion T4 = dE4 — EB A Qg which reads for fermionic form indices at 6 = 0 in the

Wess-Zumino gauge (H.95,H.96):

O m En =" TmN

(H.96)
BRI B TOVIS B AU
Similarly we have
(H.96) 1
a[MEn]A‘ = TMnA‘ - Q[Mn]A‘ = TMnA’ + 55/\45 QnBA‘
For A = a, we can thus write in summary

(dE9YMmN| = Tmn®] o
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Qab\c = eam 7[7/1%' [ ]gdc + Tab\c| + Tca|b} - Tbc|a| +
- (eamam(b - Qa‘) Geb — (ebmam(b - Qb|) Jea + (ecm8m¢ - QC|) Gba +
—_————

Vo®|+v.M (O D)|
——
SAA (V42|
+ (ea™ep" Gea + €™ ea" Goa — €™ € Gad) Ymn® Tan’|
2™ U™ Tajpie] + 2€e™bm™ Tajap| — 2ep™ ¥m™ Tajdal (G.54)

While for the use of wLCd[ | above the partial derivatives of the compensator ¢ combine with the scale connec-
tions to covariant derivatives, either the scale connections or the partial derivatives remain explicitely for the
use of wl¢[g] (G.45). In summary we have for the two cases

Qab|c’ = e"w #gd[g]gdc +2 Ta[b\c]| - Tbc|a| +

——

eamwmdeZdD"]dc
2 V@] Geja — Va®l Goe — (260 Gefa + €0 Foc) Y™ (V.a®)| +
+ (2ea™ep™ Gega — e ec "§ad) Y, B TABd‘
+2e0" Vm ™ Tapie)| — 26" Um™ Taojg| — 260" ¥m™ Tajga| = (G.55)
= ea"whG glnace® + 2 Ta[b\c” = Thela| +
*Q(V[b\q’| — 3" 0nB)Neja — (Va®| — €a"0nd) e — (26 Fea + €a™Goc) Y™ (V.a®)| +
e*® (2ea™ e " 1eja — e[bme "Nad) Ym0 TABd| +
+2e0" V™ Tapie)| — 2e™m™ Taoiq| — 2ep)™ Ym™ Tajal (G.56)

We have written the terms in a way that one can clearly distinguish between terms anti-symmetric in b, c
(Lorentz-part) and terms symmetric in b, ¢ (scale-part). In the second version (G.56), the whole second line
could be written as +2 QE}? )‘ €*Nea + Q((zD)‘ €2y, which is, however, less convenient for plugging the con-

straints into it. The Levi Civita connection w2 ¢[g] does not transform under scale transformations in the

way it should, which is repaired by the non-covariantly transforming partial derivatives dy¢. They are thus the
minimal extension of the Levi-Civita connection to make it transforming properly under the whole structure

group. Combining these terms with wl¢ 9[g] just leads back to wl¥[g] which apparently has a scale part.
% where the flat metric is not

This seems strange for a Levi Civita connection, but is only true in the frame e,,
Minkowski.

Assuming that Vg = vMVifa = 0, we can finally (according to (G.35) and (G.36)) write down the
connection when acting on fermionic indices. We restrict to the version with the Levi Civita action for g.,,, =
emanabenb:

1
Qm'ya| = 4wm[b|c]

1 a n —_ —
= 4Cm {ea wﬁ[%\d[g]ﬁdm +2¢7% Topiep| — €72 Thepa| +

Vi@ = e 0nd)e)a — 263" Nejatbm™ (V.4P)| +
+ (2€ak€[bnnc]d — er"ec"aa) U, B TABd| +
+e 20 (26a"1/)n'4 Tl —2€5"¥n™ Taale)| + 26" 0™ Tagan) D }'ch'ya
*26[b\"¢nATAa|c]|*26[b\"1bnATA\c]a|
1
5 (Va®l = 0,0 + e (V.a®)] ) 3, (G.57)

=P alP)|

bc a+2w(D)5 a _

w

An equivalent expression with 'ybc,ya and 64 replaced by vbca,é" and 5,9‘3‘ is obtained for ngé‘.
A second useful way to write the connection Qab‘c| is to bring it to a form which is the bosonic version of
(G.23) and from which we can read off the bosonic torsion and nonmetricity. To this end, we rewrite (G.50) as

(dEYw| = ea™en™ (()mn — Tn) + T (G.58)
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Plugging this into (G.39) yields

Qab\c‘ = _eamebn((kd)mngdc - ecnbean ((kd)mngdb + ebmecn((kd)mngda +
——

€aMWmp|c
+e, e, T d| ~ me nop dl ~ _ _m_n T d| ~
€a €p mn | 9de T €c €a mn | 9db — €b €Ec mn | 9da

+ QgD)’ gcb + QISD)’ gca - QSD)’ gba (G59)

As we have in the Wess-Zumino gauge Q.| = e, "wap®, the obtained equation is simply the bosonic version

of (G.23) with w&%)b = Qg,?)‘ 53. The bosonic torsion coincides with Tmnd|.

Tmnd| = emaenb Tabd| + 26[ma¢n18 TaBd| + wmAwnB TABd (GGO)



Appendix H

Supergauge Transformations, their
Algebra and the Wess Zumino Gauge

This appendix contains, like most of the others, considerations which are valid not only for our application to
the Berkovits string in ten dimensions, but as well for other dimensions and for different supergravity theories.
The curved indices M as well as the flat indices 4 contain bosonic indices m or « as well as fermionic indices m
or A. For extended supersymmetry the latter are further split into several irreducible fermionic indices. E.g.
for type II in ten dimensions (our application) we have M=(u,2) and A=(a,&) where & is either of the same or
of opposite chirality as . We only assume the presence of a (super)vielbein Ej;“ and of a (super)connection
Q2742 in the supergravity theory. Discussions of other fields (like the B-field) are of course only relevant for
theories containing these fields.

The supergravity transformation (local supersymmetry) is in some sense a special class of superdiffeomor-
phism transformations. If the general superdiffeomorphisms are parametrized by a vector field £4(z) = ¢4 (x, 5),
the local supersymmetry will be parametrized by only &(x,0). Likewise, general coordinate transformations
in the bosonic submanifold are parametrized by {*(z,0), while all the higher é—components of £€4 correspond to
additional auxiliary gauge degrees of freedom. Similarly, the local structure group transformations Lay(2) (e.g.
Lorentz-transformations or in our application also scale transformations) have auxiliary gauge degrees in the
higher é—parts. Following roughly [17, p.127-144], we want to bring e.g. the vielbein into a particular form, using
(and thereby fixing) some of those shift symmetries, and to identify the bosonic spacetime diffeomorphisms and
the local supersymmetry transformations with the bosonic and fermionic stabilizers of this (Wess-Zumino-like)
gauge respectively. But let us at first have a look at the general transformation properties of the superfields.

H.1 Supergauge transformations of the superfields

H.1.1 Infinitesimal form

In the following, we make frequent use of some structure group connection Q3,47 and the corresponding
covariant derivative Vj;. As long as nothing else is announced, the equations are valid for any connection (in
particular, it is not meant to be the left-moving connection only).

Transformation of a general tensor field We are interested in a combination of an infinitesimal su-
perdiffeomorphism transformation (or better the corresponding Lie derivative) and a local structure group
transformation. For an object with only curved indices, the transformation reduces to the Lie derivative. The
Lie derivative of a vector field v = v™ 8, e.g. reads as usual

ACEUM = (ACEJ_}»)M = (H.1)
= Fogo™ — oMo (H.2)

It can be rewritten in terms of covariant derivatives as

cg.vM = BVgoM — VeMoK — 2e KTy Myl (H.3)
For one-forms the covariant expression of the Lie derivative contains a torsion term with opposite sign:
L',g»wM = (EZ(dech))M (H.4)
80wy + OuéRwik = (H.5)
8 Vgwn + VuéFwk + 265 TP wr (H.6)

206
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In contrast to the above, it is convenient for objects with flat indices, not to consider them as being contracted
with basis elements, when acting with the Lie derivative, but to really only act on the component functions,
which transform like scalars under diffeomorphisms!.

LZUA = Kogvt = (H.7)
= FVgvt — K Qpt® (H.8)

This is a covariant object from the diffeomorphism point of view, but the connection transforms inhomogenously
under the structure group transformations. The entire gauge transformation of v, however, contains also a
local structure group transformation:

ovt = LE.UA + Lp“oP (H.9)

As the structure group connection itself is Lie algebra valued, the second term in (H.8) can be absorbed in the
structure group transformation: ~
LBA ELBA —fKQKBA (HlO)

The combined diffeomorphism and local structure group transformation can thus be written as
vt = §KVKUA + Lg™v® (H.11)

The first term is a covariantized (w.r.t. the structure group) version of the Lie derivative (H.7), and we will
therefore denote it by

cloyd = 8V ot (H.12)
3

In general L:(_C»OV) will be defined as the L4 ® = 0 part of the complete transformation, i.e. a Lie derivative w.r.t.
¢

¢, accompanied by a structure group transformation with Lx? = ¢5Qx 45 whose representation we denote
with R(i) (see also before (F.29) on page 191):

£(§°V) = Lo+ R(E" ) (H.13)

INote the (common) convention used in (H.1) to define £_,v™ as the M-th component of the Lie derivative of v and not the
Lie derivative of the M-th component function! This convention is extended to objects with an arbitrary number of curved indices,
- Ni..Ng _ Li... K K Ni-.-Ng

['—»tMlqup = (['—»(tkl.“}(qp@” '®... QTP ®0L, ®...Q 8Lq)>
13 3 M;y...Mp

In cases where we want to act explicitely on e.g. the component functions, we can denote it with e.g. £ _.(vM) = K9 vM. This is
3
of course not the component of a tensor, but it makes sense in calculations like £ _.(v™8ys) = L_.(vM)-8pr +vM L _(8ps). From

the Lie derivatives for general vectors (H.2) and one forms (H.5) we can in turn read off the transformation of the basis elements

C?(BM) = —ou&N on
L_»(drlw) — BN£]VI de
3

For flat indices, however, we use just the opposite convention, i.e. we do not regard the flat index to be contracted with any basis
element when acting with the Lie derivative. The action on an object with both, flat and curved indices will thus be defined as
follows
N
c Y8 = (L_,.(tfﬁlde ® aL))

13 £ M
In cases where we want to calculate something different we will use a more explicit notation like on the righthand side in the above
equation. The reason for this convention is the following. Starting in a coordinate basis, it is natural to express the transformed
tensor in the coordinate basis again, while if one starts in a non-coordinate frame e4, it is more natural to express the result in the
transformed basis:

v = v—&—ﬁﬁ.v:v—i-ﬁﬂ,vA-eA—}—vAﬁﬁeA:(vA—l—LH,vA) (eA—l-LH,eA)
3 3 3 13 13

€A

Let us finally give the Lie derivative of the local vielbein and its inverse (using (H.3) and (H.6)) which will also be discussed in
the equations (H.16) and following:

LoBa) = (F0xa” - Vag® - 265Txcs") B

L_(BY) = <—§KQKBA + Vet + 2§KTKBA> EB o
3
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On one-forms we thus have L',(f,ov)wA = KV gwy, while on objects with curved index the structure group

4
transformation has no effect and the covariantized Lie derivative reduces to the ordinary Lie derivative. When

acting on a more general tensor with curved and flat indices, L',(iov) thus takes the following form:
¢
LM = RO - e + o€+ € o G~ ua = | (Ha
= OVt — (Vi + 265 T V) 3 fy + (Vg + 265 T ") t1 5 (H.15)

This transformation is usually called a supergauge transformation [17, chapter XVI|. As it reduces for
curved indices to the ordinary Lie derivative, its action on tensor components (given above) is determined by
the Lie derivative, the Leibniz rule and the transformation of the supervielbein. In addition the transformation
of the structure group connection will be of interest, as it transforms inhomogenously under the structure group
transformation. For completeness (even if the given information will be a bit redundant), let us write down
explicitely the transformations (supergauge + structure group) for all the type II supergravity superfields of
our interest:

Supervielbein A general infinitesimal gauge transformation (a Lie derivative corresponding to a superdiffeo-
morphism plus a local structure group transformation) of the supervielbein Fj;* looks as follows:

SEM? = XOoxEn? + X Ex? + EnPLp? (H.16)

Redefining the local structure group transformation parameter, this can be written in terms of covariant deriva-
tives

SEn? = VB +VuES B + 65 (Cxu® —Tur™) BEL* +En® (EBA - fKQKBA) = (H.17)
—_———
0 2T m A LpA
= V& +2Ten” +Lp" By ® (H.18)

EL',(_C»OV) EpvA
£

For some purposes, also the explicit form with partial derivatives (but in the new parametrization) will be
useful:

Vgt
5EMA = 8M§A + QMcAfc +2€CTCMA + LBAEMB (H.lg)
——
L By A R(L)En4
€
For the inverse vielbein we get likewise (or via E~! = ~E~1E - E~1)
SEAM = KogEAM — oM ELK — LyPEgM (H.20)
or 6B M = VM —26CT o M LA EsN (H.21)

rleov) EaM
£
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The structure group connection transforms tensorial with respect to the superdiffeomorphisms but of
course not like a tensor (but inhomogenous) with respect to the structure group transformation.’

0Qua? = 0k Qna® + 05 U a® — Onr La® —[L, Q] a” = (H.22)
m%wﬁ

= Ok Qua® + 0mE" U a®” — 0 La® — 00" U a® — 500 QK A" +
—[L+ &%k, Qu]a® = (H.23)
= 250k Una” — E5Qk, Uur)a® — O La® — [L, Q) a” (H.24)

=
6Qa® =265 Rcara® —0mLa® — (L, Qu]a” (H.25)
L(;V)QMAB —VuLaB=R(L)QnaP

The scale connection The above transformation of the connection is valid for a general one. In our applica-
tion to the Berkovits-string, however, the structure group on the supermanifold is restricted as follows. Firstly,
the connection is block-diagonal. Secondly, each block decays into Lorentz- plus scale transformation. Finally,
the blocks are not independent in the end, but let us assume for the moment, that they are. Then we have three
scale connections, namely the trace of each block respectively. In detail we have for the “mixed connection” (see
appendix Q)

Qua® 0 0
Quaf = 0 Qe 0 |= (H.26)
0 0 Qual
Ol s 0 0 Ol 0 0
= N Lo UL U (H.27)
0 0 105,765 0 0 1O yab B
FP) s 0 0 R, b 0 0
Buwa® = |0 4R o w| 0 iRates o fEay
(D 3 (L a 3
0 U O 0 0 PRy N e
The scale connection (or dilatation connection) simply transforms as
00D = K0P 1+ 0y ekl — oy L), 50D = K9, OD) + 0 eKOD) — 9, LPYH.29)
s = 2K ED) gy L) | SO — 2e K ED) g 1P (H.30)

We also could have started with the pure left-mover connection Qy4? = diag (QMab7 QuaPl, QM&'@) to derive

595\?) or the pure right-mover connection QMAB to derive 6@5\?). We will now return to the notation of this
appendix, where Q747 is just a general connection, and not necessarily the left-mover one.

2Let us quickly rederive the correct structure group transformation of the connection via the transformation property of the
covariant derivative:

5(L>UA = oBLp4
5(L)VMUA = ) (3MUA + QMBAUB) =
= Ou <UBLBA> + 6.2 0P + Quptope? =
= yv? L +0P0y L + 600" + QuptvC L =
= <3MvB + Q]\/[CB'UC) L™ +0¢ <3MLCA +6r0mc? + LePQup? — QJ\/IC’BLBA>
For V sv? to transform covariantly, we need to have

SyQuc? = —0mLc® —LcPQup® + QuePLs? =

=—[L,QylcA

—V]VILCA o
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The superspace connection We will not need the superspace connection I'j;n¥ as frequently as the
structure group connection, but let us discuss its transformation for completeness. As it is inert under structure
group transformations, the supergauge transformation reduces to the Lie derivative. Remember the relation

FMNK = QMNK + 8MENA . EAK (H32)

which is a direct consequence of VuEyu? = 0. The Lie derivative of I'jyy®¥ can thus be derived from the
Lie derivative (or alternatively from the supergauge transformation) of the structure group transformation and
the vielbein. Both, vielbein and structure group transformation are tensorial with respect to diffeomorphisms
and thus the inhomogenity in the transformation of I'y;x* can only result from the inhomogenity of the Lie
derivative of 0y Ex?, which is (using commutativity of partial and Lie derivative®) dpOn¢ Er4. The Lie
derivative of the connection thus reads

EE»FMNK = fLaLPMNK + 5M§LFLNK + 8N§L1“MLK — 6L£K1“MNL + 8M8N§K (H.33)

(06T )N L4+ (0E) N K

The first two terms are just the Lie derivative of a matrix valued one form de™T' ;5% , while the last three
terms are the usual inhomogenous transformation of a structure group connection (compare (H.25)), here with
the Gl(n)-matrix My = —9y€X. The same transformation can be derived by comparing e.g. the tensorial
transformation of LZVMUK on the one side with 8M(£ZUK) JrLZI‘MNK oV +FMNK£ZUN on the other side

(using again that Lie and partial derivative commute). The Lie derivative of the connection is in some sense the

3For a scalar field @ (pn), whose partial derivative becomes the component of a vector field, it is quite obvious that partial and
Lie derivative commute:

Lg»aA4¢(ph) = R0r0MP 0y + OMER O P (phy = O (€5 0K P (pn)) = 8]\4£Z’¢(ph)
For a nontensorial object like BMt]]\V/Ill'A'_‘AJX/}’p (or also the connection) it is less clear whether it makes sense to define a Lie derivative
on it. However, it will be very convenient to do so, and we will simply take the definition coming from infinitesimal diffeomorphisms

(with 2/ = 2 + ). Note that )ty "1 (x’)‘ = Ot/ 3R (@), which leads to

z'=z

p Ni...N,
= dM(‘:g»tMll ..‘Jv}lp(x))

Ni...N, o o N1..N,
8IVItMIL.J\/([Ip(I) - d}bftl]\/[llu.lv;p (=")

o ,Ni...Ng
‘:ZthMl...Mp (z) ez
We can likewise extend the definition of L',(_C»ov) =L+ R({KQK ) to nontensorial objects by defining e.g.

¢ 3

R(L) 0ptf = 0p (R(L) )

The structure group transformation R(L) thus commutes with the partial derivative by definition and we thus have the same
property for the covariantized Lie derivative
co NB cov),NB
£V opthl = 8P(L"(g> VER)
13
Note that this is also consistent with a proper transformation property of the covariant derivative:

LMV = £ (0ptNE + Do VA — Toa K68 + R(Qp. VA ) =

g
= 9p <L§°V)tﬁﬁ> + <L:§°V)FPKN> tKB 4 T ppN oK B <L:(j,°V)FPMK> tNB Dy KL NE
£ € £ € €

+R <c<jf’v)QP ) tNB 4 R(Qp.) LIONEB =
3 3
= Vp <£(_c»0v>t%i> + (ﬁ_»FPKN) tﬁg — (L_»FPA{K> t%g + R(ﬁ(_c»ov)gpf> tjl\\/fji =
¢ £ £ 3
= Vp <§KVKtAN4§; + (VM&K + 2£LTLMK> tNE — (VK§N + 2£LTLKN> tﬁg) +
+ (2§LRLPKN +Vp(VreN + 2§LTLKN)) B — (2§LRLPMK + Vp(VaesX + 2ELTLMK)> tNE 4
+R (265 Rep ) 15 =
= ¢K VpVitVB + (VMgK + 2§LTLMK) VptNB _ (vKgN + 2£LTLKN) VptkB 4
—_——
VKth%g72TPKLVLtﬁ%+2RpKLNtk£4 — QRPKMLt]LVE +R(2RpK.") tjl\\/}g
+VpeE VKt + Vp <VM§K + 2ELTLMK) tNE —Vp (VKEN + 2§LTLKN) A
+ (2§LRLPKN +Vp(VreN + 2§LTLKN)> tKEB — (2§LRLPMK +Vp(VareE + 2§LTLMK)) tNB +
+R<2§LRLP.') tNB —

= EVVptdE + (VP§K + 2§LTLPK) Vitha + (VM§K + 2§LTLMK) VptRE — <VK§N + QELTLKN) Vpthh
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difference of two connections and is therefore a tensor. This can be seen by expressing the partial derivatives
on &M in terms of covariant ones and discover that the remaining connection terms combine to curvature and
torsion.?

[:E»FMNK = 2£LRLMNK + Vi (VNfK + 2§LTLNK> (H.34)

E—MNK

Remember that above we have seen the Lie derivative of the superspace connection as a combination of a Lie
derivative on its form index (the first lower index) plus a Gl(n) structure group transformation with transfor-
mation matrix My = —9n&X. Equivalently it can be seen as a combination of a supergauge transformation
(regarding only the first index as curved one) plus a modified Gl(n) transformation with the matrix (compare
(H.10))

My® = —ong" - Tpn™ = (H.35)
= —VneN =267 Tpy " (H.36)

Indeed the above Lie transformation can be written as

[,ZFMNK = 2PRp N —Ou MN® — [M, TN (H.37)

:7VM’]\4NK

which perfectly agrees with the form of a gauge transformation of a structure group connection given in (H.25).
Let us finally note that

[E?’ V™ = (LE»FMNK)'UN (H.38)

which provides another way to calculate the Lie derivative of the connection. For the Levi Civita connection

this equation implies that the Lie derivative commutes with the covariant derivative, if £ is a killing vector.

Tensorial superfields Usually, all additional fields present in a supergravity theory (like B-field, RR-fields or
dilaton) are contained in superfields that transform homogenously (tensorial) under supergauge transformations
and structure group transformations. The gauge transformation of a tensor field with index structure t4/5
transforms as
GtNE = LN + LePG — LaCthE, (H.39)
¢

R(L )t

where [,(f,ov) was given in (H.15). The above transformation is of course also valid for scalar fields where simply
3

the structure group transformation vanishes. If a B-field (a two form, i.e. an antisymmetric rank two tensor) is
present, its general gauge transformation contains in addition the one-form gauge transformation B — B + dA
which will briefly be discussed in a separate section at a later point. Another example of a tensorial superfield in
our application to the Berkovits string is the bispinor-superfield P*? which contains the RR-fields in the leading
component in the é—expansion. In order to act with the structure group transformation L,? (appearing in the
general transformation (H.39)) on the bispinor indices, we need La? to be block diagonal. This is described in
the main part (see (5.65)). A final remark about our application in the main part is about the appearance of
a compensator field ® which does not transform homogenously under the structure group, but via a shift (see
discussion below (5.159)).

H.1.2 Algebra of Lie derivatives and supergauge transformations
H.1.2.1 Commutator of Lie derivatives

The SUSY algebra on scalar fields and tensors with curved indices should be entirely implemented in the su-
perdiffeomorphisms (independent from any accompanying local structure group transformation which appeared
above). The commutator of two diffeomorphisms yields the vector Lie bracket of the transformation parameters

[cq ,Lﬁ] = L. . (H.40)
§1 &2 [£1,€2]
4 Alternatively we can derive the same result, starting from (H.32)
L.Tyn™ = ['(—C»OV)(QMABENAEBK) + 3M(L(_C»OV)ENA) “EAX + 0 ENA - E(_C»OV)EAK
£ £ g g

Using the covariant expressions of the supergauge transformation of Qu; 42 and Ej;4 then leads to (H.34). o
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where the vector Lie bracket reads

N N M
od]

e — & ke = (H.41)

= Vk& - Ve -2 T Mgy (H.42)
If we plug in the local basis elements E_»A = E M8, in place of §1/2, the above equation only holds, if the

covariant derivative acts only on the curved index. The covariant derivatives do not vanish when we act on the
curved index of E4™ only. We thus do not only get the torsion term, as one would naively expect, but instead

[Ea, Eg] = (2ap® —2Tus°) Ec = (H.43)
— —2(dEC)ap Eo (H.44)
For objects with flat indices it is thus convenient to extend the Lie derivative to the supergauge transformation,
which is covariantized with respect to the structure group.
H.1.2.2 Algebra of covariant Lie derivative and structure group action

Let us restrict our considerations for a moment to a structure group vector v*. We first want to study the
commutator of two covariantized Lie derivatives.

[L(g»ov)’ﬁ(ﬁ(lov)}vfx — ¢y, (nKvKUA) — (o) = (H.45)
= (€"Vin® =0tV LER) Vot + R [V, V] o? = (H.46)
= (EVn®™ =t Ve — 265 T p"n") Vo + 265X Rpgp™P = (HAT)

L:E;v:?]vf; 4 26P 0 Ry e p 0P (H.48)

For a one form we arrive likewise at

[ﬁ(gov),ﬁ(;»ov)]w,q = ‘C’E(;VL]WA — 2§L77KRLKABLUB (H.49)
» M

On curved indices, however, the super gauge transformation reduces to the Lie derivative

{L(i‘”),.c(i"v)] oM = [,cq., ﬁq} M= M= gl M (H.50)

€ 7 & [€.77] [£.7]

|:£(_C»OV), ;C(_C»OV)} wy = E(C:,)vl Wpr (H.51)
€ n [&.m]

On a more general tensor t}/5 we therefore have the following commutator of supergauge transformations
(remember footnote 1)

{E(iov)vﬁ(—c»ow] 35 = £ B + 2650 Ry PNG — 2650t R aC )2, (H.52)

€ n .

R(—z_.,z _»(R.')> t%g
€

In particular we have for supergauge transformations along the coordinate basis
L5, L5PNE = 2Rk Lo PG — 2Rk aC N = R(—ta, 10, (ReP)) VA (H.53)

The algebra of two infinitesimal structure group transformations is rather simple®

[[R(L1), R(Ls)] = —R([L1, L)) | (H.54)

5The minus sign comes from our definition how the structure group matrix acts on vectors and forms. E.g. on a vector we have
R(L1) R(L2) v = R(L1) (L2 pAvP) = L1 ¢ Ly €08 = (LaL1) pAvPB = R(LaL1) vA= [R(L1), R(L2)|v?* = —R([L1, L2]) v*.

Similarly for one forms R(L1)R(L2)wa = R(L1)(=L2aBwp) = Lia“LocBwp = (L1l2)aBwp = —R(L1L2)wa=
[R(L1) ,R(L2)]Jwa = —R([L1,L2])wa. If one prefers, one can get rid of the minus sign by either redefining the action of
R(L) with a minus sign or with a transposed L (not only for antisymmetric L). This is because [LT,LL)T = —[L1, L2] and

_[_LL _LZ} = —[Ll7 LQ]. o
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The commutator between supergauge transformation and structure group transformation finally reads

{L?’”,R(L)] = R((L(;V)L)> (H.55)

which is easily checked by acting e.g. on a vector v4. The complete algebra can be written in one single equation
as

dg:”) +R(Ly) , L(;:’V) + R(Lg)} =L 4R (2§K77LRKL.' + dg:’”)LQ - [,(;,OV)Ll = (L, LQ].-))

[€,7]

(H.56)

H.1.2.3 Commutator of covariantized Lie derivative (supergauge) and covariant derivative

In Riemannian geometry the commutator of Lie derivative and covariant derivative vanishes, if the vector along
which the Lie derivative is taken is a killing vector. We want to see what relation there is for a more general
connection. Let us first consider the commutator of the Lie derivative and the covariant derivative with curved
index on a superspace vector

{cg,vM] oK = [Lg,,aM] vK+LZFMNK-vN (H.57)

———
=0

According to footnote 3, the first term vanishes and we have

H.34
{LZ,VM} =0 i 0= LZFMNK (( = ) QELRLMNK -+ Vju (VNfK + 2€LTLNK)) (H.58)

In the case of a Levi Civita connection, the Lie derivative of the connection vanishes, if the Lie derivative of the

metric vanishes, i.e. if ¢ is a killing vector®. In general, however, we have the condition that the Lie derivative
of the connection has to vanish.

Let us introduce just for the moment the symbol R to denote the action of a Gl(n) matrix (like the superspace
connection I'ps.") on the curved indices. Acting on an arbitrary tensor, the commutator of above becomes

[L(E,OV)7VM] = R (cng.') + R(dﬁ‘)v)QMﬁ) (H.59)
€ €
How does this commutator modify, if we choose the covariant derivative with flat index?

[c&‘;‘”),w} - [ﬁ(f;OV),EAMVM]: (H.60)
1S 1S

(H21) (VAﬁM + 2§CTCAM) Vu +E MR <£?FM") + EAMR(L@»OV)QM'.) (H.61)
13

6This is quite natural, as the Levi Civita connection is built only out of the metric. Nevertheless, let us check this statement
explicitly with the derived formula, in order to see whether it is consistent. In the Riemannian case we have

Lgrmnk = 2§llenk + vangk

and the killing vector condition reads (pulling down the indices with the covariantly conserved metric gmn)

V(mgn) =0
We can rewrite the above Lie derivative as

LTk = 26" Rimnks + Vin Vnéi, =

1 1
= 26'Ripmni + 5 VmVabk + 5 Vn Ve — Ronk'&

killing

1 1
26' Ryt — 5 VmVién = 5 VnViém — Runk'€

1 1
= 2¢'Rimnr — 3 VkVmén + Ronien'& — 5 VK Vném + Ruim'€ — Rni'€

= 2£l Rimnk 7kanl§l + Rnkmlgl - Rmnklgl =
——
—Rpkmi

= - (Rnkml + kanl + Rmnkl> & =0 <
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Finally we allow for an additional structure group transformation, in order to see the commutator of a general
gauge transformation with the covariant derivative:

£ ER(L) w} = (=(Va€” +26T0aP) ~La" ) Vi +

(L:(f»OV)EAZW)EAlD
3

+R (26" Rpa. +Va (V& +265T1.)) + R(26°Rea. — V4L.) |(H.62)
N————

EAI\/Iﬁg»P]w.‘ EAME(_C»OV)QA[.'
3

When acting on scalar fields, only the first term remains.

The idea of the above considerations was of course that part of the gauge transformations become just the
local supersymmetry transformations, while the fermionic components of the covariant derivative should contain
the supersymmetric covariant derivative. We therefore expect, at least for the flat case, a vanishing result for
the fermionic components of this commutator. We will come back to this question after having established the
WZ-gauge.

H.1.2.4 Algebra of the gauge transformations

The algebra in subsection H.1.2.2 was assuming that the variation acts on all objects, including the transfor-
mation parameter of the first transformation. This is not true for field-independent transformation parameters.
If € is just the transformation parameter of the symmetry, then this parameter does not transform itself. On

the other hand, there is no need for the transformation parameter to coincide with £ . Instead, £ can be a
functional of transformation parameter and of the the fields. We thus have to treat its variation seperately.

A general gauge variation has the form 6t¥B = £/°¢NB L R(L - )tNE where ¢ and the structure group

matrix L are local and may or may not depend on the fields of the theory. Acting a second time with such a
variation yields

8510a(...) =
& (ﬁ(} +R(Ls. )) = (H.63)
= < R(EF Q. + Lo. )> (..)= (H.64)
— (c = + R(5:165 Q. + 5610k +51L2:)> (...)+ (Lg +R(E Q. +L2.')> 61(...)= (H.65)
_ (ﬁf;g') +R(§§ (LZ(;;V)QK.' - VKLl.') +61L2.'>> (.)+
+ (L(g”) +R(L2.‘)> (dg’v) +R(L1)> (.)= (H.66)

_ H;) +R(2EE R — XV KLy + 611y ) + (ciﬁf“’ + R(LQ:)> (c‘g’v) +R(Ly .')) }(. _)(H.67)

Finally we take the commutator and use the commutation relation (H.56) of above

01,02] = R4 Rk + & VLo — VL +01Ly - — 62L1) +
4L + R(2§ ERpp + £ — £ Ly — (Lo, Ll]) (H.68)
[&2, 51]+51 52 —02 51 &2 &1
61,00) = £+ R(2eFEE Ry + L1, Lo) +61Ly. — 2L, ) (H.69)
[€2,8&1 401 &2 —2 &1

If g and L are field dependent and transform like all the other fields, we have 01 52 = [51 , g; | and 01 Ly =

L(E»OV)LQ — [L1, Ls] and the above equation is the same as (H.56), while if both parameters do not transform
3

at ;111, we have a similar, but still different algebra with some different signs and some terms missing. The

above important equation will help us to find the SUSY-algebra in this huge algebra. By going to the WZ-
gauge, we will fix part of the superdiffeomorphisms and local structure group transformations. The remaining
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transformations, which stabilize this gauge will then have a field-dependent ¢, which we can plug into the above
equation.

H.1.3 Finite gauge transformations

In order to choose an explicit gauge it is useful to know the finite form of the gauge transformations (only
then you can decide whether a particular gauge is accessible or not). For superdiffeomorphisms and local
structure group transformations (i.e. Lorentz transformations and perhaps dilatations), we know the finite
form anyway. Let us denote the transformed fields by a prime (for superdiffeomorphisms) and by a tilde
(for structure group transformations). The vielbein transforms homogenously under both transformations, i.e.
EyA(Z!) = %ENA(E’) under superdiffeomorphisms and EpA(z) = EyZ(2)Ag?(2) under structure
group transformations. Altogether this reads

S (B0 (@) = (B () A(E) (11.70)

Likewise a more general tensor field with index structure t3/5 transfoms as

SINB (1 Ot o' LD /= c(= -1\ _B/>
taalz’) = Wa?th(x)AA (z)(A™)p7(x) (H.71)

Other examples for such homogenous transformations (apart from the vielbein) are a RR-superfield with
PO (z") = P¥Y(2)A,%A5° (where the structure group transformation A4Z is supposed to be a blockdiagonal

—/

one), or a dilaton scalar superfield with simply ®,4) (2) = ®(pp) (7).
The finite inhomogenous transformation of the connection superfield reads”

A/ By axN A B Afl D Cr A B

Qua~ (') = o] (*3N A7+ (AT)a"QNp" (7)AC ) (H.72)
= "y oxN . -

Q(D)M(x ) = 5 (Qg\jfj)(x) _ 6NA(D)(x)) (H.73)

In the main part of this thesis we have also introduced a compensator field @, which transforms by a shift under
scale transformations, i.e. ®(z') = ®(z) — AP)(2) (where A(P) denotes the dilatation or scale part of the
bosonic block).

H.2 Wess-Zumino gauge
H.2.1 WZ gauge for the vielbein

Superdiffeomorphisms z'M = FM (1) LM M ( Z) with # = (Z,6) parametrise many more gauge degrees

of freedom than just the bosonic diffeomorphisms z/™ = f™ () nfgm oy 5’"(5,5 =0). Let us write x’ as
— — -2
M= @)+ N (7)) + 06) (H.74)
oN
We have
81‘/]” 9z'™ 9z'™ G0 ax’g‘ xlm
_ GrC 5N = rm N
orN @ or™M = g2 M M (H.75)
oz o N Dz TN
In the following we will see that it is possible to fix the vielbein for vanishing 6 to
e a ,(/} A
Eo Al = m m H.
a| ( 0 A (H.76)
"Defining Qg\?) = ﬁQMa“ and AP) = ﬁAa“ yields the transformation (H.73) in the second line. However, having in mind

the definition of the mixed connection (H.27) yields the same transformation for each of the scale connections Qg\/?) (with A(P)),
QE\?) (with A(P)) and Qg\?> (with A(P)) respectively.

In our application to the Berkovits string, we have introduced a compensator field @ via Gap = e2%y,;, which transforms under
the bosonic scale transformations A. The distinction, however, is not important, as A, A and A get coupled by the gauge fixing of
Tap® = 'yfxﬁ and Tdﬁc = 7;3 anyway. ©
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with inverse

M eam _'L/)aM
EsM| = ( 0 oM ) (H.77)
where .M = e, o™ (H.78)
emfes” = 5:; (H79)

We want to show that the above gauge can always be reached if the original supervielbein had full rank. To
this end, let us call the supervielbein in the above gauge E7,*(2') and only the original general one Ep*.

We should have the relation 223" By A(r") = ExA(z). Indeed, multiplying E},”(2') from the left with the

oz N
transposed (6 = 0)-Jacobian without ordinary diffeos (6522 = ") yields
’ F) M
(5;" agﬁ" em® wmA B en® (wnA‘i’ 7;;91 5MA) 1 EuA H.80
;m "M 0 (SM'A - m a m A M A — LN ( . )
T Ar XN T ArEm AV + 2 N O

This fixes some of the auxiliary gauge parameters:
m m a M m
' = eV EnY, 'y = (Bt — 2/ Nbm™) 6.4 (H.81)

So all the 2’ %— are fixed. In contrast, z’ (1)\4 (z) are still free and they parametrize bosonic diffeomorphisms and
local supersymmmetry. We still have many more unfixed auxiliary gauge parameters (the higher 0-derivatives
of z’) whose fixing we will discuss in subsection H.2.4.

H.2.2 Calculus with the gauge fixed vielbein

Before we proceed with the gauge fixing of the connection, let us have a look at some consequences of the special
vielbein gauge. The new bosonic vielbein e,,%( ) = E,,%(,0) offers a second possibility to switch from curved
to flat indices and one has to be careful, in order not to mix up things. The inverse of the supervielbein behaves
differently than the inverse of the bosonic vielbein. While in superspace the inverse is with respect to a sum
over all superspace indices, the sum for the bosonic inverse runs only over the bosonic indices

E]V[AEBM = 5AB = EMa‘ EbM‘ = (5? (H82)
Ene™ = o8 (H.83)

It therefore makes a difference which vielbein is used to change from flat to curved indices and vice verse.
Consider an arbitrary supervector Vj;:

Viledm = VoEn“|e" = (H.84)
= V.Epnfles™ + VeEpS|e” (H.85)

or in summary
Vinl €a™ = Vil + Ve| vmCea™ (H.86)

For upper bosonic indices the situation is better because the WZ-gauge removes the disturbing additional term:

Vile,* = VNEN|e," = (H.87)
= V'E, % e™ + VN Ex®le,” (H.88)
——
=0
so that we get the nice relation
] Ve e, = VM| \ (H.89)

We can do the same considerations for fermionic indices and arrive at the opposite situation

Upa|6a™M = Ty (H.90)
Mot = 24 - 2 vMomt (H.91)
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H.2.3 WZ gauge for the connection

Similar to the supervielbein-case it is likewise possible to reach a special gauge at 6 = 0 for the connection
componets with fermionic form-index:

Qaa”] =0 (H.92)

Let us show that this gauge fixing is really accessible. We would like to reach the gauge (H.92) using the local
structure group transformations of higher order in 6 (i.e. with AAB| = 047). Remember the structure group
transformation of the connection

QMAB(.T) = —8MAAB + (A_l)ADQJWDC(J))ACB (H93)
Reaching the gauge fixing condition (H.92) is thus possible by simply choosing

AMAB = aMAAB|£QMAB(x)| (H.94)

H.2.4 Gauge fixing the remaining auxiliary gauge freedom
In addition to the ordinary Wess Zumino gauge
Em?l = om? (H.95)
Qma®| = 0 (H.96)

we can demand the gauge fixing condition 0 MEN)A] 20 using the gauge parameter 8M8N§A’. Indeed all
the other higher components of £ and L4” can be fixed by imposing® (see e.g. [119])

Oy ---Om, Ep ™| = 0 (H.97)
A, - On, Qp,na®| = 0 VYne{l,... dim(m)—1} (H.98)

where dim(am) shall denote the number of fermionic dimensions, e.g. 32 for type I in ten dimensions. Actually
the above equations even hold for n = dim(m) (the highest components of E and 2), but then trivially, as the
total graded symmetrization of n+ 1 fermionic indices (which is an antisymmetrization in fact) in n dimensions
always vanishes. For n > dim(m) even the derivative without graded symmetrization vanishes trivially as usual.
The second equation is even true for n = 0 (due to (H.96)) while the first is modified for n = 0 to Eapq?| = da0?
(H.95).

This gauge is useful to calculate explicitely higher orders in the é—expansion of the vielbein or the connection
in terms of torsion and curvature. Let us consider at first the connection. For the n-th partial derivative of the
component with fermionic form index we can write

a./\/11 s a./\/tnQ./\/ln-HAB| =
2 n
= a(M1 ce. 8MTLQMH+1)AB‘ +m Z OmM, --- 8[Mi‘ R aMHQ|Mn’+1]AB} = (H.99)
—0 (H.98) =t
2 . B C B
= n+1;6M1...8M1.718MM...6Mn (RMiMnJAA +Q[ML\A Q\Mn+1]0 )| = (H].OO)
n
= 7 I Oae ) QR M4 ” + Qata® maae” = Qataa® Qaane”)| (H101)
(H.98) 2n
= 6M1...8MHQMH+1AB] = o 8(M1...6Mn71RMn)Mn+1AB\ Vn>1 (H.102)

2n
n+1?

B‘ = RMNAB’, we have in general OapmQara® # Rana®. Also

Unfortunately, due to the n-dependent factor this relation cannot easily be integrated. In particular,

although the above equation implies a1 Qa4
Ona® # aMBRpana®.
8Looking at the infinitesimal transformations

5 (0ns - Onn Eatnn )| = Ony o 0nt (0atn i1 6% + Q875 + 269 Tou )| =

d <8M1~~-8MHQMH+1AB)’ = _8./\41'-'8./\4” <8Mn+1LAB+[L79Mn+1]>’

it seems quite obvious that the parameters 3M1~~-3Mn+15’4‘ and 8M1..‘8MH+ILAB‘ can be wused to shift

Om, ~~3M,LEMn+1)A‘ and 9aq, -~~8M,LQMn+1)AB‘ to whatever value one likes. A rigorous proof that (H.97) and (H.98)
are accessible, however, should consider the finite transformations. <
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The calculation for the components of the vielbein is very similar

a./\/11 "'aMn,EMn+1A| =
2 n
= 8(M1...8MnEMn+1)A}+n—+128M1...E)[Mi‘...aMnE‘MnH]ﬂ: (H.103)
—0 (H.97) =t
—Qna Opm,_,0 om, (T AL B, B0 N = H.104
= n+1; My UM UMy - Mn( MMy + [M; M 11]B )’ - ( 0)
n

= 7 O Oae ) QT+ Eipan "8 = Bat "Qaap?)| - (H105)
For the second and third term in the bracket we can use (H.97) and (H.98) again, so that the third term will
vanish while from the second term we get a contribution only when all derivatives act on the connection, because
Epm,P| =0, P. Using (H.102), we arrive at

aMl...ﬁMnEMnHA]: VTLZl
2n a1 2(n-1) B A
— n+1 a(Ml ...(9Mn71TMn)M"+1 ’ + 7’},74—15(/\41 8M2 "'aMn—lRMn,)Mn,+1B ’ (H106)

In particular we get for n =1
OMEN"| = Tan®|.  0mOna®| = Raana®| (H.107)

The higher é—components of the vielbein and connection parts with bosonic form index (EmA and Q,, 48 )
can likewise be expressed in terms of torsion and curvature:

2 n
8M1...8Mn,QmAB = EZ oM, 8[Ml|8MnQ|m]AB| + Om 6(M1...8MW,_1QMH)AB| = (H.108)
i=1

=0 (H.98)

1 1
= 2 5(/\41 e 3Mn_1| <R|Mn)mAB + §Q\Mn)ACQmCB — QQmACQMn)CB> ‘ (H.109)

H.98
( = ) aMl .. .aManAB| =2 8(M1 ...GMnfl‘R|Mn)mAB| VYn >1 (H].].O)

Although in contrast to (H.102) we do not have an n-dependent factor, we have in general IaqQma® # 2Raqma®

away from 6=0. The reason for this fact is the symmetrization on the righthand side. Also we have 9,47 #
20M R paqma B for @ # 0.
For the vielbein the situation is again similar:

2 n
Onmy - Om, B = = > 0rm, O OMy Bl ™|+ Om Oam, - Om Eaay | = (H.111)
=t —0 (H.97),(H.95)
1 1
= 20m,---Om, 4| <T|Mn)mA + 5E‘J\An)BQmBA - 2EmBQMn)BA> ’ = (H.112)

(H.97),(H.9
(H.95)

)
§ 8(./\/11 R aMn_lTMn)mA| + 5(MnB OM;, - - 8Mn71)QmBA| (H113)

In particular for n =1 we get

while for n > 1 we can use (H.110) to arrive at

OmM, --- 6‘MnEnA] =2 G(Ml R 8Mn_1TMn)mA| + 25(/\413 OM, - -- 8Mn,_1RMn)77LBA| Vn > 2 (H.115)

In practice we are given constraints on torsion and curvature components with only flat indices. Rewriting
the equations (H.102),(H.106),(H.110),(H.114) and (H.115) with flat components yields the following rekursion
realtions
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2n

8M1...8MHQMH+1AB| = nt 1 5(MncaM1 ~-~aMn,1)(EMT,,+1DRCDAB)’ Vnz 1 (H116)
2n

8./\/11 ...8MHEMH+1A| = il 6(M7L68M1 ...6Mn71)(EM"+1DTCDA)’ + (VHZ 1)
2(n—1)

+n7_H5(Mn,1c5MnB Om, ~--8M7172)(EM7L+1DRCDBA)’ (H.117)

Om, ...6ManAB| = 2(5(Mnc Om, ...aMn_l)(EmDRCDAB)| Vn>1 (H.118)

Om En?| = 26mC En"Tep?| + 0mP Qus?| (H.119)

8M1 - 8MnEnA| = 2(5(Mnc 8M1 - 8Mn71)(EmDTCDA)| +
+20(p1, BOp, € Or, - Om,_y)(EmPReps™)| Vn =2 (H120)

Let us do the first steps of the iteration, in order to see what is happening:

n=20: QMAB| = O7 QmAB| EwmAB (H.l?l)
Em? = om? Exn% =en®, En?| =vn? (H.122)
n=1: OmU,1"% = 0am,%0a.T Repa®|, OmQna®| =20mCen® Reaa®| +20mCn® Repafl].123)
IMiErmy?| = 0 C0m,T Tep™|, OmER" = 20pmCen” Tea®| + 20mCn® Tep®|
8MEnA| = 25Mc€nd TCd'A| + 25Mc1/)np TCDA’ + 5MBwnBA (H.124)
4 4
n=2: 6M13M29M3AB| = g(S(Mz‘C(S‘Ml)S(SMS}- ng:D| RCDAB| +§5(M2‘C5M3D6|M1)RCDAB (H.125)
OMOMna®| = 260a,€ (20015 en” TesP| + 26 a1 E0m” TerP| + 6aa) Fwme”) Repa®| +
+25(Mzc(3md aMl)RCdAB| + 25(M2C¢m’D 8M1)RC»DAB‘ (H_]_26)
4 4
oM OMErm, | = 55(/\4205/\41)85/\43? Tex”| Tep™| + 55(M265M3D InmyTep™| +
2
+§5(M165M2)B5M3D Repp™| (H.127)
aMlaMzEnA| = 25(/\426 (2§M1)gemf Tng‘ + 26./\41)8/(/)7774]: T£.7-'D| + 5M1)£wm£D) TCDA| +
+26(pm, em? OnnTea™ | + 26, Y™ Omyy Ten™ | +
+25(M235M1)cemd RCdBA| + 25(M285M1)Cwm’D RC'DBA| (H128)

Apparently this iteration gets very involved for higher orders, but in principle we can express every superviel-
bein component and superconnection component in terms of the bosonic vielbein, the gravitinos, the bosonic
connection and the torsion and curvature components. Note finally that the components T'aqn® of the super-
space connection do not vanish at leading order like the structure group connection. Instead we find because of
FMNK = (8M'ENC + ENBQMBC) ECK for the leading order that

K‘ (H.96)

T an IMENC| Ec™| (H.129)

Using some of the equations above, this implies in particular

Tan™| = 2Tan" E™| +2 Tawn™| 645 + daaBwns?.4™ = (H.130)
= 20mC%en? Tea®| Eo™| + 20MmCn® Tep®| BEJ| +

+20p e Tea™| 6,45 + 26A 0,2 Tep™| 0.4 + A Puwns?daX (H.131)

Tan™] = 0O Ten| | +0m NP Tep™| 645 (H.132)

H.3 Partial Gauge Fixing of the B-superfield

Although the gauge fixing of the B-field is not necessary in order to obtain the supergravity transformations,
we will discuss it at this place, as it is very similar to the gauge fixings of connection and vielbein. Again we
want to fix only the auxiliary gauge degrees but leave the gauge freedom of the bosonic two-form. The B-field
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gauge symmetry is of the form B — B + dA, with some one-form A. Let us split the gauge transformation into
three cases with different index structures:

By — Bpnt+ 6[mAn] (H135)

In the é—expansion, we thus have
8,c1...a,chMN| — 8}c1~-~8ichMN| —|—% 8;c1...3;cp8MAN| —% Ox, ---6IC,,6NAM| (H.136)
O, O, Bmn| — Ok, ...0c, Bamnl| + % O, - O, Onmn| — %an O, - O, Am|  (H.137)
Oxc, ...8;chmn| — Ok, ...8;chmn] + %&n Ok, ...8;¢pAn| — %an Oxc, ...8;cpAm| (H.138)

The gauge symmetries of the first two lines can be used to set Jx, ...G;CPBM)N-‘ - O, ...O;CPBN)M’ and

Ok, ...a,chM)n| to any value one likes. This fixes Ay up to a de-Rham closed term (as usual) and up to
the bosonic gauge parameter A,,|. We want to choose a gauge in such a way that for p > 1, the higher orders

in the é—expansion can be expressed in a simple way in terms of the H-flux Hynx = Oy Byk). To this end
consider

3p-Ouc, - O, Hic,ypmn =

P
= 3) O, -0, - O, Biaany = (H.139)
i=1

P
= pajcl ce a;chMN - Z (8;c1 ce 6M ce 87C;.B’C,:N - 8;c1 . 8N ce 67C,,B1C7;M) = (H140)

i=1
= (p + 2)8&1 e a;CPBMN - (p + 1) ((9(;(;1 e a;chM)N - 8061 cen a;chN)M) (H141)

This suggests to choose the gauge
!

8(,c1 a;chM)N| - 8(;c1 a;CPBN)M| = 0 Vp (H142)
which fixes Ox, ...8;cp8[MAN]| . The above equation is a trivial statement for p equal or bigger as the

fermionic dimensions (i.e. 32 for a ten-dimensional spacetime and type II), because the graded symmetrization
of fermionic indices (i.e. their antisymmetrization) vanishes when the number of indices exceeds the dimension.
Oun the other hand the statement is a very strong one for p = 0, where we simply get Bagar| = 0.

The choice for the gauge in the case with mixed index structure is not as obvious as above:

3p . 8(;(;1 SN 87Cp71HKlp)Mn =

p
= 323,@ c Oy -+ O, Bian) = (H.143)
i=1
p
= palcl ce 8’C,,BMTL - Z (3;(;1 ce 8M ce 8KPBK:¢TL - 8;(;1 e 8n ce 87CPBIC¢M) = (H144)

i=1
= (p + 1)6;c1 .. '6KPBMTL - ((p + 1)8(;(;1 - 87CPBM)n — pana(;cl R 87Cp71BKlp)M) (H145)

Instead of setting Ok, ...0x, B .M)n| to zero (which is of course a valid choice, too), it seems more convenient
here to choose

p
8(;(;1 e a;chM)n| = man 8(;(;1 ce 8;cp71B;cp)M| Vp (H146)

which fixes Ox, ...0x,0. MAn‘. Now we have fixed as much as we can and hope that the remaining components
behave in a nice way:

3p . a(]cl oo ajcpilH;cp)mn =

p
= 3 O, .-, - Orc, Blmm) = (H.147)
i=1
p
= pa;(;l N 8,chmn - Z (87(;1 N 8m RN aK;pB;cm - 8;c1 e 3n e 87CPBKZ1'm) = (H.148)
i=1

= pa;cl N 8,chmn —p (ama(;cl e 8;cp_1B,Cp)n - ana(;cl e 8,cp_1B,cp)m) (H.149)
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Indeed, the gauge fixing condition (H.146) is fine to remove the last terms for 6 = 0. Plugging (H.142) in
(H.141) and (H.146) in (H.145) and (H.149), we can express all auxiliary components of B in terms of some
H-field components:

3p
O, O, Bmn| = P A, - Ox, Hymne| V0> 1, Bmn| =0 (p=0)|(H.150)
3
OO, Ban| = T OO, Hi ] 21 Bal =0 (p=0) | (HL151)
a;cl N aKlmen’ = 3 8(,C1 e 8;CP71H,CP)mn] Vp Z 1 (H.152)
3p

Again, the constraints on the components of H wil be given in flat coordinates. Rewriting the above set of
equations correspondingly, produces derivatives acting on the vielbein. We thus get again a recursion relation
which is coupled to the recursion relation for the vielbein.

H.4 Stabilizer

In order to recover the supergravity transformations, we need to determine those supergauge transformations
which leave the Wess-Zumino-gauge and the additional gauge fixing conditions untouched.

H.4.1 Stabilizer of the Wess Zumino gauge

Let us start with the vielbein which was fixed to Eaq?| = 6a” (H.76), and remember the general transforma-
tion (H.19)

SEM? = 0m&* + Que?eC +26Ten™ + L Ey® (H.153)

VméA

Let us denote the first components in the 5—expansion of the transformation parameters as follows

A= g raMe + .. (H.154)
LaB = LoaA? +2™MLpa®+ ... (H.155)

The 6 =0 component of Exq? in the WZ gauge then transforms as

§Epm| = &t Qe & + 265 Tom?| + Lop® EMP| = (H.156)
=0 (H.92) Sm B (H.76)
= Gu+ 2 Tom™| + Los™?om® (H.157)

In order to preserve the gauge of the vielbein, we thus need that the above variation vanishes

§ﬁ4 = —5MB (2{5 TCBA| + LOBA) (H.158)

This result is very general, without any restriction on the structure group. In order to become more explicit,
let us now assume that the structure group is block-diagonal and split the index A into (a,.A). (Remember,
the fermionic index might further decay, e.g. for type II in ten dimensions into A = (c, &).) The vector £4 can
then be written as

€ = g - 20™MONMB Tos®| + O(6) (H.159)
A = G aMopdB (265 Tos™| + Los™) + 0(6) (H.160)

In this appendix, we will not make use of any torsion constraints. This will be done in the main part.
The gauge fixing condition of the connection was Qaq AB| = 0, while its general gauge transformation reads
(H.25)
6Qa®? =265 Rcnya® — OmLa® — [L, Q] 4" (H.161)

The gauge is thus preserved if

!
Laa®” =26MmPE§ Repa®| (H.162)

or

— = — —»2
La%(2,0) = Loa®(7)+20™M5mPE Repa®| +0(67) (H.163)
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H.4.2 Stabilizer of the additional gauge fixing conditions
Remember the additional gauge fixing conditions (H.97) and (H.98)

! !
3(M1...8MHEMH1)A| :0, 8(M1~~‘8M7,,QM”+1)AB’ =0 VTLZl (H164)
Stabilizing the first condition

) G(Ml ...8M"EMH+1)A| =

= Om; - Ory) (O M) + Qi 6C + 26T pm ) + L B, ) ®)| = (H.165)

= Oy Omy (Oam € +0am,,0) 7 (269Tos™ + Ls™))| (H.166)
implies

8M1 ...6M7L+15A’ = —8(M1 8Mn| (2€CTCBA+LBA)’6|MH+1)B Vn >1 (H167)

This is actually recursion relation again. For the second fermionic derivative of the transformation parameter
e.g., we get

8M18M2§A’ = _25(6_;\/1ﬂ TC|M2)A| - 2500 a(Ml\TC\Mz)A‘ - L(Mle)A = (H168)
= 26§ (2 Tom®| Toimn | = O Topamn | = Roaanmn ™) +
+2Lo (M |© Teima?| (H.169)

Stabilizing finally the second additional condition (the one on the connection)

58(M1...8MHQM"+1)AB| =

O, - Onm | (265 R ya” = O am, ) La” = [LQm,,)]a")| = (H.170)
= Omy - Onm,| (265 Ri i, )" — O, La”))| (H.171)

implies
8M1...6Mn+1LAB| :28(M1...8Mn| (fcRCDAB)‘(S‘MnH)D Vn >1 (H.172)

Like above, this is a recursion relation, starting with the second fermionic derivative

OO La®| = 2600, Roiamaya®| + 265 Oy Reimn a®| =
= 266 (=2 Temn) "] Reimaa®| + 0, Boiama) a®|) = 2Lo (my)© Rejaa)a”|
The two conditions (H.167) and (H.172) are restricting only terms of order 2 and higher in 6 of the transformation

parameters ¢4 and LaP and therefore do not affect our earlier result (H.159)-(H.160) and (H.163) for the
stabilizer of the WZ gauge.

H.4.3 Local Lorentz transformations as part of the stabilizer

For a reasonable gauge fixing we should still have local Lorentz invariance and the bosonic diffeomorphism as
part of the stabilizer group. We recover the local structure group transformations, if we set

& =0 (H.173)
which leads to
LaB(Z.,6) = LoaP(Z)+0(8) (H.174)
&= 06) (H.175)
A = Mo BLos?t+0(8) (H.176)

The leading components of all superfields with flat indices obviously then transform only under the local
structure group transformation Lo 4Z, because the coupled superdiffeomorphism affects only higher orders
in 6. When acting on a more general tensor of e.g. the form /5, the coupled diffeomorphism contributes via
the matrix (V&K + 26T %) acting on the curved indices (compare (H.15)). For the leading component, i.e.
6= 0, the nonvanishing part of this matrix is just

—(Vx&" +26PTek")| = 0xPLos™04” (H.177)
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In other words, the bosonic curved indices m,n,... do not transform, while the fermionic curved indices
M, N, ... transform under the structure group.

For the behaviour on first order in é, it is already instructive to consider the action of the above transfor-
mation on a scalar superfield like a dilaton superfield ®,,):

-2
§0pn = EVePun) = —a™MoMPLos Ve +O(8) (H.178)

That means for the é—component Am = Ve |, that it transforms, as if M was a spinor index.

A m = 6M6(<I>(ph))\ = (H.179)
—6pmP Lo Ved | = (H.180)
= —0mPLos%0cN A (H.181)

Although it might seem intuitive that (curved) fermionic indices transform under the structure group, it is
important to note that this is only due to the WZ-gauge, which couples part of the superdiffeomorphisms to
the local structure group transformations. Originally, the curved fermionic index m does not transform under
structure group transformations.

H.4.4 Bosonic diffeomorphisms as part of the stabilizer

The equations for the stabilizer are given in flat indices £4. We will need this to extract the local supersymmetry
transformations. But in order to see whether the transformation with parameters ¢ (x) = ((z),0,0) and
LB =0 (not L 47, which has absorbed part of the diffeomorphism), corresponding to bosonic diffeomorphisms,
is contained in the stabilizer, a change to curved indices is preferable. Instead of using the vielbein to switch
from flat to curved index, we check this directly. The transformation of the vielbein components with this
parameter is

S Em?| = &0k Em*|+ 0m"| Ex? =0 (H.182)
—— N
5MA =0
8Om0 Er )| = Oy - Ommtn | (EOkEpm, ) + O ) EFER?Y) | = (H.183)
= 00pm, - Orm, BEim, )t =0 (H.184)

The same is true for the connection

0 Opma”| &0k Qama®| + Oaal"| Qra® =0 (H.185)
=0

=0 (H.186)

50M, - - O, QUr,a” |

H.5 Local SUSY-transformation

This section could actually be another subsection of the “stabilizer” section. But as we have special interest in
the local SUSY transformations, we make it a seperate section.

H.5.1 The transformation parameter

The supersymmetry transformations are defined to be the set of transformations within the stabilizer with
SUSY: &5=ILoa% =0 0#£&5 =€ (H.187)
From (H.158) and (H.162) we thus get
Em?t = =2 Tem™|, Lama® =2e¢ Reara®| (H.188)
Or more explicitely (compare (H.159),(H.160) and (H.163)):
£i(e) = —20M60PeC Tep®| + O(6) (H.189)
Ae) = A uMipPE TepA| + 0(6) (H.190)
LaB(e) = 20M3pMPC Repa®| +0O(6) (H.191)

™
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Remember that the gauge transformation corresponding to these parameters is of the form

5. = Eiff(’V))JrR(L(s).') (H.192)

We should finally note that the separation of the gauge transformations into local structure group transforma-
tions, local bosonic diffeomorphisms and local supersymmetry contains some arbitraryness. In particular when
the structure group contains an abelian subgroup (e.g. dilatations), a redefinition of local supersymmetry with
such an abelian structure group transformation does not change the supersymmetry algebra. In fact the choice
Lo a® = 0 as part of the stabilizer of the gauge fixing is not possible any longer if such a subgroup (e.g. the
local scale transformation) is fixed. In the case where we fix for example (in our application in the main part)

the leading component of the (bosonic) compensator field ® to @] = 0or ol = P ()|, we get the additional
stabilizer condition (fc”VCCI)” — L(D))| <0 or (fc”VCCI)” — L(D))| = Ve <I>(ph)| or equivalently

P (o) L€ Ved| & eA(e) — eA(e) — %xM(sMAaC Ved| (H.193)

M ” ” 1 ” ”
or L{P) (e) = € ("Ved"| = Ve @pmy)|) & €2(e) — €2e) - imMéMAsc ("Ve®”| — Ve ®ny|) (H.194)

Alternatively, we could have fixed the complete superfield ® to zero (before going to WZ-gauge). Then the
scale part of the connection is not structure group valued and therefore has to be treated as a difference tensor.
Only the Lorentz part can then be used for the implementation of the WZ-gauge.

H.5.2 The supersymmetry algebra

In order to read off the algebra of the local supersymmetry transformations from (H.69), we need the transfor-

mation of ¢ itself under a second supersymmetry transformation

—2
0.,6%(e2) = —20Me§ 5., Tea?| +0(8) = (H.195)
= —2$M€g§MB E(_C»OV) TCBA + 0(52) = (H.196)
€ (e1)
-2
= —20MipPeSeP VaTen™t| +0(0) (H.197)
and also the transformation of L 4 under supersymmetry:
-2
0esLaP(e2) = 22™Me§ 6., Rean®| +0(07) = (H.198)
=2
= 22McE5p,P E(g‘i‘(’v))RCDAB +06) = (H.199)
€1
—2
= QZ‘ME(215MDE§ VgRC'DAB‘ +0(0) (H.200)
For the algebra (H.69), we still need the Lie bracket of the vector field:
(€1, 62" = &Ve&s — Vet — 267 Topey (H.201)

For simplicity, let us restrict to the leading component, although we would have enough information to calculate
higher orders as well:

[f (€1), & (52)]A = 5?5CM5MA(52) - 5QB5BM§MA(51) - 25? TCBA| 523 = (H.202)
= —26$eB Tge?| + 265e$ Ten?| — 26§ Ten™t| 5 = (H.203)
= 2§ Tep?| €5 (H.204)

Having derived only the leading component of the vector-Lie bracket, we should restrict to the leading component
for the rest as well. The algebra (H.69) then becomes

[0.,.0.,] :d(“);)cT P E +R(25$5;>Rw: +0(é’)) (H.205)
—<«&7 leD €S A




APPENDIX H. SUPERGAUGE TRANSFORMATIONS, THEIR ALGEBRA AND THE WZ GAUGE 225

H.5.3 Transformation of the fields

The supersymmetry transformation of the fields is simply given by

5. = z:ii‘(’V)) +R(L(e).) (H.206)

where ¢4(e) and L4 (e) are of the special form given in (H.187)-(H.191). Let us derive the transformations
of all the fields that we will need. In order to extract the transformation of the (leading) components, we will
again make frequent use of the Wess Zumino gauge (H.76) and (H.92) (using En,%| = e®, Ep?| = ). In
any supergravity theory we have a vielbein and a structure group connection which we will consider first.
H.5.3.1 Vielbein (bosonic vielbein and gravitino)
Remember, the vielbein transforms according to (H.19) as

SEv® = Om& + Q€ +26Ton™ + L En® (H.207)

VuéA

In practice, we will be given constraints on torsion components with flat indices, s.t. it is useful to rewrite the
equations in those components. In addition, we plug in the explicit form of £ (e) and Lg*(¢) given in (H.189)-
(H.191) to obtain the local supersymmetry transformation of the nonvanishing leading vielbein components (the
bosonic vielbein and the gravitino(s))::

deem® = 2e%,° Tep®| + 26%9,° Ten®| (H.208)
6gwm'4 = O + wnee€ +2:%¢,,° TCb'A| +2e%4,,B Tes™ (H.209)
—_——————
Vel

H.5.3.2 Connection

Remember the general gauge transformation of the structure group connection (H.25)
6Qua® = 265Rypa® — 0mLa® — [L,Qu]a” (H.210)
In the case where a scale part of the connection is present, this transforms accordingly as (see (H.30))
SO = 9¢@FLR) _ 9, L) (H.211)

For the stabilizer of WZ-gauge with Qaq4”| = 0 and 6 Qaa”| = 0 and for the choice £§ = Lo a? (corre-
sponding to local supersymmetry (H.187) and (H.188)) the nontrivial part of the above equations becomes (for

—

0 =0):

§ Qma®| = 26§ Rema®| (H.212)
595,’?‘ = € FC(Z)‘ (H.213)

More explicitely (replacing e¥ = ¢, &Y = 53 ) this reads

§ Qma’| = 27 (emd Ryaa®| + ¥m® Reysa’| + b Ros’ ) +

oeh (emd Raaa| + 1m® Rasal| 4,8 R.;." ) (H.214)
5P| = 27 (ent FD| 40 B | +n® D)) +

Lo (emd Ff,?’ A Fé?)’ 4,8 Fé?‘) (H.215)

H.5.3.3 Compensator field

A compensator field is not necessarily present in a supergravity theory. In our context such a field ® is used to
allow a scale transformation of the metric in flat indices:

Gap = €"nas (H.216)
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Where nap is some constant metric which is invariant under the orthogonal transformations. In our case, its
bosonic part is just the Minkowski metric and the rest is zero. There is no way, how a constant metric can
scale. Therefore the compensator field ® takes over the scaling of G4p under scale transformation by simply
getting shifted with the scale parameter

R(L)®=d — LD (H.217)

Similarly, the covariant derivative will be defined to act only on ® (and not on n4p) in such a way that the
covariant derivative of GG 4 has the form that is indicated by its indices.

VuGap = 20m® — Q)G ap (H.218)
=TV d = 20u®— Q) (H.219)

The general gauge transformation of the compensator field thus reads

5o = &K (ach—Qg?)) —L®) (H.220)

Define
6 = o (H.221)
om = OO (H.222)

For the lowest component , this implies the following local SUSY transformation in the WZ gauge

Sep = €7y + EV by (H.223)

The transformation is zero, if we combine it with an additional scale stabilizer transformation (H.193)
L) = ¢S oc (H.224)

Note that the transformation of the connection is such that the covariant derivative of the compensator field
transforms like a vector

Va0 = €BVpVAD — LsPVpd (H.225)

In particular we have for the SUSY transformation of the first theta-components

5. Vad| = eB VeVaAP| (H.226)

H.5.3.4 Scalar super field (e.g. dilaton and dilatino)
The Dilaton field is a scalar and thus has the simple transformation
5Py = &9 Ve®en =LPyp (H.227)
—— 3
EcMop®pn)

Define now the dilatino to be

Am = OmPpn)| (H.229)
0] 1
= @upn) = Ppn + AL+ AL+ §$MIN OMOND| + ... (H.230)

This definition of the dilatino implies according to (H.227) for the dilaton ¢,) the transformation

5<D(ph) = Sc)\c (H231)

For the transformation of the dilatino we use the fact that the variation of a covariant derivative is simply the
covariantized Lie derivative (supergauge transformation) plus the structure group transformation of the new
tensor according to the new index structure (see footnote 3 on page 210 and (H.15)). We thus have

§S(Va®un) = E9VeValun — LaPVie®en (H.232)
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with €¢ and L4 ® given in (H.187)-(H.191). For the fermionic components at 6= 0, this reads simply

5xa =€ VeVaPn (H.233)

Apparently, we need some equations of motion at this point, in order to say more. We can, however, relate this

~2
expression explicitely to the & component 8M8N<I)(ph)| of the dilaton:

Ada = EC5CM 8M(EAK8K‘1)(ph))| = (H.234)
= %M (OMEAS| Ok Ppny| + 6.4™ OMmOICP(pn)|) (H.235)
Now we can use that

OMEA"| = —EA"| OMmEL"| Eg"| = (H.236)
= — EA"| OMEL®| Eg™| = (H.237)

——

OrmEr) P
= —04" Trme”| Es™| (H.238)

The transformation of before can then be rewritten as

Aa = =€ Tea’| e 0opm) + € Tea’| /M — €€ Tea®| As +
+£€0e™M 64" OpOKP ()| (H.239)

H.5.3.5 Bispinor fields (RR-fields)

Apart from that we will be interested in the transformation of RR-fields
§PB = OV PR 4 [P 4+ L, PP (H.240)

The leading component, that we defined in the main text as p"‘B = e 8%wn) PO‘B’, then transforms as

5p*P = —8eCAcp®P + e 80wm € ch“fi’ (H.241)

H.5.3.6 Two or three form (e.g. B-field and H-field)
Finally we consider the transformation of a two form (e.g. the B-field) and of a three form (e.g the H-field):

6Bap = &PVpBap —2La”Bpp (H.242)
§Bun = EPVpBun +2(Vp€" + 268 Topn ") Bryny = €50k Bun + 206" By (H.243)
6Hapc = &°VpHapc —3La"Hpipoy (H.244)
SHunk = E°VpHunk +3(Vané" + 26" Tppn ") Hrvi) = E"0LHunk + 306" Hvi  (H.245)

It makes some difference whether we consider the fields with flat or with curved coordinates. The difference
lies in the transformation of the vielbeins. Physically, we are interested in the transformation of the bosonic
B-field B,,| and H-field Hy,pi| with curved indices. If we assume that H = dB and B thus is a gauge field,
we can make use of the WZ-like gauge Baar| = Bmar| = 0 and 9k Bimn| = 3 Hicmnl, in order to become more
explicit for the transformation of B,,,|. For the B-field transformation it thus makes sense to take the version
in terms of partial derivatives instead of covariant ones.

§ Bmn| = €P6p™ 0xBunl| + 20;mie” Bopjn| = (H.246)
= 3¢P Hppnl (H.247)

Rewritten in flat coordinates, the result becomes

de an‘ = 35Demaenb H‘Dab| + 65D7/}[WLAen]b HDAb| + 35D7/}[mAw7L]B HD.AB‘ (H248)

So far we have only used simplifications coming from the WZ-like gauge but no supergravity constraints yet.



Bibliography

[1]

2]

3]

4]
5]

16]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

R. D’Auria, P. Fre’, P. A. Grassi, and M. Trigiante, “Pure Spinor Superstrings on Generic type ITA
Supergravity Backgrounds,” arXiv:0803.1703 [hep-th]. (pages ii.)

J. Kluson, “Note About Redefinition of BRST Operator for Pure Spinor String in General Background,”
0803.4390. (Cited on pages ii and 43.)

P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum configurations for superstrings,”
Nucl. Phys. B258 (1985) 46-74. (pages 2.)

A. Strominger, “Superstrings with torsion,” Nucl. Phys. B274 (1986) 253. (pages 2.)

M. Grana, R. Minasian, M. Petrini, and A. Tomasiello, “Generalized structures of n=1 vacua,” JHEP 11
(2005) 020, hep-th/0505212. (Cited on pages 3, 117, and 169.)

M. Grana, R. Minasian, M. Petrini, and A. Tomasiello, “Supersymmetric backgrounds from generalized
Calabi-Yau manifolds,” JHEP 08 (2004) 046, hep-th/0406137. (Cited on pages 3, 117, and 169.)

N. Berkovits, “Super-Poincare covariant quantization of the superstring,” JHEP 04 (2000) 018,
hep-th/0001035. (Cited on pages 3 and 40.)

P. A. Grassi, G. Policastro, M. Porrati, and P. van Nieuwenhuizen, “Covariant quantization of
superstrings without pure spinor constraints,” JHEP 10 (2002) 054, hep-th/0112162. (Cited on
pages 3 and 41.)

P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, “An introduction to the covariant quantization of
superstrings,” Class. Quant. Grav. 20 (2003) S395-S410, hep-th/0302147. (Cited on pages 3, 41,
and 175.)

P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, “The quantum superstring as a WZNW model,”
Nucl. Phys. B676 (2004) 43-63, hep-th/0307056. (Cited on pages 3, 37, 41, and 42.)

S. Guttenberg, J. Knapp, and M. Kreuzer, “On the covariant quantization of type II superstrings,’
JHEP 06 (2004) 030, hep-th/0405007. (Cited on pages 3, 37, and 42.)

N. Berkovits, “Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the
superstring,” JHEP 09 (2004) 047, hep-th/0406055. (Cited on pages 3, 41, and 141.)

N. Berkovits and P. S. Howe, “Ten-dimensional supergravity constraints from the pure spinor formalism
for the superstring,” Nucl. Phys. B635 (2002) 75-105, hep-th/0112160. (Cited on pages 3, 43, 47, 52,
60, 62, 73, 76, 79, 92, and 94.)

0. Chandia, “A note on the classical BRST symmetry of the pure spinor string in a curved background,”
JHEP 07 (2006) 019, hep-th/0604115. (Cited on pages 3, 43, 60, and 66.)

N. Dragon, “Torsion and curvature in extended supergravity,” Z. Phys. C2 (1979) 29-32. (Cited on
pages 3, 4, 6, and 196.)

S. Guttenberg, “Brackets, sigma models and integrability of generalized complex structures,”
hep-th/0609015. (Cited on pages 4 and 117.)

J. Wess and J. Bagger, “Supersymmetry and supergravity,”. Princeton, USA: Univ. Pr. (1992) 259 p.
(Cited on pages 6, 80, 206, and 208.)

P. Van Nieuwenhuizen, “Supergravity,” Phys. Rept. 68 (1981) 189-398. (pages 6.)

B. S. DeWitt, “Supermanifolds,”. Cambridge, UK: Univ. Pr. (1992) 407 p. (Cambridge monographs on
mathematical physics). (2nd ed.),. (Cited on pages 6, 16, and 20.)

228



BIBLIOGRAPHY 229

[20] A. Frydryszak, “Nilpotent classical mechanics,” Int. J. Mod. Phys. A22 (2007) 2513-2534,
hep-th/0609072. (pages 15.)

[21] P. Cartier, C. DeWitt-Morette, M. Ihl, and C. Saemann, “Supermanifolds - Application to
Supersymmetry,” math-ph/0202026. (pages 20.)

[22] T. Schmitt, “Supergeometry and quantum field theory, or: What is a classical configuration?,” Reuv.
Math. Phys. 9 (1997) 993-1052, hep-th/9607132. (pages 20.)

[23] P. Cvitanovic, “Supersymmetry, negative dimensions and the emergence of E7 symmetry,”. Print-79-1010
(NORDITA). (Cited on pages 25 and 35.)

[24] P. Cvitanovic, Group Theory. Princeton University Press, 2007. (Cited on pages 25 and 35.)

[25] L. Frappat, P. Sorba, and A. Sciarrino, “Dictionary on lie superalgebras,” hep-th/9607161. (Cited on
pages 34 and 35.)

[26] W. Siegel, “Classical superstring mechanics,” Nucl. Phys. B263 (1986) 93. (pages 40.)

[27] N. Berkovits, “Pure spinor formalism as an n = 2 topological string,” JHEP 10 (2005) 089,
hep-th/0509120. (pages 41.)

[28] N. Berkovits and C. R. Mafra, “Equivalence of two-loop superstring amplitudes in the pure spinor and
rns formalisms,” Phys. Rev. Lett. 96 (2006) 011602, hep-th/0509234. (pages 41.)

[29] N. Berkovits and C. R. Mafra, “Some superstring amplitude computations with the non- minimal pure
spinor formalism,” JHEP 11 (2006) 079, hep-th/0607187. (pages 41.)

[30] N. Berkovits and N. Nekrasov, “Multiloop superstring amplitudes from non-minimal pure spinor
formalism,” JHEP 12 (2006) 029, hep-th/0609012. (pages 41.)

[31] C. Stahn, “Fermionic superstring loop amplitudes in the pure spinor formalism,” JHEP 05 (2007) 034,
arXiv:0704.0015 [hep-th]. (pages 41.)

[32] N. Berkovits and D. Z. Marchioro, “Relating the Green-Schwarz and pure spinor formalisms for the
superstring,” JHEP 01 (2005) 018, hep-th/0412198. (pages 41.)

[33] N. A. Nekrasov, “Lectures on curved beta-gamma systems, pure spinors, and anomalies,”
hep-th/0511008. (pages 41.)

[34] N. Berkovits, “Explaining pure spinor superspace,” hep-th/0612021. (pages 41.)

[35] N. Berkovits, “Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background,”
Nucl. Phys. B431 (1994) 258 272, hep-th/9404162. (pages 41.)

[36] J. Kappeli, S. Theisen, and P. Vanhove, “Hybrid formalism and topological amplitudes,”
hep-th/0607021. (pages 41.)

[37] I. Linch, William D. and B. C. Vallilo, “Hybrid formalism, supersymmetry reduction, and ramond-
ramond fluxes,” hep-th/0607122. (pages 41.)

[38] M. Chesterman, “Ghost constraints and the covariant quantization of the superparticle in ten
dimensions,” JHEP 02 (2004) 011, hep-th/0212261. (pages 41.)

[39] M. Chesterman, “On the cohomology and inner products of the Berkovits superparticle and superstring,”
hep-th/0404021. (pages 41.)

[40] Y. Aisaka and Y. Kazama, “A new first class algebra, homological perturbation and extension of pure
spinor formalism for superstring,” JHEP 02 (2003) 017, hep-th/0212316. (pages 41.)

[41] Y. Aisaka and Y. Kazama, “Operator mapping between RNS and extended pure spinor formalisms for
superstring,” JHEP 08 (2003) 047, hep-th/0305221. (pages 41.)

[42] Y. Aisaka and Y. Kazama, “Relating Green-Schwarz and extended pure spinor formalisms by similarity
transformation,” JHEP 04 (2004) 070, hep-th/0404141. (pages 41.)

[43] Y. Aisaka and Y. Kazama, “Origin of pure spinor superstring,” JHEP 05 (2005) 046, hep-th/0502208.
(pages 41.)

[44] Y. Aisaka and Y. Kazama, “Towards pure spinor type covariant description of supermembrane: An
approach from the double spinor formalism,” JHEP 05 (2006) 041, hep-th/0603004. (pages 41.)



BIBLIOGRAPHY 230

[45] M. Matone, L. Mazzucato, I. Oda, D. Sorokin, and M. Tonin, “The superembedding origin of the
Berkovits pure spinor covariant quantization of superstrings,” Nucl. Phys. B639 (2002) 182-202,
hep-th/0206104. (pages 41.)

[46] I. Oda and M. Tonin, “On the b-antighost in the pure spinor quantization of superstrings,” Phys. Lett.
B606 (2005) 218222, hep-th/0409052. (pages 41.)

[47] I. Oda and M. Tonin, “Y-formalism in pure spinor quantization of superstrings,” hep-th/0505277.
(pages 41.)

[48] I. Oda and M. Tonin, “The b-field in pure spinor quantization of superstrings,” hep-th/0510223.
(pages 41.)

[49] I. Oda and M. Tonin, “Y-formalism and b ghost in the non-minimal pure spinor formalism of
superstrings,” Nucl. Phys. B779 (2007) 63-100, arXiv:0704.1219 [hep-th]. (pages 41.)

[50] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, “The massless spectrum of covariant
superstrings,” JHEP 11 (2002) 001, hep-th/0202123. (pages 41.)

[61] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, “The covariant quantum superstring and
superparticle from their classical actions,” Phys. Lett. B553 (2003) 96-104, hep-th/0209026. (pages 41.)

[52] P. A. Grassi, G. Policastro, and P. van Nieuwenhuizen, “Superstrings and WZNW models,”
hep-th/0402122. (pages 41.)

[53] P. A. Grassi and P. van Nieuwenhuizen, “Gauging cosets,” hep-th/0403209. (pages 41.)

54] P. A. Grassi and G. Policastro, “Super-chern-simons theory as superstring theory,” hep-th/0412272.
g p
(pages 41.)

[55] J. Knapp, “Covariant quantization of the superstring,” Master’s thesis, TU Wien, 2004. Diploma Thesis.
(pages 42.)

[56] P. A. Grassi and P. van Nieuwenhuizen, “N = 4 superconformal symmetry for the covariant quantum
superstring,” hep-th/0408007. (pages 42.)

[57] G. Gotz, T. Quella, and V. Schomerus, “The WZNW model on PSU(1,1|2),” JHEP 03 (2007) 003,
hep-th/0610070. (pages 42.)

[58] O. Chandia and B. C. Vallilo, “Conformal invariance of the pure spinor superstring in a curved
background,” JHEP 04 (2004) 041, hep-th/0401226. (pages 43.)

[59] O. A. Bedoya and O. Chandia, “One-loop conformal invariance of the type II pure spinor superstring in
a curved background,” JHEP 01 (2007) 042, hep-th/0609161. (Cited on pages 43, 56, 68, and 79.)

[60] J. Kluson, “Note about classical dynamics of pure spinor string on AdS(5) x S**5 background,” Fur.
Phys. J. C50 (2007) 1019-1030, hep-th/0603228. (pages 43.)

[61] M. Bianchi and J. Kluson, “Current algebra of the pure spinor superstring in AdS(5) x S(5),” JHEP 08
(2006) 030, hep-th/0606188. (pages 43.)

[62] P. A. Grassi and L. Tamassia, “Vertex operators for closed superstrings,” JHEP 07 (2004) 071,
hep-th/0405072. (pages 43.)

[63] A. V. Minkevich and F. Karakura, “On the relativistic dynamics of spinning matter in space-time with
curvature and torsion,” J. Phys. A: Math. Gen. (1983) 1409-1418. (pages 54.)

[64] H. Luckock and I. Moss, “The quantum geometry of random surfaces and spinning membranes,” Class.
Quant. Grav. 6 (1989) 1993. (pages 54.)

[65] A. Minkevich and F. I. Fedorov Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. 5 (1968) 35. (pages 54.)
[66] A. Minkevich and A. A. Sokolski Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. 4 (1975) 72. (pages 54.)

[67] E. Bergshoeff, R. Kallosh, T. Ortin, D. Roest, and A. Van Proeyen, “New formulations of D = 10
supersymmetry and D8 - O8 domain walls,” Class. Quant. Grav. 18 (2001) 3359-3382, hep-th/0103233.
(pages 87.)

[68] S. Guttenberg, “Derived brackets from super-Poisson brackets,” hep-th/0703085. (pages 117.)



BIBLIOGRAPHY 231

[69] K. Bering, “On non-commutative Batalin-Vilkovisky algebras, strongly homotopy Lie algebras and the
Courant bracket,” Commun. Math. Phys. 274 (2007) 297-341, hep-th/0603116. (pages 117.)

[70] Y. Kosmann-Schwarzbach, “Derived brackets,” Lett. Math. Phys. 69 (2004) 61-87, math.dg/0312524.
(Cited on pages 117, 121, 126, 159, 162, and 164.)

[71] A. Alekseev and T. Strobl, “Current algebra and differential geometry,” JHEP 03 (2005) 035,
hep-th/0410183. (Cited on pages 117, 131, 135, 141, and 239.)

[72] M. Gualtieri, “Generalized complex geometry,” Ozford University DPhil thesis (2003) 107,
math.DG/0401221. (Cited on pages 117, 148, 151, 152, 153, 154, 157, and 158.)

[73] G. Bonelli and M. Zabzine, “From current algebras for p-branes to topological m- theory,” JHEP 09
(2005) 015, hep-th/0507051. (Cited on pages 117, 131, 141, and 239.)

[74] N. Hitchin, “Generalized Calabi-Yau manifolds,” Quart. J. Math. Oxford Ser. 54 (2003) 281-308,
math.dg/0209099. (Cited on pages 117 and 148.)

[75] M. Grana, J. Louis, and D. Waldram, “Hitchin functionals in N=2 supergravity,” hep-th/0505264.
(pages 117.)

[76] M. Grana, “Flux compactifications in string theory: A comprehensive review,” Phys. Rept. 423 (2006)
91-158, hep-th/0509003. (Cited on pages 117 and 148.)

[77] A. Kapustin and Y. Li, “Topological sigma-models with H-flux and twisted generalized complex
manifolds,” hep-th/0407249. (pages 117.)

[78] V. Pestun and E. Witten, “The Hitchin functionals and the topological B-model at one loop,”
hep-th/0503083. (pages 117.)

[79] V. Pestun, “Topological strings in generalized complex space,” hep-th/0603145. (pages 117.)
[80] C. Jeschek, “Generalized Calabi-Yau structures and mirror symmetry,” hep-th/0406046. (pages 117.)

[81] C. Jeschek and F. Witt, “Generalised geometries, constrained critical points and ramond-ramond fields,”
math.dg/0510131. (Cited on pages 117, 169, and 170.)

[82] D. Cassani and A. Bilal, “Effective actions and n=1 vacuum conditions from su(3) x su(3)
compactifications,” arXiv:0707.3125 [hep-th]. (pages 117.)

[83] P. Grange and R. Minasian, “Modified pure spinors and mirror symmetry,” Nucl. Phys. B732 (2006)
366-378, hep-th/0412086. (pages 117.)

[84] A. Tomasiello, “Reformulating supersymmetry with a generalized dolbeault operator,” arXiv:0704.2613
[hep-th]. (pages 117.)

[85] N. Ikeda and T. Tokunaga, “Topological membranes with 3-form h flux on generalized geometries,”
hep-th/0609098. (pages 117.)

[86] N. Ikeda and T. Tokunaga, “An alternative topological field theory of generalized complex geometry,”
arXiv:0704.1015 [hep-th]. (pages 117.)

[87] U. Lindstrom, R. Minasian, A. Tomasiello, and M. Zabzine, “Generalized complex manifolds and
supersymmetry,” Commun. Math. Phys. 257 (2005) 235-256, hep-th/0405085. (Cited on pages 117,
136, and 153.)

[88] M. Zabzine, “Lectures on generalized complex geometry and supersymmetry,” hep-th/0605148. (Cited
on pages 117 and 148.)

[89] U. Lindstrom, “A brief review of supersymmetric non-linear sigma models and generalized complex
geometry,” hep-th/0603240. (pages 117.)

[90] M. Zabzine, “Hamiltonian perspective on generalized complex structure,” Commun. Math. Phys. 263
(2006) 711-722, hep-th/0502137. (Cited on pages 117, 136, and 138.)

[91] R. Zucchini, “A sigma model field theoretic realization of Hitchin’s generalized complex geometry,”
JHEP 11 (2004) 045, hep-th/0409181. (Cited on pages 117, 126, 132, 135, 136, 143, and 153.)

[92] R. Zucchini, “Generalized complex geometry, generalized branes and the Hitchin sigma model,” JHEP
03 (2005) 022, hep-th/0501062. (Cited on pages 117 and 136.)



BIBLIOGRAPHY 232

[93] R. Zucchini, “A topological sigma model of biKaehler geometry,” JHEP 01 (2006) 041, hep-th/0511144.
(pages 117.)

[94] R. Zucchini, “The Hitchin model, Poisson-quasi-Nijenhuis geometry and symmetry reduction,”
arXiv:0706.1289 [hep-th]. (pages 117.)

[95] M. Henneaux and C. Teitelboim, Quantization of gauge systems. Princeton, USA: Univ. Pr. (1992) 520
p. (Cited on pages 119, 181, 183, 184, and 186.)

[96] C. Buttin, “Théorie des opérateurs différentiels gradués sur les formes différentielles,” Bull. Soc. Math.
Fr. 102 (1974) 49-73. (Cited on pages 120, 121, 162, and 164.)

[97] A. S. Cattaneo and G. Felder, “A path integral approach to the Kontsevich quantization formula,”
Commaun. Math. Phys. 212 (2000) 591-611, math.qa/9902090. (Cited on pages 126, 132, and 135.)

[98] P. Schaller and T. Strobl, “Poisson structure induced (topological) field theories,” Mod. Phys. Lett. A9
(1994) 3129-3136, hep-th/9405110. (pages 135.)

[99] J. de Boer, P. A. Grassi, and P. van Nieuwenhuizen, “Non-commutative superspace from string theory,”
Phys. Lett. B574 (2003) 98-104, hep-th/0302078. (pages 143.)

[100] N. Berkovits and N. Seiberg, “Superstrings in graviphoton background and N = 1/2 + 3/2
supersymmetry,” JHEP 07 (2003) 010, hep-th/0306226. (pages 143.)

[101] H. Ooguri and C. Vafa, “The C-deformation of gluino and non-planar diagrams,” Adv. Theor. Math.
Phys. 7 (2003) 53-85, hep-th/0302109. (pages 143.)

[102] C. M. Hull, “A geometry for non-geometric string backgrounds,” JHEP 10 (2005) 065, hep-th/0406102.
(Cited on pages 143 and 151.)

[103] C. M. Hull, “Global aspects of T-duality, gauged sigma models and T- folds,” hep-th/0604178. (Cited
on pages 143, 151, and 152.)

[104] C. M. Hull, “Doubled geometry and T-folds,” hep-th/0605149. (Cited on pages 143, 151, and 152.)

[105] A. Dabholkar and C. Hull, “Generalised T-duality and non-geometric backgrounds,” JHEP 05 (2006)
009, hep-th/0512005. (Cited on pages 143, 151, and 152.)

[106] M. Grana, R. Minasian, M. Petrini, and A. Tomasiello, “A scan for new n=1 vacua on twisted tori,”
JHEP 05 (2007) 031, hep-th/0609124. (Cited on pages 148, 157, and 158.)

[107] S. Morris, “Doubled geometry versus generalized geometry,” Class. Quant. Grav. 24 (2007) 2879-2900.
(pages 151.)

[108] T. H. Buscher, “A symmetry of the string background field equations,” Phys. Lett. B194 (1987) 59.
(pages 152.)

[109] T. H. Buscher, “Path integral derivation of quantum duality in nonlinear sigma models,” Phys. Lett.
B201 (1988) 466. (pages 152.)

[110] M. Dubois-Violette and P. W. Michor, “A common generalization of the Frohlicher-Nijenhuis bracket
and the Schouten bracket for symmetric multivector fields,” alg-geom/9401006. (pages 160.)

111] Y. Kosmann-Schwarzbach, “From Poisson algebras to Gerstenhaber algebras,” Ann. Inst. Fourier
g g
(Grenoble) 46 (1996) 1241-1272. (pages 162.)

[112] Y. Kosmann-Schwarzbach, “Derived brackets and the gauge algebra of closed string field theory,”
Quantum Group Symposium at GROUP 21 (Goslar,1996), H.-D. Doebner and V. K. Dobrev, eds.,
Heron Press, Sofia (1997) 53-61. (pages 162.)

[113] A. M. Vinogradov, “Unication of the Schouten and Nijenhuis brackets, cohomology, and superdifferential
operators,” Mat. Zametki 47 (6) (1990) 138-140. not translated in Math. Notes. (Cited on pages 162
and 164.)

[114] A. Cabras and A. M. Vinogradov, “Extensions of the Poisson bracket to differential forms and
multi-vector fields,” J. Geom. Phys. 9 (1992) 75-100. (Cited on pages 162 and 164.)

[115] C. Jeschek and F. Witt, “Generalised G(2)-structures and type IIB superstrings,” JHEP 03 (2005) 053,
hep-th/0412280. (pages 169.)



BIBLIOGRAPHY 233

[116] F. Witt, “Special metric structures and closed forms,” math/0502443. (pages 169.)
[117] T. Kugo, Eichtheorie. Berlin/Heidelberg, Germany: Springer (1997) 522 P. (pages 169.)

[118] M. Kreuzer, Geometrische Methoden der Theoretischen Physik. 2001.
http://hep.itp.tuwien.ac.at /~kreuzer/inc/gmtp.ps.gz. (pages 174.)

[119] D. Tsimpis, “Curved 11d supergeometry,” JHEP 11 (2004) 087, hep-th/0407244. (pages 217.)

120] C. R. Mafra, “Superstring Scattering Amplitudes with the Pure Spinor Formalism,” 0902.1552.
g g
(pages 41.)

[121] O. A. Bedoya, “Superstring Sigma Model Computations Using the Pure Spinor Formalism,” 0808.1755.
(pages 43.)



Index

A° L, 152
A, wedge, 120, 146
(—)AB, 146
)EMEN) g
...y...), canonical inner product on T @® T*, 148
..], derived bracket by D, 162
..], Lie bracket of degree n, 160
..], derived bracket by D= [d,...], 162
...y...]v, Vinogradov bracket, 164
.v.y...], commutator, 120
[d7 ZK]; [:’KJ 122
(), £, 122
K, L], 121
[T®K) T T )], 123
[ZK, ZL], 120
[1pce e oy s tpirim ], 123
[...,...]"%, algebraic bracket, 120, 164
[K,L]*, 120, 120, 164
[T(t,t',t”)’T(f,f’,f”)]A, 123
[..,.. .](Al), big bracket, 121, 164

(K, L]§,, 121, 164

[T, T](Al), 123
[...,d...]A, see [...y...]
[.. ](1), derived bracket of the big bracket by d,
124
[....a...], 164
[...,...], derived bracket of [...,...]*
[K(®F) L31]) 123
[K,L], coordinate expression, 124
[...,...]B, Buttin’s differential bracket, 165
[...,...]w, Nijenhuis bracket, 166
[...,...]_, Courant bracket, 151
[t ,a2r], derived bracket of the commutator by d 121
{...,...}, Poisson bracket, 119

{K,L} < [K, L]§,, 121

{o,p"} =dp™, 119
1, 18
=g, big graded equal sign, 13
=4, graded equal sign, 9
AW generalized multivector, 152
Ant..nv, 152
AMN BM . N D, supermatrices, 16
Alabledlelfglhi] 146
B, B-field 2-form, 190
By, 44, 74, B-field components, 190
B, 149
CaP, 44, 74
CoPY, 44, 74
Dy, 137
D., Dorfman derivative, 151
EA4, vielbein 1-form, 189

by d, 123, 164

in flat superspace, 39
E 4, vielbein basis vector, 189
E 4™ inverse vielbein components, 189
En, vielbein components, 189
En®, 44, 74
By, 44, 74
F(P) scale curvature 2-form, 192

FI(MDA),, scale field strength, 51

FIE/? A),, scale curvature components, 192
GL(b| f), 34
Gy, 44, 74
GrN, canonical metric on T T, 148
H, 3-form, 125, 3-form field strength of B, 190
Hapc, 74, 89
Hy Nk, H-field components, 190
(. ..), imaginary part, 19
15,197
1,5, 196
Iccec®, 197
Iccca®, 196
TM N, 149
JM . generalized complex structure, 136
J(®,d"®, &1), 136
J™,, complex structure, 136
K AL, 120
IC’(ip), divergence term of symmetry trafo, 182
Kk k/) multivector valued form, 120, 145, 163
( ), 131
( ), 130
K("? ) (), 125
K®&K)(0,0), 128, 133, 138
K& (2, ¢,b), 125
Ky n™ ™, 147, 163
Kom..m™ ™, schematic index notation of K*:¥) 120
K®E) o g, 120
Kar...na, 147
L, generalized holomorphic bundle, 149
L, generalized antiholomorphic bundle, 149
L, 207
Ly exy, Lie derivative w.r.t. K, 164
Ly, 122
L,, Lie derivative, 122
L4, 207
Lwz, Wess Zumino term, 39
Lop(z,0), 206
Lgn, ghost Lagrangian, 40
L,z,, Lagrange multiplier, 41
i’zza; 41
L(“’V) 207

M, target space, 125

234



INDEX

M4 pc, nonmetricity, 200
NMM:Ms - oeneralized Nijenhuis tensor, 153
Nty v, generalized Nijenhuis tensor, 136
N(c,8), 136

OMN; 44

Ounn, 44

O@.b| f,f), 35

O(d,d), 152

P, 137

P8 RR-field, 44, RR-field, 74
P™" Poisson structure, 135
Py, permutation, 10

PV, 44

Q, SUSY generator, 137

Q.. 138

Qp, 137

Qmn, 136

R,B, 50

R(L."), 191

R(...), real part, 19

R(L."), 207

R%%Vab, Lorentz curvature, 192
RAB, curvature 2-form, 190
Rijc®, 51

EABCDv 517 787 90

Ryna®, curvature components, 190
S, action, 44

SL( | f), 34

SOb,b| f, f), 35

SP(2b|2f), 35

Sm(o,0), 127

5,.(6), 129

Sas, Green Schwarz action, 39

SaalP, 44, 74

SaalP, 44

74, 50

IAB\Cﬂ 58

T*(IITM), 119

T4, torsion 2-form, 189

T 1929

T®) (), 125

T®E 1) (5,0), 127, 133, 138

T (2, ¢, b, p), 121

T .5, 75, 90

Ty, torsion components, 189

Ty ooy ™ 1k () 121

U] f), 34

[d/2], integer part of d/2, 168

A%, 98

Anra®, 73, 89

EMNKa 50

I'?, graded gamma matrix, 26

I'#, chirality matrix, 168

I'*, gamma matrix, 167

I'l*)| schematic for T'%% 167

o9 antisymmetrized product of gamma matrices,
167

Q, BRST operator, 126, 137

Q) wma®Z, average connection, 73, average connection,
80, average connection, 199

Qs 42, 50, mixed connection, 199

235

Qura®? , right mover connection, 73, right mover con-
~ nection, 199

Qumal, 44, 74

Q, 137

Qura®, left mover connection, 73, left mover connec-

tion, 199

Qural, 44, 74

Qg\zlaz, Lorentz connection, 51

Qnra®, 50

Qg\?), scale connection, 51

&' (0',0'), anti-superfield, 132

®, compensator field, 61

L., 181

™ (0, ), 127, 132

® 1), dilaton superfield, 79

n7TM, 119

oMy, 149

My, 149

4, 45, 145

1%, 145
in flat superspace, 39

g, 145

A, 145

%, 145

¥, world-volume, 125

5™", beta-transform, 152

By 135

560’[}7 54

bgi ., antisymmetrized Kronecker delta, 169

oMy, graded Kronecker, 18

dmY, graded Kronecker, 18

53, numerical Kronecker delta, 18

o, end of footnote, vii

€my...myg, VOlume ¢ tensor, 169

E(d), 168

€cy...cqr 168

Nym, 135

Nap, 145

P08 56

:yabaﬁ’ 95

:Yc a3 92

Veap 92

Yap: 37

~[Fl schematic for %1% 177

,.Yal...agk aﬁ’ 177

Yap: chiral gamma matrix, 176

A%, pure spinor ghost, 37

A" (o), 136

A%, pure spinor ghost, 41

Au, dilatino, 79

Ai, dilatino, 79

)\a, right-moving pure spinor ghost, 41
1(80), fermionic integration measure, 132
v, 172

quz, 62

VAP, 44

VAP, 44

W,a, antighost, 41

<ﬂ)ﬂ%AB; 85

wmABa 83



INDEX

Wmn..mMm..m, 147
Wza, right moving antighost, 41

(.. )acM =0(...)/0c™, right derivative, 29

(.. )azK = 0(...)/0xX right derivative, 28
O, coordinate basis element of TM, 119
Ay, 146

OMon T @ T*, 150

Oy on T @ T*, 150

om(...) = ‘Zg;\'} = aa? (...), left derivative, 28

an (...)= acM , left derivative, 29

¢, bosonic compensator, 81

do(M), sign (—)?°M) in graded summation, 8
@ph, dilaton, 81

Vv, 172

p(") r-form, p, 119

Py (), 131

Pm(0), 136

o, worldvolume coordinates o, 125

/, 169

*, Hodge star, 104, 170

0, 145

0, 145

6", 39

6, 145

oM, 145

6", 39, 131, 145

0", 145

0, 126

(), 206

a = aMt,,, generalized vector field, 148

by, = O, 119

bmn, antisymmetric tensor field, 81

i)m, quantized b, 120

cM, ghost 7
c

d exterlor derivative, 119

d(8,,), 122

dK (o), 125

dK (o, 0), 128, 133, 138

dx (kK 122

d”, world-volume exterior derivative, 125
dy, twisted exterior derivative, 125
dp, Lichnerowicz-Poisson differential, 163
dy, worldvolume dimension, 126, 132
d.a, 40

dsa, 40

de™, 146

&™, 119

em®, bosonic vielbein, 81

fa¢, 69

Jmn, bosonic metric, 81

gs(...), 10, 12

homnk, bosonic H-field, 81

1P, 120

Ui ), 163

AP ), 120, 164

’LT(t t ) 122

AP s 123

1,p, interior product, 119

Low, T

7., BRST current, 44
G2y 40

s, right-moving BRST current, 44
3=, 40
jé‘p), Noether current, 182
o, generator for exterior derivative, 119
o(o), 125
o(o,0), 128, 138

Mi 10
Dins =0m, 119, 122
Pz, 40
Pza, 40
. ..), BRST differential, 125
§ 137
sign?m)(. ..), 10, 12
M 136, 148
tyr, 146
tyr, 148
v, general vector field, 119
T, 44, 145

T, 44, 145

2™ coordinates of supermanifold, 6, 39, 145

236

™, bosonic coordinates, 6, 39, target space coordi-

nates, 125, 145
™M fermionic coordinates, 6, 145
o, 145
P 145
' ,,, antifield, 131

abstract, ii

action
in general background, 44

algebra
Clifford ~, 167
Gerstenhaber ~, 161
Schouten ~, 161
SUSY ~, 224

algebraic bracket, 120, 120, 164
between forms, 173
Buttin’s ~, 121, 164

almost complex structure, see complex structure

alternatives to pure spinor, 41
antibracket, 32, 131, 161
antifield, 131
antighost gauge symmetry, 41
antihermiticity

of the generalized complex structure, 149
antiholomorphic

generalized ~, 149
antisymmetric

rank 2 tensor field B, 190
antisymmetric tensor field

bosonic ~ b,,,,, 81
antisymmetrization, 146
Antisymmetrized

product of I'-matrices, 167
antisymmetrized

Kronecker delta, 169
appendix, 145
associativity

of graded matrix multiplication, 17
auxiliary



INDEX

gauge degrees of freedom, 206
average connection, 80
average connection Q pa”, 73, 199

B-field, 190
B-field
gauge transformation, 48
B-transform, 151
Baker-Campbell-Hausdorff formula, 36
basis element
combined ~ t;;, 148
combined ~, 146
Berkovits string, see pure spinor string
beta-transform, 152
Bianchi identitiy, 72
Bianchi identity
H-field ~, 191
curvature ~, 192
first ~, see torsion ~
for H, 91
for curvature, 72
for the torsion, 100
scale curvature, 192
second ~, see curvature ~
torsion ~ , 192
big bracket, 121, 164
derived bracket of the ~, 124
big graded equal sign, 13
body, 7
boldface philosophy, 146
bosonic curvature, 83
bosonic structure group
Lorentz plus scale, 61
bosonic torsion, 82
bracket
(Froehlicher-)Nijenhuis ~, 166
algebraic ~, 120, [K, L]?, 120, 164
anti ~, 32
anti-~, (...,...), 131, 161
big ~, 164
big ~, 121
Buttin’s ~, 162
Buttin’s algebraic ~, 121, 164
Buttin’s differential ~, 165
commutator, [...,...], 120
courant ~, 151
derived ~, 121, 162
derived ~ of the big ~, 124
derived ~, 164

derived ~ of the algebraic bracket, 123

Don’t make a break, make a ~, 116
Dorfman ~, 124, 150
Dorfman-Schouten ~, 152
Frohlicher Nijenhuis ~, 124
Gerstenhaber ~, 161
Lie ~ of degree n, [... () ...], 160
Lie ~ of vector fields, 159
Loday ~, 162
Poisson, 146
Poisson ~, 30

inTeaT*, 119
Richardso-Nijenhuis ~, 166

Richardson-Nijenhuis ~, 121
Schouten, 124
Schouten ~, 160, 165

Schouten ~ on generalized multivectors, 152
Schouten-Nijenhuis ~, see Schouten ~
some algebraic ~ between forms, 173

super-Poisson ~, 127

vector Lie ~, 124

Vinogradov, 117

Vinogradov ~, 164

Vinogradov ~, 162
break

Don’t make a ~, make a bracket, 116

BRST

in flat superspace, 115
BRST differential

exterior derivative as ~, 122
BRST-current, 44
building blocks

of ps action, 43
Buttin’s

algebraic bracket, 164

differential bracket, 165
Buttin’s algebraic bracket, 121, 164
Buttin’s bracket, 162

Campbell
Baker-~-Hausdorff-formula, 36
canonical antisymmetric 2-form, 149
canonical metric Gy;n of T'® T*, 148
Cartan formulae, 162
charge conjugate, 176
chiral
Clifford algebra, 176
chiral Fierz identity, 180
chiral gamma matrices, 176
chirality
w.r.t. SO(d,d), 157
chirality matrix, 168
Clifford algebra, 167
chiral ~, 176
Clifford map, 169
Clifford multiplication, 173
coinciding indices, 11
collected constraints, 73
combinatorical formula, 188
combined basis element tp;, 148
combined basis element tp;, 146
commutator, 120
of covariant derivatives, 190

of covariant derivatives on compensator, 196

commuting

graded ~, 7
commuting nilpotent variables, 15
compensator field

bosonic, 81

commutator of covariant derivatives, 196

compensator field @, 61
complex conjugation

graded ~, 13

of graded commuting variables, 19
complex structure

237



INDEX

generalized ~, 149
generalized ~, 136
components
of é—expansion, 218
conclusions, 143
conformal weight, 43
conjugate momentum, p,,, 119, 122
graded definition, 33
connection, 80, 199
average ~, 80
average ~ &MAB, 73, 199
left mover ~, 73, 199
Lie derivative of superspace ~, 210
Lorentz ~, 51
mixed, 50
mixed ~, 80, 199
right mover ~, 73, 199
scale ~, 51
shift in ~, 193
structure group transformation, 209
supergauge transformation, 209
constraints
collected ~ on the background fields, 73
convention
graded summation ~, 7
mixed ~, 7
NE ~, 7
NW ~, 7
conventions, 145
coordinates
target space ~ x™, 125
worldvolume ~, 125
counterexample, 30
to the gradification theorem, 15, 23
Courant bracket, 151
covariant derivative
commutator of ~ on compensator field, 196
exterior ~, 191, 192
covariant variation, 54
covariant variational derivative, 56
covariantized Lie derivative, 207, see supergauge trans-
formation
curvature, 190
Bianchi identity, 72, 192
bosonic ~, 83
form of ~ for restricted structure group, 194
Lorentz ~, 192
scale ~, 192
with shifted connection, 193
curved index, 145

Darboux coordinates, 33
de Rham superfield, 132, 135
decomposable

multivector, 163

multivector valued form, 163
degree

total ~, 145
delta function

for Grassmann variables, 127
derivative

Dorfman ~; 151

238

extended exterior ~, 122

for fermionic variables, 15

functional ~, 127

left ~, 146

left- and right ~, 28

Lie ~, 122, 159

right ~, 146
derived bracket, 121, 162, 164

of the algebraic bracket, 123

of the big bracket, 124

of the Poisson bracket, 124
determinant

definition with Levi Civita symbol, 170

super ~, 25

super~, 24
diffeomorphism

bosonic ~ as part of WZ-stabilizer, 223
difference tensor, 73, 89

intermezzo on ~, 97
differential

Lichnerowicz-Poisson ~, 163
differential bracket, see derived bracket

Buttin’s ~, 165
dilatation

contribution to SUSY, 86
dilatation connection, see trace connection
dilatino, A, 79, 82, 226
dilaton, 79, 81, 226
dilaton-superfield, 79
dimension

negative ~, 25, 35

of a graded vector space, 25
Dirac

conjugate, 176

gamma matrices

representation, 175

Dirac operator, 172
Don’t make a break, make a bracket, 116
Dorfman bracket, 124, 150
Dorfman derivative, 151, 152
Dorfman-Schouten bracket, 152
Dragon’s theorem, 197

Einstein
graded ~ summation convention, 7
Einstein frame, 81
embedding
of multivector valued forms in operator space, 120
of tensors into the space of differential operators,
161
equal sign
graded ~ =4, 9
extended exterior derivative
twisted, 125
extended worldsheet SUSY, 140
exterior covariant derivative, 191, 192
exterior derivative, d 119
on multivector valued forms, 122
twisted ~, 125
world-volume ~ d¥, 125

fermionic supermatrix



INDEX

inverse of ~, 23
field strength
scale ~, 51, 192
Fierz identity, 174
chiral ~, 180
first Bianchi identity, see torsion BI, 192
fixing two of three Lorentz trafos, 73
flat background, 39
flat index, 145
flat superspace, 39

as

a solution of the pure spinor string in general
background, 114

BRST transformations, 115
footnote

W N N

— O O

SO W N

8.

9.

10.
11.

12.
13.

14.

15.
16.
17.

18.

19.
20.

21.
22.
23.
24.
25.
26.
27.

. distinct Zs-gradings, 8

. permutation signature, 10

. matrix multiplication in B. DeWitt, 16

. Kronecker for mixed conventions, 18

. complex conjugation of Grassmann variables,

20

. inverse of a supermatrix, 23

. inverse of a fermionic supermatrix, 23

. negative dimensions, 25

. hermiticity and unitarity and BCH for super-

groups, 36

. second x-derivative and bdry, 44

. degenerate limit, 44

. degenerate limit, 45

. invertible bosonic supermatrix, 45

. bringing G 25 to a simple form via rep’s, 46

. reasoning for choice of structure group index

positions, 48

. reason for restriction to Lorentz and scale trafos,

49

extracting dilatation and Lorentz part of con-
nection, 52

different antighost gauge symmetry, 52
covariant, derivative on gamma, 53
covariant derivative of a multivector valued
form, 56

suggestion for bosonic d,,, 62

independence of choice of bosonic connection
QMaba 62

BRST of d, mixed first-second order formal-
ism, 65

no trivially conserved part, 69

remark on the dilaton, 79

bosonic local scale invariance and bosonic co-
variant derivative, 81
comment on the reduced structure group of
Sadﬁﬁ7 89

about the torsion in the H-BI, 91

torsion differs from ~g 5 only by Lorentz plus
scale trafo, 92

about Ta(c\d)a 94

scaling weight; Y4a8, 95

combinatorical remark, 97

some consistency check, 97

another calculational remark, 102

example for grading shift, 105

comment on the twisted differential, 107

239

28. constraint on dilaton from comparing different

LN = N

XN o

9

constraints on curvature, 111
Courant and Dorfman bracket, 117
Vinogradov bracket, 117
prefactor in forms, 119
ghosts and forms, 119

exterior derivative versus BRST differential,

122
[dk]p = 1arp , 122
combinatorical remark, 123
building blocks of [K,L], 124
worldvolume index, 125
confusion about d¥, 125
about the superfield definition, 126

10. super-Poisson bracket, 127

11. delta function for Grassmann variables, 127
12. comparison with [71] and [73], 131

13. antibracket, 131

1. worldsheet SUSY transformations, 137

1.

[\

=W N oo

(28

compatibility of GCS with canonical metric,
149

. twisted Dorfman bracket, 150
. dual coordinate; relation to Hull’s doubled ge-

ometry, 151

. letter for beta transform (3™, 152
. contribution of beta transformation to extended

Dorfman derivative, 152

. generalized Nijenhuis tensor versus generalized

Schouten bracket, 153

. twisted generalized Nijenhuis tensor, 153
. Poisson bracket of T'&T™* basis forms a Clifford

algebra, 157

. Lie bracket of degree n, 160
. Poisson algebra for symmetric multivectors, 161
. derived bracket, 162

order of the indices of a multivector valued
form, 163

. Lichnerowicz-Poisson differential dp, 163
. interior product (of maximal order), 163
. star product induced by composition of interior

products, 163

. Vinogradov bracket, 164
. product of antisymmetrized products of gamma-

matrices, 167

. antisymmetrized Kronecker symbol, 169
. alternative Hodge-definition, 171
. explicit form of antisymmetrized product of two

Gamma-matrices, 177

. combinatorical consistency check, 180

. iterated partial integration , 181

. Stokes’ theorem, 182

. symmetrized current components, 184

. trick for Noether current, 186

. missing factor in wedge product, 189

. covariant derivative of a connection, 191

. example for use of BI’s, 191

. rotated vielbein, 193

. curvature decays in scale and Lorentz part, 195

commutator of covariant derivatives on com-
pensator field, 196

weakest possible condition for Dragon’s theo-
rem, 196



INDEX

8. remark about connection w.r.t. proof of Dragon’s
theorem, 197
1. form of difference tensor, 201
2. argument for Lorentz plus scale connection, 201
3. exterior derivative of supervielbein and viel-
bein, 203
1. components of Lie derivative, 207
2. transformation of Qs 4%, 209
3. commutation of Lie derivative and partial deriva-
tive, 210
. Lie derivative of connection, 211
5. minus sign in structure group algebra, 212
6. killing vectors and Lie derivative of the connec-
tion, 213
7. finite transformation of scale connection, 215
8. accessibility of extended WZ gauge, 217
form
generalized ~, 121
multivector valued ~, 162
form degree, k, 120
Frohlicher Nijenhuis bracket, 124
Fradkin-Tseytlin term, 79
frame
Einstein- and string ~, 81
Froehlicher-Nijenhuis bracket, see Nijenhuis bracket
functional derivative, 127

gamma matrix
chiral ~, 176
graded ~, 26
gauge fixing
of two Lorentz-plus-scale transformations, 92
gauge I, 80
gauge II, 81
gauge transformation
Noether identities and vanishing currents, 183
of the B-field, 48
trivial ~, 186
general
commutator of covariant derivatives, 190
general linear group
supergroup, 34
generalized
(almost) complex structure, 149
antiholomorphic, 149
holomorphic, 149
Nijenhuis tensor, 153
one-form, 148
vector field, 148
generalized complex structure, 136
generalized form, 121
generalized geometry, 148
generalized multivector, 121, 152
generalized Nijenhuis tensor, 136
twisted ~, 153
generator
for exterior derivative d= {o,...}, 119
geometry
generalized ~, 148
Gerstenhaber algebra, 131, 161
getting rid off the ps-constraint, 41
ghost, 7

240

as form, 119
kinetic term, 44
ghost current, 59
gauge invariant, 54
graded
complex conjugation, 13
hermitean conjugation, 13
Kronecker delta, 18
Lie algebra, 160
Lie bracket, 160
Poisson bracket, see Poisson bracket
transposed, 13
graded commuting, 7
graded equal sign, 9
big ~, 13
graded gamma matrix, 26
graded inverse, 23
graded Jacobi identity, 160
graded Lie algebra, 35
graded matrix, see supermatrix
graded Poisson bracket, 30
graded summation convention, 7
gradifiable, 14
gradification, 14
counterexample, 15, 23
grading shift, 37
grading structure, 10, 12
relative sign of ~’s, 10, 12
Grassmann
delta function, 127
gravitino
local SUSY, 86
Green Schwarz action, 39
Green Schwarz string, 39
group
structure ~, 194
groups
super ~, 34

H-field, 190

Bianchi identity, 191
H-twist, 125
H-field

bosonic ~ h.,,nk, 81
hatted index

distinction ITA /IIB, 93
Hausdorff

Baker-Campbell-~-formula, 36
hermitean conjugate

of matrix products, 18, 22
hermitean conjugate matrix, 16
hermitean conjugation

graded ~, 13
Hitchin sigma model, 135
Hodge dual, 168
Hodge duality

for chiral gamma matrices, 178
Hodge star, 169
holomorphic

generalized ~, 149

identities



INDEX

Noether ~, 184
identity
Fierz, 174
I1A, 93
IIB, 93
ill-defined
graded equal sign for coinciding indices, 11
index
curved, 145
flat, 145
schematic ~ notation, 120
schematic ~ notation, 147, 160
index-position-shift, 93
induced bosonic torsion, 205
infinite reducible, 41
integrability
in terms of a derived bracket, 156
of a generalized complex structure, 153
integration measure p(0), 132
interior product, 119, 161
extended definition 2.5 v vy, 122

of order p, z%), 120
of order p, 164
w.r.t. multivector valued form, 5, 120
with a multivector valued form, 163
intermezzo
Clifford map and Hodge star, 169
difference tensor, 97
fixing two of three Lorentz-plus-scale transforma-
tions, 92
reduced bosonic structure group, 61
RR-field equations, 104
intertwiner, 176
invariant, 1-form, 39
inverse Noether, 183
inverse of a fermionic supermatrix, 23
inverse of a supermatrix, 23
inverse vielbein, 189
isotropic
maximally ~ subspace, 150

Jacobi identity

for the structure constants, 36
Jacobi-identity

for Dorfman bracket, 151

k-symmetry, 39

killing vector, 213

kinetic ghost term, 44

Kronecker delta
antisymmetrized ~, 169
for mixed conventions, 18
graded ~, 18

Kurzfassung, i

landscape, 2

BTEX, vii

left derivative, 28, 146

left mover connection, 73, 199

left-right symmetry, 44

Legendre transformation
graded version, 33

241

Leibniz rule
for Lie derivative, 159
Levi Civita
extracting ~ from superspace connection, 202
Levi Civita symbol, 170
Lichnerowicz-Poisson differential dp, 163
Lie algebra
graded ~, 35
Lie algebroid, 159
Lie bracket
of degree n, 160
of vector fields, 124
Lie derivative, 122, 159
covariantized ~, 207, see supergauge transforma-
tion
in terms of covariant derivatives, 206
of superspace connection, 210
with respect to a multivector valued form, 164
with respect to multivector valued form, 122
Lie-bracket
of vector fields, 159
linearized SUGRA, 115
little Fierz, 180
local Lorentz transformation, 222
local SUSY, 223
gravitino, 86
of the fermionic fields, 80
Loday bracket, 162
Lorentz connection, 51
Lorentz current, 54
Lorentz curvature, 192
Lorentz transformation
fixing two of three ~’s, 92
Lorentz transformations
local ~, 222
IyX, vii

map
Clifford ~, 169
matrix
of type A,B,C and D, 16
matrix inverse, 23
matrix multiplication
graded ~, 16
maximally isotropic subspace, 150
measure (), 132
metric
bosonic ~ gyup, 81
canonical ~ Gy y of T & T, 148
signature, 145
metricity, 200
mixed connection, 50, 80, 199
mixed convention, 7
mixed summation conventions, 33
momentum
conjugate ~, graded definition, 33
conjugate ~ p,,, 119
Moyal product, 120
multiplication
Clifford ~, 173
multivector, 160, 165
generalized ~, 121, 152



INDEX

symmetric ~, 160, 161
multivector degree, k', 120
multivector valued form, 120, 162

NE convention, 7
negative dimension, 25, 35
Nijenhuis
Richardson-~ bracket, 166
Richardson-~ bracket, 121
Schouten-Nijenhuis bracket, see Schouten bracket
Nijenhuis bracket, 124, 166
Nijenhuis tensor
generalized ~, 153
generalized ~, 136
twisted generalized ~, 153
nilpotency, 68
nilpotent commuting variables, 15
Noether, 181
inverse ~, 183
Noether current, 182
~ for commutator of symmetries, 188
trick to calculate the ~, 186
Noether identities, 184
Noether’s theorem, 182, 184
noncommutative product, 163
nonmetricity Mapc, 200
norm, 22
normal ordering, 163
northeast-southwest, see NE
northwest-southeast, see NW
notation
schematic index ~, 120
schematic index ~, 147, 160
notations, 145
NW convention, 7

on-shell
vanishing current, 184
vanishing transformation, 186
ordering, 120
normal ~, 163
orthonormal basis, 61
orthonormal frame, 189

parity inversed fiber, 119
permutation, 10
pluralis, vii
Poisson
Lichnerowicz ~ differential dp, 163
Poisson bracket, 126
derived bracket of the ~, 124
graded ~, 30
inTeT* 119
sign convention, 146
super-~, 127
Poisson sigma model, 135
product
interior ~, see interior product, 161
extended, 122
with a multivector valued form, 163
noncommutative ~, 163
of antisymmetrized I'-matrix-products, 167
of interior products, 120

242

star ~, 163
star ~, 120
projector
for gamma matrix expansion, 178
proposition
antibracket of multivector valued forms (3a), 132
antibracket of multivector valued forms (3b), 133
Bianchi identities for shifted connection, 193
commutator of quantized multivector valued forms,
130
left-right symmetry, 44
on-shell vanishing current, 184
orthonormal basis, 61
super Poisson bracket of multivector valued forms
(1b), 139
super-Poisson bracket of multivector valued forms,
128
the graded equal sign is an equivalence relation,
12
transitivity of the big graded equal sign, 14
weak Dragon, 197
pure spinor
SO(d,d) ~, 157
pure spinor string, 40
in flat background, 40

quantization
of a multivector valued form, 120
quantization rules, 121

rekursion realtions for vielbein and connection compo-
nents, 218
relative sign of grading structures, 10, 12
remarks in advance, vii
representation
of gamma matrices, 175
of the structure group, 191
of the structure group: R, 207
residual shift-reparametrization, 71
restricted structure group, 194
restriction of the structure group to Lorentz and scale,
74
Richardson-Nijenhuis bracket, 121, 166
right derivative, 28, 146
right mover connection, 73, 199
RR-p-form, 104
rumpf, 7
rumpf-index grading shift, 37

scale connection, 51
supergauge transformation, 209
scale curvature
Bianchi identity, 192
scale field strength, 51
scale invariance
two ways of fixing the ~, 224
scale transformation
contribution to SUSY, 86
scaling field strength, 196
schematic index notation, 120, 147, 160
Schouten algebra, 161
Schouten bracket, 124, 135, 160, 165
on generalized multivectors, 152



INDEX 243

Schouten-algebra, 131 connection, 209
Schroedinger representation, 129 scale connection, 209
second Bianchi identity, see crvature Bianchi identity72, supervielbein, 208
see curvature ~ supergravity
self duality of 4[], 178 linearized, 115
shift transformation, 206
symmetries, 206 supergroups, 34
shift in connection, 193 supermanifold
shift-reparametrization coordinates ™ of a ~, 6
residual, 71 supermatrix, 16
shortcut determinant, 24
to calculate the Noether current, 186 fermionic ~, 23
sigma-model, 125 inverse, 23
Hitchin ~, 135 trace, 24
Poison ~, 135 superspace
sign flat, 39
relative ~ of grading structures, 10, 12 supersymmetry
signature transformation, 206
of the canonical metric on 7' T, 148 supersymmetry-invariant 1-form, 39
signature of a permutation, 10 supertrace, 24
signature of the metric, 145 supervielbein, see vielbein
signs supergauge transformation, 208
terrible ~, 9 SUSY
skew symmetry of degree n, 160 covariant derivative, 137
skew-symmetric, 160 extended worldsheet ~, 140
slash, 169 generator, 137
small graded equal sign, 12 gravitino, 86
special linear group in flat superspace, 39
supergroup, 34 local ~, 223
spinor local ~ of the fermionic fields, 80
SO0(d,d) ~, 157 trafo of the fields, 225
stabilizer SUSY algebra, 224
of additional connection gauge, 222 symmetric
of additional vielbein gauge, 222 skew-~, 160
of connection WZ gauge, 221 symmetric multivector, 160, 161
of the WZ gauge, 221 symmetries
of vielbein WZ gauge, 221 shift~, 206
star product, 120, 135, 163 symmetry
Stokes’ theorem, 182 left-right, 44
string, see pure spinor and Green Schwarz of the Dorfman bracket, 151
string frame, 81 symplectic group
structure supergroup, 35
grading ~, 10, 12
structure constants Tachyon, 44
real ~, 36 target space, M, 125
structure group, 194 terrible signs, 9
bosonic, 61 theorem
bosonic ~, 61 Dragon’s ~, 197
fixing two of three blocks, 92 gradification, 15
Lorentz and scale, 50 Noether’s, 182, 184
representation R, 191 on-shell vanishing symmetry transformation, 186
restriction to Lorentz and scale, 74 Stokes, 182
summation convention, 7 torsion, 189
summation conventions Bianchi identity, 192
mixed ~, 33 bosonic ~, 82
super-Poisson bracket, 127 with shifted connection, 193
superdeterminant, 24, 25 total degree, 145
superembedding formalism, 41 trace
superfield, 126, 137 graded matrix ~, 24
de Rham ~, 132 of chiral gamma matrices, 178
de Rham ~, 135 of gamma matrices, 174

supergauge transformation, 208 transform



INDEX

B-~, 151 WZNW-model, 37, 41

beta-~, 152
transformation Y-formalism, 41
of the connection under the structure group, 209
transpose
of matrix products, 18
transposed
graded ~, 13
transposed matrix, 16
trick
to calculate the Noether current, 186
trivial gauge transformation, 186
trivially conserved, 9, S"# | 182, 184
trivially conserved current, 69
Tseytlin
Fradkin-~-term, 79
twisted
Dorfman bracket, 150
exterior derivative, 125
twisted generalized Nijenhuis tensor, 153
two
type ITA, 104
type IIA /IIB distinction, 93
type 11B, 104
two ways of fixing the scale invariance, 224
type A,B,C and D matrices, 16
type ITA, 104
type IIA /IIB distinction, 93
type 1IB, 104

unit matrix
graded ~, 18
unitary group, 34

vanishing current, 184
vanishing transformation, 186
variation
covariant ~, 54
variational derivative
covariant ~, 56
vector field
Lie bracket, 159
vector valued form, 162, 165
vielbein, 189
bosonic ~ e,,%, 81
inverse ~, 189
vielbein 1-form
in flat superspace, 39
Vinogradov bracket, 117, 131, 162, 164

wedge product, 146
weight
conformal ~, 43
Wess-Zumino gauge, 215
extension to ~, 217
for the connection, 217
for the vielbein, 215
Wess-Zumino part of GS action, 39
world-volume, ¥, 125
world-volume exterior derivative d%, 125, 131
worldsheet, 136
worldsheet SUSY
extended ~, 140

244



Curriculum Vitae

Personal data

Name: Sebastian Guttenberg
Date of birth: May 13, 1977

Place of birth: Rosenheim, Germany
Nationality: German

Parents / brother: Sibylle Guttenberg, Andreas Guttenberg / Philipp Guttenberg

Education / research experience

e 1996 Abitur (final exams) at the “Gymnasium Miesbach” (highschool) in Germany

10/1997 - 10/2002: physics studies at the Munich University of Technology (TUM)
e 1999/2000: three and a half months studies as a guest at the “State University of New York, Stony Brook”

e 10/2001 - 10/2002 extramural diploma thesis with the title “effektive Wirkungen in der Stringtheorie”
(effective actions in string theory) at the “Ludwig Maximilians Universitdt” in Munich with advisor Ivo
Sachs. Part of this work was done from May 02 until July 02 at the Trinity College in Dublin.

e 10/1998 - fall 1999: additional studies of mathematics at the TUM, terminated after successfully having
passed the first part (“Vordiplom”)

e 03/2003-09/2007 PhD studies at the Vienna University of Technology (TU Wien) with supervisor Maxi-
milian Kreuzer.

e 11/2005 - 09/2006: ten months visit in Paris, Saclay (CEA/SPhT), working in the string group with
Ruben Minasian, Mariana Grana, Pierre Vanhove et al.

e 10/2007 planned start of a postdoctoral position at the 'Demokritos Nuclear Research Centre’ in Athens/Greece
in the group of George Savvidy

Awards and Fellowships

e 1995 Second prize in the first round of the “Bundeswettbewerb Mathematik ’95” (German high school
math competition)

e 1995 reaching the third round of the German selection procedure for the International Physics Olympiade
’96 (One of top 50 German high school students)

e 1996 First prize in the first round and second prize in the second round of the “Bundeswettbewerb Math-
ematik ’96”

e From Nov.’98 until the end of the physics studies: fellowship of the “Studienstiftung des deutschen Volkes”.

e May ’05 to July ’05 “Junior Research Fellowship in Mathematics and Mathematical Physics” at the Erwin
Schrédinger Institute, Vienna

e Mobility fellowship "Mobilititsstipendium der Akademisch-sozialen Arbeitsgemeinschaft Osterreichs (ASAG)”
and fellowship to go abroad “AuslandsStipendium der TU Wien” in order to allow a three months visit in
Saclay which was then extended to a ten months stay financed by EGIDE in France

245



Lebenslauf

Personliche Daten

Name: Sebastian Guttenberg
Geburtsdatum: 13. Mai 1977
Geburtsort: Rosenheim, Deutschland
Nationalitat: deutsch

Eltern / Bruder: Sibylle Guttenberg, Andreas Guttenberg / Philipp Guttenberg

Ausbildung / Forschung
e 1996 Abitur am Gymnasium Miesbach

10/1997 - 10/2002: Physikstudium an der Technischen Universitdt Miinchen (TUM)
e 1999/2000: dreieinhalb-monatiges Gaststudium an der “State University of New York, Stony Brook”

e 10/2001 - 10/2002 Externe Diplomarbeit mit dem Titel “effektive Wirkungen in der Stringtheorie” an der
Ludwig Maximilians Universitét in Miinchen unter der Betreuung von Ivo Sachs. Ein Teil dieser Arbeit
wurde zwischen Mai 02 und Juli ’02 am *Trinity College’ in Dublin angefertigt.

e 10/1998 - Herbst 1999: zusitzliches Studium der Mathematik an der TUM, beendet nach erfolgreichem
Ablegen der Vordiplomspriifungen.

e 03/2003-09/2007 Doktoratsstudium an der Technischen Universitdt Wien unter der Leitung von
Maximilian Kreuzer.

e 11/2005 - 09/2006: zehnmonatiger Aufenthalt in Paris, Saclay (CEA /SPhT); Gast der dortigen Stringtheorie-
Gruppe bestehend aus Ruben Minasian, Mariana Grana, Pierre Vanhove et al.

e 10/2007 geplanter Beginn einer Postdoc-Stelle am ’Demokritos Nuclear Research Centre’ in Athen/Griechenland
bei George Savvidy
Auszeichnungen und Stipendien
e 1995 Zweiter Preis in der ersten Runde des Bundeswettbewerbs Mathematik 1995
e 1995 Erreichen der dritten Runde des deutschen Auswahlverfahrens zur Internationalen Physik Olympiade '96

e 1996 Erster Preis in der ersten Runde und zweiter Preis in der zweiten Runde des Bundeswettbewerbs
Mathematik 1996

e Von Nov.’98 bis zum Ende des Physikstudiums: Stipendium der “Studienstiftung des deutschen Volkes”.

e Mai ’05 bis Juli ’05 “Junior Research Fellowship in Mathematics and Mathematical Physics” am Erwin
Schrédinger Institut in Wien

e "Mobilitétsstipendium der Akademisch-sozialen Arbeitsgemeinschaft Osterreichs (ASAG)” und “Auslands-
Stipendium der TU Wien” zur Ermdglichung eines dreimonatigen Aufenthaltes in Saclay, der dann
(finanziert durch EGIDE von franzosischer Seite) auf zehn Monate verldngert wurde.

246



