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Superstrings in General Backgrounds

In der vorliegenden Arbeit werden einige Aspekte des Superstrings im allgemeinen Hintergrund betrachtet.
Die Arbeit besteht im Wesentlichen aus drei Teilen: Der erste studiert die Vorraussetzungen, unter denen man
bosonische Strukturgleichungen in graduierte (z.B. im Superraum) übertragen kann und formuliert diese in
einem Satz. Auf diesen Betrachtungen basierend werden Konventionen verwendet, die graduierungsabhängige
Vorzeichen absorbieren und die als Grundlage der Rechnungen des zweiten Teils dienen.

Der zweite Teil beschreibt den Typ II Superstring mithilfe von Berkovits' �pure spinor� Formalismus. Die
darin u.a. enthaltene Einbettung in einen Target-Superraum ermöglicht im Gegensatz zum üblichen Ramond-
Neveu-Schwarz Formalismus eine direkte Kopplung des Strings an Ramond-Ramod-Felder. Er eignet sich damit
gut für ein Studium des Superstrings in allgemeinen Hintergründen. In der Arbeit wird die Herleitung der �Su-
pergravity Constraints� aus der klassischen BRST-Invarianz sorgfältig rekapituliert. Die Herangehensweise un-
terscheidet sich dabei in einigen Punkten von der ursprünglichen Herleitung von Berkovits und Howe. So
bleibt die Betrachtung im Unterschied zu deren Rechnung vollständig im Lagrange Formalismus und zur
besseren Strukturierung der Variationsrechung wird ein kovariantes Variationsprinzip eingesetzt. Hinzu kommt
die Anwendung des im ersten Teil formulierten Satzes. Auch die Reihenfolge, in der die Constraints erzielt
werden, weicht von Berkovits und Howe ab. Als neues Resultat werden die BRST Transformationen aller
Welt�ächen-Felder hergeleitet, die bisher nur für den heterotischen Fall bekannt waren. Ein entscheidender
weiterer Schritt ist schlieÿlich die Herleitung der lokalen Supersymmetrie-Transformation der fermionischen
Targetraum-Komponenten-Felder.

Dies liefert den Übergang zur sogenannten verallgemeinerten komplexen Geometrie (GCG), die Bestandteil
des letzten Teiles der Arbeit ist. Die vierdimensionale e�ektive Supersymmetrie innerhalb einer zehndimen-
sionalen Typ-II Supergravitation bedingt eine �verallgemeinerte Calabi Yau Mannigfaltigkeit� als Kompakti-
�zierungsraum, welche wiederum mit Methoden der GCG beschrieben werden kann. In der vorliegenden Arbeit
wird gezeigt, dass Poisson- oder Antiklammern in Sigmamodellen auf natürliche Weise sogenannte �derived
brackets� im Targetraum induzieren, darunter auch die Courant Klammer der GCG. Weiters wird gezeigt, dass
der verallgemeinerte Nijenhuis Tensor der GCG bis auf einen de-Rham geschlossenen Term mit der �derived
bracket� der verallgemeinerten Struktur mit sich selbst übereinstimmt, und eine neuartige Koordinatenform
dieses Tensors wird präsentiert. Der Nutzen der gewonnenen Erkenntnisse wird dann anhand von zwei Anwen-
dungen zur Integrabilität verallgemeinerter komplexer Strukturen demonstriert.

Der Anhang der Arbeit enthält eine Einführung in einige Aspekte von GCG und �derived brackets�. Des-
weiteren werden u.a. das Noether Theorem, Bianchi Identitäten, WZ-Eichung und Γ-Matrizen in zehn Dimen-
sionen besprochen.
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Superstrings in General Backgrounds

In the present thesis, some aspects of superstrings in general backgrounds are studied. The thesis divides
into three parts. The �rst is devoted to a careful study of very convenient superspace conventions which are a
basic tool for the second part. We will formulate a theorem that gives a clear statement about when the signs
of a superspace calculation can be omitted. The second part describes the type II superstring using Berkovits'
pure spinor formalism. Being e�ectively an embedding into superspace, target space supersymmetry is manifest
in the formulation and coupling to general backgrounds (including Ramond-Ramond �elds) is treatable. We
will present a detailed derivation of the supergravity constraints as it was given already by Berkovits and Howe
some years ago. The derivation will at several points di�er from the original one and will use new techniques
like a covariant variation principle. In addition, we will stay throughout in the Lagrangian formalism in contrast
to Berkovits and Howe. Also the order in which we obtain the constraints and at some points the logic will
di�er. As a new result we present the explicit form of the BRST transformation of the worldsheet �elds, which
was before given only for the heterotic case1. Having obtained all the constraints, we go one step further and
derive the form of local supersymmetry transformations of the fermionic �elds. This provides a contact point of
the Berkovits string in general background to those supergravity calculations which derive generalized Calabi
Yau conditions from e�ective four-dimensional supersymmetry. The mathematical background for this setting
is the so-called generalized complex geometry (GCG) which is in turn the motivation for the last part.

The third and last part is based on the author's paper on derived brackets from sigma models which was
motivated by the study of GCG. It is shown in there, how derived brackets naturally arise in sigma-models via
Poisson- or antibrackets, generalizing an observation by Alekseev and Strobl. On the way to a precise formulation
of this relation, an explicit coordinate expression for the derived bracket is obtained. The generalized Nijenhuis
tensor of generalized complex geometry is shown to coincide up to a de-Rham closed term with the derived
bracket of the structure with itself and a new coordinate expression for this tensor is presented. The insight is
applied to two-dimensional sigma models in a background with generalized complex structure.

The appendix contains introductions to geometric brackets and to aspects of generalized complex geome-
try. It further contains detailed reviews on aspects of Noether's theorem, on the Bianchi identities (including
Dragon's theorem), on supergauge transformations and the WZ gauge and on important relations for Γ-matrices
(especially in ten dimensions). A further appendix is devoted to the determination of the (super)connection
starting from di�erent torsion- or invariance constraints.

1These transformations were presented already in the original version of August 16, 2007. In the meantime another paper
[1] independently presented BRST transformations for the type IIA string, although in a very di�erent setting, based on free
di�erential algebras. Note also another interesting paper on the pure spinor string in general background [2] which has appeared
in the meantime and takes into account recent developments in Berkovits' formalism. �
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Some remarks in advance

• The part about the superspace conventions is interesting in itself and was a signi�cant part of my research
work. This is why it was not put into the appendix. However, you can read the other parts without this
one. Only if you want to follow some calculations in detail, you might miss some signs. Latest at this
point you should study the part about the superspace conventions before you assume that you have found
a mistake.

• Capital indices M in the part about derived brackets and generalized geometry contain tangent and
cotangent indices, while in the context of superspace they contain bosonic and fermionic indices. In the
latter case we have M = {m,µ, µ̂}. The two fermionic indices are sometimes collected in a capital curly
index M = {µ, µ̂}.

• The thesis-index at the end contains also a list of most of the used symbols. So in case you start somewhere
in the middle of the document and would like to know, where some symbols or notations were introduced,
have a try to look at the index.

• There are a couple of propositions contained in this thesis. They simply contain more or less clear
statements that one could have given in the continuous text as well. In particular, their formulations
and proofs are mostly not of the same rigorousness as one would expect it in mathematical literature. In
addition, there is no clear rule which statements are given as proposition and which are only given in the
text. The ones in propositions are important, but the ones in the text can also be ...

• Everything in this thesis has to be understood as graded. Graded antisymmetrization will just be called
'antisymmetrization' and the square brackets [. . .] will be used to denote this, no matter if the graded
antisymmetrized objects are bosonic or fermionic. Likewise, the supervielbein will often just be called
'vielbein'. Only at some points the terms 'graded' or 'super' will be explicitly used.

• It is a somewhat strange habit to desperately avoid the word �I� in articles, in order to express ones
own modesty. Writing instead �the author� seems unnecessary long and writing instead �we� resembles
the pluralis majestatis, and I don't see how this can possibly express modesty (although one then calls
it pluralis auctoris or even pluralis modestiae). In spite of this, I got used myself to use frequently (and
without thinking) the word �we�. Understanding it as pluralis modestiae is probably only possible if one
can replace �we� with �the reader and myself�, for example in �we will see in the following ...�. However,
you, the reader, would probably loudly protest when I write things like �we think ...� or �we have no
idea why...� and claim that the reader is included. Nevertheless, I am afraid that sentences like this will
appear quite frequently and in order to avoid inconsistencies, they have to be understood as the pluralis
majestatis ...

• The symbol � marks the end of a footnote. If this mark is missing, it means that the footnote is continued
on the next page or that I simply forgot to put it . (This remark was simply copied from my diploma
thesis, but at least I have changed the footnote symbol and the language)

• This document was created with LYX which is based on LATEX.
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This thesis is devoted to superstrings in general backgrounds, but it will of course restrict to only some
aspects, leaving out many important areas.

Apart from a few other simple cases, the quantized superstring is well understood only in a �at background
where the worldsheet �elds have basically free-�eld equations of motion. The physical spectrum of a string in �at
background, however, contains itself �uctuations around this background. A huge number of strings therefore
can sum up to a non-vanishing mean background �eld, for example a curved metric or even Ramond-Ramond
bispinor-�elds. The worldsheet dynamics for the individual strings then has to be adjusted. In other words,
it is very natural to study the superstring in the most general background. Consistency conditions from the
worldsheet point of view implement constraints and/or equations of motion on the background �elds. On the
worldsheet level, the form of the consistency conditions depends very much on the formalism one is using to
describe the superstring. In general, the gauge symmetries or alternatively BRST symmetries of the action in
�at background should be present in some form also for the deformed action (string in general background),
especially after quantization. For the Ramond-Neveu-Schwarz (RNS) string, with worldsheet fermions, this
boils down to the quantum Weyl invariance of the action, which also yields the critical dimension. For the
Green Schwarz (GS) string and for the Berkovits pure spinor string (to be explained later), there are instead
additional conditions. For the Green Schwarz string, the so called κ gauge symmetry has to be preserved, while
for the Berkovits pure spinor string one has to guarantee the existence of a BRST operator which has the form
Q =

∮
dz λαdzα in the �at case. In fact, in the latter two cases, the BRST symmetry and the κ-symmetry

are already strong enough to implement the background �eld equations of motion at lowest order in α′, i.e.
supergravity, such that quantum Weyl invariance does not give additional constraints at this order.

There are of course backgrounds which are more interesting than others for phenomenological reasons. First
of all, as we are observing four spacetime dimensions, we expect to live in a solution to the background �eld
equations where 6 of the 10 dimensions are compacti�ed on a small radius, such that they are e�ectively not
visible. This compacti�cation has to be compatible with the supergravity equations, but without restrictive
boundary conditions there are in�nitely many possibilities. For a long time, people were hoping that there is
a dynamical mechanism, preferring precisely the compacti�cation (or 'vacuum') that corresponds to our world.
By now it seems more and more likely that there is no such mechanism or at least not such a strong one.
Instead, the picture might be that we are simply sitting in a huge 'landscape' of possible vacua, where some of
them are more probable than others. As there is such a huge number of e�ective four dimensional theories, it
seems improbable that 'our world' is not contained in them. Of course, being able to derive the real world from
string theory is a necessary requirement, if this theory is supposed to be more than just interesting mathematics.
By now there exists a huge model building machinery. People are considering orbi- and orientifolds and are
putting intersecting D-branes into the compacti�cation manifold. The number of possibilities is huge. Quite
a lot of models come reasonably close to the standard model, but none of them really matches. But even if
there might be a lot of justi�ed criticism to string theory, this particular problem of �nding the real world is
rather a matter of time. So far, only a very tiny, mathematically treatable subset of solutions has been studied
and it would have been a lucky coincidence to �nd a suitable vacuum in a simple setting. The bigger problem
might show up only after �nding a vacuum which e�ectively reproduces the standard model: there might be
a still big number of di�erent models which likewise reproduce the standard model. Without knowing all of
them and their common properties, one cannot really make predictions about so far unknown physics. This is,
however, not an argument against string theory. If there is another theory, unrelated to string theory, which
also describes correctly the standard model and gravity, then this model simply has to be added to the set of all
models which describe the so far observable physics consistently. There is no reason to throw out the ones that
might have been obtained from string theory. Any approach that can consistently describe the so far observable
physics is of course admissible.

It is not the immediate aim of this thesis, however, to describe observable physics, but to study the string
in a general background in ten dimensions. As argued above, one can be optimistic that someone will �nd real
physics within string theory. But sometimes it is easier to recognize simplifying structures in the general setting
and not in some particular cases. Moreover, considerations like this should survive changes in the communities
opinion of what is an interesting model to look at. This was the idea, but in the end, not everything in this
thesis is as general as it should be. First of all, mainly classical closed strings in a type II background are
considered. At some places we keep boundary terms for later studies of open strings. Secondly a whole part
of the thesis is inspired by generalized complex geometry. This in turn is related to a not very special but still
special type of compacti�cations. Let us recall this in the following lines:

Again for phenomenological reasons, in particular the hierarchy problem, it is reasonable to expect that the
four dimensional e�ective theory resulting from compacti�cation is N = 1 supersymmetric. For that reason,
Candelas, Horowitz, Strominger and Witten introduced in 1985 [3] Calabi Yau manifolds into string theory.
These manifolds are Ricci �at and obey therefore the Einstein �eld equations in vacuum. The supersymmetry
constraint then corresponds to the existence of a covariantly conserved (w.r.t. Levi Civita) Spin(6)-spinor.
Soon after, Strominger realized in [4] that a background B-�eld, in combination with a non-constant dilaton, is
also consistent with supersymmetric compacti�cation. Nevertheless, there has been very little activity on this
more general case while the Calabi-Yau case was intensively studied. This intensive study lead to invaluable
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insights concerning dualities and the form of the landscape in the Calabi-Yau case.
Only quite recently the importance of the general case including �uxes was properly noticed. It was realized

that the Calabi-Yau condition gets replaced by a �generalized Calabi-Yau� condition, which brings the so-called
generalized complex geometry into the game. See the introduction to part III on page 117 for the relevant
references. The derivation of this is mainly based on supergravity calculations. Starting from ten dimensional
type II supergravity one demands e�ective N = 1 supersymmetry in four dimensions after compacti�cation
[5, 6]. The results could in general be modi�ed by string corrections. In order to study this, one has to set up
the problem in the worldsheet language. In other words, the superstring has to be placed into a general type II
background.

The �rst striking fact is that there is so far no treatable way to couple the RNS string to Ramond-Ramond
�elds. Ramond-Ramond �elds can be either seen as bispinors (�elds with two spinorial indices) or equivalently
(expanding in Γ-matrices) as a collection of di�erential p-forms. Pullbacks of p-forms with p bigger than two
vanish on the worldsheet. Likewise we do not have elementary �elds with spacetime spinor indices in the RNS
description. This is in short the reason why coupling to the RR-�elds is an open issue in the RNS formalism.
The natural alternative is the GS string which is basically an embedding of the string into a target superspace.
The fermionic superspace coordinates or their momenta provide natural candidates for the coupling to the
RR-bispinor-�elds. This formalism, however, happens to have a fermionic gauge symmetry whose constraints
are in�nitely reducible and would require an in�nite tower of ghosts for ghosts in the standard BRST covariant
quantization procedure. It can be quantized in �at space in the light cone gauge and shown to be equivalent to
RNS, but higher loop calculations are di�cult because of the lack of manifest covariance.

The problem of covariant quantization of the GS superstring was bothering people for many painful years
without real progress until Berkovits came up in 2000 with an alternative formalism [7], based on commuting
pure spinor ghost variables, which can be covariantly quantized in the �at background. It is similar to the GS
string in that the target space is a supermanifold, but the origin of the pure spinor ghost is still a bit mysterious.
This ghost �eld and the corresponding BRST operator are related to the κ-symmetry of the GS string, but the
relation is not very transparent. In addition, the pure spinor condition is a quadratic constraint on the spinorial
ghosts, which seemed in the beginning not very attractive. For this reason there were several attempts to get
rid of this constraint or at least to explain its occurrence. The beginning of my PhD research was devoted to
a promising approach by Grassi, Porrati, Policastro and van Nieuwenhuizen[8, 9, 10, 11] and I will give a few
remarks about this at a later point. By now the need for an alternative formalism has decreased, as Berkovits
managed to give a consistent multiloop picture in [12]. In any case the pure spinor formalism seems to provide
the adequate tool to study the superstring in curved background. On the classical level this has already been
done in [13]. It was shown that classical BRST invariance of the pure spinor string in general background
already implies the supergravity constraints on the background �elds.

One major subject of the thesis is to rederive this important result with di�erent techniques. All steps will
be carefully motivated and the calculations given in detail. Most importantly the calculation given in this thesis
can be seen as an independent check, as it is done entirely in the Lagrangian formalism in contrast to [13].
Moreover, a covariant variational principle will be established and used to calculate the worldsheet equations
of motion. Some results are obtained in a di�erent order but match in the end. One new result is the explicit
form for the BRST transformations of the worldsheet �elds of the type II string in general background, which
were so far only presented for the heterotic string in [14]. After the derivation of the constraints, we go one
step further and derive the supergravity transformations of the fermionic �elds. The transformations are in
principle well known, but the idea is to obtain them in the parametrization of the �elds in which they enter
the pure spinor string. The supersymmetry transformations of the fermionic �elds are the starting point for
the derivation of the generalized complex Calabi-Yau conditions for supersymmetric compacti�cations. Having
a closed logical line from the pure spinor string to generalized geometry hopefully opens the door for the study
of quantum or string corrections to this geometry. There is still a part missing in this line from the Berkovits
string to generalized complex geometry, as we will end with the presentation of the supergravity transformations
and not proceed with the derivation of the generalized Calabi-Yau conditions. Again, this calculation would
not deliver new results (following [5, 6]), but it would be important to have everything in the same setting and
with the same conventions. One might expect in addition that the superspace formulation will give additional
insight to the geometrical role of the RR-�elds. They are so far only spectators in generalized geometry. A
bispinor is from the superspace point of view just a part of a rank two tensor, and it seems natural to include it
into geometry by establishing some version of generalized supergeometry. See also in the conclusions for other
possible extensions.

Another new feature of the re-derivation of the supergravity constraints from the pure spinor string is
the rigorous (and in some sense very unusual) application of some powerful superspace conventions. To be
more precise, we are going to use conventions where all the signs which depend on the grading are absorbed
via the use of a graded summation convention and a graded equal sign. This a not a completely new idea and
northwest-southeast conventions (NW) or northeast-southwest conventions (NE) already re�ect this philosophy.
Nevertheless most of the authors still write the signs and take the rules of NW and NE only as a check. Only
in [15], I have found an example where the signs were likewise absorbed. However, a careful study, under
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which circumstances this is possible seemed to be missing. This is the subject of part I on page 6. This
part is more than just the declaration of the used conventions. The upshot is the formulation of a theorem
about when the grading dependent signs may be dropped. The application to supermatrices shows that the
underlying ideas lead to slightly di�erent de�nitions of e.g. supertraces or some matrix operations. Using these
de�nitions, all equations take exactly the form they have for bosonic matrices. In particular the equation for
the superdeterminant reduces to an equation which holds in the very same form for purely bosonic matrices.

Applying this philosophy to the Berkovits string calculation has some strange e�ects. Most importantly,
the commuting pure spinor ghosts are treated as anticommuting objects. And likewise confusing, the chiral
blocks γcαβ of the 10-dimensional Γ-matrices are treated as antisymmetric objects although they are in fact
symmetric. This nevertheless makes perfect sense and the confusion is not, because the conventions themselves
are confusing, but because of the di�erence to what one is used to. It is therefore a very nice con�rmation
of the consistency of the conventions that the quite lengthy calculation with the pure spinor string in general
background went through and led to the same results as the original calculation. No single grading dependent
sign had to be used. The part about the superspace conventions � although very interesting in itself � is not
needed to understand the basic steps and ideas of the other parts. Finally it should be mentioned that the
appendix about Γ-matrices in ten dimensions is written in ordinary conventions for 'historical reasons'. It is,
however, simple to translate the equations to the other convention where needed.

There is �nally part III on page 117 of the thesis, which is dealing basically with so called derived brackets
and how they arise in sigma models. This part is based on my paper [16]. The e�orts to understand some aspects
of the integrability of generalized complex structures have led to the observation that super Poisson brackets and
super anti-brackets of worldsheet-supersymmetric or topological sigma models induce quite naturally derived
brackets in the target space. A more detailed introduction and motivation for this part is given at its beginning.

The structure of the thesis is as follows: We start in part I on page 6 with the discussion of the superspace
conventions. In part II on page 39 we will consider Berkovits pure spinor string. After a short motivation for
the formalism � coming from the Green Schwarz string � the derivation of the supergravity constraints will
be given and the supergravity transformations of the fermionic �elds will be derived. In part III on page 117
the appearance of derived brackets in sigma models and the relation to integrability of generalized complex
structures is discussed. All parts contain their own small introduction. After the Conclusions on page 143 there
are a number of more or less useful appendices. It starts with notations and conventions in appendix A on
page 145. This appendix does of course not contain the superspace conventions which are treated in part I. Note
also that there is an index at the end of the thesis (page 233) which should contain most of the used symbols.
Appendices B on page 148 and C on page 159 give introductions to some aspects of generalized complex geometry
and derived brackets, respectively. Appendix D on page 167 summarizes some important facts and equations
for Γ-matrices with an emphasis on the ten-dimensional case. In particular the explicit representation is given
and the Fierz identities for the chiral submatrices are derived. Appendix E on page 181 presents the Lagrangian
version of the Noether theorem and the Noether identities. Additional statements which are important for
our BRST invariance calculations of the pure spinor string are likewise given. Appendix F on page 189 recalls
the general de�nitions of torsion, curvature and H-�eld (valid as well in superspace) . It likewise recalls the
derivation of the Bianchi identities and gives the proof for a slightly modi�ed version of Dragon's theorem [15]
about the relation of second and �rst Bianchi identities. Appendix G on page 199 contains a general discussion
on how the connection is determined by invariance conditions and certain constraints on torsion components.
The simplest example is of course the Levi Civita connection which is given by invariance of the metric and
vanishing torsion. In ten dimensional superspace there is no canonically given superspace metric. In this
appendix it will be discussed how the connection is reconstructed from more general constraints, like a given
non-metricity or preserved structure constants. In addition the Levi Civita connection will be extracted from a
given general superspace connection. And �nally, in appendix H on page 206, the Wess Zumino gauge will be
reviewed in a general setting. This gauge is useful and natural to eliminate auxiliary gauge degrees of freedom.
By �xing part of the superdi�eomorphism invariance, one recovers ordinary di�eomorphism invariance and local
supersymmetry. This will be used in part II on page 39 to determine the supergravity transformations of the
fermionic background �elds of the pure spinor string.
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Chapter 1

The general idea and setting

Most bosonic de�nitions or equations have a natural generalization to superspace. There are, however, always
sign ambiguities in the super-extensions of the de�nitions. For this reason, bosonic structural equations only
hold up to signs in the superspace or graded case. The information that they hold up to signs is already a useful
qualitative statement, but it can be very cumbersome to determine the correct signs. Rules like northwest-
southeast or northeast-southwest were introduced to �x the sign ambiguities. These rules in principle allow to
reconstruct the grading dependent signs from the structure of the equation. It is then a natural step to drop
all the signs during the calculations and reintroduce them only at the very end. Or in other words, simply take
over the results from a bosonic calculation and decorate it with the appropriate signs. But as usual, there exist
some subtle cases in which a strict application of the sign rules compromises some other philosophy or is simply
not possible. For this reason a large majority of people working in that �eld prefer to carry along all the signs
and leave them away only in intermediate steps where it is obvious that no problems will occur. A paper by
Dragon [15] is the only example I know, where the parity-dependent signs are left away completely. Nevertheless
a precise formulation of the conditions under which this is possible still seems to be missing. Statements like
�everything works basically the same in the fermionic case, but one has to be careful with the signs� are used
frequently in talks. This is the reason, why we want to �nd out the precise form of the above conditions. In
addition, this idea can probably be applied to many more situations than it was done so far. In this �rst part
of the thesis, we try to �ll part of this gap.

1.1 Leading principle, graded Einstein summation convention

The leading principle of our conventions is that every abstract calculation looks formally exactly the same as in
the bosonic case. All modi�cations (signs etc) which are due to the fact that there are anticommuting variables
involved should be assigned only in the very end, to the result of a purely bosonic calculation.

The conventions will be based on either northwest-southeast (NW for short) or northeast-southwest (NE for
short) conventions, which we will explain a bit below. The NW convention is used for example in some standard
references as [17, 18] while in B. DeWitt's book on supermanifolds [19] the NE convention is used (although
this is not immediately obvious, due to his notation with some indices on the left). It is important, however,
that we will in the end have a formalism which looks exactly the same for NW and NE.

Our considerations will mainly treat objects with indices, for example - but not necessarily - coordinates
or tensor components. We assume that there is an associative product among the objects being distributive
over a likewise present abelian group structure (the sum). Sometimes we have even several of such products
(tensor product or wedge product, product of components, ... ), which all will be treated in the same way. The
described setting simply forms a general associative algebra. But let us start with the motivating example.

Let xM be the coordinates in a local patch of a supermanifold. Assume that the �rst components are bosonic
and the following are fermionic (anticommuting).

xM ≡ (xm, xM) ≡ (xm,θM) (1.1)

The somewhat unusual choice of a curley capital letter for the fermionic indices will be convenient for part II on
page 39. There we have two di�erent spinorial indices that we combine in the capital curled one: xM ≡ (xµ, xµ̂).
As usual, we assign a grading to the indices according to the split into bosonic and fermionic variables.

| xM |≡|M | ≡
{

0 for M = m
1 for M = M (1.2)

For grading-dependent signs we use the shorthand notation

(−)M ≡ (−1)|M | (1.3)

(−)K(M+N) ≡ (−1)|K|(|M |+|N |) (1.4)

6
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A general object of interest is an object with ru upper and rl lower indices (e.g. a rank (ru, rl)-tensor, but
our conventions should also extend to non-tensorial objects like connection-coe�cients). The overall grading of
such an object is

| TM1...Mu
N1...Nl | ≡ | T | + |M1 | + . . .+ |Mu | + | N1 | + . . .+ | Nl | (1.5)

where a nonvanishing grading | T | of the �body� of the object (let us call it the rumpf , in order not to mix it
up with the body of a supernumber) makes sense when there are ghosts involved, i.e. objects, with the same
index-structure as the coordinates, but opposite grading.

| cM |=| c | + |M | c is a ghost
= 1+ |M |=

{
1 for M = m
0 for M = µ

(1.6)

Also for di�erential forms we will have in general a grading that di�ers from their index-grading. E.g. for the
cotangent basis elements, we will assign the grading | dxM |=| d | + |M |= 1+ |M |.

Superspace coordinates xM , the element dxM of the exterior algebra and the classical ghost �eld cM are
examples of graded commuting objects which are the main motivation for the following discussion. Let us
therefore give the de�nition:

a, b are graded commuting :⇐⇒ ab = (−)abba (1.7)

For objects where part of the grading is assigned to the indices, this simply becomes

aM , bN are graded commuting :⇐⇒ aMbN = (−)(a+M)(b+N)bNaM (1.8)

Before we come to our conventions, let us quickly remind the existing ones which already have the basic
idea inherent. The generalization of de�nitions from the commuting (bosonic) case to the graded commuting
case is not unique. A very simple example is the interior product which has in local coordinates the form
ıvω =

∑
m v

mωm =
∑
m ωmv

m. If one wants to extend this de�nition to vectors and forms that have graded
components as well, the order makes a di�erence. In the northwest-southeast convention (NW for short)
the extension is chosen in such a way that there is no additional sign if the contraction of the indices is from the
upper left (northwest) to the lower right (southeast), i.e. ıvω ≡

∑
M vMωM =

∑
M (−)MωMvM . Within the

northeast-southwest convention (NE for short) instead, there is no sign when contracting from the lower
left to the upper right: ıvω ≡

∑
M ωMv

M =
∑
M (−)MvMωM .

It is also possible and sometimes very convenient to use a mixed convention with di�erent summation
conventions for di�erent index subsets. One could for example de�ne ıvω ≡

∑
m

(
vmωm + vµωµ + (−)µ̂vµ̂ωµ̂

)
.

We will come back to this below.
The above de�nitions are 'de�nitions by examples'. There will be additional examples in what follows. In

any case, the philosophy of NW and NE is that for every new de�nition, possible ambiguities are �xed by the
contraction directions. This should give a unique way of generalizing bosonic equations and already implies the
possibility that one can calculate in a purely bosonic manner and reconstruct the signs at the very end, at least
under certain conditions.

In our convention, we will completely omit those signs which are encoded in the structure of the terms. NW,
NE or mixed conventions then formally look the same, and there is no reason to decide a priori for one of them.
During the derivation and motivation we will always give the signs for NW and only in important cases for NE.

One of the main ingredients of our conventions will be what we call the graded Einstein summation
convention: repeated indices in opposite positions (upper-lower) are summed over their complete range, taking
into account additional signs corresponding to either NW, NE or mixed conventions.

aMbM ≡
{ ∑

M (−)bMaMbM for NW∑
M (−)bM+MaMbM for NE

bMa
M ≡

{ ∑
M (−)aM+MbMa

M for NW∑
M (−)aMbMaM for NE

(1.9)

The factor (−)M appears always in the �wrong� contraction direction (i.e. in a NE contraction in NW conventions
and vice verse). The factors (−)aM and (−)bM bring the contracted indices next to each other. This de�nition of
the graded summation convention guarantees (in both cases, NW and NE) the following important properties:

• All signs which depend on the grading of the dummy-indices, disappear in the equation for graded com-
mutativity. If aM and bM are graded commuting objects with aMbN = (−)(a+M)(b+N)bNa

M then the
de�nition (1.9) simply implies for their contraction

aMbM = (−)abbMaM (1.10)

• In an associative algebra it is important that the de�nition of the graded sum is compatible with associa-
tivity. Taking a third algebra element c (which may or may not have an index) and multiplying from left,
we have

c(aMbM ) = (ca)MbM (1.11)
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This is kind of trivial, because the grading of the �rst rumpf-symbol in the sum in (1.9) does not enter
the de�nition. The other way round, however, we learn that the above property forces the de�nition of
the graded sum to avoid the grading of the �rst element.

In fact one can see the above properties as the de�ning properties of the graded summation convention. We could
have made a more general ansatz with a sign depending on the rumpfs a, b, the index M and the contraction
direction ↘ or ↗:

aMbM ≡
∑
M

(−)φ(a,b,M,↘)aMbM , bMa
M ≡

∑
M

(−)φ(b,a,M,↗)bMa
M (1.12)

Demanding the associativity property (1.11) implies that φ(a, b,M,↘) = φ(b,M,↘), φ(b, a,M,↗) = φ(a,M,↗).
The graded commutativity property (1.10) then puts an additional restriction

(−)φ(b,M,↘)+bM+M = (−)φ(a,M,↗)+aM (1.13)

This �xes the a and b dependency of (−)φ completely, namely (−)φ(b,M,↘) = (−)φ0(M,↘)+bM and (−)φ(a,M,↗) =
(−)φ0(M,↗)+aM . In addition we have (−)φ0(M,↘) = (−)M (−)φ0(M,↗) with some φ0. The most general de�nition
of the graded summation convention which has the above properties (1.10) and (1.11) therefore reads1

aMbM ≡
∑
M

(−)bM (−)φ0(M)aMbM , bMa
M ≡

∑
M

(−)M+aM (−)φ0(M)bMa
M (1.14)

For φ0(M) = 0, we arrive at NW-conventions, while for φ0(M) =| M | we are in NE. In general the function
φ0(M) may depend arbitrarily on the index M . A natural condition is of course that for M being a bosonic
index, the summation should reduce to the ordinary one, so that we require φ0(M) = 0 for | M |= 0. For
the fermionic indices, we could in principle de�ne the sign di�erently for every single index. In superspace
applications, however, the result would then in general not be Lorentz invariant and therefore not very useful.
But as mentioned already with the introductory example of the interior product, it is consistent e.g. in extended
superspace to switch the sign between di�erent subsets, each corresponding to a representation of the Lorentz
group. A mixed convention is also useful in phase space considerations, where we combine con�guration space
coordinates xM and momenta pM to Darboux coordinates zM ≡ (xM , pM ). The de�nition of the graded
summation convention for the combined indices M will then change by (−)M when the index range goes from
the coordinate index to the momentum index.

By now we have de�ned in (1.9) or (1.14) only an index contraction between two graded commuting objects.
The �rst generalization is to allow aMand bM to be not necessarily graded commuting. The de�nitions (1.9) or
(1.14) make still sense and (1.11) is still ful�lled, if aM and bM are elements of an associative algebra. There is
no good argument to modify the de�nition in this more general case. Finally, we go one step further and assume
that b in aMbM is not necessarily an algebra element, but simply a placeholder for either indices or rumpfs which
can carry gradings. Likewise a will also be allowed to contain indices in addition to one or more rumpfs. I.e.,
we could replace b by an index b → N , to get a de�nition for aMNM . We could even remove b completely
b→ {} to obtain aMM , or replace both by s.th. more complicated: a→ AKL, b→ PQBR yields the de�nition
for AKLMPQBRM . This allows to de�ne almost all possible contractions. Unfortunately, we are in this way
restricted to expressions which end with the dummy index M . To close this gap we can introduce a third
placeholder and de�ne aMbMc ≡

∑
M (−)bM (−)φ0(M)aMbMc and bMa

Mc ≡
∑
M (−)M+aM (−)φ0(M)bMa

Mc.
Similar to a, c is just a spectator and does not enter the signs in the sums. We should now check that with this
general de�nition the graded sum is well de�ned, in particular when two index pairs are contracted.

• The graded summation for more than one index pair is well-de�ned in the sense that the contraction-
operations commute.

In order to verify this statement, let a, b, c, d and e be placeholders in the above sense. In the following two
examples of index contractions over M and N we will �rst start with the M -contraction followed by the N -

1Some people prefer to have not one single Z2-grading which governs the signs in a graded commutative algebra, but to
have several distinct Z2-gradings. For example one can distinguish between the Z2 grading | . . . |d of di�erential forms (even
and odd) and the fermion grading | . . . |f (fermion or boson). The graded summation convention can then be extended to

aM bM ≡
P
M (−)|b|d|M|d (−)|b|f |M|f (−)φd(M)(−)φf (M)aM bM . One could even introduce a seperate grading for ghost �elds

| . . . |g . Although the present discussion uses only a single Z2 grading, basically everything works the same for distinct gradings.
As the summation convention swallows all the grading dependent signs anyway, one can even decide only at the end, which picture
one prefers. �
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contraction and then reverse the order. The simple case is when one contraction encloses the other:

aMbNc
NdM

�rst M=
∑
M

(−)φ0(M)(−)M(b+N+c+N+d)aMbNc
NdM = (1.15)

=
∑
M,N

(−)φ0(M)+φ0(N)(−)M(b+N+c+N+d)(−)Nc+NaMbNcNdM (1.16)

�rst N=
∑
M

(−)φ0(N)(−)cN+NaMbNc
NdM = (1.17)

=
∑
M,N

(−)φ0(N)+φ0(M)(−)Nc+N (−)M(b+c+d)aMbNc
NdM (1.18)

There is certainly no problem with the above case. But also for the case where the contractions intersect,
everything goes �ne if indices which are already contracted are not taken into account in the second contraction:

aNb
McNdM

�rst M=
∑
M

(−)φ0(M)(−)M(c+N+d)aNb
McNdM = (1.19)

=
∑
M,N

(−)φ0(M)+φ0(N)(−)M(c+N+d)(−)N(b+c)+NaNb
McNdM (1.20)

�rst N=
∑
M

(−)φ0(N)(−)N(b+M+c)+NaNb
McNdM = (1.21)

=
∑
M,N

(−)φ0(N)+φ0(M)(−)N(b+M+c)+N (−)M(c+d)aNb
McNdM (1.22)

Let us give one last example in (NW) (upper line) and (NE) (lower line)to clarify the general treatment:

AM1
KN1N2

M2
N3B

N3N1
M1M2

LN2 ≡ (1.23)

≡
{ ∑

M1,M2,N1,N2,N3
(−)M1(K+N2+M2+B)+M2(B+N1)+N1(1+N2+B)+N2(1+B+L)+N3(1+B)AM1

KN1N2
M2

N3B
N3N1

M1M2
LN2∑

M1,M2,N1,N2,N3
(−)M1(1+K+N2+M2+B)+M2(1+B+N1)+N1(N2+B)+N2(B+L)+N3BAM1

KN1N2
M2

N3B
N3N1

M1M2
LN2

The terrible signs in the lower lines of (1.23) are exactly those which we want to omit during calculations. We
thus will de�ne every calculational operation in such a way that it is consistent with this graded summation
convention, s.th. one can calculate only with expressions as in the upper line of (1.23) and assign the signs only
in the end of all the calculations.

By de�nition all the signs which depend on dummy indices are swallowed by the de�nition of the graded
summation. As mentioned, the equation aMbN = (−)(a+M)(b+N)bNa

M for graded commuting algebra elements
reduces in a sum to aMbM = (−)abbMaM . The same simpli�cation occurs for terms with several contracted
indices, like in (1.23). Assuming that the objects there are graded commuting as well, we get

AM1
KN1N2

M2
N3B

N3N1
M1M2

LN2 = (−)(A+K)(B+L)BN3N1
M1M2

LN2AM1
KN1N2

M2
N3 (1.24)

Although there are still signs depending on the naked indices, this is far better than without the graded
summation convention, where we would have obtained instead the full sign factor

(−)(A+M1+K+N1+N2+M2+N3)(B+N3+N1+M1+M2+L+N2) (1.25)

1.2 Graded equal sign

The graded summation convention takes care of all dummy indices. But we can still be left with naked indices
and/or graded rumpfs, which likewise produce inconvenient signs. Also the summation convention on its own
might be dangerous. To show this, look at the following example: Consider graded commutative variables
aM , bM , cM and dM with bosonic rumpfs. Then the following equations, which are obviously correct (using our
graded summation convention)

aMbNcNdM − aMbNdMcN = 0 ∀graded comm. aM , bN , dM , cN (1.26)

⇒ aMbN (cNdM − dMcN ) = 0 ∀graded comm. aM , bN , dM , cN (1.27)

could lead to the � in general � wrong assumption

cNdM − dMcN = 0 ∀graded comm. dM , cN (not true in general!) (1.28)

We therefore introduce a graded equal sign =g, which states that the equality holds if for each term a
mismatch in some common ordering of the indices is taken care of by an appropriate sign factor:

cNdM − dMcN =g 0 :⇐⇒ cNdM − (−)MNdMcN = 0 (1.29)
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If we imagine objects like in (1.23), the graded equal sign allows one to write down quickly correct equations
without bothering all the involved signs. And it will also lead as a guiding line for all de�nitions of new objects,
which should all be writable in terms of the graded equal sign, in order to make them compatible with the
graded summation convention.

The idea of how to de�ne the graded equal sign should be clear from (1.29), but in order to be able to write
down a de�nition for the general case, we have to be a little more careful. For practical purposes it should be
enough to have a look at the examples following the general de�nition, to convince yourself that everything is
very natural and intuitive.

Let us introduce the graded equal-sign for the most general case in two steps. At �rst we look at equations
with only bosonic rumpfs, like in (1.26).

Graded equal sign for bosonic rumpfs

Any term T(i) of the equation (which can be a product of a lot of objects with indices) has some nonnegative
integer number k of naked indices (the vertical position of the indices does not play a role for this de�nition,
so we write them all upstairs, but the very same de�nition holds for any position). We take the �rst term in
the equation, call it T(1)

M1...Mk , as reference term. Any other term T(i) in the equation has to have the same
index set but perhaps with a di�erent order or permutation P(i) of the indices. A permutation of an index set
{M1, . . . ,Mk} is de�ned via a permutation of the set {1, . . . , k}

P(i)(M1, . . . ,Mk) ≡ (MP(i)(1), . . . ,MP(i)(k)), P(1) ≡ 11 (1.30)

In order to assign the appropriate signs to the terms, we introduce for any of the k indices Mi an auxiliary
graded commutative object oMi which carries the grading of the index

oMioMj = (−)MiMjoMjoMi (1.31)

IfMi are just supercoordinate-indices, then the supercoordinates xM themselves can be taken instead of de�ning
new variables oM . Let us now de�ne something which we call a grading structure for a given term, namely
a product of those objects o with as many factors as the term has naked indices:

gs(TM1...Mk

(1) ) ≡ oM1 · · · oMk (1.32)

In the grading structures of di�erent terms, we can rearrange the objects until all the naked indices have some
common order. For example for two terms with 3 naked indices we have

gs(TM1M2M3
(1) ) = oM1oM2oM3 (1.33)

gs(TM3M2M1
(2) ) = oM3oM2oM1 = (−)M1(M2+M3)+M2M3oM1oM2oM3 (1.34)

We call the resulting sign the relative sign of the grading structures

gs
(
T
MP(i)(1)...MP(i)(k)

(i)

)
≡ signg

T
M1...Mk
(1)

(
T
MP(i)(1)...MP(i)(k)

(i)

)
· gs
(
TM1...Mk

(1)

)
(1.35)

As the rumpfs carry no grading so far, it is notationally more convenient to replace signg
T
M1...Mk
(1)

(
T
MP(i)(1)...MP(i)(k)

(i)

)
by2 signgM1...Mk

(
MP(i)(1)...MP(i)(k)

)
. For the above two terms with three naked indices we thus have

signg
T
M1M2M3
(1)

(
TM3M2M1

(2)

)
= signgM1M2M3

(M3M2M1) = (−)M1(M2+M3)+M2M3 (1.36)

Using this de�nition of the relative sign of grading structures, we can now de�ne the graded equal sign for an
equation with general terms (but still bosonic rumpfs) as∑

i

T(i)
MP(i)(1)...MP(i)(k) =g 0 :⇐⇒

∑
i

signg
T
M1...Mk
(1)

(T(i)
MP(i)(1)...MP(i)(k)) · T(i)

MP(i)(1)...MP(i)(k) = 0 (1.37)

This de�nition does not depend on the choice of the reference term (above it is TM1...Mk

(1) ), because only the rela-

tive sign is relevant. One can replace signg
T
M1...Mk
(1)

(T(i)
MP(i)(1)...MP(i)(k)) by signg

T
MP(j)(1)...MP(j)(k)

(j)

(T(i)
MP(i)(1)...MP(i)(k))

for any j. As mentioned above we can also replace it by simply signgM1...Mk
(MP(i)(1)...MP(i)(k)).

2Note that this sign does not in general coincide with the signature of a permutation. The relative sign
signgM1...Mk

`
P(i)(M1,...,Mk)

´
coincides with the signature of the permutation P(i) (which is given by minus one to the number

of switches one needs to build the permutation) only if all indices carry an odd grading. �
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In the following sections we will always give de�nitions and important equations with the graded equal
sign and with the ordinary one. The somewhat long-winded de�nition of above should therefore become more
transparent in numerous examples later on. But let us �rst complete our de�nition to the case involving graded
rumpfs. One could get rid of all graded rumpfs by shifting the grading to the indices (if present), or create a new
index with only one possible value. As this would be notationally not very nice, we stay with graded rumpfs,
but we keep in mind that a graded rumpf is similar to a naked index. Problems for including the rumpfs in the
de�nition of the graded equal sign appear, when the same rumpf appears several times in one term, which is
thus similar to to having coinciding naked indices:

Problem of coinciding indices:

The graded equal sign above (1.37) is only well de�ned if all naked indices can be distinguished. In general
calculations one usually uses di�erent letters for each index, even if they are allowed to coincide, and then there
is no problem. What, however, if one looks at some special case with two coinciding indices? Consider the
following relations (which simply apply the de�nition of the graded equal sign):

(a) T(1)
MN =g T(2)

NM ⇐⇒ T(1)
MN = (−)NMT(2)

NM (1.38)

(b) T(1)
MN =g T(2)

MN ⇐⇒ T(1)
MN = T(2)

MN (1.39)

For M = N (no sum) this reads

(a) T(1)
MM =g T(2)

MM ⇐⇒ T(1)
MM = (−)MT(2)

MM no sum over M (1.40)

(b) T(1)
MM =g T(2)

MM ⇐⇒ T(1)
MM = T(2)

MM no sum over M (1.41)

Now (a) and (b) obviously contradict themselves and the graded equal sign is therefore ill-de�ned. There are
two options to solve this notational problem. The �rst is to always rewrite the equation with an ordinary equal
sign before looking at any special case. The second is to make apparent the original name of the index in the
following way (this is also useful to suppress summation over repeated indices if it is not wanted)

(a) T(1)
M(N=M) =g T(2)

(N=M)M ⇐⇒ T(1)
M(N=M) = (−)MT(2)

(N=M)M (1.42)

(b) T(1)
M(N=M) =g T(2)

M(N=M) ⇐⇒ T(1)
M(N=M) = T(2)

M(N=M) (1.43)

Graded rumpfs

A grading of a rumpf is like a naked index grading at the position of the rumpf. The lesson from above is, that
we can only include the rumpfs completely into the de�nition of the graded equal sign, if in each term every
rumpf appears exactly once. As we can't rely that this is the case in all equations of interest, we will include the
rumpfs only partially in the de�nition of the graded equal sign. Namely, the graded equal sign will not compare
the order of the rumpfs, but the position of the indices with respect to the rumpfs. This is again necessary
to stay consistent with the graded summation convention. Consider therefore the same trivial example as in
(1.26), however, now with graded rumpfs

aMbNcNdM − (−)cdaMbNdMcN = 0 ∀graded comm. aM , bN , dM , cN (1.44)

⇒ aMbN
(
cNdM − (−)cddMcN

)
= 0 ∀graded comm. aM , bN , dM , cN (1.45)

We now want to simply read o�

cNdM − (−)cddMcN =g 0 ∀graded comm. dM , cN (1.46)

In order for this to be correct, we have to extend the de�nition of =g appropriately to the case of graded rumpfs.
Let us therefore write out the summation convention in (1.45) explicitely (in NW-conventions):∑

M,N

aMbN
(

(−)M(b+c+d)+NccNdM − (−)M(b+N+d)+N(d+c)(−)cddMcN
)

= 0 (1.47)

⇒ (−)MccNdM − (−)MN+Nd(−)cddMcN = 0 (1.48)

⇒ (−)NdcNdM − (−)MN+Mc(−)cddMcN = 0 (1.49)

Comparing the last line with (1.46) we get

cNdM − (−)cddMcN =g 0 :⇐⇒ (−)NdcNdM − (−)MN+Mc(−)cddMcN = 0 (1.50)

The graded equal sign therefore takes care of the order of the naked indices via (−)MN and of the order of the
naked indices with respect to the rumpfs, i.e. it puts their grading to the very right of all rumpfs via (−)Nd and
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(−)Mc. Only the order of the rumpfs among themselves is taken care of by hand via (−)cd. As stated before,
the correct order of the rumpfs cannot a posteriori be �gured out, when some of them coincide. E.g. for d = c,
the above equivalence would become

cNcM − (−)ccMcN =g 0 ⇐⇒ (−)NdcNcM − (−)MN+Mc(−)ccMcN = 0 (1.51)

There is no way to deduce the sign (−)c from the structure of the equation itself, if one doesn't see it as a
special case of (1.50). The relative order of the rumpfs is not visible in (1.51). For that reason we did not a
priori include the order of the rumpfs into the de�nition of the graded equal sign, as it can be ill-de�ned in such
situations. Nevertheless we will make a suggestion a bit later, how to include the rumpfs to some extent into a
graded equal sign. The nice observation so far is that we got rid of all index-dependent signs! The use of the
graded equal is in particular useful to de�ne composite objects of the form

AMN ≡g BNKCKM ⇐⇒ AMN ≡ (−)CN+MNBNKCK
M NW= (−)CN+MN

∑
K

(−)KCBNKCKM (1.52)

This makes sure that the notation AMN is consistent with the position of the gradings. This is again necessary
to guarantee consistency with the graded summation convention. I.e. for every DMN we have (ordinary equal
sign, all indices contracted)

AMNDMN = BNKCK
MDMN (1.53)

which would not be true for the de�nition AMN ≡ BNKCKM without the graded equal sign or the appropriate
signs in front.

For a more general de�nition of the graded equal sign in the case of graded rumpfs, we can again introduce
auxiliary graded commuting objects o and extend our previous de�nition of the grading structure, i.e. the
product of these objects o with as many factors as there are naked indices and rumpfs in a given term. For
every rumpf which appears twice in a term we have to introduce a second graded commuting object (call it o′),
because sticking to only one object would lead to ococ = 0 for | c |= 1. Instead of giving a general de�nition,
let us give two examples:

gs(cMcNTKLxP ) ≡ ocoMo′coNoT oKoLoxoP (1.54)

gs(xKAMPNcL) ≡ oxoKoAoMoP oNocoL (1.55)

In the grading structure, we can now rearrange the objects until all the rumpfs are in the front (with unchanged
relative position) and the naked indices have some common order. E.g.

gs(cMcNTKLxP ) = (−)cM+T (M+N)+x(M+N+K+L)oco′coT ox · oMoNoKoLoP (1.56)

gs(xKAMPNcL) = (−)AK+c(K+M+P+N)oxoAoc · oKoMoP oNoL = (1.57)

= (−)AK+c(K+M+P+N)(−)MK+N(K+P )+LP oxoAoc · oMoNoKoLoP (1.58)

We call the resulting sign the relative sign of the grading structures

signg
cMcNTKLxP

(
xKAMPNcL

)
= (−)cM+T (M+N)+x(M+N+K+L)(−)AK+c(K+M+P+N)(−)MK+N(K+P )+LP

(1.59)
This de�nition of the relative sign reduces to (1.35) in the case of bosonic rumpfs. In order to write down
the general de�nition for the graded equal sign, let us replace the terms of an equation (like cMcNTKLxP and
xKAMPNcL above) by placeholders T(i) (where i just labels the di�erent terms). In the same way as for the
bosonic rumpfs in (1.37) we can �nally give the de�nition for the graded equal sign in the general case:

De�nition 1 (graded equal sign '=g')∑
i

T(i) =g 0 :⇐⇒
∑
i

signgT(1)
(T(i)) · T(i) = 0 (1.60)

Sometimes we call '=g' also the �small graded equal sign�.

In our example of above, this reads

cMcNTKLxP − xKAMPNcL =g 0 :⇐⇒ cMcNTKLxP − signcMcNTKLxP
(
xKAMPNcL

)
· xKAMPNcL = 0

(1.61)

Proposition 1 (Equivalence relation) The such de�ned graded equal sign obeys transitivity (X =g Y , Y =g

Z ⇒ X =g Z) as well as re�exivity (X =g X) and symmetry (X =g Y ⇒ Y =g X) and is therefore an
equivalence relation.
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Proof: Re�exivity: If the expression X is a sum of terms T(i), i.e. X =
∑
i T(i) then the claim that

∑
i T(i) =g∑

i T(i) is equivalent to
∑
i sign

g
T(1)

(T(i)) · T(i) =
∑
i sign

g
T(1)

(T(i)) · T(i) which is obviously true. The symmetry
is induced by the fact that signT(i)

T(j) = signT(j)
T(i). Transitivity �nally is seen as follows: Assume that we

have
∑
i T(i) =g

∑
i T̃(i) (equivalent to

∑
i sign

g
T(1)

(T(i)) · T(i) =
∑
i sign

g
T(1)

(T̃(i)) · T̃(i)) and
∑
i T̃(i) =g

∑
i

˜̃T(i)

(equivalent to
∑
i sign

g

T̃(1)
(T̃(i))T̃(i) =

∑
i sign

g

T̃(1)
( ˜̃T(i))

˜̃T(i)). Then it follows (using transitivity of the ordinary

equal sign) that
∑
i sign

g
T(1)

(T(i)) · T(i) = signgT(1)
(T̃(1))

∑
i sign

g

T̃(1)
( ˜̃T(i))

˜̃T(i) =
∑
i sign

g
T(1)

( ˜̃T(i))
˜̃T(i) which is in

turn equivalent to
∑
i T(i) =g

∑
(i)

˜̃T(i). �

Remark: In part II, beginning with chapter 5 on page 43, we will throughout use the graded summation
convention (based on NW) and the graded equal sign =g. The latter will then simply be denoted with an
ordinary equal sign =, in order to keep the notations simple.

Next we go one step further and de�ne a big graded equal sign =G which also takes care of the order of
as many rumpfs as possible. Let us give some simple examples:

(AB)T =G BTAT :⇐⇒ (AB)T = (−)ABBTAT (1.62)

(AB)† =G B†A† :⇐⇒ (AB)† = (−)ABB†A† (1.63)

(ab)∗ =G a∗b∗ :⇐⇒ (ab)∗ = a∗b∗ (1.64)

DM (AB) =G (DMA)B +A(DMB) :⇐⇒ DM (AB) = (DMA)B + (−)(D+M)AA(DMB) (1.65)

The above examples are well-designed. Every rumpf or naked index appears in every term exactly once and a
comparison of the order in each term is possible.

• In more general situations, the big graded equal sign =G will be de�ned by �rst adding the signs
corresponding to the use of the small graded equal sign =g and then taking care of a maximum of common
(to all terms) and distinguishable (among themselves) rumpf-symbols. For all remaining rumpf-symbols,
a sign will be included that assumes that their standard position is to the very left (not changing their
relative order).

Writing down a more formal de�nition of this idea in general would probably be lengthy and not very illumi-
nating, so let us again consider some examples (which are not necessarily meaningful in real calculations):

ABAC =G CB :⇐⇒ (−)BAABAC = (−)CBCB (1.66)

The maximum set of symbols common to each term is {B,C}. Their relative order is di�erent in the two terms,
so that we get the factor (−)CB , while the factor (−)BA is the sign that compares to the structure where all
A's (which do not belong to the common set) are to the very left. Another example (with explanation right
afterwards):

0 =G AMBNAKCL+BMANALCK +ANBMCKAL :⇐⇒
0 = (−)BM+A(M+N)+C(M+N+K)(−)BAAMBNAKCL +

+(−)AM+A(M+N)+C(M+N+L)(−)LKBMANALCK +
+(−)BN+C(N+M)+A(N+M+K)(−)NM (−)(B+C)AANBMCKAL (1.67)

In a �rst step we have applied the small graded equal sign, which includes moving all rumpf-gradings to the
very left without changing their relative order. This leads to the sign (−)BM+A(M+N)+C(M+N+K) for the
�rst, (−)AM+A(M+N)+C(M+N+L) for the second and (−)BN+C(N+M)+A(N+M+K) for the third term. The small
graded equal sign also takes care of the relative order of the naked indices in all terms. If we take the �rst term
as reference term, this yields the factors (−)LK for the second and (−)NM for the third term. The additional
contribution from the big graded equal sign is obtained as follows: This time the set of all rumpf-symbols
{B,C,A} is common to all terms, but A appears in two indistinguishable copies. The maximum set of common
(to all terms) and distinguishable (among themselves) rumpf-symbols is thus again {B,C}. The gradings of
the remaining A's are put to the very left, which yields a factor (−)BA for the �rst term, (−)B(A+A) = 1 for
the second and (−)(B+C)A for the third term. Finally the relative order of B and C in each term is compared
which gives no extra factor in this example.

Note that the naked index in (1.65) was treated on equal footing with the rumpfs. The big graded equal sign
simply compared the relative order of all involved symbols, no matter if they were rumpf or naked index. In this
case, where all rumpfs appear in each term exactly once, this is equivalent to applying our more general de�nition
(given below (1.65)), where we �rst apply the small graded equal sign, which moves all the rumpf-gradings to
the very left. Indeed the example (1.65) can equivalently be written as

DM (AB) =G (DMA)B+A(DMB) :⇐⇒ (−)(A+B)MDM (AB) = (−)(A+B)M (DMA)B+(−)BM (−)DAA(DMB)
(1.68)
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There is a serious drawback of the so far given de�nition of the big graded equal sign: it does not in general
obey transitivity. We will below modify the de�nition such that transitivity is guaranteed, but let us �rst give
examples where it is violated. If one de�nes composite objects, like A ≡G ba, using the big graded equal sign,
it does not have any e�ect. The maximum set of symbols common to all terms is empty. The symbol 'A' on
the lefthand side doesn't appear in the term on the righthand side, and the symbols ′a′ and ′b′ do not appear
in the term on the lefthand side. The same reasoning holds for B ≡G ab:

A ≡G ba ⇐⇒ A ≡ ba, B ≡G ab ⇐⇒ B ≡ ab (1.69)

Assume that we have A =G B (which is equivalent to A = B, i.e. ba = ab). Transitivity would then imply that
ba =G ab which is equivalent to ba = (−)baab and does in general not agree with the starting point A = B. A
way out is to de�ne the big graded equal sign not for a single equation, but for the whole system of equations
under consideration.

De�nition 2 (big graded equal sign '=G') Given a system of equations, we �rst determine for each equa-
tion i the set Mi of rumpf-symbols which appear either exactly once in each term or not at all in the given
equation. Call the intersection of these sets M ≡ ∩i Mi. The big graded equal sign '=G' in a system of equa-
tions is now de�ned by �rst applying the sign rules corresponding to the small graded equal sign '=g' and then
adding a sign that compares the relative order of all rumpf-symbols which are in the set M. For all remaining
rumpf-symbols, a sign will be included that assumes that their standard position is to the very left (not changing
their relative order).

In the previous example this works as follows: The equations under consideration are A =G ba, B =G ab and
ab =G ba. The symbol 'A' in the �rst equation appears once in the term on the lefthand side, but not at all in
the term on the righthand side. It is thus not in the set M1. The same is true for the rumpf symbols 'B' in the
second equation and for 'a' and 'b' in the �rst and second equation. We thus have M1 = {}, M2 = {}. Only
for the last equation the rumpf symbols 'a' and 'b' appear exactly once in each term so that M3 = {a, b}. The
intersection, however, is still empty M = M1 ∩M2 ∩M3 = {}. The big graded equal sign compares only the
relative order of the symbols in M. In this case it therefore reduces to an ordinary equal sign and transitivity
is trivially preserved.

Proposition 2 (Transitivity) In addition to symmetry and re�exivity, the above de�ned big graded equal
sign =G obeys transitivity within the given set of equations that was used for its de�nition and is therefore an
equivalence relation within this set.

Proof: Under the conditions of the de�nition (all rumpf symbols appear for any given equation either exactly
once in each term or not at all in this equation) one can replace every rumpf by a bosonic rumpf with an
auxiliary naked index which carries the grading. The big graded equal sign then reduces to the small graded
equal sign whose transitivity we have seen already. �

1.3 Calculating with fermions as with bosons - a theorem

Now we are equipped with the main tools that are necessary to turn bosonic structural equations into graded
structural equations. The set M in the de�nition of the big graded equal sign contains all symbols whose relative
positions in a system of equations can be uniquely determined. This is precisely the property that allows to
assign a grading to such a symbol and therefore deserves its own de�nition.

De�nition 3 (Gradi�able) We call a naked index or rumpf of an algebra element gradi�able in a given
equation i� it either appears in every term of this equation exactly once or it does not appear in the equation
at all. We call it gradi�able in a system of equations i� it is gradi�able in each of them. In addition, every
dummy index (one which appears in a single term twice, once in upper and once in lower position) is also called
a gradi�able index.

Example In the equation aMbN = bNa
M all indices {M,N} and all rumpfs {a, b} are gradi�able, because

they appear in every term exactly once. However in the set of equations aMbN = bNa
M , AMN = aMbN

only the indices {M,N} are gradi�able, while the rumpfs {A, a, b} are not gradi�able any longer, as they all
appear in the second equation, but not exactly once in each term. The same set of equations, with the second
one written as A(a, b)MN = aMbN , however, has gradi�able rumpf-symbols a and b. The notion 'gradi�able'
therefore depends on the way how objects are denoted.

De�nition 4 (Gradi�cation) The gradi�cation of an index 'K' or rumpf 'a' assigns an undetermined parity
| K | or | a | to it, which will enter the graded summation convention and the graded equal sign. The gradi�cation
of a given set of algebraic equations is de�ned to be a new set of equations with all gradi�able objects gradi�ed,
the equal sign replaced by the big graded equal sign and the sum over dummy indices replaced by the graded sum
(using an arbitrary but well-de�ned sign rule like NW or NE) over graded dummy indices.



CHAPTER 1. THE GENERAL IDEA AND SETTING 15

More or less by de�nition, the following theorem holds:

Theorem 1 If a set of algebraic equations implies (perhaps via some intermediate equations) a second set of
algebraic equations, then the same holds true for the gradi�cation of the whole system.

Remark: According to the de�nition of 'gradi�able in a system of equations' only those indices and rumpfs
which are gradi�able in each equation (even the intermediate ones) are gradi�able in the whole system.

Comment on the proof: All de�nitions were chosen precisely with having in mind that the theorem should hold.
Therefore it seems that there is nothing to prove and the theorem just holds by de�nition. Nevertheless, any
attempts of mine to make this statement more rigorous, failed so far. One might therefore insist on calling the
above theorem a 'conjecture' only. Calling it a conjecture, however, would somehow implement that the proof
is di�cult. But as argued above, I suspect that it is rather a triviality as soon as an appropriate setting is
used. A naive idea for a proof would be that the gradi�cation provides an isomorphism from one algebra to
another. However, the gradi�cation map is not in general invertible. For example a commutative but otherwise
freely generated algebra is mapped to a graded commutative (and otherwise freely generated) one. For odd
generators, the square is zero and therefore the gradi�cation has less basis elements than the original algebra,
if the number of generators is the same. What is mapped one to one is therefore not the algebra itself, but a
certain (sub)set of equations which characterize the algebra, namely the gradi�able ones. �

Further remarks:

• The example given after the de�nition of 'gradi�able' demonstrates that the power of the theorem depends
on how the original equations are written. If one introduces auxiliary variables for composite objects (like
AMN ≡ aMbN ), the number of gradi�able objects may reduce, if the elementary variables are not denoted
as an argument (like in A(a, b)MN ). The theorem gives no statement about the best notation to use. It
rather gives a statement which holds for any notation, but the notation has an in�uence on the number
of gradi�able objects. Sometimes rumpf-symbols can be turned gradi�able by a change of notation but
sometimes this seems impossible. It would be useful to characterize the 'best notation' which makes as
many symbols as possible gradi�able.

• This theorem provides the possibility to use existing bosonic tensor manipulation packages for Mathemat-
ica or other computer algebra systems also for the graded case!

• It is not excluded a priori that the original set of equations contains fermionic variables which are then
made bosonic (or are assigned an undetermined grading). However, one has to make sure that equations
like

θ · θ = 0 (1.70)

are not contained in the set of equations that were needed to derive something. In the above equation, θ
obviously appears twice in one term and is thus not gradi�able. This is also the reason why anticommuting
variables cannot be replaced completely by commuting ones. In particular the sum of two nilpotent objects
is not necessarily nilpotent any longer in the commuting case. A recent paper [20] studies the properties
of nilpotent commuting variables where some further di�erences (e.g. in the Leibniz rule) appear w.r.t.
the anticommuting case.

Counterexamples

In the rest of this part of the thesis we will give a lot of examples and applications of the theorem. There will,
however, also be some rather subtle examples which seem to be counterexamples at �rst sight. One of those
�counterexamples� is the graded inverse of a matrix with graded rumpf, treated in subsection 2.4 on page 22.
Another �counterexample� is the derivative with respect to Grassmann variables: the bosonic equation

∂

∂x
x = 1 (1.71)

suggests to de�ne
∂

∂θ
θ

?= 1 (1.72)

for fermionic variables. This de�nition makes perfect sense, but results using this derivative cannot be derived
via the theorem from the bosonic case, as the rumpf theta does not appear excatly once in every term. This
problem can be omitted, if one introduces a new index and puts the grading into the index. We discuss such
derivatives in subsection 3.1 on page 28.

Finally, a quite disturbing counterexample, which demonstrates that intermediate equations have to be taken
into account in the process of gradi�cation, is discussed on page 30.



Chapter 2

Graded matrices (supermatrices) and
graded matrix operations

Supermatrices are the perfect objects to study the e�ects of our considerations. We will drop the word 'super'
or 'graded' in every de�nition, since everything in this part has to be understood as graded. The equations of
this section will all be written in two ways: once in the left column with the help of the (small) graded equal
sign and the implicit graded summation conventions and once on the righthand side with ordinary equal sign,
and the sum written out explicitely (in NW conventions), in order to make the reader familiar with the new
conventions.

Within this chapter, we will always consider four di�erent kinds of matrices, which di�er in their index-
positions:

AMN , BMN , CM
N , DMN (2.1)

Remark: In case that we have several matrices of one type, e.g. type B, we will denote them by B1, B2,. . . .
It is important to have in mind that we consider B1 as a rumpf by itself and not as a rumpf B together with
an index '1'.

2.1 Transpose and hermitean conjugate

Let us start with the de�nition of a transposed matrix and a hermitean conjugate matrix in each of the four
cases. The simple rule is to take the bosonic de�nition and replace the equal sign by the big graded one (which
reduces to the small graded one in the below cases):

(AT )MN ≡g ANM

(BT )MN ≡g BNM

(CT )MN ≡g CN
M

(DT )MN ≡g DNM

(AT )MN ≡ (−)MNANM (2.2)

(BT )MN ≡ (−)MNBNM (2.3)

(CT )MN ≡ (−)MNCN
M (2.4)

(DT )MN ≡ (−)MNDNM (2.5)

(A†)MN ≡g (ANM )∗

(B†)MN ≡g (BNM )∗

(C†)MN ≡g (CNM )∗

(D†)MN ≡g (DNM )∗

(A†)MN ≡ (−)MN (ANM )∗ (2.6)

(B†)MN ≡ (−)MN (BNM )∗ (2.7)

(C†)MN ≡ (−)MN (CNM )∗ (2.8)

(D†)MN ≡ (−)MN (DNM )∗ (2.9)
Clearly we have

(MT )T = M (2.10)

(M†)† = M (2.11)

for all matrices M , which is a �rst simple con�rmation of the theorem.

2.2 Matrix multiplication

We meet a �rst deviation from usual de�nitions when we consider matrix multiplications.1 The de�nition of
the matrix multiplication will depend on the index structure of the matrix. Both, graded equal sign and the

1Although they seem to agree with the de�nitions in [19], when one moves there all indices which are to the left of a rumpf to
the right with the corresponding sign according to that reference. �
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graded summation convention have an in�uence now:

(AC)MN ≡g AMKCK
N

(AD)MN ≡g AMKDKN

(ABT )MN ≡g AMK(BT )KN

= AMKBNK

(BA)MN ≡g BMKA
KN

(B1B2)MN ≡g B M
1 KB

K
2 N

. . .

(AC)MN ≡ (−)MCAMKCK
N =

NW= (−)MC
∑
K

(−)KCAMKCK
N (2.12)

(AD)MN ≡ (−)MDAMKDKN =
NW= (−)MD

∑
K

(−)KDAMKDKN (2.13)

(ABT )MN ≡ (−)MBAMK(BT )KN =
= (−)MBAMKBNK =
NW= (−)MB

∑
K

(−)K(B+N)AMKBNK (2.14)

(BA)MN ≡ (−)MABMKA
KN =

NW= (−)MA
∑
K

(−)K+KABMKA
KN (2.15)

(B1B2)MN ≡ (−)MB2B M
1 KB

K
2 N =

= (−)MB2
∑
K

(−)K+KB2B M
1 KB

K
2 N (2.16)

. . .

Associativity

Up to now, we have used the graded equality and summation mainly for de�nitions (apart from (2.10) and
(2.11)). Now we can apply our theorem by stating that the (graded) matrix multiplication as de�ned above is
associative

((B1B2)B3)M N = B1(B2B3)MN (2.17)

((C1C2)C3)M
N = C1(C2C3)MN (2.18)

The graded equal sign has no e�ect in these equation. Associativity is guaranteed by theorem 1. The full
reasoning in the B-case would be the following:

In the bosonic case we have

(B1B2)MN ≡ B M
1 KB

K
2 N ⇒ ((B1B2)B3)P Q = B1(B2B3)PQ (2.19)

The dummy indices are by de�nition gradi�able. Each of the naked indices M and N appears in every term of
the �rst equation exactly once and not at all in the second and is therefore gradi�able. One could have written
the second equation also with the same indicesM and N and they still would be gradi�able. The same reasoning
holds for P and Q. Finally, B1 and B2 each appear in every term of the �rst as well as of the second equation
exactly once, while B3 does not appear in the �rst at all, but it appears in the second in every term exactly
once. All the rumpfs B1,B2 and B3 are thus gradi�able in this system of two equations. The gradi�cation of
the whole system then reads

(B1B2)MN ≡G B M
1 KB

K
2 N ⇒ ((B1B2)B3)P Q =G B1(B2B3)PQ (2.20)

where B1, B2 , B3,M , N , P and Q have been assigned an undetermined grading, the sum over dummy indicies
now has to be understood as the graded sum and the equal signs were replaced by the big graded equal sign
(which reduces to the small graded equal sign in the �rst equation and to the ordinary equal sign in the second).

For this example it is still quite simple to check the validity of the statement explicitly, e.g. in NW

(−)MB3
∑
L

(−)LB3+L

(
(−)MB2

∑
K

(−)KB2+KB1
M
KB2

K
L

)
B3

L
N =

= (−)M(B2+B3)
∑
K

(−)K(B2+B3)+KB1
M
K

(
(−)KB3

∑
L

(−)LB3+LB2
K
LB3

L
N

)
(2.21)
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Unit matrix

The de�nition of the unit matrix is

M11 = M ∀M (2.22)

which implies via associativity (for the matrices of type B and C) that M(11N) = (M11)N = MN ∀M,N and
thus

11N = N ∀N (2.23)

For the di�erent types of matricies A,B,C and D, we have in fact di�erent types of unit matrices:

(A11)MN ≡ AMKδK
N != AMN

(B11)MN ≡ BMKδ
K
N

!= BMN

(C11)MN ≡ CM
KδK

N != CM
N

(D11)MN ≡ DMKδ
K
N

!= DMN

(A11)MN NW≡
∑
K

AMKδK
N != AMN (2.24)

(B11)MN
NW≡

∑
K

(−)KBMKδ
K
N

!= BMN (2.25)

(C11)MN NW≡
∑
K

CM
KδK

N != CM
N (2.26)

(D11)MN
NW≡

∑
K

(−)KDMKδ
K
N

!= DMN (2.27)

From the righthand side we can see

δM
N =

{
δNM for NW

(−)MNδNM for NE
(2.28)

with δNM being the numerical Kronecker delta, and

δMN =g δN
M δMN = (−)MNδN

M (2.29)

This graded Kronecker (the lefthand side shows that both versions are graded equal anyway) of course also
full�ls its task for vectors and arbitrary rank tensors:2

aMδM
N = aN (2.30)

TM1...Mr−1Kδ
K
N = TM1...Mr−1N (2.31)

2.3 Conjugations of matrix products � hermitean scalar product

Other simple applications of theorem 1 are statements about the transpose and the hermitean conjugate of a
matrix product. Both, transposition and hermitean conjugation, were de�ned as gradi�cations of the bosonic
versions and thus the equations for their action on matrix products will simply be the gradi�cation of the
corresponding bosonic equation. We will start with the transposition. The hermitean conjugation will follow a
bit later after the discussion of complex conjugation and hermitean scalar product.

2.3.1 Transpose of matrix products

The transpose of a matrix product in terms of the big graded equal sign has the familiar bosonic behaviour.(
(AC)T

)MN
=G

(
CTAT

)MN(
(AD)T

)M
N =G (DTAT )MN(

(BA)T
)MN

=G (ATBT )MN

. . .

(
(AC)T

)MN
= (−)AC

(
CTAT

)MN
(2.32)(

(AD)T
)M

N = (−)AD(DTAT )MN (2.33)(
(BA)T

)MN
= (−)AB(ATBT )MN (2.34)

. . .
2If the capital index combines two subsets of (small) indices with di�erent position, we might insist on NW (or any other

convention) for the small indices which leads to di�erent de�nitions for the Kronecker delta:

aM = (am, aµ)

aM δM
N = amδm

N + aµδ
µN =

mixed conv.
≡

X
m

amδm
N +

X
µ

(−)µaµδ
µN !

= aN

δm
N = δNm

δµN = (−)µδ
N
µ �
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Let us again verify explicitly that this is indeed true for e.g. the �rst line (in NW conventions):(
(AC)T

)MN
= (−)MN (AC)NM =

= (−)MN (−)NC
∑
K

(−)CKANKCKM =

= (−)MN+NC
∑
K

(−)CK+(C+K+M)(A+N+K)CK
MANK =

=
∑
K

(−)CA+KA+KN+K+MA+MKCK
MANK =

= (−)AC(−)MA
∑
K

(−)KA+K(CT )MK(AT )KN =

= (−)AC(−)MA(CT )MK(AT )KN =

= (−)AC
(
CTAT

)MN
(2.35)

2.3.2 Complex conjugation of products of (graded) commuting variables

Before we come to the discussion of hermitean scalar products and hermitean conjugation of matrix products,
we will have a short look at complex conjugation of graded commuting variables (we will often call them graded
numbers, or just numbers) and products of them. The reason to do so, is that the complex conjugate of a
product of two Grassmann variables is often de�ned di�erently to our way, and we therefore want to motivate
it carefully.

Complex conjugation of usual complex numbers is just what it is. For a (graded commuting) algebra based
on a complex vector space one usually de�nes some basis to be real, so that the complex conjugation acts only
on the expansion coe�cients. Di�erent de�nitions of the action on the basis elements are possible and simply
a matter of convenience. However, the de�nition of the conjugation of the basis vectors should at least obey
the conjugation property ( )∗∗ = ( ). For an algebra whose vector-basis is generated by some generating set, the
reality properties of the composite objects are determined by the reality properties of the generating set and the
action of the complex conjugation on the product of elements. It is natural to de�ne (ab)∗ = a∗b∗, but using the
opposite sign (ab)∗ = −a∗b∗ for vectors a, b would also be consistent. Indeed, in the case of an anticommuting
algebra this de�nition is very common because it can then be written as (ab)∗ = b∗a∗ and resembles the bosonic
version of hermitean conjugation where the order of objects is interchanged. Although there is thus good reason
to make this choice, we want to convince the reader in the following that there is even better reason not to
make this choice. For a graded commuting algebra, where a and b are of arbitrary grading, the choice

(ab)∗ ≡ a∗b∗ (2.36)

is certainly the one which �ts into our philosophy, as it is the gradi�cation of the usual choice for (bosonic)
commuting algebras. This choice implies that the product of real objects is real again and the real elements
thus form a subalgebra. Indeed the above conjugation rule can be derived from this reality condition. We could
thus go the other way round and de�ne the complex conjugation simply by saying that the product of two
real products is always real. To derive the above conjugation rule from that condition, consider the (graded)
commuting variable a and decompose it into its real part <(a) and its imaginary part =(a), de�ned by (use of
a graded equal sign makes no di�erence here)

<(a) ≡ a+ a∗

2
(2.37)

=(a) ≡ a− a∗

2i
(2.38)

Both are real because a ∗ ∗ = a

<(a)∗ = <(a), =(a)∗ = =(a) (2.39)

and we have

a = <(a) + i=(a) (2.40)

a∗ = <(a)− i=(a) (2.41)

We thus can seperate any number into a real and imaginary part, and complex conjugation �ips (as usual) the
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sign of the imaginary part. Consider now the complex conjugation of the product of two graded numbers

(ab)∗ = [(<(a)<(b)−=(a)=(b)) + i(<(a)=(b) + =(a)<(b))]∗ =
= (<(a)<(b)−=(a)=(b))− i(<(a)=(b) + =(a)<(b)) (2.42)

a∗b∗ = (<(a)− i=(b)) (<(a)− i=(b)) =
= (<(a)<(b)−=(a)=(b))− i(<(a)=(b) + =(a)<(b)) (2.43)

⇒ (ab)∗ = a∗b∗ (2.44)

From the �rst to the second line we have used that the product of two real variables is real again. From our
de�nitions of real and imaginary part in (2.37) and (2.38), which are just graded versions of the bosonic case,
we could have deduced (2.44) as well via our theorem. We just want to stress that in our context this is the
only natural complex conjugation. In order to allow a comparison with the 'usual' de�nition3, let us for the
moment denote the alternative version of complex conjugation by (. . .)∗̃.

(ab)∗̃ = b∗̃a∗̃ = (−)aba∗̃b∗̃ (2.45)

As mentioned, this behaviour would not at all �t into our philosophy. The same is true for the hermitean
conjugation of the product of graded matrices in the next but one subsection (as well as of graded operators
in the in�nite dimensional case). How can we easily switch in applications from one de�nition to the other?
Instead of rede�ning the complex conjugation itself, the switch of the behaviour from (2.44) to (2.45) can also
be achieved by rede�ning the algebra product appropriately:

a ◦ b ≡ iεaεba · b (2.46)

⇒ (a ◦ b)∗ = (−i)εaεba∗b∗ = (−)aba∗ ◦ b∗ (2.47)

We used here the symbol εa to denote the parity, in order to emphasize that the exponent of ′i′ really should
take only values 0 and 1, while for our usual prefactors (−)ab ≡ (−)|a||b|, the grading | a | does not need to be
a Z2 grading. The parity is given by εa ≡| a | mod 2.

2.3.3 Hermitean scalar product

Using our above de�nition of complex conjugation also �xes the behaviour of the graded version of a Hermitean
scalar product. We use the index notation (v∗)M̄ ≡ (vM )∗. The scalar product (in a �nite dimensional vector
space for the beginning) then will be de�ned as

〈v | w〉 ≡G (v∗)M̄︸ ︷︷ ︸
(vM )∗

HM̄Nw
N

with (HM̄N )∗ =G HN̄M

〈v | w〉 NW≡
∑
M̄,N

(−)N+wN (v∗)M̄︸ ︷︷ ︸
(vM )∗

HM̄Nw
N

with (HM̄N )∗ = (−)MNHN̄M (2.48)

where H is a matrix of type 'D' which is (graded) hermitean. Strictly speaking, the rumpf H appears only on
the righthand side and is therefore not gradi�able. However, if we identi�ed on the lefthand side the vertical
line '|' as a placeholder for the H-rumpf and also identify their grading, then it would be �ne to even grad-
ify the rumpf H. For the following considerations we will nevertheless stick to a bosonic rumpf H, i.e. HM̄N

should be considered as a bosonic supermatrix. The resulting scalar product is (graded) sesquilinear in the sense

〈λv1 + v2 | µw1 + w2〉 =G

=G λ∗µ〈v1 | w1〉+ λ∗〈v1 | w2〉+
+µ〈v2 | w1〉+ 〈v2 | w2〉

〈λv1 + v2 | µw1 + w2〉 =
= (−)µv1λ∗µ〈v1 | w1〉+ λ∗〈v1 | w2〉+

+(−)µv2µ〈v2 | w1〉+ 〈v2 | w2〉 (2.49)

for λ and µ being complex supernumbers. It is furthermore (graded) hermitean, i.e.

〈v | w〉 =G 〈w | v〉∗ 〈v | w〉 = (−)vw〈w | v〉∗ (2.50)

The last equation implies that a scalar product of a vector with itself obeys

〈v | v〉 = (−)v〈v | v〉∗ (2.51)

and is therefore real only for even vectors and purely imaginary for odd vectors. Note that a scalar product
〈 | 〉0 which obeys 〈v | w〉0 = 〈w | v〉∗ is obtained by either replacing ∗ by ∗̃ of the previous subsection or by
de�ning 〈v | w〉0 ≡ (−i)εvεw〈v | w〉.

The adjoint B† of a matrix B with respect to our scalar product is de�ned as

3It seems that in the last decade, the de�nition (ab)∗ = a∗b∗ has already become more popular (see for example [21]), while in
[19] it was still de�ned with the opposite order. Another discussion of complex conjugation can be found in [22]. �
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〈v | Bw〉 =G 〈B†v | w〉 〈v | Bw〉 = (−)Bv〈B†v | w〉 (2.52)

Assume that the hermitean matrix is non-degenerate in the sense that it has an inverse

HM̄KH
KN̄ = δM̄

N̄ , HMK̄HK̄N = δMN (2.53)

Although it is more common to use only the symmetric part of a scalar product to pull indices up and down, we
will in this section use HM̄N and HMN̄ to pull indices. For a vector vM we thus have the following additional
possibilities of index-position and form:

vM̄ ≡ HM̄Nv
N (2.54)

(v∗)M ≡ (vM̄ )∗ (2.55)

(v∗)M̄ ≡ (vM )∗ = (v∗)NHNM̄
(
= (HN̄Kv

K)∗HNM̄ =g HK̄NH
NM̄︸ ︷︷ ︸

δK̄
M̄

(vK)∗
)

(2.56)

Using the inverse matrix HMN̄ , we can now give an explicit expression for the adjoint matrix of B:

〈v | Bw〉 = (v∗)M̄HM̄N (BNKwK) = (v∗)M̄ (HM̄NB
N
LH

LP̄ )︸ ︷︷ ︸
≡BM̄ P̄

HP̄Kw
K =G

(
(B∗)MP︸ ︷︷ ︸
≡(BM̄

P̄ )∗

vM
)∗
HP̄Kw

K != 〈B†v | w〉.

From this calculation we can read o�

(B†)PM =g (BM̄
P̄ )∗ =

(
HM̄NB

N
LH

LP̄
)∗

=g H
PL̄ (BNL)∗︸ ︷︷ ︸

(B†)L̄
N̄

HN̄M (2.57)

Up to pulling indices with H this agrees with our earlier de�nition of the hermitean conjugate of a matrix
(B†)L̄N̄ =g (BNL)∗.

Having used indices all the time, we have implicitely chosen some basis

|eM > ≡ |M > (2.58)

Every vector |v > of de�nite grading can be written as a linear combination

|v >= vM |M > (2.59)

The complex conjugate basis is |M̄ >≡ |M >∗, so that |v∗ >≡ |v >∗= (v∗)M̄ |M̄ >. Bra-vectors involve a
complex conjugation. Because of < vMeM | = (v∗)M̄ < eM | it is convenient to denote

< eM | ≡ < M̄ | (2.60)

such that

< v| = (v∗)M̄ < M̄ | and 〈M̄,N 〉 = HM̄N (2.61)

The dual basis will be denoted by < M | and it is de�ned via

〈M | N 〉 = δMN (2.62)

After pulling down one index with H one arrives at the equation 〈M̄ | N 〉 = HM̄N which we just had before and
which is in turn consistent with 〈v | w〉 = (v∗)M̄HM̄Nw

N . The dual basis < M | thus agrees with the �hermitean
conjugate� < M̄ | of |M > up to raising the index with HMN̄ .

Cli�ord vacuum The above recall of some basic linear algebra will help us to understand the graded version
of creation and annihilation operators acting on some Cli�ord vacuum. Let us denote just for this paragraph the
index of the creation operators by k, l,m, . . ., although we used those indices before for bosonic indices, while
now we still assume them to be graded and not purely bosonic. The creation operators generate a complete
basis from the Cli�ord vacuum, s.th. the indices k, l,m, ... are just a subset of the basis-indeces M,N, . . .. Let
us denote the annihilation and creation operators by ak and (a†)k respectively and the corresponding vectors
or states by

|k > ≡ (a†)k |0 >, |k1k2 >≡ (a†)k1(a†)k2 |0 >, |k1k2k3 >≡ (a†)k1(a†)k2(a†)k3 |0 >, . . . (2.63)

The basis is then given by
|K >∈ {|0 >, |k >, |k1k2 >, |k1k2k3 >, . . .} (2.64)
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Finally we need the annihilation property of ak and their commutator with the creation operators:

ak|0 >= 0,
[
ak, (a†)l

]
=g δkl (2.65)

Assume that the Cli�ord vacuum is bosonic, so that we can normalize it to one

〈0 | 0〉 = 1 (2.66)

This equation is not gradi�able, which is the reason why a bosonic vacuum is preferrable. The dual basis is
then given by the dual vacuum < 0| and its descendents

< k| ≡ < 0|ak, 1
2 <

k1k2 | ≡ 1
2 < 0|ak1ak2 , 1

3! <
k1k2k3 | ≡ 1

3! < 0|ak1ak2ak3 , . . . (2.67)

〈k | l〉 = < 0|ak(a†)l|0 >= δkl (2.68)
1
2 〈
k1k2 | l2l1〉 = 1

2 <
k1 |ak2(a†)l2 |l1 >=g

1
2 <

k1 |(a†)l2ak2 |l1 > + 1
2 <

k1 |δk2
l2 |l1 >=g δ

k1
(l2δ

k2
l1) (2.69)

1
3! 〈

k1k2k3 | l3l2l1〉 =g δk1
(l1δ

k2
l2δ

k3
l3) (2.70)

. . .

< K | ∈
{
< 0|, < k|, 1

2 <
k1k2 |, 1

3! <
k1k2k3 |, . . .

}
(2.71)

In the literature the indices of creation and annihilation operators are usually put at the same vertical position,
and the corresponding states are normalized to be 〈k | l〉 = δkl. The Kronecker delta on the righthand side
corresponds to a special choice of the scalar product and should in our context be replaced by

〈k̄ | l〉 = Hk̄l (2.72)

which agrees with (2.68) after pulling one index with H.
Note that the de�nition of a norm induced by the scalar product will not be possible under the conditions

of theorem 1. The bosonic de�nition ‖ v ‖ ≡ 〈v, v〉 has the rumpf v appearing twice on the righthand side which
is therefore not gradi�able. Still it makes sense to de�ne a norm, but it will not simply have gradi�ed properties
of the bosonic one. In order to get a real norm, (while 〈v | v〉 is imaginary for odd v), we have to include an
imaginary factor in the fermionic case and �x the arbitrary overall sign: E.g.

‖ v ‖ ≡ 1
iεv 〈v, v〉 (2.73)

Only at this point (choosing an appropriate HM̄N ) we make contact to the usual de�nitions in the literature.
Physical observables and probabilities should of course not depend on the conventions in the end. In the same
way as above, the de�nition of the probability of some transition (which contains an absolute value square and
is therefore also not gradi�able) has to include an appropriate complex factor. We are not going to work with
Hilbert spaces in the second part of this thesis anyway and therefore leave the details for further studies. The
leading thought was just to keep the idea of gradi�cation as long as possible and break it only in the last step,
in the de�nition of the norm and of probabilities.

2.3.4 Hermitean conjugate of matrix products

From our de�nition of a hermitean conjugate and of complex conjugation of products of numbers, we get via
the theorem the natural rules for complex conjugation of (graded) matrix products:(

(AC)†
)MN

=G

(
C†A†

)MN(
(AD)†

)M
N =G (D†A†)MN(

(BA)†
)MN

=G (A†B†)MN

. . .

(
(AC)†

)MN
= (−)AC

(
C†A†

)MN
(2.74)(

(AD)†
)M

N = (−)AD(D†A†)MN (2.75)(
(BA)†

)MN
= (−)AB(A†B†)MN (2.76)

. . .
Similarly we expect for operators in the in�nite dimensional case

(ÂB̂)† =G B̂†Â† (ÂB̂)† = (−)ABB̂†Â† (2.77)
As mentioned in the context of complex conjugation, it is simply a matter of rede�ning the operator product
with a factor (−i)εAεB if one wants to make contact to the usual de�nition without sign.

2.4 Graded inverse - a nice �counterexample� to the theorem

Consider for the beginning matrices with even rumpf only

| A |=| B |=| C |=| D |= 0 (2.78)
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We say A is the (graded) inverse of D, B2 the inverse of B1 and C2 the inverse of C1 i�

DMKA
KN = δM

N (2.79)

AMKDKN = δMN (2.80)

BM1 KB
K
2 N = δMN (2.81)

C1
M
KC2

K
N = δM

N (2.82)

with

δM
N = (−)MNδNM (2.83)

The so de�ned inverses in general do not coincide with the naive inverses.4

From our theorem we can e.g. deduce that for matrices M N of any type (with even rumpf) we have

(MN)−1 =G (N−1M−1) (2.84)
|M |=|N |=0⇒ (MN)−1 = (N−1M−1) (2.85)

This is easily directly veri�ed using associativity of our graded matrix multiplication.

Counterexample

If we take the rumpfs arbitrarily graded and still de�ne an inverse via M−1M = 11, then we still have5

(MN)(N−1M−1) assoz= M(NN−1)M−1 = 11 (2.86)

⇒ (MN)−1 = (N−1M−1), for any |M |and | N | (2.87)

There is no expected prefactor (−)MN in the lower line! This looks strange in terms of the big graded equal
sign, which should swallow the rumpf-dependend signs, but produces one here:

(MN)−1 =G (−)MN (N−1M−1) (2.88)

The theorem thus is not applicable here! What went wrong? Our de�nition of the inverse

(MM−1) = 11 (2.89)

is a non-valid gradi�cation of the bosonic one: The theorem allows us to assign a grading only to rumpfs which
appear exactly once in each term. The rumpf M appears twice on the lefthand side and not at all on the
righthand side. Thus, the theorem does not allow to give M a grading. If we do so nevertheless, we can't
derive known rules from the bosonic case. The de�nition itself is of course ok, but in order to stress that it is
not simply a gradi�cation of a bosonic de�nition, we should better give it a new name, like special graded
inverse.

The naked indices in (2.79) to (2.82) appear excactly once in each term and can therefore be generalized to
graded indices.

4To verify this statement, write out the equations (2.79)-(2.82) in NW-conventions, using δM
N = δNM :X

DMK(−)KAKN = δNMX
AMKDKN (−)N = δMNX

BM1 K(−)K+NBK2 N = δMNX
C1
M
KC2

K
N = δNM

Only in the last case C2 is the naive inverse of C1. �
5Note that although a Grassmann-variable has no inverse, a matrix with fermionic rumpf can have an inverse. Take e.g. x, y 6= 0

bosonic and c fermionic, then we have „
c x
y 0

« 
0 1

y
1
x
− c
xy

!
=

„
1 0
0 1

«
(#)

The matrix multiplication above, however, is not according to our graded matrix multiplication rules, which are`
CC−1

´
M
N ≡g CM

K(C−1)K
N =g δM

N

⇒
`
CC−1

´
M
N NW

=
X
K

(−)KA+MACM
K(C−1)K

N = δM
N

The following choice of matrices therefore correspond to the equation (#):

C =

„
c −x
−y 0

«
C−1 =

 
0 1

y
1
x
− c
xy

!
�
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2.5 (Super) trace

We now come to another important deviation from usual supermatrix-de�nitions which will enter an interesting
result for superdeterminants. The trace is the sum of the diagonal entries and makes sense for matrices of type
C and B only (matrices with one upper and one lower index, i.e. endomorphisms)

trB ≡ BMM =
{ ∑

M BMM NW∑
M (−)MBMM NE

(2.90)

trC ≡ CM
M =

{ ∑
M (−)MCMM NW∑

M CM
M NE

(2.91)

The (−)M is familiar from usual de�nitions. We have it here, however, either only for NW for matrices of type
C or for NE for matrices of type B while the other cases do not have the familiar (−)M in the trace-de�nition.
The reason is that e.g. for B-type matrices in NW (where the trace has no sign factor) the (−)M instead is
hidden in the matrix multiplication of two matrices. Thus, either the matrix multpilication contains an extra
(−)M and the trace doesn't, or the other way round. In any case, the graded cyclicity property of the trace
holds:

trB1B2 = BM1 KB2
K
M = (−)B2B1trB2B1 (2.92)

⇐⇒ tr [B1, B2] = 0 (2.93)

For matrices of type A and D, we need a metric, in order to de�ne a meaningful trace:

trA ≡ AMNGMN (2.94)

trD ≡ DMNG
MN (2.95)

2.6 (Super) determinant

We �nally come to the so far most interesting demonstration of the use of our conventions. Namely the de�nition
of the superdeterminant. As usual, we start from the de�nition via the exponential:

detC ≡ etr lnC , detB ≡ etr lnB , (2.96)

Remember that in NW-conventions for a matrix of type B, the de�nition of the trace matches the bosonic
de�nition, while the de�nition of the matrix product di�ers. For NE or for matrices of type C the situation
is just the other way round. In both cases the above de�nition thus di�ers from the bosonic one, even if the
matrix is purely bosonic (but having two fermionic indices). Let us derive this in detail.

Consider the decomposition of B in bosonic and fermionic blocks:(
BMN

)
≡

(
Bmn Bmν
Bµn Bµν

)
≡
(
amn bmν
cµn dµν

)
, | m |= 0, | µ |= 1 (2.97)

Assuming that the matrix (a) is invertible (which implies that a (and thus the rumpf of B) is bosonic, because a
matrix with purely fermionic entries cannot be inverted), one can seperate C in a product of two block-triangular
matrices

B = B1B2 (2.98)

B1 =
(
a 0
c 11

)(
11 (a−1b)
0 d− ca−1b

)
(2.99)

Now we will use two facts. One is that the trace of the logarithm factorizes:

eF eG
BCH= eF+G+ 1

2 [F,G]+... (2.100)

B1B2 = elnB1+lnB2+ 1
2 [lnB1,lnB2]+... (2.101)

⇒ tr ln(B1B2)
(2.93)

= tr lnB1 + tr lnB2 (2.102)

And the other fact is that an arbitrary power of a block-triangular matrix stays a blocktriangular matrix with
the powers of the diagonal blocks in the block diagonal:(

a 0
b c

)n
=

(
an 0
∗ cn

)
(2.103)(

a b
0 d

)n
=

(
an ∗
0 dn

)
∀a, b, c, d (2.104)
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In particular

(B1 − 11)n =
(

(a− 11)n 0
∗ 0

)
(2.105)

(B2 − 11)n =
(

0 0
∗ (d− ca−1b− 11)n

)
(2.106)

Now we use the power series for the logarithm

ln(1 + x) =
∞∑
n=1

1
n!

ln(n)(1)xn =
∞∑
n=1

(−)n−1x
n

n
(2.107)

tr ln(B1) =
∞∑
n=1

(−)n−1 tr (B1 − 11)n

n
= (2.108)

=
∞∑
n=1

(−)n−1

n
tr

(
(a− 11)n 0
∗ 0

)
= (2.109)

=
∞∑
n=1

(−)n−1

n
tr (a− 11)n = (2.110)

= tr ln a (2.111)

tr ln(B1) = tr ln(d− ca−1b) (2.112)

We thus get

detB = detB1 · detB2 = (2.113)

= det a · det(d− ca−1b) (2.114)

This result is true for every block-decomposition. a, d do not necessarily have to be bosonic as well as b and c
do not have to be fermionic. At �rst sight this seems to contradict the expression that one usually �nds in the
literature, namely sdetB = det a/det(d− ca−1b).

The reason for this mismatch lies simply in the graded de�nition of the matrix multiplication (or the trace)
and thus of the determinant of a bosonic matrix with two fermionic indices. For NE-conventions, the trace of
the type-B submatrix (dµν) gives an extra minus w.r.t. its naive bosonic trace. Its determinant de�ned via the
exponential and the graded trace is thus equal to ”1/det(d)”, where now the determinant is the naive bosonic
one, built with the naive trace. The same is true, if we consider the corresponding submatrices of a matrix
of type C in NW-conventions. For the determinant of a matrix of type B in NW (or likewise type C in NE),
however, the comparison between our and the usual convention is a bit more subtle. In the following we write
terms in the usual convention in quotation marks. At �rst, let us de�ne the dimension of a square matrix (or
of the vector space it is acting on) as the trace of the corresponding unit-matrix:

dim(B) ≡ δMM = ” dim(a)− dim(d)” (2.115)

dim(d) = ”− dim(d)” (2.116)

I.e., fermionic dimensions are negative dimensions!6 The logarithm in the de�nition of the determinant has to
be understood as a power series, so that we �rst should look at simple powers of the block d:

d2µ
ν = dµλd

λ
ν = (2.117)

NW=
∑
λ

dµλd
λ
ν(−)λ (2.118)

⇒ dn = ”(−1)n−1dn = −(−d)n” naive matrix mult in quot (2.119)

Logarithm and determinant of dµν can thus be written as

ln(d) =
∞∑
n=1

(−)n−1

n
(d− 11)n 11=”−11”=

and (2.119)
(2.120)

11=”−11”=
and (2.119)

”−
∞∑
n=1

(−)n−1

n
(−d− 11)n” (2.121)

= ”− ln(−d)” naive matrix mult in quot (2.122)

det(d) = exp tr ln d = ”1/det(−d) = (−1)dim(d)1/det d ” (2.123)

6 The observation that fermionic dimensions can be considered to be negative dimensions has been made in literature at several
places and with several arguments. From the group theoretic point of view, this has been studied in [23, 24]. �
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The sub-matrix (d− ca−1b) is of the same type as d, so that we �nally get

det(d− ca−1b) a−1=”a−1”=
ca−1b=”ca−1b”

”(−1)dim(d)1/ det(d− ca−1b)” (2.124)

detB = ”(−1)dim(d) det a/det(d− ca−1b)” naive matrix mult in quot (2.125)

For matrices of type C in NW-convention, the situation is the same as for matrices of typeB in NE-convention:dn =
”dn”, 11d = ”11d”, ln d = ” ln d”, tr ln d = ”− tr ln d”. We thus get

detB = det a · det(d− ca−1b) =
{

”(−1)dim(d) det a/det(d− ca−1b)” NW
” det a/det(d− ca−1b)” NE

(2.126)

for BMN =
(
a b
c d

)M
N

(2.127)

and

detC = det a · det(d− ca−1b) =
{

” det a/det(d− ca−1b)” NW
”(−1)dim(d) det a/det(d− ca−1b)” NE

(2.128)

for CMN =
(
a b
c d

)
M

N

(2.129)

As a check, let us take C = BT =
(
aT cT

bT dT

)
= ”

(
aT cT

bT −dT
)

”. Then we expect, following our theorem:

detB = detBT (2.130)

Indeed, in NW-conventions this becomes in naive matrix-notations:

”(−1)dim(d) det(d− ca−1b)” != ” det(−dT − bT (a−1)T cT )” = (2.131)

= ” det
(
−dT − (−)cbca−1b

)T
” = (2.132)

= ” det
(
−d+ ca−1b

)
” = (2.133)

= ”(−1)dim(d) det(d− ca−1b)”
√

(2.134)

2.7 Graded gamma-matrices

Gamma matrices and some of their properties are discussed in appendix D on page 167. Usually, they are
considered to be ordinary bosonic matrices with the anticommutator relation{

Γa,Γb
}

= 2ηab11 (2.135)

There are two ways how a grading can be introduced into the gamma-matrix algebra. Either via the rumpf or
via the indices. Let us start with the rumpf.

The anticommutator is for general matrices not a very natural object. It does not automatically have
derivative properties or a Jacobi identity like the commutator. However, the gamma matrices can (in even
dimensions) be represented by o�-diagonal matrices. This o�ers the possibility to regard them as fermionic
supermatrices Γa whose fermionic diagonal blocks simply vanish. The anticommutator above then simply
becomes the graded commutator [

Γa,Γb
]

= 2ηab11 (2.136)

Terms like ψ̄Γa∂aψ in a Lagrangian still stay bosonic, because ψ̄ = ψ†Γ0 contains another odd gamma-matrix.
This interpretation of a graded algebra appears naturally in the RNS-string, where the spacetime spinors are
generated by acting with fermionic creation operators on a Cli�ord vacuum. Linear combinations of these odd
creation operators then correspond to the (odd) gamma matrices.

It is interesting that in the graded picture the chirality matrix plays a di�erent role than the other gamma-
matrices, because (as a product of all gamma-matrices in even dimensions) it is an even object Γ# ∝ Γ0 · · ·Γd−1.
The anticommutation of it with the other matrices stays an anticommutation even in the graded picture

{Γ#,Γa} = 0, {Γ#,Γ#} = 211 (2.137)

This is actually also a hint that s.th. like the RNS string could not work in the same way in odd (e.g. 11)
dimensions, where one of the gamma-matrices (and thus one of the generators acting on the cli�ord vacuum)
needs to be even.
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The second possibility to re-distribute the grading, is to consider the fermionic (Dirac) indices of Γaαβ to
carry an odd grading. (The underline simply shall distinguish the Dirac-indices from Weyl indices, which are
mainly used later on.) As the fermionic indices come in pairs it does not change the overall grading. We still
assume the rumpf to be odd, too. The graded commutator then becomes (in NW-conventions)[

Γa,Γb
]α

β ≡ ΓaαγΓbγβ + ΓbαγΓaγβ = (2.138)

=
∑
γ

(−)γ+γΓ︸ ︷︷ ︸
1

(
ΓaαγΓbγβ + ΓbαγΓaγβ

)
= (2.139)

= 2ηab
(
−δαβ

)
︸ ︷︷ ︸

δαβ

(2.140)

The algebra thus changes the sign. It would not do so, however, if we would grade only the indices and not the
rumpfs. In any case, in appendix D on page 167 we took the conventional point of view of ordinary gamma-
matrices with ungraded indices, because people are more familiar with the equations in the conventional picture.
For our application to the Berkovits string in the second part of this thesis, it is then necessary to make a grading-
shift in the indices to get the correct equations. However, for future applications in superspace it might be more
favourable to have all the equations in the graded picture with graded rumpfs and indices. In this picture it
would also be more natural (though it was not done in this thesis) to adjust the de�nition of the antisymmetrized
products of gamma matrices according to the graded summation. E.g. Γa1a2 α

β ≡g Γ[a1|α
γΓ|a2]γ

β with the
graded summation convention and the graded equal sign instead of the ordinary ones.



Chapter 3

Other Applications and Some Subtleties

3.1 Left and right derivative

Bosonic rumpfs

In the bosonic case we have for a variation of some function

δf(x) = δxm
∂

∂xm
f = f

←−
∂

∂xm︸ ︷︷ ︸
∂f/∂xm

δxm (3.1)

There is no di�erence between left and right derivative here, except that we write it either on the left or on the
right of the function.

∂

∂xm
f = ∂f/∂xm (3.2)

For the graded case with bosonic rumpfs, the situation is very similar. We de�ne (using graded summation; no
need for graded equal in the beginning, as there are no naked indices, but in the third equation it is essential)

δf(x) ≡g δxM
∂

∂xM
f ≡g ∂f/∂xMδxM (3.3)

⇒ 0 =g δxM
(

∂

∂xM
f − ∂f/∂xM

)
(3.4)

⇒ ∂

∂xM
f =g ∂f/∂xM ⇐⇒ ∂

∂xM
f = (−)fM∂f/∂xM (3.5)

For f = xM we have

δxM = δxK
∂

∂xK
xM = ∂xM/∂xKδxK (3.6)

⇒ ∂

∂xK
xM = δK

M (3.7)

∂xM/∂xK = δMK (3.8)

In the case of coordinates with bosonic rumpf, we will also use the following symbols for derivatives

∂Mf ≡ ∂f

∂xM
≡ ∂

∂xM
f (3.9)

TMN,K ≡ TMN

←−
∂

∂xK
≡ ∂TMN/∂x

K = (−)K(T+M+N)∂KTMN (3.10)

We will not use the notation ∂M for derivatives with respect to ghosts or other objects with rumpf of odd or
undetermined grading, as the rumpf becomes invisible.

Graded rumpfs

For fermionic indices α the above equations imply

∂

∂xα
f = (−)f∂f/∂xα (3.11)

∂

∂xα
xβ = −∂xβ/∂xα = δα

β (3.12)

28



CHAPTER 3. OTHER APPLICATIONS AND SOME SUBTLETIES 29

This would for fermionic objects c without indices also suggest to de�ne left and right derivative such that

∂

∂c
c

?≡ −∂c/∂c (3.13)

However, written without indices it is less intuitive and also not common. We thus follow the literature and
use the following de�nition of left derivative and right derivative (now for c being of undetermined grading
| c |)

δF (c) ≡ δc
∂

∂c
F (c) ≡ ∂F (c)/∂c δc (3.14)

∂

∂c
F (c) = (−)c(−)Fc∂F (c)/∂c (3.15)

∂

∂c
c = ∂c/∂c = 1 (3.16)

Although (3.14) and (3.16) seem to be quite intuitive, (3.15) unfortunately is less intuitive. The factor (−)Fc

is expected, because we interchange the order of F and the derivative with respect to c. This factor could be
absorbed by using the big graded equal sign. The extra factor (−)c, however, stems from the fact that in (3.14)
the order of ∂/∂c and δc is exchanged, and the big graded equal sign cannot �gure that out, so that (3.15)
becomes ∂

∂cF (c) =?
G (−)c∂F (c)/∂c. Thus for graded rumpfs, left and right derivative are simply not the same

operation (just written in a di�erent order), but they di�er by a sign depending on the grading of the rumpf.
The above de�nition is thus not simply a gradifcation of a bosonic one. Indeed the rumpf 'c' was not gradi�able
from the beginning. If one wants to use statements derived via the theorem, one has to introduce an extra index
which carries the grading, like in (3.11).

The generalization to the case with graded indices, however, is straight-forward again:

∂

∂cK
F (c) =g (−)c(−)Fc∂F (c)/∂cK

∂

∂cM
cN =g δM

N

∂cM/∂cN =g δMN =g δM
N

∂cM/∂cN =g
∂

∂cN
cM

∂

∂cK
F (c) = (−)FK(−)c+cF∂F (c)/∂cK (3.17)

(−)cM
∂

∂cM
cN = δM

N
(
NW= δNM

)
(3.18)

(−)cM∂cM/∂cN = δMN (3.19)

(−)cM∂cM/∂cN = (−)cN+NM ∂

∂cN
cM (3.20)

This implies (using as always the graded summation convention)

δF (c) = δcK
∂

∂cK
F (c) = ∂F (c)/∂cK δcK (3.21)

3.2 Tensor and wedge product

Let us consider the wedge product

dxmdxn ≡ dxm ∧ dxn ≡ 1
2

(dxm ⊗ dxn − dxn ⊗ dxm) (3.22)

(The normalization 1
2 implies that p-forms are written as ω(p) = ωm1...mpdx

m1 · · ·dxmp without the usual
prefactor 1

p! .) The wedge product is antisymmetric if xm are the coordinates of a bosonic manifold. If one
considers dxm to be an odd object (w.r.t. the form grading), the wedge product is a graded commuting
product. As xm itself is even, the grading has to sit in 'd', and it is therefore printed boldface. The form
grading is a priori independent from the Fermion grading but one can consistently combine them to have only
a single Z2 grading, where e.g. an odd di�erential form which is at the same time Fermionic is considered to be
even. We will take exactly this point of view throughout the thesis, although one should keep in mind that it
is especially �tted to the exterior algebra of forms. One can certainly de�ne a symmetrized tensor product as
well, for which it would be more natural to consider dxm as an even object. However, it plays a less important
role than the wedge product. As argued already in the very beginning, it does not really matter which point
of view one takes, as the use of graded equal sign and graded summation convention swallows all of the signs
anyway. One can therefore do all of the calculations without �xing this issue and only in the end choose one or
another version of graded summation or graded equal sign.

Let us now consider some tensor of rank (2, 1):

T (2,1) = Tmn
kdxm ⊗ dxn ⊗ ∂k (3.23)

Already before bringing any Fermion-grading into the game, we have a graded equation which should match
our philosophy of notations. The grading on both sides is | T (2,1) |=| T | +2 | d | + | ∂ |. It is therefore essential
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that we do not denote the tensor simply by T , because then the tensor T is odd while the rumpf T is even
which would lead to confusions. The superscript '(2,1)' therefore should carry the grading 2 | d | + | ∂ | of the
basis elements. Although we might not always write this superscript, it is always understood that | T | is the
grading of the rumpf and not of the tensor.

All the indices in the above equation are dummy indices and are thus gradi�able. The rumpf T appears in
every term exactly once (with the above explanation) and is thus gradi�able as well. The rumpf x, instead, is
not gradi�able. The gradi�cation of the tensor de�nition reads

T (2,1) =G TMN
KdxM ⊗ dxN ⊗ ∂K

T (2,1) NW=
∑

M,N,K

(−)M+N (−)M(N+K)+NK(−)Md+K∂ ×

×TMN
KdxM ⊗ dxN ⊗ ∂K (3.24)

A two form e.g. takes the following form:

ω(2) ≡ ωMNdxM ∧ dxN NW=
∑
M,N

(−)MN+NωMNdxM ∧ dxN (3.25)

The grading of a p-form ω(p) is | ω(p) |=| ω | +p and the graded Leibniz rule for the exterior derivative acting
on the wedge product ω(p)η(q) ≡ ω(p) ∧ η(q) thus reads

d(ω(p)η(q)) =G dω(p)η(q) + ω(p)dη(q) d(ω(p)η(q)) = dω(p)η(q) + (−)|ω|+pω(p)dη(q) (3.26)

A subtle counterexample to the theorem Gradi�cation of the exterior algebra is subtle, because we
start with something anticommuting and turn it in something commuting, which is less restrictive. One of the
problems one meets is the observation that there is no gradi�cation of the de�nition of the epsilon tensor, which
provides the volume form in the bosonic case. The more severe problem is the related to the nilpotency of
1-forms:

We start from the gradi�able anticommutativity equation dxm1dxm2 = −dxm1dxm2 (the indices are gradi�-
able) and the gradi�able de�nition of the dimension d ≡ δmm. In the bosonic case it follows that dxm1 · · ·dxmd+1 =
0. Also this last equation is gradi�able in the indices but is wrong in the general graded case and thus seems
to contradict our theorem. But the theorem includes also intermediate equations into the gradi�cation. In
the above case, the reasoning goes from dxm1dxm2 = −dxm1dxm2 via dxmdxm = 0 (no sum) to the conclusion
dxm1 · · ·dxmd+1 = 0. In the intermediate equation dxmdxm = 0, the index m is not gradi�able.

Originally there was the hope that intermediate equations are irrelevant. In particular, if all indices are
fermionic, the dimension is negative. The condition dxµ1 · · ·dxµd+1 = 0 then simply would not be a restriction
and everything is �ne. For mixed fermionic and bosonic variables, however, this mechanism breaks down.

It might be that including intermediate equations in the gradi�cation can be omitted by saying that an
index is only gradi�able if the number of copies in which it appears does not exceed the dimension. We leave
this for future studies.

3.3 Graded Poisson bracket

For bosonic rumpfs 'q' and 'p' of the phase space variables qM and pM , the bosonic Poisson bracket is easily
generalized to the graded case. The overall sign, i.e. whether one �rst takes the derivative with respect to the
momenta pM and then with respect to the con�guration space variables qM or the other way round is already
an ambiguity at the bosonic level and is only a matter of taste. As it is just an overall sign, it is easily changed
if preferred di�erently. Our choice (pM �rst) was made in order to have the Hamiltonian as the generator of
time translations on the left of the bracket. We always try to let generators or operators act from the left. In
any case the graded Poisson bracket is a simple gradi�cation of the bosonic one:

{F,G} ≡ ∂F/∂pM
∂

∂qM
G− ∂F/∂qM ∂

∂pM
G = (3.27)

= ∂F/∂pM
∂

∂qM
G− (−)FG∂G/∂pM

∂

∂qM
F = (3.28)

=
∂

∂pM
F

∂

∂qM
G− ∂

∂qM
F

∂

∂pM
G (3.29)

{F,G} = −(−)FG {G,F} (3.30){
pM , q

N
}

= δM
N NW= δNM (3.31){

qM , pN
}

= −δMN
NW= −(−)MδNM (3.32)

Like always, the sum over the index 'M ' has to be understood as graded sum. The left and right-derivative
with respect to variables with bosonic rumpfs coincide (w.r.t. the graded equal sign) and the generalization is
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therefore unique, as soon as the underlying summation convention (NW or NE) is chosen. The sign (−)FG in
the second and fourth line of the above equation array would disappear upon the use of the big graded equal
sign. The rumpfs 'q' and 'p' are a priori not gradi�able in these equations.

Nevertheless the case of graded rumpfs 'q' and 'p' can be covered by just gradifying the indices. Assume for
example that we have in addition to qM and pM (with bosonic rumpfs) also some ghost variables cM and bM
with the same indices. In general, the indices of ghost variables would just cover a subset of the index range of
the original phase space, but this subtlety does not matter for the present discussion. The rumpfs of the ghost
variables carry a grading and it is thus not uniquely �xed how to extend the de�nition of the Poisson bracket
to the ghost variables. A natural way (having in mind the conditions for our theorem) is to introduce some
variables with two indices ziM containing qM as well as cM and the same for the momenta:

ziM ≡ (qM , cM ), z1M = qM , z2M = cM (3.33)

πiM ≡ (pM , bM ), π1M = pM , π2M = bM (3.34)

The grading is now sitting in the additional index i, i.e. | i |=
{

0 for i = 1
1 for i = 2 . One still has the freedom to

decide whether this index should be upstairs or downstairs for z or equivalently whether we choose NW or NE
for the graded summation of this index. Choosing the position as above and NW for the summation yields

ziMπiM =
∑
i,M

(−)iMziMπiM =
∑
i,M

(
qMpM + (−)McMbM

)
= qMpM + cMbM (3.35)

πiMz
iM =

∑
i,M

(−)iM+i+MπiMz
iM =

∑
i,M

(
(−)MpMqM − bMcM

)
= pMq

M − bMcM (3.36)

Note the sign change of the last term from the �rst to the second line. Now we can also write down the graded
Poisson bracket for this case, which looks in terms of the variables (ziM , πiM ) the same as the one before in
terms of (qM , pM ), but contains an additional graded sum over the index i:

{F,G} ≡ ∂F/∂πiM
∂

∂ziM
G− ∂F/∂ziM ∂

∂πiM
G = (3.37)

NW=
∑
i,M

(−)iM∂F/∂πiM
∂

∂ziM
G− (−)iM+i+M∂F/∂ziM

∂

∂πiM
G (3.38)

Before we rewrite this Poisson bracket in terms of qM , pM , cM and bM , let us recall the de�nition of left and
right-derivative of page 28. With the graded equal sign, left and right derivative w.r.t. ziM are simply given by
∂

∂ziM
zjN =g δi

jδM
N =g ∂z

jN/∂ziM . The same is true for the derivatives w.r.t. πiM . Written with the ordinary
equal sign, this reads

∂

∂ziM
zjN = (−)jM δi

j︸︷︷︸
NW :δji

δM
N = (−)(j+N)(i+M)∂zjN/∂ziM (3.39)

∂

∂πiM
πjN = (−)jM δij︸︷︷︸

NW :−δij

δMN = (−)(j+N)(i+M)∂πjN/∂πiM (3.40)

For i = j = 1 this agrees perfectly with the de�nition of left and right derivative w.r.t. qM or pM . For i = j = 2
instead (remember z2M = cM and π2M = bM ), we observe some mismatch (in NW for the right-derivative
w.r.t. cM and for the left-derivative w.r.t. bM , in NE the other way round)

∂

∂cM
cN = (−)MδMN = (−)M+N+MN∂cN/∂cM ↔

↔ ∂

∂z2M
z2N = (−)M δ2

2︸︷︷︸
NW :1

δM
N = −(−)N+M+NM∂z2N/∂z2M (3.41)

∂

∂bM
bN = (−)MδMN = (−)M+N+MN∂bN/∂bM ↔

↔ ∂

∂π2M
π2N = (−)M δ2

2︸︷︷︸
NW :−1

δMN = −(−)M+N+MN∂π2N/∂π2M (3.42)

The de�nition of left and right derivative therefore depends on the notation we use (cM , bM or z2M , π2M ). In
NW-conventions (for the index i) we have

∂

∂cM
NW=

∂

∂z2M
,

←−
∂

∂cM
NW= −

←−
∂

∂z2M
(3.43)

∂

∂bM

NW= − ∂

∂π2M
,

←−
∂

∂bM

NW=
←−
∂

∂π2M
(3.44)



CHAPTER 3. OTHER APPLICATIONS AND SOME SUBTLETIES 32

In NE conventions (for the index i), we would have the opposite signs. In the Poisson bracket, these signs
always cancel (for NW and for NE), because the left derivative w.r.t. bM comes with the right derivative w.r.t.
cM and vice verse. Looking at (3.38) one can see that the only additional sign which is not absorbed by the
graded summation of the index M is the (−)i in the second term due to the 'wrong' contraction direction. This
sign would come with the �rst term, if we had NE conventions for the index i. The Poisson bracket given
before in terms of ziM and πiM can therefore be rewritten (in graded summation conventions) as

{F,G} = ∂F/∂pM
∂

∂qM
G− ∂F/∂qM ∂

∂pM
G±

(
∂F/∂bM

∂

∂cM
G+ ∂F/∂cM

∂

∂bM
G

)
= (3.45)

= ∂F/∂pM
∂

∂qM
G− (−)FG∂G/∂pM

∂

∂qM
F ±

(
∂F/∂bM

∂

∂cM
G− (−)FG∂G/∂bM

∂

∂cM
F

)
(3.46)

The upper sign is for the choice of NW-conventions for the index i while the lower sign is for NE. This is in
principle independent of the summation convention for the indexM . If one prefers overall NE, where the minus
in front of the bracket might be annoying, it might be more natural to de�ne the Poisson bracket with an overall
minus (or take NW only for the index i). If one wants to apply the gradi�cation theorem in order to derive
true statements about the graded Poisson bracket, it is in principle necessary to reintroduce the extra index i
which carries the grading and rewrite the result again in terms of the graded rumpfs after having applied the
theorem. In practice this is rarely necessary. For example, in order to show the Jacobi identity for the graded
Poisson bracket, it is enough to know that one can write it as a gradi�cation of a bosonic Poisson bracket. The
Jacobi identity itself does not explicitely contain the variables ziM and therefore has the same form in terms of
the variables qM and cM . The same is true for Leibniz rule when acting on products of phase space functions:

{F, {G,H}} = {{F,G}, H}+ (−)FG {G, {F,H}} (3.47)

{F,GH} = {F,G}H + (−)FGG {F,H} (3.48)

The sign (−)FG would disappear when using the big graded equal sign. Let us now �x the sign-ambiguity in
(3.46). We will throughout use the more convenient upper sign for the de�nition of the Poisson bracket. This
implies

{F,G} = −(−)FG {G,F} (3.49){
bM , c

N
}

=g δM
N ,

{
pM , q

M
}

=g δM
N (3.50){

cM , bN
}

=g δMN ,
{
qM , pN

}
=g −δMN (3.51)

Note again that this does not �x the summation convention for the index M . We had only made a convenient
choice for the auxiliary index i which is now absent anyway. The above equations further imply

{bM , . . .} =
∂

∂cM
(. . .) , {pM , . . .} =

∂

∂qM
(. . .) (3.52)

{. . . , bM} = ∂ (. . .) /∂cM , {. . . , pM} = −∂ (. . .) /∂qM (3.53)

{
cM , . . .

}
=

∂

∂bM
(. . .) ,

{
qM , . . .

}
= − ∂

∂pM
(. . .) (3.54){

. . . , cM
}

= ∂(. . .)/∂bM ,
{
. . . , qM

}
= ∂(. . .)/∂pM (3.55)

Antibracket A bracket which is closely related to the Poisson bracket is the antibracket. It is de�ned in an
extended con�guration space with as many odd variables (anti�elds) q+

M as even variables qM :

(F ,G) = ∂F/∂q+
M

∂

∂qM
G− (−)(F+1)(G+1)∂G/∂q+

M

∂

∂qM
F (3.56)

Note that this bracket is not simply a gradi�cation of the Poisson bracket. We had discussed before that
the rumpfs 'p' and 'q' in the Poisson bracket were not gradi�able but that this problem can be removed by
introducing an auxiliary index. However, this implies that still q and p have the same parity, while here they
have opposite parity. On the other hand, the above equation can be seen as the gradi�cation of an antibracket
de�ned for purely bosonic rumpfs 'F ' and 'G' and bosonic dummy index M . Rewriting it in terms of the big
graded equal sign =G, the sign −(−)(F+1)(G+1) would get replaced by a + sign. Writing the antibracket without
the big graded equal sign better demonstrates its relation to the Poisson bracket. In a sense, it behaves as if
the gradings of 'F ' and 'G' were shifted by 1. The antibracket will be further discussed at a later point (see e.g.
footnote 13 on page 131 or footnote 1 in the appendix on page 160).
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3.4 Lagrangian and Hamiltonian formalism

The structural equations of the Lagrangian or Hamiltonian formalism are good examples for the application of
the gradi�cation theorem. Graded versions of the Lagrangian equations of motion will most probably be very
familiar to the reader. The intention here is only to carefully demonstrate how at the one hand the choice of
the summation convention �xes all ambiguities and how on the other hand this choice need not to be done a
priori (apart from the choice for the auxiliary index i to be introduced again below).

Let us consider a Lagrangian L(q, c, q̇, ċ) which depends on variables qM with bosonic rumpf and ghost
�elds cMwith fermionic rumpf and their time derivatives. The indices of q and c will in general di�er, but
the assumption of the same index simpli�es the presentation. The variation of the action will contain also
derivatives w.r.t. cM and it is thus useful to introduce again the variable ziM = (z1M , z2M ) = (qM , cM ).

δS =
∫
dt δziM

∂

∂ziM
L+ δżiM

∂

∂żiM
L = (3.57)

=
∫
dt δziM

(
∂

∂ziM
L− d

dt
(

∂

∂żiM
L)
)

+ bdry terms (3.58)

The equations of motion thus have the form

∂

∂ziM
L− d

dt
(

∂

∂żiM
L) =g 0 (3.59)

where the graded equal sign has no e�ect here. As discussed earlier, left and right derivative are graded equal
and because L is always bosonic (at least in usual examples) they are in fact equal and there is no arbitraryness
of choosing left or right derivative. If we have NW conventions for the auxiliary index i, the derivative w.r.t.
z2M becomes the left derivative w.r.t. cM or minus the right derivative w.r.t. cM , although an overall minus
in the equations of motion is of course irrelevant.

In a similar way the de�nition of the conjugate momentum is already �xed by the choice of the summation
convention. The de�nition is simply

πiM ≡
∂

∂żiM
L = L

←−
∂

∂żiM
(3.60)

Again, left and right derivative coincide for bosonic rumpf z (when L is bosonic) and their de�nition is �xed by
the choice of the summation convention. If we have NW conventions for the auxiliary index i, this de�nition
becomes

pM ≡ ∂

∂q̇M
L = L

←−
∂

∂q̇M
(3.61)

bM ≡ ∂

∂ċM
L = −L

←−
∂

∂ċM
(3.62)

For the choice of NE for the index i, the right derivative would be without sign. Remember again that the
choice of the summation convention for the index i does not �x the one for the index M .

The Legendre transformation to obtain the Hamiltonian is of course also �xed by the summation con-
vention

H(z, π) ≡
∫
dt żiMπiM − L(z, ż(z, π)) (3.63)

Although writing żiM at the �rst position seems to �x NW-conventions, this is not true. The signs are as
usual hidden in the summation. We thus have żiMπiM = πiM ż

iM and are still free to decide in the end, which
convention will enter the actual summation. As before we have to make a choice for the summation convention
of the auxiliary index i, if we want to write this explicitely in terms of qM and cM and its momenta:

H(q, c, p, b)
NW for i≡

∫
dt q̇MpM + ċMbM − L(q, c, q̇(q, c, p, b), ċ(q, c, p, b)) (3.64)

The same reasoning is applied for the second Legendre transformation which yields the �rst order action
L̃(z, π, ż, π̇) ≡

∫
dt żiMπiM −H(z, π).

We had already mentioned that the summation convention for i could di�er from the one for M and that
even within M we could have di�erent summation conventions for di�erent index-subsets. Applications where
the advantage of such mixed conventions becomes obvious, are those where one joins several variable with
di�erent index position to one variable, but wants to keep the summation conventions of before. This is the
case for example for the introduction of Darboux coordinates to parametrize the phase space. Let us forget for
the moment about the ghost variables. We can then de�ne for example

ZM ≡ (qM , pM ) (3.65)
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The Poisson bracket is then written with a mixed summation convention for the index M (based on NW for
M) as

{F,G} = F

←−
∂

∂ZM
PMN ∂

∂ZN
G
mixed conv≡ (3.66)

≡
∑

M1,M2,N1,N2

(−)MF
←−
∂

∂qM
PMN ∂

∂qN
G+ (−)M+NF

←−
∂

∂qM
PMN

∂

∂pN
G+

+F
←−
∂

∂pM
PM

N ∂

∂qN
G+ (−)NF

←−
∂

∂pM
PMN

∂

∂pN
G (3.67)

If we had NW conventions for the indices M and N , the de�nition of the graded summation would have a
(−)M in front of every of the four terms. For the special choice of coordinates (with split in con�guration space
coordinates and momenta), the Poisson bivector is simply

PMN =
(

0 −δMN

δM
N 0

)
(3.68)

where the relation of the graded Kronecker deltas in NW-conventions to the numerical δNM is given by δMN =
δNM = (−)MNδNM .

3.5 Lie-groups and -algebras

3.5.1 Gradi�able and not gradi�able group de�nitions

The positive experience with the graded de�nition of matrix multiplication demands its application to super-
groups. The �rst question arising is, which supergroup de�nitions have a natural gradi�cation and which do
not. Let us just give a few examples to make the idea transparent.

The general linear group, i.e. the group of all invertible matrices GL(n) is easily gradi�able, because
we know how to gradify the matrix multiplication and we have (for bosonic supermatrices, i.e. matrices with
bosonic rumpf) a clear notion of invertability. If the index of the matrix runs over b bosonic and f fermionic
indices, the resulting group is denoted by GL(b|f)(see e.g. [25, p.90]). Also the de�nition of the special linear
group is gradi�able, because the de�nition of the determinant is gradi�able as we discussed earlier, and the
condition detM = 1 thus makes sense in the graded case as well. Because of det(M ·N) = detM · detN , this
condition de�nes a subgroup which is denoted as SL(b|f).

For bosonic matrices, the unitary group is de�ned via

U†U = 11 (3.69)

Or with indices

(U†)mkδklU ln = δmn (3.70)

We have a well de�ned notion of graded hermitean conjugation and also of a graded unity in the sense of a
graded Kronecker delta with one lower and one upper index. There is no natural gradi�cation, however, of a
Kronecker delta with two indices at the same position. It is strictly speaking a metric and not a unit operator.

In even dimensions we could use

(
0 11
−11 0

)
as metric for the fermionic subspace, but this would be an ad-hoc

choice. The problem is that there is no characteristic property of δmn which is gradi�able in our sense to
uniquely give its graded version. The characterization that it is a diagonal matrix with only 1's in the diagonal
is certainly not suitable for gradi�cation, because for fermionic dimensions the metric should still be graded
symmetric (i.e. antisymmetric) and is therefore necessarily o�-diagonal. There is thus at �rst sight no natural
gradi�cation of the de�nition of the unitary group. Note that there exists nevertheless the notion of a unitary
supergroup U(b|f) in the literature (see e.g. [25, p.90]) .

The practical meaning of the unitary group is that it leaves the canonical scalar product δm̄n in Cd in-
variant. Suppose we have a more general scalar product 〈a, b〉 = (ā)m̄gm̄nbn and make a basis change.

am = Umkã
k, bn = Unlb̃

l. Then we obtain 〈a, b〉 = (Umkãk)∗gm̄nUnlb̃l
!= (ãk)∗g̃k̄lb̃l. The hermitean scalar

product gm̄n therefore transforms like

g̃k̄l = (Umk)∗gm̄nUnl = (U†)k̄
m̄gm̄nU

n
l (3.71)

We could de�ne a matrix to be unitary with respect to gm̄n i�

(U†)k̄
m̄gm̄nU

n
l = gm̄n (3.72)
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This is a gradi�able de�nition, because it is based on some generic gm̄n instead of the speci�c δm̄n. As discussed
above there is no de�ning property of δm̄n which is gradi�able.

The situation is the same for the Lorentz group (or likewise for the orthorgonal group) with

(ΛT )mkηklΛln = ηmn (3.73)

where we are again missing a gradi�cation of the de�nition of ηmn.
The situation is a bit di�erent for the symplectic group, although its de�nition is very close to the above

two. Symplectic structures need even dimensional spaces. Assigning upper indices k to the �rst d dimensions
and lower indices k to the second d dimensions and combine both into one index k ≡

(
k, k
)
, then the canonical

symplectic form (being the matrix-inverse of the canonical Poisson structure of the previous section) can be
written as

Bkl =
(

0 δk
l

−δkl 0

)
(3.74)

In contrast to the metrics of before, the symplectic form is gradi�able, because it contains two unit operators
in subspaces of which we know the gradi�cation. Elements S of the symplectic group SP (2d) are then given by

(ST )mkBklSln = Bkl (3.75)

Simply gradifying the indices yields the graded de�nition of the symplectic group. The body S of the symplectic
matrix, however, is not gradi�able, as it appears twice in the term on the left and not at all on the right. If the
index k runs over b bosonic and f fermionic indices, the resulting group could be denoted by SP (2b|2f), while
in literature it is common to introduce instead the notion of an orthosymplectic group which di�ers, however,
a bit from this group (see e.g. [25, p.90]). The precise form of the group elements S ∈ SP (2b|2f) depends on
the choice of either NW or NE for the de�nition of the matrix multiplication and of the position of the indices
at the matrix (�rst index up and second down or vice verse).

Having seen the above example, it is obvious that gradi�cation also works for O(d, d) or SO(d, d) based

on the metric ηmn =
(

0 δm
n

δmn 0

)
. If the indices m,n take d values, this metric has in the bosonic case

the signature (d, d). Containing two o�-diagonal Kronecker deltas, the graded version of the metric looks just
the same. If d splits into b bosonic and f fermionic dimensions, the resulting supergroups could be denoted as
O(b, b|f, f) and SO(b, b|f, f). For the fermionic subspace we have δµν = −δνµ, and the corresponding matrix
block of the metric is numerically just the matrix of a bosonic symplectic form. In this sense, O(d, d) and
SP (2d) interchange their role in the bosonic and fermionic subspaces:

O(d, d|0, 0) ∼= SP (0, 0|d, d) and O(0, 0|d, d) ∼= SP (d, d|0, 0) (3.76)

Note �nally that all supergroups which cannot be seen as a gradi�cation of a bosonic group, of course still
make perfect sense. The message is only that properties of those supergroups must be studied independently
and cannot be deduced from the corresponding bosonic groups via the gradi�cation theorem. The main example
are groups of fermionic supermatrices. The bosonic de�nition of a group requires the existence of an inverse
matrix. As we discussed already in the chapter on supermatrices, the notion of an inverse matrix can only be
gradi�ed in the case of a bosonic supermatrix, while the de�nition of a 'special graded inverse' of a fermionic
supermatrix cannot be used to take advantage of the gradi�cation theorem.

In [23, 24] it was observed that SO(d) can be seen as SP (−d) (with d fermionic, i.e. negative dimensions � see
page 25) and that SP (d) can be seen as SO(−d). Understanding SP (−d) ≡ SP (0|d) and SO(−d) ≡ SO(0|d),
this does almost but not completely match with our above observation (3.76) which holds only for split signature.
This might be due to di�erent de�nitions of the supergroups and it would be interesting to make the comparison
in more detail.

3.5.2 Graded Lie algebra

In the previous subsection we have just discussed a few examples for the gradi�cation of some Lie groups,
although a more detailed study would be a very interesting subject. Likewise we are not going to discuss
(graded) Lie algebras in any detail in this subsection, but instead want to stress a few minor points, related to
the summation convention. In the previous subsection we were only discussing supergroups whose elements are
bosonic supermatrices, i.e. graded matrices with bosonic rumpf, because only there we have a natural gradi�ed
version of an inverse matrix. Nevertheless, even when the group matrices of a Lie Group are all bosonic, its
in�nitesimal generators (when based on the module of supernumbers) might well be expanded in a basis TA
that contains fermionic matrices. Each of the TA's is a supermatrix, and it depends on the index A, whether it
is a fermionic or a bosonic one:

| (TA)MN |=| A | + |M | + | N | (3.77)
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Like in the bosonic case, group elements in the connected component of the unity can be parametrized by1

g(x) = eix
ATA (3.78)

where xA are some coordinates whose grading | A | is the same as the one of the generators TA, so that the
group element is a bosonic supermatrix. For example, for g(x) to be in GL, the exponent can be any (small)
supermatrix, while for g(x) to be in SL, it has to be traceless (det eix

ATA = exp ixAtrTA). One possible basis
of the algebra of all supermatrices consists of the matrices with one entry 1 and zero everywhere else. If the 1
is in one of the diagonal blocks, the corresponding basis matrix Ta is a bosonic one, while if the 1 is in one of
the o�-diagonal blocks, TA is considered as a fermionic supermatrix (although it has bosonic entries only). The
fermionic supermatrices TA are contracted with a fermionic parameter θA ≡ xA, so that the resulting group
element g(x) is a bosonic supermatrix.

The algebra is determined by providing the structure constants for the (graded) commutator

[TA, TB ] =g ifAB
CTC (3.79)

The graded equal sign has no e�ect here again, because the naked indices A and B are in the same order on
both sides. If one is dealing naively (see remark in footnote 1) with (graded) hermitean matrices (or operators)
T †A = TA, then the commutator is always graded antihermitean [TA, TB ]† =g [T †B , T

†
A] =g [TB , TA] =g −[TA, TB ],

no matter whether the indices A and B are bosonic or fermionic. Extracting the imaginary unit 'i' then leads
to real structure constants. Note that in most of the literature, fermionic and bosonic operators are treated
di�erently in this issue, because of the di�erent de�nition of hermitean conjugation. An immediate application
of the gradi�cation theorem is the Jacobi identity in terms of the structure constants, which has of course
the same form as in the bosonic case, but with graded summation and graded antisymmetrization:

f[AB|
DfD|C]

E = 0 (3.80)

An invariant metric

〈TA, TB〉 ≡ HAB (3.81)

is de�ned to obey

〈[TC , TA] , TB〉+ 〈TA, [TC , TB ]〉 =g 0 (3.82)

In terms of the structure constants (with fABC ≡ fABDHDC), this reads

fCAB + fCBA =g 0 (3.83)

which means that the structure constants are also (graded) antisymmetric in the last two indices and therefore
in all indices. Indices are pulled up again with the graded inverse of HAB which is de�ned by

HACHCB = δA
B (3.84)

or equivalently HACHCB = δAB . The graded inverse HAB di�ers from the naive (numerical) inverse by a factor
(−)A in NW and by a factor (−)B in NE.

The de�ning equation for the structure constants (3.79) seems to suggest that we already have �xed NW
conventions, but it can also be rewritten to enfavour NE. To this end we need the fact that in the case of the
existence of a group invariant metric to pull up and down the indices A,B and C, the structure constants with
all indices down are completely (graded) antisymmetric fABC =g fCAB . The commutator (3.79) then reads

[TA, TB ] =g iTCf
C
AB (3.85)

1Note that due to our de�nition of complex conjugation and hermitean conjugation xATA is hermitean if TA is hermitean and xA

is real: (xATA)† = (xA)∗T †A = xATA. The group element eix
ATA thus would correspond to a unitary group element. This would

disagree with the statement before that there is no natural gradi�cation of unitary matrices. In fact, already for the hermiticity we
were too sloppy in the above reasoning: A graded hermitean matrix is de�ned only when both indices are at the same position. If
one index is upstairs and the other is downstairs, one needs a metric to de�ne hermiticity, and this is again missing in general in
the graded case.
Note further that sometimes it is convenient to parametrize the group element di�erently, namely by exponentiating seperately

the bosonic and the fermionic contributions:

g(x) = eix
ATA !

= eiy
aTaeiy

αTα ≡ g(y)

The relation between x and y is obtained by using the graded version of the Baker-Campbell-Hausdor� formula, which is simply

the gradi�cation of the bosonic one, i.e. eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]+ 1
12 [[A,B],B]+O([.,.]3). �
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In both versions of the equation, the actual summation convention has not yet been �xed. Let us �nally write
down the original form (3.79) of this commutator explicitely in NW-conventions, including the matrix indices:∑

K

{
(−)(M+K)B(−)K(TA)MK(TB)KN − (−)AB(−)(M+K)A(−)K(TB)MK(TA)KN

}
=
∑
C

ifAB
C(TC)MN

(3.86)
The position of the supermatrix indices (�rst one upstairs, second downstairs) is more natural for NE conven-
tions, where the sign (−)K would not appear in the terms on the lefthand side.

Natural applications of the above considerations appear in the study of WZNW-models based on graded Lie
algebras (e.g. in our study [11] of a WZNW-like model [10], where we however not yet rigorously applied the
present conventions).

3.6 Remark on the pure spinor ghosts

In part II, we will make frequent use of the presented conventions. In particular, we will always use the graded
summation convention and the small graded equal sign without denoting it explicitely! There are some e�ects
that one needs to get used to. The formalism contains among others the variables xm, θµ, θ̂

µ
and a commuting

ghost variable λµ. When we want to describe the �rst three as just components of a supercoodinate xM , we
have to assign all the grading to the indices: θµ → θµ ≡ xµ. We call that a �rumpf-index grading shift�. The
fermionic variable θµ = θµ can be treated in both ways, either as odd rumpf with even index or as even rumpf
with odd index. The boldface notation should serve as a reminder, which point of view we take. When we are
considering the combining object xM , we have no choice, because all entries share the same rumpf 'x'. Therefore
we have to assign the grading to the index and have to do the same for the ghost index, because it simply is
the same index:

λµ → λµ (3.87)

When we leave away in calculations all index-dependent signs, the pure spinor ghost will e�ectively be treated
as an anticommuting variable, because the rumpf is anticommuting! Another similar e�ect is the switch of the
symmetry properties of bispinors. E.g. the chiral γ-matrices

γc(αβ) → γc[αβ] (3.88)

which are symmetric before the grading shift, become e�ectively antisymmetric afterwards. As an example,
consider the following term

(λγc∂λ) = λαγc(αβ)∂λ
β = ∂λαγc(αβ)λ

β = (∂λγcλ) (3.89)

The calculation goes through in the same way after the shift, because the antisymmetry of the γ-matrix is
compensated by the �anticommutativity� of the ghosts.

λγc∂λ ≡ λαγc[αβ]∂λ
β = ∂λαγc[αβ]λ

β = ∂λγcλ (3.90)

As one of the summations is over a graded rumpf and another is in the wrong direction, the contraction coincides
with the one for ungraded indices. This is not true for θ, where we have a sign change (for NW as well as for
NE):

λγc∂λ = λγc∂λ (3.91)

θγc∂θ = −θγc∂θ (3.92)

Note �nally that the rumpf of γc (the o�-diagonal block of Γc) stays bosonic, even when Γc → Γc is reinterpreted
as a fermionic supermatrix as suggested in section 2.7 on page 26.
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Berkovits' Pure Spinor String in General
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Chapter 4

Motivation of the Pure Spinor String in
Flat background

4.1 From Green-Schwarz to Berkovits

The classical type II Green Schwarz (GS) superstring describes the embedding of a string worldsheet into a

target type II superspace with coordinates xM ≡ (xm,θµ, θ̂
µ̂
). The bosonic coordinates xm locally parametrize

the ten-dimensional spacetime manifold, while the fermionic coordinates θµ and θ̂
µ̂
have the dimension of

Majorana Weyl spinors and thus have each 16 real components. The Lorentz transformation of spinors is from
the supermanifold point of view a structure group transformation in the tangent space of the supermanifold. In
the �at case, where one can identify the manifold with its tangent space, the θ's are clearly spinors themselves.
In the context of a curved supermanifold that we will treat later on, this will not be the case a priori. The θ's
then only transform under super-di�eomorphisms and not under structure group transformations. However, the
supergravity constraints will allow to choose a gauge (WZ-gauge) in which the two transformations are coupled
and the θ′s likewise transform under a structure group transformation. This is just a remark on the use of
the �curved index� µ. Objects that transform a priori under the structure group carry the �at index A or in
particular α.

The cases type IIA and IIB will be treated at the same time via the choice θ̂
µ̂
≡ θ̂µ for IIA and θ̂

µ̂
≡ θ̂

µ

for IIB. The supersymmetry transformation in �at superspace reads

δθµ = εµ, δθ̂
µ̂

= ε̂µ̂ (4.1)

δxm = εγmθ + ε̂γmθ (4.2)

The small γ-matrices are discussed in the appendix D. In order to build a supersymmetric theory, it is reasonable
to consider supersymmetric building blocks, in particular supersymmetric one-forms (vielbeins)

EA ≡ dxMEMA =
(
dxa + dθγaθ + d̂θγaθ̂︸ ︷︷ ︸

Πa

, dθα , d̂θ
α̂)

(4.3)

Its pullback to the worldsheet will be denoted by

ΠA
z/z̄ ≡ ∂z/z̄x

MEM
A (4.4)

We do not distinguish notationally between the coordinates of the superspace and the embedding functions.
The bosonic components Πa

z are known as the supersymmetric momentum

Πa
z/z̄ = ∂z/z̄x

a + ∂z/z̄θγ
aθ + ∂z/z̄θ̂γ

aθ̂ (4.5)

The introduction to the Green Schwarz string and the motivation for the pure spinor formalism will be
rather quick and sketchy. We will be much more careful when we start to discuss the pure spinor string in
general background.

The classical Green Schwarz superstring in �at background consists of the square of this momentum plus a
Wess-Zumino term which establishes a fermionic gauge symmetry. This gauge symmetry, called κ-symmetry,
guarantees the matching of the physical fermionic and bosonic degrees of freedom. The GS action has in
conformal gauge the following form:

SGS =
∫
d2z

1
2

Πa
zηabΠ

b
z̄ + LWZ (4.6)

LWZ = −1
2

Πzm

(
θγm∂̄θ − θ̂γm∂̄θ̂

)
+

1
2

(θγm∂θ)(θ̂γm∂̄θ̂)− (z ↔ z̄) (4.7)
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It is covariant and almost manifestly spacetime supersymmetric. In this last feature it di�ers from the RNS
string, where space time supersymmetry only comes in after GSO projection. The problem for the Green
Schwarz string on the other hand is that a covariant quantization with the standard BRST procedure does
not work. The reason for this misery is a set of 16 mixed �rst and second class constraints dzα that cannot
be split easily into �rst and second class type in a covariant manner. The conjugate momentum pzα of θα

can be entirely expressed in terms of other phase space variables and the corresponding fermionic phase space
constraint is just dzα. It has the following explicit form (the form of conjugate momentum to xm was already
plugged in)

dzα ≡ pzα − (γaθ)α

(
∂xa − 1

2
θγa∂θ − 1

2
θ̂γa∂θ̂

)
(4.8)

Half of these constraints are �rst class and correspond to the above mentioned fermionic κ gauge symmetry.
The fact that they have a second-class part can be seen in a non-closure of the Poisson-algebra, which has the
following schematica form:

{dzα(σ),dzβ(σ′)} ∝ 2γaαβΠzaδ(σ − σ′) (4.9)

Siegel [26] had the idea to make dzα part of a closed algebra by just adding the generators that arise via the
Poisson bracket, which leads to a (centrally extended), but otherwise closed algebra

{dzα,Πza} ∝ 2γaαβ∂θβδ(σ − σ′) (4.10)

{Πza,Πzb} ∝ ηabδ
′(σ − σ′) (4.11){

dzα, ∂θ
β
}
∝ δβαδ

′(σ − σ′) (4.12)

The important observation is now that the same chiral algebra can be obtained from a free-�eld Lagrangian,
where the variable pzα is independent and cannot be integrated out:

Sfree =
∫
d2z

1
2
∂xmηmn∂̄x

n + ∂̄θαpzα + ∂θ̂
α̂
p̂z̄α̂ = (4.13)

=
∫
d2z

1
2

Πa
zηabΠ

b
z̄ + LWZ︸ ︷︷ ︸

LGS

+∂̄θαdzα + ∂θ̂
α̂
d̂z̄α̂ (4.14)

In the second line we have used the original de�nition (4.8) for dzα. Remarkably, this action coincides with the
Green Schwarz action for dα = d̂α̂ = 0. In the above free theory, however, dzα is a priori not a Hamiltonian
constraint, but still a generator of a chiral (not local) symmetry. In any case, the reformulation does not remove
the mixed �rst-second class property of dzα, but it provides a simple free-�eld Lagrangian. Berkovits [7] had
the idea to implement the constraints cohomologically with a BRST operator disregarding its non-closure. The
corresponding current (Q =

∮
dzjz) for the left-moving and the right-moving sector take respectively the simple

form

jz = λαdzα, j z̄ = 0 (4.15)

̂z̄ = λ̂αd̂z̄α̂, ̂z = 0 (4.16)

where λα is a commuting ghost. For �rst class constraints the BRST cohomology can be built, because the
BRST operator is nilpotent due to the closure of the algebra. For second class constraints, however, the non-
closure implies a lack of nilpotency of the BRST operator. To overcome this problem, Berkovits put a constraint
on the ghost �eld λ and λ̂, the so called pure spinor constraint

λγcλ = 0, λ̂γcλ̂ = 0 (4.17)

This enforces nilpotency of the BRST operator and provides a well-de�ned theory. The pure spinor constraint
and the ghost kinetic term have to be added to the original free action:

Sps =
∫
d2z

1
2
∂xmηmn∂̄x

n + ∂̄θαpzα + ∂θ̂
α̂
p̂z̄α̂ + Lgh (4.18)

=
∫
d2z

1
2

Πa
zηabΠ

b
z̄ + LWZ + ∂̄θαdzα + ∂θ̂

α̂
d̂z̄α̂ + Lgh (4.19)

Πa
z = ∂xa + ∂θγaθ + ∂θ̂γaθ̂ (4.20)

dzα = pzα − (γmθ)α

(
∂xm − 1

2
θγm∂θ − 1

2
θ̂γm∂θ̂

)
(4.21)

LWZ = −1
2

Πzm

(
θγm∂̄θ − θ̂γm∂̄θ̂

)
+

1
2

(θγm∂θ)(θ̂γm∂̄θ̂)− (z ↔ z̄) (4.22)

Lgh = ∂̄λβωzβ + ∂λ̂β̂ω̂z̄β̂ +
1
2
Lzz̄a(λγaλ) +

1
2
L̂zz̄a(λ̂γaλ̂) (4.23)
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The pure spinor constraints seem like a replacement of one problem by another. The constraints turn now out
to be �rst class but in�nitely reducible. They generate antighost gauge symmetries of the form

δ(µ)ωzα = µza(γaλ)α, δ(µ)ω̂z̄α̂ = µ̂z̄a(γaλ̂)α (4.24)

accompanied by some transformation of the Lagrange multipliers. We will discuss this in more detail in the
general background-case. In spite of this, the pure spinor constraint can be better handled than the original
constraint. One can solve the pure spinor constraint explicitely in a U(5)-parametrization and calculate operator
products. Although the U(5) coordinates break manifest ten-dimensional Lorentz-covariance, the resulting
gauge-invariant OPE's all have a Lorentz covariant form and the quantization is e�ectively Lorentz covariant.
Berkovits showed in the above cited papers the equivalence to the ordinary string. In [12] he presented a
consistent description for the calculation of higher loop amplitudes. There are still many conceptual problems.
The pure spinor formalism starts in the conformal gauge and does not have worldsheet di�eomorphism invariance
any longer. Attempts to construct a composite b-ghost (as homotopy for the energy momentum tensor) always
involved inverse powers of the gost �eld. In [27], Berkovits recovered a N = 2 algebra by the introduction
of additional worldsheet �elds, which is now known as �non-minimal formalism�. Multiloop calculations were
described or performed by Berkovits, Mafra, Nekrasov and Stahn in [28, 29, 30, 31] (Since the last version of
this thesis new results were obtained. A recent detailed review is provided in [120]). However, there is still a
clear picture of the origin of the pure spinor constraint missing. Attempts to relate the pure spinor string to
the Green Schwarz string via similarity transformations and rede�nitions were successful in [32], but not very
enlightening. An additional task is the resolving of the tip-singularity of the pure-spinor-cone. These questions
were adressed in [33] and [34].

We should �nally mention that the pure spinor approach of Berkovits di�ers signi�cantly from the hybrid
formalism[35], which was developped by the same author and shares only some of the properties of the pure
spinor approach. Two recent presentations of this formalism including the numerous relevant references can be
found in [36][37].

4.2 E�orts to remove or explain the pure spinor constraint

There were plenty of e�orts to get rid of the pure spinor constraint in the years after Berkovits presented his
approach the �rst time. A quite natural ansatz was followed by Chesterman[38, 39], who implemented the
�rst-class pure spinor constraint cohomologically, via a second BRST operator. Due to the in�nite reducibility
of this constraint, there arises an in�nite number of ghost for ghosts. Nevertheless he was able to extract the
most important information and avoided solving the pure spinor constraint explicitly.

Somehow related are the considerations of Aisaka and Kazama[40, 41, 42, 43, 44]. They were able to
construct a BRST operator with �ve additional ghost �elds and no pure spinor constraint, using however U(5)
parametrization and breaking manifest Lorentz invariance. The relation to Chesterman's approach can be
established as follows: The in�nitely reducible pure spinor constraint can be replaced by an irreducible one in
an U(5) parametrization. This constraint can be implemented cohomologically via a second BRST operator in
a relative cohomology, and via homological perturbation theory one can replace the two operators by a single
one. Within their 'doubled spinor formalism', they provided in [43] a derivation of the pure spinor string from
the Green Schwarz String on the quantum level.

Another enlightening approach by Oda, Tonin et al.[45] was the interpretation of the pure spinor formalism as
a twisted and gauge �xed version of the superembedding formalism. This led to a slightly modi�ed version of the
pure spinior formalism, the Y-formalism, and to new insight about the missing antighost b-�eld[46, 47, 48, 49].

There was �nally yet another approach by Grassi, Policastro, Porrati and van Nieuwenhuizen, at that time
most of them in Stony Brook, which we will discuss shortly in a seperate section, as it was subject of my early
PhD studies.

4.3 Some more words on the Stony-Brook-approach

In a series of papers [8, 50, 51, 9, 10, 52, 53] Grassi, Policastro, Porrati and van Nieuwenhuizen have removed
the pure spinor constraint by adding additional ghost variables. They realized in [10] that their theory has the
stucture of a gauged WZNW model with the complete diagonal subgroup gauged. It is based on the chiral
algebra above. A current can be set to zero by gauging the corresponding symmetry and thus making it a �rst
class constraint. However, dzα does not form a subalgebra and thus cannot be gauged on its own. So if one
starts gauging dzα and tries to make the resulting BRST-operator (4.15) nilpotent by adding further ghosts,
one automatically arrives at a BRST operator that corresponds to a theory where also Πzm and ∂θα are gauged
(see e.g. [9, p.7] or [10, p.4]; this fact was later also used to describe a topological model in [54]). In the gauged
WZNW description this means that the complete diagonal subgroup is gauged. Therefore a grading or �ltration
had to be introduced, in order to obtain the correct cohomology. In [53] it was argued that for any (simple)
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Lie algebra one can in general gauge a coset (in our case the algebra that corresponds to dzα, modding out
the subalgebra) by gauging the complete algebra and later undo the gauging of the subalgebra by building the
relative cohomology with respect to a second BRST operator. This corresponds to the former grading. Despite
its elegance there are some puzzling points about the WZNW action:

• For the heterotic string one starts with a chiral algebra and gets from the WZNW model a chiral as well
as an antichiral algebra. Somehow one has to get rid of the antichiral one.

• For the type II string one starts with a chiral and antichiral algebra. Both of them double and the Jacobi
identity forces one to mix those algebras. Thus it has not been possible yet to produce a WZNW model
for the type II string.

• The classical WZNW theory is not a free �eld theory which might cause problems for calculating OPEs.

For those reasons, we avoided in [11] the WZNW action. Although the cited paper contains the work of the
early stage of my PhD, it will not be presented in this thesis in detail. The reason is that it would open yet
another �eld, whereas the presented parts share some common aim. Let me therefore just sketch the results:
We started in [11] with the free �eld action of above, discussed its o�-shell symmetry algebra generated by
the current dzα and gauged it, in order to turn dzα into a constraint. Before actually gauging the algebra via
the Noether procedure, we had to make it close o�-shell. To this aim we introduced auxiliary �elds Pzm and
Pz̄m. There still remained double poles in the current algebra, which caused trouble in the gauging procedure.
They were be eliminated by doubling all �elds as it was done in [10], in order to establish nilpotent BRST
transformations. Gauge �xing leads to the BRST-transformations as they are given in [10].

Finally, we had a closer look at the �nal BRST operator proposed in [10], which includes di�eomorphism
invariance by adding a topological ghost quartet. We came to the conclusion that this operator has to be
modi�ed via a second quartett of ghost �elds in order to become nilpotent. More details can be found in [11]
and [55].

A last major progress was achieved in [56] by establishing an N = 4 algebra in this formalism. There exist
also independent studies of WZNW models based on supergroups like for example on PSU(1,1|2) in [57] .



Chapter 5

Closed Pure Spinor Superstring in general
type II background

The pure spinor string in general background was �rst studied by Berkovits in [13]. The one-loop conformal
invariance of the heterotic version was studied in [58]. The classical worldsheet BRST transformations of the
heterotic string in general background were derived in [14]. The one-loop conformal invariance of the type II
string �nally was shown in [59] where also the derivation of the supergravity constraints was reviewed. Note
also [60, 61, 2] for another useful presentation of some aspects of the pure spinor string in general or AdS5xS5
background. In the following we will present again the derivation of the supergravity constraints as it was
done in [13],[59] but we will explain in more detail several steps and also we will use a di�erent method to
derive the constraints. In particular we will not go to the Hamiltonian formalism in order to derive the BRST
transformations as generated via charge and Poisson bracket but we will stay in the Lagrangian formalism and
will use what we call �inverse Noether�. In addition we will use a spacetime covariant variation in order to derive
the classical equations of motion in a spacetime covariant manner and we will present the BRST transformations
of all the worldsheet �elds for the type II string in general background. This has so far been done only for the
heterotic string in [14]. Having derived the supergravity constraints we will �nally go to the Wess Zumino gauge
and derive the local supersymmetry transformations of at least the fermionic �elds in order to make contact to
generalized complex geometry.

Note that there was a carefull study in [62] of how to construct type II vertex operators in the pure spinor
formalism. This is at least for massless �elds directly related to the deformations of the action that we are
going to study now. (After the �rst arXiv-version of this thesis, another thesis by O. Bedoya [121] studying and
reviewing many aspects of the pure spinor string in general background has appeared).

5.1 Ansatz for action and BRST operators and some EOM's

In the following we will consider the closed pure spinor string coupled to general background �elds. One
can either add small perturbations (integrated vertex operators) to the action or simply consider the most
general classically conformally invariant action with the given �eld content and the same antighost gauge
symmetry (generated by the pure spinor constraint). The action, however, is not enough to specify the string
completely. In addition, we need two (one left-moving and one right-moving) BRST operators in the general
background. The existence of two such BRST operators which have to be nilpotent and conserved (holomorphic
and antiholomorphic respectively) turns out to be equivalent to supergravity constraints on the background
�elds. The important steps of this calculation will be carefully motivated in the following.

The idea is to start from the most general renormalizable action with the given �eld content. It is convenient
to throw away immediately the tachyon term which is allowed by renormalizability, but which is not even BRST
invariant for the undeformed BRST transformations, at least for a non-constant tachyon �eld. The starting
point then reduces to the most general classically conformally invariant action. In order to write down a
classically conformally invariant action (ghost number zero in each sector), we have to combine elementary
�elds to terms with conformal weight (1,1). There are no �elds with negative conformal weight. The a priory
possible elementary building blocks of ghost number (0,0) are thus

weight (0,0) xM

weight (1,0) ∂xM , dzα,λ
αωzβ

weight (0,1) ∂̄xM , d̂z̄α̂, λ̂
α̂
ω̂z̄β̂

weight (1,1) ∂∂̄xM , ∂̄λαωzβ, ∂λ̂
α̂
ω̂z̄β̂, ∂̄dzα, ∂d̂z̄α̂

43
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We now can combine an arbitrary function of xM (background �eld) with either a (1,1)-building block or with
one (1,0) combined with one (0,1) building block. Via partial integration, a ∂∂̄xM -term with an arbitrary x-
dependent coe�cient can always be rewritten as a ∂xM ∂̄xN -term1. Before writing down the resulting action, let
us note that we will immediately absorb the x-dependent coe�cient coming with ∂̄λαωzβ in a reparametrization
of ωzβ so that we simply get the free ghost kinetic term ∂̄λαωzα. Likewise for the hatted variables.

The most general classically conformally invariant (or renormalizable, adding Tachyon term) action with the
same �eld content (including the pure spinor constraint on the ghosts) with independently conserved left and
right ghost number now reads

S =
∫
d2z

1
2
∂xM (GMN (

�
x ) +BMN (

�
x )︸ ︷︷ ︸

≡OMN (
�
x )

)∂̄xN + ∂̄xMEM
α(

�
x ) dzα + ∂xMEM

α̂(
�
x ) d̂z̄α̂ +

+dzαPαβ̂(
�
x ) d̂z̄β̂ + λαCαβγ̂(

�
x ) ωzβd̂z̄γ̂ + λ̂

α̂
Ĉα̂

β̂γ(
�
x ) ω̂z̄β̂dzγ + λαλ̂

α̂
Sαα̂

ββ̂(
�
x ) ωzβω̂z̄β̂ +

+
(
∂̄λβ + λα∂̄xMΩMαβ(

�
x )
)

︸ ︷︷ ︸
≡∇z̄λβ

ωzβ +
(
∂λ̂

β̂
+ λ̂

α̂
∂xM Ω̂Mα̂β̂(

�
x )
)

︸ ︷︷ ︸
≡∇̂zλβ̂

ω̂z̄β̂ +

+
1
2
Lzz̄a(λγaλ) +

1
2
L̂z̄zâ(λ̂γâλ̂) (5.1)

Note that we denote with
�
x the complete set xM of superspace coordinates, while

→
x will only denote the

bosonic subset xm. As stated already above, the kinetic ghost term ∂̄λβωzβ can always be brought to this
simple form by a rede�nition of ω. We will discuss this and other worldsheet reparametrizations below in detail.
The motivation for the de�nition of the covariant derivative ∇z̄λβ will also be given at a later point. For
the moment, ΩMαβ(x) is just an arbitrary coe�cient function or background �eld. Like in the �at case, we
implement the pure spinor constraints via two Lagrange multipliers.

In order to complete the theory, we need two BRST operators which reduce to the well known ones in the �at
case. Their nilpotency and (anti)holomorphicity will be checked later and lead to the supergravity constraints.
For the moment, let us just write down the most general ansatz of their currents, which have to be of conformal
weight (1,0) and (0,1) and ghost number (1,0) and (0,1) respectively

jz = λα
(
dzα + Υ(2)

αM (
�
x ) ∂zxM + λγΥ(3)

αγ
β(

�
x )ωzβ

)
, j z̄ = 0 (5.2)

̂z̄ = λ̂
α̂
(
d̂z̄α̂ + Υ̂(2)

α̂M (
�
x ) ∂z̄xM + λ̂

γ̂
Υ̂(3)
α̂γ̂
β̂(

�
x )ω̂z̄β̂

)
, ̂z = 0 (5.3)

Like for the ghost kinetic term, we have immediately absorbed any
�
x -dependent coe�cient Υ(1)

α
β(

�
x ) coming

with λαdzβ and its hatted version in a rede�nition of dzβ and d̂z̄β̂.
2 Of course one can further rede�ne dzα and

d̂z̄α̂, such that we arrive at the standard form jz = λαdzα and ̂z̄ = λ̂
α̂
dz̄α̂. This does not change the general

form of the action. We will discuss the reparametrizations more carefully in the next section.
The following observation is important to reduce the computations one has to do. Let us �rst de�ne

ÔMN ≡ ONM ,
(
Ĝ = G, B̂ = −B, Ĥ = −H

)
(5.4)

P̂ γ̂γ ≡ Pγγ̂ (5.5)

Ŝα̂α
β̂β ≡ Sαα̂

ββ̂ (5.6)

Then � rather obviously � the following statement holds

Proposition 3 (left-right symmetry) The complete theory (action +BRST operators) is invariant under
the exchange of hatted and unhatted objects if at the same time their indices are �ipped from hatted to unhatted
and from z to z̄ and vice verse, and ∂ is exchanged with ∂̄:

d↔ d̂,λ↔ λ̂,ω ↔ ω̂, L↔ L̂, O ↔ Ô,P ↔ P̂, S ↔ Ŝ, C ↔ Ĉ,Ω↔ Ω̂,∇ ↔ ∇̂,Υ(i) ↔ Υ̂(i), j ↔ ̂
∂ ↔ ∂̄, indices: α↔ α̂, z ↔ z̄

(5.7)

In particular the replacement O ↔ Ô implies due to (5.4) that

B ↔ −B, G↔ G (5.8)

1This, however, contributes to the surface term. In the case of open strings, adding a ∂∂̄xM -term is therefore equivalent to the
modi�cation of the boundary part of the action. �

2If one wants to study degenerate limits of the theory, one should remember and reintroduce the coe�cients Υ(1), Υ̂(1) and the
one coming with the ghost kinetic terms. �
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Simple eom's Before we close this section, let us quickly give the equations of motion of those worldsheet
variables (all but xK) which can be seen from the target superspace point of view as tangent or cotangent
vectors. This refers to the form of their reparametrizations that will be discussed on page 49. Their equations
of motion are comparatively simple:

δS

δdzγ
= ∂̄xMEM

γ + Pγγ̂ d̂z̄γ̂ + λ̂
α̂
Ĉα̂

β̂γω̂z̄β̂ (5.9)

δS

δd̂z̄γ̂
= ∂xMEM

γ̂ + dzγPγγ̂ + λαCαβγ̂ωzβ (5.10)

δS

δωzβ
= −

(
∇z̄λβ + λα

(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

))
≡ −Dz̄λβ (5.11)

δS

δω̂z̄β̂
= −

(
∇̂zλ̂

β̂
+ λ̂

α̂
(
Ĉα̂

β̂γdzγ − λαSαα̂ββ̂ωzβ
))
≡ −D̂zλ̂

β̂
(5.12)

δS

δλα
= −

(
∇z̄ωzα −

(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

)
ωzβ

)
+ Lzz̄a(γaλ)α ≡ −Dz̄ωzα + Lzz̄a(γaλ)α (5.13)

δS

δλ̂
α̂

= −
(
∇̂zω̂z̄α̂ −

(
Ĉα̂

β̂γdzγ − λαSαα̂ββ̂ωzβ
)
ω̂z̄β̂

)
+ L̂zz̄a(γaλ̂)α̂ ≡ −D̂zω̂z̄α̂ + L̂zz̄a(γaλ̂)α̂ (5.14)

δS

δLzz̄a
=

1
2

(λγaλ),
δS

δL̂zz̄a
=

1
2

(λ̂γaλ̂) (5.15)

In (5.11)-(5.14) we have introduced yet two other �covariant derivatives� Dz̄ and D̂z:

Dz̄λβ ≡ ∂̄λβ +Az̄α
βλα, Az̄α

β ≡ ∂̄xMΩMαβ + Cα
βγ̂ d̂z̄γ̂ − λ̂

α̂
Sαα̂

ββ̂ω̂z̄β̂ (5.16)

D̂zλ̂
β̂
≡ ∂λ̂

β̂
+ Âzα̂

β̂λ̂
α̂
, Âzα̂

β̂ ≡ ∂xM Ω̂Mα̂β̂ + Ĉα̂
β̂γdzγ − λαSαα̂ββ̂ωzβ (5.17)

These covariant derivatives are introduced simply for calculational convenience and we do not give a geometric
interpretation � although this might be interesting. For the covariant derivatives ∇z̄ and ∇̂z de�ned in (5.1)
instead, there exists a simple geometric interpretation. They are pullbacks of the covariant target super tangent
space derivatives with connection coe�cients ΩMαβ and Ω̂Mα̂β̂ to the worldsheet. The reason why these two
background �elds can be seen as connections will be given in the following.

Note that the derivation of the still missing variational derivative with respect to xK is quite involved and
will only be given in section 5.5 on page 54 using a covariant variational principle.

5.2 Vielbeins, worldsheet reparametrizations and target space sym-
metries

There are several ways to reparametrize the worldsheet �elds in the above action and the BRST currents. One
can use such reparametrizations to simplify the form of the action (as we did already implicitly in order to get
a simple ghost kinetic term) or of the BRST currents.

Before we come to the �rst convenient reparametrization, let us observe the following: The two background
�elds EMα and EM

α̂, combined to a 42 × 32 matrix EM
A,A ∈ {α, α̂} have maximal rank 32 in a small

perturbation around the string in �at background. Or in other words, the quadratic block EM
A is invertible3.

It can thus be completed by some EMa to an invertible 42×42 matrix which we can interpret as (super)vielbein.
The only requirement for EMa to be a valid completion is that its bosonic sub-matrix Ema is invertible4. The
�background �eld� EMa does not appear in the action and nothing should depend on it. Let us from now on
use the completed vielbein EMA and its inverse EAM to switch from curved to �at indices and vice verse. In
particular we de�ne

GAB ≡ EA
MGMNEB

N (5.18)

For later usage we denote the components of the pullback of the vielbein EA to the worldsheet as

ΠA
z ≡ ∂xMEM

A (5.19)

ΠA
z̄ ≡ ∂̄xMEM

A (5.20)

In �at space, Πa
z/z̄ will just be the supersymmetric momentum and the fermionic component will reduce to the

worldsheet derivative of the fermionic coordinates: ΠA
z/z̄

�at→ ∂z/z̄θ
A.

Let us now study the possible reparametrizations of the worldsheet variables systematically.
3Again it might be interesting to study also degenerate limits. �
4The bosonic supermatrix

„
Ema EmA

EM
a EM

A

«
is invertible, i� its bosonic blocks (Ema) and

`
EM

A´ are invertible. �
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Possible reparametrizations We denote by φIall the collection of all worldsheet �elds. If we make some
reparametrization φ̃Iall = f [φIall], the Jacobi matrix has to be invertible in order to lead to equivalent equations
of motion:

δS

δφIall(σ)
=
∫
d2σ̃

δφ̃Jall(σ̃)
δφIall(σ)

δS

δφ̃Jall(σ̃)
(5.21)

The following reparametrizations are the most general ones which respect the conformal weight as well as the
left and right-moving ghost numbers (note that the Lagrange multipliers have ghost number (−2, 0) and (0,−2)
respectively):

x̃M = fM (
�
x ) (5.22)

λ̃
α

= Λβα(
�
x )λβ, ˜̂

λα̂ = Λ̂β̂
α̂(

�
x )λ̂

β̂
(5.23)

d̃zα = Ξ(1)
α
β(

�
x )dzβ + Ξ(2)

αM (
�
x )∂xM + Ξ(3)

αγ
δ(

�
x )λγωzδ (5.24)

˜̂
dz̄α̂ = Ξ̂(1)

α̂
β̂(

�
x )d̂z̄β̂ + Ξ̂(2)

α̂N (
�
x )∂̄xN + Ξ̂(3)

α̂γ̂
δ̂(

�
x )λ̂

γ̂
ω̂z̄δ̂ (5.25)

ω̃zα = Ξ(4)
α
β(

�
x )ωzβ, ˜̂ωz̄α̂ = Ξ̂(4)

α̂
β̂(

�
x )ω̂z̄β̂ (5.26)

L̃zz̄a = Ξ(5)
a
b(

�
x )Lzz̄b,

˜̂
Lz̄za = Ξ̂(5)

a
b(

�
x )L̂z̄zb (5.27)

fM has to be an invertible function and Λ, Ξ(1),Ξ(4),Ξ(5) and their hatted equivalents have to be invertible
matrices. For a general reparametrization, Λαβ can be a general invertible matrix, but if we want to leave the
form of the action invariant, it has to be an element of the spin group or a simple scaling. We will discuss that
below. Note also, that we have already used Ξ(4) and Ξ(1) and their hatted versions to get a simple ghost-kinetic
term in the action and a simple �rst term of the BRST operator.

Shift reparametrization Let us �rst study the e�ect of the shift-reparametrizations

dzα = d̃zα − Ξ(2)
αM (

�
x )∂xM − Ξ(3)

αγ
δ(

�
x )λγωzδ, Ξ(1)

α
β = δα

β (5.28)

d̂z̄α̂ = ˜̂
dz̄α̂ − Ξ̂(2)

α̂N (
�
x )∂̄xN − Ξ̂(3)

α̂γ̂
δ̂(

�
x )λ̂

γ̂
ω̂z̄δ̂, Ξ̂(1)

α̂
β̂ = δα̂

β̂ (5.29)

on the form of the action. Plugging the above reparametrization into (5.1)-(5.3), the form of the action and the
BRST currents does not change if the background �elds are rede�ned accordingly. The shift-reparametrization
thus induces an e�ective transformation of the background �elds:

ẼN
γ = EN

γ − Pγα̂Ξ̂(2)
α̂BEN

B , ẼM
γ̂ = EM

γ̂ − Ξ(2)
αAEM

APαγ̂ (5.30)

Ω̃Mαβ = ΩMαβ − Cαβα̂Ξ̂(2)
α̂AEM

A − EMγΞ(3)
γα
β + Ξ(3)

γα
βPγα̂Ξ̂(2)

α̂AEM
A (5.31)

˜̂ΩMα̂β̂ = Ω̂Mα̂β̂ − Ĉα̂β̂αΞ(2)
αAEM

A − EM γ̂Ξ̂(3)
γ̂α̂
β̂ + Ξ(2)

αAEM
APαγ̂Ξ̂(3)

γ̂α̂
β̂ (5.32)

C̃α
βγ̂ = Cα

βγ̂ − Ξ(3)
γα
βPγγ̂ , ˜̂

Cα̂
β̂α = Ĉα̂

β̂α − Pαγ̂Ξ̂(3)
γ̂α̂
β̂ (5.33)

S̃αα̂
ββ̂ = Sαα̂

ββ̂ + Ĉα̂
β̂γΞ(3)

γα
β + Cα

βγ̂Ξ̂(3)
γ̂α̂
β̂ − Ξ(3)

γα
βPγγ̂Ξ̂(3)

γ̂α̂
β̂ (5.34)

Υ̃(2)
αM = Υ(2)

αM − Ξ(2)
αM ,

˜̂Υ(2)
α̂N = Υ̂(2)

α̂N − Ξ̂(2)
α̂N (5.35)

Υ̃(3)
αγ
β = Υ(3)

αγ
β − Ξ(3)

αγ
β,

˜̂Υ(3)
α̂γ̂
β̂ = Υ̂(3)

α̂γ̂
β̂ − Ξ̂(3)

α̂γ̂
β̂ (5.36)

Finally we have the transformation of OMN = GMN +BMN which we split after the transformation again into
its symmetric and antisymmetric part:

G̃MN = EM
AEN

B × (5.37)0BBB@
Gab + 2Ξ(2)

γ(a|Pγγ̂ Ξ̂
(2)
γ̂|b) Gaβ − Ξ(2)

βa + 2Ξ(2)
γ(a|Pγγ̂ Ξ̂

(2)
γ̂|β)

Gaβ̂ − Ξ̂
(2)

β̂a
+ 2Ξ(2)

γ(a|Pγγ̂ Ξ̂
(2)

γ̂|β̂)

Gαb − Ξ(2)
αb + 2Ξ(2)

γ(α|Pγγ̂ Ξ̂
(2)
γ̂|b) Gαβ − 2Ξ(2)

(αβ) + 2Ξ(2)
γ(α|Pγγ̂ Ξ̂

(2)
γ̂|β)

Gαβ̂ − Ξ(2)
αβ̂ − Ξ̂

(2)

β̂α
+ 2Ξ(2)

γ(α|Pγγ̂ Ξ̂
(2)

γ̂|β̂)

Gα̂b − Ξ̂
(2)
α̂b + 2Ξ(2)

γ(α̂|Pγγ̂ Ξ̂
(2)
γ̂|b) Gα̂β − Ξ(2)

βα̂ − Ξ̂
(2)
α̂β + 2Ξ(2)

γ(α̂|Pγγ̂ Ξ̂
(2)
γ̂|β)

Gα̂β̂ − 2Ξ̂
(2)

(α̂β̂)
+ 2Ξ(2)

γ(α̂|Pγγ̂ Ξ̂
(2)

γ̂|β̂)

1CCCA
AB

B̃MN = EM
AEN

B × (5.38)0BBB@
Bab + 2Ξ(2)

γ[a|Pγγ̂ Ξ̂
(2)
γ̂|b] Baβ − Ξ(2)

βa + 2Ξ(2)
γ[a|Pγγ̂ Ξ̂

(2)
γ̂|β]

Baβ̂ + Ξ̂
(2)

β̂a
+ 2Ξ(2)

γ[a|Pγγ̂ Ξ̂
(2)

γ̂|β̂]

Bαb + Ξ(2)
αb + 2Ξ(2)

γ[α|Pγγ̂ Ξ̂
(2)
γ̂|b] Bαβ + 2Ξ(2)

[αβ] + 2Ξ(2)
γ[α|Pγγ̂ Ξ̂

(2)
γ̂|β]

Bαβ̂ + Ξ(2)
αβ̂ + Ξ̂

(2)

β̂α
+ 2Ξ(2)

γ[α|Pγγ̂ Ξ̂
(2)

γ̂|β̂]

Bα̂b − Ξ̂
(2)
α̂b + 2Ξ(2)

γ[α̂|Pγγ̂ Ξ̂
(2)
γ̂|b] Bα̂β − Ξ(2)

βα̂ − Ξ̂
(2)
α̂β + 2Ξ(2)

γ[α̂|Pγγ̂ Ξ̂
(2)
γ̂|β]

Bα̂β̂ − 2Ξ̂
(2)

[α̂β̂]
+ 2Ξ(2)

γ[α̂|Pγγ̂ Ξ̂
(2)

γ̂|β̂]

1CCCA
AB

Interestingly, looking at (5.37), one can bring GAB to the block diagonal form GAB = diag (Gab, 0, 0) at least
for vanishing Pγγ̂ . For general Pγγ̂ , this is less clear because the equations become at �rst sight quadratic5

5Note that the matrices in (5.37) and (5.38) do not yet correspond to G̃AB and B̃AB given by G̃MN = ẼM
AẼN

BG̃AB and the
equivalent equation for B̃MN , as we have expressed G̃MN and B̃MN in terms of the untransformed vielbeins. Due to (5.30), the
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in the transformation parameters. It is thus more convenient to use the shift reparametrization to bring the
BRST-currents to their standard form, i.e. simply shift Υ(2), Υ(3), and their hatted counterparts to zero. From
now on we will thus use the simple BRST-currents:

jz = λαdzα, j z̄ = 0 (5.39)

̂z̄ = λ̂
α̂
d̂z̄α̂, ̂z = 0 (5.40)

In [13] the authors start with both, the simple form of the BRST currents as well as the above mentioned
special form of GAB and thus a reduced rank of GMN . As we cannot reach both at the same time with the
shift reparametrizations, the simpli�ed form of the symmetric two-tensor has to be a result of BRST invariance
or likewise on-shell holomorphicity of the BRST-current. We will discover this result soon. Only then we will
use the freedom of the choice of the auxiliary vielbein components EMa (which do not appear in the action),
in order to �x Gab to ηab, or at least proportional to it. For the moment, however, we do not assume any
restrictions on GMN , EMa and GAB apart from the invertability of Ema.

Local target space symmetries There are still many reparametrizations left and we could try to further
simplify the form of the action. It is, however, convenient not to �x all freedom. As we do not want to destroy
the form of action and BRST currents that we have already obtained, the freedom consists of 'stabilizing'
reparametrizations. I.e. we have to restrict to those reparametrizations out of (5.22)-(5.27) which leave the form
of the action (5.1) and the simple BRST currents (5.39) and (5.40) invariant if one transforms the background
�elds accordingly. These reparametrizations are in general not symmetries from the worldsheet point of view as
the compensating transformation of the background �elds corresponds to a change of the coupling constants.
However, as the action remains formally invariant, all the constraints on the background �elds which will be
derived later will also remain formally invariant. From the target space point of view the transformations of the
background �elds (going along with the

�
x -dependent reparametrizations) thus correspond to local symmetries

of the target space e�ective theory. What we have done so far by e.g. eliminating the coe�cient �elds Υ(i) in
the BRST operator, corresponds to a target space gauge �xing of auxiliary background �elds.

Residual shift symmetry Any further shift reparametrization of dzα and d̂z̄α̂ changes o�-shell the form
of the BRST currents (5.39) and (5.40). But we may still allow changes of the current up to the pure spinor
constraint. The pure spinor constraint generates a gauge transformation as we will see in the next section. Any
change of the BRST currents proportional to the pure spinor constraint thus can be compensated by a gauge
transformation. Under the reparametrizations

dzα = d̃zα − Ξ(3)
b
δ(

�
x )(γbλ)αωzδ, ⇒ Ξ(3)

αγ
δ ≡ γbαγΞ(3)

b
δ (5.41)

d̂z̄α̂ = ˜̂
dz̄α̂ − Ξ̂(3)

b
δ̂(

�
x )(γbλ̂)α̂ω̂z̄δ̂, ⇒ Ξ̂(3)

α̂γ̂
δ̂ ≡ γbα̂γ̂Ξ̂(3)

b
δ̂ (5.42)

the BRST currents change to

jz = λαd̃zα − Ξ(3)
b
δ(

�
x )(λγbλ)ωzδ, j z̄ = 0 (5.43)

̂z̄ = λ̂
α̂ ˜̂
dz̄α̂ − Ξ̂(3)

b
δ̂(

�
x )(λ̂γbλ̂)ω̂z̄δ̂, ̂z = 0 (5.44)

Global symmetries like the BRST transformation can always be rede�ned by a gauge transformation without
changing their physical meaning. Doing this brings us back to the simple form of the BRST currents. The
transformation of the background �elds under this reparametrization is

Ω̃Mαβ = ΩMαβ − EMγγbγαΞ(3)
b
β (5.45)

˜̂ΩMα̂β̂ = Ω̂Mα̂β̂ − EM γ̂γbγ̂α̂Ξ̂(3)
b
β̂ (5.46)

C̃α
βγ̂ = Cα

βγ̂ − γbγαΞ(3)
b
βPγγ̂ , ˜̂

Cα̂
β̂α = Ĉα̂

β̂α − Pαγ̂γbγ̂α̂Ξ̂(3)
b
β̂ (5.47)

S̃αα̂
ββ̂ = Sαα̂

ββ̂ + Ĉα̂
β̂γγbγαΞ(3)

b
β + Cα

βγ̂γbγ̂α̂Ξ̂(3)
b
β̂ − γaγαΞ(3)

a
βPγγ̂γbγ̂α̂Ξ̂(3)

b
β̂ (5.48)

This target space gauge symmetry will be �xed at a later point in section 5.11 on page 71.

vielbeins transformation has the form

ẼM
A =

“
EM

c, EM
γ , EM

γ̂
”0BB@

δca −Pαδ̂Ξ̂
(2)

δ̂c
−Ξ(2)

δcPδα̂

0 δγα − Pαδ̂Ξ̂
(2)

δ̂γ
−Ξ(2)

δγPδα̂

0 −Pαδ̂Ξ̂
(2)

δ̂γ̂
δγ̂
α̂ − Ξ(2)

δγ̂Pδα̂

1CCA
For non-vanishing Pγγ̂ , the inverse of this matrix would enter the �nal form of G̃AB and make the problem of �nding a
reparametrization with G̃AB = diag (G̃ab, 0, 0) more complicated. �
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Superdi�eomorphisms Let us now consider the general reparametrizations (5.22) of the superspace-
embedding functions xM which correspond to target space super-di�eomorphisms.

x̃M = fM (
�
x ) (5.49)

The worldsheet derivatives of the embedding functions transform like target space vectors

∂̄x̃M = ∂x̃M/∂xN · ∂̄xN (5.50)

For the action and the BRST-operators to remain form-invariant, the background �elds have to transform

tensorial according to the appearance of the curved index M , e.g. Ω̃Mαβ(
�̃
x) = ΩNαβ(

�
x ) ∂xN/∂x̃M . All

objects with only �at indices or no indices have to transform like scalars. In this way we observe that the
resulting e�ective equations for the background �elds will be superdi�eomorphism invariant.

Gauge transformation of the B-�eld One of the gauge transformations of the background �elds is a bit
special, as it is not related to a worldsheet reparametrization. It is the shift B 7→ B + dΛ with some one-form
Λ. This does not change the action at all, as the total derivative term simply drops out (for closed strings). It
is, however, again not a worldsheet symmetry, as we do not transform the worldsheet �elds but the coupling
constants. The background �eld-constraints will in the end be the same for the transformed B and we thus
have again a gauge symmetry from the target space point of view.

Local Lorentz transformations and local scale transformations Next we consider reparametrizations
of the ghost λα. An admissible reparametrizations (5.23) of λα turns the pure spinor term Lzz̄a(λT γaλ) into
Lzz̄a(λ̃

T
Λ−1γaΛT −1λ̃). In order to obtain the old pure spinor term also in the new variables, the reparametriza-

tion of the ghosts has to be accompanied by an appropriate reparametrization Lzz̄b = Λba(
�
x ) · L̃zz̄a of the

Lagrange multiplier Lzz̄a. The condition for the invariance of the pure spinor term under the reparametrization
then reads6

γaαβ
!= Λba(Λ−1)αγγbγδ(Λ

−1)βδ (5.51)

For in�nitesimal reparametrizations we can rewrite it as

2L[α|
δγaδ|β]

!= Lb
aγbαβ (in�ni) (5.52)

with Λαβ ≡ δα
β + Lα

β, Λab ≡ δba + La
b (5.53)

6The fact that we use the index structure Λβ
α instead of Λαβ is only for later notational convenience. It is not necessarily

related to using NW-conventions, although λ̃
α

= λβΛβ
α contains a nice NW-contraction. For us the reason is simply that the

alternative index position would be very inconvenient for the associated connection. The symbol ΩMβ
α is just much simpler to

type (and looks better) than ΩM
α
β. �
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To obey this, both reparametrizations are restricted to local Lorentz transformations and local scale transfor-
mations7. The in�nitesimal generators thus have the following explicit form:

Lα
β = L(D)

α
β + L(L)

α
β, La

b = L(D)
a

b + L(L)
a
b (5.54)

L(D)
α
β ≡ 1

2
L(D)δα

β, L(L)
α
β =

1
4
L

(L)
ab γ

ab
α
β, L

(L)
ab = −L(L)

ba (5.55)

L(D)
a

b ≡ L(D)δba, L(L)
a
b = L

(L)
cd δ

[c
a η

d]b, L
(L)
cd = −L(L)

dc (5.56)

The reparametrization so far reads

λ̃
α

= Λβαλβ (5.57)

L̃zz̄a = Λ−1
a
bLzz̄b (5.58)

Note that in our notation Λ contains both, Lorentz transformations and scale transformations (dilatations).
In order to maintain the special form of the ghost kinetic term and of the BRST-operator, we likewise have

to transform

d̃zα = (Λ−1)αβdzβ (5.59)

ω̃zα = (Λ−1)αβωzβ (5.60)

with in�nitesimally (Λ−1)αβ = δα
β − Lαβ. The background �elds can again be reparametrized in a way that

the complete action plus the BRST operators remain form-invariant: Just transform every background �eld
with unhatted spinorial indices accordingly. E.g.

C̃α
βγ̂ = (Λ−1)αγΛδβCγδγ̂ , . . . (5.61)

Only the �eld ΩMαβ must not transform like a tensor, but like a connection, in order to keep the form-invariance
of the action

Ω̃Mαβ = −∂MΛαβ + (Λ−1)αγΛδβΩMγδ (5.62)

This is exactly the reason why we have combined it to a covariant derivative in the ghost kinetic term right
from the beginning. For the e�ective �eld equations all this means that they will be invariant under a local
Lorentz transformation and dilatation acting on all the indices of the background �elds which are coupled to
the ghosts, the ghost-momenta and the variables dzα, or in other words, acting on all unhatted �at spinorial
indices.

7The 32×32 unity and the antisymmetrized Γ-matrices Γa1...ap (see appendix D on page 167�) form a basis of the vector space
of all 32 × 32 matrices. The 16 × 16 sub-matrices δαδ , γa1a2α

δ , . . . , γa1...a10α
δ in the block-diagonal (they vanish for an odd

number p of bosonic antisymmetrized indices, see (D.110) on page 177) therefore span all the 16 × 16 matrices. And due to the
relations (D.128)-(D.131) on page 178, i.e. γ[p] ∝ γ[n−p], already the matrices δαδ , γa1a2α

δ and γa1...a4α
δ form a complete basis

of all 16×16-matrices. We thus can expand the in�nitesimal generator Lαδ of the reparametrization matrix (i.e. Λαδ = δαδ+Lαδ)
as follows:

Lα
δ =

1

2
L(D)δα

δ +
1

4
L

(L)
a1a2γ

a1a2
α
δ + La1...a4γ

a1...a4
α
δ

Plugging this expansion into the condition (5.52) yields

Lb
aγbαβ

!
= 2L[α|

δγaδ|β] = L(D)γaαβ +
1

2
L

(L)
a1a2 γ

a1a2
[α|
δγaδ|β]| {z }

∝γ[1]
αβ

+γ
[3]
[αβ]| {z }
0

+2La1...a4 γ
a1...a4

[α|
δγaδ|β]| {z }

∝γ
[3]
[αβ]| {z }
0

+γ
[5]
αβ

(∗)

Below the curly bracket, we have indicated the schematic expansion (D.112) of page 177. Due to (D.111), all the γ[3]'s vanish
because of the graded antisymmetrization. We can thus concentrate on the γ[1] and γ[5]-part:

γa1a2
[α|
δγaδ|β]

(D.114)
= 2γ[a1

αβη
a2]a

γa1...a4
[α|
δγaδ|β]

(D.114)
= γa1...a4a

αβ

The righthand side of (*) has to be a linear combination of γa's which is not true with a remaining γ[5]-term La1...a4γ
a1...a4a

αβ.
We thus have to demand

La1...a4
!
= 0

With this condition, (*) and therefore (5.52) are ful�lled and the relation between the reparametrization of the ghosts and of the
Lagrange multipliers is given by

Lα
δ =

1

2
L(D)δα

δ +
1

4
L

(L)
a1a2γ

a1a2
α
δ

Lb
a = L(D)δab + L

(L)
bc η

ca �

.



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 50

We get an equivalent but in the beginning completely independent local Lorentz transformation and scaling
Λ̂α̂β̂ acting on the hatted indices. In addition we may rede�ne the bosonic vielbein Ea = dxMEMa, which we
introduced by hand. Remember, it is related to GAB via GMN = EM

AGABEN
B and we did not yet restrict

GAB . The matrices EMa (of maximal rank 10) can thus be rede�ned by an arbitrary GL(10) transformation
on the index a, accompanied by a compensating transformation of GAB . At a later point, we will obtain a
restriction on GAB which then allows only Lorentz and scale transformations Λ̌ab acting on the index a of
EM

a. This transformation, acting on bosonic �at indices only, is again independent of the other two local
structure group transformations (acting on the spinorial indices). The relation of the three transformations will
in the end be �xed (see page 92) by a convenient gauge �xing of some torsion components. In contrast to the
fermionic transformations, the bosonic local Lorentz transformation is not coupled to a reparametrization of an
elementary �eld (from the worldsheet point of view), but only to the transformation of Gab:

ẼM
a = Λ̌caEMc (5.63)

G̃ab = (Λ̌−1)acGcd(Λ̌−1)bd (5.64)

The transformation of the background �elds is determined by their �at indices. Combining the bosonic and
fermionic �at indices to A ≡ (a,α, α̂), we have a block diagonal structure group transformation acting on
the target super tangent space:

ΛA
B ≡

 Λ̌ab 0 0
0 Λαβ 0
0 0 Λ̂α̂β̂

 (5.65)

All three blocks are independent. Λab instead, which is acting on the Lagrange multiplier (but on no background
�eld!), was induced by Λαβ via the invariance of γaαβ. Also keep in mind that Λ̌ab is so far not restricted to
Lorentz transformations or scalings. It will be so at a later point.

5.3 Connection

We have seen in equation (5.62) on the preceding page that ΩMαβ and Ω̂Mα̂β̂ transform like connections under
structure group transformations. Let us introduce some auxiliary target space �eld Ω̌Ma

b which transforms like
a connection under the transformation Λ̌ab of the bosonic tangent space. As the �eld Ω̌Ma

b does not appear
in the worldsheet action, nothing should depend on it in the end. We can now combine the three objects to a
structure group connection on the target super tangent space (let's call it the mixed connection)

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMαβ 0
0 0 Ω̂Mα̂β̂

 (5.66)

The underline will help us later to distinguish this connection from alternative choices. This underline will
decorate all objects referring to this connection. The corresponding superspace connection coe�cients ΓMN

K

are now given via

0 != ∇MENA ≡ ∂MENA − ΓMN
KEK

A + ΩMB
AEN

B (5.67)

Due to the block-diagonal form of the connection, the curvature RA
B ≡ dΩA

B −ΩA
C ∧ΩC

B is block diagonal
as well

RA
B =

 Řa
b 0 0

0 Rα
β 0

0 0 R̂α̂
β̂

 (5.68)

and the upper index of the torsion TA ≡ dEA − EC ∧ ΩC
A tells us by which block of the connection it is

determined:

TA = (Ť a, Tα, T̂ α̂) (5.69)

Remark Although the connection coe�cients which act on the spinorial indices have the correct transforma-
tion properties, we did not yet check that they are Lie algebra valued, i.e. that the matrices ΩM ·· and Ω̂M ·· are
not general matrices, but are restricted to the structure group algebra of Lorentz and scale transformations. We
will show this partwise below in section 5.4 when we discuss the antighost gauge symmetry and will complete
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the argument when we study the holomorphicity of the BRST current in section 5.7. Let us already here give
the result for completeness:

ΩMαβ =
1
2

Ω(D)
M δα

β +
1
4

Ω(L)
Ma1a2

γa1a2
α
β, Ω̂Mα̂β̂ =

1
2

Ω̂(D)
M δα̂

β̂ +
1
4

Ω̂(L)
Ma1a2

γa1a2
α̂
β̂ (5.70)

The labels (D) and (L) distinguish the dilatation (or scaling) part from the Lorentz part.
This special form of the connection of course induces a special form of the curvature (see (5.68) and

(F.88),(F.90) and (F.92) on page F.90). The curvature is blockdiagonal in the last two indices (5.68) and
each block decays into a scale (or dilatation) part and a Lorentz part:

RMNC
D = diag (ŘMNc

d, RMNγ
δ, R̂MN γ̂

δ̂) (5.71)

ŘMNc
d = F̌

(D)
MNδ

d
c + Ř

(L)
MN c

d, F̌
(D)
MN =

1
10
ŘMNc

c (5.72)

RMNγ
δ =

1
2
F

(D)
MNδγ

δ +
1
4
R

(L)
MNa1

bηba2γ
a1a2

γ
δ, F

(D)
MN = −1

8
RMNγ

γ (5.73)

R̂MN γ̂
δ̂ =

1
2
F̂

(D)
MNδγ̂

δ̂ +
1
4
R̂

(L)
MNa1

bηba2γ
a1a2

γ̂
δ̂, F̂

(D)
MN = −1

8
R̂MN γ̂

γ̂ (5.74)

with the scale �eld strength

F̌ (D) ≡ dΩ̌(D), F (D) ≡ dΩ(D), F̂ (D) ≡ dΩ̂(D) (5.75)

The major part of the covariant derivation of the last equation of motion in section 5.5, where we have not
yet completed the argument that the mixed connection is structure group valued, does not refer to this fact.
Only the variation of the pure spinor term will be a�ected and this will be discussed carefully.

5.4 Antighost gauge symmetry

The pure spinor constraints λγaλ = λ̂γaλ̂ = 0 are �rst class constraints at least in the �at case and thus
generate gauge symmetries. The same should be true in the curved case. We can see this fact, however, without
referring to the Hamiltonian language, simply as a consistency condition on the equations of motion.

For the ghost �eld we have two equations of motion which have to be consistent in order to allow any
solutions:

δS

δωzβ
= −

(
∂̄λβ + λα

(
∂̄xMΩMαβ + Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

))
≡ −Dz̄λβ (5.76)

δS

δLzz̄a
=

1
2

(λγaλ) (5.77)

Every linear combination of the second line, µa
2 (λγaλ), obviously is still on-shell zero for any set of local

parameters µa. When we act with ∂̄ on this expression, the result still has to vanish on-shell. I.e. for any µa,
we need to have:

0 !=
on-shell

∂̄
(µa

2
λγaλ

)
= ∀µa(z, z̄)

(5.16)
= ∂̄µa ·

1
2

(λγaλ)︸ ︷︷ ︸
δS

δLzz̄a

+µa(λγa)β Dz̄λβ︸ ︷︷ ︸
− δS
δωzβ

−µaλα
(

ΠC
z̄ ΩC[α|

δ + C[α|
δγ̂ d̂z̄γ̂ − λ̂

α̂
S[α|α̂

δβ̂ω̂z̄β̂

)
︸ ︷︷ ︸

Az̄[α|δ

γaδ|β]λ
β (5.78)

The �rst two terms in the last line vanish on-shell, so we may concentrate on the rest. Following footnote 7 on
page 49 (with Az̄[α|δ taking the role of L[α|

δ) we can expand Az̄[α|δ in antisymmetrized γ-matrices and obtain
for the last term in (5.78)

− µaλαAz̄[α|δγaδ|β]λ
β = −µaλα

(
1
2
A

(D)
z̄ γaαβ +

1
2
A

(L)
z̄ a1a2

γ[a1
αβη

a2]a +Az̄ a1...a4γ
a1...a4a

αβ

)
λβ =

= −
(
A

(D)
z̄ δba +A

(L)
z̄ a

b
)

︸ ︷︷ ︸
≡Az̄ ab

µb ·
1
2

(λγaλ)︸ ︷︷ ︸
δS

δLzz̄a

−µaAz̄ a1...a4(λγa1...a4aλ) (5.79)

It is natural to view Az̄ a
b as the connection coe�cients corresponding to Dz̄ when acting on bosonic indices.

It is built from the expansion coe�cients of Az̄αβ which are in turn built from the expansion coe�cients of
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ΩMαβ, Cαβγ̂ and Sαα̂ββ̂ (all seen as matrices in α and β � compare again to footnote 7 on page 49)8

Dz̄µa ≡ ∂̄µa −Az̄abµb, Az̄a
b ≡ ∂̄xMΩMa

b︸ ︷︷ ︸
ΠCz̄ ΩCab

+Cabγ̂ d̂z̄γ̂ − λ̂
α̂
Saα̂

bβ̂ω̂z̄β̂ (5.80)

with ΩMa
b ≡ Ω(D)

M δba + Ω(L)
Ma

b ⇐ ΩMαβ =
1
2

Ω(D)
M δα

β +
1
4

Ω(L)
Mabγ

ab
α
β + ΩMa1...a4︸ ︷︷ ︸

=0 (later)

γa1...a4
α
β (5.81)

Ca
bγ̂ ≡ C γ̂δba + C γ̂acη

cb ⇐ Cα
βγ̂ =

1
2
C γ̂δα

β +
1
4
C γ̂abγ

ab
α
β + C γ̂a1...a4︸ ︷︷ ︸

=0 (later)

γa1...a4
α
β (5.82)

Saα̂
bβ̂ ≡ Sα̂

β̂δba + Sα̂
β̂
acη

cb ⇐ Sαα̂
ββ̂ =

1
2
Sα̂

β̂δα
β +

1
4
Sα̂

β̂
acγ

ab
α
β + Sα̂

β̂
a1...a4︸ ︷︷ ︸

=0 (later)

γa1...a4
α
β (5.83)

The coe�cient ΩMa1...a4 and the other γ[4]-coe�cients do not enter the de�nitions of ΩMa
b, Cabγ̂ and Saα̂bβ̂.

At a later point we will �nd that the γ[4]-coe�cients actually have to vanish, which then implies Dz̄γaαβ = 0.
This is the actual motivation for this choice of bosonic connection. It is tempting to argue that

Az̄ a1...a4 ≡ ΠC
z̄ ΩCa1...a4 + d̂z̄γ̂C

γ̂
a1...a4 + λ̂

α̂
Sα̂

β̂
a1...a4ω̂z̄β̂ (5.84)

has to vanish already at this point, in order for all the terms in (5.78) to vanish on-shell. But the condition
will be a bit weaker, as there is yet another equation of motion applicable9. We can replace Πγz̄ (appearing in

((5.84)) and (5.80), and de�ned in (5.20)) with the equation of motion (5.9):Πγz̄ = δS
δdzγ
−Pγγ̂ d̂z̄γ̂− λ̂

α̂
Ĉα̂

β̂γω̂z̄β̂
. Putting now all the last equations together, we arrive at

∂̄
(µa

2
λγaλ

)
= Dz̄µa ·

δS

δLzz̄a
− µa(λγa)β

δS

δωzβ
− µaΩγa1...a4(λγa1...a4aλ)

δS

δdzγ
+

−µa
[
Π{c,γ̂}z̄ Ω{c,γ̂}a1...a4 + d̂z̄γ̂

(
C γ̂a1...a4 − Pγγ̂Ωγa1...a4

)
+

+λ̂
α̂
(
Sα̂

β̂
a1...a4 − Ĉα̂β̂γΩγa1...a4

)
ω̂z̄β̂

]
(λγa1...a4aλ) (5.85)

The dummy indices in curly brackets {c, γ̂} in the second line simply should indicate a sum over c and γ̂
only, and not over γ. The �rst line on the righthand side vanishes on-shell. The next two lines also have to
vanish for every µa, because the left-hand side vanishes on-shell. At this point we cannot make use of further
equations of motion. In particular the equation of motion for xK , which we have not yet derived, would be of
conformal weight (1,1) (containing terms like ∂∂̄xM ) and would therefore not be applicable. For consistency of
the equations of motion, we thus get the following restrictions on the background �elds

Ωc a1...a4 = Ωγ̂ a1...a4 = 0 (5.86)

C γ̂a1...a4 = Pγγ̂Ωγa1...a4 (5.87)

Sα̂
β̂
a1...a4 = Ĉα̂

β̂γΩγa1...a4 (5.88)

This condition is weaker as the one given in [13] (see footnote (9)). It coincides exactly i� we impose in addition
Ωγ a1...a4 = 0 (see the remark at the end of this section). This additional restriction will, however, only be a
result of BRST invariance.

According to Noether, every symmetry transformation corresponds to a divergence free current and vice
verse. For a given current jζ , we can calculate the corresponding transformations by reading of the coe�cients

8The coe�cients Ω
(D)
M and Ω

(L)
M a1a2

can be extracted from the given ΩMα
β using δαα = −16 and γa1a2α

βγb2b1 β
α = −32δa1a2

b1b2
(graded version of (D.140) on page 178)

ΩM = −
1

8
ΩMα

α

ΩMa1a2 = −
1

8
γa1a2 β

αΩMα
β �

9In the original derivation of the supergravity constraints from Berkovits' pure spinor string in [13] it is argued that the action
has to be invariant under the gauge transformation δωα = µa(γaλ)α (the gauge symmetry generated by the pure spinor constraint
in �at space). In our notation this implies exactly Az̄ a1...a4 = 0. However, there is no reason a priory, why the form of the gauge
symmetry should not be modi�ed in curved space, as long as this modi�cation vanishes for the �at case. We will indeed discover
such a modi�cation in the following, and with this modi�cation the restriction on the background �elds is weaker. Nevertheless we
will obtain the same result in the end, as Az̄ a1...a4 = 0 will be a consequence of BRST invariance later. �



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 53

of the variational derivatives of S in the o�-shell divergence of the current (see (E.7)):

∂ζj
ζ
(ρ) = −δ(ρ)φIall

δS

δφIall
(5.89)

If we take jz ≡ µza
2 (λγaλ), jz̄ ≡ 0, the condition (5.78) tells that the current is on-shell divergence free. We

have chosen a parameter of weight (1, 0), in order to get a current of correct weight. From (5.85) we can now
read o� the corresponding symmetry transformations:

δ(µ)ωzα = µza(λγa)α (5.90)

δ(µ)Lzz̄a = −Dz̄µza (5.91)

δ(µ)dzγ = µzaΩγa1...a4(λγa1...a4aλ) (5.92)

The current is divergence free for arbitrary (local) µza and we therefore have a gauge symmetry. This is
the antighost gauge symmetry generated by the pure spinor constraint. For a �at background we have
Ωγa1...a4 = 0 and the transformation reduces to the usual form. As stated several times already, we will obtain
Ωγa1...a4 = 0 also in the curved background, but only later as a result of BRST invariance.

With the same reasoning we get a gauge transformation corresponding to the pure spinor constraint on the
hatted ghost �elds. This leads to equivalent restrictions on the hatted connection Ω̂Mα̂β̂ and also on Ĉα̂β̂β (seen
as matrix in α̂ and β̂). The background �eld Sαα̂ββ̂ is special, because the hatted version of the expansion
(5.83) together with the condition (5.88) is again a condition on the expansion of S, now in its hatted indices.
Once it is seen as matrix in α and β and once as matrix in α̂ and β̂. This is better treatable in the special case
considered in the following remark.

Remark on Ωγa1...a4 = Ω̂γ̂a1...a4 = 0: Although we will discover these two additional constraints only later

in (5.153) on page 60, it is nice to have everything at one place. So let us continue the discussion of Sαα̂ββ̂ in
this case. As indicated above, we can expand it in two steps:

Sαα̂
ββ̂ =

1
2
Sα̂

β̂δα
β +

1
4
Sα̂

β̂
a1a2γ

a1a2
α
β =

=
1
2

(
1
2
Sδα̂

β̂ +
1
4
Sa1a2γ

a1a2
α̂
β̂

)
δα
β +

+
1
4

(
1
2
Ŝa1a2δα̂

β̂ +
1
4
Sa1a2b1b2γ

b1b2
α̂
β̂

)
γa1a2

α
β (5.93)

Let us summarize the result for all the involved �elds:

ΩMαβ =
1
2

Ω(D)
M δα

β +
1
4

Ω(L)
Ma1a2

γa1a2
α
β, Ω̂Mα̂β̂ =

1
2

Ω̂(D)
M δα̂

β̂ +
1
4

Ω̂(L)
Ma1a2

γa1a2
α̂
β̂ (5.94)

Cα
βγ̂ =

1
2
C γ̂δα

β +
1
4
C γ̂a1a2

γa1a2
α
β, Ĉα̂

β̂γ =
1
2
Ĉγδα̂

β̂ +
1
4
Ĉγa1a2

γa1a2
α̂
β̂ (5.95)

Sαα̂
ββ̂ =

1
4
Sδα

βδα̂
β̂ +

1
8
Sa1a2δα

βγa1a2
α̂
β̂ +

+
1
8
Ŝa1a2γ

a1a2
α
βδα̂

β̂ +
1
16
Sa1a2b1b2γ

a1a2
α
βγb1b2 α̂

β̂ (5.96)

Seen as a matrix in α and β (or α̂ and β̂ respectively), they are sums of generators of Lorentz and scale
transformations. Remembering the de�nition of Dz̄ given in (5.16) and its extension to bosonic indices in
(5.80), it leaves invariant the γ-matrices:10

Dz̄γaαβ = 0, D̂zγaα̂β̂ = 0 (5.97)

The expressions λαωzα and λαγa1a2
α
βωzβ are the only gauge invariant quantities (on the constraint

surface λγaλ = 0) which are linear in ghost and antighost. The reasoning is as follows: the most general
combination is λαXαβωzβ with some general matrix Xαβ which can be expanded in γ[0], γ[2] and γ[4]. Upon
acting with a gauge transformation on this term, we get the products γ[0]γ[1] = γ[1], γ[2]γ[1] ∝ γ[1] + γ[3], and

10

Dz̄γaαβ = ∂̄γaαβ| {z }
=0

+
“
∂̄xMΩMb

a + Cb
aγ̂ d̂z̄γ̂ − λ̂

α̂
Sbα̂

aβ̂ω̂z̄β̂

”
γbαβ − 2

“
∂̄xMΩM [α|

δ + C[α|
δγ̂ d̂z̄γ̂ − λ̂

α̂
S[α|α̂

δβ̂ω̂z̄β̂

”
γaδ|β] �
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γ[4]γ[1] ∝ γ[3] + γ[5]. As γ[5] does not vanish when contracted with two ghosts, the γ[4]-part of the expansion
has to vanish and we have shown the above statement. The gauge invariant expression λαωzα is nothing but
the ghost current (5.143), while λαγa1a2

α
βωzβ is part of the Lorentz current, which is discussed in Berkovits'

papers.

5.5 Covariant variational principle & EOM's

Remember the form of the action (5.1):

S =
∫
d2z

1
2

ΠA
z (GAB +BAB)︸ ︷︷ ︸

≡OAB

ΠB
z̄ + Πγz̄ dzγ + Πγ̂z d̂z̄γ̂ + dzγPγγ̂ d̂z̄γ̂ +

+λαCαβγ̂ωzβd̂z̄γ̂ + λ̂
α̂
Ĉα̂

β̂γω̂z̄β̂dzγ + λαλ̂
α̂
Sαα̂

ββ̂ωzβω̂z̄β̂ +

+∇z̄λβωzβ + ∇̂λ̂
β̂
ω̂z̄β̂ +

1
2
Lzz̄a(λγaλ) +

1
2
L̂zz̄a(λ̂γaλ̂) (5.98)

In order to check if the BRST currents (5.39) and (5.40) are on-shell conserved (holomorphic and antiholomorphic
respectively), it is �rst of all necessary to calculate the remaining classical equation of motion, the variation
with respect to xK . Remember, the other equations of motion were given already in (5.9)-(5.15) on page 45.

Covariant variation Deriving the variational derivative with respect to xK is quite involved if we do not
organize it properly. In the end we want to have equations which transform covariantly under superdi�eomor-
phisms and local structure group transformations. We therefore want to introduce a method where we stay
covariant right from the beginning, e.g. a target space covariant variation of the action. In order to motivate the
following de�nitions, let us consider only the variation of one simple term of the Lagrangian, e.g. the RR-term:

δ
(
dzγPγγ̂(

�
x )d̂z̄γ̂

)
=

= δdzγPγγ̂ d̂z̄γ̂ + dzγδx
M∂MPγγ̂ d̂z̄γ̂ + dzγPγγ̂δd̂z̄γ̂ = (5.99)

=
(
δdzγ − δxMΩMγβdzβ

)︸ ︷︷ ︸
≡δcovdzγ

Pγγ̂ d̂z̄γ̂ + dzγ δx
M∇MPγγ̂︸ ︷︷ ︸
≡δcovPγγ̂

d̂z̄γ̂ + dzγPγγ̂
(
δd̂z̄γ̂ − δxM Ω̂M γ̂ α̂d̂z̄α̂

)
︸ ︷︷ ︸

≡δ ˆcovdz̄γ̂

(5.100)

In order to arrive at the target space covariant expression ∇MPγγ̂ , it is thus convenient to group part of the
xK-variation to the variation of dzγ or d̂z̄γ̂ as done above. Of course we could have chosen any connection for
the above rewriting, as long as we use for each contracted index pair the same connection. For the variation of
the complete action, however, it is most convenient to choose the mixed connection, de�ned in (5.66),

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMαβ 0
0 0 Ω̂Mα̂β̂

 (5.101)

Like for the structure group transformation, the connection ΩMαβ acts on the unhatted fermionic indices and
(!) on Lzz̄a, while Ω̂Mα̂β̂ acts on the hatted indices and (!) on Lz̄za. The third independent block Ω̌Ma

b acts
only on the bosonic indices that appear via the bosonic vielbein and not on elementary �elds.

Similar considerations as for the RR-term hold for the other terms of the action. This motivates the de�nition
of the covariant variation of the elementary �elds in the above spirit:

δcovλ
α ≡ δλα + δxMΩMβαλβ, δcovωzα ≡ δωzα − δxMΩMαβωzβ (5.102)

δcovdzα ≡ δdzα − δxMΩMαβdzβ, δcovLzz̄a ≡ δLzz̄a − δxMΩMa
bLzz̄b (5.103)

δ ˆcovλ̂
α̂
≡ δλ̂

α̂
+ δxM Ω̂Mβ̂

α̂λ̂
β̂
, δ ˆcovω̂z̄α̂ ≡ δωz̄α̂ − δxM Ω̂Mα̂β̂ω̂z̄β̂ (5.104)

δ ˆcovd̂z̄α̂ ≡ δd̂z̄α̂ − δxM Ω̂Mβ̂
α̂d̂z̄α̂, δ ˆcovL̂z̄za ≡ δL̂z̄za − δxM Ω̂Ma

bL̂z̄zb (5.105)

δcovx
K ≡ δxK (5.106)

Unfortunately this idea is not completely new. Similar versions of covariant variations have been presented in
[63, 64] which in turn refer to [65, 66]. As already indicated in (5.100), we understand the covariant variation
acting on arbitrary background tensor �elds TNBMA(

�
x ) as

δcovT
NB
MA(

�
x ) ≡ δxK∇KTNBMA = (5.107)

= δTNBMA + δxK
(
ΓKL

NTLBMA + ΩKC
BTNCMA − ΓKM

LTNBLA − ΩKA
CTNBMC

)
(5.108)
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In the last line we discover that the covariant variation acts on background �elds in the same way as it acts on
elementary �elds if the index structure is the same. Note that the covariant variation cannot be understood as
a variation (of e.g. xK) in the ordinary sense. The covariant variation is simply a derivation which only reduces
to an ordinary variation when acting on target space scalars, e.g. on the Lagrangian.

From the target space point of view, also objects like ∇z̄λβ (target space covariant worldsheet derivatives
of worldsheet variables) transform tensorial under structure group transformations and di�eomorphisms. The
covariant variation is then simply de�ned according to their target space transformation properties:

δcov∇z̄λβ ≡ δ∇z̄λβ + δxKΩKαβ∇z̄λα (5.109)

δ ˆcov∇̂zλ̂
β̂
≡ δ∇̂zλ̂

β̂
+ δxKΩ̂Kα̂β̂∇̂zλ̂

α̂
(5.110)

This is also the reason why the Lagrange multiplier is varied with help of the connection ΩMa
b (de�ned in (5.81)

on page 52) which is induced by ΩMαβ, and not with the independent Ω̌Ma
b that we have introduced to act

on the bosonic vielbein indices: In the reparametrization corresponding to the structure group transformations,
the transformation of the Lagrange multiplier is directly coupled to the transformation of the ghost.

Next we de�ne the covariant variational derivatives δcovS
δφIall

via

δS ≡
∫

Σ

d2z δcovφ
I
all(z, z̄)

δcovS

δφIall(z, z̄)
(5.111)

We will soon give a statement about the relation to the ordinary variational derivative. But let us �rst collect
some tools to calculate it. In order to arrive at the righthand side of (5.111), we need to extract the covariant
variations of the elementary �elds. In expressions like δcov∇z̄λβ in (5.109) this would require to commute
e.g. the covariant variation δcov with the covariant derivative ∇z̄ and then do some partial integration. It
was probably already noticed by the reader that the covariant variation resembles very much the target space
covariant worldsheet derivative ∇z/z̄ anyway. In fact the latter can be seen as a special case of it, namely when
we have δφIall = ∂z/z̄φ

I
all. Let us therefore consider the commutators of two arbitrary covariant variations which

will contain the desired commutator [δcov,∇z̄] in the mentioned special case:[
δ(1)
cov, δ

(2)
cov

]
xK =

[
δ(1), δ(2)

]
xK + 2δ(1)xMTMN

Kδ(2)xN (5.112)[
δ(1)
cov, δ

(2)
cov

]
ϕAMB =

[
δ(1), δ(2)

]
cov

ϕAMB +

+2δ(1)xKδ(2)xL
(
RKLC

AϕCMB +RKLN
MϕANB −RKLBCϕAMC

)
(5.113)

Here ϕAMB is just a representative example for some elementary or composite �eld which transforms tensorial
under the target space transformations (super-di�eomorphisms and local structure group transformations).

The covariant variation of the complete action coincides with the ordinary one as all indices are contracted.
However, the covariant variational derivative de�ned in (5.111), di�ers from the ordinary variational derivatives.
The important thing is, that nevertheless they de�ne a set of equations of motion which is equivalent the usual
one � and target space covariant. Let us see the equivalence explicitly and reformulate the ordinary variation
into the covariant one:

δS =
∫
d2z δdzγ

δS

δdzγ
+ δd̂z̄γ̂

δS

δd̂z̄γ̂
+ δλα

δS

δλα
+ δλ̂

α̂ δS

δλ̂
α̂

+ δωzβ
δS

δωzβ
+ δω̂z̄β̂

δS

δω̂z̄β̂
+

+δLzz̄a
δS

δLzz̄a
+ δL̂z̄za

δS

δL̂z̄za
+ δxK

δS

δxK
= (5.114)

=
∫
d2z δcovdzγ

δS

δdzγ
+ δ ˆcovd̂z̄γ̂

δS

δd̂z̄γ̂
+ δcovλ

α δS

δλα
+ δ ˆcovλ̂

α̂ δS

δλ̂
α̂

+ δcovωzβ
δS

δωzβ
+ δ ˆcovωz̄β̂

δS

δω̂z̄β̂
+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂zz̄a

δS

δL̂zz̄a
+ δxK

( δS

δxK
+ ΩKγδdzδ

δS

δdzγ
+ Ω̂Kγ̂ δ̂d̂z̄δ̂

δS

δd̂z̄γ̂
− ΩKβαλβ

δS

δλα
+

−Ω̂Kβ̂
α̂λ̂

β̂ δS

δλ̂
α̂

+ ΩKβαωzα
δS

δωzβ
+ Ω̂Kβ̂

α̂ωz̄α̂
δS

δω̂z̄β̂
+ ΩKabLzz̄b

δS

δLzz̄a
+ Ω̂KabL̂zz̄b

δS

δL̂zz̄a

)
(5.115)
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We can now read o� the covariant variational derivative δScov
δxK

w.r.t. xK as the coe�cient of δxK :11

δcovS

δxK
=

δS

δxK
+ ΩKγδdzδ

δS

δdzγ
+ Ω̂Kγ̂ δ̂d̂z̄δ̂

δS

δd̂z̄γ̂
− ΩKβαλβ

δS

δλα
− Ω̂Kβ̂

α̂λ̂
β̂ δS

δλ̂
α̂

+

+ΩKβαωzα
δS

δωzβ
+ Ω̂Kβ̂

α̂ωz̄α̂
δS

δω̂z̄β̂
+ ΩKabLzz̄b

δS

δLzz̄a
+ Ω̂KabL̂zz̄b

δS

δL̂zz̄a
(5.116)

All the other variational derivatives (5.9)-(5.15) remain untouched:

δcovS

δdzα
=

δS

δdzα
, . . . ,

δcovS

δL̂z̄za
=

δS

δL̂z̄za
(5.117)

According to (5.116), δcovS/δxK coincides with δS/δxK when all the other equations of motion are ful�lled.
This leads to the following obvious but important statement:

Proposition 4 Setting the covariant variational derivatives de�ned via (5.116) and (5.117) to zero, leads to a
set of equations which is equivalent to the equations of motion obtained by the ordinary variational derivatives:

δcovS

δ
(
xK , dzα,λ

α,ωzα, d̂z̄α̂, λ̂
α̂
, ω̂z̄α̂, Lzz̄a, L̂z̄za

) = 0 ⇐⇒ δS

δ
(
xK , dzα,λ

α,ωzα, d̂z̄α̂, λ̂
α̂
, ω̂z̄α̂, Lzz̄a, L̂z̄za

) = 0

(5.118)
The covariant variational derivatives in turn are obtained by using the covariant variation de�ned in (5.102)-
(5.109) and the commutators (5.112) and (5.113).

The last equation of motion We are now ready to calculate the last equation of motion, the variation with
respect to xK . Admittedly introducing a new tool like the covariant variation for just one equation seems a bit
of overkill. However, in any case we would have been forced during the calculation to organize the result into
covariant expressions and the covariant variation gives a general recipe how to do that. Although we described
the covariant variation for the Berkovits string, it is a tool which is very useful in any other nonlinear sigma
model. In addition it should be noted that the above concept works for an arbitrary connection and not only
for the connection ΩMA

B or the corresponding ΓMN
K . The calculation just simpli�es at some points, if one

restricts to connections with special properties, or to connections which are already present in the action. E.g.
only because we are choosing ΩMA

B , we can make use of (5.112) and (5.113) in order to commute the covariant
variation with the target space covariant worldsheet derivative. In addition we will make use of the fact that
the covariant variation annihilates the vielbein:

δcovEM
A(

�
x ) = 0 (5.119)

Note also how the antisymmetrized covariant derivative of the B-�eld can be written in terms of its exterior
derivative H and the torsion:

∇B ≡ ∇MBMM = dB − ıTB = HMMM − 2TMM
KBKM (5.120)

The important contributions to the (covariant) variation of the action come from the covariant variation of the
(spacetime covariant) worldsheet derivatives of the elementary �elds, like δcov∇z̄λα and δcovΠA

z/z̄. For the latter
we have (compare to the equation before (2.12) in [59])

δcovΠA
z/z̄

(5.119)
= δcov∂z/z̄x

K · EKA = (5.121)

(5.112)
= ∇z/z̄δxK · EKA + 2δxMTMN

A∂z/z̄x
N (5.122)

For the ghost terms we obtain curvature expressions instead of torsion expressions:

δcov∇z̄λβ
(5.113)

= ∇z̄δcovλβ + 2δxK ∂̄xLRKLαβλα (5.123)

δ ˆcov∇̂zλ̂
β̂ (5.113)

= ∇̂zδ ˆcovλ̂
β̂

+ 2δxK∂xLR̂KLα̂β̂λ̂
α̂

(5.124)

11Note the analogy to the tangent space covariant derivative of some multivector valued form

K(x, e, ẽ) ≡ Ka1...ak
b1...bk′ (x) · ea1 · · · eak ẽb1 · · · ẽbk′

written in the following way

∇mK = ∂mK(x, e, ẽ)− eaΩma
b ∂

∂eb
K + ẽaΩmb

a ∂

∂ẽb
K �
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As a last ingredient, before we vary the action, we should note a specialty of the pure spinor term. The covariant
variation on the Lagrange multiplier is chosen in such a way that the covariant variation of γaαβ is almost zero.
But as we discussed at length in section 5.4 on page 51 the structure group is not yet for all components of
the connection reduced to Lorentz plus scale transformations and we have in general a non-vanishing γ[4]-part
Ωγa1...a4 . At least formally we therefore obtain a non-vanishing covariant derivative on γaαβ (with ΩMαβ acting
on the spinorial indices and ΩMa

b of (5.81) acting on the bosonic one):

∇Mγaαβ = −2EMγΩγ a1...a4γ
a1...a4

[α|
δγaδ|β]

(D.114)
= −2EMγΩγ a1...a4γ

a1...a4a
αβ (5.125)

Due to (5.116) and (5.117) we know already that only the variational derivative with respect to xK gets
modi�ed while the others remain untouched. We therefore collect the terms which are proportional to the xK-
variation only. In particular we do not need to consider the �rst term respectively of the above two equations.
For completeness, however, we keep the total derivatives coming from the corresponding partial integration.

Apart from the variation of ΠA
z/z̄, ∇z̄λ

β and ∇̂zλ̂
β̂
we only have covariant variations of the background �elds.

The (covariant) variation of the action (5.98) thus takes the following form

δS =
∫
d2z δxK

[1
2

ΠA
z ∇KOABΠB

z̄ + dzγ∇KPγγ̂ d̂z̄γ̂ +

+λα∇KCαβγ̂ωzβd̂z̄γ̂ + λ̂
α̂
∇KĈα̂β̂γω̂z̄β̂dzγ + λαλ̂

α̂
∇KSαα̂ββ̂ωzβω̂z̄β̂

]
+

+
1
2
(
∇zδxK · EKA + 2δxMTMN

A∂zx
N
)︸ ︷︷ ︸

δcovΠAz

OABΠB
z̄ +

1
2

ΠA
z OAB

(
∇z̄δxK · EKB + 2δxMTMN

B∂z̄x
N
)︸ ︷︷ ︸

δcovΠBz̄

+

+
(
∇z̄δxK · EKγ + 2δxMTMN

γ∂z̄x
N
)︸ ︷︷ ︸

δcovΠγz̄

dzγ +
(
∇zδxK · EK γ̂ + 2δxMTMN

γ̂∂zx
N
)︸ ︷︷ ︸

δcovΠγ̂z

d̂z̄γ̂ +

+ 2δxK ∂̄xLRKLαβλα︸ ︷︷ ︸
δcov∇z̄λβ−∇z̄δcovλβ

ωzβ + 2δxK∂xLR̂KLα̂β̂λ̂
α̂︸ ︷︷ ︸

δ ˆcov∇̂zλ̂
β̂−∇̂zδ ˆcovλ̂

β̂

ω̂z̄β̂ +

−δxKEKγΩγ a1...a4(λγa1...a4aλ) · Lzz̄a − δxKEK γ̂Ω̂γ̂ a1...a4(λ̂γa1...a4aλ̂) · L̂z̄za +

+δcovdzα
δS

δdzα
+ δ ˆcovd̂z̄α̂

δS

δd̂z̄α
+ δcovλ

α δS

δλα
+ δ ˆcovλ̂

α̂ δS

δλ̂
α̂

+ δcovωzα
δS

δωzα
+ δ ˆcovω̂z̄α̂

δS

δω̂z̄α̂
+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂z̄za

δS

δL̂z̄za
+ ∂z̄

(
δcovλ

βωzβ

)
+ ∂z

(
δ ˆcovλ̂

β̂
ω̂z̄β̂

)
(5.126)

We �nally make a partial integration for the terms in the third and fourth line (keeping again the total derivatives
as a reference for future studies of the open string) and arrive at

δS =
∫
d2z δxKEK

C
[
− 1

2
OCB∇zΠB

z̄ −
1
2
∇z̄ΠA

z OAC +

+
1
2

ΠA
z

(
∇COAB −∇AOCB −∇BOAC + 2TCA

DODB + 2OADTCB
D
)

ΠB
z̄ +

−δCγ∇z̄dzγ − δC γ̂∇z d̂z̄γ̂ + 2TCB
γΠB

z̄ dzγ + 2TCA
γ̂ΠA

z d̂z̄γ̂ +

+2ΠB
z̄ RCBα

βλαωzβ + 2ΠA
z R̂CAα̂

β̂λ̂
α̂
ω̂z̄β̂ +

+dzγ∇CPγγ̂ d̂z̄γ̂ + λα∇CCαβγ̂ωzβd̂z̄γ̂ + λ̂
α̂
∇CĈα̂β̂γω̂z̄β̂dzγ +

+λαλ̂
α̂
∇CSαα̂ββ̂ωzβω̂z̄β̂ − δC

γΩγ a1...a4(λγa1...a4aλ) · Lzz̄a − δC γ̂Ω̂γ̂ a1...a4(λ̂γa1...a4aλ̂) · L̂z̄za
]

+

+δcovdzα
δS

δdzα
+ δ ˆcovd̂z̄α̂

δS

δd̂z̄α
+ δcovλ

α δS

δλα
+ δ ˆcovλ̂

α̂ δS

δλ̂
α̂

+ δcovωzα
δS

δωzα
+ δ ˆcovω̂z̄α̂

δS

δω̂z̄α̂
+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂z̄za

δS

δL̂z̄za
+

+∂z̄

(
δcovλ

βωzβ +
1
2

ΠA
z OAKδx

K + δxK · EKγdzγ
)

+

+∂z

(
δ ˆcovλ̂

β̂
ω̂z̄β̂ +

1
2
δxKOKBΠB

z̄ + δxK · EK γ̂ d̂z̄γ̂
)

(5.127)

Now we can read o� the covariant variational derivative with respect to xK . But let us note two further relations
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�rst:

∇COAB −∇AOCB −∇BOAC =
(5.120)

= 3HCAB − 2TAB
DBDC − 2TCA

DBDB − 2TBC
DBDA +∇CGAB −∇AGCB −∇BGAC (5.128)

and

∇zΠD
z̄

(5.112)
= ∇z̄ΠD

z + 2ΠA
z ΠB

z̄ TAB
D (5.129)

In addition we de�ne

TAB|C ≡ TAB
DGDC (5.130)

Note that we use the symmetric rank two tensor GAB only to pull indices down. Pulling them up again is in
general not possible as GAB might be degenerate. In fact we will learn soon that it has to be degenerate.

The �nal result of the variation now reads

δS =
∫
d2z δxK

δcovS

δxK
+ δcovdzα

δS

δdzα
+ δ ˆcovd̂z̄α̂

δS

δd̂z̄α
+

+δcovλα
δS

δλα
+ δ ˆcovλ̂

α̂ δS

δλ̂
α̂

+ δcovωzα
δS

δωzα
+ δ ˆcovω̂z̄α̂

δS

δω̂z̄α̂
+

+δcovLzz̄a
δS

δLzz̄a
+ δ ˆcovL̂z̄za

δS

δL̂z̄za
+

+∂z̄

(
δcovλ

βωzβ +
1
2

ΠA
z OAKδx

K + δxK · EKγdzγ
)

+

+∂z

(
δ ˆcovλ̂

β̂
ω̂z̄β̂ +

1
2
δxKOKBΠB

z̄ + δxK · EK γ̂ d̂z̄γ̂
)

(5.131)

with the following covariant variational derivatives or equations of motion (remember (5.9)-(5.15)):

δcovS

δxK
= EK

C
[
−∇z̄ΠD

z︸ ︷︷ ︸
−∇zΠDz̄ +2ΠAz ΠBz̄ TAB

D

GDC + ΠA
z

(
3
2
HCAB − TAB|C + 2TC(A|B) +

1
2
∇CGAB −∇(AGB)C

)
ΠB
z̄ +

−δCγ∇z̄dzγ − δC γ̂∇̂z d̂z̄γ̂ + 2TCBγΠB
z̄ dzγ + 2T̂CAγ̂ΠA

z d̂z̄γ̂ +

+dzγ∇CPγγ̂ d̂z̄γ̂ + λα∇CCαβγ̂ωzβd̂z̄γ̂ + λ̂
α̂
∇CĈα̂β̂γω̂z̄β̂dzγ +

+λαλ̂
α̂
∇CSαα̂ββ̂ωzβω̂z̄β̂ − δC

γΩγ a1...a4(λγa1...a4aλ) · Lzz̄a − δC γ̂Ω̂γ̂ a1...a4(λ̂γa1...a4aλ̂) · L̂z̄za +

+2ΠB
z̄ RCBα

βλαωzβ + 2ΠA
z R̂CAα̂

β̂λ̂
α̂
ω̂z̄β̂

]
(5.132)

δS

δdzγ
= Πγz̄ + Pγγ̂ d̂z̄γ̂ + λ̂

α̂
Ĉα̂

β̂γω̂z̄β̂ (5.133)

δS

δd̂z̄γ̂
= Πγ̂z + dzγPγγ̂ + λαCαβγ̂ωzβ (5.134)

δS

δωzβ
= −

(
∇z̄λβ + λα

(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

))
≡ −Dz̄λβ (5.135)

δS

δω̂z̄β̂
= −

(
∇̂zλ̂

β̂
+ λ̂

α̂
(
Ĉα̂

β̂γdzγ − λαSαα̂ββ̂ωzβ
))
≡ −D̂zλ̂

β̂
(5.136)

δS

δλα
= −

(
∇z̄ωzα −

(
Cα

βγ̂ d̂z̄γ̂ − λ̂
α̂
Sαα̂

ββ̂ω̂z̄β̂

)
ωzβ

)
+ Lzz̄a(γaλ)α ≡ −Dz̄ωzα + Lzz̄a(γaλ)α (5.137)

δS

δλ̂
α̂

= −
(
∇̂zω̂z̄α̂ −

(
Ĉα̂

β̂γdzγ − λαSαα̂ββ̂ωzβ
)
ω̂z̄β̂

)
+ L̂zz̄a(γaλ̂)α̂ ≡ −D̂zω̂z̄α̂ + L̂zz̄a(γaλ̂)α̂ (5.138)

δS

δLzz̄a
=

1
2

(λγaλ),
δS

δL̂zz̄a
=

1
2

(λ̂γaλ̂) (5.139)

Note that we used for the covariant variation an independent connection Ω̌Ma
b for the bosonic subspace. This

connection is a priory not a background �eld of the string metric. We are free to choose it in a convenient way.
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5.6 Ghost current

Let us assign ghost numbers (1, 0) and (−1, 0) to the �elds λα and ωzα. The corresponding transformation
(with some global transformation parameter ρ) is

δλα = ρλα, δωzα = −ρωzα (5.140)

For the action to remain unchanged, we also need to transform the Lagrange multiplier

δLzz̄a = −2ρLzz̄a (5.141)

which therefore has ghost number −2. Varying the action with a local parameter, we arrive at

δS =
∫

Σ

d2z ∂̄ρ · (λβωzβ) + bdry-terms (5.142)

According to (E.42) and footnote 4 on page 186, we can read o� the ghost current as

jgh = λαωzα (5.143)

It has the same form as in �at space.
In section 5.7, we will derive the BRST transformations of the worldsheet �elds from the given BRST current

via �inverse Noether� (see (E.7)). The idea is to calculate the divergence of the current and try to express it
in terms of the equations of motion. The transformations of the worldsheet �elds can then be read o� as
coe�cients. This avoids switching to the Hamiltonian formalism and using the Poisson bracket to generate the
transformations. It might be instructive to see, how �inverse Noether� works for the simple example of the ghost
current before we come to the BRST current later:

− δφIall
δS

δφIall

!= ∂̄(λαωzα) =

= Dz̄λα · ωzα + λαDz̄ωzα =

= − δS

δωzα
ωzα + λα

(
− δS

δλα
+ La(γaλ)α

)
=

= ωzα
δS

δωzα
− λα δS

δλα
+ 2Lzz̄a

δS

δLzz̄a
(5.144)

From this one can read o� the transformations with which we had begun.
The ghost current and the corresponding transformations for the hatted variables are obtained via proposition

3 on page 44.

5.7 Holomorphic BRST current

We now come to the main part of the derivation of the supergravity constraints from the pure spinor string.
The pure spinor string in �at background had two (graded) commuting and nilpotent BRST di�erentials which
de�ned the physical spectrum. Putting the string in a curved background is a matter of consistent deformation.
I.e., gauge symmetries and BRST symmetries have to survive. They may be deformed, but the number of
physical degrees of worldsheet variables cannot simply change as soon as there is a backreaction from the back-
ground that was produced by the strings themselves. This is a similar consistency like the demand for vanishing
quantum anomalies. It is therefore legitimate to demand (apart from the two antighost gauge symmetries) also
two (graded) commuting BRST symmetries. Remember, we already have simpli�ed in (5.39) and (5.40) the
general ansatz for the BRST currents by reparametrizations to the simple form

jz = λγdzγ , j z̄ = 0 (5.145)

̂z̄ = λ̂
γ̂
d̂z̄γ̂ , ̂z = 0 (5.146)

Instead of deriving the corresponding BRST transformations in the Hamiltonian formalism using the Poisson
bracket, we stay in the Lagrangian formalism and apply Noether's theorem (see (E.15)) inversely in the sense
that we try to express the divergence of the given currents as linear combinations of the equations of motion in
order to derive the corresponding transformations:

∂̄jz
!= −sφIall

δS

δφIall
= −scovφIall

δcovS

δφIall
(5.147)

∂̂z̄
!= −ŝφIall

δS

δφIall
= −ŝcovφIall

δcovS

δφIall
(5.148)



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 60

Here φIall is the collection of all the worldsheet �elds. BRST invariance of the action is according to Noether
equivalent to having this special form of the divergences of the currents. These two equations thus do three
things at the same time: The possibility to write the divergence of the currents as linear combinations of the
equations of motion �xes the precise form of the BRST current. At the same time it puts constraints on the
background �elds: all terms not proportional to equations of motion have to vanish. And �nally it determines
the form of the (covariant) BRST transformations.

After determining the BRST transformation, the nilpotency conditions s2 = 0, [s, ŝ] = 0 and ŝ2 = 0 put
further constraints on the background �elds including the torsion. Some torsion components can then be
further simpli�ed by using two of the three local Lorentz transformations and scale transformations which leads
to only one remaining local Lorentz transformation and one local scale transformation. Putting these restrictions
on some torsion components induces via the Bianchi identities further constraints on other components. All
the constraints on the torsion and other functionals of the background �elds combine �nally to the target space
supergravity equations of motion. Note that our approach di�ers from the one in [13] in two major points.
First of all we stay in the Lagrangian formalism throughout. Second, we �rst check the holomorphicity and
then the nilpotency. In fact, we need to do so, because only in the �rst step we can determine the BRST
transformations of the worldsheet �elds which we need in the Lagrangian formalism to check nilpotency. The
BRST transformations have so far been given only for the heterotic string in [14], so that the transformations
in the type II case are a new result.

Let us now perform in more detail the program sketched above:

∂̄jz = Dz̄λγdzγ + λγDz̄dzγ = (5.149)

= −dzγ
δS

δωzγ
+ λγDz̄dzγ (5.150)

In the following we will replace all occurrences of Dz̄dzγ , Πγ̂z , Πγz̄ , Dz̄λα, D̂zλ̂
α̂
, Dz̄ωzα, D̂zω̂z̄α̂, λγaλ and λ̂γaλ̂

by the equations of motion (5.132)-(5.139). In the end, all terms which are not proportional to the equations of
motion have to vanish which leads to some of the supergravity constraints while the terms proportional to the
equations of motion tell us the BRST transformation of the elementary �elds. In order to extract Dz̄dzγ from
the xK-equation of motion (5.132), let us project (5.132) to a �at spinorial index α using some index relabeling:

Dz̄dzα = −EαK
δcovS

δxK
−∇z̄ΠD

z GDα +

+ΠC
z

(
3
2
HαCD − TCD|α + 2Tα(C|D) +

1
2
∇αGCD −∇(CGD)α

)
ΠD
z̄ +

+2TαDγΠD
z̄ dzγ + 2T̂αC γ̂ΠC

z d̂z̄γ̂ +

+dzγ
(
∇αPγγ̂ − Cαγγ̂

)
d̂z̄γ̂ + λα2∇αCα2

βγ̂ωzβd̂z̄γ̂ + λ̂
α̂
(
∇αĈα̂β̂γ + Sαα̂

γβ̂
)
ω̂z̄β̂dzγ +

+λα2λ̂
α̂
∇αSα2α̂

ββ̂ωzβω̂z̄β̂ − Ωα a1...a4(λγa1...a4aλ) · Lzz̄a +

+2ΠD
z̄ RαDα2

βλα2ωzβ + 2ΠC
z R̂αCα̂

β̂λ̂
α̂
ω̂z̄β̂ (5.151)

Already at this point we can determine some constraints on the background �elds. The divergence of the BRST
current given in (5.150) has to become a linear combination of the equations of motion. The term ∇z̄ΠD

z GDα
in (5.151) cannot be compensated by any other term and it also cannot be replaced by a further equation of
motion. The same is true for our beloved Ωα a1...a4(λγa1...a4aλ) · Lzz̄a. Using in addition proposition 3 for the
constraints from the antiholomorphicity of the right-mover BRST current, we can demand

GAB
!= 0 (only Gab 6= 0) (5.152)

Ωα a1...a4

!= 0, Ω̂α̂ a1...a4

!= 0 (5.153)

With (5.153) we have �nally obtained the missing ingredient for the reduction of the spinorial connection
coe�cients to Lorentz plus scale transformations as it was summarized already in the remark on page 53 at the
end of the section 5.4 about the antighost gauge symmetry.

Equation (5.152) allows us to choose a frame where Gab = e2Φηab, such that we reduce also the bosonic
structure group to Lorentz plus scale transformations. Let us discuss this in more detail in the following
intermezzo.
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Intermezzo about the reduced bosonic structure group

Due to (5.152) we know that GAB is of the block-diagonal form GAB = diag (Gab, 0, 0). This means that the
symmetric rank two tensor is of the form

GMN = EM
aGabEN

b (5.154)

In particular we have Gmn = Em
aGabEn

b. As the EMa were introduced by hand, we may choose Ema

orthonormal as usual, i.e. such that Gab becomes the Minkowski metric. This is at least for the leading
component Gmn(

→
x ) (i.e. ~θ = 0) a familiar thing to do, but it holds also in the ~θ-dependent case:

Proposition 5 For all symmetric rank two tensor �elds Gmn(

{→x , ~θ}︷︸︸︷
�
x ) whose real body (~θ = 0-part) has signature

(1,9), there exists locally a frame Em
a(

�
x ), such that

Gmn(
�
x︸︷︷︸
{→x , ~θ}

) = Em
a(

�
x )ηabEnb(

�
x ) (5.155)

Note: In contrast to the ordinary bosonic version, the entries of the matrices are supernumbers.

Proof Due to usual linear algebra, there is an orthonormal basis with respect to the real symmetric matrix
Gmn(

→
x ), i.e. we can always �nd locally Ema(

→
x ), s.t. (5.155) is ful�lled for ~θ = 0. In order to prove the same

for ~θ 6= 0, we will make a ~θ-expansion of (5.155) and show that we can always construct a solution Ema(
→
x ,~θ)

for arbitrary ~θ from the bosonic solution Ema(
→
x ). Remember the notations xM ≡ θM and Gmn| = Gmn|~θ=0.

The ~θ-expansion of (5.155) then reads∑
n≥0

1
n!
xM1 · · ·xMn (∂M1 . . . ∂MnGmn)| !=

!=
∑
k,l≥0

1
k!
xK1 · · ·xKk (∂K1 . . . ∂Kk

Em
a)| ηab

1
l!
xL1 · · ·xLl (∂L1 . . . ∂LlEn

b)
∣∣ =

=
∑
n≥0

1
n!
xM1 · · ·xMn

n∑
m=0

(
n
m

)
(∂M1 . . . ∂Mm

Em
a)| ηab (∂Mm+1 . . . ∂Mn

En
b)
∣∣ (5.156)

At n = 0 we have the solvable bosonic equation Gmn(
→
x ) != Em

a(
→
x )ηabEnb(

→
x ) to start with. At higher orders

n we have

(∂M1 . . . ∂Mn
Gmn) !=

∣∣∣
!=

n∑
m=0

(
n
m

)
(∂M1 . . . ∂MmEm

a)| ηab (∂Mm+1 . . . ∂MnEn
b)
∣∣ =

= 2 Ema| ηab (∂M1 . . . ∂Mn
En

b)
∣∣ +

n−1∑
m=1

(
n
m

)
(∂M1 . . . ∂Mm

Em
a)| ηab (∂Mm+1 . . . ∂Mn

En
b)
∣∣ (5.157)

We thus have the iterative explicit expression for the n-th ~θ-derivative of the vielbein in terms of the (n− 1)-th
and all lower derivatives.

(∂M1 . . . ∂MnEn
d) =

∣∣ (5.158)

=
1
2
ηcd Ec

m|
[

(∂M1 . . . ∂Mn
Gmn)| −

n−1∑
m=1

(
n
m

)
(∂M1 . . . ∂Mm

Em
a)| ηab (∂Mm+1 . . . ∂Mn

En
b)
∣∣ ]

This completes the proof of the proposition. �

In spite of the above proposition, we will not �x Gab to ηab, but only up to a conformal factor. This is of
course possible by a rede�nition of EMa with the square root of this conformal factor. The reason for us to
do this is the fact that we have for the spinorial indices not only Lorentz-, but also scale transformations. It
seems natural to keep this scale invariance also for the bosonic indices, as long as we do not �x the fermionic
one (in particular if we aim at structure group invariant γ-matrices γaαβ). We thus introduce an auxiliary

compensator �eld Φ(
�
x ) and choose Ema such that

Gab = e2Φηab (5.159)

As soon as Ema(
�
x ) is chosen appropriately, the remaining vielbein components EM

a are uniquely determined
via:

GMn
!= EM

ae2ΦηabEn
b ⇒ EM

a = GMnEb
ne−2Φηba (5.160)
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In summary this means that there is locally always a choice for the bosonic 1-form Ea = dxMEMa, such that
GMN = EM

ae2ΦηabEN
b or GMN = EM

aηabEN
b, if one does not introduce the compensator �eld. The latter

form of GMN was the starting point in [13], probably motivated by the integrated vertex operator of the �at
space.

With the compensator �eld included, the bosonic structure group with in�nitesimal generator Ľab (compare
to page 50 with Λ̌ab = δba + Ľa

b) is � like the fermionic ones � restricted to Lorentz plus scale transformations.
We should of course also restrict the auxiliary connection accordingly.

Ľa
b = Ľ(D)δba + Ľ(L)

a
b, Ľab ≡ Ľacηcb = −Ľba (5.161)

Ω̌Ma
b = Ω̌(D)

M δba + Ω̌(L)
a

b, Ω̌Mab ≡ Ω̌Ma
cηcb = −Ω̌Mba (5.162)

The compensator �eld is a scalar with respect to superdi�eomorphisms. With respect to the structure group,
however, it has to transform in a special way, in order to make Gab transforming covariantly. The in�nitesimal
transformation of Gab under structure group transformations is δGab = −2Ľ(a|

cGc|b) = −2Ľ(D)Gab (see (5.64)
on page 50). This transformation results in a simple shift of the compensator �eld. For the same reason, also
the covariant derivative contains a shift of Φ:

δΦ = −Ľ(D) (5.163)

∇̌MΦ ≡ ∂MΦ− Ω̌(D)
M (5.164)

∇MGAB = 2∇̌MΦGAB (= ∂MGAB − 2ΩM(A|
CGC|B)) (5.165)

Let us return to the calculation of the divergence of the BRST current and let us �nally replace Dz̄dzαin
(5.150) by the xK equation of motion given in (5.151) (already using (5.152) and (5.153))12:

∂̄jz = −dzγ
δS

δωzγ
− λαEαK

δcovS

δxK
+

+λαΠC
z

(
3
2
HαCD + 2Tα(C|D) + ∇̌αΦGCD

)
︸ ︷︷ ︸

≡YαCD

ΠD
z̄ +

+2λαTαDγΠD
z̄ dzγ + 2λαT̂αC γ̂ΠC

z d̂z̄γ̂ +

+λαdzγ
(
∇αPγγ̂ − Cαγγ̂

)
d̂z̄γ̂ + λαλα2∇αCα2

βγ̂ωzβd̂z̄γ̂ + λαλ̂
α̂
(
∇αĈα̂β̂γ + Sαα̂

γβ̂
)
ω̂z̄β̂dzγ +

+λαλα2λ̂
α̂
∇αSα2α̂

ββ̂ωzβω̂z̄β̂ +

+2λαΠD
z̄ RαDα2

βλα2ωzβ + 2λαΠC
z R̂αCα̂

β̂λ̂
α̂
ω̂z̄β̂ (5.166)

Before we plug in further equations of motion (replacing Πδz̄ and Πγ̂z ) we should notice that we can already read
o� some more constraints. Namely Yαcd = Yαcδ̂ = Yαγd = Yαγδ̂ = 0. The �rst constraint Yαcd = 0 can be
separated into symmetric and antisymmetric part of the indices c and d. In addition, we already add everywhere
the constraints coming from the right-moving BRST current , using proposition 3 on page 44 (H → −H, Ť → Ť ,
∇̌ → ∇̌)13.

12The comparison of the rewritten bosonic xK -equation

1

2
∇z̄(ΠezGea) +

1

2
∇z(Πez̄Gea) =

= −EaK
δcovS

δxK
+ ΠCz

„
3

2
HaCD + 2Ta(C|D) + ∇̌aΦGCD

«
ΠBz̄ + 2TaD

γΠDz̄ dzγ + 2T̂aC
γ̂ΠCz d̂z̄γ̂ +

+dzγ∇aP
γγ̂ d̂z̄γ̂ + λα∇aCα

βγ̂ωzβ d̂z̄γ̂ + λ̂
α̂∇aĈα̂

β̂γ ω̂z̄β̂dzγ +

+λαλ̂
α̂∇aSαα̂

ββ̂ωzβω̂z̄β̂ + 2ΠDz̄ RaDα
βλαωzβ + 2ΠCz R̂aCα̂

β̂λ̂
α̂
ω̂z̄β̂

with ∇z̄dzα = −EαK
δcovS

δxK
+ ΠCz

„
3

2
HαCD + 2Tα(C|D) + ∇̌αΦGCD

«
ΠDz̄ + 2TαD

γΠDz̄ dzγ + 2T̂αC
γ̂ΠCz d̂z̄γ̂ +

+dzγ∇αP
γγ̂ d̂z̄γ̂ + λα2∇αCα2

βγ̂ωzβ d̂z̄γ̂ + λ̂
α̂∇αĈα̂

β̂γ ω̂z̄β̂dzγ +

+λα2 λ̂
α̂∇αSα2α̂

ββ̂ωzβω̂z̄β̂ + 2ΠDz̄ RαDα2
βλα2ωzβ + 2ΠCz R̂αCα̂

β̂λ̂
α̂
ω̂z̄β̂

and with ∇̂z d̂z̄α̂ suggests the introduction of

dza ≡
1

2
ΠezGea, dz̄a ≡

1

2
Πez̄Gea �

��
13At �rst we should remember that TAC

B = diag (ŤAC
b, TAC

β, T̂AC
β̂). As Gbd are the only non-vanishing components of GBD,
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HAcd = 0 (5.167)

ŤA(c|d) = −1
2
∇̌AΦGcd (5.168)

3
2Hαcδ̂ + Ťαδ̂|c = 0
− 3

2Hα̂cδ + Ťα̂δ|c = 0

}
⇒ Hαδ̂c = Ťαδ̂|c = 0 (5.169)

3
2
Hαγd + Ťαγ|d = 0, −3

2
Hα̂γ̂d + Ťα̂γ̂|d = 0 (5.170)

Hαγδ̂ = 0, Hα̂γ̂δ = 0 (5.171)

So far we have used only the equations of motion obtained by the variational derivative with respect to
the antighosts and with respect to xK . There still remain the ones with respect to the ghosts, with respect to
the Lagrange multipliers and with respect to dzα and d̂z̄α̂. The �rst ones simply will not enter the calculation
and the pure spinor constraints (coming from the Lagrange multipliers) will be used at the very end. So let us
remind ourselves the variational derivatives with respect to dzα and d̂z̄α̂ ((5.134) and (5.133)):

Πδz̄ =
δS

δdzδ
− Pδγ̂ d̂z̄γ̂ − λ̂

α̂
Ĉα̂

β̂δω̂z̄β̂, Πγ̂z =
δS

δd̂z̄γ̂
− dzγPγγ̂ − λαCαβγ̂ωzβ (5.172)

Together with the new constraints (5.167)-(5.171) we plug them into the divergence (5.166) of the BRST current
In a last e�ort we sort all the terms with respect to the appearance of the elementary �elds and �nally arrive at

∂̄jz = −dzγ
δS

δωzγ
− λαEαK

δcov
δxK

S +

+λα
(3

2
ΠγzHαγδ + 2Tαδγdzγ − 2λα2Rα2δα

βωzβ + Πc
z 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c (5.170)

) δS

δdzδ
+

+λα
(

2T̂αγ̂ δ̂d̂z̄δ̂ + 2λ̂
α̂
R̂αγ̂α̂

β̂ω̂z̄β̂

) δS

δd̂z̄γ̂
+

+λαΠc
z

(
− 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c (5.170)

Pδγ̂ + 2T̂αcγ̂
)
d̂z̄γ̂ + λαΠγz

(
2T̂αγγ̂ −

3
2
HαγδPδγ̂

)
d̂z̄γ̂ +

+λαdzγ (2Tαdγ) Πd
z̄ + 2λαdzγ

(
Tαδ̂

γ
)

Πδ̂z̄ +

+λαdzγ
(
∇αPγγ̂ − Cαγγ̂ − 2TαδγPδγ̂ − 2T̂αδ̂

γ̂Pγδ̂
)
d̂z̄γ̂ +

+λαλ̂
α̂

Πc
z

(
− 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c (5.170)

Ĉα̂
β̂δ + 2R̂αcα̂β̂

)
ω̂z̄β̂ + λαλ̂

α̂
Πγz

(
2R̂αγα̂β̂ −

3
2
HαγδĈα̂

β̂δ

)
ω̂z̄β̂ +

+λαλ̂
α̂
dzγ

(
∇αĈα̂β̂γ + Sαα̂

γβ̂ − 2TαδγĈα̂β̂δ − 2R̂αγ̂α̂β̂Pγγ̂
)
ω̂z̄β̂ + λα1λα2Xα1α2 (5.173)

the contraction of the upper torsion index with GBD projects out the �rst block-diagonal and we can write

TAC|D = ŤAC|D

The next important observation is that the constraints are independent of the choice of the auxiliary bosonic connection Ω̌Ma
b, as

it should be . The only condition is that it obeys Ω̌M(a|b) = Ω̌
(D)
M Gab which we used during the derivation by taking ∇MGAB =

2∇̌MΦGAB (see (5.165)). Remember also that ∇̌αΦ = EαM∂MΦ−Ω̌
(D)
α (5.164). Ω̌Ma

b enters the terms YαCD (de�ned in (5.166)

and containing the constraints) only in the combination 2Ťα(C|D) − Ω̌
(D)
α GCD, where it completely cancels:

2Ťα(C|D) − Ω̌
(D)
α GCD = 2(dEb)α(C|Gb|D) + Ω̌α(C|D) − Ω̌(C|α|D)| {z }

=0

−Ω̌
(D)
α GCD =

= 2Eα
ME(C|

N∂[MEN ]
bGb|D)

In particular the connection does not enter at all the following torsion component:

Ťαδ̂|c = (dEd)αδ̂Gdc

The constraints (5.168)-(5.170) are therefore independent of the choice of Ω̌Ma
b. In particular, we can choose ΩMa

b (de�ned by

ΩMα
β via ∇Mγcαβ = 0) or Ω̂Ma

b (de�ned by Ω̂Mα̂
β̂ via ∇̂Mγc

α̂β̂
= 0). �
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where we de�ned an extra symbol for the terms coming quadratic in the ghost λα:

Xα1α2 ≡ 2
(
R[α1|d|α2]

β
)

Πd
z̄ωzβ + 2Πδ̂z̄

(
R[α1|δ̂|α2]

β
)
ωzβ +

+
(
∇[α1

Cα2]
βγ̂ − 2T̂[α1|δ̂

γ̂C|α2]
βδ̂ − 2R[α1|δ|α2]

βPδγ̂
)
d̂z̄γ̂ωzβ +

+λ̂
α̂
(
∇[α1

Sα2]α̂
ββ̂ + 2R̂[α1|γ̂α̂

β̂C|α2]
βγ̂ + 2R[α1|δ|α2]

βĈα̂
β̂δ
)
ωzβω̂z̄β̂ (5.174)

Summarizing, we observe that we managed � with the help of the equations of motion � to turn the simple
equation (5.150) into a quite lengthy one ... We are not going to copy the whole long equation again for the
next step. The only equation of motion that we may still apply, is the pure spinor constraint

δS

δLzz̄a
=

1
2

(λγaλ) (5.175)

We therefore can concentrate on the term λα1Xα1α2λ
α2 , where the pure spinor combination λγaλ might

appear. As discussed in footnote 7 on page 49 (see also the appendix-subsection D.3.3 on page 178), all graded
antisymmetric 16× 16 matrices can be expanded in γ[1] and γ[5]:

Xα1α2 ≡ Xaγ
a
α1α2

+Xa1...a5γ
a1...a5
α1α2

(5.176)

Xa
(D.143)

=
1
16
γα2α1
a Xα1α2

(
= − 1

16
γα1α2
a Xα1α2

)
(5.177)

Xa1...a5

(D.143)
=

1
32 · 5!

γα2α1
a5...a1

Xα1α2 (5.178)

We can use this to rewrite the quadratic ghost term as follows:

λα1Xα1α2λ
α2 = −1

8
γα1α2
a Xα1α2

δS

δLzz̄a
+

1
32 · 5!

γα2α1
a1...a5

Xα1α2(λγa1...a5λ) (5.179)

This was the last ingredient to determine all remaining constraints on the background �elds and also to be able
to read o� all BRST transformations (including the one for the Lagrange multiplier). Let us start with the
constraints. In addition to (5.167)-(5.171), we get the following constraints on the background �elds:
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T̂αc
γ̂ = Ťαδ|c︸ ︷︷ ︸

3
2Hαcδ (5.170)

Pδγ̂ , Tα̂c
γ = Ťα̂δ̂|c︸ ︷︷ ︸

− 3
2Hα̂cδ̂ (5.170)

Pγδ̂ (5.180)

T̂αγ
γ̂ =

3
4
HαγδPδγ̂ , Tα̂γ̂

γ = −3
4
Hα̂γ̂δ̂P

γδ̂ (5.181)

Tαd
γ = 0, T̂α̂d

γ̂ = 0 (5.182)

Tαδ̂
γ = 0, T̂α̂δ

γ̂ = 0,
(5.169)⇒ Tαα̂

K = 0 (5.183)

Cα
γγ̂ = ∇αPγγ̂ − 2TαδγPδγ̂ − 2 T̂αδ̂

γ̂︸ ︷︷ ︸
=0 (5.183)

Pγδ̂ (5.184)

Ĉα̂
γ̂γ = ∇α̂Pγγ̂ − 2T̂α̂δ̂

γ̂Pγδ̂ (5.185)

R̂αcα̂
β̂ =

3
2
Hαcδ︸ ︷︷ ︸
Ťαδ|c (5.170)

Ĉα̂
β̂δ, Rα̂cα

β = −3
2
Hα̂cδ̂︸ ︷︷ ︸

Ťα̂δ̂|c (5.170)

Cα
βδ̂ (5.186)

R̂αγα̂
β̂ =

3
4
HαγδĈα̂

β̂δ, Rα̂γ̂α
β = −3

4
Hα̂γ̂δ̂Cα

βδ̂ (5.187)

Sαα̂
γβ̂ = −∇α Ĉα̂

β̂γ︸ ︷︷ ︸
∇α̂Pγβ̂−2T̂α̂δ̂

β̂Pγδ̂ (5.185)

+2TαδγĈα̂β̂δ + 2R̂αγ̂α̂β̂Pγγ̂ (5.188)

Sαα̂
βγ̂ = −∇α̂ Cα

βγ̂︸ ︷︷ ︸
∇αPβγ̂−2TαδβPδγ̂ (5.184)

+2T̂α̂δ̂
γ̂Cα

βδ̂ + 2Rα̂γαβPγγ̂ (5.189)

γα1α2
a1...a5

Rdα1α2
β = 0, γα̂1α̂2

a1...a5
R̂dα̂1α̂2

β̂ = 0 (5.190)

γα1α2
a1...a5

Rδ̂α1α2

β = 0, γα̂1α̂2
a1...a5

R̂δα̂1α̂2
β̂ = 0 (5.191)

γα1α2
a1...a5

(
∇α2

Cα1
βγ̂
)

= 2γα1α2
a1...a5

(
Rα2δα1

βPδγ̂ − T̂α1δ̂
γ̂︸ ︷︷ ︸

=0 (5.183)

Cα2
βδ̂
)
, plus hatted version . . . (5.192)

γα1α2
a1...a5

(
∇α2

Sα1α̂
ββ̂
)

= 2γα1α2
a1...a5

(
R̂α1γ̂α̂

β̂Cα2
βγ̂ −Rα2δα1

βĈα̂
β̂δ
)
, plus hatted version . . . (5.193)

Note that on the constraint surface the condition γα1α2
a1...a5

Xα1α2 = 0 is equivalent to the vanishing of Xα1α2

when contracted with two ghost �elds:

γα1α2
a1...a5

Xα1α2 = 0
(5.176)−(5.178)⇐⇒ X[α1α2] =

1
16

(γα4α3
a Xα3α4)γaα1α2

(λγaλ)=0⇐⇒ λα1Xα1α2λ
α2 = 0

(5.194)
The above equivalences hold for general bispinors, not only for the one de�ned in (5.174). It is not necessary to
memorize the constraints (5.192) and (5.193) as they are a consequence of other constraints anyway. We will
show this fact at the end of section 5.11 on page 71.

Let us now devote a new section to the BRST transformations that we can likewise read o� from (5.173).

5.8 The covariant BRST transformations

Remember that we started on page 59 with the demand ∂̄jz
!= −scovφIall

δcovS

δφIall
. The covariant BRST transforma-

tions scovφIall have to be understood in the sense of the covariant variation de�ned in (5.102)-(5.106). We have

for example scovλ̂
α̂

= s ˆcovλ̂
α̂

= ŝλ
α̂

+sxM Ω̂Mβ̂
α̂λ̂

β̂
. When the constraints of the end of last section are ful�lled,

we can read o� the covariant BRST transformations scovφIall from equation (5.173) together with (5.179). Again
we give at the same time (using proposition 3 on page 44) the results for the right-mover BRST-symmetry ŝ,

de�ned via14 ∂̂z̄
!= −ŝcovφIall

δcovS

δφIall
:

14Another way to write down the BRST transformations for dzδ and d̂z̄γ̂ is the following

scovdzδ = −
3

2
λαΠ

{c,γ}
z Hα{c,γ}δ − λαTαδ

{c,γ}{GcdΠdz , 2dzγ}+ 2λαλα2Rα2δα
βωzβ

s ˆcov d̂z̄γ̂ = −
3

2
λαΠ

{d,δ̂}
z̄ Hα{d,δ̂}γ̂| {z }

=0

−λα Tαγ̂
{d,δ̂}| {z }

=0

{GdcΠcz̄ , 2d̂z̄δ̂} − 2λαλ̂
α̂
R̂αγ̂α̂

β̂ω̂z̄β̂
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sxM = λαEα
M , ŝxM = λ̂

α̂
Eα̂

M (5.195)

scovλα = 0 = ŝcovλα, ŝ ˆcovλ̂
α̂

= 0 = s ˆcovλ̂
α̂

(5.196)

scovωzα = dzα, ŝcovωzα = 0, ŝ ˆcovω̂z̄α̂ = d̂z̄α̂, s ˆcovω̂z̄α̂ = 0 (5.197)

scovdzδ = −λαΠc
z 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c

−3
2
λαΠγzHαγδ − 2λαTαδγdzγ + 2λαλα2Rα2δα

βωzβ (5.198)

ŝ ˆcovd̂z̄δ̂ = λ̂
α̂

Πc
z̄ 3Hα̂cδ̂︸ ︷︷ ︸
−2Ťα̂δ̂|c

+
3
2
λ̂
α̂

Πγ̂z̄Hα̂γ̂δ̂ − 2λ̂
α̂
T̂α̂δ̂

γ̂ d̂z̄γ̂ + 2λ̂
α̂
λ̂
α̂2
R̂α̂2δ̂α̂

β̂ωz̄β̂ (5.199)

s ˆcovd̂z̄γ̂ = −2λα T̂αγ̂ δ̂︸ ︷︷ ︸
=0

d̂z̄δ̂ − 2λαλ̂
α̂
R̂αγ̂α̂

β̂ω̂z̄β̂ (5.200)

ŝcovdzγ = −2λ̂
α̂
Tα̂γ

δ︸ ︷︷ ︸
=0

dzδ − 2λ̂
α̂
λαRα̂γα

βωzβ (5.201)

scovLzz̄a =
1
8
γα1α2
a Xα1α2 , ŝcovLzz̄a = 0, ŝ ˆcovL̂z̄z a =

1
8
γα̂1α̂2
a X̂α̂1α̂2 , s ˆcovL̂z̄z = 0 (5.202)

The composite object Xα1α2 is given in (5.174). Let us for completeness also give the BRST transformation of
the supersymmetric momentum

scovΠA
z/z̄

(5.122 )
= ∇z/z̄λαδαA + 2λαΠB

z/z̄TαB
A (5.203)

ŝcovΠA
z/z̄

(5.122 )
= ∇̂z/z̄λ̂

α̂
δα̂

A + 2λ̂
α̂

ΠB
z/z̄T α̂B

A (5.204)

All these BRST transformations are similar to those for the heterotic string, given in [14]. There it was also noted
that the BRST transformations always contain a Lorentz transformation (multiplication with the connection).
We have absorbed this term into the de�nition of the covariant variation. The advantage is that we then have
expressions all the time that are covariant with respect to the target space structure group. Although the
ordinary BRST di�erential s is needed to calculate the cohomology (as it squares to zero), the calculations are
simpler if they are performed with scov and only in the end transferred to s. When acting on a target space
scalar, the two coincide anyway.

5.9 Graded commutation of left- and right-moving BRST di�erential

We have started in �at background with two independent BRST symmetries, the left-moving and the right-
moving one, which both squared to zero and graded commuted. As they de�ne the physical spectrum and
identify physically equivalent states, these facts should not change in a consistent theory, at least on-shell. This
is similar to the fact that gauge symmetries should not be broken. We have already derived the constraints
coming from a vanishing divergence of the BRST currents. The ansatz for the currents was such that this
corresponds to holomorphicity for jz and antiholomorphicity for ̂z̄. Having on-shell a holomorphic jz and an
antiholomorphic ̂z̄ is in a conformal theory already enough to make the corresponding symmetries commute.
For example on the level of operators, the operator product between a holomorphic and an antiholomorphic
current always vanishes on-shell. The same is true for the charges which generate the symmetry. The on-shell

In the second line for the �rst two terms, we have just used a complicated way to write zero. The reason was to bring it to a form
similar to the one in the �rst line. In any case, at least the �rst line suggests again the introduction of the variables

dzc ≡
1

2
GcdΠdz , dz̄c ≡

1

2
GcdΠdz̄

that we already proposed in footnote 12 on page 62. Indeed, their BRST transformation takes the form

s ˇcovdz c = −
3

2
λαΠβzHαβc − 2λαŤαc

ddz d

Using Haβc = Tαcδ = 0 and at (least for λγaλ = 0) λαλα2Rα2dα
β = 0, the transformation of dz c takes the same form as the

one of dzδ and we can write

scovdz{d,δ} = −
3

2
λαΠ

{c,γ}
z Hα{c,γ}{d,δ} − 2λαTα{d,δ}

{c,γ}dz{c,γ} − 2λα1λα2R{d,δ}α2α1
βωzβ for (λγaλ) = 0

We suggest to introduce dzd as an independent variable into the action, with an on-shell value dzc ≡ 1
2
GcdΠdz . Doing this, one

would arrive at a formalism where the GMN term is replaced by a �rst order term, while the BMN term remains. This would
therefore be a mixed �rst-second order formalism which would be suitable to couple it to e.g. the components of a generalized
complex structure. �
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vanishing of the commutators is all that we can demand for consistency. Therefore we do not expect any
additional information from the graded commutation of left- and right-moving BRST di�erential. Nevertheless
it is instructive to calculate the graded commutators and consider it as a further check. In particular it is
interesting to see the terms which prevent an o�-shell commutation of the di�erentials. The starting point is
the request that we have

[̂s, s]φIall
!= δ(µ)φ

I
all + δ(µ̂)φ

I
all + δtrivφ

I
all (5.205)

where δtrivφ
I
all is a trivial and thus on-shell vanishing gauge transformation (see page 186 in the appendix) while

δ(µ) and δ(µ̂) are the antighost gauge transformations. Spelled out in words, (5.205) means that the graded
commutator [̂s, s] has to vanish on shell up to antighost gauge transformations. There are at least two ways to
check this. Either we calculate the commutator of the transformations on each worldsheet �eld or we calculate
the transformations of the Noether currents. This is directly related to calculating the Poisson brackets of the
generating charges in the Hamiltonian formalism.

Determining [s, ŝ] via the transformation of the currents We start with the de�ning equations of the
BRST currents:

∂̄jz = −sφIall
δS

δφIall
, ∂̂z̄ = −ŝφIall

δS

δφIall
(5.206)

The current for the graded commutator [̂s, s] is given only on-shell by ŝjz or ŝz̄ (one would expect this from
the Hamiltonian formalism). A correct o�-shell expression can be obtained by acting on (5.206) with ŝ or s
respectively. The derivation of the current j[̂s,s] corresponding to [s, ŝ] was too simple and indeed not correct in
the original version of this thesis, so that by now I have moved a more careful and general derivation into the
appendix. From there we can adopt the result from equation (E.55) on page 188:

j[̂s,s]z = ŝjz +
( δS

δφIall

∂(̂sφIall)
∂(∂z̄φKall)

)
· sφKall, j[̂s,s]z̄ =

( δS

δφIall

∂(̂sφIall)
∂(∂φKall)

)
· sφKall (5.207)

or equivalently (interchanging the role of s and ŝ)

j[̂s,s]z =
( δS

δφIall

∂(sφIall)
∂(∂z̄φKall)

)
· ŝφKall, j[̂s,s]z̄ = ŝz̄ +

( δS

δφIall

∂(sφIall)
∂(∂φKall)

)
· ŝφKall (5.208)

For consistency we need only that [s, ŝ] vanishes up to trivial and other gauge transformations. It is thus enough
to demand that the corresponding current j[̂s,s] vanishes on-shell, because on-shell vanishing currents correspond
to gauge transformations (see proposition 6 on 184 in the appendix). If we take the expression for j[̂s,s]z from
(5.208) and the expression for j[̂s,s]z̄ from (5.207), we can observe that both components of the current vanish
on-shell without any extra conditions on the background �elds! As claimed at the beginning of this section
this happens due to the fact that left- and right-mover BRST currents jz and ̂z̄ are on-shell holomorphic and
antiholomorphic respectively.

In principle we are already done with the commutator [s, ŝ], but it is a good check to see, whether we obtain
the same result if we do it the other way round and take the expression for j[̂s,s]z from (5.207) and the expression

for j[̂s,s]z̄ from (5.208). This corresponds to demanding ŝjz
on shell= 0, ŝz̄

on shell= 0. In order to calculate ŝjz,
remember the form of the BRST current jz = λαdzα (5.39) and also note that it is a target space scalar. The
BRST di�erential can thus be replaced by the covariant one:

ŝjz = −λγ ŝcovdzγ = −2λ̂
α̂
λγλαRα̂γα

βωzβ
(5.191)

=
(5.194)

−1
8
λ̂
α̂
γαγa Rα̂γα

βωzβ (λγaλ)︸ ︷︷ ︸
2 δS
δLzz̄

(5.209)

Using the left-right-symmetry of proposition 3 on page 44 we get the corresponding expression for ŝz̄. Both
vanish on the pure spinor constraint surface (λγaλ) = (λ̂γaλ̂) = 0 so that indeed the Noether current belonging
to [̂s, s] vanishes on-shell and thus [s, ŝ] will vanish on-shell up to gauge transformations.

If we wanted to know also the non-trivial gauge transformations that appear in the commutator, we would
have to calculate also the additional on-shell vanishing terms that are added to ŝjz in the expression of j[s,̂s]z

in (5.207). It turns out that only
(
δS
δd̂z̄δ̂

∂(̂sd̂z̄δ̂)

∂(∂̄xK)

)
· sxK = 3

2
δS
δd̂z̄δ̂

λ̂α̂λ̂γ̂Hα̂γ̂δ̂ is contributing a priori. However, we

will see later that Hα̂γ̂δ̂ is required to vanish from the nilpotency demand of the BRST transformation as well
as from the Bianchi identities.

The (non-trivial) gauge transformations that will appear in the commutator [s, ŝ] are thus given precisely by

the above o�-shell non-vanishing term (5.209). Namely if we take µza ≡ − 1
4 λ̂
α̂
γαγa Rα̂γα

βωzβ we obtain

ŝjz = 1
2µza(λγaλ) (5.210)
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which is precisely the current of the antighost gauge transformation given on the lefthand side of (5.78) with
corresponding antighost gauge transformations δ(µ)ωzα = µza(λγa)α (5.90) and δ(µ)Lzz̄a = −Dz̄µza (5.91).
Having a current that coincides with the one of a gauge transformation, the form of [s, ŝ] can only di�er by a
trivial gauge transformation. In any case we have obtained the result that the commutator vanishes up to gauge
transformations. A safe way to �gure out potentially appearing trivial gauge transformations in the commutator
is to calculate it on each single worldsheet �eld separately.

Acting on each �eld separately Although this method would lead to the precise o�-shell form of all the
commutators, we are for now satis�ed with the result we already obtained and give the explicit commutator only
for the most simple cases. Starting with the covariant BRST transformations of the elementary �elds (given in
(5.195)-(5.202) on page 66), we will �rst calculate the commutator [̂scov, scov] and only after that determine the

ordinary commutator via the relations (5.112) and (5.113). For the embedding functions xK , the ghosts λα, λ̂
α̂

and the antighosts ωzα and ω̂z̄α̂ the calculation is very simple and we immediately obtain[̂
scov, scov

]
xK = 0 (5.211)[̂

scov, scov
]
λγ = 0,

[
scov, ŝcov

]
λ̂
γ̂

= 0 (5.212)[̂
scov, scov

]
ωzγ = ŝcovdzγ = −2λ̂

α̂
λαRα̂γα

βωzβ,
[
scov, ŝcov

]
ω̂z̄γ̂ = −2λαλ̂

α̂
R̂αγα̂

β̂ω̂z̄β̂ (5.213)

The transformations of the remaining �elds are much more complicated and we prefer not to study them. Let
us now derive the ordinary commutators:

[̂s, s]xK
(5.112)

=
[̂
scov, scov

]
xK︸ ︷︷ ︸

=0

−2λ̂
α̂
T α̂α

K︸ ︷︷ ︸
=0 (5.183)

λα = 0 (5.214)

[s, ŝ]cov λ
γ (5.113)

=
[
scov, ŝcov

]
λγ︸ ︷︷ ︸

=0

−2λαλ̂
α̂
Rαα̂β

γλβ︸ ︷︷ ︸
=0 (5.191)

= 0 (5.215)

[s, ŝ]cov ωzγ
(5.113)

=
[̂
scov, scov

]
ωzγ︸ ︷︷ ︸

=−2λ̂
α̂
λαRα̂γαβωzβ

+2λαλ̂
α̂
Rαα̂γ

βωzβ =

= 4λ̂
α̂
λαRα̂[αγ]

βωzβ (5.216)

Again we get the corresponding equations for λ̂
α̂
and ω̂z̄γ̂ . The last line corresponds excactly to the gauge

transformation with gauge parameter µza = − 1
4 λ̂
α̂
γαγa Rα̂γα

βωzβ that we found already above. This is strictly
speaking true only if Hα̂β̂γ̂ = 0 (remember the o�-shell terms that were mentioned after (5.209)), a constraint
that we will obtain only in the next section from nilpotency. The explanation is that the di�erent ways of
calculating the same quantity [s, ŝ] certainly assume the validity of the Bianchi identities which already at this
point would imply the above extra constraint. However, we will do a careful analysis of the Bianchi identities
only in the end, after having obtained the additional constraints from nilpotency. It is further interesting to see
in (5.214), that some holomorphicity constraints like T α̂α

K = 0 are needed for the commutation. In fact, in [59]
this constraint was derived by demanding a vanishing Poisson bracket between the two generators of the BRST
symmetries. The constraint T α̂α

K = 0 did not appear in our derivation via the currents above. The reason is
that we already started the derivation in (5.206) from an equation which assumes on-shell holomorphicity.

5.10 Nilpotency of the BRST di�erentials

While the last section was rather a check than bringing much new information, the nilpotency of the BRST
di�erentials will give us additional constraints on the background �elds. The nilpotency is essential to de�ne the
physical spectrum as in the �at case via the cohomology. It would be inconsistent if this prescription breakes
down, as soon as a nonvanishing background is generated by the strings. Demanding nilpotency at least on-shell
and up to gauge transformations is thus legitimate.

Nilpotency constraints from the BRST transformation of the current In the same way as in the
previous section, we can examine the BRST-transformation of the BRST-current instead of studying nilpotency
on every single worldsheet �eld. Start from the de�ning equation of the BRST current

∂̄jz = −sφIall
δS

δφIall
(5.217)
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Again the current for the graded commutator [s, s] = 2s2 is given only on-shell by sjz (what one would expect
from the Hamiltonian formalism). To obtain the o�-shell expression one can act with s for a second time on the
above equation. From the appendix we can adopt the result from equation (E.55) on page 188:

j[s,s]z = sjz +
( δS

δφIall

∂(sφIall)
∂(∂z̄φKall)

)
· sφKall, j[s,s]z̄ =

( δS

δφIall

∂(sφIall)
∂(∂φKall)

)
· sφKall (5.218)

The BRST transformation of the BRST current sjz is therefore at least on-shell the Noether current for the
transformation 2s2. For consistency we need only that s2 vanishes up to trivial and other gauge transformations.
Due to proposition 6 on page 184 in the appendix, every gauge transformation has (up to trivially conserved
terms) an on-shell vanishing Noether current. Demanding that sjz vanishes on-shell is therefore a necessary
condition.15 Also due to proposition 6 it is a su�cient condition, as we know already that sjz is a Noether
current for a symmetry transformation and if this current vanishes on-shell, the transformation can be extended
to a local one, i.e. it is a gauge transformation.

As the BRST current is a target space scalar, we can replace the BRST di�erential with the covariant one
when calculating sjz:

sjz = scov
(
λδdzδ

)
= −λδscovdzδ =

(5.198)
= −λδλα 3Hαcδ︸ ︷︷ ︸

2Ťαδ|c

Πc
z −

3
2
λδλαHαγδΠγz − 2λδλαTαδγdzγ + 2λδλαλα2Rα2δα

βωzβ (5.219)

The only equations of motion, which can make sjz vanish on-shell are the pure spinor constraints λγaλ = 0.
We therefore get the following conditions on the background �elds

⇒ λδHαCδλ
α = 0, λδλαTαδ

γ = 0, λδλα1λα2Rα2δα1
β = 0, (on shell) (5.220)

Remembering that we have the constraints Ťαδ|c = 3
2Hαcδ (5.170) and T̂αδ

γ̂ = 3
4HαδβP

βγ̂ , we can extend the
above condition on the torsion on all indices

λδλαTαδ
C = 0 (on-shell) (5.221)

All these on-shell conditions can be formulated in an o�-shell version with the help of γ-matrices by using
(5.194) on page 65. Either we write that the terms are linear combinations of γ[1]'s, or equivalently we can
write that the γ[5]-part vanishes. We thus can rewrite the constraints on torsion and H-�eld as

Tαβ
C = γdαβfd

C with fd
C ≡ 1

16
γεδd T δε

C (5.222)

HCαβ = HCaγ
a
αβ with HCa ≡

1
16
HCδεγ

εδ
a (5.223)

In particular for C = γ, due to the (graded) total antisymmetry of Hγαβ, this should at the same time be
proportional to γaγα and γaβγ :

Hγαβ
(5.223)

= H[γ|aγ
a
|αβ]

(5.223)
=

1
16
H[γ|δεγ

εδ
a γa|αβ]

(5.223)
=

1
16
Hεbγ

b
[γ|δγ

εδ
a γa|αβ]

(D.108)
=
(D.160)

1
8
H[γ|aγ

a
|αβ](5.224)

In the last step we used the Cli�ord algebra (D.108) for the �rst two γ's and then the Fierz identity (D.160)
to throw away one of the resulting terms. Remember that the appendix about Γ-matrices doesn't use the
graded summation convention. For the Fierz identity we thus have a (graded) antisymmetrization, instead of
the symmetrization and for the Cli�ord algebra we get an extra minus sign because of the NW-de�nition of the
Kronecker-delta.

The second and the last term of the above equation (5.224) contradict each other if they do not vanish
and thus Hεαβ has to vanish. The components Hε̂αβ were constraint to be zero already before. Of the
components in (5.223), we thus have only Hcαβ nonvanishing. Because of Ťαβ|c = − 3

2Hcαβ (5.170) and

T̂αβ
γ̂ (5.181)

= 3
4HαβδP

δγ̂ = 0 , we have in addition

fdc = −3
2
Hcd, fd

γ̂ = 0 (5.225)

15There are no trivially conserved parts in sjz . A trivially conserved part is of the form ∂ζS
[ζξ] for some rank two tensor Sζξ.

In the conformal gauge this would take the form ∂zS[z̄z] which is of conformal weight (2,1). Such a term is certainly not present
in our current. �
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The new constraints on H and on the torsion thus read (the constraints in brackets follow from the other ones
in combination with (5.170) and (5.181) and are thus redundant):

Hεαβ = 0, Hcαβ = −2
3
γaαβfac (5.226)

Tαβ
γ = γdαβfd

γ , (Ťαβc = γdαβfd
c, T̂αβ

γ̂ = 0) (5.227)

As a remark let us note that the action in �at superspace with the ordinaryWZ-term of the GS-string corresponds
to Hcαβ = − 2

3γcαβ and thus to fac = ηac. We can now analyze in a similar way the constraint on the curvature
in (5.220). As the pure spinor constraint is quadratic it can be equivalently written as λα1λα2R[α2δα1]

β = 0
(on-shell). For this expression, one can do the same reasoning as above with Hεαβ and arrives at

R[γδα]
β = 0 (5.228)

We will get the same constraint from the Bianchi identities later in (5.586) in case one feels uncomfortable with
that line of arguments.

Of course we get all the correponding constraints also in the hatted version from the right-mover BRST
current according to the left-right symmetry of page 44:

Hε̂α̂β̂ = 0, Hcα̂β̂ =
2
3
γa
α̂β̂
f̂ac (5.229)

T̂α̂β̂
γ̂ = γd

α̂β̂
f̂d
γ̂ , (Ťα̂β̂

c = γd
α̂β̂
f̂d
c, Tα̂β̂

γ = 0) (5.230)

R̂[γ̂δ̂α̂]
β̂ = 0 (5.231)

Remember that the curvature is structure group valued in the last two indices and decays into Lorentz and scale
part (see (F.90) in the appendix on page 195): Rγδαβ = 1

2F
(D)
γδ δα

β+R(L)
γδα

β with R(L)
γδα

β = 1
4R

(L)
γδa1a2γ

a1a2
α
β.

The constraint (5.228), i.e. 0 = R[γδα]
β ∝ Rγδα

β + 2Rα[γδ]
β, therefore implies that Rα[γδ]

β is Lie algebra
valued in α and β as well. This means in particular that Rα[γδ]

βγa1...a4
β
α = 0. Let us �nally give the trace

(in α and β) of (5.228) and its hatted equivalent (5.231):

0 = R[γδα]
α (5.232)

=
1
2
F

(D)
[γδ δα]

α +R
(L)
[γδα]

α = (5.233)

= −9
3
F

(D)
γδ +

2
3
R

(L)
α[γδ]

α (5.234)

The scale curvature can be expressed in terms of the Lorentz curvature as

F
(D)
γδ =

2
9
R

(L)
α[γδ]

α , F̂
(D)

γ̂δ̂
=

2
9
R̂

(L)

α̂[γ̂δ̂]

α̂ (5.235)

Nilpotency on the single �elds Just to get a �avour of how the calculation would work if we act on each
�eld twice with the BRST di�erential, we perform this for the simplest cases. One discovers immediately that
acting on xK and λα twice with the covariant BRST transformation yields zero. The reformulation of s2cov in
terms of the square of the ordinary di�erential s2 gives a torsion or a curvature term respectively. These terms
have to vanish on-shell in order to have an on-shell vanishing s2:

0 = s2covx
K = s2xK︸ ︷︷ ︸

!
=0 (on− shell)

+2λαTαβ
Kλβ ⇒ λαTαβ

Kλβ
!= 0 (on− shell) (5.236)

0 = s2covλ
α = (s2)covλα︸ ︷︷ ︸

!
=0 (on− shell)

+2λγλδRγδβαλβ ⇒ λγλδRγδβ
αλβ

!= 0 (on− shell) (5.237)

On the antighosts we have s2covωzα = scovdzα which will not vanish, but which will correspond to a gauge
transformation. The same should be true for Lzz̄a. The calculation of s2dzγ is quite involved to calculate and
will probably contain also constraints that follow from the earlier ones via Bianchi identities. We will calculate
the identities anyway in sections 5.B on page 91 and 5.C on page 100.
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5.11 Residual shift-reparametrization

Before we are going to collect all the constraints on the background �elds which we have obtained so far, let us
eventually make use of the residual shift-symmetry discussed in the paragraph on page 47 (which in turn refers
to the paragraph about shift-reparametrization on page 46). It is a target space symmetry that is based on a
residual shift reparametrization of the fermionic momenta:

dzα = d̃zα − Ξ(3)
b
δ(

�
x )(γbλ)αωzδ (5.238)

The BRST current gets changed under this reparametrization by a linear combination of the pure spinor
constraints (5.43), but this change can be undone by a rede�nition of the BRST transformations with the
corresponding antighost gauge transformations. This does of course not change the on-shell holomorphicity of
the BRST current, as the pure spinor term vanishes on-shell.

Apart from the change of the BRST current, we have the following induced transformations of the background
�elds coming along with this reparametrization:

Ω̃Mαβ = ΩMαβ − EMγγbγαΞ(3)
b
β (5.239)

C̃α
βγ̂ = Cα

βγ̂ − γbγαΞ(3)
b
βPγγ̂ (5.240)

S̃αα̂
ββ̂ = Sαα̂

ββ̂ + Ĉα̂
β̂γγbγαΞ(3)

b
β (5.241)

Note that the transformations of Cαβγ̂ and Sαα̂ββ̂ are in agreement with the holomorphicity constraints (5.184)
and (5.189), relating them to ΩMαβ. It is thus enough to memorize the transformation of the connection ΩMαβ.
Remember now the de�nition of the torsion as TA = dEA−EB∧ΩB

A. This implies the following transformation
of the corresponding torsion component (see also (F.66) in the appendix on page 193):

T̃α1α2
β = Tα1α2

β − γbα1α2
Ξ(3)

b
β (5.242)

Due to the nilpotency constraints we have Tα1α2
β ∝ γbα1α2

. In addition, the left-right symmetry of proposition 3

on page 44 induces the same statements for T̂α̂1α̂2
β̂ and the second residual shift symmetry related to the

reparametrization of d̂γ̂ . We can therefore completely �x the two residual gauge symmetries by choosing the
(obviously accessible) gauge

Tαβ
γ = 0, T̂α̂β̂

γ̂ = 0 (5.243)

We can now immediately take advantage of this additional (conventional) constraint and check the validity of
the constraints (5.192) and (5.193) on page 65.

5.12 Further discussion of some selected constraints

There are some constraints which deserve further examination, before we move on to study the Bianchi identities.
First, the four constraints (5.192), (5.193) and their hatted versions on page 65 do not look very useful as they
stand. We will show that they are actually consequences of other constraints. Second, with (5.188) and (5.189)
we have two equations for Sαα̂ββ̂ and it is interesting to know whether they are equivalent or not. Let us start
with this last problem:

Consistency of (5.188) and (5.189) In the following we will (actually just for convenience) frequently use
the new conventional constraint Tαβγ = 0 = T̂α̂β̂

γ̂ (5.243). Starting with (5.188), the tensor of interest is given
by

Sαα̂
ββ̂ (5.188)

=
(5.184)

−∇α∇α̂Pββ̂ + 2R̂αγ̂α̂β̂Pβγ̂ =

(F.28)
= −∇α̂∇αPββ̂ + 2Tαα̂

D︸ ︷︷ ︸
=0 (5.183)

∇DPβδ̂ − 2Rαα̂δβPδβ̂ − 2R̂αα̂δ̂
β̂Pβδ̂ + 2R̂αγ̂α̂β̂Pβγ̂ (5.244)

In order for this to be compatible with (5.189), i.e. with

Sαα̂
ββ̂ (5.189)

=
(5.185)

−∇α̂∇αPββ̂ + 2Rα̂γαβPγβ̂ (5.245)

the curvature has to obey
Rα̂[αδ]

βPδβ̂ − R̂α[α̂δ̂]
β̂Pβδ̂ = 0 (5.246)

In fact, this condition will be a simple consequence of the torsion Bianchi identities that we will obtain in (5.595)
and (5.596).
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Check of (5.192) The constraint (5.192) contains the covariant derivative of Cαβγ̂ for which we can use in
turn the constraint (5.184) together with our new constraint (5.243).

∇[α2
Cα1]

βγ̂ − 2R[α2|δ|α1]
βPδγ̂ =

(5.184)
= ∇[α2

∇α1]Pβγ̂ − 2R[α2|δ|α1]
βPδγ̂ =

(F.28)
= −Tα2α1

D∇DPβγ̂ + 3R[α2α1δ]
β︸ ︷︷ ︸

=0 (5.228)

Pδγ̂ + R̂α2α1δ̂
γ̂︸ ︷︷ ︸

=0 (5.187),(5.226)

Pβδ̂ (5.247)

Only the �rst term remains, but recalling the nilpotency constraint (5.221) in combination with (5.194), we
observe that also this term vanishes, when contracted with γα1α2

a1...a5
. The constraint (5.192) therefore does not

give new information and will be omitted in future listings. The same is true of course for its hatted version
due to the left-right symmetry.

Relating (5.193) to a Bianchi identity For the constraint (5.193) we have to consider the following
combination

∇[α2
Sα1]α̂

ββ̂ − 2R̂[α1|γ̂α̂
β̂C|α2]

βγ̂ + 2R[α2|δ|α1]
βĈα̂

β̂δ =
(5.188)

=
(5.184)

−∇[α2|

(
∇|α1]∇α̂Pββ̂ − 2R̂|α1]γ̂α̂

β̂Pβγ̂
)
− 2R̂[α1|γ̂α̂

β̂∇|α2]Pβγ̂ + 2R[α2|δ|α1]
β∇α̂P β̂δ =

(F.28)
= Tα2α1

C∇C∇α̂Pββ̂ + R̂α2α1α̂
γ̂︸ ︷︷ ︸

=0 (5.187),(5.226)

∇γ̂Pββ̂ − R̂α2α1γ̂
β̂︸ ︷︷ ︸

=0 (5.187),(5.226)

∇α̂Pβγ̂ +

+2∇[α2|R̂|α1]γ̂α̂
β̂Pβγ̂ + 2R[α2δα1]

β︸ ︷︷ ︸
=0 (5.228)

∇α̂Pδβ̂ =

= Tα2α1

C∇C∇α̂Pββ̂ + 2∇[α2|R̂|α1]γ̂α̂
β̂Pβγ̂ (5.248)

The �rst term vanishes again when contracted with γα1α2
a1...a5

((5.221) and (5.194)) and the constraint (5.193)
reduces to

γα1α2
a1...a5

∇[α2|R̂|α1]γ̂α̂
β̂Pβγ̂ = 0 (5.249)

We will see in a second that this equation is automatically ful�lled when the Bianchi identity for the curvature
is ful�lled. We will study the Bianchi identities at a later point, but not all of those for the curvature, because
we intend to make use of Dragon's theorem, relating second to �rst Bianchi identity. Let us therefore write
down at this point the Bianchi identity that we have in mind (see (F.52) on page 192):

0 != ∇[α2|R̂|α1γ̂]α̂
β̂ + 2T [α2α1|

DR̂D|γ̂]α̂
β̂ =

=
2
3
∇[α2|R̂|α1]γ̂α̂

β̂ +
1
3
∇γ̂ R̂α2α1α̂

β̂︸ ︷︷ ︸
=0 (5.187),(5.226)

+
4
3
T γ̂[α2|

D︸ ︷︷ ︸
=0 (5.183)

R̂D|α1]α̂
β̂ +

2
3
Tα2α1

DR̂Dγ̂α̂
β̂ (5.250)

Once again the last torsion term vanishes when contracted with γα1α2
a1...a5

, so that the above Bianchi identity
implies

γα1α2
a1...a5

∇[α2|R̂|α1]γ̂α̂
β̂ = 0 (5.251)

which is even stronger than (5.249). Of course we also get a hatted version of this constraint.

5.13 BI's & Collected constraints

The next step ist to study all the Bianchi identities. The logic is as follows: We have obtained certain constraints
on the H-�eld, on the torsion and on the curvature. As these objects are de�ned in terms of B-�eld, vielbein
and connection via H = dB, TA = dEA − EB ∧ ΩBA and RAB = dΩAB − ΩAC ∧ ΩCA, the constraints can
be seen as di�erential equations for the elementary �elds. If one solved these equations and calculated again
H-�eld, torsion and curvature, one would observe additional constraints that one had not seen in the beginning.
Solving the di�erential equations is a very hard problem, but the additional constraints on the derived objects
(H-�eld, torsion and curvature) can be obtained by the Bianchi identites, without knowing the explicit solutions
for the elementary �elds. Indeed the Bianchi identities can help to derive the solutions. Depending on the point
of view, the identities are a direct consequence of either the nilpotency of the de Rham di�erential d2 = 0 (see
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appendix F on page 189) or of the Jacobi identity for the commutator. Their explicit form, using the schematic
index notation of 147, reads:

∇AHAAA + 3TAA
CHCAA

!= 0 (5.252)

∇ATAAD + 2TAA
CTCA

D != RAAA
D (5.253)

∇ARAABC + 2TAA
DRDAB

C != 0 (5.254)

Repeated bold indices at the same altitude are simply antisymmetrized ones. Dragon's theorem (see page 197)
tells us that � when the torsion Bianchi identity is ful�lled � we can replace the curvature Bianchi identity by
the weaker condition

RCCB
ATCC

B =
= ∇C∇CTCCA + TCC

D∇DTCCA + 2
(
∇CTCCB + 2TCC

DTDC
B
)
TBC

A (5.255)

We will anyway concentrate on the Bianchi identities for H-�eld and torsion, because they provide most directly
useful new algebraic constraints.

Note that all constraints so far were obtained for objects based on ΩMA
B = diag (Ω̌Ma

b,ΩMαβ, Ω̂Mα̂β̂),
the mixed connection de�ned in (5.66) on page 50. It contains three a priori independent blocks which all
decay further in a Lorentz and a scale connection. One of the important results from the study of the Bianchi
identities is that the torsion components Ťαβc and Ťα̂β̂

c are related to γcαβ and γc
α̂β̂

respectively by a Lorentz

plus scale transformation. It is discussed in an intermezzo on page 92 (and was also used in Berkovit's and
Howe's original work [13]) that this can be used to �x two of the three independent blocks. One is thus left with
one independent copy of Lorentz plus scale which should leave invariant γcαβ and γc

α̂β̂
. After this partial gauge

�xing, the mixed connection is not an appropriate choice any longer, as it does not in general respect the gauge.
We therefore introduce three alternative connections, namely the left-mover connection (de�ned by ΩMαβ

and invariance of the gamma-matrices), the right-mover connection (de�ned by Ω̂Mα̂β̂ and invariance of
the gamma-matrices) and the average connection (see beginning of appendix G on page 199 for more details)

ΩMA
B ≡ diag (ΩMa

b,ΩMαβ,ΩMα̂β̂), ∇Mγcαβ = ∇Mγcα̂β̂ = 0 (5.256)

Ω̂MA
B ≡ diag (Ω̂Ma

b, Ω̂Mαβ, Ω̂Mα̂β̂), ∇̂Mγcαβ = ∇̂Mγcα̂β̂ = 0 (5.257)

Ω←→MA
B ≡ 1

2

(
ΩMA

B + Ω̂MA
B
)

(5.258)

In addition we de�ne the di�erence tensor

∆MA
B ≡ Ω̂MA

B − ΩMA
B = diag (∆Ma

b,∆Mα
β,∆Mα̂

β̂) (5.259)

The Bianchi identities (5.252)-(5.254) should of course also hold when all objects are based on the above
newly de�ned connections. This does not put restrictions on ∆MA

B . All di�erent versions (based on di�erent
connections) of the Bianchi identities will lead to equivalent information (see proposition 7 on page 193). As
they are most conveniently written down in terms of the mixed connection, we will follow this path. Only the
bosonic block Ω̌Ma

b will, depending on possible simpli�cations, be chosen to coincide with either the left-mover
connection ΩMa

b or the right-mover connection Ω̂Ma
b. The corresponding calculations are lengthy and mostly

not very elluminating, so we put them into the local appendices at the end of this part of the thesis. There we
�rst start with collecting all constraints that we have derived so far in appendix 5.A on page 88 and then discuss
the Bianchi identities in detail starting from page 91. Some conceptually more interesting discussions within
these appendicies are seperated in intermezzi. The �rst intermezzo on page 92 is, as already mentioned, about
the �xing of two of the three copies of Lorentz plus scale transformations. The next on page 97 is about how to
determine the complete di�erence tensor from the obtained constraints. There is �nally a third intermezzo on
page 104 which discusses the relation between constraints on the RR-bispinors and constraints (or equations of
motion) for the corresponding p-forms.

After all this work in the local appendices, we will now collect all the constraints on the background �elds
that we have obtained, including the ones from the Bianchi identities. If we later, within the derivation of
the supergravity transformations of some component �elds, make use of some explicit form of components of
torsion, curvature or other background �elds without giving the explicit equation number, the corresponding
equation should be among the following ones.

Not all equations that we are going to write are independent. It is sometimes convenient to have them in
di�erent versions and grouped in di�erent ways. In particular we will give for later convenience the explicit form
of the torsion components based on left-mover, right-mover and average connection, although this contains a
lot of redundancy.
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Restricted structure group constraints The �rst set of constraints is related to the restriction of the
structure group (of the supermanifold) to a a block diagonal form with three copies of Lorentz and scale
transformations. This was discussed in a paragraph on pages 50-48, in the remark on page 53 and in the
intermezzo on page 61. The following equations are taken from (5.94)-(5.96), (5.152) or (5.154) and (5.159)

ΩMαβ =
1
2

Ω(D)
M δα

β +
1
4

Ω(L)
Ma1a2

γa1a2
α
β, Ω̂Mα̂β̂ =

1
2

Ω̂(D)
M δα̂

β̂ +
1
4

Ω̂(L)
Ma1a2

γa1a2
α̂
β̂ (5.260)

Cα
βγ̂ =

1
2
C γ̂δα

β +
1
4
C γ̂a1a2

γa1a2
α
β, Ĉα̂

β̂γ =
1
2
Ĉγδα̂

β̂ +
1
4
Ĉγa1a2

γa1a2
α̂
β̂ (5.261)

Sαα̂
ββ̂ =

1
4
Sδα

βδα̂
β̂ +

1
8
Sa1a2δα

βγa1a2
α̂
β̂ +

+
1
8
Ŝa1a2γ

a1a2
α
βδα̂

β̂ +
1
16
Sa1a2b1b2γ

a1a2
α
βγb1b2 α̂

β̂ (5.262)

GMN = EM
aGabEN

b, Gab = e2Φηab (5.263)

The above equations (without the last one) are equivalent to

γa1...a4
β
αΩMαβ = γa1...a4

β̂
α̂Ω̂Mα̂β̂ = 0 (5.264)

γa1...a4
β
αCα

βγ̂ = γa1...a4
β̂
α̂Ĉα̂

β̂γ = 0 (5.265)

γa1...a4
β
αSαα̂

ββ̂ = γa1...a4
β̂
α̂Sαα̂

ββ̂ = 0 (5.266)

Further constraints on C and S and indirectly on P The constraints (5.184) and (5.185) on C and
(5.188) and (5.189) on S (all on page 65) can be regarded as de�ning equations. We have already shown in
section 5.12 that the two equations for S are equivalent up to Bianchi identities.

Cα
γγ̂ = ∇αPγγ̂ (5.267)

Ĉα̂
γ̂γ = ∇α̂Pγγ̂ (5.268)

Sαα̂
γβ̂ = −∇α Ĉα̂

β̂γ︸ ︷︷ ︸
∇α̂Pγβ̂

+2R̂αγ̂α̂β̂Pγγ̂ (5.269)

Sαα̂
βγ̂ = −∇α̂ Cα

βγ̂︸ ︷︷ ︸
∇αPβγ̂

+2Rα̂γαβPγγ̂ (5.270)

In addition we have from the Bianchi identities the equations (5.637) and (5.638):

∇α̂Pαβ̂ = −1
2
Pαγ̂∇̂γ̂Φ · δα̂β̂ +

(
Tcd

α − 1
2
∇̂γΦPαδγ̃cd δγ

)
γ̃cdα̂

β̂ (5.271)

∇αPβα̂ = −1
2
Pγα̂∇γΦ · δαβ +

(
T̂cd

α̂ − 1
2
∇γΦPδα̂γ̃cd δγ

)
γ̃cdα

β (5.272)

In the intermezzo on page 104 we give a qualitative discussion how these equations are related to �eld equations
for the corresponding RR-p-form-�eld-strengths. The above expressions for the spinorial derivatives of the
RR-bispinors (which coincide with C and Ĉ according to (5.267) and (5.268)) already take into account the
restricted structure group according to (5.261). In addition they imply upon taking the trace that

∇α̂Pαα̂ = 8Pαα̂∇̂α̂Φ or ∇α̂(e−8ΦPαα̂) = 0 (5.273)

∇αPαα̂ = 8Pαα̂∇αΦ or ∇α(e−8ΦPαα̂) = 0 (5.274)

Constraints on H Due to (5.167)-(5.171), (5.226), (5.229), (5.476), (5.477) and the total antisymmetry of
H, its only nonvanishing components are

Habc 6= 0 (in general) (5.275)

Hαβc = −2
3
γ̃cαβ ≡ −

2
3
e2Φηcdγ

d
αβ (5.276)

Hα̂β̂c =
2
3
γ̃c α̂β̂ ≡

2
3
e2Φηcdγ

d
α̂β̂

(5.277)

The vanishing components are thus (written a bit redundantly)

HabC = Hαβ̂C = HABC = 0 (5.278)
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Note that the constraints for Hαβc and Hα̂β̂c (coming from (5.476) and (5.477)) are related to the torsion

constraints for Ťαβc and Ťα̂β̂
c and thus (as mentioned in the beginning of this section) contain the gauge �xing

of two of the three initially independent Lorentz and scale transformations (5.65). This is explained in detail
at page 92.

Further conditions on H, coming from the Bianchi identities (5.580), (5.581) and (5.582), are

∇δ̂Habc = −4T̂[ab|
ε̂γ̃|c]ε̂δ̂ (5.279)

∇̂δHabc = 4T[ab|
εγ̃|c]εδ (5.280)

∇[aHbcd] = −9
2
H[ab|

eHe|cd] (5.281)

More information on the torsion components Tabε and T̂abε̂ will be given in the corresponding paragraph below.

Constraints on the torsion Let us now collect the information of the constraints (5.168)-(5.170), (5.180)-
(5.183), (5.227), (5.230), (5.243) and the Bianchi identities (5.474), (5.475), (5.521), (5.522), (5.527), (5.528),
(5.538), (5.539), (5.634) and (5.635). The only (a priori) nonvanishing components of the torsion TAB

C are

Ťαβ
c = γcαβ, Ťα̂β̂

c = γc
α̂β̂

(5.282)

Tαb
c = −1

2
∇αΦδcb −

1
2
γb
c
α
β∇βΦ, T̂α̂b

c = −1
2
∇̂α̂Φδcb −

1
2
γb
c
α̂
β̂∇̂β̂Φ (5.283)

Tab
c =

3
2
Hab

c, T̂ab
c = −3

2
Hab

c (5.284)

Tα̂c
γ = γ̃c α̂δ̂P

γδ̂, T̂αc
γ̂ = γ̃cαδPδγ̂ (5.285)

Tab
γ =

1
16

(
∇γ̂Pγδ̂ + 8∇̂γ̂ΦPγδ̂

)
γ̃ab δ̂

γ̂ , T̂ab
γ̂ =

1
16
(
∇γPδγ̂ + 8∇γΦPδγ̂

)
γ̃ab δ

γ (5.286)

The remaining components vanish, which can be written (again a bit redundantly) as

TAB
C = Tαα̂

C = Tαd
γ = T̂α̂d

γ̂ = Tα̂b
c = T̂αb

c = 0 (5.287)

We obtain some additional constraints from the Bianchi identities (5.701), (5.689), (5.705) and (5.706):

∇α̂Tbcδ = −2γ̃[b| α̂δ̂∇|c]P
δδ̂ − 3Hbceγ

e
α̂δ̂
Pδδ̂ (5.288)

∇̂αT̂bcδ̂ = −2γ̃[b|αδ∇|c]Pδδ̂ + 3Hbceγ
e
αδPδδ̂ (5.289)

∇[aTbc]
δ = −3H[ab|

eTe|c]
δ − 2T̂[ab|

ε̂γ̃|c] ε̂δ̂P
δδ̂ (5.290)

∇̂[aT̂bc]
δ̂ = 3H[ab|

eT̂e|c]
δ̂ − 2T[ab|

εγ̃|c] εδPδδ̂ (5.291)

Di�erence tensor With the help of the constraints obtained from the Bianchi identities the explicit form
(5.543)-(5.549) of the di�erence tensor is derived in the intermezzo on page 97. The components with bosonic
structure group indices are given by

∆Ab
c : ∆ab|c = −3Habc (5.292)

∆αb|c = ∇αΦGbc + γ̃bcα
δ∇δΦ (5.293)

∆α̂b|c = −∇̂α̂ΦGbc − γ̃bcα̂δ̂∇̂δ̂Φ (5.294)

They determine the components with fermionic structure group indices to be of the form

∆AB
A : ∆aβ

γ = −3
4
Habcγ̃

bc
β
γ , ∆aβ̂

γ̂ = −3
4
Habcγ̃

bc
β̂
γ̂ (5.295)

∆αβ
γ =

1
2
∇αΦδβγ +

1
4
γbcα

δ∇δΦγbcβγ , ∆α̂β̂
γ̂ = −1

2
∇̂α̂Φδβ̂

γ̂ − 1
4
γbcα̂

δ̂∇̂δ̂Φγ
bc
β̂
γ̂ (5.296)

∆α̂β
γ = −1

2
∇̂α̂Φδβγ −

1
4
γbcα̂

δ̂∇̂δ̂Φγ
bc
β
γ , ∆αβ̂

γ̂ =
1
2
∇αΦδβ̂

γ̂ +
1
4
γbcα

δ∇δΦγbcβ̂
γ̂ (5.297)

The above equations imply in particular for the scale part (via taking the trace)

⇒ ∆(D)
a = 0 (5.298)

∆(D)
α = ∇αΦ (5.299)

∆(D)
α̂ = −∇̂α̂Φ (5.300)
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As we meet here the covariant derivatives of the compensator �eld, it is useful to add at this place also the
constraints (5.527),(5.528) and (5.529) on the covariant derivative of the compensator �eld coming from the
Bianchi identities:

∇α̂Φ = ∇̂αΦ = ∇aΦ = ∇̂aΦ = 0 (5.301)

Remember that the covariant derivative of the compensator �eld is given by ∇AΦ = EA
M (∂MΦ− Ω(D)

M ).

Torsion constraints rewritten in various ways Due to the explicit knowledge of the di�erence tensor,
we can write down all components of TABC , T̂ABC and T←→AB

C (using e.g. TAB γ̂ = T̂AB
γ̂ − ∆[AB]

γ̂). They
will be needed to derive the supersymmetry transformations in the corresponding gauge. Before we start, let us
stress once more that the scale transformations (or dilatations) are still part of our superspace structure group.
If one prefers to �x the compensator �eld Φ to zero immediately (which would correspond to [13]), one needs
to restrict to the Lorentz part Ω(L)

MA
B , Ω̂(L)

MA
B or Ω←→

(L)
MA

B of the corresponding connection. The Lorentz part of
the torsion can be obtained via

T
(L)
AB

C = TAB
C − Ω(D)

[AB]
C with Ω(D)

Mb
c = Ω(D)

M δcb and Ω(D)
MB

C = 1
2Ω(D)

M δB
C (5.302)

This will be made more explicit below for each case.
Let us now start with the left-mover torsion, whose components TABC are

TAB
c ≡

 Tab
c Taβ

c Taβ̂
c

Tαb
c Tαβ

c Tαβ̂
c

Tα̂b
c Tα̂β

c Tα̂β̂
c

 =

 3
2Hab

c 1
2∇βΦδca + 1

2γa
c
β
δ∇δΦ 0

− 1
2∇αΦδcb − 1

2γb
c
α
δ∇δΦ γcαβ 0

0 0 γc
α̂β̂

(5.303)
TAB

γ ≡

 Tab
γ Taβ

γ Taβ̂
γ

Tαb
γ Tαβ

γ Tαβ̂
γ

Tα̂b
γ Tα̂β

γ Tα̂β̂
γ

 =

 1
16

(
∇ε̂Pγδ̂ + 8∇̂ε̂ΦPγδ̂

)
γ̃ab δ̂

ε̂ 0 −γ̃a β̂δ̂P
γδ̂

0 0 0
γ̃b α̂δ̂P

γδ̂ 0 0

 (5.304)

TAB
γ̂ ≡

 Tab
γ̂ Taβ

γ̂ Taβ̂
γ̂

Tαb
γ̂ Tαβ

γ̂ Tαβ̂
γ̂

Tα̂b
γ̂ Tα̂β

γ̂ Tα̂β̂
γ̂

 = (5.305)


1
16

(
∇γPδγ̂ + 8∇γΦPδγ̂

)
γ̃ab δ

γ −γ̃aβδPδγ̂ 3
8Hadeγ̃

de
β̂
γ̂

γ̃bαδPδγ̂ 0 (− 1
8γdeα

δγdeβ̂
γ̂∇δΦ− 1

4∇αΦδβ̂
γ̂)

− 3
8Hbdeγ̃

de
α̂
γ̂ ( 1

8γdeβ
δγdeα̂

γ̂∇δΦ + 1
4∇βΦδα̂γ̂) ( 1

4γde [α̂
δ̂γdeβ̂]

γ̂∇̂δ̂Φ + 1
2∇̂[α̂Φδβ̂]

γ̂)


If we want to extract the Lorentz part, only a few of the components change. Remember ∇aΦ = 0 and ∇α̂Φ = 0
and assume only for this step that Φ was �xed to zero, which implies ∇MΦ → −Ω(D)

M and thus Ω(D)
a = 0 and

Ω(D)
α̂ = 0. According to (5.302) we then have

T
(L)
αb

c Φ=0= Tαb
c − 1

2Ω(D)
α δb

c = 1
2γb

c
α
δΩ(D)

δ (5.306)

T
(L)
αβ

γ = Tαβ
γ − 1

2Ω(D)
[α δβ]

γ = − 1
2Ω(D)

[α δβ]
γ (5.307)

T
(L)

αβ̂

γ̂ Φ=0= Tαβ̂
γ̂ − 1

4Ω(D)
α δβ̂

γ̂ = 1
8γdeα

δγdeβ̂
γ̂Ω(D)

δ (5.308)

All other components of T (L) coincide with T for Φ = 0 (and ∇MΦ→ −Ω(D)
M ).

The right-mover torsion components T̂ABC are

T̂AB
c ≡

 T̂ab
c T̂aβ

c T̂aβ̂
c

T̂αb
c T̂αβ

c T̂αβ̂
c

T̂α̂b
c T̂α̂β

c T̂α̂β̂
c

 =

 − 3
2Hab

c 0 1
2∇̂β̂Φδca + 1

2γa
c
β̂
δ̂∇̂δ̂Φ

0 γcαβ 0
− 1

2∇̂α̂Φδcb − 1
2γb

c
α̂
δ̂∇̂δ̂Φ 0 γc

α̂β̂

(5.309)

T̂AB
γ ≡

 T̂ab
γ T̂aβ

γ T̂aβ̂
γ

T̂αb
γ T̂αβ

γ T̂αβ̂
γ

T̂α̂b
γ T̂α̂β

γ T̂α̂β̂
γ

 = (5.310)


1
16

(
∇γ̂Pγδ̂ + 8∇̂γ̂ΦPγδ̂

)
γ̃ab δ̂

γ̂ − 3
8Hadeγ̃

de
β
γ −γ̃a β̂δ̂P

γδ̂

3
8Hbdeγ̃

de
α
γ ( 1

4γde[α
δγdeβ]

γ∇δΦ + 1
2∇[αΦδβ]

γ) ( 1
8γdeβ̂

δ̂γdeα
γ∇̂δ̂Φ + 1

4∇̂β̂Φδαγ)
γ̃b α̂δ̂P

γδ̂ (− 1
8γdeα̂

δ̂γdeβ
γ∇̂δ̂Φ−

1
4∇̂α̂Φδβγ) 0


T̂AB

γ̂ ≡

 T̂ab
γ̂ T̂aβ

γ̂ T̂aβ̂
γ̂

T̂αb
γ̂ T̂αβ

γ̂ T̂αβ̂
γ̂

T̂α̂b
γ̂ T̂α̂β

γ̂ T̂α̂β̂
γ̂

 =

 1
16

(
∇εPδγ̂ + 8∇εΦPδγ̂

)
γ̃ab δ

ε −γ̃aβδPδγ̂ 0
γ̃bαδPδγ̂ 0 0

0 0 0

 (5.311)
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In order to extract the Lorentz part, remember ∇̂aΦ = 0 and ∇̂αΦ = 0. For Φ = 0 (∇MΦ → −Ω(D)
M ) this

implies Ω̂(D)
a = 0 and Ω̂(D)

α = 0. According to (5.302) we then have

T̂
(L)
α̂b

c Φ=0= T̂α̂b
c − 1

2 Ω̂(D)
α̂ δb

c = 1
2γb

c
α̂
δ̂Ω̂(D)

δ̂
(5.312)

T̂
(L)

α̂β̂

γ̂ = T̂α̂β̂
γ̂ − 1

2 Ω̂(D)
[α̂ δβ̂]

γ̂ = − 1
2 Ω̂(D)

[α̂ δβ̂]
γ̂ (5.313)

T̂
(L)
α̂β

γ Φ=0= T̂α̂β
γ − 1

4 Ω̂(D)
α̂ δβ

γ = 1
8γdeα̂

δ̂γdeβ
γΩ̂(D)

δ̂
(5.314)

All other components of T̂ (L) coincide with T̂ for Φ = 0 (and ∇MΦ→ −Ω(D)
M ).

Finally we give the components of the average torsion T←→AB
C ≡ 1

2

(
TAB

C + T̂AB
C
)
:

T←→AB
c ≡

 T←→ab
c T←→aβ

c T←→aβ̂
c

T←→αb
c T←→αβ

c T←→αβ̂
c

T←→α̂b
c T←→α̂β

c T←→α̂β̂
c

 =

=

 0 1
4∇βΦδca + 1

4γa
c
β
δ∇δΦ 1

4∇̂β̂Φδca + 1
4γa

c
β̂
δ̂∇̂δ̂Φ

− 1
4∇αΦδcb − 1

4γb
c
α
δ∇δΦ γcαβ 0

− 1
4∇̂α̂Φδcb − 1

4γb
c
α̂
δ̂∇̂δ̂Φ 0 γc

α̂β̂

 (5.315)

T←→AB
γ ≡

 T←→ab
γ T←→aβ

γ T←→aβ̂
γ

T←→αb
γ T←→αβ

γ T←→αβ̂
γ

T←→α̂b
γ T←→α̂β

γ T←→α̂β̂
γ

 = (5.316)


1
16

(
∇ε̂Pγδ̂ + 8∇̂ε̂ΦPγδ̂

)
γ̃ab δ̂

ε̂ − 3
16Hadeγ̃

de
β
γ −γ̃a β̂δ̂P

γδ̂

3
16Hbdeγ̃

de
α
γ ( 1

8γde[α
δγdeβ]

γ∇δΦ + 1
4∇[αΦδβ]

γ) ( 1
16γdeβ̂

δ̂γdeα
γ∇̂δ̂Φ + 1

8∇̂β̂Φδαγ)
γ̃b α̂δ̂P

γδ̂ (− 1
16γdeα̂

δ̂γdeβ
γ∇̂δ̂Φ−

1
8∇̂α̂Φδβγ) 0


T←→AB

γ̂ ≡

 T←→ab
γ̂ T←→aβ

γ̂ T←→aβ̂
γ̂

T←→αb
γ̂ T←→αβ

γ̂ T←→αβ̂
γ̂

T←→α̂b
γ̂ T←→α̂β

γ̂ T←→α̂β̂
γ̂

 = (5.317)


1
16

(
∇εPδγ̂ + 8∇εΦPδγ̂

)
γ̃ab δ

ε −γ̃aβδPδγ̂ 3
16Hadeγ̃

de
β̂
γ̂

γ̃bαδPδγ̂ 0 (− 1
16γdeα

δγdeβ̂
γ̂∇δΦ− 1

8∇αΦδβ̂
γ̂)

− 3
16Hbdeγ̃

de
α̂
γ̂ ( 1

16γdeβ
δγdeα̂

γ̂∇δΦ + 1
8∇βΦδα̂γ̂) ( 1

8γde [α̂
δ̂γdeβ̂]

γ̂∇̂δ̂Φ + 1
4∇̂[α̂Φδβ̂]

γ̂)


The unfortunate situation that neither T←→αβ

γ nor T←→α̂β̂
γ̂ vanish raises the question whether the conventional

constraints Tαβγ = T̂α̂β̂
γ̂ = 0 were a clever choice or better should be replaced by a constraint on the average

torsion.
Once more, in order to extract the Lorentz part, we need (for Φ = 0) the constraints Ω←→

(D)
a = 0, Ω←→

(D)
α =

1
2Ω(D)

α and Ω←→
(D)
α̂ = 1

2 Ω̂(D)
α̂ . According to (5.302) we then have

T←→
(L)
αb

c Φ=0= T←→αb
c − 1

4Ω(D)
α δb

c = 1
4γb

c
α
δΩ(D)

δ (5.318)

T←→
(L)
αβ

γ Φ=0= T←→αβ
γ − 1

4Ω(D)
[α δβ]

γ = − 1
8γde[α

δγdeβ]
γΩ(D)

δ − 1
2Ω(D)

[α δβ]
γ (5.319)

T←→
(L)

αβ̂

γ̂ Φ=0= T←→αβ̂
γ̂ − 1

8Ω(D)
α δβ̂

γ̂ = 1
16γdeα

δγdeβ̂
γ̂Ω(D)

δ (5.320)

T←→
(L)
α̂b

c Φ=0= T←→α̂b
c − 1

4 Ω̂(D)
α̂ δb

c = 1
4γb

c
α̂
δ̂Ω̂(D)

δ̂
(5.321)

T←→
(L)

α̂β̂

γ̂ Φ=0= T←→α̂β̂
γ̂ − 1

4 Ω̂(D)
[α̂ δβ̂]

γ̂ = − 1
8γde [α̂

δ̂γdeβ̂]
γ̂Ω̂(D)

δ̂
− 1

2 Ω̂(D)
[α̂ δβ̂]

γ̂ (5.322)

T←→
(L)
α̂β

γ Φ=0= T←→α̂β
γ − 1

8 Ω̂(D)
α̂ δβ

γ = 1
16γdeα̂

δ̂γdeβ
γΩ̂(D)

δ̂
(5.323)

The remaining components of T←→
(L) coincide with T←→ for Φ = 0 (and ∇MΦ→ −Ω(D)

M ).

Constraints on the curvature Induced by the restricted structure group constraints on the connection, we
have such constraints likewise for the curvature (see (5.68) on page 50 and (F.88),(F.90) and (F.92) on page
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F.90. The curvature is blockdiagonal and each part decays into a scale part and a Lorentz part:

RABC
D = diag (ŘABcd, RABγδ, R̂ABγ̂ δ̂) (5.324)

ŘABc
d = F̌

(D)
AB δ

d
c + Ř

(L)
AB c

d, F̌
(D)
AB =

1
10
ŘABc

c (5.325)

RABγ
δ =

1
2
F

(D)
AB δγ

δ +
1
4
R

(L)
ABa1

bηba2γ
a1a2

γ
δ, F

(D)
AB = −1

8
RABγ

γ (5.326)

R̂ABα̂
β̂ =

1
2
F̂ (D)δα̂

β̂ +
1
4
R̂

(L)
ABa1

bηba2γ
a1a2

α̂
β̂, F̂

(D)
AB = −1

8
R̂ABγ̂

γ̂ (5.327)

with the scale �eld strength

F̌ (D) ≡ dΩ̌(D), F (D) ≡ dΩ(D), F̂ (D) ≡ dΩ̂(D) (5.328)

The bosonic �eld strength is also obtained via the commutator of covariant derivatives acting on the compensator
�eld Φ. Only the bosonic block Ω̌Ma

b of the mixed connection ΩMA
B acts on Φ, because Φ is a compensator

for the transformation of Gab = e2Φηab (with bosonic indices only). But as the di�erent blocks of the structure
group got related by partial gauge �xing, we may as well act with the left- or right-mover connection on it:

F̌
(D)
MN = −∇[M ∇̌N ]Φ− TMN

K∇̌KΦ (5.329)

F
(D)
MN = −∇[M∇N ]Φ− TMN

K∇KΦ (5.330)

F̂
(D)
MN = −∇̂[M ∇̂N ]Φ− T̂MN

K∇̂KΦ (5.331)

Finallly we collect the holomorphicity (5.186),(5.187),(5.190),(5.191) and nilpotency constraints (5.228),(5.231)
on the curvature, together with the Bianchi identities (5.586), (5.587), (5.595), (5.596), (5.609), (5.610), (5.689)
and (5.690):

Rα̂cα
β = γ̃c α̂δ̂∇αP

βδ̂, R̂αcα̂
β̂ = γ̃cαδ∇α̂Pδβ̂ (5.332)

Rα̂γ̂α
β = 0, R̂αγα̂

β̂ = 0 (5.333)

Rc[αβ]
γ = γdαβTdc

γ , R̂c[α̂β̂]
γ̂ = γd

α̂β̂
T̂dc

γ̂ (5.334)

Rγ̂[αβ]
δ = −γeαβγ̃e γ̂δ̂P

δδ̂, R̂γ[α̂β̂]
δ̂ = −γe

α̂β̂
γ̃eγδPδδ̂ (5.335)

R[α1α2α3]
β = 0, R̂[α̂1α̂2α̂3]

β̂ = 0 (5.336)

Rbcα
δ = ∇αTbcδ

∣∣
Ω̌=Ω̂

+ 4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂, R̂bcα̂

δ̂ = ∇α̂T̂bcδ̂
∣∣∣
Ω̌=Ω

+ 4γ̃[b| α̂γ̂Pεγ̂ γ̃|c] εδPδδ̂ (5.337)

Taking the trace of the �rst two curvature constraints (using (5.274) and (5.273)) gives further informations on
the Dilatation-Field-strength (and thus indirectly also on the Lorentz curvature)

F̂ (D)
cα = γ̃cαδPδα̂∇̂α̂Φ, F

(D)
cα̂ = γ̃c α̂δ̂P

αδ̂∇αΦ (5.338)

F̂ (D)
αγ = 0, F

(D)
α̂γ̂ = 0 (5.339)

Remaining BI's Finally we get a couple of constraints on curvature components where the structure group
indices are bosonic. They are related to the above ones as we shall discuss after presenting them:

Rαβc
d (5.719)

= −∇[α∇β]Φδcd + γc
d

[α
δ∇β]∇δΦ + 3γeαβHec

d + γc
e
[α|
γ∇γΦγed|β]

δ∇δΦ (5.340)

R̂α̂β̂c
d (5.720)

= −∇̂[α̂∇̂β̂]Φδc
d + γc

d
[α̂
δ̂∇̂β̂]∇̂δ̂Φ− 3γe

α̂β̂
Hec

d + γc
e
[α̂|
γ̂∇̂γ̂Φγed|β̂]

δ̂∇̂δ̂Φ (5.341)

Rαβ̂c
d (5.727)

=
1
2
∇β̂∇αΦδdc +

1
2
γc
d
α
γ∇β̂∇γΦ− 2γ̃cαβPβε̂γdε̂β̂ + 2γ̃c β̂δ̂P

εδ̂γdεα (5.342)

R̂α̂βc
d (5.728)

=
1
2
∇̂β∇̂α̂Φδdc +

1
2
γc
d
α̂
γ̂∇̂β∇̂γ̂Φ− 2γ̃c α̂β̂P

εβ̂γdεβ + 2γ̃cβδPδε̂γdε̂α̂ (5.343)

Rα̂[bc]d
(5.741)

= −1
8
∇γPδε̂γ̃d[b| δ

γγ|c]ε̂α̂ +Gd[b|γ̃|c] α̂δ̂P
εδ̂∇εΦ (5.344)

R̂α[bc]d
(5.740)

= −1
8
∇γ̂Pεδ̂γ̃d[b| δ̂

γ̂γ|c]εα +Gd[b|γ̃|c]αδPδε̂∇̂ε̂Φ (5.345)
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R[abc]
d (5.748)

=
3
2
∇[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T[ab|

εTε|c]
d (5.346)

R̂[abc]
d (5.749)

= −3
2
∇̂[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T̂[ab|

ε̂T̂ε̂|c]
d (5.347)

From the structure group constraints on the curvature, we know that the components split into Lorentz and
scale part RABcd = F

(D)
AB δ

d
c +R(L)

ABc
d. The same is true for the componets with fermionic structure group indices,

where we had the split RABγδ = 1
2F

(D)
AB δγ

δ + 1
4R

(L)
ABc

dγcdγ
δ. The coe�cients F (D)

AB and R(L)
ABc

d are the same,
when the bosonic block of Ω̌Ma

b was chosen to coincide with the left-mover connection. They can be extracted
from RABc

d just as 1
10 of the trace part and as the antisymmetric part respectively. To extract the coe�cients

instead from RABγ
δ, we need the fermionic trace δγγ = −16 which yields F (D)

AB = − 1
8RABγ

γ and the identity

γabδ
γγcdγ

δ = 32δcdab that allows to extract the Lorentz part as R(L)
ABc

d = 1
8γc

d
δ
γRABγ

δ. Then we can relate
both curvature blocks directly in the following way:

RABc
d = −1

8
RABγ

γδdc +
1
8
γc
d
δ
γRABγ

δ (5.348)

RABγ
δ =

1
20
RABc

cδγ
δ +

1
4
RABc

dγcdγ
δ (5.349)

In the same way we can relate R̂ABcd and R̂ABγ̂ δ̂ and compare their constraints which should reveal additional
information. This was used for example in footnote 28 on page 111 to derive the constraint

∇β̂∇αΦ = −γ̃dαρPρε̂γdε̂β̂ (5.350)

on the compensator super�eld.

5.14 The dilaton super�eld

While we have found the covariant derivatives ∇aΦ = ∇̂aΦ = ∇α̂Φ = ∇̂αΦ of the compensator �eld Φ to
be forced to vanish, the remaining components ∇αΦ = Eα

M (∂MΦ − Ω(D)
M ) and ∇̂α̂Φ = Eα̂

M (∂MΦ − Ω̂(D)
M )

seem to contain physical fermionic degrees of freedom. Indeed, the leading components of the scale connections
Ω(D)
α and Ω̂(D)

α̂ were identi�ed in [13] up to a constant factor with the dilatinos. As we have not yet �xed the
local scale invariance (guaranteed by the compensator �eld Φ), those connections are not covariant and we take
instead the just mentioned covariant derivatives of the compensator �eld. That is, we de�ne the dilatinos as

λα ≡ ∇αΦ|~θ=0 , λ̂α̂ ≡ ∇̂α̂Φ
∣∣∣
~θ=0

(5.351)

We are still completely missing the dilaton itself, whose appearance is a bit hidden. It does not show up
explicitely in the action. Although we did not manually include it via the Fradkin Tseytlin term, its physical
degrees of freedom should already be present in this setting.16 Usually one would suspect the dilatinos to be
components at �rst order in ~θ of a scalar dilaton super�eld instead of being the component of a (non-covariantly
transforming) compensator �eld. The idea to recover such a scalar super�eld is to equate its spinorial derivative
with the covariant spinorial derivatives of the compensator �eld and let the algebra �x the missing bosonic
derivative. So let us simply �de�ne� the scalar dilaton super�eld Φ(ph) via

∇αΦ(ph) ≡ ∇αΦ, ∇̂α̂Φ(ph) ≡ ∇̂α̂Φ (5.352)

The di�erent behaviour of the �elds under scale transformations is re�ected in the di�erent action of the
covariant derivative. While for the dilaton it acts like a partial derivative ∇αΦ(ph) = Eα

M∂MΦ(ph), the action

on the compensator �eld � as mentioned already above � includes a shift ∇αΦ = Eα
M (∂MΦ(ph) − Ω(D)

M ). Of
course we have to make sure that this de�nition does not put additional restrictions on the already present
�eld content, in particular on the scale �eld strength. As Φ(ph) is supposed to be a scalar �eld (where the
commutator of covariant derivatives does not contain any curvature terms), while Φ is a compensator �eld

16Thanks to N. Berkovits for clarifying this issue. In [13, 59] the dilaton was added as an extra �eld via the Fradkin-Tseytlin
term SFT =

R
α′rΦ(ph) (with r being the worldsheet curvature) and then related to the already present �eld content via a

quantum consistency argument. Their result was EαM∂MΦ(ph) = 4Ωα and Eα̂
M∂MΦ(ph) = 4Ω̂α̂. Because of the introduction of

our compensator �eld Φ, their relations would modify in our case to

Eα
M∂M (Φ(ph) + 4Φ) = 4Ωα ⇐⇒ −4∇αΦ = ∇αΦ(ph)

Eα̂
M∂M (Φ(ph) + 4Φ) = 4Ω̂α̂ ⇐⇒ −4∇̂α̂Φ = ∇̂α̂Φ(ph)

Our de�nition (5.352) of the dilaton is thus consistent with this result, although the de�nitions di�er by a factor −4. �
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(where the commutator of covariant derivatives contains the scale �eld strength), it is instructive to compare
the derivative commutators acting on them:

∇[α∇β]Φ(ph)

∣∣∣
Ω̌=Ω

= − Tαβ
C
∣∣
Ω̌=Ω
∇CΦ(ph) = −γcαβ∇cΦ(ph)

∇[α∇β]Φ
∣∣∣
Ω̌=Ω

= − Tαβ
C
∣∣
Ω̌=Ω
∇CΦ− F (D)

αβ = −F (D)
αβ (5.353)

Similar equations hold for the hatted indices. Consistency then requires

γcαβ∇cΦ(ph) = F
(D)
αβ , γc

α̂β̂
∇cΦ(ph) = F̂

(D)

α̂β̂
(5.354)

In contrast to ∇cΦ and ∇̂cΦ, the bosonic derivative ∇cΦ(ph) of the dilaton super�eld is in general nonzero.
For the validity of the above 'de�nition' it is important to observe that because of the constraints (5.571) the
equations (5.354) do not put an additional arti�cial restriction on F (D)

αβ and F̂ (D)

α̂β̂
. Instead (5.354) consistently

completes (5.352) to a complete superspace derivative of the super�eld and we can use the supervielbein to
switch to curved coordinates where the covariant derivative ∇MΦ(ph) on the scalar �eld coincides with the
partial derivative ∂MΦ(ph). Integrating it, we are just missing a constant, the dilaton zero mode (responsible
for the string-coupling in the loop-expansion). The dilaton super�eld is thus well-de�ned by (5.352) up to an
integration constant.

5.15 Local SUSY-transformation of the fermionic �elds

In order to make contact to generalized complex geometry, we are interested in the local supersymmetry trans-
formations of the fermionic �elds, i.e. the gravitino and the dilatino. Note that the superdi�eomorphisms and
the local structure group transformations contain a huge number of auxiliary gauge degrees of freedom in the
~θ-expansion of the transformation parameters. The physical �elds are recovered by choosing a gauge, in partic-
ular the so-called WZ-gauge. Remaining bosonic di�eomorphisms, local structure group transformations of the
bosonic manifold and local supersymmetry are then part of the stabilizer transformations of the chosen gauge.
In the appendix H on page 206, this procedure is carefully explained and the supergravity transformations are
derived for a general setting, following roughly [17].

5.15.1 Connection to choose

As mentioned above, in the appendix H on page 206 we describe the ususal procedure of choosing the Wess
Zumino gauge EM

A
∣∣ = δM

A and ΩMA
B
∣∣ = 0 (see (H.76) and (H.92)). This gauge �xing is possible with any

connection as long as it takes the same values (in the Lie algebra) as the gauge transformations (Remember, a
connection is a Lie algebra valued one form). However, the present case is a bit special in the following sense:
We have derived the supergravity constraints using the connection

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMαβ 0
0 0 Ω̂Mα̂β̂

 (5.355)

After that we have coupled the independent structure group transformations of the three blocks by a gauge
�xing s.t. Tαβ

c = γcαβ and Tα̂β̂
c = γc

α̂β̂
. The remaining gauge symmetry has to leave this gauge �xing

invariant which reduces the structure group to only one copy of the Lorentz group plus one scale group. The
above connection however does not leave the gauge �xing invariant (the covariant derivatives do not vanish
in general). In order to be consistent, we thus have to reformulate the equations in terms of a connection
which leaves γcαβ and γc

α̂β̂
invariant. Possible choices are either the left mover connection ΩMA

B (de�ned by

ΩMαβ and ∇Mγcαβ = ∇Mγcα̂β̂ = 0) or the right-mover connection Ω̂MA
B (de�ned by Ω̂Mα̂β̂) or the average

connection

Ω←→MA
B ≡ 1

2

(
ΩMA

B + Ω̂MA
B
)

= ΩMA
B +

1
2

∆MA
B (5.356)

We will study the choices ΩMA
B and Ω←→MA

B . The �rst has the advantage that at least the left mover equations
stay simple while the second has the advantage that the symmetry between left and right movers is preserved.
Corresponding to the the �rst choice the connection part of the WZ gauge simply reads

ΩMA
B
∣∣ = 0 (gauge I) (5.357)

In this gauge all the equations derived in appendix H on page 206 hold literally. The average connection be-

comes in this gauge Ω←→MA
B
∣∣∣ = 1

2 ∆MA
B
∣∣, while the mixed connection can be written as ΩMA

B
∣∣
Ω̌=Ω,θ=0

=
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diag (0, 0, ∆M α̂
β̂
∣∣∣). Alternatively to gauge-I we could put Ω̂MA

B
∣∣∣ = 0 or equivalently Ω←→MA

B
∣∣∣ = − 1

2 ∆MA
B
∣∣

which would be the same type of gauge with simply the role of hatted and unhatted variables interchanged.
However, a qualitatively di�erent but likewise natural gauge �xing (preserving the symmetry in hatted and

unhatted variables) is

Ω←→MA
B
∣∣∣ = 0 (gauge II) (5.358)

In this gauge we have to replace in all equations of appendix H on page 206 the objects ΩMA
B , ∇M , TMN

A and
RMNA

B with Ω←→MA
B , ∇←→M , T←→MN

A and R←→MNA
B respectively. The mixed connection in this gauge becomes

ΩMA
B
∣∣
Ω̌=Ω,θ=0

= diag (− 1
2∆Ma

b,− 1
2∆Mα

β, 1
2∆Mα̂

β̂)
∣∣∣.

5.15.2 Denoting the physical component �elds

We will try (where possible) to use a small letter to denote the leading component of a super�eld. One should
keep in mind that the notation for the component �elds is a bit subtle, because the bosonic vielbein o�ers a
second useful possibility to change from �at to curved indices. We will also make use of this possibility for the
component �elds, but one has to be careful. De�ning for example hmnk ≡ Hmnk| and then changing to �at
indices with the bosonic vielbein, is di�erent from �rst changing to �at indices with the supervielbein and then
taking the leading component: habc 6= Habc|. In the following we will provide the de�nitions of the component
�elds. If the same component �eld is given later with changed indices (�at to curved or vice verse), then this is
done via the bosonic vielbein.

EM
A
∣∣ ≡ (

em
a ψm

A

0 δM
A

)
(5.359)

ΩmAB
∣∣ ≡ ωmA

B , (ΩMA
B
∣∣ = 0) (5.360)

Φ| ≡ φ, Φ(ph)(
�
x )
∣∣∣ ≡ φ(ph)(

→
x ) (5.361)

Gmn| ≡ e2φgmn = em
aen

be2φηab (5.362)

Bmn| ≡ bmn, Hmnk| ≡ hmnk ⇒ hmnk = ∂[mbnk] (5.363)

The second line which de�nes the bosonic connection certainly has to be adjusted according to the superconnec-
tion on which the WZ-gauge is based. For gauge II the de�nition of the bosonic connection would thus change to

Ω←→mA
B
∣∣∣ ≡ ω←→mA

B , ( Ω←→MA
B
∣∣∣ = 0). In the fourth line we see that we can use the bosonic compensator �eld φ

to switch from string frame (vanishing φ) to the Einstein frame where φ should be gauge �xed to be proportional
to the dilaton. In the third line we have de�ned the bosonic dilaton φ(ph) as the leading component of the
dilaton super�eld. In contrast to the compensator �eld, it contains a physical degree of freedom which cannot
be gauged away.17

For the de�nition of the leading component of the RR-bispinor Pαβ̂ we �rst need a motivating observation.
Because of the de�nition of the dilaton super�eld in (5.352) via the spinorial covariant derivative of the com-
pensator �eld, the latter can be replaced in (5.274),(5.273) by the spinorial derivative of the dilaton super�eld

17There are some more words to say about the remaining scale invariance. The fact that the de�nition of the bosonic metric
includes the compensator �eld leads to a loss of the correspondance between scaling behaviour and �at index. De�ne alternatively

Gmn| ≡ g̃mn = em
aen

bg̃ab (= em
aen

be2φηab), g̃mn = ea
meb

ngab (≡ eamebne−2φηab)

For a scale transformation δφ = −ϕ, we have the following transformations of the other �elds:

δem
a = ϕem

a, δea
m = −ϕeam

δg̃ab = −2ϕ g̃ab, δg̃ab = 2ϕg̃ab ↔ δηab = δηab = 0

δg̃mn = δg̃mn = 0 ↔ δgmn = 2ϕgmn, δgmn

δbmn = δhmnk = δφ(ph) = 0

δpαβ̂ = ϕpαβ̂

δψm
A = 1

2
ϕψm

A

δλA = − 1
2
ϕλA

While for the use of g̃mn and g̃ab the scaling behaviour is coupled to the �at indices, this is not the case for gmn and ηab. Before
the scale invariance is not �xed, we thus should not use gmn or ηab to lower or raise indices.
Similar considerations hold for the covariant derivative. Denote for the moment the bosonic spacetime-connection with γmk

l.
We will use it only in this footnote and should not mix it up with an antisymmetrized product of three γ-matrices. This spacetime
connection will not be de�ned as the leading component of Γmk

l, but via

∇meka = 0 with ∇m ≡ ∂m ± γmlk ± ωmAB

which implies γmk
nena = Γmk

N
˛̨
EN

a|. The scaling part of the so de�ned bosonic covariant derivative acts on g̃mn and g̃ab
according to their indices but not on gmn and ηab. �
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and those equations can be rewritten as

∇α̂(e−8Φ(ph)Pδα̂) = 0 = , ∇α(e−8Φ(ph)Pαδ̂) = 0 (5.364)

This is the motivation to de�ne the RR-�elds as

pαβ̂ ≡ e−8φ(ph) Pαδ̂
∣∣∣ (5.365)

We had de�ned the dilatino already in the previous section in (5.351). Having now the scalar dilaton super�eld
at hand, it is convenient to use (5.352) in order to write them as components of this super�eld:

λA ≡ ∇AΦ(ph)

∣∣ (5.366)

The subtleties of having bosonic and superspace vielbein at the same time were mentioned already in the
beginning of this subsection. An example for the issues is provided by the inverse vielbein whose leading
components are given by

EA
M
∣∣ =

(
ea
m −ψaM

0 δA
M

)
(5.367)

where eam is the inverse of ema and the indices of the gravitino were converted via bosonic vielbein and fermionic
Kronecker delta respectively:

ea
mem

b = δba (5.368)

ψa
M ≡ ea

mψm
AδA

M (5.369)

In the same way we de�ne

bab ≡ ea
meb

nbmn (5.370)

habc ≡ ea
meb

nec
nhmnk (5.371)

gab ≡ ea
meb

ngmn = ηab (5.372)

As mentioned above, these expressions do in general not coincide with the leading components of the corre-
sponding super�elds

Gab| = e2φηab − 2e[a
mψb]

N GmN | + ψa
Mψb

N GMN | = (5.373)

= e2φηab − 2ψ[b
B Ga]B

∣∣ − ψaAψb
B GAB| (5.374)

Bab| = bab − 2e[a
mψb]

N BmN | + ψa
Mψb

N BMN | = (5.375)

= bab − 2ψ[b
B Ba]B

∣∣ − ψaAψb
B BAB| (5.376)

Habc| = habc − 3e[a
meb

nψc]
K HmnK| + 3ψaMψb

N ec
k HMNk| − ψaMψb

Nψc
K HMNK| = (5.377)

= habc − 3ψ[c
C Hab]C

∣∣ − 3ψ[a
Aψb|

B HAB|c]
∣∣ − ψaAψb

Bψc
C HABC| (5.378)

Note that for vanishing gravitino ψm
A there is no di�erence between the usage of bosonic vielbein or su-

pervielbein to change from �at to curved indices. For non-vanishing gravitino the expressions already simplify
signi�cantly, if we take into account the WZ-like gauge BMN | = BmN | = 0 for the B-�eld and the supergravity
constraints of H-�eld and rank-two tensor GAB . The latter has Gab as only nonvanishing component.

G|ab = e2φηab (5.379)

Bab| = bab (5.380)

Habc| = habc + 2e2φe[a
meb

nγc]αβψm
αψn

β − 2e2φe[a
meb

nγc] α̂β̂ψ̂m
α̂ψ̂n

β̂ (5.381)

Let us eventually see how the bosonic torsion

ta ≡ dea − ec ∧ ωca (5.382)

is related to the leading component of the superspace torsion:

Tmn
a| = ∂[m En]

a
∣∣ + E[n

c
∣∣ Ωm]c

a
∣∣ + E[n

C∣∣ Ωm]C
a
∣∣ = (5.383)

= ∂[men]
a + e[n

cωm]c
a = tmn

a (5.384)

Rewriting the superspace connection in terms of components with �at indices yields

tmn
a = em

cen
d Tcd

a| + 2e[m
cψn]

D TcD
a| + ψm

Cψn
D TCD

a| (5.385)
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which implies

tcd
a = Tcd

a| + 2e[c|
mψm

C TC|d]
a
∣∣ + ec

med
nψm

Cψn
D TCD

a| (5.386)

Similarly we have for the bosonic curvature

ra
b ≡ dωab − ωac ∧ ωcb (5.387)

the following relations to the superspace curvature:

Rmna
b
∣∣ = rmna

b (5.388)

rcda
b = Rcda

b
∣∣ + 2e[c|

mψm
C RC|d]a

b
∣∣ + ec

med
nψm

Cψn
D RCDa

b
∣∣ (5.389)

For gauge II the above expressions again have to be understood in terms of the average connection. As we have
not yet plugged any torsion or curvature constraints into the equations, they are still valid for both gauges.

5.15.3 The gravitino transformation

5.15.3.1 General form

In the appendix, the general form of the gravitino transformation is given in equation (H.209), which we repeat
here for convenience:

δεψm
A = ∂mε

A + ωmC
AεC︸ ︷︷ ︸

∇mεA

+2εCem
b TCb

A∣∣ + 2εCψm
B TCB

A∣∣ (5.390)

where ωmA
B ≡ ΩmA

B
∣∣. The connection appearing explicitely and implicitely (in the torsion) in this transfor-

mation has to be the same connection as the one on which the WZ gauge �xing condition was put. The above
equation can thus be understood literally if we choose gauge I (based on the left-mover connection ΩMA

B) while
for gauge II (based on the average connection Ω←→MA

B) every implicit or explicit appearance of ΩMA
B has to

be replaced by Ω←→MA
B . We can continue the considerations for a while without deciding, whether we are in

gauge I or gauge II, although the notation will suggest that we are in gauge I (with connection ΩMA
B).

For the transformation of the gravitino(s) given above, we still need additional information about the con-
nection ωmC

A, which does not necessarily coincide with the Levi Civita connection. In bosonic manifolds, the
connection is completely determined by torsion and (non)metricity, if a metric is given. If no metric is given, one
can likewise demand the preservation of other structures or structure constants. In particular in 10-dimensional
superspace we do not have a non-degenerate superspace-metric. Only the bosonic block Gab of the symmetric
rank two tensor GAB has full rank. In order to determine the full superspace connection, one thus needs more
than the information about the covariant derivative of the symmetric rank two tensor. A natural candidate is
the covariant derivative of the gamma-matrices, the structure constants of the supersymmetry algebra. This
logic is carefully described in appendix G.

The derivation of (5.390) in the appendix did not assume any restrictions on the structure group, apart from
being blockdiagonal w.r.t. bosonic and fermionic indices. Right now, we make use of the fact that we have (for
gauge I as well as for gauge II) a connection with

∇Mγcαβ
!= ∇Mγcα̂β̂

!= 0 (5.391)

which relates the three blocks of ΩMA
B and restricts the structure group to local Lorentz and local scale

transformations. It is convenient to write

γcAB ≡

(
γcαβ 0

0 γc
α̂β̂

)
(5.392)

Only in type IIA this matrix coincides with AΓc (where A is the intertwiner responsible for the Dirac-conjugate:
Ψ̄ = Ψ†A).

We can then make use of equation (G.57) of appendix G, which relates the leading components of the
superspace connection, in particular the ones with fermionic structure group indices

ωmA
B ≡ ΩmA

B∣∣ , (5.393)
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to the Levi Civita connection and a somewhat lengthy rest:

ωmB
A = ω

(LC)
mB

A +

+
1
4
em

a

{
2e−2φ Ta[b|c]

∣∣ − e−2φ Tbc|a
∣∣ − 2

(
∇[b|Φ

∣∣ − e[b|
k∂kφ

)
η|c]a − 2e[b

nηc]aψn
C (∇CΦ)| +

+
(
2eake[b

nηc]d − ebkecnηad
)
ψk

Cψn
D TCD

d
∣∣ +

+e−2φ
(

2eanψnC TC[b|c]
∣∣ − 2ebnψnC TC(a|c)

∣∣ + 2ecnψnC TC(a|b)
∣∣)}γbcBA

−1
2
(
ψm

C ∇CΦ| + em
a ∇aΦ| − ∂mφ

)
δB

A (5.394)

where the Levi Civita connection ω(LC)
mB

A is the one with respect to the metric gmn = em
aηaben

b. We should
note that the Levi Civita connection is not a suitable connection for scale transformations, because it is only
Lorentz group valued. The terms ∂kφ with the partial derivative of the compensator �eld do not transform
covariantly under scale transformations and are the minimal extension of the Levi Civita connection to make it
a structure group valued connection. On the other hand, if one decides to simply �x φ to zero and thus ending
up only with Lorentz transformations, these terms disappear. The last line which is dilatation-valued can then
not any longer be seen as part of the connection.

Together with (5.390) the above expression for the connection determines the supergravity transformation
of the gravitino. In order to plug in the explicit constraints for the torsion, we have to decide in which gauge
we work.

5.15.3.2 In gauge I

In gauge I, we can take the above equations literally and plug in the corresponding torsion constraints (5.303)-
(5.305). We will need in addition that according to (5.381) the leading component of the H-�eld with �at coordi-
nates is related to the bosonic h-�eld via Habc| = habc+2e2φe[a

meb
nγc]αβψm

αψn
β−2e2φe[a

meb
nγc] α̂β̂ψ̂m

α̂ψ̂n
β̂.

The connection becomes

ωmB
A = ω

(LC)
mB

A +
1
4
em

a

{
3
2habce

−2φ + 2e[b|
k∂kφη|c]a + 4eake[b

nηc]dψk
γψn

δγdγδ +

−2ebkecnηadψ̂kγ̂ ψ̂nδ̂γdγ̂δ̂ − ea
nψn

γγbcγ
δλδ

}
γbcB

A +

+ 1
2 (∂mφ− ψmγλγ) δBA (5.395)

The constraints needed for the left-mover version of the transformation (5.390) are rather simple. In particular
all the components TCB

α vanish. The local supersymmetry transformation of the left-mover gravitino turns
into

δεψm
α = ∂mε

α + ωmγ
αεγ︸ ︷︷ ︸

∇mεα

+2εγ̂embe2φ+8φ(ph)γb γ̂δ̂p
αδ̂ (5.396)

If we want to �x the local scale invariance by setting the compensator �eld to zero, this gauge has to be respected
by the supersymmetry transformation which then has to be rede�ned according to (H.193) with a dilatation
with parameter εγλγ , which would add a term 1

2 (εγλγ)ψmα to the above transformation.
For the right-mover transformation, the torsion constraints are more involved and we arrive at

δεψm
α̂ = ∂mε̂

α̂ + ωmγ̂
α̂ε̂γ̂︸ ︷︷ ︸

∇mεα̂

+

+ 1
4em

a
(
−3e−2φhabc − 6e[a

meb
nγc]αβψm

αψn
β + 6e[a

meb
nγc] α̂β̂ψ̂m

α̂ψ̂n
β̂ +

+eanψnβγbcβδλδ − eanψ̂nβ̂γbc β̂
δ̂λ̂δ̂

)
ε̂γ̂γbcγ̂

α̂ +

+ 1
2 (ψmβλβ − ψmβ̂λ̂β̂)ε̂α̂ +

+2εγembe2φ+8φ(ph)γbγδp
δα̂ +

+ 1
4 (ε̂γ̂γde γ̂ δ̂λ̂δ̂ − ε

γγdeγ
δλδ)ψ̂mβ̂γdeβ̂

α̂︸ ︷︷ ︸
Lorentz trafo

+ 1
2 (ε̂γ̂ λ̂γ̂ − εγλγ)ψmα̂︸ ︷︷ ︸

dilatation

(5.397)

It is obvious that �gauge I� prefers the left-movers and destroys the left-right symmetry. The last two terms
correspond to a Lorentz and a scale transformation of the gravitino with gauge parameters (ε̂γ̂γde γ̂ δ̂λ̂δ̂ −
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εγγdeγ
δλδ) and (ε̂γ̂ λ̂γ̂ − εγλγ) respectively. They could be removed by rede�ning the local supersymmetry

transformation, but then they would show up for the left-mover. For the right-mover one can combine some
terms, if we plug the explicit expression of the connection into the above equation:

δεψm
α̂ = ∇(LC)

m ε̂α̂ + 1
4em

a
(
− 3

2habce
−2φ + 2e[b|

k∂kφη|c]a +

−2ebmecnγaαβψmαψnβ + 4eame[b
nγc] α̂β̂ψ̂m

α̂ψ̂n
β̂ − eanψ̂nβ̂γbc β̂

δ̂λ̂δ̂

)
ε̂γ̂γbcγ̂

α̂ +

+ 1
2 (∂mφ− ψmβ̂λ̂β̂)ε̂α̂ +

+2εγembe2φ+8φ(ph)γbγδp
δα̂ +

+ 1
4 (ε̂γ̂γde γ̂ δ̂λ̂δ̂ − ε

γγdeγ
δλδ)ψ̂mβ̂γdeβ̂

α̂︸ ︷︷ ︸
Lorentz trafo

+ 1
2 (ε̂γ̂ λ̂γ̂ − εγλγ)ψmα̂︸ ︷︷ ︸

dilatation

(5.398)

Comparing the �rst three lines with the left-mover connection (5.395), we recognize its hatted version, i.e. the
right-mover connection. The �rst three lines thus combine to ∇̂mε̂α̂. We would have obtained the same result
without the last line if we had started with the right-mover super-connection instead of the left-mover one.
Using a di�erent gauge thus corresponds to rede�ning the supersymmetry transformation by a local Lorentz
and scale transformation. Also this transformation needs to be modi�ed in the case that φ is �xed to zero. The
stabilizing dilatation with parameter εγλγ would add the term 1

2 (εγλγ)ψmα̂ and thus cancel the last term.

5.15.3.3 In gauge II

For gauge II, we need to replace the connection ΩMA
B everywhere in the gravitino transformation (5.394) and

(5.390) by the average connection Ω←→MA
B (with ω←→mA

B ≡ Ω←→mA
B
∣∣∣). This implies that we also have to replace

the torsion components TABC by T←→AB
C . The constraints on the corresponding torsion T←→AB

C are collected in
(5.315)-(5.317). The explicit form of the transformation becomes quite lengthy if we split the fermionic index
A into the left and right-mover spinorial indices α and α̂. For that reason it is advantageous to try to rewrite
the constraints (5.315)-(5.317) with the combined fermionic indices. To this end we de�ne

ε(A) =
{

1 A = α
−1 for A = α̂

(5.399)

PCD ≡
(

0 Pγδ̂
Pδγ̂ 0

)
(5.400)

In order to keep the left-right symmetry we should think of ε̂(A) ≡ −ε(A). Remembering also the de�nition of
γcAB in (5.392) and the relation of the spinorial derivative ∇AΦ(ph) of the dilaton super�eld to the one of the
compensator (5.352), the torsion constraints (5.315)-(5.317) can be written as

T←→AB
c ≡

(
T←→ab

c T←→aB
c

T←→Ab
c T←→AB

c

)
=

=
(

0 1
4∇BΦ(ph)δ

c
a + 1

4γa
c
B

D∇DΦ(ph)

− 1
4∇AΦ(ph)δ

c
b − 1

4γb
c
A

D∇DΦ(ph) γcAB

)
(5.401)

T←→AB
C ≡

(
T←→ab

C T←→aB
C

T←→Ab
C T←→AB

C

)
=

=
((

1
16∇EPCD + 1

2∇EΦ(ph)PCD) γ̃abD
E −ε(C)

3
16Hadeγ̃

de
B

C − γ̃aBDPCD

ε(C)
3
16Hbdeγ̃

de
A

C + γ̃bADPCD ε(A)ε(B)

8 (γde[A
DγdeB]

C∇DΦ(ph) + 2∇[AΦ(ph)δB]
C)

)
(5.402)

In case that one has �xed the compensator super�eld Φ already to zero, the Lorentz part of the above torsion
di�ers according to (5.318)-(5.323) only in the following components:

T←→
(L)
Ab

c Φ=0= T←→Ab
c + 1

4∇AΦ(ph)δb
c = − 1

4γb
c
A

D∇DΦ(ph) (5.403)

T←→
(L)
AB

C Φ=0= T←→AB
C + 1

4∇[A|Φ(ph)δ|B]
C =

= 1
8ε(A)ε(B)γde[A

DγdeB]
C∇DΦ(ph) + ε(A)ε(B)+1

4 ∇[A|Φ(ph)δ|B]
C (5.404)

For the components T←→AB
C at ~θ = 0 (appearing in (5.390)) we need to remember the dilatino-de�nition

∇AΦ(ph)

∣∣ = λA (5.366) and for T←→Ab
C at ~θ = 0 we need Habc| = habc + 2e2φe[a

meb
nγc] ABε(A)ψm

Aψn
B
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(5.381), PAB
∣∣ = e8φ(ph)pAB (5.365), γ̃deA

C = e−2ΦγdeA
C, γ̃bAD = e2Φγ̃bAD and Φ| = φ. Now we can plug

the constraints into (5.390) to arrive at:

δεψm
A = ∂mε

A + ω←→mC
AεC︸ ︷︷ ︸

∇←→mεA

+ 1
4ε

Cε(C)γde[C|
DλDψm

Bε(B)γ
de
|B]

A + 1
2ε

Cψm
Bε(C)ε(B)λ[CδB]

A +

+εCem
b

(
ε(C)

3
8
(
hbdee

−2φ + 2e[b
ked

lγe] DBε(D)ψk
Dψl

B) γdeC
A + 2e2φ+8φ(ph)γbCDpAD

)
(5.405)

If we instead have Φ = 0 and restrict to the Lorentz-part of the torsion, the last term in the �rst line has to
be replaced by 1

2ε
Cψm

B(ε(C)ε(B) + 1)λ[CδB]
A and the bosonic connection ω←→mC

A by its Lorentz part ω←→
(L)
mC

A.
In order to determine the connection from (5.394) we make use of further torsion constraints from (5.401) and
(5.402) and the constraint ∇←→aΦ = 0. The result is

ωmB
A =

= ω
(LC)
mB

A + 1
4em

a

{
2e[b|

k∂kφη|c]a +
(
2eake[b

nηc]d − ebkecnηad
)
ψk

Cψn
DγdCD − 1

2ea
nψn

CγbcC
DλD

}
γbcB

A

− 1
4

(
ψm

CλC − 2∂mφ
)
δB

A (5.406)

where the second line is the Lorentz part ω(L)
mB

A of the connection. Some terms in the gravitino transformation
can be further combined if we plug back this explicit expression for the connection into (5.405):

δεψm
A = ∇(LC)

m εA + 2e2φ+8φ(ph)εBem
bγbBDpAD +

+ 1
4em

a
{

2e[b|
k∂kφη|c]a + ψk

CγdCD
(
2eake[b

nηc]d − ebkecnηad + 3ε(A)ε(D)e[a
keb

nηc]d
)
ψn

D +

−eanψnC 1
2

(
1 + ε(A)ε(C)

)
γbcC

DλD + 3
2ε(A)habce

−2φ
}
γbcB

AεB +

− 1
2

{
1
2

(
1 + ε(A)ε(C)

)
ψm

CλC − ∂mφ
}
εA

+ 1
8ε(A)(εBε(B)γdeB

DλD)ψmCγdeC
A︸ ︷︷ ︸

Lorentz trafo

+ 1
4ε(A)(εBε(B)λB)ψmA︸ ︷︷ ︸

dilatation

(5.407)

Note that we still have local structure group invariance, so that we can change the last terms by simply rede�ning
the supersymmetry transformation with a Lorentz transformation and a dilatation. However, we cannot remove
the terms for left- and rightmovers at the same time, because the corresponding gauge parameter di�ers in sign
due to the factor ε(A) which is +1 for α and −1 for α̂. Note also that if the compensator super�eld Φ was �xed
to zero already in the beginning, the dilatation part changes to

1+ε(A)ε(B)

4 εBλBψm
A and thus corresponds to

a rede�nition of the supersymmetry transformation by a dilatation with parameter 1
2ε

BλB. This is the same
minimal modi�cation which is necessary when we only �x the leading component φ to zero in the end and need
to stabilize it with a compensating dilatation according to according to (H.193). The above transformation can
be seen as the �nal result, but it is at this point instructive to introduce eventually the split of the collective
fermionic index into left and right-mover:

δεψm
α = ∇(LC)

m εα + 2e2φ+8φ(ph)εβ̂em
bγb β̂δ̂p

αδ̂ +

+ 1
4em

a
{

2e[b|
k∂kφη|c]a + 4eake[b

nηc]d
(
ψn
δψk

γγdγδ
)
− 2ebkecnηad

(
ψ̂n
δ̂ψ̂k

γ̂γd
γ̂δ̂

)
+

−eanψnγγbcγδλδ + 3
2habce

−2φ
}
γbcβ

αεβ − 1
2 (ψmγλγ − ∂mφ) εα +

+ 1
8 (εβγdeβδλδ − ε̂β̂γdeβ̂

δ̂λ̂δ̂)ψm
γγdeγ

α︸ ︷︷ ︸
Lorentz trafo

+ 1
4 (εβλβ − ε̂β̂λ̂β̂)ψmα︸ ︷︷ ︸

dilatation

(5.408)

δεψ̂m
α̂ = ∇(LC)

m ε̂α̂ + 2e2φ+8φ(ph)εβem
bγbβδp

δα̂ +

+ 1
4em

a
{

2e[b|
k∂kφη|c]a + 4eake[b

nηc]d

(
ψ̂n
δ̂ψ̂k

γ̂γd
γ̂δ̂

)
− 2ebkecnηad

(
ψn
δψk

γγdγδ
)

+

−eanψ̂nγ̂γbcγ̂ δ̂λ̂δ̂ −
3
2habce

−2φ
}
γbcβ̂

α̂ε̂β̂ − 1
2

{
ψ̂m

γ̂ λ̂γ̂ − ∂mφ
}
ε̂α̂ +

+ 1
8 (ε̂β̂γdeβ̂

δ̂λ̂δ̂ − ε
βγdeβ

δλδ)ψ̂mγ̂γdeγ̂ α̂︸ ︷︷ ︸
Lorentz trafo

+ 1
4 (ε̂β̂λ̂β̂ − ε

βλβ)ψ̂mα̂︸ ︷︷ ︸
dilatation

(5.409)

Comparing these results with the ones obtained in �gauge I�, i.e. with (5.398) for δεψ̂mα̂ and with (5.396)
together with the left-mover connection (5.395) for δεψmα, we recognize that they again di�er just in the last
lines and are related by a local Lorentz and scale transformation.
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One can rewrite the result a bit using (D.166) whose graded version reads

γabβ
δγabγ

α = γabγ
δγabβ

α + 8γaβγγ
αδ
a + 20δ[βαδγ]

δ (5.410)

This leads to

1
8 (εβγabβδλδ)ψmγγabγα = 1

8 (ψmγγabγδλδ)γabβαεβ + (εβγaβγψm
γ)γαδa λδ +

+ 5
4 (ψmγλγ)εα − 5

4 (εβλβ)ψmα (5.411)

but is of no real advantage. However, the above gravitino transformation simpli�es signi�cantly, if we consider
it at ψmA = λA = 0 which is of special interest when we want to consider a string vacuum with vanishing
vacuum expectation value of the fermionic �elds. In addition we �nally �x the bosonic compensator �eld φ to
zero and arrive at

δεψm
A∣∣

ψ=λ=0
= ∇(LC)

m εA + 3
8ε(A)em

ahabcε
BγbcB

A + 2e8φ(ph)εBem
bγbBDpAD (5.412)

For convenience of the reader we present the result again with the split of the fermionic index:

δεψm
α|ψ=λ=0 = ∇(LC)

m εα + 3
8em

ahabcε
βγbcβ

α + 2e8φ(ph) ε̂β̂em
bγb β̂δ̂p

αδ̂ (5.413)

δεψ̂m
α̂
∣∣∣
ψ=λ=0

= ∇(LC)
m ε̂α̂ − 3

8em
ahabcε

β̂γbcβ̂
α̂ + 2e8φ(ph)εβem

bγbβδp
δα̂ (5.414)

This di�ers from the form that one can �nd in the literature (e.g. [67]) by a rede�nition 8φ(ph) → φ(ph),

pαδ̂ → 1
32pαδ̂ and by a rede�nition 3Hmnk → Hmnk where the latter discrepancy was simply due to our

di�erent de�nition of the wedge product.

5.15.4 The dilatino transformation

According to (5.366), the dilatinos are related to the dilaton super�eld via

λA = ∇AΦ(ph)

∣∣ = ∇←→AΦ(ph) (5.415)

Note that for the dilaton Φ(ph) (in contrast to the compensator �eld Φ) it does not make a di�erence with which
connection we act, because it is a scalar �eld. As described in the appendix, the covariant derivative of the
scalar �eld transforms like a vector under supergauge transformations which leads to the following simple local
supersymmetry transformation of the dilatino (see in the appendix on page 227):

δελA = εC ∇C∇AΦ(ph)

∣∣ (5.416)

For the second action of the covariant derivative the connection of course plays a role and ∇C has to be replaced

by ∇←→C in gauge II. The transformation can be rewritten in terms of the ~θ
2
component of the dilaton superfeld

according to H.239 on page 227 as

δελA = −εC TCA
b
∣∣ ebk∂kφ(ph) + εC TCA

b
∣∣ ψbKλK − εC TCA

B∣∣ λB +

+εCδC
MδA

K ∂M∂KΦ(ph)

∣∣ (5.417)

In any case we need more information about constraints on the dilaton super�eld, in order to write down the
explicit transformation. In footnote 28 on page 111 we have derived a constraint on ∇β̂∇αΦ = ∇β̂∇αΦ(ph),
and in a similar way it should be possible to extract more information on ∇β∇αΦ(ph). Without such constraints
it is therefore not yet very useful to write down the transformation in both gauges. An interesting di�erence of
the two gauges, however, is the location of the dilatinos in the compensator super�eld, which we will quickly
discuss:

Gauge I In gauge I we have in particular Ω(D)
A

∣∣∣ = 0. The constraint ∇α̂Φ = 0 and the relation ∇αΦ =
∇αΦ(ph) thus imply

∂µ̂Φ| = 0 (5.418)

∂µΦ| = ∂µΦ(ph)

∣∣ = λµ (5.419)

The relation ∇̂α̂Φ = ∇αΦ(ph) (together with the above ∂µ̂Φ| = 0) and the constraint ∇̂αΦ = 0 (together with
the above ∂µΦ| = ∂µΦ(ph)

∣∣) on the other hand imply

Ω̂(D)
µ̂

∣∣∣ = − ∂µ̂Φ(ph)

∣∣ = −λ̂µ̂ (5.420)

Ω̂(D)
µ

∣∣∣ = ∂µΦ(ph)

∣∣ = λµ (5.421)
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Only one of the dilatinos is thus part of the compensator �eld, while both are contained in Ω̂(D)
M which should

in this gauge not be seen as scale part of the connection but as scale part of the di�erence tensor

∆(D)
M

∣∣∣ = Ω̂(D)
M

∣∣∣ − Ω(D)
M

∣∣∣ = Ω̂(D)
M

∣∣∣ (5.422)

Let me add one more step in this new version of the document. With the information that we already had in
the �rst arXiv version (namely the constraint ∇β̂∇αΦ = −γ̃dαρPρε̂γdε̂β̂ of footnote 28), we can actually write

down explicitely at least half of the supersymmetry transformation of the dilatino. Simply start with (5.416)
and plug in everything we know

δελα = εγ ∇γ∇αΦ(ph)

∣∣ + ε̂γ̂ ∇γ̂∇αΦ(ph)

∣∣ =

= εγ ∇γ∇αΦ(ph)

∣∣ − ε̂γ̂e2φγdαρe
8φ(ph)pρε̂γdε̂γ̂

δελ̂α̂ = εγ ∇γ∇α̂Φ(ph)

∣∣ + ε̂γ̂ ∇γ̂∇α̂Φ(ph)

∣∣ =

= εγ ∇α̂∇γΦ(ph)

∣∣ − 2εγ Tγα̂C∇CΦ(ph)

∣∣ + ε̂γ̂ ∇γ̂∇α̂Φ(ph)

∣∣ =

= −εγe2φγdγρe
8φ(ph)pρε̂γdε̂α̂ + εγ

(
1
4γdeγ

δγdeα̂
γ̂λδ + 1

2λγδα̂
γ̂
)
λ̂δ̂ + ε̂γ̂ ∇γ̂∇α̂Φ(ph)

∣∣
The second term of the last line would vanish for λ = ψ = 0. As mentioned before, we need some addi-
tional constraints on ∇γ∇αΦ(ph) and ∇γ̂∇α̂Φ(ph) to determine the missing second half of the transformations
respectively.

Gauge II In gauge II the situation is fortunately more symmetric and we have Ω←→
(D)
A

∣∣∣ = 0 and ∇←→AΦ =

1
2

(
∇AΦ + ∇̂AΦ

)
= 1

2∇AΦ(ph). This (together with ∇̂αΦ = ∇α̂Φ = 0) implies

∂MΦ| = 1
2λM (5.423)

Ω(D)
µ̂

∣∣∣ = 1
2 λ̂µ̂ = − Ω̂(D)

µ̂

∣∣∣ ⇒ ∆(D)
µ̂

∣∣∣ = −λ̂µ̂ (5.424)

Ω̂(D)
µ

∣∣∣ = 1
2λµ = − Ω(D)

µ

∣∣∣ ⇒ ∆(D)
µ

∣∣∣ = λµ (5.425)

According to the �rst line both dilatinos are contained in the compensator super�eld in this gauge. Their
local supersymmetry transformation could thus also be determined by the transformation of the compensator
super�eld which is, however, of no advantage and gives the same result.

Again we add one more step with respect to the 1st arXiv version of this document, in order to obtain at
least half of the SUSY transformation in an explicit form. In the gauge II, (5.416) becomes for A = α

δελα = εγ ∇←→γ∇αΦ(ph)

∣∣∣ + ε̂γ̂ ∇←→γ̂∇αΦ(ph)

∣∣∣ =

= εγ ∇γ∇αΦ(ph)

∣∣ − 1
2ε
γ ∆γα

δ∇δΦ(ph)

∣∣ + ε̂γ̂ ∇γ̂∇αΦ(ph)

∣∣ − 1
2 ε̂
γ̂ ∆γ̂α

δ∇δΦ(ph)

∣∣ =

= εγ ∇γ∇αΦ(ph)

∣∣ − ( 1
4 (εγλγ)λα + 1

8 (εγγbcγελε)γbcαδλδ
)

+

−ε̂γ̂e2φγdαρe
8φ(ph)pρε̂γdε̂γ̂ +

(
1
4 (ε̂γ̂ λ̂γ̂)λα + 1

8 (ε̂γ̂γbc γ̂ ε̂λ̂ε̂)γbcαδλδ
)

For λ = ψ = 0 the terms in the brackets disappear and we end up with the same expression as in gauge I. In
gauge II the transformation of λ̂α̂ can be simply obtained by the unbroken left-right symmetry.

The transformation of the remaining �elds in a general form (constraints not yet plugged into the equations)
can be found in the appendix after page 225.

5.A Constraints before the BI's

Reduced structure group constraints The following equations are taken from (5.94)-(5.96), (5.152) or
(5.154) and (5.159)

ΩMαβ =
1
2

Ω(D)
M δα

β +
1
4

Ω(L)
Ma1a2

γa1a2
α
β, Ω̂Mα̂β̂ =

1
2

Ω̂(D)
M δα̂

β̂ +
1
4

Ω̂(L)
Ma1a2

γa1a2
α̂
β̂ (5.426)

Cα
βγ̂ =

1
2
C γ̂δα

β +
1
4
C γ̂a1a2

γa1a2
α
β, Ĉα̂

β̂γ =
1
2
Ĉγδα̂

β̂ +
1
4
Ĉγa1a2

γa1a2
α̂
β̂ (5.427)

Sαα̂
ββ̂ =

1
4
Sδα

βδα̂
β̂ +

1
8
Sa1a2δα

βγa1a2
α̂
β̂ +

+
1
8
Ŝa1a2γ

a1a2
α
βδα̂

β̂ +
1
16
Sa1a2b1b2γ

a1a2
α
βγb1b2 α̂

β̂ (5.428)

GMN = EM
aGabEN

b, Gab = e2Φηab (5.429)



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 89

The above equations (without the last one) are equivalent to

γa1...a4
β
αΩMαβ = γa1...a4

β̂
α̂Ω̂Mα̂β̂ = 0 (5.430)

γa1...a4
β
αCα

βγ̂ = γa1...a4
β̂
α̂Ĉα̂

β̂γ = 0 (5.431)

γa1...a4
β
αSαα̂

ββ̂ = γa1...a4
β̂
α̂Sαα̂

ββ̂ = 0 (5.432)

As discussed in the appendix G on page 199, the spinorial left-mover connection ΩMαβ induces via invariance of
the small gamma-matrices a whole superspace left-mover connection ΩMA

B . Likewise the spinorial rightmover-
connection Ω̂Mα̂β̂ induces a superspace right-mover connection Ω̂MA

B . The constraints (5.430) then apply in
the same way for Ω̂Mαβ and ΩMα̂β̂:

γa1...a4
β
αΩ̌Mαβ = γa1...a4

β̂
α̂Ω̌Mα̂β̂ = 0 for any Ω̌ which is Lorentz plus scale (5.433)

Let us denote the di�erence one-form between the left-mover and the rightmover connection by

∆MA
B ≡ Ω̂MA

B − ΩMA
B =

 ∆Ma
b 0 0

0 ∆Mα
β 0

0 0 ∆Mα̂
β̂

 (5.434)

The above restrictions on the spinorial connections induces the same restrictions on the di�erence tensor

γa1...a4
β
α∆Cα

β = γa1...a4
β̂
α̂∆Cα̂

β̂ = 0 (5.435)

Further constraints on C and S and indirectly on P The constraints (5.184) and (5.185) on C and
(5.188) and (5.189) on S (all on page 65) can be regarded as de�ning equations. We have already shown in
section 5.12 that the two equations for S are equivalent up to Bianchi identities.

Cα
γγ̂ = ∇αPγγ̂ (5.436)

Ĉα̂
γ̂γ = ∇α̂Pγγ̂ (5.437)

Sαα̂
γβ̂ = −∇α Ĉα̂

β̂γ︸ ︷︷ ︸
∇α̂Pγβ̂

+2R̂αγ̂α̂β̂Pγγ̂ (5.438)

Sαα̂
βγ̂ = −∇α̂ Cα

βγ̂︸ ︷︷ ︸
∇αPβγ̂

+2Rα̂γαβPγγ̂ (5.439)

Combining them with the reduced structure group constraints (5.430),(5.431) and (5.432), we obtain:

γa1...a4
β
α∇αPβγ̂ = 0, γa1...a4

β̂
α̂∇α̂Pγβ̂ = 0 (5.440)

The reduced structure group of S instead doesn't provide additional information. It is induced18 by the reduced
structure group property of C and of the curvature R.

Constraints on H Due to (5.167)-(5.171), (5.226), (5.229) and the total antisymmetry of H, its only nonva-
nishing components are

Habc 6= 0 (in general) (5.441)

Hαβc = −2
3
Ťαβ|c ≡ −

2
3
γaαβfac (5.442)

Hα̂β̂c =
2
3
Ťα̂β̂|c ≡

2
3
γa
α̂β̂
f̂ac (5.443)

The vanishing components are thus (written a bit redundantly)

HabC = Hαβ̂C = HABC = 0 (5.444)

18We have ∇Mγa1a2a3a4 α
β = ∇̂Mγa1a2a3a4 α

β = ∇̌Mγa1a2a3a4 α
β = 0 by de�nition, because ∇M and the others are de�ned

via ∇Mγaαβ = 0. Therefore we have for the mixed connection

∇M γ̃
a1a2a3a4

α
β = −4∇̌MΦ · γ̃a1a2a3a4

α
β + 4(Ω̌− Ω)Mc

[a1|γ̃c|a2a3a4]
α
β

All terms on the righthand side are proportional to γ[4], and therefore we have schematically

γ[4]S ∝ γ[4] (−∇C + 2RP) ∝ −∇(γ[4]C| {z }
=0

) + (∇γ[4])C| {z }
∝γ[4]C=0

+2 γ[4]R| {z }
=0

P = 0

The reduced structure group condition γ[4]S = 0 is thus a consequence of γ[4]C = 0 and γ[4]R = 0. �
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Constraints on the torsion Let us now collect the information of the constraints (5.168)-(5.170), (5.180)-
(5.183) and (5.227),(5.230),(5.243). The only (a priori) nonvanishing components of the torsion TAB

C are

ŤA(c|d) = −1
2
∇̌AΦGcd (5.445)

Ťαβ|c = −3
2
Hαβc = γdαβfdc, Ťα̂β̂|c =

3
2
Hα̂β̂c = γd

α̂β̂
f̂dc (5.446)

T̂αc
γ̂ = Ťαδ|cPδγ̂ = γdαδfdcPδγ̂ , Tα̂c

γ = Ťα̂δ̂|cP
γδ̂ = γd

α̂δ̂
f̂dcPγδ̂ (5.447)

T ab
C 6= 0 (in general) (5.448)

The remaining components all vanish, which can be written (again a bit redundantly) as

TAB
C = Tαα̂

C = Tαd
γ = T̂α̂d

γ̂ = 0 (5.449)

The above constraints are constraints on the torsion TAB
C = (ŤABc, TABγ , T̂AB γ̂), which is based on the

mixed connection ΩAB
C de�ned in (5.66) on page 50. When solving the Bianchi identities in the next local

appendix, the bosonic block Ω̌Ma
b of the connection will be chosen for convenience to sometimes coincide with

the left-mover connection ΩMa
b (induced by ΩMαβ) or with the right mover connection (induced by Ω̂Mα̂β;

see appendix G on page 199). Not only for the bosonic block, but also for the fermionic blocks, information
on torsion based on left-or right-mover connection, instead of the mixed connection will be important later.
This information is in principle given by the di�erence-tensor ∆MA

B , introduced above in (5.434). Complete
knowledge of the di�erence tensor, allows to calculate the corresponding torsion components via

T̂AB
C − TABC = ∆[AB]

C (5.450)

Due to the block diagonality of the connection and the di�erence tensor, some of these torsion components do
not contain the connection at all. If we denote by Ω̌MA

B the connection which is induced by the bosonic block
of the mixed connection (i.e. it is block diagonal and Lorentz plus scale, but otherwise arbitrary), then we have

T̂AB
c = TAB

c = ŤAB
c = (dEc)AB (5.451)

T̂{a,α̂}{b,β̂}
γ = T{a,α̂}{b,β̂}

γ = Ť{a,α̂}{b,β̂}
γ = (dEγ){a,α̂}{b,β̂} (5.452)

T̂{a,α}{b,β}
γ̂ = T{a,α}{b,β}

γ̂ = Ť{a,α}{b,β}
γ̂ = (dEγ̂){a,α}{b,β} (5.453)

The brackets {a,α}{b,β} shall denote that the equation holds if the index A is either a or α (but not α̂), while
the index B is either b or β (but not β̂).

Constraints on the curvature Induced by the restricted structure group constraints on the connection, we
have such constraints likewise for the curvature (see (5.68) on page 50 and (F.88),(F.90) and (F.92) on page
F.90. The curvature is blockdiagonal and each part decays into a scale part and a Lorentz part:

RABC
D = diag (ŘABcd, RABγδ, R̂ABγ̂ δ̂) (5.454)

ŘABc
d = F̌

(D)
AB δ

d
c + Ř

(L)
AB c

d, F̌
(D)
AB =

1
10
ŘABc

c (5.455)

RABγ
δ =

1
2
F

(D)
AB δγ

δ +
1
4
R

(L)
ABa1

bηba2γ
a1a2

γ
δ, F

(D)
AB = −1

8
RABγ

γ (5.456)

R̂ABγ̂
γ̂ =

1
2
F̂ (D)δα̂

β̂ +
1
4
R̂

(L)
ABa1

bηba2γ
a1a2

α̂
β̂, F̂

(D)
AB = −1

8
R̂ABγ̂

γ̂ (5.457)

with the scale �eld strength

F̌ (D) ≡ dΩ̌(D), F (D) ≡ dΩ(D), F̂ (D) ≡ dΩ̂(D) (5.458)

The bosonic �eld strength is also obtained via the commutator of covariant derivatives acting on the compensator
�eld Φ. Only the bosonic block Ω̌Ma

b of the mixed connection ΩMA
B acts on Φ, because Φ is a compensator

for the transformation of Gab (with bosonic indices):

F̌
(D)
MN = −∇[M ∇̌N ]Φ− TMN

K∇̌KΦ (5.459)
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Finallly we had a couple of holomorphicity (5.186),(5.187),(5.190),(5.191) and nilpotency constraints (5.228),(5.231)
on the curvature:

R̂αcα̂
β̂ = Ťαδ|c︸ ︷︷ ︸

γdαδfdc

Ĉα̂
β̂δ︸ ︷︷ ︸

∇α̂Pδβ̂

, Rα̂cα
β = Ťα̂δ̂|c︸ ︷︷ ︸

γd
α̂δ̂
f̂dc

Cα
βδ̂︸ ︷︷ ︸

∇αPβδ̂

(5.460)

R̂αγα̂
β̂ = 0, Rα̂γ̂α

β = 0 (5.461)

γα1α2
a1...a5

Rdα1α2
β = 0, γα̂1α̂2

a1...a5
R̂dα̂1α̂2

β̂ = 0 (5.462)

γα1α2
a1...a5

Rδ̂α1α2

β = 0, γα̂1α̂2
a1...a5

R̂δα̂1α̂2
β̂ = 0 (5.463)

R[α1α2α3]
β = 0, R̂[α̂1α̂2α̂3]

β̂ = 0 (5.464)

Taking the trace of the �rst two curvature constraints gives further informations on dilatation-Field-strength
and Lorentz curvature

F̂ (D)
αc = −1

8
Ťαδ|c∇α̂Pδα̂, F

(D)
α̂c = −1

8
Ťα̂δ̂|c∇αP

αδ̂ (5.465)

F̂ (D)
αγ = 0, F

(D)
α̂γ̂ = 0 (5.466)

The trace of the last curvature constraint we had provided already in (5.235):

F
(D)
γδ =

2
9
R

(L)
α[γδ]

α , F̂
(D)

γ̂δ̂
=

2
9
R̂

(L)

α̂[γ̂δ̂]

α̂ (5.467)

5.B Bianchi identities for H

In this local appendix we will study explicitly all the Bianchi identities for the H-�eld. They are of the form

0 != ∇AHAAA + 3TAA
CHCAA (5.468)

This is equivalent to dH = 0 and is independent of the connection, in particular independent of the precise form
of Ω̌. Sometimes it is thus convenient to calculate with the left-mover connection Ω̌ab = Ωab (the latter de�ned
via ∇Mγaαβ = 0, see appendix G on page 199) and sometimes we set Ω̌ab = Ω̂ab (de�ned via ∇̂Mγaα̂β̂ = 0).

...
Let us now go back to the Bianchi identity (5.468), where we make use of TAB

C instead of TABC or T̂ABC .
What we have just discussed is thus for the moment only relevant for the the third index being bosonic C = c,
as we might choose TAB

c ≡ ŤABc to be either TABc or T̂ABc.
Every index A of the Bianchi identity (5.468) can be either a, α or α̂. As all indices are antisymmetrized,

we can distinguish the cases by specifying how often each type of index appears. We denote in brackets �rst
the number of bosonic indices, then the number of unhatted fermionic indices and �nally the number of hatted
fermionic indices:(#a,#α,#α̂). The sum has to add up to four: #a+#α+#α̂ = 4. Each number is in {0, . . . , 4}
which has �ve elements. If #a is 0 there are �ve possibilities left for #α which �xes #α̂ =4-#α̂. If #a is 1, there
are four possibilities left for #α, and so on. Altogether there are 5 + 4 + 3 + 2 + 1 = 15 distinct cases. However,
some of them are related by the symmetry between hatted and unhatted indices: (#a,#α,#α̂)↔(#a,#α̂,#α).
This map has ��xed points� only for (#α̂,#α)∈ {(0, 0), (1, 1), (2, 2)}. The e�ective number of equations we
have to calculate is thus 15−3

2 + 3 = 9. In the following we go through all these cases.

• (0,4,0)αβγδ ↔((0,0,4)α̂β̂γ̂δ̂):19

0 != ∇[α Hβγδ]︸ ︷︷ ︸
=0 (5.226)

+3T [αβ|
CHC|γδ] = (5.469)

(5.226)
=

(5.227)
3T [αβ|

cHc|γδ] = (5.470)

= −2γd[αβ|fd
cγe|γ]δfec (5.471)

19It might be confusing that we obtain in (5.470) a constraint not only on some components of HABC , but on a bilinear
combination of HABC and TAB

C . At �rst sight this seems to contradict the equivalence to dH = 0 which is clearly only a
constraint on H. However, HABC depends on H (with components HMNK) AND the vielbein. And the torsion component
Tαβ

c = (dEc)αβ + Ωαβ
c = (dEc)αβ happens to depend only on the vielbein. The bilinear constraint thus boils down to

(dH)αβγδ = 0, as it should be. �
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The last line can only reduce to the Fierz identity γd[αβ|γd |γ]δ = 0 for20

fd
cGcbfe

b = (f ·G · fT )de
!∝ Gde ∝ ηde (5.472)

The same is true for f̂ :
(f̂ ·G · f̂T )ab ∝ Gab (5.473)

That means, f and f̂ are proportional to a Lorentz transformation. In other words, If nonzero, f and f̂ are a
composition of a Lorentz transformation and a scaling.

Intermezzo on the �xing of two blocks of the structure group

The above result provides a possibility to relate the three (a priori independent) blocks of the structure group
on the tangent space of the supermanifold. We can thus use the local Lorentz transformation (acting only on
the unhatted spinor indices) and the local scale transformation (likewise acting only on the unhatted spinor
indices) to �x f to unity and likewise use the hatted transformations to �x f̂ to unity as it was done in [13].
We will do the same, although � regarding the subtleties discussed below � one should keep in mind that other
kinds of gauge �xing might also have their advantages. The gauge �xing leads to the following constraints:

Ťαβ
c = γcαβ, (fab = δba) (5.474)

Ťα̂β̂
c = γc

α̂β̂
, (f̂ab = δba) (5.475)

⇒ Hαβc = −2
3
γdαβGdc = −2

3
e2Φγdαβηdc ≡ −

2
3
γ̃cαβ (5.476)

Hα̂β̂c =
2
3
γd
α̂β̂
Gdc =

2
3
e2Φγd

α̂β̂
ηdc ≡

2
3
γ̃c α̂β̂ (5.477)

The constraints (5.474) and (5.475) have to be valid for any bosonic connection-block Ω̌Ma
b, in particular for

the left and right-mover connections: Tαβc = T̂αβ
c = γcαβ. Due to ∆[αβ]

c = ∆[α̂β̂]
c = 0, the constraints for

Ťαβ
c and Ťα̂β̂

c are constraints on the vielbein only. Having �xed the torsion components to the chiral gamma
matrices, the latter should remain invariant under the reduced structure group. If we act with an in�nitesimal
transformation

La
b = L(D)δba + L(L) b

a , with L(L)
ab = −L(L)

ba (5.478)

on the bosonic index, it has to be compensated by the appropriate actions on the fermionic indices (compare
to footnote 7 on page 49 for a derivation):

Lα
β =

1
2
L(D)δα

β +
1
4
L

(L)
ab γ

ab
α
β (5.479)

Lα̂
β̂ =

1
2
L(D)δα̂

β̂ +
1
4
L

(L)
ab γ

ab
α̂
β̂ (5.480)

This guarantuees

δ(L)γ
a
αβ ≡ Lc

aγcαβ − 2L[α
γγaβ]γ = 0 (5.481)

δ(L)γ
a
α̂β̂

≡ Lc
aγc
α̂β̂
− 2L[α̂

γ̂γa
β̂]γ̂

= 0 (5.482)

20Let us make this somewhat �shy argument more precise and contract (5.471) with two chiral gamma matrices. In order to
be able to apply some equations of appendix D we will switch for a moment to ungraded summation conventions (or equivalently
perform a grading shift of the fermionic index). We also multiply the whole equation by − 3

2
for convenience:

0
!
= 3γβαa γδγb γd(αβ|fd

cγe|γ)δfec =

= γβαa γdαβγ
δγ
b γeγδfd

cfec + γβαa γdγαγ
δγ
b γeβδfd

cfec + γβαa γdβγγ
δγ
b γeαδfd

cfec =

(D.137)
=

(D.108)
= (16)2fa

cfbc + 2 ·
“
δdaδ

β
γ + γa

d β
γ

”“
δebδ

γ
β + γb

e γ
β

”
fd
cfec =

(D.135)
=

(D.140)
(16)2fa

cfbc + 32δdaδ
e
bfd

cfec + 2 · 32Gaf δ
fd
eb fd

cfec =

= 16 · 18fa
cfbc − 32Gabfe

cfec + 32fb
cfac =

= 16 · 20 · facfbc − 32Gabfe
cfec

We can now read o� facfbc = ( 1
10
fecfec)Gab or fηf

T = 1
10
tr (fηfT ) · η, which means simply that fab is proportional to a Lorentz

transformation. �
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It is important to realize that γaαβ and γa
α̂β̂

are not covariantly constant with respect to the mixed connection

ΩMA
B that we have used so far. For the choice Ω̌Ma

b = ΩMa
b we get ∇Mγaα̂β̂ 6= 0, for Ω̌Ma

b = Ω̂Ma
b we get

∇Mγaαβ 6= 0 and for any other choice of Ω̌Ma
b none of the γ-matrices will be covariantly conserved in general.

Although all the equations written in terms of ΩMA
B remain of course formally valid, it is geometrically not

a suitable connection any longer. Parallel transport would destroy our gauge. As mentioned at the beginning
of section G on page 199, there are at least three natural choices for connections which leave the gamma
matrices invariant, for example ΩMA

B (de�ned by the left-mover connection), Ω̂MA
B (de�ned by the rightmover

connection) and the average Ω←→MA
B ≡ 1

2

(
ΩMA

B + Ω̂MA
B
)
. These will be in particular relevant for the

discussion of the WZ-gauge. For the further discussion of the Bianchi identities after this intermezzo, however,
we stick formally to ΩMA

B .

Type IIA/IIB Let us also give an important remark about the di�erences of type IIA and type IIB which
become important only at this point. In type IIB, the hatted index α̂ should be of the same chirality, while in type
IIA, α̂ should be of opposite chirality as α. This statement makes only sense, when the Lorentz-transformations
of hatted and unhatted indeces are coupled, which was done only in the last steps above. Before, the distinction
between IIA and IIB was merely deciding whether γc

α̂β̂
is numerically equal to γcαβ (IIB) or to γcαβ (IIA).

The transcription from the general equations (with hatted indices) to the case of type IIB is quite simple
and direct, as the index positions do not change. The conditions ∇Mγcαβ = 0 and ∇Mγcα̂β̂ = 0 become

numerically the same and imply that ΩMα̂β̂ = ΩMαβ (same for the average connection). The hatted indices
thus indeed transform with the same chirality (w.r.t. Lorentz) and in addition with the same representation of
the scale transformation and the hats of the indices can simply be dropped.

For type IIA the situation is a bit more involved and requires some familiarity with the graded summation
convention discussed around page 7 in the �rst part of the thesis. A downstairs hatted index α̂ should in IIA
in the end correspond to an upstairs unhatted index and vice verse. In a �rst step, we will still distinguish
it from the unhatted index and write it (just for this paragraph) as a tilded index α̃ at opposite vertical
position. NW conventions for the hatted indices would then correspond to NE conventions for the tilded index.
We could stick to such mixed conventions (NW for the unhatted indices and NE for the tilded indices), but in
order to make a comparison of the tilded with the undecorated index, it is better to switch back to NW for the
tilded index as well. In principle this works as follows: spell out the NW summation conventions for the hatted
indices explicitely, replace the hatted by the tilded in opposite vertical position and write it again in terms of
the graded summation convention based on NW. We call this an index-position-shift. For example for the
action of the covariant derivative on a spinor with upper hatted index, this yields

∇Mψα̂ = ∂Mψ
α̂ + ΩM γ̂ α̂ψγ̂ = (5.483)

= ∂Mψ
α̂ +

∑
γ̂

(−)γ̂α̂+γ̂︸ ︷︷ ︸
1

ΩM γ̂ α̂ψγ̂ = (5.484)

= ∂Mψα̃ −
∑
γ̃

(−)γ̃α̃ΩM γ̃ α̃ψγ̃ = (5.485)

= ∂Mψα̃ − ΩM γ̃ α̃ψγ̃ (5.486)

In order to get back our usual index position for the connection (�rst fermionic index down, second up), we
�nally de�ne

ΩM γ̃ α̃ ≡ ΩM α̃γ̃ (= ΩM γ̂ α̂) (5.487)

where the equalities should be understood as graded equalities in the sense of (1.29) on page 9. Upon this
identi�cation, the action of the covariant derivative on a lower tilded index takes the usual form ∇Mψα̃ =
∂Mψα̃−ΩMα̃γ̃ψγ̃ . Equation (5.487) also guarantees that the action of a covariant derivative on a lower hatted
index becomes the correct action on the corresponding upper tilded index, i.e. ∇Mψα̂ = ∂Mψα̂ − ΩMα̂γ̂ψγ̂ =
∂Mψ

α̃ + ΩM γ̃ α̃ψγ̃ = ∇Mψα̃. Now we are �nally able to compare the connections ΩMα̃β̃ and ΩMαβ and
see whether we can identify them like in type IIB. First note that like for the symmetry algebra generators
(5.479) and (5.480) themselves, the invariance conditions ∇Mγcαβ = 0 and ∇Mγcα̂β̂ = 0 determine the spinorial

connections to be of the form (see again footnote 7 on page 49 for a derivation)

ΩMαβ = 1
2Ω(D)

M δα
β + 1

4Ω(L)
Mabγ

ab
α
β (5.488)

ΩMα̂β̂ = 1
2Ω(D)

M δα̂
β̂ + 1

4Ω(L)
Mabγ

ab
α̂
β̂ (5.489)

The Kronecker delta in the second line will be rewritten upon the index-position shift as δα̂β̂ = δβ̂α̂ = δα̃
β̃

= −δα̃β̃.
Finally we make use of the facts that γab α̃β̃ is graded equal to γab β̃

α̃ (according to (D.110) in the appendix),
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δα̃β̃ is graded equal to δβ̃
α̃ and of the identi�cation (5.487) to arrive at

ΩMα̃β̃ = − 1
2Ω(D)

M δα̃
β̃ + 1

4Ω(L)
Mabγ

ab
α̃
β̃ (5.490)

Therefore the tilded indices transform in the same way under Lorentz, but with opposite sign under scale
transformations as the untilded indices. Only when the scale transformations are �xed, tilded and untilded
indices can be identi�ed. This can be seen di�erently, by simply doing the identi�cation and imposing ∇Mγcαβ =

∇Mγcαβ = 0 which implies via the Cli�ord algebra (γ(a|αγγ
|b)
γβ = −ηabδαβ, the graded version of (D.108) of

page 176) that ∇Mηab = 0. But scale transformation do not leave invariant the Minkowski metric. In summary,
keeping the (anyway auxiliary) scale transformations un�xed seems a bit arti�cial in type IIA and is more
natural in type IIB.

Let us now proceed with the discussion of the Bianchi identities for the H-�eld.

• (0,3,1)αβγδ̂ ↔((0,1,3)α̂β̂γ̂δ):

0 != ∇[αHβγδ̂] + 3T [αβ|
CHC|γδ̂] = 0 (due to (5.169), (5.171), and (5.226)) (5.491)

No new constraints from this one.

Remark: As in the above equation we will make use of all the constraints that we have derived from the
BRST invariance and nilpotency. As it is cumbersome to specify each time explicitely which constraint we have
used, we will not do it everywhere. Every constraint that we use without referring to its equation number will
be taken from (5.167)-(5.171) (page 63), (5.180)-(5.193) (page 65), (5.226)-(5.231) (page 70) and (5.243) on page
71. These are all the framed equations. However, to the newly gained constraints within this local appendix
(which will be framed as well) we will refer explicitely.

• (0,2,2)αβγ̂δ̂:

0 != ∇[αHβγ̂δ̂] + 3T [αβ|
CHC|γ̂δ̂] = (5.492)

∝ Tαβ
cHcγ̂δ̂ + T γ̂δ̂

cHcαβ = (5.493)

∝ γaαβfa
cγb
γ̂δ̂
f̂bc − γbγ̂δ̂ f̂b

cγaαβfac = (5.494)

= γaαβγ
b
γ̂δ̂

(
fa
cf̂bc − f̂bcfac

)
= 0 (5.495)

• (1,3,0)αβγd↔((1,0,3)α̂β̂γ̂d):21

0 != ∇[αHβγd] + 3T [αβ|
CHC|γd] = (5.496)

=
3
4
∇[αHβγ]d +

3
2
Ť[β|d

cHc|γα] = (5.497)

= −1
2
∇[α(γcβγ]Gcd)− Ť[β|d|cγ

c
|γα] = (5.498)

Ω̌Ma
b=ΩMa

b

= −γc[βγ
(
∇α]Φ ·Gcd + Tα]d|c︸ ︷︷ ︸

Tα][d|c]− 1
2∇αΦ·Gdc=−Tα]c|d−∇αΦ·Gdc

)
= (5.499)

= γc[βγTα]c|d (5.500)

21Remember Ťα(c|d) = − 1
2
∇̌αΦGcd = 1

2
EαM (Ω̌

(D)
M − ∂MΦ)Gcd. This can be reformulated as a condition on the vielbein only:

Ťαc|d = (dEe)αcGed + Ω̌[αc]
eGed| {z }

≡Ω̌[αc]|d

Ťα(c|d) = (dEe)α(cGd)e +
1

2
Ω̌α(c|d) =

= (dEe)α(cGd)e +
1

2
Ω̌

(D)
α Gcd

⇒ (dE)α(c|d) ≡ (dEe)α(cGd)e = −
1

2
Eα

M∂MΦGcd

Reparametrizing ẼM
A ≡ eΦEMA, this can be rewritten as

(dẼ)α(c|d) =

„
E[α|

M∂MΦ · eΦG|c]d −
1

2
eΦEα

M∂MΦGcd

«
= 0 or ˜̌Tα(c|d) = 0

in accordance with [13]. �
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In the fourth line we made the choice of Ω̌Ma
b in such a way that ∇αγcβγ = 0. In the following calculations we

will use a lot of gamma-matrix identities from appendix D where we did not use graded conventions. We will
therefore temporarily switch to non-graded conventions (or equivalently perform a grading shift of the fermionic
indices).

As a �rst step to solve the constraint (5.500), let us contract it with γαβa :

0 != γαβa γcαβTγc|d + γαβa γcγαTβc|d + γαβa γcβγTαc|d = (5.501)

(D.108),(D.110)
= 16Tγa|d + 2

(
δcaδ

β
γ + γca γ

β
)
Tβc|d = (5.502)

⇒ 9Tγa|d = γa
c
γ
βTβc|d (5.503)

Although the contraction with γαβa looks like a projection, the new equation (5.503) still contains all the informa-
tion of (5.500) (in the nongraded version, the graded antisymmetrization becomes an ordinary symmetrization):

γc(βγTα)c|d
(5.503)

=
1
9
γc(βγ|γc

e
|α)

δTδe|d = (5.504)

(D.108),(D.110)
=

1
9
γc(βγ|

(
γc|α)

εγeε
δ − δecδδ|α)

)
Tδe|d = (5.505)

(D.160)
= −1

9
γc(βγ|T|α)c|d (5.506)

Comparing the �rst and the last line leads back to (5.500). This was just to argue that we can forget now
about (5.500), and take (5.503) as new starting point. Remember that we have already a constraint for the
symmetrized part (in c and d) of Tαc|d and let let us in addition introduce a temporary notation for the yet
unknown antisymmetrized part:

Tα(c|d) = −1
2
∇αΦGcd, Tα[c|d] ≡ Ṫαcd (5.507)

Now we split (5.503) into its symmetric and its antisymmetric part in a and d (the symmetric part is multiplied
by (-2) for convenience):22

9∇γΦGad = 2γ̃c(a|γβṪβc|d) = γ̃caγ
βṪβ

c
d + γ̃cdγ

βṪβ
c
a (5.508)

9Ṫγad = γ̃[a|cγ
βṪβ

c
|d] −

1
2
γ̃adγ

β∇βΦ (5.509)

In order to solve this kind of equations, it always helps to take traces (we will use the trace of (5.508) soon)
and to contract with several combinations of γ-matrices. Here it turns out to be useful to contract (5.508) with
γ̃abα

γ . The antisymmetrization in the bosonic indices of the result will produce a term similar to the one in
(5.509), s.th. the equations can then be combined. But let us �rst perform the contraction. We will use the
following gamma-matrix identities (see (D.117) on page 177):

γ̃abγ̃ca = δaaγ
b
c − δbaγac − δac γba + δaaδ

b
c11− δac δba11 = 8γbc + 9δbc11 (5.510)

γ̃abγ̃cd = γabcd + δbcγ
a
d + δadγ

b
c − δbdγac − δac γbd + δadδ

b
c11− δac δbd11 (5.511)

The γ[4] part in the second equation could be removed by taking a symmetrization. This, however, would in
the end only lead back to (5.508). Instead, note that the same γ[4] is produced in the product γdbγca. And this

combination is more useful, as we can then apply γcaαβTβca
(5.508)

= 45∇αΦ:

− γdbγca = γabcd + δbcγ
a
d − δadγbc +Gbaγ̃dc +Gcdγ̃

ba − δadδbc11 +GcdG
ba11 (5.512)

⇒ γ̃abγ̃cd = −γdbγca + 2δadγ
b
c − δbdγac − δac γbd −Gbaγ̃dc −Gcdγ̃ba +

(
2δadδ

b
c − δac δbd −GcdGba

)
11(5.513)

22The tilde on gamma matrices or antisymmetriced products between them just takes into account the correct scaling weight:
γaαβ is invariant under scale transformations, if the transformations acting on bosonic and fermionic indices are coupled as in

(5.478)-(5.480), i.e. if the fermionic scale transformation has an extra factor 1
2
. The bosonic metric Gab ≡ e2Φηab and its inverse

Gab ≡ e−2Φηab, used to lower and raise bosonic �at indices, however, are not scale invariant. Lowering an index of the gamma-
matrix yields γ̃aαβ ≡ Gabγ

b
αβ = e2Φγaαβ . The reason for the tilde is thus only to indicate that the gamma matrix is not the

numerical one but has a Weyl factor in it which corresponds to the weight indicated by the index structure. Similarly we have

γ̃abα
β ≡ e−2Φγabα

β �
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The contraction of (5.508) with γ̃abαγ then yields (using (5.510), (5.513) and γcaαβTβca
(5.508)

= 45∇αΦ):

9γ̃dbαγ∇γΦ !=
!=
(
8γbcαβ + 9δbcδ

β
α

)
Ṫβ

c
d + (5.514)

+
(
−γdbγca + 2δadγ

b
c − δbdγac − δac γbd −Gbaγ̃dc −Gcdγ̃ba +

(
2δadδ

b
c − δac δbd −GcdGba

)
11
)
α
βṪβ

c
a =(5.515)

= 8γbcαβṪβcd + 9Ṫαbd +

−45γdbαβ∇βΦ + 2γbcαβṪβcd + 45δbd∇αΦ− γbd Ṫ aa︸︷︷︸
=0

+

−γ̃dc αβṪβcb − γ̃baαβṪβda + 2Ṫαbd − δbd Ṫαcc︸︷︷︸
=0

−Ṫαdb = (5.516)

= 45γbd αγ∇γΦ + 45δbd∇αΦ + 12Ṫαbd +

+10γbcαβṪβcd + γ̃bcα
βṪβcd − γ̃dc αβṪβcb (5.517)

Putting everything on one side and taking the antisymmetric part (in b,d) of this equation leads to

0 != 54γ̃bdαγ∇γΦ + 12Ṫαbd + 12γ̃[b|c α
βṪβ

c
|d] = (5.518)

(5.509)
= 54γ̃bdαγ∇γΦ + 12Ṫαbd + 12

(
9Ṫαbd +

1
2
γ̃bdα

β∇βΦ
)

(5.519)

⇒ Ṫαbd = −1
2
γ̃bdα

γ∇γΦ (5.520)

Let us switch back to the graded conventions. After this somewhat tedious calculation, we only need to combine
this antisymmetric part (Tα[b|d] ≡ Ṫαbd) with the symmetric one Tα(b|d) = − 1

2∇αΦGbd, in order to end up with
the �nal result for the Bianchi identity (5.500)

Tβc
a = −1

2
∇βΦδca −

1
2
γc
a
β
γ∇γΦ (5.521)

Via the left-right symmetry, we get correspondingly

T̂β̂c
a = −1

2
∇̂β̂Φδca −

1
2
γc
a
β̂
γ̂∇̂γ̂Φ (5.522)

• (1,2,1)αβγ̂d↔((1,1,2)α̂β̂γd):

0 != ∇[αHβγ̂d] + 3T [αβ|
EHE|γ̂d] = (5.523)

=
1
4
∇γ̂Hαβd +

1
2
T̂αβ

ε̂Hε̂γ̂d +
1
2
Ťγ̂d

eHeαβ = (5.524)

= −1
6
∇γ̂(γcαβfcd)−

1
3
Ťγ̂d

eγcαβfce = (5.525)

fce=Gce (5.474)
=̌

Ω=Ω
−1

3
γcαβ

(
∇γ̂ΦGcd + Tγ̂d|c

)︸ ︷︷ ︸
−Tγ̂c|d (5.168)

(5.526)

(5.445)⇒ Tγ̂c
d = 0, ∇γ̂Φ = 0 (5.527)

Likewise we have
T̂αb

c = 0, ∇̂γΦ = 0 (5.528)

These results can also be used to determine ∇aΦ:

∇̂[α ∇̂β]Φ︸ ︷︷ ︸
=0

= −T̂αβC∇̂CΦ− F̂ (D)
αβ =

= − T̂αβc︸ ︷︷ ︸
=γcαβ

∇̂cΦ− T̂αβγ ∇̂γΦ︸ ︷︷ ︸
=0

− T̂αβγ̂︸ ︷︷ ︸
=0

∇̂γ̂Φ− F̂
(D)
αβ︸ ︷︷ ︸

=0 (5.466)

The above equation and its hatted counterpart imply

∇̂cΦ = ∇cΦ = 0 (5.529)
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We can play this game once more and consider the commutator

∇̂[α∇̂b]Φ︸ ︷︷ ︸
=0

= −T̂αbC∇̂CΦ− F̂ (D)
αb = (5.530)

= −T̂αbc ∇̂cΦ︸︷︷︸
=0

−T̂αbγ ∇̂γΦ︸ ︷︷ ︸
=0

− T̂αb
γ̂︸ ︷︷ ︸

=γ̃bαδPδγ̂

∇̂γ̂Φ− F̂ (D)
αb (5.531)

Due to (5.465) we have F̂ (D)
αb = − 1

8 γ̃bαδ∇γ̂P
δγ̂ and therefore

∇α̂Pδα̂ = 8Pδβ̂∇̂β̂Φ (5.532)

The hatted version of this equation reads

∇αPαδ̂ = 8Pβδ̂∇βΦ (5.533)

• (2,2,0)abαβ ↔((2,0,2)abα̂β̂):23

0 != ∇[aHbαβ] + 3T [ab|
CHC|αβ] = (5.534)

=
1
2
∇[aHb]αβ +

1
2
Ťab

cHcαβ +
1
2
Ťαβ

cHcab = (5.535)

=
1
2
∇[a|(−

2
3
γcαβfc|b])−

1
2
γdαβ

(
2
3
Ťab

cfdc − fdcHcab

)
= (5.536)

fcb=Gcb=̌
Ω=Ω

−1
3
γdαβ

(
Tab|d −

3
2
Hdab + 2 ∇[aΦ︸ ︷︷ ︸

0 (5.529)

Gb]d
)

(5.537)

Using 1
16γ

d
αβγ

αβ
c = δdc we get

Tab|d =
3
2
Habd (5.538)

Likewise we have24

T̂ab|d = −3
2
Habd (5.539)

Intermezzo on the di�erence tensor

We have �nally obtained the last ingredient to calculate the explicit form of the di�erence tensor (5.434) between
the connections Ω̂ and Ω. The di�erence tensor is block-diagonal like the connections and we have in particular
∆[AB]

c = 0. Using ∆[AB]
c = T̂AB

c − TABc with T̂ab|c = 3
2Habc, Tab|c = − 3

2Habc and T̂αb|c = Tα̂b|c = 0, we
can give a simple expression for ∆[AB]

c. At the same time we have information about the di�erence tensor

23Combinatorically [ab][αβ] arises 4 times in all 24 possibilities⇒ 4
24

= 1
6

�
24As a consitency check, we compute the BI's for the index-combination abα̂β̂ explicitely with T (not T̂ ):

0
!
= ∇[aHbα̂β̂] + 3T[ab|

CHC|α̂β̂] =

=
1

2
∇[aHb]α̂β̂ +

1

2
Tab

cHcα̂β̂ +
1

2
Tα̂β̂

cHcab =

=
1

2
∇[a|(

2

3
γc
α̂β̂
f̂c|b]) +

1

2
γd
α̂β̂

„
2

3
Tab

cf̂dc + f̂d
cHcab

«
=

f̂cb=Gcb=
1

3
∇[a|(γ

c
α̂β̂
Gc|b]) +

1

3
γd
α̂β̂

„
Tab|d +

3

2
Hdab

«
=

=
1

3
∇[a|(γ

c
α̂β̂

)Gc|b] +
1

3
γd
α̂β̂

„
Tab|d +

3

2
Hdab + 2∇aΦGb]d

«
=

=
1

3
γd
α̂β̂

“
Tab|d +

3

2
Hdab −∆[a|d||b]| {z }

+∆[ab]|d−2∆[aGb]d

”
=

=
1

3
γd
α̂β̂

“
T̂ab|d +

3

2
Hdab

”
�
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when it is symmetrized in its last two (bosonic) indices: ∆A(b|c) =
(
Ω̂(D)
A −Ω(D)

A

)
Gbc =

(
∇AΦ−∇̂AΦ

)
Gbc with

∇α̂Φ = ∇̂αΦ = ∇aΦ = ∇̂aΦ = 0. We can thus write down explicitely the antisymmetrized (in the �rst two
indices) and the symmetrized (in the last two indices) di�erence tensor between left and right-mover connection

∆[AB]
c =

 −3Hab
c −Taβc T̂aβ̂

c

−Tαbc 0 0
T̂α̂b

c 0 0

 (5.540)

∆a(b|c) = 0, ∆α(b|c) = ∇αΦGbc, ∆α̂(b|c) = −∇̂α̂ΦGbc (5.541)

As ∆AB
C is block diagonal in the last two indices, we know that ∆Ab

c = 2∆[Ab]
c.For ∆ab

c we can use (see
(G.31))

∆ab|c = ∆[ab]|c + ∆[ca]|b −∆[bc]|a + ∆a(c|b) + ∆b(c|a) −∆c(b|a) (5.542)

The di�erence tensor with bosonic structure group indices is thus completely determined to be

∆Ab
c : ∆ab|c = −3Habc (5.543)

∆αb|c = −2Tαb|c
(5.521)

= ∇αΦGbc + γ̃bcα
δ∇δΦ (5.544)

∆α̂b|c = 2T̂α̂b|c
(5.522)

= −∇̂α̂ΦGbc − γ̃bcα̂δ̂∇̂δ̂Φ (5.545)

This is consistent with (5.541) as well as with the left-right symmetry, if one de�nes ∆̂ ≡ −∆. The components
of the di�erence tensor with fermionic group indices are induced by the ones with bosonic group indices via

∆Aβ
γ =

1
2

∆(D)
A δβ

γ +
1
4

∆A[b|c]γ̃
bc
β
γ , ∆Aβ̂

γ̂ =
1
2

∆(D)
A δβ̂

γ̂ +
1
4

∆A[b|c]γ̃
bc
β̂
γ̂ (5.546)

Remember that this is due to the fact that both connections ΩMA
B and Ω̂MA

B are de�ned to leave the chiral
γ-matrices invariant. The components with fermionic group indices are accordingly

∆AB
A : ∆aβ

γ = −3
4
Habcγ̃

bc
β
γ , ∆aβ̂

γ̂ = −3
4
Habcγ̃

bc
β̂
γ̂ (5.547)

∆αβ
γ =

1
2
∇αΦδβγ +

1
4
γbcα

δ∇δΦγbcβγ , ∆α̂β̂
γ̂ = −1

2
∇̂α̂Φδβ̂

γ̂ − 1
4
γbcα̂

δ̂∇̂δ̂Φγ
bc
β̂
γ̂(5.548)

∆α̂β
γ = −1

2
∇̂α̂Φδβγ −

1
4
γbcα̂

δ̂∇̂δ̂Φγ
bc
β
γ , ∆αβ̂

γ̂ =
1
2
∇αΦδβ̂

γ̂ +
1
4
γbcα

δ∇δΦγbcβ̂
γ̂ (5.549)

We will use this di�erence tensor from now on frequently to change from one connection to another. Let us
take immediate advantage of the di�erence tensor to rewrite some constraints on the curvature with the help
of equation (193) of the appendix.

R̂γ̂γ̂α̂
β̂ = Rγ̂γ̂α̂

β̂︸ ︷︷ ︸
=0

+∇̂γ̂∆γ̂α̂
β̂ + γγ̂γ̂

c∆cα̂
β̂ + ∆γ̂α̂

δ̂∆γ̂δ̂
β̂ = (5.550)

= −1
2
∇̂γ̂∇̂γ̂Φδα̂β̂ +

1
4
γabγ̂

δ̂∇̂γ̂∇̂δ̂Φγ
ab
α̂
β̂ − 3

4
γγ̂γ̂

cHcabγ̃
ab
α̂
β̂ +

+
(
−1

2
∇̂γ̂Φδα̂δ̂ −

1
4
γabγ̂

ε̂∇̂ε̂Φγabα̂δ̂
)(
−1

2
∇̂γ̂Φδδ̂

β̂ − 1
4
γcdγ̂

ϕ̂∇̂ϕ̂Φγcdδ̂
β̂

)
= (5.551)

= −1
2
∇̂γ̂∇̂γ̂Φδα̂β̂ +

1
4
γabγ̂

δ̂∇̂γ̂∇̂δ̂Φγ
ab
α̂
β̂ − 3

4
γγ̂γ̂

cHcabγ̃
ab
α̂
β̂ +

+
1
16

(γabγ̂ ε̂∇̂ε̂Φ)(γcdγ̂ ϕ̂∇̂ϕ̂Φ)γabα̂δ̂γcdδ̂
β̂ (5.552)

In order to simplify the last term, let us suppress the fermionic indices for a moment. The last line then reads
1
32

(
(γab∇̂Φ)(γcd∇̂Φ)− (γcd∇̂Φ)(γab∇̂Φ)

)
γabγcd. Now we can use

γabγcd = γabcd + ηbcγad + ηadγbc − ηacγbd − ηbdγac + ηbcηad − ηacηbd (5.553)

Due to the contraction with (γcd∇̂Φ)(γab∇̂Φ)− (ab↔ cd), the γ[4]-term and the γ[0]-term (ηb[cηd]a) disappear.
We are left with

1
32

(
(γab∇̂Φ)(γcd∇̂Φ)− (ab↔ cd)

)
γabγcd =

1
4

(γab∇̂Φ)ηbc(γcd∇̂Φ)γad (5.554)
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The curvature component in question and its hatted version thus become

R̂γ̂γ̂α̂
β̂ = −1

2
∇̂γ̂∇̂γ̂Φδα̂β̂ +

+
1
4

(
γadγ̂

δ̂∇̂γ̂∇̂δ̂Φ + (γabγ̂ ε̂∇̂ε̂Φ)ηbc(γcdγ̂ ϕ̂∇̂ϕ̂Φ)− 3γγ̂γ̂cHcade
−2Φ

)
γadα̂

β̂ (5.555)

Rγγα
β = −1

2
∇γ∇γΦδαβ +

+
1
4
(
γadγ

δ∇γ∇δΦ + (γabγε∇εΦ)ηbc(γcdγϕ∇ϕΦ) + 3γγγcHcade
−2Φ

)
γadα

β (5.556)

We can compare this result to the nilpotency constraintR[γδα]
β = 0 or at least to its trace F (D)

αβ = 2
9R

(L)
γ[αβ]

γ : Scal-
ing and Lorentz component of (5.556) are

F (D)
γγ = −∇γ∇γΦ (5.557)

R(L)
γγα

β =
1
4
(
γadγ

δ∇γ∇δΦ + (γabγε∇εΦ)ηbc(γcdγϕ∇ϕΦ) + 3γcγγHcade
−2Φ

)
γadα

β (5.558)

with trace

R
(L)
βγα

β =
1
8
γadα

βγadβ
δ∇γ∇δΦ−

1
8
γadα

βγadγ
δ∇β∇δΦ +

+
1
4

(γabγε∇εΦ)ηbcγadαβ(γdcβϕ∇ϕΦ) +
3
4
γadα

βγcβγHcade
−2Φ (5.559)

Now we use γadαγγdcγβ = 8γacαβ + 9δac δα
β (D.118) and γadαγγadγβ = −90δαβ (D.120) to arrive at

R
(L)
βγα

β =
−90

8
∇γ∇αΦ− 1

8
γadα

βγadγ
δ∇β∇δΦ +

+2γacγε∇εΦγacαϕ∇ϕΦ +

+
3
4
γcadαγHcade

−2Φ (5.560)

The antisymmetric part (in α,γ) is

R
(L)
β[γα]

β =
−90

8
∇[γ∇α]Φ−

1
8
γad[α|

βγad|γ]
δ∇[β∇δ]Φ =

=
45
4
F (D)
γα −

1
8
γad[α|

βγad|γ]
δF

(D)
δβ (5.561)

Now we expand the scaling curvature in γ-matrices. Because of the graded antisymmetry, only γ[1] and γ[5]

appear: F (D)
δβ = F

(D)
c γcδβ+F (D)

c1...c5γ
c1...c5
δβ . In γadγδF

(D)
δβ we then need the following multiplications of γ-matrices

(D.115):

γadγ
δγcδβ = γadcγβ + ηdcγaγβ − ηacγdγβ = (5.562)

= −γdacβγ + 2ηc[aγd]
βγ (5.563)

γadγ
δγc1...c5δβ = γadc1...c5γβ + 5ηd[c1|γ

a|c2...c5]
γβ − 5ηa[c1|γ

d|c2...c5]
γβ − 20ηa[c1|ηd|c2γ

c3...c5]
γβ = (5.564)

= γdac1...c5βγ − 5ηd[c1|γ
a|c2...c5]
βγ + 5ηa[c1|γ

d|c2...c5]
βγ − 20ηa[c1|ηd|c2γ

c3...c5]
βγ (5.565)

For the expression γad[α|
βγad|γ]

δF
(D)
δβ in (5.561), we can make use of (D.121)-(D.123) and of the fact that

γ
[3]
[αγ] = γ

[7]
[αγ] = 0:

γad[α|
βγdacβ|γ] = 72γcαγ , γad[α|

βηc[aγ
d]
β|γ] = 9γcαγ (5.566)

γad[α|
βγdac1...c5β|γ] = 20γc1...c5αγ , γad[α|

βηa[c1|γ
d|c2...c5]
β|γ] = 5γc1...c5αγ (5.567)

γad[α|
βηa[c1|ηd|c2γ

c3...c5]
β|γ] = 0 (5.568)

The equation (*) thus becomes

R
(L)
β[γα]

β =
45
4
F (D)
γα +

54
8
F (D)
c γcαγ −

70
8
F (D)
c1...c5γ

c1...c5
αγ = (5.569)

=
9
2
F (D)
γα +

31
2
F (D)
c1...c5γ

c1...c5
γα (5.570)
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From our nilpotency constraint (5.235) we can now deduce that F (D)
c1...c5 = 0 or equivalently that

γαβa1...a5
F

(D)
αβ = 0, γα̂β̂a1...a5

F̂
(D)

α̂β̂
= 0 (5.571)

• (2,1,1)abαβ̂:

0 != ∇[aHbαβ̂] + 3T [ab|
CHC|αβ̂] = (5.572)

= −T [a|α
CHC|b]β̂ − T [b|β̂

CHC|a]α = (5.573)

fac=Gac= −2
3
γ̃[a|αδPδγ̂ γ̃|b] γ̂β̂ +

2
3
γ̃[b|β̂δ̂P

γδ̂γ̃|a]γα = (5.574)

=
2
3
γ̃[a|αδγ̃|b] δ̂β̂

(
−Pδδ̂ + Pδδ̂

)
= 0 (5.575)

• (3,1,0)abcδ ↔((3,0,1)abcδ̂):

0 != ∇[aHbcδ̂] + 3T [ab|
EHE|cδ̂] = (5.576)

= −1
4
∇̌δ̂Habc +

3
2
T [ab|

EHE|c]δ̂ −
3
2
T δ̂[a|

EHE|bc] = (5.577)

Ω̌=Ω= −1
4
∇δ̂Habc −

3
2
T̂[ab|

ε̂H|c]ε̂δ̂ −
3
2
Tδ̂[a|

eHe|bc] = (5.578)

fab=Gab= −1
4
∇δ̂Habc − T̂[ab|

ε̂γ̃|c]ε̂δ̂ −
3
2

Tδ̂[a|
e︸ ︷︷ ︸

=0 (5.527)

He|bc] (5.579)

∇δ̂Habc = −4T̂[ab|
ε̂γ̃|c]ε̂δ̂ (5.580)

likewise ∇̂δHabc = 4T[ab|
εγ̃|c]εδ (5.581)

• (4,0,0)abcd :

0 != ∇̌[aHbcd] + 3Ť[ab|
eHe|cd] (5.582)

5.C The Bianchi identities for the torsion

The Bianchi identity for the torsion reads

0 != ∇ATAAD + 2TAA
CTCA

D −RAAAD (5.583)

Again, depending on what is more convenient, the bosonic part of the connection Ω̌ab will be chosen to be either
Ωab or Ω̂ab. Due to proposition 7 on page 193, both are equivalent. The index A can again be either a, α or
α̂. For �xed upper index the numbers of their appearance as lower index are #a, #α, #α̂ ∈ {0, 1, 2, 3}. In
analogy to the Bianchi identities for H, we have for each �xed upper index 4 + 3 + 2 + 1 = 10 possibilities and
thus altogether 30 possibilities. The symmetry between hatted and unhatted indices relates the 10 with upper
index δ̂ to the ten with upper index δ. The remaining 10 have again an internal symmetry with �xed points
(#α, #α̂) ∈ {(0, 0), (1, 1)}, so that there remain e�ectively 10−2

2 + 2 = 6 of those 10. Altogether we have thus
e�ectively 16 equations to study.
• (delta|0,3,0)αβγδ ↔((hdelta|0,0,3)α̂β̂γ̂

δ̂),dim1:

0 != ∇[αTβγ]
δ + 2T [αβ|

ETE|γ]
δ −R[αβγ]

δ = (5.584)

= 2Ť[αβ|
e Te|γ]

δ︸ ︷︷ ︸
=0

−R[αβγ]
δ (5.585)

R[αβγ]
δ = 0 (5.586)

R̂[α̂β̂γ̂]
δ̂ = 0 (5.587)
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This is a con�rmation of the nilpotency constraint (5.228) that we had derived earlier. Taking the trace yields

0 != Rαβγ
γ + 2Rγ[αβ]

γ = (5.588)

= −9F (D)
αβ + 2R(L)

γ[αβ]
γ (5.589)

F
(D)
αβ

!=
2
9
R

(L)
γ[αβ]

γ (5.590)

and

F̂
(D)

α̂β̂

!=
2
9
R̂

(L)

γ̂[α̂β̂]

γ̂ (5.591)

• (delta|0,2,1)αβγ̂δ ↔((hdelta|0,1,2)α̂β̂γ
δ̂)dim1:

0 != ∇[αTβγ̂]
δ + 2T[αβ|

ETE|γ̂]
δ −R[αβγ̂]

δ = (5.592)

=
2
3
Tαβ

eTeγ̂
δ − 2

3
Rγ̂[αβ]

δ = (5.593)

fc
e=δec= −2

3
γαβ

eγ̃e γ̂δ̂P
δδ̂ − 2

3
Rγ̂[αβ]

δ (5.594)

Rγ̂[αβ]
δ = −γαβeγ̃e γ̂δ̂P

δδ̂ (5.595)

R̂γ[α̂β̂]
δ̂ = −γα̂β̂

eγ̃eγδPδδ̂ (5.596)

Again taking the trace gives additional information on the Dilatation part

Rγ̂αδ
δ −Rγ̂δαδ = 2γαδePδδ̂γ̃e δ̂γ̂ (5.597)

−8F (D)
γ̂α −

1
2
F

(D)
γ̂α −R

(L)
γ̂δα

δ = 2γαδePδδ̂γ̃e δ̂γ̂ (5.598)

F
(D)
γ̂α = − 4

17
γeαδPδδ̂γ̃e δ̂γ̂ −

2
17
R

(L)
γ̂δα

δ (5.599)

F̂
(D)
γα̂ = − 4

17
γe
α̂δ̂
Pδδ̂γ̃e δγ −

2
17
R̂

(L)

γδ̂α̂

δ̂ (5.600)

• (delta|0,1,2)αβ̂γ̂
δ ↔((hdelta|0,2,1)α̂βγ δ̂)dim1:

0 != ∇[αTβ̂γ̂]
δ + 2T [αβ̂|

ETE|γ̂]
δ −R[αβ̂γ̂]

δ = (5.601)

=
2
3
Tβ̂γ̂

e Teα
δ︸ ︷︷ ︸

=0

−1
2
Rβ̂γ̂α

δ︸ ︷︷ ︸
=0

= 0 (5.602)

• (delta|0,0,3)α̂β̂γ̂
δ ↔((hdelta|0,3,0)αβγδ̂)dim1:

0 != ∇[α̂Tβ̂γ̂]
δ + 2T [α̂β̂|

ETE|γ̂]
δ −R[α̂β̂γ̂]

δ︸ ︷︷ ︸
=0

= (5.603)

= 2T[α̂β̂|
eTe|γ̂]

δ = (5.604)

= −2γ[α̂β̂|
eγ̃e |γ̂]δ̂P

δδ̂ Fierz= 0 (5.605)

• (delta|1,2,0)αβcδ ↔((hdelta|1,0,2)α̂β̂c
δ̂)dim 3

2 :

0 != ∇[αTβc]
δ + 2T [αβ|

ETE|c]
δ −R[αβc]

δ = (5.606)

=
2
3
Tαβ

ETEc
δ +

4
3
T c[α|

E TE|β]
δ︸ ︷︷ ︸

=0

−2
3
Rc[αβ]

δ = (5.607)

=
2
3
γαβ

eTec
δ − 2

3
Rc[αβ]

δ (5.608)
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Rc[αβ]
δ = γαβ

eTec
δ (5.609)

R̂c[α̂β̂]
δ̂ = γα̂β̂

eT̂ec
δ̂ (5.610)

Taking the trace yields

0 = Rcαδ
δ −Rcδαδ − 2γαδeTecδ = (5.611)

= −17
2
F (D)
cα −R

(L)
cδα

δ − 2γαδeTecδ (5.612)

F (D)
cα = − 2

17
R

(L)
cδα

δ − 4
17
γeαδTec

δ (5.613)

F̂
(D)
cα̂ = − 2

17
R̂

(L)

cδ̂α̂

δ̂ − 4
17
γe
α̂δ̂
T̂ec

δ̂ (5.614)

• (delta|1,1,1)αβ̂c
δ ↔((hdelta|1,1,1)α̂βcδ̂)dim 3

2 :
25

0 != ∇[αTβ̂c]
δ + 2T [αβ̂|

ETE|c]
δ −R[αβ̂c]

δ = (5.615)

Ω̌=Ω̂=
1
3
∇α Tβ̂c

δ︸︷︷︸
γ̃c β̂δ̂Pδδ̂

+
2
3
T̂cα

ε̂ Tε̂β̂
δ︸ ︷︷ ︸

=0

+
2
3
T̂cα

e︸︷︷︸
=0

Teβ̂
δ − 1

3
Rβ̂cα

δ︸ ︷︷ ︸
γ̃c β̂δ̂Cα

δδ̂

= (5.616)

=
1
3
∇α

(
γ̃c β̂δ̂P

δδ̂
)
− 1

3
γ̃c β̂δ̂∇αP

δδ̂ = (5.617)

=
1
3
∇α

(
γ̃cβ̂δ̂

)
Pδδ̂ = (5.618)

= 2
3 γ̃c β̂δ̂∇̂αΦPδδ̂ = 0 (5.619)

• (delta|1,0,2)α̂β̂c
δ ↔((hdelta|1,2,0)αβcδ̂)dim 3

2 :

0 != ∇[α̂Tβ̂c]
δ + 2T [α̂β̂|

ETE|c]
δ −R[α̂β̂c]

δ = (5.620)

=
2
3
∇[α̂ Tβ̂]c

δ︸ ︷︷ ︸
γ̃c β̂]γ̂Pδγ̂

+
2
3
Ťα̂β̂

eTec
δ +

4
3
Ťc[α̂|

eTe|β̂]
δ = (5.621)

Ω̌=Ω̂=
4
3
∇̂

[α̂|Φγ̃c |β̂]γ̂P
δγ̂ +

2
3
∇[α̂Pδγ̂ γ̃c β̂]γ̂ +

2
3
γe
α̂β̂
Tec

δ +
4
3
T̂[α̂|c

eγ̃e |β̂]δ̂P
δδ̂ = (5.622)

=
(

4
3

(
∇̂

[α̂|Φδ
e
c + T̂[α̂|c

e
)
Pδγ̂ +

2
3
∇[α̂|Pδγ̂δec

)
γ̃e |β̂]γ̂ +

2
3
γe
α̂β̂
Tec

δ = (5.623)

=
2
3
(
− 2T̂[α̂|e|c︸ ︷︷ ︸

∆[α̂|e|c

Pδγ̂ +∇[α̂|Pδγ̂Gec
)
γe|β̂]γ̂

+
2
3
γe
α̂β̂
Tec

δ (5.624)

Contracting the above with γα̂β̂e (using γα̂β̂e γf
α̂β̂

= −γα̂β̂e γf
β̂α̂

= −γα̂β̂e γf
β̂α̂

= −16δfe ), we get

Tec
δ =

1
16

(
∇[α̂|Pδδ̂Gcd − 2T̂[α̂|d:cPδδ̂

)
γd|β̂]δ̂

γα̂β̂e = (5.625)

=
1
16

(
2T̂α̂d|cPδδ̂ −∇α̂Pδδ̂Gcd

)
γd
δ̂β̂
γα̂β̂e (5.626)

25

∇M γ̃cαβ
˛̨
Ω̌=Ω

= 2γdαβ∇MΦGdc = 2γ̃cαβ∇MΦ

∇M γ̃cαβ
˛̨
Ω̌=Ω̂

= 2γ̃cαβ∇MΦ−∆Mc
dγ̃dαβ =

= γdαβ
ˆ
2∇MΦGdc −∆Mc|d

˜
=

= γdαβ

h“
∇MΦ + ∇̂MΦ

”
Gdc −∆

(L)
Mcd

i
And equivalently

∇M γ̃c α̂β̂
˛̨̨
Ω̌=Ω̂

= 2γ̃c α̂β̂∇̂MΦ

∇M γ̃c α̂β̂
˛̨̨
Ω̌=Ω

= γd
α̂β̂

h“
∇MΦ + ∇̂MΦ

”
Gdc + ∆

(L)
Mcd

i
�
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Tec
δ =

1
16

(
2T̂α̂d|cPδδ̂ −∇α̂Pδδ̂Gcd

)
γd
δ̂β̂
γα̂β̂e (5.627)

T̂ec
δ̂ =

1
16

(
2Tαd|cPδδ̂ −∇αPδδ̂Gcd

)
γdδβγ

αβ
e (5.628)

The product of γ-matrices can be further expanded.

Tec
δ =

1
16

(
2T̂α̂d|cPδδ̂ −∇α̂Pδδ̂Gcd

) (
δdeδδ̂

α̂ + γde δ̂
α̂
)

= (5.629)

=
1
16
(
2T̂α̂e|cPδα̂ −∇α̂Pδα̂Gce + 2T̂α̂d|cγde δ̂

α̂︸ ︷︷ ︸
−18T̂δ̂e|c (5.503)

Pδδ̂ −∇α̂Pδδ̂γ̃ce δ̂
α̂
)

(5.630)

The result should be antisymmetric in e and c. Remember now

∇α̂Pδα̂Gce = 8Pδδ̂∇̂δ̂ΦGce = −16Pδδ̂T̂δ̂(c|e) (5.631)

and we get

Tec
δ =

1
16

(
−16T̂δ̂e|cP

δδ̂ + 16Pδδ̂T̂δ̂(c|e) −∇α̂P
δδ̂γ̃ce δ̂

α̂
)

= (5.632)

=
1
16

(
−16T̂δ̂[e|c]P

δδ̂ −∇α̂Pδδ̂γ̃ce δ̂
α̂
)

(5.633)

Using T̂δ̂[e|c] = − 1
2γecδ̂

γ̂∇̂γ̂Φ leads to

Tec
δ =

1
16

(
∇γ̂Pδδ̂ + 8∇̂γ̂ΦPδδ̂

)
γ̃ec δ̂

γ̂ (5.634)

T̂ec
δ̂ =

1
16

(
∇γPδδ̂ + 8∇γΦPδδ̂

)
γ̃ec δ

γ (5.635)

Instead of solving for the torsion component, we can also solve for the covariant derivative of the RR-�eld:

1
16
∇γ̂Pδδ̂γ̃ec δ̂

γ̂ = Tec
δ − 1

2
∇̂γ̂ΦPδδ̂γ̃ec δ̂

γ̂ (5.636)

Together with (5.532) and the fact that Cαβγ̂ = ∇αPβγ̂ is structure group valued in α and β (as well as Ĉ),
we get

∇α̂Pαβ̂ = −1
2
Pαϕ̂∇̂ϕ̂Φ · δα̂β̂ +

(
Tfg

α − 1
2
∇̂ϕ̂ΦPαφ̂γ̃fg φ̂

ϕ̂

)
γ̃fgα̂

β̂ (5.637)

∇αPβα̂ = −1
2
Pϕα̂∇ϕΦ · δαβ +

(
T̂fg

α̂ − 1
2
∇ϕΦPφα̂γ̃fgφϕ

)
γ̃fgα

β (5.638)

Due to the algebra of covariant derivatives, the above equations also contain informations on the spacetime
derivative of Pαβ̂. It is thus of interest to study the commutator ∇[γ∇α]Pβα̂:

−γdγα∇dPβα̂ +Rγαδ
βPδα̂ +Rγαδ̂

α̂︸ ︷︷ ︸
=0

Pβδ̂ = ∇[γ∇α]Pβα̂ =

= −1
2
∇[γ|Pδα̂∇δΦ · δ|α]

β − 1
2
Pδα̂∇[γ|∇δΦ · δ|α]

β +

+∇[γ|

(
T̂bc

α̂ − 1
2
∇δΦPεα̂γ̃bc εδ

)
γ̃bc|α]

β +
(
T̂bc

α̂ − 1
2
∇δΦPεα̂γ̃bc εδ

)
∇[γ|γ̃

bc
|α]
β
∣∣∣
Ω̌=Ω

(5.639)

In particular, we obtain a Dirac-like operator acting on the �rst index of Pαβ̂ if we contract the indices α and
β:

−γdγα∇dPαα̂ + Rγαδ
α︸ ︷︷ ︸

−4F
(D)
γδ =4∇[γ∇δ]Φ+4γcγδ∇cΦ

Pδα̂ =

=
17
2
∇γPδα̂∇δΦ +

17
2
Pδα̂∇γ∇δΦ−

1
2
∇α

(
T̂bc

α̂ − 1
2
∇δΦPεα̂γ̃bc εδ

)
γ̃bcγ

α +

−1
2

(
T̂bc

α̂ − 1
2
∇δΦPεα̂γ̃bc εδ

)
∇αγ̃bcγα (5.640)
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In the same way we can obtain an equation for Dirac-like operator acting on the second index of Pαβ̂, if we
consider the hatted version of the above equation.

Plugging further torsion constraints into these equations yields rather lengthy expressions and we thus
restrict ourselves to a qualitative discussion of the further steps which would lead to �eld equations for the
RR-p-forms, to be presented in the following intermezzo.

Intermezzo on the RR-�eld-equations

As just mentioned above, the equation (5.640) and its hatted equivalent together with some other torsion
constraints of before determine the equations of motion of the RR-�eld strengths. We will make a qualitive
discussion and assume that the fermionic �elds vanish so that the equations in WZ gauge basically reduce to
γdγα∇dpαα̂ = 0 and γdγ̂α̂∇dpαα̂ = 0 where pαα̂ is the leading component of Pαα̂ in the ~θ-expansion (see page
81).

In order to see that this corresponds to reasonable equations for the RR-p-forms, let us �rst recall the
translation of �eld equations on the bispinor �elds pαβ̂ into the equations on the level of di�erential forms in
the �at case. On the form level one expects for the RR-�eld strength's g(p) s.th. like dg(p) = 0 and ?d?g(p) = 0.
As it is discussed in the appendix on page 172 and in the following, this corresponds on the bispinor level precisely
to two Dirac equations, one acting on the �rst index and one on the second, i.e. 6 ∂γαpαβ̂ =66 ∂γ̂β̂pαβ̂ = 0 with
6 ∂αβ = γmαβ∂m. Of course the equations are not yet the full truth, as they do not re�ect the curved background.
In order to show the above correspondence, we need to distinguish between IIA (where α and α̂ are of opposite
chirality) and type IIB (where α and α̂ are of the same chirality). We will frequently use equations from the
appendix D on page 167 where we did not use the graded conventions. We will therefore consider in this
intermezzo the spinorial indices ungraded in the summations (this refers to the graded summation convention
discussed in the �rst part of this thesis; if you have not read that part, you can safely ignore the comment).

Assume we are in type IIA where we can expand the RR-bispinor in even antisymmetrized products of
γ-matrices:

pαβ = 2g(0) δαβ︸︷︷︸
γ[0]

+2g(2)
a1a2

γa1a2 α
β︸ ︷︷ ︸

γ[2]

+2g(4)
a1a2a3a4

γa1a2a3a4α
β︸ ︷︷ ︸

γ[4]

(5.641)

2g(0) =
1
16

pαβδ
β
α (5.642)

2g(2)
a1a2

=
1
32

pαβγa2a1
β
α (5.643)

2g(4)
a1a2a3a4

=
1

16 · 4!
pαβγa4a3a2a1

β
α (5.644)

Usually the coe�cients g(p)
a1...ap which correspond to p-forms (or better p-form �eld strengths) are denoted with

a capital G, but we want to keep the capital letters reserved for super�elds. The matrices γ[0], γ[2] and γ[4] are
the chiral blocks of the antisymmetrized products of the Dirac gamma matrices Γ[2k] which is block diagonal.
Similarly, Γ[2k+1] is block o�-diagonal and de�nes the chiral blocks γ[2k+1]:

Γ[2k]α
β =

(
γ[2k]α

β 0
0 γ[2k]

α
β

)
, Γ[2k+1]α

β =

(
0 γ[2k]αβ

γ
[2k+1]
αβ 0

)
(5.645)

The chiral blocks can be extracted via the chirality matrix Γ#α
β =

(
γ#α

β 0
0 γ# β

α

)
=
(
δαβ 0
0 −δβα

)
which

acts (when multiplied from the right) on the �rst coloumn as the identity and on the second one as minus the
identity:

1
2

(
Γ[2k](11 + Γ#)

)α
β =

(
γ[2k]α

β 0
0 0

)
,

1
2

(
Γ[2k](11− Γ#)

)α
β =

(
0 0
0 γ[2k]

α
β

)
(5.646)

1
2

(
Γ[2k+1](11 + Γ#)

)α
β =

(
0 0

γ
[2k+1]
αβ 0

)
,

1
2

(
Γ[2k+1](11− Γ#)

)α
β =

(
0 γ[2k+1]αβ

0 0

)
(5.647)

Via the cli�ord map, the Γ[2k] get mapped to even forms. In addition we de�ne the Hodge star operator such
that it corresponds via this mapping to the multiplication of the chirality matrix from the right (see page 169).
The chiral blocks thus get mapped as follows

γ[2k]α
β

/−1

7→ 1
2 (1 + ?)ea1 ∧ . . . ∧ ea2k , γ[2k]

α
β /−1

7→ 1
2 (1− ?)ea1 ∧ . . . ∧ ea2k (5.648)

γ
[2k+1]
αβ

/−1

7→ 1
2 (1 + ?)ea1 ∧ . . . ∧ ea2k+1 , γ[2k+1]αβ /−1

7→ 1
2 (1− ?)ea1 ∧ . . . ∧ ea2k+1 (5.649)
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and the bispinor �eld pαβ therefore corresponds to an even self-dual formal sum of di�erential forms:

pαβ = 6gαβ
/−1

7→ g ≡ g(0)
(

1 +
1

10!
εb1...b10e

b1 ∧ . . . ∧ eb10︸ ︷︷ ︸
?1

)
+ g(2)

a1a2

(
ea1 ∧ ea2 − 1

8!
εa1a2

b1...b8e
b1 · · · eb8︸ ︷︷ ︸

+?(ea1∧ea2 )

)
+

+g(4)
a1a2a3a4

(
ea1 · · · ea4 +

1
6!
εa1...a4

b1...b6e
b1 · · · eb6︸ ︷︷ ︸

?(ea1∧...∧ea4 )

)
(5.650)

According to (D.46) and (D.47) in the appendix, the action of the Dirac operator γcγα∇c on the �rst or γc γβ∇c
on the second index (with a covariant derivative that leaves the gamma-matrices invariant) yields

γcγα∇cpαβ
/−1

7→ ∇g + ?∇ ?g︸︷︷︸
g

(5.651)

∇cpαβ · γc βγ
/−1

7→ ∇g − ?∇ ?g︸︷︷︸
g

(5.652)

When ωabc = ω
(LC)
ab

c + 3
2hab

c one might expect to get something like the h-twisted di�erential on the righthand
side, but this is not true for a connection that respects the gamma-matrices as we assumed in the two equations
above. The expression in (5.651) does not coincide with the h-twisted di�erential for this choice of connection.
It is important therefore that we act with our �mixed� connection which acts on the �rst fermionic index

with ωaβγ = 1
4

(
ω

(LC)
ab

c + 3
2hab

c
)
γbc β

γ and on the second with ω̂aβγ = 1
4

(
ω

(LC)
ab

c − 3
2hab

c
)
γbc

β
γ . This mixed

connection does not leave both gamma-matrix blocks γcαβ and γc αβ invariant at the same time. Depending
on the sign we choose for the action on the bosonic index, it either leaves invariant only the �rst or only the
second. The calculation of above therefore does not go through in the same way and gets modi�ed as follows:

Let us act with the left-mover connection ωabc = ω
(LC)
ab

c + 3
2hab

c on the bosonic indices and rewrite ω̂aδβ =
ωa

δ
β + ∆a

δ
β = ωa

δ
β − 3

4hab
cγbc

δ
β . We then have26

γcγα ∇cpαβ |ω̌=ω = γcγα∇cpαβ − 3
4γ

c
γαhca

bγab
δ
βp
α
δ = (5.653)

= γcγα∇cpαβ − 3
4hcabγ

[c|
γαpαδγ

|ab]δ
β (5.654)

In the last term, we have two matrix multiplications between three matrices (in the spinorial indices), which
corresponds on the form side to two Cli�ord-multiplications. According to (5.649), the chiral gamma matrix
γcγα can be seen as the Cli�ord map of the self-dual projection of the vielbein 1

2 (1 + ?)ec. The even form g,
corresponding to pαδ, is given in (5.650) and γabδβ corresponds according to (5.648) to 1

2 (1 + ?)ea ∧ eb. Now
we need the explicit expression for the Cli�ord multiplication on the form-side and the fact that the Cli�ord
multiplication of two self-dually projected forms yields either zero or the self dual projection of their Cli�ord
multiplication (see equation (D.51) and below in the appendix):

6ω 6ρ /−1

7→
∑
k≥0

1
k!
ω

←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
ρ (5.655)

6ω(p) 1
2 (11 + Γ#) 6ρ(r) 1

2 (11 + Γ#) =
{
6ω(p) 6ρ(r) 1

2 (11 + Γ#) for r even
0 for r odd

(5.656)

26In order to better understand the sign in (5.653), note that the action of the connection on the fermionic indices was de�ned
via graded conventions according to the �rst part of the thesis and that the second (lower) index of the RR-bispinor used to be an

upper hatted index pαβ̂ = pαβ. The action of the covariant derivative is thus

∇mpαβ̂ =g ∂mpαβ̂ + ωmδ
αpδβ̂ + ω̂mδ̂

β̂pαδ̂

In this second part of the thesis we ususally did not denote the graded equal sign explicitely. It had to be understood as such,
whenever graded indices appeared. For this explicit comparison, however, it is useful to make a distinction. In terms of ordinary
equal sign and explicitely written summation (NW-conventions), this becomes:

∇mpαβ̂ = ∂mpαβ̂ +
X
δ

(−)δ+δα| {z }
1

ωmδ
αpδβ̂ + (−)αβ̂| {z }

−1

X
δ̂

(−)δ̂+δ̂(β̂+α)| {z }
−1

ω̂mδ̂
β̂pαδ̂

In other words, if we consider the indices to carry no grading, we have

∇mpαβ̂ = ∂mpαβ̂ + ωmδ
αpδβ̂ + ω̂mδ̂

β̂pαδ̂

or ∇mpαβ = ∂mpαβ + ωmδ
αpδβ + ω̂m

δ
βpαδ �
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The di�erential forms g and ea∧eb both are even so that now we can write down (using also (5.651)) the inverse
Cli�ord map of (5.654)

γcγα ∇cpαβ |ω̌=ω

/−1

7→ ∇g + ?∇ ?g︸︷︷︸
g

+

− 3
4hcab

1
2 (1 + ?)

{∑
l≥0

1
l!

∑
k≥0

1
k!
e[c|
←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
g

 ←−
∂

∂ec1
· · ·
←−
∂

∂ecl
×

×ηc1d1 · · · ηcldl ∂

∂edl
· · · ∂

∂ed1

(
e|a ∧ eb]

)}
(5.657)

= (1 + ?)∇g +

− 3
4hcab

1
2 (1 + ?)

{∑
l≥0

1
l!

(
e[c| ∧ g + η[c|b1 ∂

∂eb1
g

) ←−
∂

∂ec1
· · ·
←−
∂

∂ecl
×

×ηc1d1 · · · ηcldl ∂

∂edl
· · · ∂

∂ed1

(
e|a ∧ eb]

)}
= (5.658)

= (1 + ?)∇g +

− 3
8 (1 + ?)

(
h ∧ g︸ ︷︷ ︸
ıhg

− eaebhabc
∂

∂ec
g︸ ︷︷ ︸

2
3 ıtg

− eahabc
∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

2
3 ıt̃g=

2
3 ıt̃?g

+habc
∂

∂ea
∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

ıh̃g=ıh̃?g

)
(5.659)

In the last line below the underbraces we have considered the h-�eld h ≡ habceaebec as a 3-form, the correspond-
ing torsion t = 3

2hab
ceaeb ⊗ ec as a vector-valued 2-form, t̃ ≡ 3

2ha
bcea ⊗ ebec as a two-vector valued 1-form and

h̃ ≡ habceaebec as a three-vector and have used the generalized de�nition of an interior product with respect to
a multivector valued form, given in (6.13). Now we can use the result given in the appendix in equation (D.36)
on page 171 and in the discussion below, which implies that

? ıt̃ ? g = ıtg, ?ıh̃ ? g = ıhg = h ∧ g (5.660)

Remembering that ∇ = d− ıt, we thus get the �nal result

γcγα ∇cpαβ |ω̌=ω

/−1

7→ (1 + ?)
{(

d− 3
4h∧

)
g − 1

2 ıtg︸︷︷︸
or ?ıt?g

}
(5.661)

with ıT g = 3
2e
aebhab

c ∂
∂ec g and ?ıt ? g = ıt̃g = 3

2e
aha

bc ∂
∂eb

∂
∂ec g.

Let's do the same analysis for the Dirac-operator acting on the second index, which turns out to be a bit
simpler, with only one Cli�ord multiplication:

∇cpαβ |ω̌=ω γ
c βγ = ∇cpαβ · γc βγ − 3

4pαδ habcγ
abδ

βγ
c βγ︸ ︷︷ ︸

habcγabc δγ

(5.662)

According to (5.647), habcγabc δγ =
(

1
2 6 h(11− Γ#)

)δγ
. Using (5.652) and the explicit expression (5.655) for the

Cli�ord multiplication on the form-side, the above derivative operator is mapped to the following:

∇cpαβ |ω̌=ω γ
c βγ /

−1

7→ (5.663)

/−1

7→
(
∇g − ?∇ ?g︸︷︷︸

g

)
+

− 3
8 (1− ?)

∑
k≥0

1
k!
g

←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
h (5.664)

= (1− ?)∇g +

− 3
8 (1− ?)

{
h ∧ g︸ ︷︷ ︸
ıhg

− 3eaebhabc
∂

∂ec
g︸ ︷︷ ︸

2ıtg

+ 3eahabc
∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

2ıt̃?g

−habc ∂

∂ea
∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

ıh̃?g

}
(5.665)

Using again that ?ıt̃ ? g = ıtg, ?ıh̃ ? g = ıhg = h ∧ g, and ∇g = dg − ıtg we end up with

γc γβ ∇cpαβ |ω̌=ω

/−1

7→ (1− ?)
{(

d− 3
4h∧

)
g + 1

2 ıtg︸︷︷︸
or −?ıt?g

}
(5.666)
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with ıtg = 3
2e
aebhab

c ∂
∂ec g and ?ıt ? g = ıt̃g = 3

2e
aha

bc ∂
∂eb

∂
∂ec g. If both actions of the Dirac operator vanish, we

thus get the following condition on the form side (adding and subtracting (5.661) and (5.666) lead to equivalent
equations)27

γcγα ∇cpαβ |ω̌=ω = γc γβ ∇cpαβ |ω̌=ω = 0 ⇐⇒
(
d− 3

4h∧
)
g − 1

2 ? ıt ? g = 0 (5.667)

Next we consider the type IIB case where we can expand the RR-bispinor in odd antisymmetrized products
of γ-matrices (see (D.142) on page 179):

pαβ = 2g(1)
a γaαβ︸ ︷︷ ︸

γ[1]

+2g(3)
a1a2a3

γa1a2a3 αβ︸ ︷︷ ︸
γ[3]

+g(5)
a1a2a3a4a5

γa1a2a3a4a5αβ︸ ︷︷ ︸
γ[5]

(5.668)

2g(1)
a =

1
16

pαβγa βα (5.669)

2g(3)
a1a2a3

=
1

16 · 3!
pαβγa1a2a3 βα (5.670)

g(5)
a1a2a3a4a5

=
1

32 · 5!
pαβγa5a4a3a2a1 βα (5.671)

This is mapped to an odd anti self-dual form on the form-side

pαβ
/−1

7→ (1− ?)
(
g(1)
a ea + g(3)

a1a2a3
ea1 ∧ ea2 ∧ ea3 +

1
2
g(5)
a1...a5

ea1 ∧ . . . ∧ ea5

)
≡ g (5.672)

on the form-side. According to (D.46) and (D.47) in the appendix, the action of the Dirac operator γcγα∇c on
the �rst or on the second index (with a covariant derivative that leaves the gamma-matrices invariant) yields
for an antiselfdual and odd g

γcγα∇cpαβ
/−1

7→ (1− ?)∇g (5.673)

∇cpαβ · γcβγ
/−1

7→ −(1 + ?)∇g (5.674)

Instead of a connection that leaves the gamma-matrices invariant, we have again the mixed connection acting
di�erently on left- and right-movers. We thus act on the �rst fermionic index of pαβ with ωaβγ = 1

4 (ω(LC)
ab

c +
3
2hab

c)γbc βγ and on the second with ω̂aβγ = 1
4 (ω(LC)

ab
c − 3

2hab
c)γbc βγ . Again we decide to act on the bosonic

indices with the left mover connection ωab
c = ω

(LC)
ab

c + 3
2hab

c and rewrite ω̂cδβ = ωcδ
β + ∆cδ

β = ωcδ
β −

3
4hca

bγab δ
β . We then have for the action of the Dirac operator (based on the mixed connection) on the second

index

∇cpαβ
∣∣
ω̌=ω
· γcβγ =

= ∇cpαβ · γcβγ − 3
4pαδhabcγ

abc
δγ (5.675)

= ∇cpαβ · γcβγ − 3
4 (6 g 6 h )αγ

/−1

7→ (5.676)

/−1

7→ −(1 + ?)∇g − 3
8 (1 + ?)

∑
k≥0

1
k!
g

←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
h = (5.677)

= −(1 + ?)(d− ıt)g + 3
8 (1 + ?)h ∧ g︸ ︷︷ ︸

ıhg

− 3
8 (1 + ?) 3eaebhabc

∂

∂ec
g︸ ︷︷ ︸

2ıtg

+

+ 3
8 (1 + ?) 3eahabc

∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

2ıt̃g=2?ıt?g

− 3
8 (1 + ?)habc

∂

∂ea
∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

ıh̃g=?ıh?g

(5.678)

27We could try to absorb the somewhat disturbing contribution of ?ıt ? g or ıtg by reintroducing ∇g via ıtg = −∇g + dg. The
result, however, looks even less natural and the twisted di�erential gets modi�ed at intermediate steps. The equations (5.661),
(5.666) and (5.667) take the following form

γcγα ∇cp
α
β

˛̨
ω̌=ω

/−1

7→ 1
2

(1 + ?)
n

∇g +
`
d− 3

2
h∧
´
g
o

∇cp
α
β

˛̨
ω̌=ω

γc βγ
/−1

7→ 1
2

(1− ?)
n
−∇g + 3

`
d− 1

2
h∧
´
g
o

γcγα ∇cp
α
β

˛̨
ω̌=ω

= ∇cp
α
β

˛̨
ω̌=ω

γc βγ = 0 ⇐⇒ 2
`
d− 3

4
h∧
´
g + ?∇ ? g − ?d? g = 0 �
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After collecting all the terms, we arrive at

∇cpαβ
∣∣
ω̌=ω
· γcβγ

/−1

7→ −(1 + ?)
{(

d− 3
4h∧

)
g + 1

2 ıtg︸︷︷︸
or −?ıt?g

}
(5.679)

For the action of the Dirac operator on the �rst index, �nally, we have

γcγα ∇cpαβ
∣∣
ω̌=ω

=

= γcγα∇cpαβ − 3
4habcγ

c
γαpαδγabδ

β /−1

7→ (5.680)

/−1

7→ (1− ?)∇g +

− 3
8habc(1− ?)

∑
k≥0

1
k!

(
ec ∧ g + ηcd

∂

∂ed
g

) ←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1

(
ea ∧ eb

)
(5.681)

= (1− ?) ∇g︸︷︷︸
dg−ıtg

+

− 3
8 (1− ?)

{
h ∧ g︸ ︷︷ ︸
ıhg

− eaebhabc
∂

∂ec
g︸ ︷︷ ︸

2
3 ıtg

− eahabc
∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

2
3 ıt̃g=

2
3?ıt?g

+habc
∂

∂ea
∂

∂eb
∂

∂ec
g︸ ︷︷ ︸

ıh̃g=?ıh?g

}
(5.682)

The terms then combine to

γcγα ∇cpαβ
∣∣
ω̌=ω

/−1

7→ (1− ?)
{(

d− 3
4h∧

)
g− 1

2 ıtg︸ ︷︷ ︸
or − 1

2?ıt ? g

}
(5.683)

The equations on the form side thus look the same as for type IIA. In particular we have

γcγα ∇cpαβ
∣∣
ω̌=ω

= ∇cpαβ
∣∣
ω̌=ω
· γcβγ = 0 ⇐⇒

(
d− 3

4h∧
)
g − 1

2 ? ıt ? g = 0 (5.684)

• (delta|2,1,0)αbcδ ↔((hdelta|2,0,1))α̂bcδ̂)dim 4
2 :

0 != ∇[αTbc]
δ + 2T [αb|

ETE|c]
δ −R[αbc]

δ = (5.685)

=
1
3
∇αTbcδ +

4
3
Tα[b|

ETE|c]
δ − 1

3
Rbcα

δ = (5.686)

=
1
3
∇αTbcδ +

4
3
Ťα[b|

eTe|c]
δ +

4
3
T̂α[b|

ε̂Tε̂|c]
δ − 1

3
Rbcα

δ = (5.687)

=
1
3
∇αTbcδ +

4
3
∇̂aΦŤα[b|

e︸ ︷︷ ︸
=0 for Ω̌=Ω̂

Te|c]
δ +

4
3
γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P

δδ̂ − 1
3
Rbcα

δ (5.688)

Rbcα
δ = ∇αTbcδ

∣∣
Ω̌=Ω̂

+ 4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ (5.689)

R̂bcα̂
δ̂ = ∇α̂T̂bcδ̂

∣∣∣
Ω̌=Ω

+ 4γ̃[b| α̂γ̂Pεγ̂ γ̃|c] εδPδδ̂ (5.690)
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Plugging in Tbcδ = 1
16

(
∇γ̂Pδδ̂ + 8∇̂γ̂ΦPδδ̂

)
γ̃bc

γ̂
δ̂yields

Rbcα
δ =

1
16
∇α

(
∇γ̂Pδδ̂ + 8∇̂γ̂ΦPδδ̂

)
· γ̃bc γ̂ δ̂ +

+
1
16

(
∇γ̂Pδδ̂ + 8∇̂γ̂ΦPδδ̂

)
2 ∇̂αΦ︸ ︷︷ ︸

=0

γ̃bc
γ̂
δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ = (5.691)

=
(

1
16
∇α∇γ̂Pδδ̂ +

8
16
∇α∇̂γ̂ΦPδδ̂ +

8
16
∇̂γ̂Φ∇αPδδ̂

)
· γ̃bc γ̂ δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ = (5.692)

=
( 1

16
∇γ̂∇αPδδ̂ −

1
8
Rγ̂αε

δPεδ̂ +
1
8
Rαγ̂ε̂

δ̂Pδε̂ +

+F̂ (D)
γ̂α P

δδ̂ +
1
2
∇̂γ̂Φ∇αPδδ̂

)
· γ̃bc γ̂ δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
δδ̂ (5.693)

Taking the trace yields

− 8F (D)
bc =

( 1
16
∇γ̂ ∇αPαδ̂︸ ︷︷ ︸

8Pδδ̂∇δΦ

−1
8
Rγ̂αε

αPεδ̂ +
1
8
Rαγ̂ε̂

δ̂Pαε̂ +

+F̂ (D)
γ̂α P

αδ̂ +
1
2
∇̂γ̂Φ∇αPαδ̂︸ ︷︷ ︸

8Pδδ̂∇δΦ

)
· γ̃bc γ̂ δ̂ +

+4γ̃[b|αγPγε̂γ̃|c] ε̂δ̂P
αδ̂ (5.694)

• (delta|2,0,1)α̂bcδ ↔(hdelta|2,1,0)αbcδ̂,dim 4
2 :

0 != ∇[α̂Tbc]
δ + 2T [α̂b|

ETE|c]
δ −R[α̂bc]

δ = (5.695)

=
1
3
∇α̂Tbcδ +

2
3
∇[bTc]α̂

δ +
4
3
T α̂[b|

ETE|c]
δ +

2
3
T bc

ETEα̂
δ = (5.696)

=
1
3
∇α̂Tbcδ −

2
3
∇[b

(
γ̃c] α̂δ̂P

δδ̂
)

+
4
3
Ťα̂[b|

eTe|c]
δ +

2
3
Ťbc

eTeα̂
δ = (5.697)

Ω̌=Ω̂=
1
3
∇α̂Tbcδ

∣∣
Ω̌=Ω̂

+
2
3
γ̃[b α̂δ̂∇c]P

δδ̂ +
4
3
T̂α̂[b|

eTe|c]
δ +Hbc

eγ̃eα̂β̂P
δβ̂ (5.698)

or

Ω̌=Ω=
1
3
∇α̂Tbcδ

∣∣
Ω̌=Ω

− 2
3
γd
α̂δ̂

[(
∇[b|Φ︸ ︷︷ ︸

=0 (5.529)

+ ∇̂[b|Φ︸ ︷︷ ︸
=0 (5.529)

)
Gd|c] + ∆[bc]d︸ ︷︷ ︸

−3Hbcd

]
Pδδ̂ +

+
2
3
γ̃[b| α̂δ̂∇|c]P

δδ̂ −Hbceγ
e
α̂δ̂
Pδδ̂ = (5.699)

=
1
3
∇α̂Tbcδ +

2
3
γ̃[b| α̂δ̂∇|c]P

δδ̂ +Hbceγ
e
α̂δ̂
Pδδ̂ (5.700)

∇α̂Tbcδ = −2γ̃[b| α̂δ̂∇|c]P
δδ̂ − 3Hbceγ

e
α̂δ̂
Pδδ̂ (5.701)

∇̂αT̂bcδ̂ = −2γ̃[b|αδ∇|c]Pδδ̂ + 3Hbceγ
e
αδPδδ̂ (5.702)

• (delta|3,0,0)abcδ ↔((hdelta|3,0,0)abcδ̂)dim 5
2 :

0 != ∇[aTbc]
δ + 2T[ab|

ETE|c]
δ −R[abc]

δ = (5.703)

= ∇[aTbc]
δ + 2Ť[ab|

eTe|c]
δ + 2T̂[ab|

ε̂γ̃|c] ε̂δ̂P
δδ̂ (5.704)

∇[aTbc]
δ = −3H[ab|

eTe|c]
δ − 2T̂[ab|

ε̂γ̃|c] ε̂δ̂P
δδ̂ (5.705)

∇̂[aT̂bc]
δ̂ = 3H[ab|

eT̂e|c]
δ̂ − 2T[ab|

εγ̃|c] εδPδδ̂ (5.706)
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• (d|0,3,0)αβγd ↔((d|0,0,3)α̂β̂γ̂
d)dim 1

2 :

0 != ∇[αŤβγ]
d + 2Ť[αβ|

cŤc|γ]
d − Ř[αβγ]

d︸ ︷︷ ︸
=0

= (5.707)

= ∇[α

(
γβγ]

cfc
d
)

+ 2γe[αβ|fe
cŤc|γ]

d = (5.708)

fc
d=δdc= ∇[α

(
γdβγ]

)
︸ ︷︷ ︸

=0

−2 γc[αβTγ]c
d︸ ︷︷ ︸

=0 (5.500)

(5.709)

• (d|0,1,2)αβ̂γ̂
a ↔((d|0,2,1)α̂βγa)dim 1

2 :

0 != ∇[αŤβ̂γ̂]
d + 2T [αβ̂|

C ŤC|γ̂]
d − Ř[αβ̂γ̂]

d = (5.710)

=
1
3
∇αŤβ̂γ̂

d +
2
3
Ťβ̂γ̂

cŤcα
d = (5.711)

=
2
3
γβ̂γ̂

cT̂cα
d = 0 (5.712)

• (d|1,2,0)αβcd ↔((d|1,0,2)α̂β̂c
d)dim1:

0 != ∇[αŤβc]
d + 2T [αβ|

ETE|c]
d − Ř[αβc]

d = (5.713)

=
2
3
∇[αŤβ]c

d +
1
3
∇cTαβd +

2
3
Tαβ

E ŤEc
d +

4
3
T c[α|

E ŤE|β]
d − 1

3
Řαβc

d − 2
3
Rc[αβ]

d︸ ︷︷ ︸
=0

= (5.714)

fe
d=δde=

Ω̌=Ω

2
3
∇[αTβ]c

d +
1
3
∇cγdαβ︸ ︷︷ ︸

=0

+
2
3
γeαβ Tec

d︸︷︷︸
3
2Hec

d

+
4
3
T[α|c

eT|β]e
d +

4
3
Tc[α|

ε︸ ︷︷ ︸
=0

γdε|β] −
1
3
Rαβc

d (5.715)

Rαβc
d != 2∇[αTβ]c

d + 3γeαβHec
d + 4T[α|c

eT|β]e
d (5.716)

R̂α̂β̂c
d != 2∇̂[α̂T̂β̂]c

d − 3γe
α̂β̂
Hec

d + 4T̂[α̂|c
eT̂|β̂]e

d (5.717)

Taking the trace (using RMMa
b = F (D)

MMδba +R
(L)
MMa

b) yields

10F (D)
αβ

!= −10∇[α∇β]Φ, true (5.718)

Plugging in the torsion constraints yields

Rαβc
d = −∇[α∇β]Φδcd + γc

d
[α
δ∇β]∇δΦ + 3γeαβHec

d +

+γce[α|
γ∇γΦγed|β]

δ∇δΦ (5.719)

R̂α̂β̂c
d = −∇̂[α̂∇̂β̂]Φδc

d + γc
d

[α̂
δ̂∇̂β̂]∇̂δ̂Φ− 3γe

α̂β̂
Hec

d +

+γce[α̂|
γ̂∇̂γ̂Φγed|β̂]

δ̂∇̂δ̂Φ (5.720)

This agrees with (5.556) and (5.555).
• (d|1,1,1)αβ̂c

ddim1:

0 != ∇[αŤβ̂c]
d + 2T [αβ̂|

E ŤE|c]
d − Ř[αβ̂c]

d = (5.721)

=
1
3
∇αŤβ̂c

d +
1
3
∇β̂Ťcα

d +
2
3
T cα

E ŤEβ̂
d +

2
3
T β̂c

E ŤEα
d − 1

3
Řαβ̂c

d = (5.722)

Ω̌=Ω=
1
3
∇β̂Tcα

d +
2
3
T̂cα

ε̂Tε̂β̂
d +

2
3
Tβ̂c

eTeα
d +

2
3
Tβ̂c

εTεα
d − 1

3
Rαβ̂c

d = (5.723)

=
1
3
∇β̂Tcα

d − 2
3
γ̃cαβPβε̂γdε̂β̂ +

2
3
γ̃c β̂α̂P

εα̂γdεα −
1
3
Rαβ̂c

d (5.724)

Rαβ̂c
d = ∇β̂Tcα

d − 2γ̃cαβPβε̂γdε̂β̂ + 2γ̃c β̂δ̂P
εδ̂γdεα (5.725)

R̂α̂βc
d = ∇̂βT̂cα̂d − 2γ̃c α̂β̂P

εβ̂γdεβ + 2γ̃cβδPδε̂γdε̂α̂ (equivalent) (5.726)
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Plugging the explicit expression for Tcαd and T̂cα̂d into (5.725) and (5.726) yields28

Rαβ̂c
d =

1
2
∇β̂∇αΦδdc +

1
2
γc
d
α
γ∇β̂∇γΦ− 2γ̃cαβPβε̂γdε̂β̂ + 2γ̃c β̂δ̂P

εδ̂γdεα (5.727)

R̂α̂βc
d =

1
2
∇̂β∇̂α̂Φδdc +

1
2
γc
d
α̂
γ̂∇̂β∇̂γ̂Φ− 2γ̃c α̂β̂P

εβ̂γdεβ + 2γ̃cβδPδε̂γdε̂α̂ (5.728)

Taking the trace of (5.727) yields

10F (D)

αβ̂
= 5∇β̂∇αΦ− 2γ̃cαβPβε̂γcε̂β̂ + 2γ̃c β̂δ̂P

εδ̂γcεα (5.729)

⇒ F
(D)

αβ̂
=

1
2
∇β̂∇αΦ (5.730)

This does not give new information as it follows from Tαβ̂
C = 0, ∇β̂Φ = 0 and the algebra ∇[α∇β̂]Φ

∣∣∣
Ω̌=Ω

=

− Tαβ̂
C
∣∣∣
Ω̌=Ω
∇CΦ− F (D)

αβ̂
.

• (d|2,1,0)αbcd ↔((d|2,0,1)α̂bcd)dim 3
2 :

0 != ∇[αŤbc]
d + 2T [αb|

E ŤE|c]
d − Ř[αbc]

d = (5.731)

=
1
3
∇αŤbcd +

2
3
∇[b Ťc]α

d︸ ︷︷ ︸
=0 for Ω̌=Ω̂

+
4
3
Tα[b|

E ŤE|c]
d +

2
3
T bc

E ŤEα
d − 2

3
Řα[bc]

d = (5.732)

Ω̌=Ω̂= −1
2
∇̂αHbc

d +
4
3
T̂α[b|

ε̂T̂ε̂|c]
d +

2
3
Tbc

εγdεα −
2
3
R̂α[bc]

d (5.733)

28From this constraint on Rαβ̂c
d we can also derive a further constraint on some spinorial components. Remember that we have

Rαβ̂γ
δ = 1

2
F

(D)

αβ̂
δγδ + 1

4
R

(L)

αβ̂c
dγcdγ

δ and therefore

Rαβ̂γ
δ = 1

4
∇β̂∇αΦδγ

δ + 1
4

“
1
2
γc
d
α
ε∇β̂∇εΦ− 2γ̃cαβPβε̂γdε̂β̂ + 2γ̃c β̂δ̂P

εδ̂γdεα

”
γcdγ

δ

The last terms can be combined and we arrive at

Rαβ̂γ
δ = 1

4
∇β̂∇αΦδγ

δ + 1
8
γcdα

εγcd γ
δ∇β̂∇εΦ− γcαεPεε̂γdε̂β̂γcdγ

δ

Next we can compare whether this is consistent with our earlier constraint Rβ̂[αγ]
δ = −γαγeγ̃e β̂δ̂P

δδ̂ :

Rβ̂[αγ]
δ = 1

4
∇β̂∇[αΦδγ]

δ + 1
8
γcd[α

εγcdγ]
δ∇β̂∇εΦ + γd

β̂ε̂
Pεε̂γcε[α|γ̃cd |γ]

δ

Being graded antisymmetric in α and γ, it can be expanded in γaαγ and γa1...a5
αγ , where the coe�cient for γ[5] should vanish and

the other coincide with the old expression. Before projecting the coe�cients by brute force one can do a �rst step in this direction
by using the identities γab[α|

εγab|γ]
δ = −4γεδa γaαγ − 10δ[α

εδγ]
δ (graded version of (D.166)) and γc

ε[α|γ̃cd |γ]
δ = − 1

2
γcαγ γ̃cd ε

δ −
1
2
γ̃dαγδε

δ − γ̃d ε[α|δ|γ]
δ , which are both immediate consequences of the Fierz identity γc

[αβ|γc |γ]δ = 0 .

Rβ̂[αγ]
δ = −∇β̂∇[αΦδγ]

δ − 1
2
γεδa γaαγ∇β̂∇εΦ +

− 1
2
γcαγ γ̃cd ε

δγd
β̂ε̂
Pεε̂ − 1

2
γ̃dαγγ

d
β̂ε̂
Pδε̂ − γ̃d ε[α|δ|γ]

δγd
β̂ε̂
Pεε̂

Now let us write the expansion in γ[1] and γ[5] as Rβ̂[αγ]
δ = R

[1]

β̂
δ
aγaαγ +R

[5]

β̂
δ
a1...a5γ

a1...a5
αγ . The second term has to vanish, so

that the �rst condition is (projecting with γαγa1...a5 ):

γδαa1...a5

“
∇β̂∇αΦ + γ̃dαεPεε̂γdε̂β̂

”
= 0

The other coe�cient can be projected with γγαa via R
[1]

β̂
δ
a = 1

16
γγαa Rβ̂[αγ]

δ , which should coincide with −γ̃a β̂δ̂P
δδ̂ . We thus

obtain as second condition

−γ̃a β̂δ̂P
δδ̂ = − 1

2
γεδa ∇β̂∇εΦ− 1

2
γ̃ad ε

δγd
β̂ε̂
Pεε̂ − 1

2
γ̃a β̂ε̂P

δε̂

− 1
16
γδαa ∇β̂∇αΦ− 1

16
γδαa γ̃d εαγ

d
β̂ε̂
Pεε̂

which can be further simpli�ed to

γδαa

“
∇β̂∇αΦ + γ̃dαρPρε̂γdε̂β̂

”
= 0

For this last equation we can �nally use that γaβδγ
δα
a = −10δβ

α which implies that already the bracket itself has to vanish and we

get the following constraint on the compensator super�eld (and likewise on the dilaton super�eld):

∇β̂∇αΦ = −γ̃dαρPρε̂γdε̂β̂ �
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R̂α[bc]
d = −3

4
∇̂αHbc

d + 2γ̃[b|αδPδε̂T̂ε̂|c]d + Tbc
εγdεα (5.734)

Rα̂[bc]
d =

3
4
∇α̂Hbc

d + 2γ̃[b| α̂δ̂P
εδ̂Tε|c]

d + T̂bc
ε̂γdε̂α̂ (5.735)

At this point it is convenient to plug the constraints (5.580) and (5.581) into the above equations to obtain
slightly simpli�ed expressions

R̂α[bc]d = −2Td[b|
εγ|c]εα + 2γ̃[b|αδPδε̂T̂ε̂|c]d (5.736)

Rα̂[bc]d = −2T̂d[b|
ε̂γ|c]ε̂α̂ + 2γ̃[b| α̂δ̂P

εδ̂Tε|c]d (5.737)

Let us plug the explicit expressions for the torsion components into the �rst equation:

R̂α[bc]d = −1
8

(
∇γ̂Pεδ̂ + 8∇̂γ̂ΦPεδ̂

)
γ̃d[b| δ̂

γ̂γ|c]εα +

−γ̃[b|αδPδε̂
(
∇̂ε̂ΦG|c]d + γ̃|c]d ε̂

δ̂∇̂δ̂Φ
)

= (5.738)

= −1
8
∇γ̂Pεδ̂γ̃d[b| δ̂

γ̂γ|c]εα +Gd[b|γ̃|c]αδPδε̂∇̂ε̂Φ (5.739)

Including the hatted version, we thus get in summary

R̂α[bc]d = −1
8
∇γ̂Pεδ̂γ̃d[b| δ̂

γ̂γ|c]εα +Gd[b|γ̃|c]αδPδε̂∇̂ε̂Φ (5.740)

Rα̂[bc]d = −1
8
∇γPδε̂γ̃d[b| δ

γγ|c]ε̂α̂ +Gd[b|γ̃|c] α̂δ̂P
εδ̂∇εΦ (5.741)

Finally we take the trace of the �rst equation in the indices c and d

9
2
F̂

(D)
αb −

1
2
R̂

(L)
αdb

d = − 1
16
∇γ̂Pεδ̂γ̃db δ̂

γ̂γdεα −
9
2
γ̃bαδPδε̂∇̂ε̂Φ (5.742)

with F̂ (D)
αb = −∇[α∇̂b]Φ− TαbC∇̂CΦ = −γ̃bαβPβγ̂∇̂γ̂Φ or eventually:

R̂
(L)
dαb

d =
1
8
∇γ̂Pεε̂γ̃bc ε̂γ̂γcεα (5.743)

R
(L)
dα̂b

d =
1
8
∇γPεε̂γ̃bc εγγcε̂α̂ (5.744)

• (d|3,0,0)abcddim2:

0 != ∇[aŤbc]
d + 2T [ab|

E ŤE|c]
d − Ř[abc]

d = (5.745)

Ω̌=Ω= ∇[aTbc]
d + 2T[ab|

eTe|c]
d + 2T[ab|

εTε|c]
d −R[abc]

d = (5.746)

=
3
2
∇[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T[ab|

εTε|c]
d −R[abc]

d (5.747)

R[abc]
d =

3
2
∇[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T[ab|

εTε|c]
d (5.748)

R̂[abc]
d = −3

2
∇̂[aHbc]

d +
9
2
H[ab|

eHe|c]
d + 2T̂[ab|

ε̂T̂ε̂|c]
d (5.749)

Taking the trace yields

0 !=
1
2
∇dHab

d + 3Hd[a|
eHe|b]

d︸ ︷︷ ︸
=0

+
2
3
Tab

εTεd
d +

+
4
3
Td[a|

εTε|b]
d − 8

3
F

(D)
ab +

2
3
R

(L)
d[ab]

d = (5.750)

=
1
2
∇dHab

d − 10
3
Tab

ε∇εΦ +
4
3
Td[a|

εTε|b]
d − 8

3
F

(D)
ab +

2
3
R

(L)
d[ab]

d (5.751)



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 113

with F (D)
ab = − ∇[a∇b]Φ

∣∣∣
Ω̌=Ω

− T ab
C
∣∣
Ω̌=Ω
∇CΦ = −Tabγ∇γΦ. We thus get the following trace constraint on

the bosonic left-moving and right-moving (via the left-right-symmetry) Lorentz curvature:

−R(L)
d[ab]

d =
3
4
∇dHab

d − Tabγ∇γΦ + 2Td[a|
εTε|b]

d (5.752)

−R̂(L)
d[ab]

d = −3
4
∇̂dHab

d − T̂abγ̂∇̂γ̂Φ + 2T̂d[a|
ε̂T̂ε̂|b]

d (5.753)

5.D Identities for the scaling �eld strength

Instead of extracting in a clumsy way the information about the dilaton �eld strength, we can obtain the
information in a more direct way. At some points this should also serve as a check of equations that we have
already obtained. From the torsion Bianchi identity (5.253) we cannot easily extract the dilatation part, because
the group indices are antisymmetrized. Instead, we will study the algebra of covariant derivatives acting on the
compensator �eld. We start with the constraints

∇α̂Φ = ∇̂αΦ = ∇aΦ = ∇̂aΦ = 0 (5.754)

Remember, that on the compensator �eld the commutator of covariant derivatives reads

∇[A∇̌B]Φ = −ŤABC∇̌CΦ− F̌ (D)
AB (5.755)

Now we can plug in various indices:
• (a, b) :

∇[a∇b]Φ︸ ︷︷ ︸
0

= −Ťabc∇̌cΦ− Tabγ∇̌γΦ− T̂abγ̂∇̌γ̂Φ− F̌ (D)
ab = (5.756)

Ω̌=Ω= −Tabγ∇γΦ− F (D)
ab = (5.757)

= − 1
16
(
∇γ̂Pγδ̂ + 8∇̂γ̂ΦPγδ̂

)
γ̃abδ̂

γ̂∇γΦ− F (D)
ab (5.758)

Fab = − 1
16
(
∇γ̂Pγδ̂ + 8∇̂γ̂ΦPγδ̂

)
γ̃abδ̂

γ̂∇γΦ (5.759)

F̂ab = − 1
16
(
∇γPδγ̂ + 8∇γΦPδγ̂

)
γ̃abδ

γ∇̂γ̂Φ (5.760)

• (a,β)↔ (a, β̂) :

∇[a∇̌β]Φ︸ ︷︷ ︸
0 for Ω̌=Ω̂

= −Ťaβc∇̌cΦ− Taβγ∇̌γΦ− T̂aβγ̂∇̌γ̂Φ− F̌ (D)
aβ = (5.761)

Ω̌=Ω̂= −T̂aβγ̂∇̂γ̂Φ− F̂ (D)
aβ = (5.762)

= γ̃aβδPδγ̂∇̂γ̂Φ− F̂ (D)
aβ (5.763)

F̂
(D)
aβ = γ̃aβδPδγ̂∇̂γ̂Φ, F

(D)

aβ̂
= γ̃a β̂δ̂P

γδ̂∇γΦ (5.764)

For Ω̂ = Ω instead, we obtain

∇[a∇̌β]Φ︸ ︷︷ ︸
1
2∇a∇βΦ for Ω̌=Ω

Ω̌=Ω= −F (D)
aβ (5.765)

F
(D)
aβ =

1
2
∇a∇βΦ, F̂

(D)

aβ̂
=

1
2
∇̂a∇̂β̂Φ (5.766)

• (α,β)↔ (α̂, β̂) :

∇[α∇̌β]Φ︸ ︷︷ ︸
0 for Ω̌=Ω̂

= −Ťαβc∇̌cΦ− Tαβγ∇̌γΦ− T̂αβγ̂∇̌γ̂Φ− F̌ (D)
αβ = (5.767)

Ω̌=Ω̂= −F̂ (D)
αβ (5.768)
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F̂αβ = Fα̂β̂ = 0 (5.769)

• (α, β̂) :

∇[α∇̌β̂]Φ︸ ︷︷ ︸
1
2 ∇̂α∇̂β̂Φ for Ω̌=Ω̂

= −Ťαβ̂
c∇̌cΦ− Tαβ̂

γ∇̌γΦ− T̂αβ̂
γ̂∇̌γ̂Φ− F̌ (D)

αβ̂
= (5.770)

Ω̌=Ω̂= −F̂ (D)

αβ̂
(5.771)

F̂
(D)

αβ̂
= −1

2
∇̂α∇̂β̂Φ, F

(D)
α̂β = −1

2
∇α̂∇βΦ (5.772)

5.D Recovering �at-space action / comment on linearized SUGRA

If all curvature components vanish, all higher components (in the ~θ-expansion) vanish in the extended WZ-gauge
due to (H.116) and (H.118) and the remaining bosonic local Lorentz and scale transformations can be used to
�x ΩmA

B
∣∣ = 0 such that all connection components vanish. The only torsion components which are forced to

be nonzero are Tαβc = (dEc)αβ = γcαβ and Tα̂β̂
c = (dEc)α̂β̂ = γc

α̂β̂
. A solution which is compatible with the

extended WZ-gauge (H.117), (H.119) and (H.120), and which �xes also the remaining bosonic di�eomorphism
invariance is given by

EM
A =

 δam 0 0
(θβγaβµ) δµ

α 0
(θ̂β̂γa

β̂µ̂
) 0 δµ̂

α̂

 , EA
M =

 δma 0 0
−(θβγmβα) δα

µ 0
−(θ̂β̂γm

β̂α̂
) 0 δα̂

µ̂

 (5.773)

The supersymmetric invariant one -forms thus read

EA = dxMEMA =
(
dxa + dθµθβγaβµ + dθ̂µ̂θ̂β̂γa

β̂µ̂
, dθα , dθ̂α̂

)
(5.774)

which agrees with (4.3).
The reasoning is similar for the B-�eld and its �eld-strength H. The only components of H which are

forced to be nonzero are Hcαβ = − 2
3γcαβ and Hcα̂β̂ = 2

3γcα̂β̂. A simple solution for HCAB = (dB)CAB =
∇[CBAB] + 2T[CA|

DBD|B] (which is compatible with the WZ-like gauge (H.142), (H.146) has the form

BAB =


0 xγγaγβ −xγ̂γa γ̂β̂

−xγγbγα 0 −
(
γcαγx

γ
) (
xγ̂γc γ̂β̂

)
xγ̂γb γ̂α̂

(
γcβγx

γ
) (
xγ̂γc γ̂α̂

)
0

 (5.775)

All other �elds which appear in the Lagrangian can be chosen to vanish. The curved-background action (5.98)
thus reduces to

S0 =
∫
d2z

1
2

Πa
zηabΠ

b
z̄ +

1
2

ΠA
z BABΠB

z̄ + ∂̄θγdzγ + ∂θ̂γ̂ d̂z̄γ̂ +

+∂̄λβωzβ + ∂λ̂
β̂
ω̂z̄β̂ +

1
2
Lzz̄a(λγaλ) +

1
2
L̂zz̄a(λ̂γaλ̂) (5.776)

The B-�eld term takes the explicit form

1
2

ΠA
z BABΠB

z̄ =
1
2

Πa
z

(
BaβΠβz̄ +Baβ̂Πβ̂z̄

)
+

1
2

Παz Bαβ̂Πβ̂z̄ − (z ↔ z̄) = (5.777)

=
1
2

Πa
z

(
θγγaγβΠβz̄ − θγ̂γa γ̂β̂Πβ̂z̄

)
− 1

2
(
Παz γ

c
αγθ

γ
) (
θγ̂γc γ̂β̂Πβ̂z̄

)
− (z ↔ z̄) = (5.778)

=
1
2

Πa
z

(
Πβz̄ θ

γγaγβ −Πβ̂z̄ θ
γ̂γa γ̂β̂

)
− 1

2
(
θγΠαz γ

c
αγ

) (
Πβ̂z̄ θ

γ̂γc γ̂β̂

)
− (z ↔ z̄) (5.779)

Upon a shift of the grading from the fermionic indices to the rumpfs, this coincides precisely with the form of
the WZ-term given in (4.22). Only the antighost �eld has to be rede�ned with a minus sign, in order to match
the �at-space Lagrangian.



CHAPTER 5. CLOSED PURE SPINOR SUPERSTRING IN GENERAL TYPE II BACKGROUND 115

The BRST transformations (5.195)-(5.202) reduce in �at space to

s0xm = λαγmαβθ
β, s0θµ = λαδα

µ (5.780)

s0ωzα = dzα (5.781)

s0dzδ = −2λαΠc
zγcαδ (5.782)

The corresponding hatted equations are obtained for the hatted �elds. All other transformations vanish. In
particular, the Lagrange multiplier doesn't transform (the complicated Xαβ vanishes in �at space). The pure
spinor constraint guarantees the nilpotency of s0 when acting twice on dzδ. The BRST transformation of the
supersymmetric objects reduce to

s0Πa
z = 2λα∂xβγaαβ, s0∂xα = ∂λα (5.783)

We can see the BRST transformation sof curved background as a perturbation around the one in �at background

s ≡ (s0 + u) (5.784)

From the point of view of the string in �at background with action S0, the di�erence U ≡ S−S0 to the action in
curved background is simply a vertex operator which should be BRST-invariant. The condition of a conserved
BRST current (which enforced the supergravity constraints) corresponds to the invariance sS = 0 of the action,
or written as a perturbation:

0 = (s0 + u)(S0 + U) = (5.785)

= s0S0︸︷︷︸
0

+uS0 + s0U + uU (5.786)

At linearized level, we thus have
uS0 + s0U = 0 (5.787)

In the anti�eld formalism (which we did not really discuss in this context), the BRST transformations are
generated by the actions themselves (enlarged with an anti�eld content) via the antibracket. The above equation
then reads

(U ,S0) + (S0,U) = 2(S0,U) = 2s0U
!= 0 (5.788)

This explains the well-known fact that the vertex operators of the �at space pure spinor string have to obey
linearized supergravity constraints.



Part III

Derived Brackets in Sigma-Models

"Don't make a break, make a bracket" (Kathi S.)
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Introduction to the Bracket Part

This part of the thesis is based on the author's paper [16]. See also [68] for a short article which contains some
of the basic ideas. In the meantime a paper by Klaus Bering [69] was brought to my attention. Although it
follows a di�erent aim, its geometrical setting, especially in its section 5, is very close to the one presented here.
Moreover, the geometrical meaning of the variables is nicely presented there, e.g. in its table 7, and can thus
serve as a useful supplement to the reading of the present part of the thesis.

There are quite a lot of di�erent geometric brackets �oating around in the literature, like Schouten bracket,
Nijenhuis bracket or in generalized complex geometry the Dorfman bracket and Courant bracket, to list just
some of them. They are often related to integrability conditions for some structures on manifolds. The vanishing
of the Nijenhuis bracket of a complex structure with itself, for example, is equivalent to its integrability. The
same is true for the Schouten bracket and a Poisson structure. The above brackets can be uni�ed with the
concept of derived brackets [70]. Within this concept, they are all just natural extensions of the Lie-bracket of
vector �elds to higher rank tensor �elds.

It is well known that the antibracket appearing in the Lagrangian formalism for sigma models is closely
related to the Schouten-bracket in target space. In addition it was recently observed by Alekseev and Strobl
that the Dorfman bracket for sums of vectors and one-forms appears naturally in two dimensional sigma models1

[71]. This was generalized by Bonelli and Zabzine [73] to a derived bracket for sums of vectors and p-forms
on a p-brane2. These observations lead to the natural question whether there is a general relation between
the sigma-model Poisson bracket or antibracket and derived brackets in target space. Working out the precise
relation for sigma models with a special �eld content but undetermined dimension and dynamics, is the major
subject of the present part of the thesis.

One of the motivations for this part of the thesis was the application to generalized complex geometry. The
importance of the latter in string theory is due to the observation that e�ective spacetime supersymmetry after
compacti�cation requires the compacti�cation manifold to be a generalized Calabi-Yau manifold [74, 72, 6, 5,
75, 76]. Deviations from an ordinary Calabi Yau manifold are due to �uxes and also the concept of mirror
symmetry can be generalized in this context. There are numerous other important articles on the subject, like
e.g. [77, 78, 79, 80, 81, 82, 83, 84, 85, 86] and many more. A more complete list of references can be found
in [76]. A major part of the considerations so far was done from the supergravity point of view. Target space
supersymmetry is, however, related to an N = 2 supersymmetry on the worldsheet. For this reason the relation
between an extended worldsheet supersymmetry and the presence of an integrable generalized complex structure
(GCS) was studied in [87] (the reviews [88, 89] on generalized complex geometry have this relation in mind).
Zabzine clari�ed in [90] the relation in a model independent way in a Hamiltonian description and showed that
the existence of a second non-manifest worldsheet supersymmetry Q2 in an N = 1 sigma-model is equivalent to
the existence of an integrable GCS J . It is the observation that the integrability of the GCS J can be written
as the vanishing of a generalized bracket [J ,J ]B = 0 which leads to the natural question, whether there is a
direct mapping between [J ,J ]B = 0 &J 2 = −1 on the one side and {Q2,Q2} = 2P on the other side. This
will be a natural application in subsection 7.2 of the more general preceding considerations about the relation
between (super-)Poisson brackets in sigma models with special �eld content and derived brackets in the target
space.

A second interesting application is Zucchini's Hitchin-sigma-model [91]. There are up to now three more
papers on that subject [92, 93, 94], but the present discussion refers only to the �rst one. Zucchini's model is a
two dimensional sigma-model in a target space with a generalized complex structure (GCS). The sigma-model
is topological when the GCS is integrable, while the inverse does not hold. The condition for the sigma model
to be topological is the master equation (S,S) = 0. Again we might wonder whether there is a direct mapping
between the antibracket and S on the one hand and the geometric bracket and J on the other hand and it will
be shown in subsection 7.1 how this mapping works as an application of the considerations in subsection 6.5. In
order to understand more about geometric brackets in general, however, it was necessary to dive into Kosmann-
Schwarzbach's review on derived brackets [70] which led to observations that go beyond the application to the
integrability of a GCS .

The structure of this part of the thesis is as follows: The general relation between sigma models and derived
brackets in target space will be studied in the next section. The necessary geometric setup will be established
in 6.1. Although there are no new deep insights in 6.1, the unconventional idea to extend the exterior derivative
on forms to multivector valued forms (see (6.34) and (6.37)) will provide a tool to write down a coordinate
expression for the general derived bracket between multivector valued forms (6.51) which to my knowledge does
not yet exist in literature. The main results in section 6, however, are the propositions 1 on page 128 and 1b
on page 139 for the relation between the Poisson-bracket in a sigma-model with special �eld content and the
derived bracket in the target space, and the proposition 3b on page 133 for the relation between the antibracket
in a sigma-model and the derived bracket in target space. Proposition 2 on page 130 is just a short quantum

1In [71], the non-symmetric bracket is called 'Courant bracket'. Following e.g. Gualtieri [72] or [70], it will be called 'Dorfman
bracket' in this thesis, while 'Courant bracket' is reserved for its antisymmetrization (see (B.31) and (B.38)). �

2The Vinogradov bracket appearing in [73] is just the antisymmetrization of a derived bracket (see footnote 8 on page 164). �
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consideration which only works for the particle case. In section 7 the propositions 1b and 3b are �nally applied
to the two examples which were mentioned above.

Another result is the relation between the generalized Nijenhuis tensor and the derived bracket of J with
itself, given in (7.12). The derivation of this can be found in the appendix on page 154. In addition to this,
there is a new coordinate form of the generalized Nijenhuis tensor presented in (B.58) on page 153, which might
be easier to memorize than the known ones. There is also a short comment in footnote 3 on page 151 on a
possible relation to Hull's doubled geometry.

This part of the thesis makes use of only three of the appendices. Appendix A on page 145 summarizes the
used conventions, while appendix C on page 159 is an introduction to geometric brackets. Finally, appendix B
on page 148 provides some aspects of generalized complex geometry which might be necessary to understand
the two applications of above.



Chapter 6

Sigma-model-induced brackets

6.1 Geometric brackets in phase space formulation

In the following some basic geometric ingredients which are necessary to formulate derived brackets will be given.
Although there is no sigma model and no physics explicitly involved in this �rst subsection, the presentation
and the techniques will be very suggestive, s.th. there is visually no big change when we proceed after that with
considerations on sigma-models.

6.1.1 Algebraic brackets

Consider a real di�erentiable manifold M . The interior product with a vector �eld v = vk∂k (in a local
coordinate basis) acting on a di�erential form ρ is a di�erential operator in the sense that it di�erentiates with
respect to the basis elements of the cotangent space:1

ıvρ
(r) = r · vkρ(r)

km1...mr−1
(x) dxm1 · · ·dxmr−1 = vk

∂

∂(dxk)
(ρm1...mrdx

m1 · · ·dxmr ) (6.1)

Let us rename2

cm ≡ dxm (6.2)

bm ≡ ∂m (6.3)

The vector v takes locally the form v = vmbm and when we introduce a canonical graded Poisson bracket
between cm and bm via {bm, cn} = δnm , we get

ıvρ = {v, ρ} (6.4)

Extending also the local x-coordinate-space to a phase space by introducing the conjugate momentum pm
(whose geometric interpretation we will discover soon), we have altogether the (graded) Poisson bracket

{bm, cn} = δnm = {cn, bm} (6.5)

{pm, xn} = δnm = −{xn, pm} (6.6)

{A,B} = A

←−
∂

∂bk

∂

∂ck
B +A

←−
∂

∂pk

∂

∂xk
B − (−)AB

(
B

←−
∂

∂bk

∂

∂ck
A+B

←−
∂

∂pk

∂

∂xk
A

)
(6.7)

and can write the exterior derivative acting on forms as generated via the Poisson-bracket by an odd phase-space
function o(c, p)

o ≡ o(c, p) ≡ ckpk (6.8){
o, ρ(r)

}
= ck {pk, ρm1...mr (x)} cm1 · · · cmr = dρ(r) (6.9)

The variables cm,bm,xm and pm can be seen as coordinates of T ∗(ΠTM), the cotangent bundle of the tangent
bundle with parity inversed �ber.

1Note, that a convention is used, were the prefactor 1
r!

which usually comes along with an r-form is absorbed into the de�nition
of the wedge-product. The common conventions can for all equations easily be recovered by rede�ning all coe�cients appropriately,
e.g. ρm1...mr → 1

r!
ρm1...mr . �

2The similarity with ghosts is of course no accident. It is well known (see e.g. [95]) that ghosts in a gauge theory can be seen
as 1-forms dual to the gauge-vector �elds and the BRST di�erential as the sum of the Koszul-Tate di�erential (whose homology
implements the restriction to the constraint surface) and the longitudinal exterior derivative along the constraint surface. In that
sense the present description corresponds to a topological theory, where all degrees of freedom are gauged away. But we will not
necessarily always view cm as ghosts in the following. So let us in the beginning see cm just as another name for dxm. We do not
yet assume an underlying sigma-model, i.e. bm and cm do not necessarily depend on a worldsheet variable. �
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Interior product and �quantization�

Given a multivector valued form K(k,k′) of form degree k and multivector degree k′, it reads in the local
coordinate patch with the new symbols

K(k,k′) ≡ K(k,k′)(x, c, b) ≡ Km1...mk
n1...nk′ (x) cm1 · · · cmkbn1 · · · bnk′ ≡ Km...m

n...n (6.10)

The notation K(x, c, b) should stress, that K is locally a (smooth on a C∞ manifold) function of the phase
space variables which will later be used for analytic continuation (x will be allowed to take c-number values of
a superfunction). The last expression in the above equation introduces a schematic index notation which is
useful to write down the explicit coordinate form for lengthy expressions. See in the appendix A at page 147 for
a more detailed description of its de�nition. It should, however, be self-explanatory enough for a �rst reading
of the thesis

One can de�ne a natural generalization of the interior product with a vector ıv to an interior product
with a multivector valued form ıK acting on some r-form (in fact, it is more like a combination of an interior
and an exterior product � see footnote 6 on page 163 �, but we will stick to this name)

ıK(k,k′)ρ(r) ≡ (k′)!
(

r
k′

)
Km...m

l1...lk′ρlk′ ...l1m...m︸ ︷︷ ︸
r

= (6.11)

= Km1...mk
n1...nk′cm1 · · · cmk

{
bn1 ,

{
· · · ,

{
bnk′ , ρ

(r)
}}}

(6.12)

= Km1...mk
n1...nk′cm1 · · · cmk ∂

∂cn1
· · · ∂

∂cnk′
ρ(r) (6.13)

It is a derivative of order k′ and thus not a derivative in the usual sense like ıv. The third line shows the reason
for the normalization of the �rst line, while the second line is added for later convenience. The interior product
is commonly used as an embedding of the multivector valued forms in the space of di�erential operators acting
on forms, i.e. K → ıK , s.th. structures of the latter can be induced on the space of multivector valued forms.
In (6.13) the interior product ıK can be seen, up to a factor of ~/i, as the quantum operator corresponding
to K, where the form ρ plays the role of a wave function. The natural ordering is here to put the conjugate
momenta to the right. We can therefore �x the following �quantization� rule (corresponding to b̂ = ~

i
∂
∂c )

K̂(k,k′) ≡
(

~
i

)k′
ıK(k,k′) (6.14)

with ıK(k,k′) = Km...m
n1...nk′

∂k
′

∂cn1 · · · ∂cnk′
(6.15)

The (graded) commutator of two interior products induces an algebraic bracket due to Buttin [96], which is
de�ned via

[ıK(k,k′) , ıL(l,,l′) ] ≡ ı[K,L]∆ (6.16)

A short calculation, using the obvious generalization of ∂nx (f(x)g(x)) =
∑n
p=0

(
n
p

)
∂pxf(x)∂n−px g(x) leads to

ıK ıL =
∑
p≥0

ı
ı
(p)
K L

= ıK∧L +
∑
p≥1

ı
ı
(p)
K L

(6.17)

where we introduced the interior product of order p

ı
(p)

K(k,k′) ≡
(
k′

p

)
Km...m

n...nl1...lp
∂p

∂cn1 · · · ∂cnp
= (6.18)

=
1
p!
K

←−
∂ p

∂bnp · · · ∂bn1

∂p

∂cn1 · · · ∂cnp
(6.19)

⇒ ı
(p)

K(k,k′)L
(l,l′) = (−)(k′−p)(l−p)p!

(
k′

p

)(
l
p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n (6.20)

which contracts only p of all k′ upper indices and therefore coincides with the interior product of above when
acting on forms for p = k′ and with the wedge product for p = 0.

ı
(k′)

K(k,k′)ρ = ıK(k,k′)ρ, ı
(0)
K L = K ∧ L (6.21)

Using (6.17) the algebraic bracket [ , ]∆ de�ned in (6.16) can thus be written as

[K(k,k′), L(l,l′)]∆ =
∑
p≥1

ı
(p)
K L− (−)(k−k′)(l−l′)ı

(p)
L K︸ ︷︷ ︸

≡[K,L]∆(p)

(6.22)
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(6.20) provides the explicit coordinate form of this algebraic bracket. From (6.19) we recover the known fact
that the p = 1 term of the algebraic bracket is induced by the Poisson-bracket and therefore is itself an algebraic
bracket, called the big bracket [70] or Buttin's algebraic bracket [96]

[K,L]∆(1) = ı
(1)
K L− (−)(k−k′)(l−l′)ı

(1)
L K

(6.19)
= {K,L} = (6.23)

(6.20)
= (−)(k′−1)(l−1)k′l Km...m

n...nl1Ll1m...m
n...n + (6.24)

−(−)(k−k′)(l−l′)(−)(l′−1)(k−1)l′k Lm...m
n...nl1Kl1m...m

n...n

For k′ = l′ = 1 it reduces to the Richardson-Nijenhuis bracket (C.63) for vector valued forms. In [70] the big
bracket is described as the canonical Poisson structure on

∧•(T ⊕ T ∗) which matches with the observation in
(6.23). The bracket takes an especially pleasant coordinate form for generalized multivectors as is presented in
equation (B.77) on page 154.

The multivector-degree of the p-th term of the complete algebraic bracket (6.22) is (k′ + l′ − p), so that we
can rewrite (6.16) in terms of �quantum�-operators (6.14) in the following way:[

K̂(k,k′), L̂(l,l′)
]

=
∑
p≥1

(
~
i

)p
̂[K,L]∆(p) = (6.25)

=
(

~
i

)
{̂K,L}+

∑
p≥2

(
~
i

)p
̂[K,L]∆(p) (6.26)

The Poisson bracket is, as it should be, the leading order of the quantum bracket.

6.1.2 Extended exterior derivative and the derived bracket of the commutator

In the previous subsection the commutator of di�erential operators induced (via the interior product as em-
bedding) an algebraic bracket on the embedded tensors. Also other structures from the operator space can be
induced on the tensors. Having the commutator at hand, one can build the derived bracket (see footnote
3 on page 162) of the commutator by additionally commuting the �rst argument with the exterior derivative.
Being interested in the induced structure on multivector valued forms, we consider as arguments only interior
products with those multivector valued forms

[ıK ,dıL] ≡ [[ıK ,d] , ıL] (6.27)

One can likewise use other di�erentials to build a derived bracket, e.g. the twisted di�erential [d+H, . . .] with
an odd closed form H, which leads to so called twisted brackets. Let us restrict to dfor the moment. The derived
bracket is in general not skew-symmetric but it obeys a graded Jacobi-identity and is therefore what one calls
a Loday bracket. When looking for new brackets, the Jacobi identity is the property which is hardest to check.
A mechanism like above, which automatically provides it is therefore very powerful. The above derived bracket
will induce brackets like the Schouten bracket or even the Dorfman bracket of generalized complex geometry
on the tensors. In general, however, the interior products are not closed under its action, i.e. the result of
the bracket cannot necessarily be written as ıK̃ for some K̃. An expression for a general bracket on the tensor
level, which reduces in the corresponding cases to the well known brackets therefore does not exist. Instead
one normally has to derive the brackets in the special cases separately. In the following, however, a natural
approach is discussed including the new variable pm, introduced in (6.6), which leads to an explicit coordinate
expression for the general bracket. This expression is of course tensorial only in the mentioned special cases,
that is when terms with pm vanish. This is not an arti�cial procedure, as the conjugate variable pm to xm is
always present in sigma-models, and it will in turn explain the geometric meaning of pm.

The exterior derivative dacting on forms is usually not de�ned acting on multivector valued forms (otherwise
we could build the derived bracket of the algebraic bracket (6.22) by d without lifting everything to operators via
the interior product). But via {o,K(k,k′)} we can, at least formally, de�ne a di�erential on multivector valued
forms. The result, however, contains the variable pk which we have not yet interpreted geometrically. After
extending the de�nition of the interior product to objects containing pm, we will get the relation [d, ıK ] = ı{o,K},
i.e. {o, . . .} can be seen as an induced di�erential from the space of operators. For forms ω(q), this simply reads
[d, ıω] = ıdω. The de�nition dK ≡ {o,K} thus seems to be a reasonable extension of the exterior derivative to
multivector valued forms. Let us �rst provide the necessary de�nitions.

Consider a phase space function, which is of arbitrary order in the variable pk

T (t,t′,t′′)(x, c, b, p) ≡ Tm1...mt
n1...nt′k1...kt′′ (x) cm1 · · · cmtbm1 · · · bmt′pk1 · · · pkt′′ (6.28)

T is symmetrized in k1 . . . kt′′ ,while it is antisymmetrized in the remaining indices. Using the usual quantization
rules b→ ~

i
∂
∂c and p→ ~

i
∂
∂x with the indicated ordering (conjugate momenta to the right) while still insisting
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on (6.14) as the relation between quantum operator and interior product, we get an extended de�nition of the
interior product (6.12,6.13):

ıT (t,t′,t′′) ≡
(
i

~

)t′+t′′
T̂ (t,t′,t′′) ≡ (6.29)

≡ Tm1...mt
n1...nt′k1...kt′′cm1 · · · cmt ∂t

′

∂cn1 · · · ∂cnt′
∂t
′′

∂xk1 · · · ∂xkt′′
= (6.30)

ıT (t,t′,t′′)ρ(r) = Tm1...mt
n1...nt′k1...kt′′cm1 · · · cmt

{
bn1 ,

{
· · · ,

{
bnt′ ,

{
pk1 ,

{
· · · ,

{
pkt′′ , ρ

(r)
}}}}}}

= (6.31)

= (t′)!
(

r
t′

)
Tm...m

n1...nt′k1...kt′′
∂t
′′

∂xk1 · · · ∂xkt′′
ρ(r)
nt′ ...n1m...m (6.32)

The operator ıT will serve us as an embedding of T (a phase space function, which lies in the extension of the
space of multivector valued forms by the basis element pk) into the space of di�erential operators acting on
forms. Because of the partial derivatives with respect to x, the last line is not a tensor and T in that sense not a
well de�ned geometric object. Nevertheless it can be a building block of a geometrically well de�ned object, for
example in the de�nition of the exterior derivative on multivector valued forms which we suggested above.
Namely, if we de�ne3

dK(k,k′) ≡
{
o,K(k,k′)

}
= (6.33)

= ∂mKm...m
n...n − (−)k−k

′
k′ ·Km...m

n...nkpk (6.34)

We get via our extended embedding (6.32) the nice relation 4

ıdKρ = [d, ıK ] ρ
(C.48)

= −(−)k−k
′
LKρ (6.35)

with LKρ = (k′)!
(

r
k′ − 1

)
Km...m

l1...lk′∂lk′ρlk′−1...l1m...m +

−(−)k−k
′
(k′)!

(
r
k′

)
∂mKm...m

l1...lk′ρlk′ ...l1m...m (6.36)

LKρ is the natural generalization of the Lie derivative with respect to vectors acting on forms, which is given
similarly Lvρ = [ıv,d]ρ. As ıK is a higher order derivative, also LK is a higher order derivative. Nevertheless, it
will be called Lie derivative with respect to K in this thesis. Let us again recall this fact: if pk appears in a
combination like dK, there is a well de�ned geometric meaning and dK is up to a sign nothing else than the Lie
derivative with respect to K, when embedded in the space of di�erential operators on forms. The commutator
with the exterior derivative is a natural di�erential in the space of di�erential operators acting on forms, and
via the embedding it induces the di�erential d on K. It should perhaps be stressed that the above de�nition
of dK corresponds to an extended action of the exterior derivative which acts also on the basis elements of the
tangent space

d(∂m) = pm (6.37)

This approach will enable us to give explicit coordinate expressions for the derived bracket of multivector valued
forms even in the general case where the result is not a tensor: In the space of di�erential operators on forms,
we have the commutator [ıK , ıL] and its derived bracket (C.51) [ıK ,dıL] ≡ [[ıK ,d], ıL], while on the space of
multivector valued forms we have the algebraic bracket [K,L]∆ and want to de�ne its derived bracket up to
a sign as [dK,L]∆. To this end we also have to extend the de�nition (6.18,6.19) of ı(p), which appears in the

3This can of course be seen as a BRST di�erential, which is well known to be the sum of the longitudinal exterior derivate plus
the Koszul Tate di�erential. However, as the constraint surface in our case corresponds to the con�guration space (pk would be the
�rst class constraint generating the BRST-transformation), it is reasonable to regard the BRST di�erential as a natural extension
of the exterior derivative of the con�guration space. �

4The exterior derivative on forms has already earlier (6.9) been seen to coincide with the Poisson bracket with o, which can be
used to demonstrate (6.35):

[d, ıK ] ρ = d(ıKρ)− (−)|K|ıK(dρ) =

= {o, ıKρ} − (−)|K|ıK {o, ρ} =

(6.12)
= ∂m1Km2...mk+1

n1...nk′ cm1 · · · cmk+1
n
bn1 ,

n
bn2 ,

n
· · · ,

n
bnk′ , ρ

(r)
ooo

+

+(−)kk′ ·Km1...mk
n1...nk′ cm1 · · · cmk

n
{o, bn1}| {z }
pn1

,
n
bn2 ,

n
· · · ,

n
bnk′ , ρ

(r)
oooo

(6.31)
=

(6.34)
ıdKρ �
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explicit expression of the algebraic bracket in (6.22) to objects that contain pk. This is done in a way that the
old equations for the algebraic bracket remain formally the same. So let us de�ne5

ı
(p)

T (t,t′,t′′) ≡

≡
p∑
q=0

(
t′

q

)(
t′′

p− q

)
Tm...m

n...ni1...iq , iq+1...ipk1...kt′′−p+qpk1 · · · pkt′′−p+q

∂p

∂ci1 . . . ∂ciq∂xiq+1 . . . ∂xip
(6.38)

=
1
p!

p∑
q=0

(
p
q

)
T

←−
∂ p

∂pip . . . ∂piq+1∂biq . . . ∂bi1

∂p

∂ci1 . . . ∂ciq∂xiq+1 . . . ∂xip
(6.39)

For p = t′+ t′′ it coincides with the full interior product (6.32): ı(t
′+t′′)

T (t,t′,t′′) = ıT (t,t′,t′′) . In addition we have with

this de�nition (after some calculation) ı(p)dT = [d, ı(p)T ] and in particular

ı
(p)
dK = [d, ı(p)K ] (6.40)

and the equations for the algebraic bracket (6.16)-(6.22)) indeed remain formally the same for objects containing
pm

[ıT (t,t′,t′′) , ıT̃ (t̃,t̃′,t̃′′) ] ≡ ı[T,T̃ ]∆ (6.41)

ıT ıT̃ =
∑
p≥0

ı
ı
(p)
T T̃

(6.42)

[T (t,t′,t′′), T̃ (t̃,t̃′,t̃′′)]∆ ≡
∑
p≥1

ı
(p)
T T̃ − (−)(t−t′)(t̃−t̃′)ı

(p)

T̃
T︸ ︷︷ ︸

≡[T,T̃ ]∆(p)

(6.43)

[T, T̃ ]∆(1) =
{
T, T̃

}
(6.44)

which we can again rewrite in terms of �quantum�-operators (6.14) as

[
T̂ (k,k′), ˆ̃T (l,l′)

]
=

∑
p≥1

(
~
i

)p ̂[
T, T̃

]∆
(p)

= (6.45)

=
(

~
i

) {̂
T, T̃

}
+
∑
p≥2

(
~
i

)p ̂[
T, T̃

]∆
(p)

(6.46)

It should be stressed that � although very useful � ı(p) is unfortunately NOT a geometric operation any longer
in general, in the sense that ı(p)dKL and also ı(p)L dK do not have a well de�ned geometric meaning, although dK
and L have. ıdKρ and ı(p)K L are in contrast well de�ned. ı(p)dKL, for example, should rather be understood as a
building block of a coordinate calculation which combines only in certain combinations (e.g. the bracket [ , ]∆)
to s.th. geometrically meaningful.

We are now ready to de�ne the derived bracket of the algebraic bracket for multivector valued forms (see
footnote 3 on page 162)[
K(k,k′),L(l,l′)

]
≡ [K,d L]∆ ≡ −(−)k−k

′
[dK,L]∆ = (6.47)

=
∑
p≥1

−(−)k−k
′
ı
(p)
dKL+ (−)(k+1−k′)(l−l′)+k−k′ ı

(p)
L dK = (6.48)

=
∑
p≥1

−(−)k−k
′
ı
(p)
dKL+ (−)(k−k′+1)(l−l′+1)(−)l−l

′
ı
(p)
dLK + (−)(k−k′)(l−l′)+k−k′d(ı(p)L K) (6.49)

The result is geometrical in the sense that after embedding via the interior product it is a well de�ned operator
acting on forms. This is the case, because due to our extended de�nitions we have for all multivector valued
forms the relation

[[ıK ,d], ıL] = ı[K(k,k′),L(l,l′)] (6.50)

and the lefthand side is certainly a well de�ned geometric object. A considerable e�ort went into getting a
correct coordinate form for the general derived bracket and for that reason, let us quickly have a glance at the

5Note that
Pp
q=0

„
t′

q

«„
t′′

p− q

«
=

„
t′ + t′′

p

«
�
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�nal result, although it is kind of ugly:6

[K,L] =
∑
p≥1

−(−)k−k
′
(−)(k′−p)(l−p)p!

(
l
p

)(
k′

p

)
∂mKm...m

n...nl1...lpLlp...l1m...m
n...n +

+(−)k+k′l+k′+p+pl+pk′p!
(
k
p

)(
l′

p

)
∂mKm...mkp...k1

n...nLm...m
k1...kpn...n +

−(−)k
′l+k′+pl+pk′p!

(
k

p− 1

)(
l′

p

)
∂lKm...mkp−1...k1

n...nLm...m
k1...kp−1ln...n +

+(−)(k′−p)(l−p+1)p!
(

l
p− 1

)(
k′

p

)
Km...m

n...nl1...lp−1k∂kLlp−1...l1m...m
n...n +

+(−)(k′−1−p)(l−p)p!(k′ − p)
(

l
p

)(
k′

p

)
Km...m

n...nl1...lpkLlp...l1m...m
n...npk +

−(−)k
′l+l+pk′+lpk′ · p!

(
k
p

)(
l′

p

)
Km...mkp...k1

n...nkLm...m
k1...kpn...npk (6.51)

The result is only a tensor, when both terms with pk on the righthand side vanish, although the complete
expression is in general geometrically well-de�ned when considered to be a di�erential operator acting on forms
via ı[K,L] as this equals per de�nition the well-de�ned [[ıK ,d], ıL]. The above coordinate form reduces in the
appropriate cases to vector Lie-bracket, Schouten-bracket, and (up to a total derivative) to the (Fröhlicher)-
Nijenhuis-bracket. If one allows as well sums of a vector and a 1-form, we get the Dorfman bracket, and also
the sum of a vector and a general form gives a result without p.

Due to our extended de�nition of the exterior derivative, we can also de�ne the derived bracket of the
big bracket (the Poisson bracket) via[

K(k,k′),d L
(l,l′)

]∆
(1)

≡ −(−)k−k
′
[dK,L]∆(1) = (6.52)

= −(−)k−k
′
{dK,L} (6.53)

which is just the p = 1 term of the full derived bracket with the explicit coordinate expression

[K,d L]∆(1) = −(−)k−k
′
(−)(k′−1)(l−1)lk′∂mKm...m

n...nl1Ll1m...m
n...n +

−(−)k+k′l+lkl′∂mKm...mk1
n...nLm...m

k1n...n +

−(−)k
′l+ll′∂lKm...m

n...nLm...m
ln...n +

+(−)(k′−1)lk′Km...m
n...nk∂kLm...m

n...n +

+(−)k
′(l−1)(k′ − 1)lk′Km...m

n...nl1kLl1m...m
n...npk +

−(−)k
′l+k′k′kl′Km...mk1

n...nkLm...m
k1n...npk (6.54)

[K,L] = [K,d L]∆(1) − (−)k−k
′∑
p≥2

[dK,L]∆(p) (6.55)

Like the big bracket itself, also its derived bracket takes a very pleasant coordinate form for generalized multi-
vectors (see (B.79) on page 154). In contrast to the full derived bracket, we have no guarantee for this derived
bracket to be geometrical itself.

6The building blocks are

ı
(p)
dKL = (−)(k′−p)(l−p)p!

„
k′

p

«„
l
p

«
∂mKm...m

n...ni1...ipLip...i1m...m
n...n +

−(−)k−k
′
(−)(k′−1−p)(l−p)(p+ 1)!

„
k′

p+ 1

«„
l
p

«
Km...m

n...ni1...ipkLip...i1m...m
n...npk +

−(−)k−k
′
(−)(k′−p)(l−p+1)p!

„
k′

p

«„
l

p− 1

«
Km...m

n...ni1...ip−1ip∂ipLip−1...i1m...m
n...n

ı
(p)
L dK = (−)(l′−p)(k+1−p)+pp!

„
k
p

«„
l′

p

«
Lm...m

n...nk1...kp∂mKkp...k1m...m
n...n +

+(−)(l′−p)(k+1−p)p!

„
k

p− 1

«„
l′

p

«
Lm...m

n...nk1...kp−1l∂lKkp−1...k1m...m
n...n +

−(−)k−k
′
(−)(l′−p)(k−p)k′ · p!

„
k
p

«„
l′

p

«
Lm...m

n...nk1...kpKkp...k1m...m
n...nkpk �
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Let us eventually note how one can easily adjust the extended exterior derivative to the twisted case:

[d+H∧ , ıK ] ≡ ıdHK (6.56)

dHK = dK + [H,K]∆ = dK − (−)k−k
′∑
p≥1

ı
(p)
K H (6.57)

with H being an odd closed di�erential form. It should be stressed that d+ H∧ is not a di�erential, but on
the operator level its commutator [d+ H∧, . . .] is a di�erential and thus the above de�ned dH is a di�erential
as well.

6.2 Sigma-Models

A sigma model is a �eld theory whose �elds are embedding functions from a world-volume Σ into a target
space M , like in string theory. So far there was no sigma-model explicitly involved into our considerations.
One can understand the previous subsection simply as a convenient way to formulate some geometry. The
phase space introduced there, however, is like the phase space of a (point particle) sigma model with only one
world-volume dimension � the time � which is not showing up in the o�-shell phase-space. Let us now naively
consider the same setting like before as a sigma model with the coordinates xm depending on some worldsheet
coordinates7 σµ. The resulting model has a very special �eld content, because its anticommuting �elds cm(σ)
have the same index structure as the embedding coordinate xm(σ). In one and two worldvolume-dimensions,
cm can be regarded as worldvolume-fermions, and this will be used in the stringy application in 7.2. In general
worldvolume dimensions, cm could be seen as ghosts, leading to a topological theory. In any case the dimension
of the worldvolume will not yet be �xed, as the described mechanism does not depend on it.

A multivector valued form on a C∞-manifoldM can locally be regarded as an analytic function of xm,dxm ≡
cm and ∂m ≡ bm

K(k,k′)(x,dx,∂) = Km1...mk
n1...nk′ (x)dxm1 ∧ · · · ∧ dxmk ∧ ∂n1 ∧ · · · ∧ ∂nk′ = (6.58)

≡ Km1...mk
n1...nk′ (x)cm1 · · · cmkbn1 · · · bnk′ = K(k,k′)(x, c, b) (6.59)

For sigma models, xm → xm(σ), pm → pm(σ), cm → cm(σ) and bm → bm(σ) become dependent on the
worldvolume variables σµ. They are, however, for every σ valid arguments of the function K. Frequently only
the worldvolume coordinate σ will then be denoted as new argument of K, which has to be understood in the
following sense

K(k,k′)(σ) ≡ K(k,k′) (x(σ), c(σ), b(σ)) = Km1...mk
n1...nk′ (x(σ)) · cm1(σ) · · · cmk(σ)bn1(σ) · · · bnk′ (σ) (6.60)

Also functions depending on pm, like dK(x, c, b, p) in (6.34), or more general a function T (t,t′,t′′)(x, c, b, p) as in
(6.28) are denoted in this way

T (t,t′,t′′)(σ) ≡ T (t,t′,t′′) (x(σ), c(σ), b(σ), p(σ)) (see (6.28)) (6.61)

e.g. dK(σ) ≡ dK (x(σ), c(σ), b(σ), p(σ)) (see (6.34)) (6.62)

or o(σ) ≡ o (c(σ), p(σ)) = cm(σ)pm(σ) (see (6.8)) (6.63)

The expression dK(σ) should NOT be mixed up with the world-volume exterior derivative of K which will be
denoted by dwK(σ).8 Every operation of the previous section, like ı(p)K L or the algebraic or derived brackets
leads again to functions of x, c, b and sometimes p. Let us use for all of them the notation as above, e.g. for the
derived bracket of the big bracket (6.52,6.54)[

K(k,k′),d L
(l,l′)

]∆
(1)

(σ) ≡
[
K(k,k′),L(l,l′)

](∆)

(1)
(x(σ), c(σ), b(σ), p(σ)) (6.64)

And even dxm = cm and dbm = pm will be seen as a function (identity) of cm or bm, s.th. we denote

dxm(σ) ≡ cm(σ) (6.65)

dbm(σ) ≡ pm(σ) (6.66)

Although dacts only in the target space on x, b, c and p, the above obviously suggests to introduce a di�erential
� say s � in the new phase space, which is compatible with the target space di�erential in the sense

s(xm(σ)) = dxm(σ) ≡ cm(σ) (6.67)

s(bm(σ)) = dbm(σ) ≡ pm(σ) (6.68)
7The index µ will not include the worldvolume time, when considering the phase space, but it will contain the time in the

Lagrangian formalism. As this should be clear from the context, there will be no notational distinction. �
8 It is much better to mix it up with a BRST transformation or with something similar to a worldsheet supersymmetry

transformation. We will come to that later in subsection 7.2. To make confusion perfect, it should be added that in contrast it is
not completely wrong in subsection 6.5 to mix up the target space exterior derivative with the worldsheet exterior derivative... �
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We can generate swith the Poisson bracket in almost the same way as dbefore in (6.8):

Ω ≡
∫

Σ

d
dw−1
σ o(σ) =

∫
d
dw−1
σ cm(σ)pm(σ), s(. . .) = {Ω, . . .} (6.69)

The Poisson bracket between the conjugate �elds gets of course an additional delta function compared to
(6.5,6.6).

{pm(σ′), xn(σ)} = δnmδ
dw−1(σ′ − σ) (6.70)

{bm(σ′), cn(σ)} = δnmδ
dw−1(σ′ − σ) (6.71)

The �rst important (but rather trivial) observation is then that for K(σ) being a function of x(σ), c(σ), b(σ) as
in (6.60) (and not a functional, which could contain derivatives on or integrations over σ) we have

s(K(σ)) =
(
cm(σ)

∂

∂(xm(σ))
+ pm(σ)

∂

∂(bm(σ))

)
K (x(σ), c(σ), b(σ)) = dK(σ) (6.72)

The same is true for more general objects of the form of T in (6.61). Because of this fact the distinction between
dand s is not very essential, but in subsection 6.5 the replacement of the arguments as in (6.61) will be di�erent
and the distinction very essential in order not to get confused.

The relation between Poisson bracket and big bracket (6.23,6.44) gets obviously modi�ed by a delta function{
K(k,k′)(σ′), L(l,l′)(σ)

}
=

[
K(k,k′), L(l,l′)

]∆
(1)

(σ) δdw−1(σ′ − σ) (6.73)

or more general
{
T (t,t′,t′′)(σ′), T̃ (t̃,t̃′,t̃′′)(σ)

}
=

[
T (t,t′,t′′), T̃ (t̃,t̃′,t̃′′)

]∆
(1)

(σ) δdw−1(σ′ − σ) (6.74)

The relation between the derived bracket (using s) on the lefthand side and the derived bracket (using d) on
the righthand side is (omitting the overall sign in the de�nition of the derived bracket){

sK(k,k′)(σ′), L(l,l′)(σ)
}

(6.72)
=

{
dK(k,k′)(σ′), L(l,l′)(σ)

}
(6.74)

=
[
dK(k,k′), L(l,l′)

]∆
(1)

(σ) δdw−1(σ′ − σ) (6.75)

The worldvolume coordinates σ remain so far more or less only spectators. In the subsection 6.5, the world-
volume coordinates play a more active part and already in the following subsection a similar role is taken by an
anticommuting extension of the worldsheet.

Before we proceed, it should be stressed that the replacement of x, c, b and p by x(σ), c(σ), b(σ) and p(σ)
was just the most naive replacement to do, and it will be a bit extended in the following section until it can
serve as a useful tool in an application in 7.2. But in principle, one can replace those variables by any �elds with
matching index structure and parity (even composite ones) and study the resulting relations between Poisson
bracket on the one side and geometric bracket on the other side. Also the di�erential s can be replaced for
example by the twisted di�erential or by more general BRST-like transformations. In this way it should be
possible to implement other derived brackets, for example those built with the Poisson-Lichnerowicz-di�erential
(see [70]), in a sigma-model description. In 6.5, a di�erent (but also quite canonical) replacement is performed
and we will see that the di�erent replacement corresponds to a change of the role of σ and an anticommuting
worldvolume coordinate θ which will be introduced in the following.

6.3 Natural appearance of derived brackets in Poisson brackets of
super�elds

In the application to worldsheet theories in section 7, there appear super�elds, either in the sense of worldsheet
supersymmetry or in the sense of de-Rham super�elds (see e.g. [97, 91]). Let us view a super�eld in general
as a method to implement a fermionic transformation of the �elds via a shift in a fermionic parameter θ which
can be regarded as fermionic extension of the worldvolume. In our case the fermionic transformation is just
the spacetime de-Rham-di�erential d, or more precisely s, and is not necessarily connected to worldvolume
supersymmetry. In fact, in worldvolumes of dimension higher than two, supersymmetry requires more than one
fermionic parameter while a single θ is enough for our purpose to implement s. In two dimensions, however, this
single theta can really be seen as a worldsheet fermion (see 7.2). But let us neglect this knowledge for a while,
in order to clearly see the mechanism, which will be a bit hidden again, when applied to the supersymmetric
case in 7.2.

As just said above, we want to implement with super�elds the fermionic transformation s and not yet a
supersymmetry. So let us de�ne in this section a super�eld as a function of the phase space �elds with
additional dependence on θ, Y = Y (x(σ), p(σ), c(σ), b(σ),θ), which obeys 9

sY (x(σ), p(σ), c(σ), b(σ),θ) != ∂θY (x(σ), p(σ), c(σ), b(σ),θ) (6.76)

with sxm(σ) = cm(σ), sbm(σ) = pm(σ) (sθ = 0) (6.77)
9If this seems unfamiliar, compare with the case of worldsheet supersymmetry, where one introduces a di�erential operator

Qθ ≡ ∂θ+θ∂σ and the de�nition of a super�eld is, in contrast to here, δεY
!
= εQθY , where δε is the supersymmetry transformation

of the component �elds (compare 7.2). �
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With our given �eld content it is possible to de�ne two basic conjugate10 super�elds Φm and Sm
which build up a super-phase-space11

Φm(σ,θ) ≡ xm(σ) + θcm(σ) = xm(σ) + θsxm(σ) (6.78)

Sm(σ,θ) ≡ bm(σ) + θpm(σ) = bm(σ) + θsbm(σ) (6.79){
Sm(σ,θ),Φn(σ′,θ′)

}
=

{
bm(σ),θ′cn(σ′)

}
+ θ {pm(σ), xn(σ′)} = (6.80)

= (θ − θ′)︸ ︷︷ ︸
≡δ(θ−θ′)

δ(σ − σ′)δnm (6.81)

Φ and S are obviously super�elds in the above sense

∂θΦm(σ,θ) = sxm(σ)︸ ︷︷ ︸
cm(σ)

+θscm(σ)︸ ︷︷ ︸
=0

= sΦm(σ,θ) (6.82)

∂θSm = sbm(σ)︸ ︷︷ ︸
pm(σ)

+θspm(σ)︸ ︷︷ ︸
0

= sSm(σ,θ) (6.83)

as well as sΦ(σ,θ) = c(σ) and sS(σ,θ) = p(σ) are super�elds, and every analytic function of those �elds will be
a super�eld again.

We will convince ourselves in this subsection that in the Poisson brackets of general super�elds, the derived
brackets come with the complete δ-function (of σ and θ) while the corresponding algebraic brackets come with
a derivative of the delta-function. The introduction of worldsheet coordinates σ was not yet really necessary for
this discussion, but it will be useful for the comparison with the subsequent subsection. Indeed, we do not specify
the dimension dw of the worldsheet yet. An argument sigma is representing several worldsheet coordinates σµ. It
should be stressed again that the di�erential dshould NOT be mixed up with the worldsheet exterior derivative
dw, which does not show up in this subsection.

Similar as in 6.2, equations (6.60)-(6.66),we will view all geometric objects as functions of local coordinates
and replace the arguments not by phase space �elds but by the just de�ned super-phase �elds which reduces
for θ = 0 to the previous case.

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) θ=0= T (t,t′,t′′)(σ) (see (6.61)) (6.84)

10The super�elds Φ and S are conjugate with respect to the following super-Poisson-bracket˘
F (σ′,θ′), G(σ,θ)

¯
≡

Z
d
dw−1
σ̃

Z
dθ̃

`
δF (σ′,θ′)/δSk(σ̃, θ̃)

δ

δΦk(σ̃, θ̃)
G(σ,θ)− δF (σ′,θ′)/δΦk(σ̃, θ̃)

δ

δSk(σ̃, θ̃)
G(σ,θ)

´
=

=

Z
d
dw−1
σ̃

Z
dθ̃

`
δF (σ′,θ′)/δSk(σ̃, θ̃)

δ

δΦk(σ̃, θ̃)
G(σ,θ)− (−)FGδG(σ′,θ′)/δSk(σ̃, θ̃)

δ

δΦk(σ̃, θ̃)
F (σ,θ)

´
which, however, boils down to taking the ordinary graded Poisson bracket between the component �elds (as can be seen in (6.80)).
The functional derivatives from the left and from the right are de�ned as usual via

δSA ≡
Z
d
dw−1
σ̃

Z
dθ̃ δA/δSk(σ̃, θ̃) · δSk(σ̃, θ̃) ≡

Z
d
dw−1
σ̃

Z
dθ̃ δSk(σ̃, θ̃) ·

δ

δSk(σ̃, θ̃)
A

and similarly for Φ, which leads to

δ

δSm(σ̃, θ̃)
Sn(σ,θ) = δmn (θ − θ̃)δdw−1(σ − σ̃) = −δSn(σ,θ)/Sm(σ̃, θ̃)

δ

δΦm(σ̃, θ̃)
Φn(σ,θ) = δnm(θ̃ − θ)δdw−1(σ − σ̃) = δΦn(σ,θ)/δΦm(σ̃, θ̃)

The functional derivatives can also be split in those with respect to the component �elds

δ

δSm(σ̃, θ̃)
=

δ

δpm(σ̃)
− θ̃

δ

δbm(σ̃)
,

δ

δΦm(σ̃, θ̃)
=

δ

δcm(σ̃)
+ θ̃

δ

δxm(σ̃)
�

11For Grassmann variables δ(θ′ − θ) = θ′ − θ in the following senseZ
dθ′(θ′ − θ)F (θ′) =

Z
dθ′(θ′ − θ)

`
F (θ) + (θ′ − θ)∂θF (θ)

´
=

=

Z
dθ′ θ′F (θ)− θ′θ∂θF (θ)− θθ′∂θF (θ) =

= F (θ)

We have as usual

θδ(θ′ − θ) = θ(θ′ − θ) = θθ′ = θ′(θ′ − θ) =

= θ′δ(θ′ − θ)

Pay attention to the antisymmetry

δ(θ′ − θ) = −δ(θ − θ′) �
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For example for a multivector valued form we write

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φm(σ,θ), sΦm(σ,θ)︸ ︷︷ ︸

cm(σ)

,Sm(σ,θ)
)

= (6.85)

= Km1...mk
n1...nk′ (Φ(σ,θ)) sΦm1(σ,θ)︸ ︷︷ ︸

cm1 (σ)

. . . sΦmk(σ,θ)Sn1(σ,θ) . . .Snk′ (σ,θ) θ=0=
(6.60)

K(k,k′)(σ) (6.86)

Likewise for all the other examples of 6.2:

e.g. dK(σ,θ) ≡ dK (Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) (6.87)

or o(σ,θ) ≡ o (sΦ(σ,θ), sS(σ,θ)) = cm(σ)pm(σ) = o(σ) (6.88)[
K(k,k′),d L

(l,l′)
]∆

(1)
(σ,θ) ≡

[
K(k,k′),L(l,l′)

](∆)

(1)
(Φ(σ,θ), sΦ(σ,θ),S(σ,θ), sS(σ,θ)) θ=0=

(6.64)

[
K(k,k′),L(l,l′)

](∆)

(1)
(σ) (6.89)

dxm(σ,θ) ≡ sΦm(σ,θ) = cm(σ) (6.90)

dbm(σ,θ) ≡ sSm(σ,θ) = pm(σ) (6.91)

For functions of the type T (t,t′,t′′)(σ,θ) we clearly have

dT (t,t′,t′′)(σ,θ) = s
(
T (t,t′,t′′)(σ,θ)

)
(6.92)

in particular dK(k,k′)(σ,θ) = s
(
K(k,k′)(σ,θ)

)
(6.93)

As all those analytic functions of the basic super�elds are super�elds (in the sense of 6.76) themselves, ∂θ can
be replaced by s in a θ-expansion, so that we get the important relation

T (t,t′,t′′)(σ,θ) = T (t,t′,t′′)(σ) + θdT (t,t′,t′′)(σ) (6.94)

K(k,k′)(σ,θ) = K(k,k′)(σ) + θdK(k,k′)(σ) (6.95)

This also implies that dT (σ,θ) and in particular dK(σ,θ) do actually not depend on θ:

dK(k,k′)(σ,θ) = dK(k,k′)(σ) (6.96)

Now comes the nice part:

Proposition 1 For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coordi-
nate patch seen as functions of xm,dxm and ∂m as in (6.10), the following equation holds for the corresponding
super�elds (6.85)

{K(k,k′)(σ′,θ′), L(l,l′)(σ,θ)} = δ(θ′ − θ)δ(σ − σ′) · [dK,L]∆(1)︸ ︷︷ ︸
−(−)k−k

′
[K,dL]∆(1)

(σ,θ) + ∂θδ(θ − θ′)︸ ︷︷ ︸
=1

δ(σ − σ′)[K,L]∆(1)(σ,θ) (6.97)

where [K,L]∆(1) is the big bracket (6.23) (Buttin's algebraic bracket, which was previously just the Poisson bracket,

being true now up to a δ(σ−σ′) only after setting θ = θ′) and [K,dL]∆(1) is the derived bracket of the big bracket

(6.52).

Proof Using (6.95), we can simply plug K(σ′,θ′) = K(σ′) + θ′dK(σ′) and L(σ,θ) = L(σ) + θdL(σ) into
the lefthand side:{
K(σ′,θ′), L(σ,θ)

}
=

= {K(σ′), L(σ)}+ θ′ {dK(σ′), L(σ)}+ (−)k−k
′
θ {K(σ′),dL(σ)}+ (−)k−k

′
θθ′ {dK(σ′),dL(σ)} = (6.98)

= {K(σ′), L(σ)}+ (θ′ − θ) {dK(σ′), L(σ)}+ θd{K(σ′), L(σ)} − θθ′d{dK(σ′), L(σ)} = (6.99)
(6.23)

= δ(σ − σ′)
(

[K,L]∆(1) (σ) + θd[K,L]∆(1) (σ)
)

+ (θ′ − θ)δ(σ − σ′)
(

[dK,L]∆(1) (σ) + θd[dK,L]∆(1) (σ)
)

= (6.100)

(6.94)
= δ(σ − σ′) [K,L]∆(1) (σ,θ) + (θ′ − θ)δ(σ − σ′) [dK,L]∆(1) (σ,θ) � (6.101)

There is yet another way to see that the bracket at the plain delta functions is the derived bracket of the
one at the derivative of the delta-function, which will be useful later: Denote the coe�cients in front of the
delta-functions by A(K,L) and B(K,L):{

K(σ′,θ′), L(σ,θ)
}

= A(K,L) · δ(θ′ − θ)δ(σ − σ′) +B(K,L)(σ,θ) ∂θδ(θ − θ′)︸ ︷︷ ︸
=1

δ(σ − σ′) (6.102)
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In order to hit the delta-functions, it is enough to integrate over a patch U(σ) containing the point parametrized
by σ. We can thus extract A and B via

A(K,L)(σ,θ) =
∫

dθ′
∫
U(σ)

d
dw−1
σ′
{
K(σ′,θ′), L(σ,θ)

}
= (6.103)

=
∫

dθ′
∫
d
dw−1
σ′
{
K(σ′) + θ′dK(σ′), L(σ,θ)

}
= (6.104)

=
∫
d
dw−1
σ′{ dK(σ′)︸ ︷︷ ︸

(6.96)
= dK(σ′,θ)

, L(σ,θ)} (6.105)

B(K,L)(σ,θ) =
∫

dθ′
∫
U(σ)

d
dw−1
σ′(θ′ − θ)

{
K(σ′,θ′), L(σ,θ)

}
= (6.106)

=
∫
d
dw−1
σ′
{
K(σ′,θ′), L(σ,θ)

}
|θ′=θ (6.107)

⇒ A(K,L) = B(dK,L) (6.108)

It is thus enough to collect in a direct calculation the terms at the derivative of the delta-function and verify
that it leads to the big bracket. �

6.4 Comment on the quantum case

In (6.14) the embedding via the interior product into the space of operators acting on forms was interpreted as
quantization . In the presence of world-volume dimensions, the partial derivative as Schroedinger representation
for conjugate momenta is no longer appropriate and one has to switch to the functional derivative. Remember

Φm(σ,θ) = xm(σ) + θcm(σ), dΦm(σ,θ) = cm(σ) = dΦ(σ) (6.109)

Sm(σ,θ) = bm(σ) + θpm(σ), dSm(σ,θ) = pm(σ) = dS(σ) (6.110)

The quantization of the super�elds in the Schroedinger representation (conjugate momenta as super functional
derivatives) is consistent with the quantization of the component �elds (see also footnote 10)

Ŝm(σ,θ) ≡ ~
i

δ

δΦm(σ,θ)
=

~
i

δ

δcm(σ)
+ θ

~
i

δ

δxm(σ)
(6.111)

⇒
[
Ŝm(σ,θ), Φ̂n(σ′,θ′)

]
=

~
i

(
δ

δcm(σ)
+ θ

δ

δxm(σ)

)(
xn(σ′) + θ′cn(σ′)

)
= (6.112)

=
~
i
δnm
(
θ − θ′

)
δ(σ − σ′) (6.113)

The quantization of a multivector valued form, containing several operators Ŝ at the same worldvolume-point,
however, leads to powers of delta functions with the same argument when acting on some wave functional. This
is the usual problem in quantum �eld theory and requires a model dependent regularization and renormalization.
We will stay model independent here and therefore will not treat the quantum case for a present worldvolume
coordinate σ. Nevertheless it is instructive to study it for absent σ, but keeping θ and considering �worldline-
super�elds� of the form

Φm(θ) = xm + θcm, dΦm(θ) = cm (6.114)

Sm(θ) = bm + θpm, dSm(θ) = pm (6.115)

Quantum operator and commutator simplify to

Ŝm(θ) ≡ ~
i

δ

δΦm(θ)
=

~
i

∂

∂cm
+ θ

~
i

∂

∂xm
(6.116)

⇒
[
Ŝm(θ), Φ̂n(θ′)

]
=

~
i
δnm
(
θ − θ′

)
(6.117)[

Ŝm(θ), d̂Φ
n
(θ′)

]
=

~
i
δnm (6.118)

In contrast to σ, products of θ-delta functions are no problem.
The important relation K(θ) = K + θdK (6.95) can be extended to the quantum case as seen when acting

on some r-form.

ıK(k,k′)ρ(r)(θ)
(6.94)

= ıKρ+ θd(ıKρ) = (6.119)
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(6.35)
= ıKρ+ θ

(
ıdKρ+ (−)k−k

′)ıKdρ
)

= (6.120)

= ıK(θ) (ρ(θ)) (6.121)

with ıK(θ) ≡ ıK + θ [d, ıK ] (6.122)

In that sense we have (remember K̂ =
(~
i

)k′
ıK)

K̂(k,k′)(θ) = K̂(k,k′) + θd̂K (6.123)

with d̂K
(6.35)

=
[
d, K̂

]
(6.124)

where the explicit form of this quantized multivector valued form reads

K̂(k,k′)(θ) ≡
(

~
i

)k′
Km1...mk

n1...nk′ (Φ(θ)) dΦm1(θ)︸ ︷︷ ︸
cm1

. . .dΦmk(θ)
δ

δΦn1(θ)
. . .

δ

δΦnk′ (θ)
(6.125)

In the derivation of (6.122), ıK and ρ both were evaluated at the same θ. Let us eventually consider the general
case:

K̂(k,k′)(θ′)ρ(r)(θ) =
(
K̂ + θ′d̂K

)
(ρ+ θdρ) = (6.126)

= K̂ρ+ θ′d̂Kρ+ (−)k−k
′
θK̂dρ+ (−)k−k

′
θθ′d̂Kdρ = (6.127)

= K̂ρ+ θd
(
K̂ρ
)

+ (θ′ − θ)
(
d̂Kρ+ θd

(
d̂Kρ

))
(6.128)

The relation between quantum operators acting on forms and the interior product therefore becomes modi�ed
in comparison to (6.14) and reads

K̂(k,k′)(θ′)ρ(r)(θ) =
(

~
i

)k′ (
ıKρ(θ) + (θ′ − θ) ıdKρ(θ)︸ ︷︷ ︸

(−)k−k′LKρ

)
(6.129)

Proposition 2 For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coordi-
nate patch seen as functions of xm,dxm and ∂m as in (6.10), the following equations holds for the corresponding
quantized worldline-super�elds (6.125) K̂(θ) and L̂(θ):

[K̂(k,k′)(θ′), L̂(l,l′)(θ)] =
∑
p≥1

(
~
i

)p (
∂θδ(θ − θ′)︸ ︷︷ ︸

=1

̂[K,L]∆(p)(θ) + δ(θ′ − θ) ̂[dK,L]∆(p)(θ)
)

(6.130)

[K̂(k,k′)(θ′), L̂(l,l′)(θ)]ρ(θ̃) =

=
(

~
i

)k′+l′ (
ı[K,L]∆ρ

(r)(θ̃) + δ(θ − θ̃)ıd[K,L]∆ρ
(r)(θ̃) +

+δ(θ′ − θ)
(
ı[dK,L]∆ρ

(r)(θ̃) + δ(θ − θ̃)ıd[dK,L]∆ρ
(r)(θ̃)

))
(6.131)

Again the algebraic bracket (C.44) comes with the derivative of the delta function while the derived bracket (6.47)

comes with the plain delta functions. But this time the algebraic bracket is not only the big bracket [ , ]∆(1), but
the full one.

Proof Let us just plug in (6.123) into the lefthand side:

[K̂(θ′), L̂(θ)] = [K̂ + θ′d̂K , L̂+ θd̂L] = (6.132)

= [K̂, L̂] + θ′[d̂K , L̂] + (−)k−k
′
θ[K̂ , d̂L]− (−)k−k

′
θ′θ[d̂K , d̂L] = (6.133)

(6.124)
= [K̂, L̂] + θ

[
d, [K̂ , L̂]

]
+ (θ′ − θ)

(
[d̂K , L̂] + θ

[
d, [d̂K , L̂]

])
= (6.134)

= [K̂, L̂](θ) + (θ′ − θ)[d̂K , L̂] (6.135)

Remember now the algebraic bracket (C.43)

[ıK(k,k′) , ıL(l,,l′) ] = ı[K,L]∆ =
∑
p≥1

ı[K,L]∆(p)
(6.136)
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with [K,L]∆(p) ≡ ı
(p)
K L− (−)(k−k′)(l−l′)ı

(p)
L K (6.137)

or likewise written in terms of K̂ and L̂

[K̂(k,k′), L̂(l,l′)] =
∑
p≥1

(
~
i

)p
̂[K,L]∆(p) (6.25=6.138)

Due to (6.45) we have exactly the same equation for [d̂K , L̂]. Plugging this back into (6.135) completes the
proof of (6.130). The second equation in the proposition is just a simple rewriting, when acting on a form,
which enables to combine the p-th terms of algebraic and derived bracket to the complete ones. �

6.5 Analogy for the antibracket

In the previous subsection the target space exterior derivative d (realized in the σ-model phase-space by s) was
induced by the the derivative ∂θ with respect to the anticommuting coordinate. But thinking of the pullback of
forms in the target space to worldvolume-forms, dcan of course also be induced to some extend by the derivative
with respect to the bosonic worldvolume coordinates σµ (including the time, because we are in the Lagrangian
formalism now) or better by the worldvolume exterior derivative dw. To this end, however, we have to make a
di�erent identi�cation of the basis elements in tangent- and cotangent-space of the target space with the �elds
on the worldvolume than before, namely12

dxm → dwxm(σ) = dwσµ∂µx
m(σ), ∂m → x+

m(σ) (6.139)

where x+
m is the anti�eld of xm, i.e. the conjugate �eld to xm with respect to the antibracket13. Let us rename

θµ ≡ dwσµ (6.140)

For a target space r-form

ρ(r)(xm,dxm) ≡ ρm1...mr (x)dxm1 · · ·dxmr (6.141)

we de�ne (in analogy to (6.85), but indicating that we allow in the beginning only a variation in σ)

ρ
(r)
θ (σ) ≡ ρ(r)(xm(σ),dwxm(σ)) = ρm1...mr (x(σ))dwxm1(σ) · · ·dwxmr (σ) (6.142)

Attention: this vanishes identically for r > dw (worldvolume dimension).
The worldvolume exterior derivative then induces the target space exterior derivative in the following sense

dwρ
(r)
θ (σ) = (dρ(r))θ(σ) (6.143)

Again both sides vanish identically for now r + 1 > dw, which means that in this way one can calculate with
target space �elds of form degree not bigger than the worldvolume dimension. If we want to have the same
relation for K(k,k′)

θ (σ) (de�ned in the analogous way), we have to extend the identi�cation in (6.139) by

pm → dwx+
m(σ) (6.144)

12This identi�cation resembles the one in [71] with ∂m → pm(z) and dxm → ∂xm(z), or dxm1 · · ·dxmp →
εµ1...µp∂µ1x

m1 (σ) · · · ∂µpxmp (σ) in [73]. It is observed in [71] that the Poisson bracket induces the Dorfman bracket between
sums of vectors and 1-forms (in generalized geometry) and in [73] more generally that the Poisson-bracket for the p-brane induces
the corresponding bracket between sums of vectors and p-forms (which is called, Vinogradov bracket in [73]). As ∂xm and pm are
commuting phase space variables, higher rank tensors would automatically be symmetrized (only volume forms, i.e. p-forms on a
p-brane, can be implemented, using the epsilon-tensor). Symmetrized tensors and brackets inbetween (e.g. the Schouten bracket
for symmetric multivectors) make sense and one could transfer the present analysis to this setting, but in general a natural exterior
derivative is missing. Therefore the analysis for the above identi�cations is done in the anti�eld-formalism. The appearing derived
brackets will also contain the Dorfman bracket and the corresponding bracket for sums of vectors and p-forms and in that sense
the present approach is a generalization of the observations above. �

13The antibracket looks similar to the Poisson-bracket, but their conjugate �elds have opposite parity, which leads to a di�erent
symmetry (namely that of a Lie-bracket of degree +1 (or -1), i.e. the one in a Gerstenhaber algebra or Schouten-algebra, see
footnote 1 of Appendix C)

(A,B) ≡
Z
d
dw
σ̃

`
δA/x+

k (σ̃)
δ

δxk(σ̃)
B − δA/δxk(σ̃)

δ

δx+
k (σ̃)

B
´

=

=

Z
d
dw
σ̃

`
δA/x+

k (σ̃)
δ

δxk(σ̃)
B − (−)(A+1)(B+1)δB/x+

k (σ̃)
δ

δxk(σ̃)
A
´

(A,B) = −(−)(A+1)(B+1) (B,A)`
x+
m(σ),B

´
=

δ

δxm(σ)
B = −

`
B,x+

m(σ)
´

(xm(σ),B) = −
δ

δx+
m(σ)

B = (−)B (B,xm(σ)) �
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and get

dwK
(k,k′)
θ (σ) = (dK(k,k′))θ(σ) (6.145)

with

K
(k,k′)
θ (σ) ≡ K(k,k′)

(
xm(σ),dwxm(σ),x+

m(σ)
)

(6.146)

(dK(k,k′))θ(σ) ≡ dK(k,k′)
(
xm(σ),dwxm(σ),x+

m(σ),dwx+
m(σ)

)
(6.147)

The analysis is thus very similar to that of the previous section.

Proposition 3a For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coordi-
nate patch seen as functions of xm,dxm and ∂m, the following equation holds for the corresponding sigma-model
realizations (6.146,6.147)

(Kθ(σ′),Lθ(σ)) =
(

[K,dL]∆(1)︸ ︷︷ ︸
−(−)k−k

′
[dK,L]∆(1)

)
θ
(σ)δdw(σ − σ′)− (−)k−k

′
θµ∂µδ

dw(σ − σ′)
(

[K,L]∆(1)

)
θ
(σ) (6.148)

Proof The proof is very similar to that one of proposition 3b (6.168) and is therefore omitted at this
place. �

Conjugate Super�elds With θµ = dwσµ we have introduced anticommuting coordinates and it would be nice
to extend the anti-bracket of the �elds xm and x+

m to a super-antibracket of conjugate super�elds. Remember,
in the previous subsection we had the super�elds Φm = xm + θcm and its conjugate Sm. There we had one θ
and two component �elds. In general the number of component �elds has to exceed the worldvolume dimension
dw (the number of θ's) by one, s.th. we have to introduce a lot of new �elds to realize conjugate super�elds.
But before, let us de�ne the fermionic integration measure µ(θ) via∫

µ(θ)f(θ) =
∂

∂θdw
· · · ∂

∂θ1 f(θ) =
1
dw!

εµ1...µdw
∂

∂θµ1
· · · ∂

∂θµdw
f(θ) (6.149)

The corresponding dw-dimensional δ-function is

δdw(θ′ − θ) ≡ (θ′1 − θ1) · · · (θ′dw − θdw) = (6.150)

=
1
dw!

εµ1...µdw
(θ′µ1 − θµ1) · · · (θ′µdw − θµdw ) = (6.151)

=
dw∑
k=0

1
k!(dw − k)!

εµ1...µdw
θ′µ1 · · ·θ′µkθµk+1 · · ·θµdw (6.152)∫

µ(θ′)δdw(θ′ − θ)f(θ′) = f(θ) (6.153)

δdw(θ′ − θ) = (−)dwδdw(θ − θ′) (6.154)

For the two conjugate super�elds, call them Φm and Φ+
m, we want to have the canonical super anti bracket(

Φ+
m(σ′,θ′),Φn(σ,θ)

)
= δnmδ

dw(σ′ − σ)δdw(θ′ − θ) = −
(
Φn(σ,θ),Φ+

m(σ′,θ′)
)

(6.155)

From the above considerations about the fermionic delta function it is now clear, how these super�elds can
be de�ned (they are known as de Rham super�elds, because of the interpretation of θµ as dwσµ; see e.g.
[97, 91]):

Φm(σ,θ) ≡ xm(σ) + xmµdw (σ)θµdw + xmµdw−1µdw
(σ)θµdw−1θµdw + . . .+ xmµ1...µdw

(σ)θµ1 · · ·θµdw(6.156)

Φ+
m(σ′,θ′) ≡ 1

dw!
εµ1...µdw

θ′µ1 · · ·θ′µdwx+
m(σ′) +

1
(dw − 1)!1!

εµ1...µdw
θ′µ1 · · ·θ′µdw−1x+

m
µdw (σ′) +

+
1

(dw − 2)!2!
εµ1...µdw

θ′µ1 · · ·θ′µdw−2x+
m
µdw−1µdw (σ′) + . . .+

1
dw!

εµ1...µdw
x+
m
µ1...µdw (σ′) (6.157)

The component �elds with the matching number of worldsheet indices are conjugate to each other, e.g.(
x+
m
µ1µ2(σ′),xnν1ν2

(σ)
)

= δnmδ
µ1µ2
ν1ν2

δdw(σ − σ′) (6.158)
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For the notation with boldface symbols for anticommuting variables, the worldvolume was assumed to be even-
dimensional. In this case, one can analytically continue the coordinate form of multivector-valued forms of the
form

K(k,k′)(x,dx,∂) ≡ Km1...mk
n1...nk′dxm1 ∧ · · · ∧ dxmk ∧ ∂n1 ∧ · · · ∧ ∂nk′ (6.159)

to functions of super�elds (in odd worldvolume dimension one would get a symmetrization of the multivector-
indices) and rede�ne K(σ,θ) of (6.85) to

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φ(σ,θ),dwΦ(σ,θ),Φ+(σ,θ)

)
= (6.160)

= Km1...mk
n1...nk′ (Φ)dwΦm1 · · ·dwΦmkΦ+

n1
· · ·Φ+

nk′
(6.161)

All other geometric quantities have to be understood in this new sense now:

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′)
(
Φ(σ,θ), sΦ(σ,θ),Φ+(σ,θ),dwΦ+(σ,θ)

)
(see (6.28)) (6.162)

To stay with the examples used in (6.84)-(6.91):

e.g. dK(σ,θ) ≡ dK
(
Φ(σ,θ),dwΦ(σ,θ),Φ+(σ,θ),dwΦ+(σ,θ)

)
(compare (6.34)) (6.163)

or o(σ,θ) ≡ o
(
dwΦ(σ,θ),dwΦ+(σ,θ)

)
= dwΦm(σ,θ)dwΦ+

m(σ,θ) (compare o = cmpm)(6.164)[
K(k,k′),d L

(l,l′)
]∆

(1)
(σ,θ) ≡

[
K(k,k′),L(l,l′)

](∆)

(1)

(
Φ(σ,θ),dwΦ(σ,θ),Φ+(σ,θ),dwΦ+(σ,θ)

)
(6.165)

dxm(σ,θ) ≡ dwΦm(σ,θ) (6.166)

(d∂m)(σ,θ) ≡ (dbm)(σ,θ) ≡ dwΦ+
m(σ,θ) (6.167)

Note that the former relation K(σ,θ) = K(σ) + θdK(σ) does NOT hold any longer with those new de�nitions!
Nevertheless we get a very similar statement as compared to propositions 2 on page 128:

Proposition 3b For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coor-
dinate patch seen as functions of xm,dxm and ∂m, the following equation holds for even worldvolume-dimension
dw for the corresponding super�elds (6.160):

(K(σ′,θ′),L(σ,θ)) = δdw(σ′ − σ)δdw(θ′ − θ) [K,dL]∆(1)︸ ︷︷ ︸
−(−)k−k

′
[dK,L]∆(1)

(σ,θ)− (−)k−k
′
θµ∂µδ

dw(σ − σ′)δdw(θ′ − θ) [K,L]∆(1) (σ,θ)

(6.168)
where [K,L]∆(1) is the big bracket (6.23) and [K,dL]∆(1) is the derived bracket of the big bracket (6.52).

Note that σ and θ have switched their roles compared to the previous subsection (6.97), where the algebraic
bracket came together with the derivative with respect to θ of the delta-functions, while now it comes along with
∂µ of the delta-functions.

Proof Let us use again the second idea in the proof of proposition 2, i.e. �rst collect the terms with
derivatives of the delta function, only to show that one gets the algebraic bracket, and after that argue that the
term with plain delta functions is its derived bracket. In doing this, however, we will need to prove an extension
of the above proposition to objects like dK (or more general an object T (t,t′,t′′) as in (6.28)) that contain the
basis element pm, which is then replaced by dwΦ+

m as e.g. in (6.163).
(i) The antibracket between two such objects T and T̃ gets contributions to the derivative of the delta-function
only from the antibrackets between dwΦm and Φ+

m and between Φm and dwΦ+
m (compare (6.155))(

Φ+
m(σ′,θ′),dwΦn(σ,θ)

)
= δnmθ

µ∂µδ
dw(σ′ − σ)δdw(θ′ − θ) (6.169)(

dwΦn(σ′,θ′),Φ+
m(σ,θ)

)
= δnmθ

µ∂µδ
dw(σ′ − σ)δdw(θ′ − θ) (6.170)(

dwΦ+
m(σ′,θ′),Φn(σ,θ)

)
= −δnmθ

µ∂µδ
dw(σ′ − σ)δdw(θ′ − θ) (6.171)(

Φn(σ′,θ′),dwΦ+
m(σ,θ)

)
= −θµ

(
Φn(σ′,θ′),∂µΦ+

m(σ,θ)
)

= δnmθ
µ∂µδ

dw(σ′ − σ)δdw(θ′ − θ) (6.172)

The last case is the only one where we had to take care of an extra sign stemming from θ jumping over the
graded comma. Comparing this to (6.5), where we had

{bm, cn} = δnm (6.173)

{cn, bm} = δnm (6.174)

{pm, xn} = δnm (6.175)

{xn, pm} = −δnm (6.176)
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one recognizes that the only di�erence is an overall odd factor θµ∂µδdw(σ′ − σ)δdw(θ′ − θ) (the delta-function
for θ is an even object for even worldvolume dimension dw) and an additional minus sign for the lower two
lines, but the corresponding indices just get contracted like for the Poisson bracket. After such a bracket of
basis elements has been calculated (which happens just between the remaining factors of T (at σ′) on the
left and the remaining factors of T̃ (at σ) on the right) this overall odd factor has to be pulled to the very
left which gives an additional factor of (−)t−t

′
(in the notation of (6.28)) plus an additional minus sign for

the upper two lines which compensates the relative minus sign of before and we get just an overall factor of
−(−)t−t

′
θµ∂µδ

dw(σ′ − σ)δdw(θ′ − θ) in all cases at the very left as compared to the Poisson-bracket. The
remaining terms are still partly at σ and partly at σ′, but using

A(σ)B(σ′)∂µδ(σ − σ′) = A(σ)∂µB(σ)δ(σ − σ′) +A(σ)B(σ)∂µδ(σ − σ′) ∀A,B (6.177)

we can take all remaining factors in T (σ′,θ′) at σ, while θ′ is set to θ anyway by the δ-function. We have thus
veri�ed one of the coe�cients of the complete antibracket:

(T (σ′,θ′), T̃ (σ,θ)) = −(−)t−t
′
θµ∂µδ

dw(σ − σ′)δdw(θ′ − θ)
[
T, T̃

]∆
(1)

(σ,θ) +

+δdw(σ − σ′)δdw(θ′ − θ)A(σ,θ) (6.178)

with A(σ,θ) yet to be determined.

(ii) It remains to show that A(σ,θ) is a derived expression of
[
T, T̃

]∆
(1)
. A hint to this fact is already given in

(6.177), but this is not enough, as there is also a contribution from the (Φm,Φ+
n )-brackets. In order to get a

precise relation between A(σ,θ) and
[
T, T̃

]∆
(1)

(σ,θ), let us see how one can extract them from the complete

antibracket. In order to hit the delta functions with the integration, it is enough to integrate over the patch
U(σ) containing the point which is parametrized by σµ. The last term in (6.178) is the only one contributing
when integrating over σ′ and θ

A(σ,θ) =
∫
U(σ)

ddwσ′
∫
µ(θ′) (T (σ′,θ′), T̃ (σ,θ)) (6.179)

That the �rst term on the righthand side of (6.178) does not contribute is not obvious as U(σ) might have a
boundary. However, for this term one ends up integrating a dw-dimensional delta-function over a boundary of
dimension not higher than dw − 1, so that one is left with an at least one-dimensional delta-function on the
boundary which vanishes as the boundary of the open neighbourhood U(σ) of σ of course nowhere hits σ.

Extracting the algebraic bracket
[
T, T̃

]∆
(1)

is a bit more tricky. One can do it via

for any �xed

index λ
:
[
T, T̃

]∆
(1)

(σ,θ) = −(−)t−t
′
∫
U(σ)

ddwσ′
∫
µ(θ′)

(
eσ
′λ

eσλ
− 1

)
∂

∂θλ
(T (σ′,θ′),T̃ (σ,θ)) (6.180)

The boundary term proportional to
(
eσ
′λ

eσλ
− 1
)
δdw(σ − σ′) appearing above on the righthand side after partial

integration vanishes as σ′ in the prefactor is set to σ via the delta function.

The claim is now that A(σ,θ) = −(−)t−t
′
[
dT, T̃

]∆
(1)

(σ,θ). So let us calculate the righthand side via (6.180):

[
dT, T̃

]∆
(1)

(σ,θ) = −(−)t+1−t′
∫
U(σ)

ddwσ′
∫
µ(θ′)

(
eσ
′λ

eσλ
− 1

)
∂

∂θλ
(dT (σ′,θ′),T̃ (σ,θ)) = (6.181)

= −(−)t+1−t′
∫

ddwσ′
∫
µ(θ′)

(
eσ
′λ

eσλ
− 1

)
∂

∂θλ
θ′µ∂′µ(T (σ′,θ′),T̃ (σ,θ)) (6.182)

(T ,T̃ ) contains in both terms a plain δ-function for the fermionic variables θ, so that we can replace θ′ by θ.
Integration by parts of ∂′µ (where possible boundary terms again do not contribute because of the vanishing of
the delta function and its derivative on the boundary) delivers the desired result[

dT, T̃
]∆

(1)
(σ,θ) = −(−)t−t

′
∫

ddwσ′
∫
µ(θ′) (T (σ′,θ′),T̃ (σ,θ)) = −(−)t−t

′
A(σ,θ) (6.183)

This completes the proof of proposition 3b. �



Chapter 7

Applications in string theory or 2d CFT

In the previous section the dimension of the worldvolume was arbitrary or even dimensional. The appearance
of derived brackets (including e.g. the Dorfman bracket) is thus not a special feature of a 2-dimensional sigma-
model like string theory. There are, however, special features in string theory. Currents in string theory
(which have conformal weight one) naturally are sums of 1-forms and vectors, if one takes the identi�cation
∂1x

m(σ) ↔ dxm and pm(σ) ↔ ∂m, as in [71] (see footnote 12), e.g. ∂xm = ∂1x
m − ∂0x

m=̂dxm − ηmn∂n .
This is closely related to the identi�cation in our previous section in the anti�eld formalism. In addition, only
in two dimensions a single θ can be interpreted as a worldsheet Weyl spinor (in 1 dimension it can be seen as
a Dirac-spinor, but in higher dimensions the interpretation of θ as worldvolume spinor breaks down). As we
ended the last section with the anti�eld formalism, which therefore is perhaps still more present, let us start
this section in the reversed order, beginning with the application in the anti�eld formalism.

7.1 Poisson sigma-model and Zucchini's �Hitchin sigma-model�

Remember for a moment the Poisson-σ-model [98, 97]. It is a two-dimensional sigma-model (dw = 2) of the
form

S0 =
∫

Σ

ηmd
wxm +

1
2
Pmn(x)ηmηn (7.1)

where ηm is a worldsheet one-form. This model is topological if and only if the Poisson-structure Pmn(x) is
integrable, i.e. the Schouten-bracket of P with itself vanishes

S0 topological ⇐⇒ [P ,P ] = 0 (7.2)

It gives on the one hand a �eld theoretic implementation of Kontsevich's star product [97] and is on the other
hand related to string theory via a topological limit (big antisymmetric part in the open string metric), which
leads to the relation between string theory and noncommutative geometry.

The necessary ghost �elds for the action can be introduced by extending x and η to de Rham super�elds as
in (6.156,6.157)

Φm(σ,θ) ≡ xm(σ) + xmµ (σ)︸ ︷︷ ︸
εµνη+νn

θµ + xmµ1µ2
(σ)︸ ︷︷ ︸

− 1
2 εµ1µ2β

+m

θµ1θµ2 (7.3)

Φ+
m(σ′,θ′) ≡ 1

2!
εµ1µ2x

+
m
µ1µ2(σ′)︸ ︷︷ ︸

≡βm(σ′)

+θ′µ1 εµ1µ2x
+
m
µ2(σ′)︸ ︷︷ ︸

ηµ1m

+
1
2
εµ1µ2θ

′µ1θ′µ2x+
m(σ′) (7.4)

One can use Hodge-duality to rename some component �elds as indicated. βm is then the ghost �eld related
to the gauge symmetry. The action including ghost �elds and anti�elds simply reads

S =
∫
d2σ

∫
µ(θ) Φ+

md
wΦm +

1
2
Pmn(Φ)Φ+

mΦ+
n (7.5)

The expression under the integral corresponds to the tensor −δmndxm∧∂n+ 1
2P

mn∂m∧∂n and the antibracket
in the master-equation (S, S) implements the Schoutenbracket on P , which is a well known relation. Therefore
we will concentrate on a second example, which is very similar, but less known.

Zucchini suggested in [91] a 2-dimensional sigma-model which is topological if a generalized complex structure
in the target space is integrable (see subsection B.2 on page 149 and B.4 on page 153 to learn more about
generalized complex structures). His model is of the form

S =
∫
d2σ

∫
µ(θ)

(
Φ+
md

wΦm +
) 1

2
Pmn(Φ)Φ+

mΦ+
n −

1
2
Qmn(Φ)dwΦmdwΦn − JnmdwΦmΦ+

n (7.6)
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where Pmn, Qmn and Jmn are the building blocks of the generalized complex structure (B.22)

JMN =
(

Jmn Pmn

−Qmn −Jnm

)
(7.7)

The �rst term of (7.6) can be absorbed by a �eld rede�nition as already observed in [92]. Ignoring thus the �rst
term and using our notations of before, S can be rewritten as

S =
∫
d2σ

∫
µ(θ)

1
2
J (Φ,dwΦ,Φ+) (7.8)

Calculating the master equation explicitely and collecting the terms which combine to the lengthy tensors for
the integrability condition (see (B.60)-(B.63)) is quite cumbersome, so we can enjoy using instead proposition
3b on page 133. For a worldsheet without boundary its integrated version reads(∫

ddwσ′
∫
µ(θ′)K(σ′,θ′),

∫
ddwσ

∫
µ(θ)L(σ,θ)

)
=
∫
ddwσ

∫
µ(θ) [K,dL]∆(1) (σ,θ) (7.9)

which leads to the relation

(S, S) = 0 ⇐⇒
∫
d2σ

∫
µ(θ) [J ,dJ ]∆(1) (σ,θ) = 0 (7.10)

The derived bracket of the big bracket of J with itself contains already the generalized Nijenhuis tensor (see in
the appendix in equation (B.81) and in the discussion around)

[J ,dJ ]∆(1) = NM1M2M3t
M1tM2tM3 − 4J JIJIM tMpJ = (7.11)

J 2=−1= NM1M2M3t
M1tM2tM3 + 4o (7.12)

tM = (dxm,∂m), pJ = (pj , 0) (7.13)

o(dx, p) = dxmpm (7.14)

For J 2 = −1 the last term is proportional to the generator o (remember (6.8)). In (7.10), however, it appears
with dx and p replaced by the super�elds as in (6.164)

o(σ,θ) = dwΦm(σ,θ)dwΦ+
m(σ,θ) = −dw

(
dwΦm(σ,θ)Φ+

m(σ,θ)
)

(7.15)

which is a total worldsheet derivative and therefore drops during the integration. We are left with the generalized
Nijenhuis tensor as a function of super�elds

N (σ,θ) = NM1M2M3(Φ)tM1tM2tM3 (7.16)

with tM ≡ (dwΦm,Φ+
m) (7.17)

Written in small indices

N (σ,θ) = Nm1m2m3(Φ)dwΦm1dwΦm1dwΦm1︸ ︷︷ ︸
=0

+3Nn
m1m2(Φ)Φ+

nd
wΦm1dwΦm2 +

+3Nnm1m2(Φ)dwΦnΦ+
m1

Φ+
m2

+Nm1m2m3(Φ)Φ+
mΦ+

mΦ+
m (7.18)

One realizes that the �rst term vanishes identically (as mentioned in [91]) and only the remaining three tensors
are required to vanish in order to satisfy (7.10).

7.2 Relation between a second worldsheet supercharge and general-
ized complex geometry

In [87] the relation between an extended worldsheet supersymmetry in string theory and the presence of an
integrable generalized complex structure was explored. Zabzine clari�ed in [90] the relation in an model in-
dependent way in a Hamiltonian description. The structures appearing there are almost the same that we
have discussed before although we have to modify the procedure a little bit due to the interpretation of θ as a
worldsheet spinor.

Consider a sigma-model with 2-dimensional worldvolume (worldsheet) with manifest N = 1 supersymmetry
on the worldsheet. In the phase space there is only one σ-coordinate left. Let us denote the corresponding
super�elds, following loosely [90], by

Φm(σ,θ) ≡ xm(σ) + θλm(σ) (7.19)
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Sm(σ,θ) ≡ ρm(σ) + θpm(σ) (7.20)

In comparison to section 6.3, there is a change of notation from cm → λm and bm → ρm as b and c suggest the
interpretation as ghosts which is not true in this case, where λ and ρ are worldsheet fermions. Introduce now,
following Zabzine, the generator Qθ of the manifest SUSY and the corresponding covariant derivative Dθ

Qθ ≡ ∂θ + θ∂σ (7.21)

Dθ ≡ ∂θ − θ∂σ (7.22)

with the SUSY algebra

[Qθ,Qθ] = 2∂σ = − [Dθ,Dθ] (7.23)

[Qθ,Dθ] = 0 (7.24)

Qθ is the sum of two nilpotent di�erential operators, namely ∂θ and θ∂σ. Acting on the Super�elds Φm and
Sm, they induce the di�erentials s and s̃ on the component �elds, which are in turn generated via the Poisson
bracket by phase space functions Ω (the same as (6.69)) and Ω̃.

Ω ≡
∫
dσ λkpk (7.25)

Ω̃ = −
∫
dσ ∂σx

kρk (7.26)

sxm ≡ {Ω, xm} = λm ↔ dxm, sρm ≡ {Ω,ρm} = pm ↔ d(∂m), (7.27)

s̃λm ≡
{

Ω̃,λm
}

= −∂σxm, s̃pk = −∂σρk =
{

Ω̃, pk
}
, (7.28)

sΦm = ∂θΦm, sSm = ∂θSm (7.29)

s̃Φm = θ∂σΦm, s̃Sm = θ∂σSm (7.30)

The Poisson-generator for the SUSY transformations of the component �elds induced by1 Qθ is thus the sum
of the generators of s and s̃:

Q = Ω + Ω̃ =
∫
dσ λkpk − ∂σxkρk = −

∫
dσ

∫
dθQθΦkSk (7.31)

In (6.76) super�elds were de�ned via ∂θY = sY in order to implement the exterior derivative directly with ∂θ.
In that sense Φ, S, dΦ, dS and all analytic functions of them were super�elds. In the context of worldsheet
supersymmetry, one prefers of course a supersymmetric covariant formulation. Let us therefore de�ne in this
subsection proper super�elds via

Y is a super�led :⇐⇒ QθY
!= {Q, Y } = (s+ s̃)Y (7.32)

which holds for Φ, S,DθΦ, DθS, all analytic functions of them (like our analytically continued multivector
valued forms) and worldsheet spatial derivatives ∂σ thereof (but not for e.g. QθΦ. This means that although we
have QθΦ = (s+ s̃)Φ this does not hold for a second action, i.e. Q2

θΦ 6= (s+ s̃)2Φ, which explains the somewhat
confusing fact that the Poisson-generator Q has the opposite sign in the algebra than Qθ

{Q,Q} = −2P (7.33)

where we introduced the phase-space generator P for the worldsheet translation induced by ∂σ

P ≡
∫
dσ ∂σx

kpk + ∂σλ
kρk =

∫
dσ

∫
dθ ∂σΦkSk (7.34)

The same phenomenon appears for the di�erentials s and s̃. The graded commutator of ∂θ and θ∂σ is the
worldsheet derivative [∂θ,θ∂σ] = ∂σ, while the algebra for s and s̃has the opposite sign

[s, s̃]Y (σ,θ) = −∂σY (σ,θ) (7.35)

1We have

QθΦm = λm + θ∂σx
m, QθSm = pm + θ∂σρm

DθΦm = λm(σ)− θ∂σxm, DθSm = pm − θ∂σρm
δεx

m = ελm, δελ
m = −ε∂σxm

δερm = εpm, δεpm = −ε∂σρm �
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sΩ̃ =
{

Ω, Ω̃
}

= −P = s̃Ω (7.36)

One major statement in [90] is as follows: Making a general ansatz for a generator of a second, non-manifest
supersymmetry, of the form (some signs are adopted to our conventions)

Q2 ≡ 1
2

∫
dσ

∫
dθ (Pmn(Φ)SmSn −Qmn(Φ)DθΦmDθΦn + 2Jmn(Φ)SmDθΦn) (7.37)

and requiring the same algebra as for Q in (7.33)

{Q2,Q2} = −2P (7.38)(
{Q,Q2} = 0

)
(7.39)

is equivalent to

JMN ≡
(

Jmn Pmn

−Qmn −Jnm

)
(7.40)

being an integrable generalized complex structure (see in the appendix B.2 on page 149 and B.4 on page 153). On
a worldsheet without boundary, the second condition is actually super�uous, because it is already implemented
via the ansatz: The expression in the integral is an analytic function of super�elds and therefore a super�eld
itself. According to (7.32) we can replace at this point the commutator with Q with the action of Qθ and get

{Q,Q2} =
∫
dσ

∫
dθ Qθ(. . .) =

∫
dσ ∂σ(. . .) = 0 (7.41)

For the other condition, the actual supersymmetry algebra (7.38), the aim of the present considerations should
now be clear. The generalized complex structure J itself is a sum of multivector valued forms

J ≡ JMN (x)tM tN ≡ Pmn(x)∂m ∧ ∂n −Qmn(x)dxmdxn + 2Jmn(x)∂m ∧ dxn (7.42)

which can be seen as a function of x and the basis elements

J = J (x,dx,∂) (7.43)

In 6.3 we replaced the arguments of functions like this with �super�elds� xm → Φm, dxm → ∂θΦm and ∂m → Sm.
The name super�eld might have been misleading, as ∂θΦ is only a super�eld in the sense that it implements
the target-space exterior derivative via ∂θ, but it is not a super�eld in the sense of worldsheet supersymmetry.
In a supersymmetric theory one prefers a supersymmetric covariant formulation. Working with ∂θΦ as before
is therefore not desirable and we replace ∂θΦ by DθΦ, leading directly to Q2 (7.37) which now can be written
as

Q2 =
1
2

∫
dσ

∫
dθJ (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ)) (7.44)

Apart from the change ∂θΦ→ DθΦ we expect from the previous section that the Poisson bracket ofQ2 with itself
induces some algebraic and some derived bracket of J with itself which then corresponds to the integrability
condition for J . This is indeed the case, but we �rst have to study the changes coming from ∂θΦ → DθΦ. In
other words, we need a new formulation of proposition 1 (6.97) in the case of two-dimensional supersymmetry
(Proposition 1 is of course still valid, but it is not formulated in a supersymmetric covariant way. It should,
however, be applicable to e.g. BRST symmetries ). Let us rede�ne the meaning of K(σ,θ) in (6.85) for a
multivector valued form K(k,k′)

K(k,k′)(σ,θ) ≡ K(k,k′)
(
Φm(σ,θ),DθΦm(σ,θ),Sm(σ,θ)

)
= (7.45)

= Km1...mk
n1...nk′ (Φ(σ,θ)) DθΦm1(σ,θ) . . .DθΦmk(σ,θ)Sn1(σ,θ) . . .Snk′ (σ,θ) θ=0=

(6.60)
K(k,k′)(σ) (7.46)

Likewise for all the other examples in (6.84)-(6.91):

T (t,t′,t′′)(σ,θ) ≡ T (t,t′,t′′) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)) θ=0= T (t,t′,t′′)(σ) (see (6.61)) (7.47)

e.g. dK(σ,θ) ≡ dK (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)) (7.48)

or o(σ,θ) ≡ o (DθΦ(σ,θ),DθS(σ,θ))
(6.8)
= DθΦm(σ,θ)DθSm(σ,θ) θ=0=

(6.63)
o(σ) (7.49)



CHAPTER 7. APPLICATIONS IN STRING THEORY OR 2D CFT 139

[K(k,k′),d L
(l,l′)]∆(1)(σ,θ) ≡ [K(k,k′),L(l,l′)](∆)

(1) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)) θ=0=
(6.64)

[K(k,k′),L(l,l′)](∆)
(1) (σ) (7.50)

dxm(σ,θ) ≡ DθΦm(σ,θ) = λm(σ)− θ∂σxm(σ) (7.51)

d∂m(σ,θ) ≡ DθSm(σ,θ) = pm(σ)− θ∂σρm(σ) (7.52)

Expanding K in θ yields

K(k,k′)(σ,θ) = K(k,k′)(σ) + θ
(
∂θ′K

(k,k′)(σ,θ′)
∣∣∣
θ′=0

)
= (7.53)

= K(k,k′)(σ) + θ
(
Qθ ′K

(k,k′)(σ,θ′)
∣∣∣
θ′=0

)
(7.54)

As K is a super�eld, we can replace Qθ by s+ s̃

K(k,k′)(σ,θ) = K(k,k′)(σ) + θ(s+ s̃)K(k,k′)(σ) = (7.55)

= K(k,k′)(σ) + θ
(

(d+ ıv)K(k,k′)
)

(σ)
∣∣∣
vk→−∂σxk

(7.56)

This is the analogue to the non-supersymmetric (6.95) and delivers the exterior derivative which will lead to the
appearance of the derived bracket. The relation between s̃ and the inner product with a vector should perhaps
be clari�ed. Remember that all multivector forms at θ = 0, K(k,k′)(σ), are analytic functions of the component
�elds xm,λm and ρm . But among those �elds, s̃acts only on λm and we can express it with partial derivatives
(instead of functional ones) when acting on K:

s̃K(σ) = −∂σxm
∂

∂λm
K(x,λ,ρ) = ıvK(σ)|vk=−∂σxk (7.57)

in the Poisson bracket of s̃K with another multivector valued form L at θ = 0, nothing acts on vk = −∂σxk
(which would produce a derivative of a delta function), as L does not contain pk. Therefore we have

{̃sK(σ′), L(σ)} = [ıvK,L](σ)|vk=−∂σxk δ(σ − σ
′) (7.58)

which we will need below. For super�elds we have Y (σ,θ) = Y (σ)+θ(s+ s̃)Y (σ). Applying the same to v yields

vk(σ) + θ(s+ s̃)vk(σ) = −∂σxk − θ(s+ s̃)∂σxk(σ) = (7.59)

= −∂σxk − θ∂σλk(σ) = −∂σΦk (7.60)

Proposition 1b For all multivector valued forms K(k,k′), L(l,l′) on the target space manifold, in a local coor-
dinate patch seen as functions of xm,dxm and ∂m, the following equation holds for the corresponding worldsheet-
super�elds (7.45)

{K(k,k′)(σ′,θ′), L(l,l′)(σ,θ)} = Dθ
(
δ(θ − θ′)δ(σ − σ′)

)
[K,L]∆(1) (σ,θ) +

+δ(θ′ − θ)δ(σ − σ′)
(

[dK,L]∆(1)(σ,θ)︸ ︷︷ ︸
−(−)k−k

′
[K,dL]∆(1)

+ [ıvK,L]∆(1)(σ,θ)︸ ︷︷ ︸
−(−)k−k′ [K,ıvL]

∣∣∣
vk=−∂σΦk

)
(7.61)

where e.g. [dK,L]∆(1)(σ,θ) ≡ [dK,L]∆(1) (Φ(σ,θ),DθΦ(σ,θ),S(σ,θ),DθS(σ,θ)).
The integrated version for a worldsheet without boundary readsnZ

dσ′
Z
dθ′K(k,k′)(σ′,θ′),

Z
dσ

Z
dθL(l,l′)(σ,θ)

o
= (s+ s̃)

Z
dσ
“
[K,dL]∆(1) − (−)k−k

′
[ıvK,L]∆(1)

˛̨̨
vk=−∂σxk

”
(σ)

(7.62)

Proof Let us use (7.55) for both multivector valued �elds and plug into the lefthand side of (7.61){
K(σ′,θ′), L(σ,θ)

}
=

=
{
K(σ′) + θ′(s+ s̃)K(σ′) , L(σ) + θ(s+ s̃)L(σ)

}
= (7.63)

= {K(σ′), L(σ)}+ θ′ {(s+ s̃)K(σ′), L(σ)}+ (−)k−k
′
θ {K(σ′), (s+ s̃)L(σ)}+

+(−)k−k
′
θθ′ {(s+ s̃)K(σ′), (s+ s̃)L(σ)} = (7.64)

= {K(σ′), L(σ)}+ (θ′ − θ) {(s+ s̃)K(σ′), L(σ)}+ θ(s+ s̃) {K(σ′), L(σ)}+
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+θ′θ(s+ s̃) {(s+ s̃)K(σ′), L(σ)} − θ′θ {(s+ s̃)(s+ s̃)K(σ′), L(σ)} = (7.65)

= (1 + θ(s+ s̃)) {K(σ′), L(σ)}+ (θ′ − θ) (1 + θ(s+ s̃)) {(s+ s̃)K(σ′), L(σ)}+
−θ′θ

{
[s, s̃]︸︷︷︸
−∂σ′

K(σ′), L(σ)
}

= (7.66)

= δ(σ − σ′) (1 + θ(s+ s̃)) [K,L]∆(1) (σ) + (θ′ − θ) (1 + θ(s+ s̃)) {(s+ s̃)K(σ′), L(σ)}+

−(θ′ − θ)θ∂σδ(σ − σ′) [K,L]∆(1) (σ) (7.67)

Now let us make use of (7.58) and (7.60) to arrive at{
K(σ′,θ′), L(σ,θ)

}
=

= Dθ
(
δ(θ − θ′)δ(σ − σ′)

)
[K,L]∆(1) (σ,θ) + δ(θ′ − θ)δ(σ − σ′) [(d+ ıv)K,L]∆(1) (σ,θ)

∣∣∣
vk=−∂σΦk

(7.68)

which is the �rst equation of the proposition. Integrating over θ′ and σ′ results in∫
dσ′
∫
dθ′
{
K(σ′,θ′), L(σ,θ)

}
= [(d+ ıv)K,L]∆(1) (σ,θ)

∣∣∣
vk=−∂σΦk

= (7.69)

= [(d+ ıv)K,L]∆(1) (σ)
∣∣∣
vk=−∂σxk

+ θ(s+ s̃) [(d+ ıv)K,L]∆(1) (σ)
∣∣∣
vk=−∂σxk

(7.70)

A second integration picks out the linear part in θ and adjusting the order of the integrations gives the additional
sign in (7.62). �

Application to the second supercharge Q2

We are now ready to apply the proposition in the integrated form (7.62) to the question of the existence of
a second worldsheet supersymmetry Q2. Remember, we want {Q2,Q2} = −2P . Due to the proposition, the
lefthand side can be written as

{Q2,Q2} =
1
4

(s+ s̃)
∫
dσ
(

[J ,dJ ]∆(1) − [ıvJ ,J ]∆(1)

∣∣∣
v=−∂σxkρk

)
(σ) (7.71)

For J 2 = −1, the second term under the integral simpli�es signi�cantly

− 1
4

∫
dσ[ıvJ ,J ]∆(1)

∣∣∣
v=−∂σxkρk

= −
∫
dσ vKJKLJLM tM

∣∣∣
v=−∂σxkρk

= −
∫
dσ ∂σx

kρk = Ω̃ (7.72)

Recalling that

(s+ s̃)Ω̃ = sΩ̃ = s̃Ω = (s+ s̃)Ω = −P (7.73)

and Ω =
∫
dσ o(σ) (see (6.63)) (7.74)

we can rewrite (7.71) as

⇒ {Q2,Q2} =
1
4

(s+ s̃)
(∫

dσ [J ,dJ ]∆(1) + 4Ω
)

= (7.75)

=
1
4

(s+ s̃)
(∫

dσ
(

[J ,dJ ]∆(1) − 4o
)

(σ)
)

+ 2 s̃Ω︸︷︷︸
−P

(7.76)

The righthand side clearly equals −2P for

[J ,dJ ]∆(1) − 4o = 0 (7.77)

which is again (according to (B.113)) just the integrability condition for the generalized almost complex structure
J .

Conclusions to the Bracket Part

We have seen two closely related mechanisms in sigma-models with a special �eld content which lead to the
derived bracket of the target space algebraic bracket by the target space exterior derivative. This exterior
derivative is implemented in the sigma model in one case via the derivative with respect to a (worldvolume-)
Grassmann coordinate and in the other case via the derivative with respect to the worldvolume coordinate
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itself. In the latter case this derivative has to be contracted with (worldvolume-) Grassmann coordinates in
order to be an odd di�erential. This leads to the problem that higher powers of the basis elements vanish, as
soon as the power exceeds the worldvolume dimension as it happens in Zucchini's application. A big number of
Grassmann-variables is therefore advantageous in that approach. For the other mechanism one rather prefers
to have only one single Grassmann variable as there is no need for any contraction. There is one worldvolume
dimension more in the Lagrangian formalism and for that reason it was preferable to apply there the mechanism
with worldvolume derivatives and use the other one in the Hamiltonian formalism.

If one does not consider antisymmetric tensors of higher rank, but only vectors or one-forms (or forms of
worldvolume-dimension), the partial worldvolume derivative without a Grassmann-coordinate is enough. There
is either no need for antisymmetrization or it can be performed with the worldvolume epsilon tensor. The
nature of the mechanism remains the same and leads to the observations in [71, 73] that the Poisson bracket
implements the Dorfman bracket for sums of vectors and one-forms and the corresponding derived bracket for
sums of vectors and p-forms on a p-brane [73]. In that sense, the present part of the thesis is a generalization
of those observations.

There remain a couple of things to do. It should be possible to implement in the same manner by e.g.
a BRST di�erential other target space di�erentials which can depend on some extra-structure and repeat
the same analysis. Symmetric tensors then become more interesting as well, because they need such an extra-
structure anyway for a meaningful di�erential. From the string theory point of view, the application of extended
worldsheet supersymmetry corresponds to applications in the RNS string. But generalized complex geometry
contains the tools to allow RR-�uxes, which are hard to treat in RNS. It would therefore be nice to �nd some
topological limit in a string theory formalism which is extendable to RR-�elds, like the Berkovits-string [12],
leading to a topological sigma model like Zucchini's, in order to learn more about the correspondence between
string theory and generalized complex geometry.



Conclusion

142



After the conclusions on the bracket part, we would like to recall the general idea of what we did. Apart
from the presentation of the explicit worldsheet BRST transformations, the result of the supergravity-constraint
calculations from Berkovits' pure spinor string in part II is not new in itself. It is, however, a very important
result and our contribution can be seen as an independent check. This is true in particular, as we used di�erent
techniques at several points. We established a covariant variation in this setting and derived everything in
the Lagrangian formalism, using �inverse Noether�. The argumentation and calculation was done in detail, in
order to allow checks by others, and also some subtle points like the antighost gauge symmetry where discussed
carefully. Also our starting point was more general. Last but not least, the insight from the �rst part about
superspace conventions served as a very powerful tool throughout. The aim of the calculation in part II was to
make contact to generalized geometry. The derivation of the generalized Calabi Yau condition has been done so
far from the supergravity point of view, and possible quantum or string corrections to this geometry require a
worldsheet calculation. We have therefore derived the supergravity transformations of the fermionic background
�elds which serve as the starting point of these considerations. We did not yet calculate any string corrections,
but it could already be of big advantage to know the natural form of the supergravity transformations as they
come out from the string and not from old supergravity considerations. In particular we expect to obtain
more insight about the geometric role of the RR-�elds in the super-geometrical setting. Non-commutativity
considerations for the open superstring (e.g. [99, 100, 101]), for example, assign a similar role to the RR-�elds
in superspace as the B-�eld has in bosonic space. And the geometry of the latter (with the �eld strength H
either seen as a twist or a torsion), are understood much better.

There are several directions ahead. One could try to establish the tools of generalized (not necessarily com-
plex) geometry already in ten dimensions, before compacti�cation. Having the superstring in mind (embedded
in superspace), it would be even more appealing to consider some generalized supergeometry, i.e. structures on
T ⊕ T ∗ of the supermanifold. String statements should simplify if one uses a formulation where the structures
of interest appear manifestly. In this context it seems also reasonable to switch to a probably mixed �rst-second
order formalism of the pure spinor string in general background. Topological limits of this formalism might
lead to something like the Hitchin sigma-model [91] or some supersymmetric version of it. This again could
shed light on the geometric role of RR-�elds. Similar to the last point would be the introduction of doubled
coordinates as suggested by Hull[102, 103, 104, 105]. Generalized complex geometry and this doubled geometry
seem to be very closely related. Deriving the �rst via supersymmetry conditions in a formalism with doubled
coordinates certainly could clarify this relation.

For all these considerations, our insight about brackets and sigma-models and the relation to the integrability
of generalized complex geometry that we obtained in the last part of this thesis will be very useful. What we
learned about superspace conventions should even be useful for everybody working with superspace.
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Appendix A

Notations and Conventions

Within the thesis, a lot of di�erent types of tensors have to be denoted. The choices and sometimes some logic
behind, will be presented here.

The bracket part (III) (including appendices B and C) di�ers a bit in the notation from the rest, as it does
not treat a superspace. In any case we denote bosonic target space coordinates via xm. In the bracket part,
however, world-volume-coordinates are denoted by σµ, while in the worldsheet coordinates in the rest are most
often chosen to be complex (z,z̄). At some places we write the real coordinates σξ with an worldsheet index
ξ or ζ, in order to distinguish it from the curved spinorial indices µ, ν, . . .. Our metric signature is 'mostly
plus':ηab = diag (−1, 1, . . . , 1).

Superspace In the superspace parts we have xM ≡ (xm,θµ, θ̂
µ̂
), where θ and θ̂ are anticommuting coordi-

nates with the dimension 16 of a Majorana Weyl spinor in ten dimensions. The hatted index should include

both versions of superspace: IIA (with θ̂
µ̂

= θ̂µ) and IIB (with θ̂
µ̂

= θ̂
µ
). The grading of the coordinate xM

depends on the index. We therefore prefer to write xM ≡ (xm, xµ, xµ̂). Writing the fermionic indices boldface
is just a reminder and will not be substantial. A vielbein EMA will transform curved indices (from the middle
of the alphabet) into �at indices (from the beginning of the alphabet) and vice verse, e.g. for the pullbacks
of the supersymmetric invariant form ΠA

z = ∂xMEM
A. The entries then have a corresponding index structure

with letters from the beginning of the alphabet: ΠA
z = (Πa

z ,Π
α
z ,Π

α̂
z ). When we want to combine the spinorial

indices only, we write xM ≡ (xµ, xµ̂) or θM ≡ (θµ, θ̂
µ̂
) or ΠA

z ≡ (Παz ,Π
α̂
z ). If we want to omit the indices,

(e.g. in functions of the coordinates) we write
�
x for xM ,

→
x for xm, ~θ for θM, θ for θµ and θ̂ for θ̂

µ̂
.

Notation for tensors in the bracket part In the bracket-part, we mainly denote target space vector-
�elds by a, b, . . . or v, w, . . ., 1-forms by small Greek letters α, β, . . . and generalized T ⊕ T ∗-vectors by a, b, . . .
or v,w, . . . . For an explicit split in vector and 1-form, the letters from the beginning of the alphabet are
better suited, as there is a better correspondence between Latin and Greek symbols or one can visually better
distinguish between Latin and Greek symbols. Compare e.g. a = a+ α and v = v + (?ν).
Higher order forms will be in general denoted by α(p), β(q), . . . or ω(p), η(q), ρ(r), . . .. There will be exceptions,
however , for speci�c forms like the B-�eld B = Bmndxm ∧ dxn. Following this logic, we will also denote
multivectors (tensors with antisymmetric upper indices) by small letters, indicating their multivector-degree
in brackets: a(p), b(q), . . . or v(p), w(q), . . .. There are again exceptions, e.g. a Poisson structure will often be
denoted by P = Pmn∂m ∧ ∂n. The most horrible exception is the one of the beta-transformation, which is
denoted by a large beta β

mn
in (B.47), in order to distinguish it from forms.

Tensors of mixed type will be denoted by capital letters where we denote in brackets �rst the number of
lower indices and then the number of upper indices, e.g. T (p,q). Most of the time, we treat multivector valued
forms, e.g. the lower indices as well as the upper indices are antisymmetrized. The letters denoting form degree
and multivector degree will often be adapted to the letter of the tensor, e.g. K(k,k′), L(l,l′), . . .
Attention: k and l are also used as dummy indices! Sometimes (I'm sorry for that) the same letter appears
with di�erent meanings. However, in those situations the dummy indices will carry indices which might even
be one of the degrees k or k′, e.g. K...

k1...kk′Lkk′ ...k1...
....

Working all the time with graded algebras with a graded symmetric product (the wedge product), everything
in this thesis has to be understood as graded. I.e. with commutator we mean the graded commutator and
with the Poisson bracket the graded Poisson bracket. They will not be denoted di�erently than the non-graded
operations. Relevant for the sign rules is the total degree which we de�ne to be form degree minus the
multivector degree. In the �eld language, it corresponds to the total ghost number which is the pure ghost
number minus the antighost number. It will be denoted in the bracket part by

| K(k,k′) | = k − k′ (A.1)
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In the rest of the thesis, | . . . | will only denote the parity, i.e. +1 for commuting and −1 for anticommuting
variables. As only degrees or parities appear in the exponent of a minus sign, a simpli�ed notation is used there

(−)A ≡ (−1)|A|, (−)A+B ≡ (−)|A|+|B|, (−)AB ≡ (−)|A||B| ∀A,B (A.2)

Poisson bracket and derivatives For the Poisson bracket, the following (less common) sign convention is
chosen:

{pm, xn} = δnm = −{xn, pm} (A.3)

{bm, cn} = δnm = −(−)bc {cn, bm} (A.4)

Derivatives with respect to xm are denoted by ∂
∂xm f ≡ ∂mf ≡ f,m. For graded variables left and right derivatives

are denoted respectively by

∂f

∂c
≡ ∂

∂c
f(c) ≡

~∂

∂c
f(c), ∂f(c)/∂c ≡ f

←−
∂

∂c
(A.5)

The corresponding notations are used for functional derivatives δ
δc(σ) .

Boldface philosophy and antisymmetrizations With respect to the wedge product, the basis element
∂m is an odd object (∂m ∧ ∂n = −∂n ∧ ∂m). The partial derivative ∂k acting on some coe�cient function,
however, is an even operator (it does not change the parity as long as it is not contracted with a basis element
dxk). That is why we denote the odd basis element ∂m and dxm as well as the odd exterior derivative d with
boldface symbols. The interior product itself does not carry a grading in the sense that | ıKρ |=| K | + | ρ |,
while for the Lie derivative LK = [ıK ,d] the L carries a grading in the sense | LKρ |=| K | + | ρ | +1. That is
why the Lie derivative is denoted with a boldface L which is also very good to distinguish it from generalized
multivectors K,L, . . .. The philosophy of writing odd objects in boldface style is also extended to the combined
basis element

tM ≡ (∂m,dxm), tM ≡ (dxm,∂m) (A.6)

and to the comma in the derived bracket [ , ] in contrast to the commutator [ , ]. This should be, however, just a
reminder. It will be obvious for other reasons, which bracket is meant. But we do not extend this philosophy to
vectors and 1-forms, where it would be consistent (but too much e�ort) to write the vectors and basis elements
in boldface style and the coe�cients in standard style. We will instead write the vector in the same style as the
coe�cient a = amdxm.

A square bracket is used as usual to denote the antisymmetrization of, say p, indices (including a normaliza-
tion factor 1

p! ). A vertical line is used to exclude some indices from antisymmetrization. An extreme example
would be

A[ab|cd|e|fg|hi] (A.7)

where A is antisymmetrized only in a, b, e, h and i, but not in c, d, f and g. Normally we use only expressions
like A[ab|cd|efg], where a, b, e, f and g are antisymmetrized.

Wedge product A signi�cant di�erence from usual conventions is that for multivectors, forms and general-
ized multivectors we include the normalization of the factor already in the de�nition of the wedge product

dxm1 · · ·dxmn ≡ dxm1 ∧ . . . ∧ dxmn ≡ dx[m1 ⊗ . . .⊗ dxmn] ≡
∑
P

1
n!

dxmP (1) ⊗ . . .⊗ dxmP (n) (A.8)

∂m1 · · ·∂mn ≡ ∂m1 ∧ · · · ∧ ∂mn ≡ ∂[m1 ⊗ · · · ⊗ ∂mn] ≡
∑
P

1
n!
∂mP (1) ⊗ · · · ⊗ ∂mP (n) (A.9)

tM1 . . . tMn
≡ tM1 ∧ . . . ∧ tMn

≡ t[M1 ⊗ . . .⊗ tMn] ≡
∑
P

1
n!

tMP (1) ⊗ . . .⊗ tMP (n) (A.10)

(where we sum over all permutations P ), such that we omit the usual factor of 1
p! in the coordinate expression

of a p-form, or a p-vector

α(p) ≡ αm1...mpdx
m1 ∧ · · · ∧ dxmp ≡ αm1...mpdx

m1 · · ·dxmp (A.11)

v(p) ≡ vm1...mp∂m1 ∧ . . . ∧ ∂mp (A.12)
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Readers who prefer the 1
p! , can easily reintroduce it in every equation by replacing e.g. the coe�cient functions

vm1...mp → 1
p!v

m1...mp . The equation for the Schouten bracket ( C.10), for example, would change as follows:[
v(p),w(q)

]m1...mp+q−1

= pv[m1...mp−1|k∂kw
|mp...mp+q−1] − qv[m1...mp|

,kw
k |mp+1...mp+q−1](A.13)

→ 1
(p+ q − 1)!

[
v(p),w(q)

]m1...mp+q−1

=
1

(p− 1)!
1
q!
v[m1...mp−1|k∂kw

|mp...mp+q−1] +

− 1
p!

1
(q − 1)!

v[m1...mp|
,kw

k |mp+1...mp+q−1] (A.14)

Schematic index notation For longer calculations in coordinate form it is useful to introduce the following
notation, where every boldface index is assumed to be contracted with the corresponding basis element (at the
same position of the index), s.th. the indices are automatically antisymmetrized.

ω(p) = ωm1...mpdx
m1 · · ·dxmp ≡ ωm...m (A.15)

a(p) = an1...np∂n1 ∧ . . .∂np ≡ an...n (A.16)

K(p) = KM1...Mp
tM1 . . . tMp ≡ KM ...M = (A.17)

= KM1...MptM1 . . . tMp
≡ KM ...M (A.18)

or for products of tensors e.g.

ωm...mηm...m ≡ ω[m1...mpηmp+1...mp+q ]dx
m1 · · ·dxmp+q = (A.19)

= ωm1...mpηmp+1...mp+qdx
m1 · · ·dxmp+q = (−)pqηm...mωm...m (A.20)

A boldface index might be hard to distinguish from an ordinary one, but this notation is nevertheless easy to
recognize, as normally several coinciding indices appear (which are not summed over as they are at the same
position). Similarly, for multivector valued forms we de�ne1

Km...m
n...n ≡ Km1...mk

n1...nk′dxm1 ∧ . . . ∧ dxmk ⊗ ∂m1 ∧ . . . ∧ ∂mk′ (A.21)

Km...m
n...npLpm...m

n...n ≡ Km1...mk
n1...nk′−1pLpm1...ml−1

n1...nl′dxm1 · · ·dxmk+l−1⊗∂m1 · · ·∂mk′+l′−1
(A.22)

1Upper and lower signs are thus treated independently. For calculational reasons this is not the best way to do. We can interpret
every boldface index on the lefthand side of (A.22) as a basis element sitting at the position of the index, so that the order of the
basis elements on the lefthand side is �rst k × dxm, (k′ − 1)∂m, (l − 1)× dxm and l′ × ∂m, s.th., in order to get the order of the

righthand side, we have to interchange (k′− 1)∂m with (l− 1)×dxm, which gives a sign factor of (−)(k′−1)(l−1). This is a natural
sign factor which appears all the way in the equations, which could be easily absorbed into the de�nition. However, we wanted
to keep the sign factors explicitly in the equations in order to keep the notation as self-explaining as possible and not confuse the
reader too much. �



Appendix B

Generalized Complex Geometry

For introductions into Hitchin's [74] generalized complex geometry (GCG) see e.g. Zabzine's review [88] or
Gualtieri's thesis [72]. In the appendix of [106] there is another nice introduction with emphasis on the pure
spinor formulation of GCG. For a survey of compacti�cation with �uxes and its relation to GCG see Graña's
review [76].

B.1 Basics

In generalized geometry one is looking at structures (e.g. a complex structure) on the direct sum of tangent
and cotangent bundle T ⊕T ∗. Let us call a section of this bundle a generalized vector (�eld) or synonymously
generalized 1-form, which is the sum of a vector �eld and a 1-form

a = a+ α = (B.1)

= am∂m + αmdxm (B.2)

Using the combined basis elements

tM ≡ (∂m,dxm) (B.3)

a generalized vector a can be written as

a = aM tM (B.4)

aM = (am, αm) (B.5)

There is a canonical metric G on T ⊕ T ∗

〈a, b〉 ≡ α(b) + β(a) = (B.6)

= αmb
m + βma

m ≡ (B.7)

≡ aMGMNbN (B.8)

with

GMN ≡
(

0 δnm
δmn 0

)
(B.9)

which has signature (d,-d) (if d is the dimension of the base manifold). The above de�nition di�ers by a factor
of 2 from the most common one. We prefer, however, to have an inverse metric of the same form

GMN ≡
(
G−1

)MN
=
(

0 δmn
δnm 0

)
(B.10)

As it is constant, we can always pull it through partial derivatives. Using this metric to lower and raise indices
just interchanges vector and form component. We can equally rewrite a in (B.4) with a basis with upper capital
indices and the vector coe�cients with lower indices

tM ≡ (dxm,∂m) (B.11)

a = aM tM (B.12)

aM = (αm, am) (B.13)
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Note that in the present text there is no existence of any metric on the tangent bundle assumed. Therefore we
cannot raise or lower small indices. In cases where 1-form and vector have a similar symbol, the position of the
small index therefore uniquely determines which is which (e.g. ωm and wm).

In addition to the canonical metric GMN there is also a canonical antisymmetric 2-form B, s.th. α(b)−
β(a) = aMBMNbN with coordinate form

BMN ≡
(

0 −δnm
δmn 0

)
(B.14)

Raising the indices with GMN yields

BMN =
(
δmn 0
0 −δnm

)
= −BNM (B.15)

BMN =
(

0 δmn
−δnm 0

)
(B.16)

We can thus use B and G to construct projection operators PT and PT∗ to tangent and cotangent space

PT MN ≡ 1
2
(
δMN +BMN

)
=
(
δmn 0
0 0

)
(B.17)

PT ∗MN ≡ 1
2
(
δMN −BMN

)
=
(

0 0
0 δnm

)
(B.18)

PT a = a, PT ∗a = α (B.19)

B.2 Generalized almost complex structure

A generalized almost complex structure is a linear map from T ⊕ T ∗ to itself which squares to minus the
identity-map, i.e. in components

JMKJKN = −δMN (B.20)

It is called a generalized complex structure if it is integrable (see subsection B.4). It should be compatible
with our canonical metric G which means that it should behave like multiplication with i in a Hermitian scalar
product of a complex vector space1

〈v,Jw〉 = −〈J v,w〉 ⇐⇒ (GJ )T = −GJ ⇐⇒ JMN = −JNM (B.21)

This property is also known as antihermiticity of J . Because of (B.21), J can be written as

JMN =
(

Jmn Pmn

−Qmn −Jnm

)
JMN =

(
−Qmn −Jnm
Jmn Pmn

)
(B.22)

where Pmn and Qmn are antisymmetric matrices, and (B.20) translates into

J2 − PQ = −11 (B.23)

JP − PJT = 0 (B.24)

−QJ + JTQ = 0 (B.25)

Here it becomes obvious that the generalized complex structure contains the case of an ordinary almost complex
structure J with J2 = −1 for Q = P = 0 as well as the case of an almost symplectic structure of a non-degenerate
2-form Q with existing inverse PQ = 11 for J = 0. In addition to those algebraic constraints, the integrability
of the generalized almost complex structure gives further di�erential conditions (see subsection B.4) which boil
down in the two special cases to the integrability of the ordinary complex structure or to the integrability of
the symplectic structure.

Because of J 2 = −11, J has eigenvalues ±i. The corresponding eigenvectors span the space of generalized
holomorphic vectors L or generalized antiholomorphic vectors L̄ respectively. This provides a natural splitting
of the complexi�ed bundle

(T ⊕ T ∗)⊗ C = L⊕ L̄ (B.26)

The projector Π to the space of eigenvalue +i (namely L) can be be written as

Π ≡ 1
2

(11− iJ ) (B.27)

1 In a complex vector space with Hermitian scalar product 〈a, b〉 = 〈b, a〉 we have 〈a, ib〉 = −〈ia, b〉. �
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while the projector to L̄ is just the complex conjugate Π̄ = 1
2 (11 + iJ ) = G−1ΠTG. Indeed, for any generalized

vector �eld v we have

JΠv = iΠv (B.28)

L and L̄ are what one calls maximally isotropic subspaces, i.e. spaces which are isotropic

〈v,w〉 = 0 ∀v,w ∈ L (B.29)

(this is because ΠTGΠ = GΠ̄Π = 0) and which have half the dimension of the complete bundle. As the canonical
metric 〈· · · 〉 is nondegenerate, this is the maximal possible dimension for isotropic subbundles.

B.3 Dorfman and Courant bracket

Something which seems to be a bit unnatural in this whole business in the beginning is the introduction of the
Courant bracket, which is the antisymmetrization of the so-called Dorfman-bracket. The Dorfman bracket
in turn is the natural generalization of the Lie bracket from the point of view of derived brackets (C.51)2

[[ıa,d] , ıb] = ı[a,b] (B.30)

where [a,b] ≡ [a,b] + Laβ −Lbα+ d(ıbα) = (B.31)

= [a,b] + Laβ − ıb(dα) = (B.32)

= Lab− ıb(dα) (B.33)

To get a homogeneous coordinate expression, we de�ne

∂M ≡ (∂m, 0) ⇒ ∂M = (0, ∂m) (B.34)

2 The twisted Dorfman bracket is de�ned similarly via

[[ıa,d+H∧ ] , ıb] ≡ ı[a,b]H

Remembering that H∧ = ıH and using [ıa, ıH ] = ı[a,H]∆ = ı
ı
(1)
a H

, we get

[a,b]H ≡ [a,b]− ıbıaH �
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The Dorfman bracket can then be written as3

[a,b]M = aK∂KbM +
(
∂MaK − ∂KaM

)
bK (B.35)

or [a,b]M = aK∂KbM + 2∂[MaK]b
K (B.36)

Apart from the term in the middle ∂MaK , (B.35) looks formally the same as the Lie bracket of vector �elds
(C.1). The Dorfman bracket is in general not antisymmetric but it obeys a Jacobi-identity (Leibniz from the
left) of the form

[a, [b,c]] = [[a,b] ,c] + [b, [a,c]] (B.37)

Although the Dorfman bracket is all we need, most of the literature on generalized complex geometry so far
works with its antisymmetrization, which is called Courant bracket

[a,b]− ≡ [a,b] + Laβ −Lbα+
1
2
d(ıbα− ıaβ) (B.38)

[a,b]−M = aK∂KbM − ∂KaMbK +
1
2
(
∂MaKbK − aK∂MbK

)
(B.39)

and which does not obey any Jacobi identity. As it is much simpler to go from Dorfman to Courant, than the
other way round, we will only work with the Dorfman bracket. On any isotropic subspace (ıbα + ıaβ = 0) the
two coincide anyway, i.e. they become a Lie bracket, obeying Jacobi and being antisymmetric.

We call a transformation a symmetry of the bracket when the bracket of two vectors transforms in the
same way as the vectors

[(b + δb),(c + δc)] = [b,c] + δ [b,c] (B.40)

δ [b,c] = [δb,c] + [b,δc] + [δb,δc] (B.41)

I.e. in�nitesimal symmetry transformations (where the last term drops) have to obey a product rule. Similar
as for the Lie-bracket of vector �elds, in�nitesimal transformations are generated by the bracket itself. Let us
call the corresponding derivative, in analogy to the Lie derivative, the Dorfman derivative of a generalized
vector with respect to a generalized vector.

δb = Dab ≡ [a, b] (B.42)

These transformations are therefore, due to the Jacobi-identity (B.37) always symmetries of the bracket. From
(B.33) we can see that the Dorfman derivative consists of a usual Lie derivative and second part which acts
only on the vector part of b by contracting it with the exact 2-form dα

Dab = Lab (B.43)

Dαb = −ıb(dα) = bm(∂nαm − ∂mαn)dxn (B.44)

In fact, it is enough for the 2-form to be closed, in order to get a symmetry. If we replace −dα by a closed
2-form B, the transformation is known as B-transform

δBb = ıbB (B.45)

3It is perhaps interesting to note that this notation of the partial derivative with capital index suggests the extension to a
derivative with respect to some dual coordinate

∂m ≡ ∂x̃m
We could understand this as coordinates of a dual manifold whose tangent space coincides in some sense with the cotangent space
of the original space and vice versa. This might be connected to Hull's doubled geometry [105, 103, 104, 102, 107].
To see that such an ad-hoc extension of the Dorfman bracket is not completely unfounded, note that there is a more general

notion of a Dorfman bracket (or Courant bracket) in the context of Lie-bialgebroids (for a de�nition see e.g. [72, p.32,20]). There
we have two Lie algebroids L and L∗ which are dual with respect to some inner product and which both carry some Lie bracket.
(For T and T ∗, only T carries a Lie bracket in the beginning. For a non-trivial Lie bracket of forms on T ∗ we need some extra
structure like e.g. a Poisson structure which would lead to the Koszul bracket on forms.) The Lie bracket on L induces a di�erential
d on L∗ and the Lie bracket on L∗ induces a di�erential d∗ on L. The de�nition for the Dorfman bracket on the Lie bialgebroid
L⊕ L∗ is then

[a,b] ≡ [a,b] + Laβ −Lbα+ d(ıbα) +

+ [α,β] + Lαb−Lβa+ d∗(ıβa)

The �rst line is the part we are used to from our usual Dorfman bracket on T ⊕ T ∗, while second line is the corresponding part
coming from the nontrivial structure on L∗. Taking now L = T , L∗ = T ∗ and assuming that [α,β] and Lα and d∗ are a Lie bracket,
Lie derivative and exterior derivative built in the ordinary way, but with the new partial derivative w.r.t. the dual coordinates
∂m, the coordinate form of the Dorfman bracket remains exactly the one of (B.35,B.36), but with ∂M = (∂m, 0) replaced by
∂M = (∂m, ∂m). �
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Finally, we should note that the B-transform is part of the O(d, d)-transformations, i.e. the transformations
which leave the canonical metric invariant. As usual for orthogonal groups the in�nitesimal generators are
antisymmetric when the second index is pulled down with the corresponding metric. The generators of an
O(d, d)-transformation can therefore be written as [72, p.6]

ΩMN =
(
Bmn −Amn

An
m β

mn

)
(B.46)

ΩMN =
(
An

m β
mn

Bmn −Amn

)
(B.47)

In addition to the B-transform, acting with Ω on a generalized vector induces the so-called beta-transform on
the 1-form component4 as well as Gl(d)-transformations of vector and 1-form component via A. For constant
tensors, the Lie-derivative is just a Gl(d) transformation. Therefore both symmetries of the Dorfman bracket
are symmetries of the canonical metric G as well. For this reason the canonical metric is invariant under the
Dorfman derivative Dvwith respect to a generalized vector v, which we de�ne on generalized rank p tensors
using (B.35) in a way that it acts via Leibniz on tensor products (like the Lie derivative) and as a directional
derivative on scalars

(DvT )M1...Mp ≡ vK∂KT M1...Mp +
∑
i

(∂MivK − ∂KvMi)TM1...Mi−1KMi+1...Mp (B.48)

Dv(A⊗ B) = DvA⊗ B +A⊗DvB (B.49)

Dv(φ) = vK∂Kφ = vk∂kφ (B.50)

Acting on the canonical metric, one recovers the fact, that the Dorfman derivative contains the isometries of
the metric

DvG = 2(∂M1vK − ∂KvM1)GKM2 = 0 (B.51)

Comparing the role of Lie-derivative and Dorfman-derivative, the B-transform should be understood as an
extension of di�eomorphisms. In string theory it shows up in the Buscher-rules for T-duality ([108, 109]) and
can perhaps be better understood geometrically via Hull's doubled geometry [105, 103, 104] (compare to footnote
3). The beta-transform is not a symmetry of the Dorfman bracket as it stands. However, if we introduce dual
coordinates as suggested in footnote 3, the beta-transform would show up in the symmetry-transformations of
the extended Dorfman bracket generated by itself.5

On an isotropic subspace L (e.g. the generalized holomorphic subspace) Courant- and Dorfman-bracket
coincide and have the properties of a Lie bracket. It is therefore possible to de�ne a Schouten bracket on
generalized multivectors on

∧•
L which have e.g. only generalized holomorphic indices (compare [72, p.21]). If

we use again the notation with repeated boldface indices

A(p) ≡ AM ...M ≡ AM1...Mp
tM1 · · · tM2 (B.52)

we get as coordinate form for this Dorfman-Schouten bracket[
A(p),B(q)

]
= pAM ...MK∂KBM ...M + q

(
p∂MAKM ...M − ∂KAM ...M

)
BKM ...M (B.53)

In the �rst term in the bracket on the righthand side, the ∂M can as well be shifted with a minus sign to B,
because in

∧•
L we have only isotropic indices in the sense that

AM ...M
KBKM ...M = 0 (B.54)

For this reason, the Dorfman-Schouten bracket has really the required skew-symmetry of a Schouten-bracket[
A(p),B(q)

]
= −(−)(q+1)(p+1)

[
B(q),A(p)

]
(B.55)

On
∧•

L this bracket coincides with the derived bracket of the big bracket, as the extra term with pM in (B.79)
vanishes because of (B.54).

4The letter β for the beta-transformations does not really �t into the philosophy of the present notations, where we use small
Greek letters for 1-forms (or sometimes p-forms) only, but not for multivectors. As the transformation is, however, commonly

known as beta-transformation, we use a large β, in order to distinguish it from the one-forms β, which are �oating around. �
5Taking the Dorfman bracket of footnote 3, we get as Dorfman derivative of a generalized vector c instead of (B.43,B.44) the

extended transformation

Dac ≡ Lac− ıγ(d∗a)

Dαc ≡ −(ıcdα) + Lαc

I.e. the �rst line is extended by a beta-transformation of γ with β = −d∗a and the B-transform of α (B = −dα) in the second line
is extended by a Lie derivative with respect to α. �
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B.4 Integrability

Integrability for an ordinary complex structure means that there exist in any chart dimM /2 holomorphic vector
�elds (with respect to the almost complex structure) which can be integrated to holomorphic coordinates za

in this chart of the manifold and make it a complex manifold. Those vector �elds are then just ∂/∂za. Those
coordinate di�erentials have vanishing Lie bracket among each other (partial derivatives commute). In turn,
every set of vectors with vanishing Lie bracket can be integrated to coordinates. The existence of such a set
of integrable holomorphic vector �elds is guaranteed when the holomorphic subbundle is closed under the Lie
bracket, i.e. the Lie bracket of two holomorphic vector �elds is again a holomorphic vector �eld.

As the Dorfman bracket restricted to the generalized holomorphic subbundle L ⊂ (T ⊕ T ∗) ⊗ C has the
properties of a Lie bracket, we can demand exactly the same for generalized holomorphic vectors as above
for holomorphic ones. The condition for the generalized complex structure to be integrable is thus that the
generalized holomorphic subbundle L is closed under the Dorfman bracket, i.e. in terms of the projectors

Π̄ [Πv,Πw] = 0 (B.56)

⇐⇒ [v,w]− [J v,Jw] + J [J v,w] + J [v,Jw] = 0 (B.57)

In the following two sub-subsections we will show that this is equivalent to the vanishing of a generalized
Nijenhuis-tensor [72, p.25] of the coordinate form6,7

1
4
NM1M2M3 ≡ J [M1|K∂KJ |M2M3] + J [M1|KJK |M2,M3] != 0 (B.58)

Recalling that

JMN =
(

Pmn Jmn
−Jnm −Qmn

)
, JMN =

(
−Jnm −Qmn
Pmn Jmn

)
, ∂M = (0, ∂m) (B.59)

we can rewrite this condition in ordinary tensor components, just to compare it with the conditions given in
literature (for the antisymmetrization of the capital indices we take into account that in the last term of (B.58)
the indices M1 and M2 are automatically antisymmetrized because of J 2 = −1):

1
4
Nm1m2m3 = P [m1|k∂kP

|m2m3] != 0 (B.60)

1
4
Nnm1m2 =

1
3

(
−Jkn∂kP [m1m2] + 2P [m1|k∂kJ

|m2]
n − P [m1|kJ |m2]

k,n + J [m1|
kP

k|m2]
,n

)
!= 0 (B.61)

1
4
Nn

m1m2 =
1
3
(
−Pnk∂kQ[m1m2] + 2Jk[m1|∂kJ

n
|m2] + 2JnkJk[m1,m2] − 2PnkQk[m1,m2]

) != 0 (B.62)

1
4
Nm1m2m3 = Jk[m1|∂kQ|m2m3] + Jk[m1|Qk|m2,m3] −Q[m1|kJ

k
|m2,m3]

!= 0 (B.63)

If we compare those expressions with the tensors A,B,C and D given in (2.16) of [91, p.7], we recognize
(replacing Q by −Q) that our �rst line is just 1

3A, the second line is − 1
3B (using (B.24)), the third 1

3C and the
fourth line is − 1

3D. There, in turn, it is claimed that the expressions are equivalent to those originally given in
(3.16)-(3.19) of [87, p.7].

6This looks formally like the generalized Schouten bracket (e.g. [72, p.21]) on
V• L (with L being the generalized holomorphic

bundle) of J with itself (see also the statement below (B.79)), but it is not, as J has neither holomorphic nor antiholomorphic
indices

ΠJ = iΠ 6= J
Π̄J = −iΠ 6= J

In fact, we get zero if we contract both indices with the holomorphic projector

ΠNLΠMKJKL = ΠJΠT = iΠΠ̄ = 0

The same happens for two antiholomorphic projectors. But we can project one index with an holomorphic projector and the other
one with an antiholomorphic one. This yields

Π̄NLΠMKJKL = ΠJΠ = iΠ

Up to a constant prefactor the bracket of Π with Π coincides with the bracket of J with J . And like for the ordinary complex
structure, where we have the Nijenhuis bracket of the complex structure with itself, which has one index in T and the second in
T ∗, we could here take Π with one index in L and the other in L̄ and regard the bracket as generalized Nijenhuis bracket of Π with
itself. �

7If instead the twisted Dorfman bracket (see footnote 2) is used, one gets the integrability condition for a twisted generalized
complex structure with a twisted generalized Nijenhuis tensor. Consider the closed three form H = HM1M2M3 tM1 tM2 tM3 with
Hm1m2m3 the only nonvanishing components. The twisted generalized Nijenhuis tensor then reads

NHM1M2M3
= NM1M2M3 + 6HM1M2M3 − 18JM1

KHKM2LJ
L
M3

Like (B.60)-(B.63) this twisted generalized Nijenhuis tensor as well matches with the tensors given in [91] if one rede�nes Hmnk →
1
3!
Hmnk. �
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B.4.1 Coordinate based way to derive the generalized Nijenhuis-tensor

In this sub-subsection we will see that calculations with capital-index notation is rather convenient. So we
simply calculate (B.57) brute force by using the explicit coordinate formula for the Dorfman-bracket

[v,w]M = vK∂KwM +
(
∂MvK − ∂KvM

)
wK (B.35=B.64)

The brackets of interest are:

[v,Jw]N = vK∂KJNLwL + JNLvK∂KwL +
(
∂NvK − ∂KvN

)
(Jw)K (B.65)

(J [v,Jw])M = vKJMN∂KJNLwL − vK∂KwM + JMN

(
∂NvK − ∂KvN

)
(Jw)K (B.66)

[J v,w]N = JKLvL∂KwN +
(
∂NJKL − ∂KJNL

)
vLwK +

(
JKL∂NvL − JNL∂KvL

)
wK (B.67)

(J [J v,w])M = JMN (J v)K∂KwN + JMN

(
∂NJKL − ∂KJNL

)
vLwK +

−(Jw)LJMN∂
NvL + ∂KvMwK (B.68)

[J v,Jw]M = JKNvN∂KJMLwL + JKNvNJML∂KwL +(
∂MJKNvN − ∂KJMNvN

)
JKLwL +

(
JKN∂MvN − JMN∂KvN

)
JKLwL = (B.69)

= (J v)KJML∂KwL − JMN∂KvN (Jw)K +
+
(
JKL∂MJKN + 2JK [N |∂KJM |L]

)
vNwL + ∂MvLwL (B.70)

The underlined terms sum up in the complete expression to the generalized Nijenhuis tensor, while the rest
cancels

0 != [v,w]M − [J v,Jw]M + (J [J v,w])M + (J [v,Jw])M = (B.71)

=
(
2JMK∂[NJKL] − JKL∂MJKN + JMK∂KJLN − 2JK [N |∂KJM |L]

)
vNwL = (B.72)

= vN

(
3J [M |

KJK|L,N ] + 3J [N |K∂KJ |ML]
)

wL = (B.73)

=
3
4
vNNNMLwL (B.74)

B.4.2 Derivation via derived brackets

Eventually we want to see directly how the generalized Nijenhuis tensor is connected to derived brackets. We
will use our insight from the subsections 6.1.1 and 6.1.2. Remember, our basis tM = (dxm,∂m) was identi�ed
with the conjugate (ghost-)variables tM ≡ (cm, bm). One can de�ne generalized multi-vector �elds of the form

K(k) ≡ KM ...M ≡ KM1...Mk
tM1 · · · tMk (B.75)

They are in fact just sums of multivector valued forms:

KM ...M =
k∑
k=0

(
k

k

)
Km...m︸ ︷︷ ︸

k

n...n︸︷︷︸
k−k

≡
k∑
k=0

K(k,k−k) (B.76)

The big bracket, or Buttin's algebraic bracket is then just the canonical Poisson bracket

[K,L]∆(1) ≡ klKM ...M
ILIM ...M = {K,L} (B.77)

{tM , tN} = GMN (B.78)

The coordinate expression for its derived bracket (compare to (6.52,6.54)) reads

(−)k−1
[
dK(k),L(L)

]∆
(1)

= k · KM ...M
I∂ILM ...M − (−)(k+1)(l+1)

l · LM ...M
I∂IKM ...M +

+(−)k−1
kl∂MKM ...M

ILIM ...M + k (k− 1) lKM ...M
IJLIM ...MpJ (B.79)

with pJ ≡ (pj , 0) and ∂I ≡ (∂i, 0). In the case were both K and L only have generalized holomorphic indices,
the p-term drops and this expression should coincide with the Schouten-bracket on

∧•
L for the holomorphic

Lie-algebroid L (see e.g. [72, p.21] and footnote 6). For two rank-two objects, like the generalized complex
structure J , this reduces to

[K,d L]∆(1) = 2 · KM I∂ILMM + 2 · LM I∂IKMM − 4∂MKM ILIM + 4KIJLIMpJ (B.80)
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which reads for two coinciding tensors J

[J ,d J ]∆(1) = 4 · JM I∂IJMM − 4∂MJM IJIM − 4J JIJIMpJ = (B.81)

(B.58)
=

J 2=−1
NM ...M + 4 pM tM︸ ︷︷ ︸

= o (6.8)

(B.82)

where o = dxkpk = −d(dxk ∧ ∂k). We will verify this relation between the generalized Nijenhuis tensor and
the derived bracket in the following calculation, where we calculate N using the big bracket (B.77) all the
time. This bracket is like a matrix multiplication if one of the objects has only one index. We will use this fact
frequently for the multiplication of J with a vector

J v ≡ JMNvN tM =
1
2
{J , v} (B.83)

⇒ {J , {J , v}} = 4J 2v = −4v = {{v,J } ,J } (B.84)

{{v,J } , {J ,w}} = −4vKwK = −4 {v,w} (B.85)

If both objects are of higher rank, however, antisymmetrization of the remaining indices modi�es the result.
We thus have to be careful with the following examples

{J ,J } = 4JMKJKM = −4GMM = 0 (! because of antisymmetrization) (B.86)

{J , {J ,dv}} = JMKJ[K|
L(dv)L|M ] 6= −4dv (B.87)

As mentioned earlier, the Dorfman bracket (B.31) used in our integrability condition is just the derived bracket
of the algebraic bracket. I.e. we have

[v,w] = [dv,w]∆ = (B.88)

= [dv,w]∆(1) +
∑
p≥2

[dv,w]∆(p)︸ ︷︷ ︸
=0

= (B.89)

= {dv,w} (B.90)

where the di�erential d has to be understood in the extended sense of (6.9,6.33), namely as Poisson-bracket
with the BRST-like generator

o = tMpM = cmpm
locally

= d(xmpm) = −d(cmbm) (B.91)

pM ≡ (pm, 0) (B.92)

dv ≡ {o, v} = ∂MvM + vKpK (B.93)

where pm is the conjugate variable to xm. We can now rewrite the integrability condition (B.57) as

{dv,w} − 1
4
{d{J , v} , {J ,w}}+

1
4
{J , {d{J , v} ,w}}+

1
4
{J , {dv, {J ,w}}} != 0 (B.94)

Remember that the Poisson bracket is a graded one, and v,w and d are odd, while J is even.
Let us now start with applying Jacobi to the second term of (B.94)

− 1
4
{d{J , v} , {J ,w}} = −1

4
{{d{J , v} ,J } ,w} − 1

4
{J , {d{J , v} ,w}} (B.95)

so that we get

0 != {dv,w} − 1
4
{{d{J , v} ,J } ,w}+

1
4
{J , {dv, {J ,w}}} = (B.96)

= {dv,w} − 1
4
{{{dJ , v} ,J } ,w} − 1

4
{{{J ,dv} ,J } ,w}+

1
4
{J , {dv, {J ,w}}} = (B.97)

= {dv,w} − 1
4
{{{v,dJ } ,J } ,w}+

1
4
{{{dv,J } ,J } ,w}+

1
4
{J , {dv, {J ,w}}} (B.98)

It would be nice to separate w completely by moving it for the last term into the last bracket like in the �rst
three terms. We thus consider only the last term for a moment and calculate it in two di�erent ways (�rst using
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Jacobi for second and third bracket and after that using Jacobi for �rst and second bracket):

1
4
{J , {dv, {J ,w}}} 1.=

1
4
{J , {{dv,J } ,w}}+

1
4
{J , {J , {dv,w}}} = (B.99)

=
1
4
{J , {{dv,J } ,w}} − {dv,w} (B.100)

2.=
1
4
{{J ,dv} , {J ,w}}+

1
4
{dv, {J , {J ,w}}} = (B.101)

=
1
4
{J , {{J ,dv} ,w}}+

1
4
{{{J ,dv} ,J } ,w} − {dv,w} = (B.102)

= −1
4
{J , {{dv,J } ,w}}+ {dv,w} − 2 {dv,w}+

1
4
{{{J ,dv} ,J } ,w} (B.103)

Comparing both calculations yields

1
4
{J , {dv, {J ,w}}} = −1

8
{{J , {J ,dv}} ,w} − {dv,w} (B.104)

We can plug this back in (B.98) and leave away the outer bracket with w:

0 != dv− 1
4
{{v,dJ } ,J }+

1
4
{{dv,J } ,J } − 1

8
{J , {J ,dv}} − dv = (B.105)

= −1
4
{{v,dJ } ,J }+

1
8
{{dv,J } ,J } = (B.106)

= −1
8
{{v,dJ } ,J }+

1
8
{d{v,J } ,J } = (B.107)

= −1
8
{{v,dJ } ,J }+

1
8
d{{v,J } ,J }+

1
8
{{v,J } ,dJ } = (B.108)

= −1
8
{v, {dJ ,J }} − 1

2
dv = (B.109)

=
1
8

({
[J ,dJ ]∆(1) , v

}
− 4dv

)
= (B.110)

=
1
8
{

[J ,dJ ]∆(1) − 4o, v
}

(B.111)

where we used

dv = {o, v} (B.112)

The integrability condition is thus (explaining the normalization of N of above) as promised in (B.82)

N ≡ [J ,dJ ]∆(1) − 4o != 0 (B.113)

The derived bracket [J ,dJ ]∆(1) indeed contains the term 4o = 4tMpM which therefore is exactly cancelled.

Precisely the same calculation can be performed by calculating with the complete algebraic bracket [ , ]∆

instead of the Poisson-bracket, its �rst order part. Similarly to above, we have

J v ≡ 1
2

[J , v]∆ (B.114)

⇒ [J , [J , v]∆]∆ = 4J 2v = −4v (B.115)

In combination with (B.88) this is enough to redo the same calculation and get as integrability condition (using
[J ,J ] ≡ −[dJ ,J ]∆)

N ≡ [J ,J ]− 4o != 0 (B.116)

which also proves that the derived bracket bracket of the big bracket (which is not necessarily geometrically
well de�ned) coincides in this case with the complete derived bracket

[J ,dJ ]∆(1) = [J ,J ] (B.117)

As discussed in (C.53) and (C.55), throwing away the d-closed part corresponds to taking Buttin's bracket
instead of the derived one. Remember that o = dxkpk = −d(dxk ∧∂k), s.th. do = 0. We can thus equally write

N = [J ,J ]B (B.118)
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B.5 SO(d,d) pure spinors

There exists an alternative description of a generalized complex structure and its integrability with the help of
pure spinors (see e.g. [72, p.8] or in section 3 of [106]). �Spinor� here refers to the special orthonormal group
SO(d, d) (d being the dimension of the manifold M) of transformations on T ⊕ T ∗ which leave the canonical
metric 〈. . . , . . .〉 or GMN (which has signature (d, d)) invariant. It turns out that T ⊕ T ∗ itself, embedded via

ıX+αρ ≡ ıXρ︸︷︷︸
≡Xxρ

+α ∧ ρ, X ∈ TM, α ∈ T ∗M, ρ ∈ ∧•T ∗M (B.119)

into the space of endomorphisms of ∧•T ∗M (formal sum of di�erential forms on M), forms a representation
of the Cli�ord algebra. The spinors are thus di�erential forms ρ ∈ ∧•T ∗M and the gamma �matrices� ΓM

are up to a normalization factor just the interior products ıtM = i
~ t̂M with respect to the basis elements

tM = (dxm,∂m) ≡ (cm, bm), i.e. ΓM = {
√

2ı∂m ,
√

2ıdxn ≡ dxn∧}. Indeed, the graded commutator (i.e.
anticommutator) of the basis elements reads [ı∂m ,dx

n∧] = δnm and therefore8[
ΓM ,ΓN

]
= 2GMN (B.120)

For general elements of the algebra (generalized vectors) v = vM tM , w = wN tN , the Cli�ord algebra becomes
as usual [ıv, ıw] = 2〈v,w〉.

One can further de�ne a chirality matrix Γ#. It is characterized by the properties that it squares to 1 and
anticommutes with all other Γ-matrices. Usually it is proportional to the product of all Γ-matrices, but this is
only true in a basis where GMN is diagonal. In our basis tM it is o�-diagonal. The de�nition of the Γ-matrices

as Γ̃
M

=
{
ı(dxm−∂m), ı(dxm+∂m)

}
thus would be more appropriate in this context. The overall sign is a matter

of taste and we choose it such that the eigenvalues of rank r forms in (B.125) do not depend on the dimension.
The chirality matrix is then given by

Γ# ≡ (−)d
d−1∏
k=0

ı(dxk−∂k)ı(dxk+∂k) = (B.121)

= (−)d (ıdx0 ı∂0 − ı∂0 ıdx0) · · ·
(
ıdxd−1 ı∂d−1 − ı∂d−1 ıdxd−1

)
= (B.122)

= (−)d (2ıdx0 ı∂0 − 1) · · ·
(
2ıdxd−1 ı∂d−1 − 1

)
= (B.123)

= (−)d
d−1∏
k=0

(2ndxk − 1) (B.124)

where ndxk ≡6
∑
ıdxk ı∂k counts the number of dxk (with �xed k) of the di�erential form ρ(r) on which Γ# is

acting. This number can be (in each term of the expansion in basis elements) either zero or one, because
(dxk)2 = 0. The terms (2ndxk − 1) are therefore either −1 (if dxk does not appear) or 1 (if it appears). In a
form ρ(r) of rank r, there are of course in any term of the expansion r basis elements dxk which appear and
d− r which do not appear. We thus have

Γ#ρ(r) = (−)d(−1)d−rρ(r) = (−1)rρ(r) (B.125)

The chiral and antichiral spinors (those with eigenvalues +1 or −1 ) therefore correspond to even and odd forms
respectively.

A pure spinor is de�ned to be a spinor which is annihilated by half of the gamma matrices. (The same
was true for the pure spinor in the Berkovits context, although it is not obvious due to the formulation via the
quadratic constraint cγmc = 0.) :

ρ is pure : ⇐⇒ Lρ ≡ {a ∈ (T ∗M ⊕ TM)⊗ C| iaρ = 0}
is of dimension d = dimM

(B.126)

In other words, the Cli�ord action of (T ⊕ T ∗) is maximally light-like. How is this related to an almost
generalized complex structure J ? The structure J induces a splitting of (T ∗M ⊕TM)⊗C into a subbundle of
eigenvalue i and another one of eigenvalue −i:

(T ∗M ⊕ TM)⊗ C = LJ ⊕ L∗J
LJ ≡ {a ∈ (T ∗M ⊕ TM)⊗ C| J (a) = ia} (B.127)

8Note that one can think of ı∂m as ∂
∂dxm

. Another observation is that the Poisson bracket of the T ⊕ T ∗ basis elements also
forms a Cli�ord-algebra n

tM , tN
o

= GMN �
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Setting LJ
!= LρJ induces a map from generalized complex structures to pure spinors and one can prove that

it is well-de�ned and one-to-one (up to a rescaling of the pure spinor) [72]. The previosly discussed (twisted)
integrability condition can also be refomulated in the pure spinor language. Integrability of LJ is closed
under the action of the (twisted) Dorfman bracket. a, b ∈ LρJ ⇒ [a,b] = [[ıa,d], ıb] ∈ LρJ . In other words
[[ıa,d+ H∧], ıb]ρJ = 0 ∀a, b with ıaρJ = ıbρJ = 0. Writing the graded commutator explicitely and using
ıaρJ = ıbρJ = 0, this becomes [106]

J is twisted integrable :⇐⇒ ıbıadHρJ ≡ ıbıa (d+H∧) ρJ = 0 ∀a, b ∈ LρJ (B.128)

One can think of ρJ as a Cli�ord vacuum and of the elements of LρJ as annihilation operators. The creation
operators then lie in L∗J and dHρJ must be at most at creator level two. However, as any creator changes
parity, and dρ is of opposite parity than ρ itself, it can only be at odd creator-levels, i.e. level one. The above
condition is thus equivalent to

J is twisted integrable :⇐⇒ dHρJ = ıcρJ for some c ∈ L∗J (B.129)



Appendix C

Derived Brackets

Mathematics in this section is based on the review article on derived brackets by Kosmann-Schwarzbach [70].
The presentation, however, will be somewhat di�erent and in addition to (or sometimes instead of) the abstract
de�nitions coordinate expressions will be given.

C.1 Lie bracket of vector �elds, Lie derivative and Schouten bracket

This �rst subsection is intended to give a feeling, why the Schouten bracket is a very natural extension of the
Lie bracket of vector �elds. It is a good example to become more familiar with the subject, before we become
more general in the subsequent subsections, but it can be skipped without any harm (note however the notation
introduced before (C.13)).

Consider the ordinary Lie-bracket of vector �elds which turns the tangent space of a manifold into a Lie
algebra or the tangent bundle into a Lie algebroid and which takes in a local coordinate basis the familiar form

[v,w]m = vk∂kw
m − wk∂kvm (C.1)

We will convince ourselves in the following that numerous other common di�erential brackets are just natural
extensions of this bracket and can be regarded as one and the same bracket. Such a generalized bracket is
e.g. useful to formulate integrability conditions and it can serve via the Jacobi identity as a powerful tool
in otherwise lengthy calculations . In addition it shows up naturally in some sigma-models as is discussed in
section 6.

Given the Lie-bracket of vector �elds, it seems natural to extend it to higher rank tensor �elds by demanding
a Leibniz rule on tensor products of the form [v,w1 ⊗ w2] = [v,w1]⊗ w2 + w1 ⊗ [v,w2]. Remembering that the
Lie-bracket of two vector �elds is just the Lie derivative of one vector �eld with respect to the other

[v,w] = Lvw (C.2)

the Lie derivative of a general tensor T = T
n1...nq
m1...mpdxm1 ⊗ . . .⊗dxmp ⊗∂n1 ⊗· · ·⊗∂nqwith respect to a vector

�eld v can be seen as a �rst extension of the Lie bracket:

[v,T ] ≡ LvT (C.3)

[v,T ]n1...nq
m1...mp

= vk∂kT
n1...nq
m1...mp −

∑
i

∂kv
niTn1...ni−1k ni+1...nq

m1...mp +
∑
j

∂mjv
kT

n1...nq
m1...mj−1kmj+1...mp

(C.4)

The Lie derivative obeys (as a derivative should) the Leibniz rule

[v,T1 ⊗ T2] = [v,T1]⊗ T2 + T1 ⊗ [v,T2] (C.5)

In fact, giving as input only the Lie derivative of a scalar φ, namely the directional derivative [v,φ] ≡ vk∂kφ,
and the Lie bracket of vector �elds (C.1), the Lie derivative of general tensors (C.4) is determined by the
Leibniz-rule. Insisting on antisymmetry of the bracket, we have to de�ne

[T ,v] ≡ − [v,T ] (C.6)

Indeed, it can be checked that the above de�nitions lead to a valid Jacobi-identity of the form

[v, [w,T ]] = [[v,w] ,T ] + [w, [v,T ]] for arbitrary tensors T (C.7)

which is perhaps better known in the form

[Lv,Lw]T = L[v,w]T (C.8)

159
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We have now vectors acting via the bracket on general tensors, but tensors only acting on vectors via (C.6) .
It is thus natural to use Leibniz again to de�ne the action of tensors on tensors. To make a long story short,
this is not possible for general tensors. It is possible, however, for tensors with only upper indices which are
either antisymmetrized (multivectors) or symmetrized (symmetric multivectors). We will concentrate in
this paper on tensors with antisymmetrized indices (the reason being the natural given di�erential for forms
which also have antisymmetrized indices), but the symmetric case makes perfect sense and at some points we
will give short comments. (See e.g. [110] for more information on the Schouten bracket of symmetric tensor
�elds.)

Given two multivector �elds (note that the prefactor 1/p! is intentionally missing (see page 146).

v(p) ≡ vm1...mp∂m1 ∧ . . . ∧ ∂mp , w(q) ≡ wm1...mq∂m1 ∧ . . . ∧ ∂mq (C.9)

their Schouten(-Nijenhuis) bracket, or Schouten bracket for short, is given in a local coordinate basis by[
v(p),w(q)

]m1...mp+q−1

= pv[m1...mp−1|k∂kw
|mp...mp+q−1] − qv[m1...mp|

,kw
k |mp+1...mp+q−1] (C.10)

Realizing that the Lie-derivative (C.4) of a multivector �eld w(q) with respect to a vector v(1) is[
v,w(q)

]n1...nq
= vk∂kw

n1...nq − q∂kv[n1|wk |n2...nq ] (C.11)

one recognizes that (C.10) is a natural extension of this, obeying a Leibniz rule, which we will write down below
in (C.18). However, as the coordinate form of generalized brackets will become very lengthy at some point, we
will �rst introduce some notation which is more schematic, although still exact. Namely we imagine that every
boldface index m is an ordinary index m contracted with the corresponding basis vector ∂m at the position
of the index:

v(p) = vm1...mp∂m1 ∧ . . . ∧ ∂mp ≡ vm...m (C.12)

This saves us the writing of the basis vectors as well as the enumeration or manual antisymmetrization of the
indices. As a boldface index might be hard to distinguish from an ordinary one, we will use this notation only for
several indices, s.th. we get repeated indices m . . .m which are easily to recognize (and are not summed over,
as they are at the same vertical position). See in the appendix A on page 147 for a more detailed explanation.
The Schouten bracket then reads[

v(p),w(q)
]

= pvm...mk∂kw
m...m − qvm...m

,kw
km...m = (C.13)

= pvm...mk∂kw
m...m − (−)p(q−1)qwkm...mvm...m

,k = (C.14)

= pvm...mk∂kw
m...m − (−)(p−1)(q−1)qwm...mk∂kv

m...m (C.15)

In the last line it becomes obvious that the bracket is skew-symmetric in the sense of a Lie algebra of degree1

−1: [
v(p),w(q)

]
= −(−)(p−1)(q−1)

[
w(q),v(p)

]
(C.16)

1A Lie bracket
ˆ
,(n)

˜
of degree n in a graded algebra increases the degree (which we denote by | . . . |) by n˛̨ˆ

A,(n)B
˜˛̨

=| A | + | B | +n

It can be understood as an ordinary graded Lie-bracket, when we rede�ne the grading ‖ . . . ‖ ≡| . . . | +n, such that the Lie bracket
itself does not carry a grading any longer ‚‚ˆA,(n) B

˜‚‚ = ‖A‖+ ‖B‖

The symmetry properties are thus (skew symmetry of degree n)ˆ
A,(n) B

˜
= −(−)(|A|+n)(|A|+n)

ˆ
B,(n) A

˜
and it obeys the usual graded Jacobi-identity (with shifted degrees)ˆ

A,(n)

ˆ
B,(n) C

˜˜
=

ˆˆ
A,(n) B

˜
,(n) C

˜
+ (−)(|A|+n)(|A|+n)

ˆ
B,(n)

ˆ
A,(n) C

˜˜
In addition there might be a Poisson-relation with respect to some other product which respects the original grading. To be
consistent with both gradings, this relation has to readˆ

A,(n) B · C
˜

=
ˆ
A,(n)B

˜
· C + (−)(|A|+n)|B|B ·

ˆ
A,(n) C

˜
This is consistent with B ·C = (−)|B||C|C ·B on the one hand and the skew symmetry of the bracket on the other hand. One can
imagine the grading of the bracket to sit at the position of the comma.
For the bracket of multivectors we have as degree the vector degree. Later, when we will have tensors of mixed type (vector

and form), we will use the form degree minus the vector degree as total degree. Then the Schouten-bracket is of degree +1, which
should not confuse the reader. �
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It obeys the corresponding Jacobi identity[
v

(p1)
1 ,

[
v

(p2)
2 ,v

(p3)
3

]]
=

[[
v

(p1)
1 ,v

(p2)
2

]
,v

(p3)
3

]
+ (−)(p1−1)(p2−1)

[
v

(p2)
2 ,

[
v

(p1)
1 ,v

(p3)
3

]]
(C.17)

Our starting point was to extend the bracket in a way that it acts via Leibniz on the wedge product. A Lie
algebra which has a second product on which the bracket acts via Leibniz is known as Poisson algebra. However,
here the bracket has degree −1 (it reduces the multivector degree by one) while the wedge product has no degree
(the degree of the wedge product of multivectors is just the sum of the degrees). According to footnote 1, we
have to adjust the Leibniz rule. The resulting algebra for Lie brackets of degree -1 is known as Gerstenhaber
algebra or in this special case Schouten algebra (which is the standard example for a Gerstenhaber algebra).
The Leibniz rule is[

v
(p1)
1 , v

(p2)
2 ∧ v(p3)

3

]
=

[
v

(p1)
1 , v

(p2)
2

]
∧ v(p3)

3 + (−)(p1−1)p2v
(p2)
2 ∧

[
v

(p1)
1 , v

(p3)
3

]
(C.18)

The standard example in �eld theory for a Poisson algebra is the phase space equipped with the Poisson bracket
or the commutator of operators or matrices.2 The Schouten algebra is naturally realized by the antibracket
of the BV anti�eld formalism (see subsection 6.5).

C.2 Embedding of vectors into the space of di�erential operators

The Leibniz rule is not the only concept to generalize the vector Lie bracket to higher rank tensors. The major
di�culty in the de�nition of brackets between higher rank tensors is the Jacobi-identity, which should hold for
them. It is therefore extremely useful to have a mechanism which automatically guarantees the Jacobi identity.
A way to get such a mechanism is to embed the tensors into some space of di�erential operators, as for the
operators we have the commutator as natural Lie bracket which might in turn induce some bracket on the
tensors we started with. Vector �elds e.g. naturally act on di�erential forms via the interior product

ıvω
(p) ≡ p · vkωkm...m (C.19)

This can be seen as the embedding of vector �elds in the space of di�erential operators acting on forms, because
the interior product with respect to a vector is a graded derivative with the grading -1 of the vector (we take
as total degree the form degree minus the multivector degree, which for a vector is just -1)

ıv

(
ω(p) ∧ η(q)

)
= ıvω

(p) ∧ η(q) + (−)qω(p) ∧ ıvη(q) (C.20)

Taking the idea of above we can take the commutator of two interior products. We note, however, that it only
induces a trivial (always vanishing) bracket on the vector�elds

[ıv, ıw] = 0 = ı0 (C.21)

As the interior product (C.19) does not include any partial derivative on the vector-coe�cient, it was clear from
the beginning that this ansatz does not lead to the Lie bracket of vector �elds or any generalization of it. We
have to bring the exterior derivative into the game, in our notation

dω(p) = ∂mωm...m (C.22)

There are two ways to do this

• Change the embedding: Instead of embedding the vectors via the interior product acting on forms, we
can embed them via the Lie-derivative acting on forms. When acting on forms, the Lie derivative can be
written as the (graded) commutator of interior product and exterior derivative

Lv = [ıv,d] (C.23)

Lvω
(p) = vk∂kωm...m + p · ∂mvkωkm...m (C.24)

Indeed, using the Lie derivative as embedding v 7→ Lv, the commutator of Lie derivatives induces the Lie
bracket of vector �elds (a special case of (C.8)

[Lv,Lw] = L[v,w] (C.25)

2In fact, working with totally symmetric multivector �elds would have lead to a Poisson algebra instead of a Gerstenhaber
algebra. �
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• Change the bracket: In the space of di�erential operators acting on forms, the commutator is the most
natural Lie bracket. However, the existence of a nilpotent odd operator acting on our algebra, namely the
commutator with the exterior derivative, enables the construction of what is called a derived bracket3.

[ıv,dıw] ≡ [[ıv,d] , ıw] (C.26)

This derived bracket (which is in this case a Lie bracket again, as we are considering the abelian subalgebra
of interior products of vector �elds) indeed induces the Lie bracket of vector �elds when we use the interior
product as embedding

[ıv,dıw] = ı[v,w] (C.27)

The above equations plus two additional ones are the well known Cartan formulae

[ıv, ıw] = 0 = [d,d] (C.28)

Lv = [ıv,d] (C.29)

[Lv,d] = 0 (C.30)

[Lv,Lw] = L[v,w] (C.31)[
[ıv,d]︸ ︷︷ ︸

Lv

, ıw
]
] = ı[v,w] (C.32)

(C.25) can be rewritten, using Jacobi's identity and [d,d] = 0, as

[[[ıv,d] , ıw] ,d] =
[
ı[v,w],d

]
(C.33)

Starting from (C.27), one thus arrives at (C.25) by simply taking the commutator with d. We will therefore
concentrate in the following on the second possibility, using the derived bracket, as the �rst one can be deduced
from it. Let us just mention that the generalization in the spirit of the derived bracket (C.27) (or more precise
its skew-symmetrization) is known as Vinogradov bracket [113, 114] (see footnote 8), while the generalization
in the spirit of (C.25) is known as Buttin's bracket [96].

C.3 Derived bracket for multivector valued forms

Let us now consider a much more general case, namely the space of multivector valued forms, i.e. tensors
which are antisymmetric in the upper as well as in the lower indices. With the Schouten bracket we have
a bracket for multivectors, which are antisymmetric in all (upper) indices. There exists as well a bracket
for vector valued forms, namely tensors with one upper index and arbitrary many antisymmetrized lower
indices. This bracket (which we have not yet discussed) is the (Fröhlicher-) Nijenhuis bracket (see (C.67)),
which shows up in the integrability condition for almost complex structures. Multivector valued forms have
arbitrary many antisymmetrized upper and arbitrary antisymmetrized lower indices and thus contain both cases.
The antisymmetrization appears quite naturally in �eld theory (we give only a few remarks about completely
symmetric indices, which appear as well, but which will not be subject of this paper). It makes also sense to
de�ne brackets on sums of tensors of di�erent type (e.g. the Dorfman bracket for generalized complex geometry).
Those brackets are then simply given by linearity.

3Given a bracket
ˆ
,(n)

˜
of degree n (not necessarily a Lie bracket. It can be as well a Loday bracket where the skew-symmetry

property as compared to footnote 1 is missing, but the Jacobi identity still holds) and a di�erential D (derivation of degree 1 and
square 0), its derived bracket [111, 112, 70] (which is of degree n+ 1) is de�ned byˆ

a,(D) b
˜

= (−)n+a+1
ˆ
Da,(n) b

˜
We put the subscript (D) at the position of the comma, to indicate that the grading of D is sitting there. The strange sign is just
to make the de�nition nicer for the most frequent case of an interior derivation, where Da =

ˆ
d,(n) a

˜
with d some element of the

algebra with degree | d |= 1− n and
ˆ
d,(n) d

˜
= 0, s.th. we have

[a,d b] =
ˆˆ
a,(n) d

˜
,(n) b

˜
The derived bracket is then again a Loday bracket (of degree n + 1) and obeys the corresponding Jacobi-identity (that is always
the nontrivial part). If a, b are elements of a commuting subalgebra ([a,(n) b] = 0), the derived bracket even is skew-symmetric and
thus a Lie bracket of degree n+ 1.
In the case at hand we start with a Lie bracket of degree 0 (the commutator) and take as interior derivation the commutator with

the exterior derivative [d, . . .]. Note that the exterior derivative itself is a derivative on forms, but not on the space of di�erential
operators on forms. Therefore we need the commutator. �
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So let us consider two multivector valued forms (we denote the number of lower indices and the number of
upper indices in this order via superscripts)4

K(k,k′) ≡ Km...m
n...n ≡ Km1...mk

n1...nk′dxm1 · · ·dxmk ⊗ ∂n1 · · ·∂nk′ (C.34)

L(l,l′) ≡ Lm...m︸ ︷︷ ︸
l

n...n︸︷︷︸
l′

(C.35)

Note the use of the schematic index notation, which we used for upper indices already in subsection C.1 and
which is explained in the appendix A on page 147. Following the ideas of above, we want to embed those
vector valued forms in some space of di�erential operators. As we have upper as well as lower indices now, it is
less clear why we should choose the space of operators acting on forms and not on some other tensors for the
embedding. However, the space of forms is the only one where we have a natural exterior derivative without
using any extra structure5. Therefore we will de�ne again a natural embedding into the space of di�erential
operators acting on forms as a generalization of the interior product. Namely, we will act with a multivector
valued form K on a form ρ by just contracting all upper indices with form-indices and antisymmetrizing the
remaining lower indices s.th. we get again a form as result. The formal de�nition goes in two steps. First one
de�nes the interior product with multivectors. For a decomposable multivector v(p) = v1 ∧ . . . ∧ vp set

ıv1∧...∧vpρ
(r) ≡ ıv1 · · · ıvpρ(r) (C.36)

This �xes the interior product for a generic multivector uniquely (contracting all indices with form-indices).
The next step is to de�ne for a multivector valued form K(k,k′) = η(k) ∧ v(k′) which is decomposable in a form
and a multivector, that it acts on a form by �rst acting with the multivector as above and then wedging the
result with the form

ıη(k)∧v(k′)ρ ≡ η(k) ∧ ıv(k)ρ = (−)k
′kıv(k′)∧η(k)ρ (C.37)

It is kind of a normal ordering that ıv(k′) acts �rst:

ıηıv = ıη(k)∧v(k′) = (−)kk
′
ıv(k′)∧η(k) 6= ıvıη (C.38)

For a generic multivector valued form, the above de�nitions �x the following coordinate form of the interior
product6 with a multivector valued form

ıK(k,k′)ρ(r) ≡ (k′)!
(

r
k′

)
Km...m

l1...lk′ρlk′ ...l1m...m︸ ︷︷ ︸
r

(C.39)

So we are just contracting all the upper indices of K with an appropriate number of indices of the form and
are wedging the remaining lower indices. The origin of the combinatorial prefactor is perhaps more transparent
in the phase space formulation (6.13) in subsection 6.1. For multivectors v(p) and w(q) the operator product of
ıv(p) and ıw(q) induces, due to (C.36) simply the wedge product of the multivectors

ıv(p) ıw(q) = ıv(p)∧w(q) (C.40)

But for general multivector-valued forms we have instead7

ıK(k,k′) ıL(l,l′) =
k′∑
p=0

ı
ı
(p)
K L

= ıK∧L +
k′∑
p=1

ı
ı
(p)
K L

(C.41)

4One can certainly map a tensor Kmndxm⊗∂n to one where the basis elements are antisymmetrized Kmndxm∧∂n
see page 146
≡

1
2
Kmndxm⊗∂n− 1

2
Kmn∂n⊗dxm and vice versa. In the �eld theory applications we will always get a complete antisymmetrization.

This mapping is the reason why we take care for the horizontal positions of the indices. It should just indicate the order of the
basis elements which was chosen for the mapping. �

5One can de�ne an exterior derivative � the Lichnerowicz-Poisson di�erential � on the space of multivectors as well (via
the Schouten bracket), but for this we need an integrable Poisson structure: dPN

(q) ≡
ˆ
P (2),N(q)

˜
, with

ˆ
P (2),P (2)

˜
= 0 �

6The name 'interior product' is misleading in the sense that the operation is (for decomposable tensors) a composition of interior
and exterior wedge product. It will, however, in the generalizations of Cartan's formulae play the role of the interior product. We
will therefore stick to this name. We can also see it as a short name for 'interior product of maximal order' in the sense that all
upper indices are contracted as opposed to an interior 'product of order p', where we contract only p upper indices. 'Order' is in
the sense of the order of a derivative. While ıv is a derivative for any vector v, the general interior product acts like a higher order
derivative. �

7The product of interior products in (C.41) induces a noncommutative product (star product) for the multivector-valued forms,
whose commutator is the algebraic bracket, namely

K ∗ L ≡
X
p≥0

ı
(p)
K L

[K,L]∆ = K ∗ L− (−)(k−k′)(l−l′)L ∗K �
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with

ı
(p)

K(k,k′)L
(l,l′) ≡ (−)(k′−p)(l−p)p!

(
k′

p

)(
l
p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n (C.42)

For p = k′, ı(p)K reduces to the interior product (C.39). Both are in general not a derivative any longer. ı(p)

is, however, a p-th order derivative, as contracting p indices means taking the p-th derivative with respect to p
basis elements (see 6.18 in subsection 6.1). Our embedding ıK(k,k′) in (C.39) is therefore a k′-th order derivative.

For p = 0 on the other hand, ı(p)K is just a wedge product with K
While for vectors the commutator of two interior products (C.21) did only induce a trivial bracket on vectors,

which is the same for multivectors due to (C.40), this is di�erent for multivector-valued forms.

[ıK(k,k′) , ıL(l,,l′) ] = ı[K,L]∆ (C.43)

[K,L]∆ ≡
∑
p≥1

ı
(p)
K L− (−)(k−k′)(l−l′)ı

(p)
L K︸ ︷︷ ︸

≡[K,L]∆(p)

= (C.44)

=
∑
p≥1

(−)(k′−p)(l−p)p!
(
k′

p

)(
l
p

)
Km...m

n...nl1...lpLlp...l1m...m
n...n +

−(−)(k−k′)(l−l′)(−)(l′−p)(k−p)p!
(
l′

p

)(
k
p

)
Lm...m

n...nl1...lpKlp...l1m...m
n...n (C.45)

where we introduced an algebraic bracket [K,L]∆ in the second line, which is is due to Buttin [96], and
which is a generalization of the Nijenhuis-Richardson bracket for vector-valued forms (C.63). As it was induced
via the embedding from the graded commutator, it has the same properties, i.e. it is graded antisymmetric
and obeys the graded Jacobi identity. Actually, the term with lowest p, so [K,L]∆(p=1), is itself an algebraic
bracket, which appears in subsection 6.1.1 as canonical Poisson bracket. It is known under the name Buttin's
algebraic bracket ([96], denoted in [70] by [ , ]0B) or as big bracket

[K,L]∆(1) = ı
(1)
K L− (−)(k−k′)(l−l′)ı

(1)
L K = (C.46)

= (−)(k′−1)(l−1)k′l ·Km...m
n...nl1Ll1m...m

n...n +

−(−)(k−k′)(l−l′)(−)(l′−1)(k−1)l′k · Lm...m
n...nl1Kl1m...m

n...n (C.47)

But as for the vector �elds in subsection C.2, we are rather interested in the derived bracket of [K,L]∆, or
at the bracket induced via an embedding based on the Lie derivative. An obvious generalization of the Lie
derivative is the commutator [ıK ,d], which will be a derivative of the same order as ıK and therefore is not a
derivative in the sense that it obeys the Leibniz rule. Although it is common to use this generalization, I am
not aware of an appropriate name for it. Let us just call it the Lie derivative with respect to K (being a
derivative of order k′)

LK(k,k′) ≡ [ıK(k,k′) ,d] (C.48)

LK(k,k′)ρ = (k′)!
(
r + 1
k′

)
Km...m

l1...lk′∂[lk′
ρlk′−1...l1m...m] +

−(−)k−k
′
(k′)!

(
r
k′

)
∂m
(
Km...m

l1...lk′ρlk′ ...l1m...m

)
= (C.49)

= (k′)!
(

r
k′ − 1

)
Km...m

l1...lk′∂lk′ρlk′−1...l1m...m +

−(−)k−k
′
(k′)!

(
r
k′

)
∂mKm...m

l1...lk′ρlk′ ...l1m...m (C.50)

The Lie derivative above is an ingredient to calculate the derived bracket (remember footnote 3 on page 162)
which is given by8

[ıK ,dıL] ≡ [[ıK ,d] , ıL] ≡ ı[K,L] if possible (C.51)

8 The Vinogradov bracket [114, 113] (see also [70]) is a bracket in the space of all graded endomorphisms in the space of
di�erential forms Ω•(M)

[a,b]V =
1

2

“
[[a, d] , b]− (−)b [a, [b, d]]

”
∀a, b ∈ Ω•(M)

It is the skew symmetrization of a derived bracket. The embedding of the multivector valued forms into the endomorphisms Ω•(M)
via the interior product which we consider is neither closed under the Vinogradov bracket nor under the derived bracket in the
general case. �
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One should distinguish the derived bracket on the level of operators on the left from the derived bracket on the
tensors [K,L] on the right. Only in special cases the result of the commutator on the left can be written as the
interior product of another tensorial object which then can be considered as the derived bracket with respect to
the algebraic bracket [ , ]∆. Therefore one normally does not �nd an explicit general expression for this derived
bracket in literature. In 6.1.2, however, the meaning of exterior derivative and interior product are extended in
order to be able to write down an explicit general coordinate expression (6.51) which reduces in the mentioned
special cases to the well known results (see e.g. C.4.2).

Closely related to the derived bracket in (C.51) of above is Buttin's di�erential bracket, given by

[LK ,LL] ≡ L[K,L]B
if possible (C.52)

Because of [d,d] = 0 and LK = [ıK ,d] we have (using Jacobi)

[LK ,LL] = [[ıK ,dıL] , d] = [[ıK ,dıL] , d] != [ı[K,L]B
, d] (C.53)

Comparing with (C.51) s.th. in cases where [K,L] exists, the brackets have to coincide up to a closed term, or
locally a total derivative

ı[K,L] = ı[K,L]B
+ [d, . . .] (C.54)

Using again the extended de�nition of exterior derivative and interior product of 6.1.2, this relation can be
rewritten as

[K,L] = [K,L]B + d(. . .) (C.55)

The Nijenhuis bracket (C.74) is the major example for this relation.

C.4 Examples

C.4.1 Schouten(-Nijenhuis) bracket

Let us shortly review the Schouten bracket under the new aspects. For multivectors v(p), w(q) the algebraic
bracket vanishes

[ıv(p) , ıw(q) ] = 0 (C.56)

The Schouten bracket
[
v(p),w(q)

]
coincides with the derived bracket as well as with Buttin's di�erential

bracket, i.e. we have

[[ıv(p) ,d] , ıw(q) ] = ı[v(p),w(q)] (C.57)

[Lv(p) ,Lw(q) ] = L[v(p),w(q)] (C.58)

Its coordinate form � given already before in (C.15) � is[
v(p),w(q)

]
= pvm...mk∂kw

m...m − (−)(p−1)(q−1)qwm...mk∂kv
m...m (C.59)

The vector Lie bracket is a special case of the Schouten bracket as well as of the Nijenhuis bracket.

C.4.2 (Fröhlicher-)Nijenhuis bracket and its relation to the Richardson-Nijenhuis
bracket

Consider vector valued forms, i.e. tensors of the form

K(k,1) ≡ Km1...mk
ndxm1 ∧ · · · ∧ dxmk ∧ ∂n ∼= Km1...mk

ndxm1 ∧ · · · ∧ dxmk ⊗ ∂n (C.60)

The algebraic bracket of two such tensors, de�ned via the graded commutator (note that | ıK |=| K |= k − 1)

[ıK , ıL] = ı[K,L]∆ (C.61)

consists only of the �rst term in the expansion, because we have only one upper index to contract.[
K(k,1), L(l,1)

]∆
=

[
K(k,1), L(l,1)

]∆
(1)

= ı
(1)
K L− (−)(k−1)(l−1)ı

(1)
L K = (C.62)

=
(C.47)

= l Km...m
jLjm...m

n − (−)(k−1)(l−1)k Lm...m
jKjm...m

n (C.63)
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It is thus just the big bracket or Buttin's algebraic bracket but in this case it is known as Richardson-
Nijenhuis-bracket.

The Lie derivative of a form with respect to K (in the sense of (C.48)) is because of k′ = 1 really a (�rst
order) derivative and takes the form

LK(k,1) ≡ [ıK(k,1) ,d] (C.64)

LK(k,1)ρ(r) = Km...m
l∂lρm...m + (−)kr∂mKm...m

lρlm...m (C.65)

The (Froehlicher-)Nijenhuis bracket is de�ned as the unique tensor [K,L]N , s.th.

[LK ,LL] = L[K,L]N (C.66)

It is therefore an example of Buttin's di�erential bracket. Its explicit coordinate form reads

[K,L]N ≡ Km...m
j∂jLm...m

n + (−)kl∂mKm...m
jLjm...m

n +
−(−)klLm...m

j∂jKm...m
n − (−)kl(−)lk∂mLm...m

jKjm...m
n (C.67)

= ”LKL− (−)klLLK” (C.68)

A di�erent point of view on the Nijenhuis bracket is via the derived bracket on the level of the di�erential
operators acting on forms:

[ıK ,d ıL] ≡ [[ıK ,d] , ıL] (C.69)

It induces the Nijenhuis-bracket only up to a total derivative (the Lie-derivative-term)

[ıK ,d ıL] ≡ ı[K,L]N
− (−)k(l−1)LıLK (C.70)

Using the extended de�nition of the exterior derivative in the sense of (6.37) and of the interior product (6.32),
one can write the Lie derivative as an interior product (see 6.35) LıLK = −(−)l+kıd(ıLK) and [[ıK ,d] , ıL] =
(−)k [ıdK , ıL] = (−)kı[dK,L]∆ , so that we can rewrite (C.70) as

[K,L] ≡ [K,L]N + (−)(k−1)ld(ıLK) (C.71)

with [K,L] ≡ (−)k [dK,L]∆ (C.72)

In that sense, [K,L] is the derived bracket of the Richardson Nijenhuis bracket while the Nijenhuis bracket
di�ers by a total derivative. The explicit coordinate form can be read o� from (6.49,6.51) (with only the p = 1
term surviving)

[K,L] = (−)kı(1)
dKL+ (−)kl(−)lı(1)

dLK + (−)(k−1)ld(ı(p)L K) = (C.73)

= Km...m
j∂jLm...m

n + (−)kl∂mKm...m
jLjm...m

n +
−(−)klLm...m

j∂jKm...m
n − (−)kl(−)lk∂mLm...m

jKjm...m
n +

+(−)(k−1)ld
(
kLm...m

jKjm...m
n︸ ︷︷ ︸

ıLK

)
(C.74)

where the last part is non-tensorial due to the appearance of the basis element pi (see subsection 6.1.2):

d(ıLK) = d
(
kLm...m

jKjm...m
n
)

= k∂m
(
Lm...m

jKjm...m
n
)
− (−)l+kLm...m

jKjm...m
ipi (C.75)

The remaining part coincides with the coordinate form of the Nijenhuis bracket as given in (C.67).
One can nicely summarize the algebra of graded derivations on forms as[

L
K

(k1)
1

+ ı
L

(l1)
1

, L
K

(k2)
2

+ ı
L

(l2)
2

]
=

= L[K1,K2]N+ıL1K2−(−)(l2−1)k1 ıL2K1
+ ı[K1,L2]N−(−)(l1−1)k2 [K2,L1]N+[L1,L2]∆ (C.76)



Appendix D

Gamma-Matrices in 10 Dimensions

D.1 Cli�ord algebra, Fierz identity and more for the Dirac matrices

In the following we will collect some general relations for Dirac-Γ-matrices in d dimensions. In contrast to
the rest of this document, we are not using graded conventions in most of this appendix. In other words,
the spinorial indices are not understood to carry a grading and we are thus using neither graded summation
conventions nor the graded equal sign. The reason is that a lot of people (me included) are used to calculate
with Γ-matrices in ordinary conventions, and it therefore seemed to be simpler for me to translate only the
results into the graded conventions. This does not mean, however, that calculating in the graded conventions
would be more complicated. Let us give two examples, how to translate the results. Remember �rst that in
northwest-southeast (NW) δβα = δα

β = −δβα. The equation δαα = 16 therefore becomes 16 = δαα =
∑
α δ

α
α =∑

α δα
α = −

∑
α(−)αδαα = −δαα. When there are naked indices, we also have to take into account the graded

equal sign, which compares the order of the indices in each term: γcαβ = γcβα becomes γcαβ = (−)αβγcβα = −γcβα.
Remember the form of the Cli�ord algebra

{Γa,Γb} = 2ηab11 ⇐⇒ Γ(aΓb) = ηab11 (D.1)

De�ne as ususal Γa1...ap ≡ Γ[a1 · · ·Γap]. The set {ΓI} ≡ {11,Γa,Γa1a2 , . . . ,Γa1...a10} then builds a basis of
Gl(2[d/2]) where 2[d/2] is the dimension of the representation space.

Product of antisymmetrized products of Γ-matrices One can in particular expand any product of
antisymmetrized gamma matrices in the basis {ΓI}:

Γa1...apΓb1...bq =
min{p,q}∑
k=0

k!
(
p
k

)(
q
k

)
η[ap|

[b1
|
η|ap−1|

|b2
|
· · · η|ap+1−k|

|bk
|
Γ|a1...ap−k]

|bk+1...bq
]

(D.2)

The antisymmetrization brackets on the righthand side shall indicate that all the ai's and all the bi's are
independently antisymmetrized. The expressions become quite lengthy, if one spells out the antisymmetrization
explicitely. Let us write down the �rst terms only, using the notation where a checkˇabove an index means
that this index is omitted:1

Γa1...akΓb1...bl = Γa1...akb1...bl +
k∑
i=1

l∑
j=1

(−)k−i+j−1ηaibjΓa1...ǎi...akb1...b̌j ...bl +

+
k∑

i1=1

l∑
j1=1

i1−1∑
i2=1

( j1−1∑
j2=1

(−)k−i1+j1−1+k−1−i2+j2−1︸ ︷︷ ︸
−(−)2k+i1+i2+j1+j2

ηai1bj1 ηai2bj2 Γa1...ǎi2 ...ǎi1 ...akb1...b̌j2 ...b̌j1 ...bl +

+
l∑

j2=j1+1

(−)k−i1+j1−1+k−1−i2+j2−2︸ ︷︷ ︸
(−)2k+i1+i2+j1+j2

ηai1bj1 ηai2bj2 Γa1...ǎi2 ...ǎi1 ...akb1...b̌j1 ...b̌j2 ...bl
)

+ . . . (D.3)

For some applications the precise coe�cients are not important, and a schematic version is enough. Let us
denote Γa1...ak schematically simply by Γ[k]. Neglecting all coe�cients, we can write

Γ[k]Γ[l] ∝ Γ[|k−l|] + Γ[|k−l|+2] + . . .+ Γ[k+l] (D.4)

1For the proof of (D.2) one can simply study independently the cases of how many indices ai and bi coincide. For a nonvanishing
lefthand side all the a's are di�erent and all the b's are di�erent. If even none of the a's coincides with one of the b's, we have simply
Γa1...akΓb1...bl = Γa1...akb1...bl . If a1 = b1 and all others are di�erent, we have Γa1...akΓb1...bl = (−)k−1ηa1b1Γa2...akb2...bl . If two
indices coincide, e.g. a1 = b1, a2 = b2, then we have Γa1...akΓb1...bl = (−)k−1+k−2ηa1b1ηa2b2Γa3...akb3...bl . And so on... �
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Some simpler cases are of particular interest for us:

Γa1Γb1...bl = Γa1b1...bl + l · ηa1[b1Γb2...bl] (D.5)

Γa1a2Γb1...bl = Γa1a2b1...bl − l · ηa1[b1|Γa2|b2...bl] + l · ηa2[b1|Γa1|b2...bl] − l(l − 1)ηa1[b1|ηa2|b2Γb3...bl] (D.6)

Γa1a2Γb1b2 = Γa1a2b1b2 + ηa2b1Γa1b2 + ηa1b2Γa2b1 − ηa1b1Γa2b2 − ηa2b2Γa1b1 +
+ηa1b2ηa2b1 − ηa1b1ηa2b2 (D.7)

Contracting (D.5) with Γa1 from the left yields

(d− l)Γb1...bl = Γa1Γa1b1...bl (D.8)

Acting instead from the righthand side yields

ΓaΓb1...blΓa = Γab1...blΓa + lηa[b1Γb2...bl]Γa =
= (−)l(d− 2l) · Γb1...bl (D.9)

In particular for l = 0 and l = 1, we have

ΓaΓa = d (D.10)

ΓaΓbΓa = −(d− 2) · Γb (D.11)

For even dimensions the righthand side of (D.9) vanishes for l = d/2. We will need this fact for ten dimensions:

ΓaΓb1...b5Γa = 0 for d = 10 (D.12)

Chirality matrix as a �Hodge star� Remember the de�nition and the basic properties of the chirality
matrix in even dimensions:

Γ# ≡
√
−ε(d)Γ0 · · ·Γd−1 =

1
d!
√
−ε(d)εc1...cdΓc1...cd , with

{
ε01...(d−1) ≡ 1

ε(d) ≡ (−)d(d−1)/2 = (−)[d/2] (D.13)

(Γ#)2 = 11 (D.14)

{Γa,Γ#} = 0 ∀a ∈ {0, 1, . . . , d− 1}, for even d, Γ# = ±11 for odd d (D.15)

The sign ε(d) is the sign that one obtains when reversing the order of d indices of an antisymmetric object.
Likewise if we have an antisymmetric object with an arbitrary number p of indices, reversing the order yields
the sign ε(p) ≡ (−)

P(p−1)
k=0 k = (−)p(p−1)/2 = (−)[p/2]. It takes the explicit values

d 0 1 2 3 4 5 6 7 8 9 10 11

ε(d) = (−)[d/2] 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
(D.16)

and has the properties

ε(p+q) = (−)pqε(p)ε(q), ε2(p) = 1, ε(2p) = (−)p, ε(−p) = ε(p+1)︸ ︷︷ ︸
−ε(p−1)

= (−)pε(p), ε(d−p) = ε(d)ε(p)(−)p(d−p)(D.17)

The prefactor
√
−ε(d) in the de�nition of the chirality matrix guarantees the fact that it squares to the unity. For

half of the dimensions the square root is ill-de�ned, because −ε(d) is negative. It should simply be understood

via
√
−1 = i, i.e.

√
−ε(d) ≡ i

1
2 (1+ε(d)) d=10= 1. Of course, a rede�nition of Γ# with an overall (perhaps d-

dependent) sign does not change its properties and might be useful in certain situations. Because Γ# squares
to 11, it can have eigenvalues ±1. The corresponding eigenvectors are chiral and antichiral spinors. For odd
dimension, when Γ# coincides with unity, there is only the eigenvalue 1 and there is no such split.

There is a natural isomorphism between the antisymmetrized product of Γ-matrices Γa1...ap and the wedge
product of the cotangent basis elements (vielbeins) ea1∧. . .∧eap . The multiplication with the chirality matrix on
the one side then corresponds to the application of the Hodge star on the other. It maps p-forms to (d−p)-forms
in the following sense:

Γ#Γa1...ap =
1
d!
√
−ε(d)εcd...c1Γcd...c1Γa1...ap =

(D.2)
=

1
d!
√
−ε(d)εcd...c1p!

(
p
p

)(
d
p

)
ηc1a1 · · · ηcpapΓcdcd−1...cp+1 =

=
1

(d− p)!
√
−ε(d)Γcd...cp+1εcd...cp+1

ap...a1 (D.18)



APPENDIX D. GAMMA-MATRICES IN 10 DIMENSIONS 169

Up to a sign (−)p(d−p) ((−)p for even d and 1 for odd d) the same result is obtained when acting from the right,
s.t. we can summarize

Γa1...apΓ# = ε(p)
√
−ε(d)

1
(d− p)!

εa1...ap
c1...cd−pΓc1...cd−p = (−)(d−p)pΓ#Γa1...ap (D.19)

The above calculation is also true if we are in odd dimensions where Γ# is the unity. The antisymmetrized
products Γa1...ap do then not correspond to ea1 ∧ . . . ∧ eap , but (at least in dimensions where −ε(d) = 1, i.e.
d ∈ {3, 7, 11, . . .}) to self dual forms ea1 ∧ . . .∧ eap +?(ea1 ∧ . . .∧ eap) (see intermezzo below for the discussion of
the Hodge star). The same will be true in the even dimensions d ∈ {2, 6, 10} for the chiral blocks γa1...ap that
will be discussed in particular for d = 10 later. In order to understand better the correspondence between the
multiplication with Γ# and the Hodge star operation, let us give a short review of the latter.

Intermezzo on Cli�ord map and Hodge star operator

In order to avoid confusion about prefactors, note �rst that we use a de�nition of the wedge product that
absorbs the normalization factor 1

p! which is therefore absent at other places:

ω(p) = ωm1...mpdx
m1 ∧ . . . ∧ dxmp (D.20)

Replacing ωm1...mp → 1
p!ωm1...mp everywhere leads to the equations in the standard convention.

In even dimensions d there is a natural isomorphism, the Cli�ord map, from bispinors (which can be
expanded in the complete basis of antisymmetrized products of Γ-matrices) and the formal sum of p-forms in∧•

T ∗M ≡ ⊕p
∧p

T ∗M . The basis elements map simply as

/−1 : Γa1...ap 7→ ea1 · · · eap ≡ ea1 ∧ . . . ∧ eap (D.21)

where ea = dxmema is an orthonormal vielbein-basis. Its inverse map is often denoted by a slash

/ : ea1 · · · eap 7→ Γa1...ap (D.22)

ρ =
∑
p

ρa1...ape
a1 · · · eap 7→ 6ρ ≡

∑
p

ρa1...apΓa1...ap (D.23)

See in particular [6, 5, 115, 116, 81] for frequent use of this map in the context of generalized complex geometry.
Operations on the one side can then be translated to the other. There is in particular the multiplication with
the chirality matrix on the bispinor side which corresponds more or less to the Hodge star operator on the other
side. The 'more or less' statement depends on how exactly one de�nes the Hodge star, and we will simply de�ne
it in such a way, that it corresponds exactly to the multiplication with the chirality matrix, at least with the
multiplication from the righthand side.

The Hodge star operation on a manifold with metric maps p-forms to (n − p)-forms using the metric and
the ε-tensor2

εm1...md ≡
√
| g |εm1...md , ε0...d−1 ≡ 1 (D.24)

2In the following we will use some identities for the epsilon-symbol and for the antisymmetrized Kronecker-delta, which we
would like to recall. Remember �rst the de�nition of the antisymmetrized Kronecker symbols

δc1...cnd1...dn
≡ δc1

[d1
· · · δcn

dn]

If we contract one index pair, we arrive at

δ
c1...cn−1cn
d1...dn−1cn

=
d− (n− 1)

n
δ
c1...cn−1
d1...dn−1

Contracting several indices leads to

δ
c1...cn−pa1...ap
d1...dn−pa1...ap

=

`d−n+p
p

´`n
p

´ δ
c1...cn−p
d1...dn−p

In particular, if all indices are contracted (p = n) or if the original number of indices matches the dimension (n = d), we end up
with

δ
a1...ap
a1...ap =

„
d
p

«
, δ

c1...cd−pa1...ap
d1...dd−pa1...ap

=

„
d
p

«−1

δ
c1...cd−p
d1...dd−p

(see also [117, p.456]). The last identities are important to derive the identities for the Levi-Civita symbol ε. The �rst observation
is that we have

εa1...adε
b1...bd = −d!δ

b1...bd
a1...ad

Both sides are completely antisymmetric in all a and all b. It is therefore enough to check the validity for (a1, . . . , ad) = (b1, . . . , bd) =
(0, . . . , d− 1). The minus sign is coming from the di�erent de�nition of the ε-symbol with upper sign, i.e. ε0...d−1 = −ε0...d−1 = 1.
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where εm1...md is the totally antisymmetric Levi Civita symbol. Let us de�ne the same symbol with upper
indices with a di�erent sign, i.e. as ε0...d−1 ≡ −1 (corresponding to the ε-tensor in �at Minkowski spacetime
where raising a zero-index yields the minus). Using that det g−1 = εm1...mdg

m10 · · · gmdd−1 the ε-tensor with
upper indices takes the familiar form

εm1...md = 1√
|g|
εm1...md , ε0...d−1 ≡ −1 (D.25)

The de�nition of the Hodge star on a manifold with metric ? :
∧p

T ∗M →
∧d−p

T ∗M has some ambiguity
in the sign, depending on which behaviour one prefers ? to have. For us it will be most convenient to de�ne
it simply in the way as Γ# acts (at least for even dimensions). One still has the freedom to decide whether it
should correspond to an action from the left or from the right, which di�ers by a factor of (−)(d−p)p according to
(D.19). We choose the Hodge star corresponding to multiplication of Γ# from the right as given in (D.19). The
dimension dependent prefactor

√
−ε(d), however, will not be included, because it is complex in some dimensions

(but fortunately equal one in 10 dimensions) and the de�nition of the Hodge dual should make sense for real
manifolds. We therefore de�ne

? (dxk1 ∧ . . . ∧ dxkp) ≡
ε(p)

(d− p)!
εk1...kp

m1...md−pdx
m1 ∧ . . . ∧ dxmd−p (D.26)

(?ω(p))m1...md−p =
(−)p(d−p)ε(p)

(d− p)!
εm1...md−p

k1...kpω
(p)
k1...kp

(D.27)

The sign prefactor ε(p) = (−)p(p−1)/2 is usually not present in the old de�nitions in the literature. At some
places (e.g. in [81]) the Hodge star is de�ned such that it coincides with multiplication of Γ# from the left.
This corresponds to a rede�nition of our Hodge star by (−)p(d−p). Let us denote with

ω̃(p) ≡ ωm1...mp∂m1 ∧ . . . ∧ ∂mp (D.28)

the multivector that arises when raising all the indices of the di�erential form ω(p) with the metric gmn and
remember the de�nition of the interior product (C.39) with respect to multivector �elds:

ıω̃(p)ρ(r) ≡ r!
(r−p)! ωl1...lpρlp...l1m1...mr−p︸ ︷︷ ︸

ε(p)ω
l1...lpρl1...lpm1...mr−p

dxm1 ∧ . . . ∧ dxmr−p , ıω̃(p)ρ(r) = 0 for p > r (D.29)

Using (D.17) and the identities for the ε-tensor given in footnote 2 on the previous page, we obtain the following

Using the above formula for contractions of the antisymmetrized Kronecker-delta, we obtain

εa1...ad−pc1...cpε
b1...bd−pc1...cp = −p!(d− p)!δb1...bd−pa1...ad−p

This equation remains the same if replace the Levi Civita symbol ε with the ε-tensor (D.24) and (D.25), as the normalization
factors cancel. �



APPENDIX D. GAMMA-MATRICES IN 10 DIMENSIONS 171

relations for the Hodge star operator3

?2 = −ε(d) (D.30)

(?1)m1...md =
1
d!
εm1...md (D.31)

?(ω(p) ∧ η(q)) = (ıω̃(p) ? η(q)) = (−)pq(ıη̃(q) ? ω(p)), for p+ q ≤ d (D.32)

This implies ?(ω(p) ∧ ?η(q)) = −ε(d)(ıω̃(p)η(q)) (p ≤ q) and ?(?ω(p) ∧ η(q)) = −ε(d)(−)(d−p)q(ıη̃(q)ω(p)) (q ≤ p)
and in particular for p = q

(ω(p) ∧ ?η(p))m1...md = −ε(d)(ıω̃(p)η(p))
1
d!
εm1...md (D.33)

(?ω(p) ∧ η(p)) = −ε(d)(−)(d−p)p(ıη̃(q)ω(p))
1
d!
εm1...md (D.34)

Note that wedge product and inner product play both the role as an embedding ı of forms or vectors into the
space of endomorphisms acting on forms. Thus the equation (D.32) can be written as ?(ıω(p)η(q)) = (ıω̃(p) ?η(q)).
In turn, the same equation acted upon with an overall ? and in addition with η replaced by ?η and ω̃ renamed
as v becomes (ıṽ(p) ? η(q)) = ?(ıv(p)η(q)) (where ṽ is the p-form obtained from the p-vector v by lowering all
indices). For decomposable multivector valued forms ω(p) ⊗ v(k) (with ω a p-form and v a k-multivector) the
embedding is de�ned as ıω⊗v = ıωıv = ω ∧ ıv (see (C.39) on page 163). We thus obtain

? (ıω(p)⊗v(k)η(q)) = ıω̃(p) ? (ıv(k)η(q)) = ıω̃(p) ıṽ(k) ? η(q) (D.35)

The order of the operators on the righthand side is not the �normal order�. The wedge product acts before the
interior product, while the de�nition of the embedding of a multivector valued form is the other way round. In
order to write it as an embedding again, we need to apply the commutator which yields the algebraic bracket
[ıω̃(p) , ıṽ(k) ] ≡ ı[ω̃(p),ṽ(k)] (see (C.43)). The above righthand side then becomes ı((−)pkṽ(k)⊗ω̃(p)+[ω̃(p),ṽ(k)]∆) ? η

(q).

For general multivector valued forms K(k,k′) of form-degree k and multivector degree k′ we therefore cannot set
?(ıK(k,k′)η(q)) equal to ıK̃(k′,k) ? η(q), although this would be tempting. Instead, we get in the schematic index
notation of page A

? (ıK(k,k′)η(q)) = (k)!
(
d− q + k′

k

)
Kl1...lk

[lk...l1m...m(?η)(d−q)
m...m] (D.36)

Only for multivector valued forms with vanishing contractions (e.g. for a torsion which is completely antisym-
metric after pulling down one index) the righthand side reduces to ıK̃(k′,k) ? η(q), where K̃(k′,k) is obtained from
K(k,k′) by raising all k form indices and lowering all k′ multivector indices with the metric.

Finally we can use (D.32) formally also to calculate the action of ?d?, if we consider the exterior derivative
as wedge product d∧. In �at space and Cartesian coordinates, there is no contribution from the action of the
derivative on the metric and we arrive formally at ?(d∧?η(q)) = −ε(d)(ıd̃η

(q)), or explicitely (?d?η(q))m1...mq−1 =
−qε(d)∂

kη
(q)
km1...mq−1

. In curved space this result gets covariantized to

(?d? η(q))m1...mq−1 = −qε(d)∇(LC) kη
(q)
km1...mq−1

(D.37)

3Because of the uncommon de�nition of the Hodge star, we'll provide here the equations also for a rede�ned ?. Let us replace
the sign factor (−)p(d−p)ε(p) = (−)p(d−p)+p(p−1)/2 in the de�nition (D.27) of the Hodge star by some arbitrary d and p dependent
sign factor ε(d,p)

(?ω(p))m1...md−p ≡
ε(d,p)

(d− p)!
εm1...md−p

k1...kpω
(p)
k1...kp

where some natural choices for ε(d,p) are 1, (−)p(d−p), ε(p) and (−)p(d−p)ε(p). The last one corresponds to our de�nition, while the
second is quite common in the literature. With this more general ansatz we have

(?1)m1...md =
ε(d,0)

d!
εm1...md

?2 = −(−)p(d−p)ε(d,p)ε(d,d−p)

?(ω(p) ∧ η(q)) = (−)pq+p(d−p)ε(d,p+q)ε(d,q)(−)p(p−1)/2ıω̃(p) ? η
(q) = (−)q(d−q)ε(d,p+q)ε(d,p)(−)q(q−1)/2ıη̃(q)ω

(p)

In particular for ε(d,p) = (−)p(d−p) one obtains the more familiar equations

(?1)m1...md =
1

d!
εm1...md

?2 = −(−)p(d−p)

ω(p) ∧ ?η(p) = −ıε(p)ω̃
(p)η

(p) 1

d!
εm1...md

where the last equation follows from ?(ω(p) ∧ η(q)) = (−)pqıε(p)ω̃
(p) ? η(q) = ıε(q)η̃(q) ? ω(p) with η(q) replaced by ?η(p). The nice

feature of our present de�nition (with ε(d,p) = (−)p(d−p)ε(p)) is that the expression for ?2 in (D.30) does not depend on the form
degree. �
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where the Levi-Civita connection arises from the action of the divergence on the metric ( 1√
|g|
∂k(
√
| g |ρk) =

∇(LC)kρk). Note that for a Levi-Civita connection the covariant antisymmetrized derivative ∇(LC)
[m0

ωm1...mp]

reduces to the exterior derivative ∂[m0ωm1...mp] because of the symmetry of the connection. This is not true any
longer, if a torsion is present. In that case it makes sense to de�ne a di�erent exterior derivative via

(∇ω(p))m0...mp ≡ ∇[m0ωm1...mp] = (dω(p))m0...mp − pT[m0m1|
kωk|m2...mp] (D.38)

or ∇ ≡ d− ıT (D.39)

The relation for ?d? then turns into

(?∇ ? η(q))m1...mq−1 = −qε(d)∇kη
(q)
km1...mq−1

(D.40)

Apart from the Hodge duality (induced by Γ#-multiplication) there are other interesting operations on the
bispinor side which get translated to the form side via /−1 (D.21). E.g. the matrix multiplications with a
Γ-matrix either from the left or from the right translate due to (D.5) into

Γa· 6ρ /−1

7→ ea ∧ ρ+ ηab
∂

∂eb
ρ︸ ︷︷ ︸

ıebρ

= (D.41)

(D.32)
= ea ∧ ρ− ε(d) ? (ea ∧ ?ρ) (D.42)

6ρ · Γa /−1

7→ ρ ∧ ea + ηab∂ρ/∂eb = (D.43)

= (−)rea ∧ ρ+ (−)r−1ηab
∂

∂eb
ρ︸ ︷︷ ︸

ıebρ

= (D.44)

= (−)r
(
ea ∧ ρ+ ε(d) ? (ea ∧ ?ρ)

)
(D.45)

The form degree r in the last line makes strictly speaking only sense if ρ = ρ(r) is a form of de�nite degree. If
it is instead a formal sum, r should be understood as an operator (acting on ρ) whose eigenvalues are the form
degrees (i.e. ea ∂

∂ea ).
In order to obtain the action of the Dirac operator on the �rst or on the second index of a bispinor, the

above equations can be contracted with a covariant derivative ∇a (whose connection is compatible with the
metric ηab, the Γ-matrices and the vielbein-components, i.e. leaves each of them invariant):

Γa∇a︸ ︷︷ ︸
6∇a

· 6ρ 7→ ∇ρ− ε(d) ?∇ ? ρ (D.46)

∇a 6ρ · Γa 7→
∑
r

(−)r
(
∇ρ(r) + ε(d) ?∇ ? ρ(r)

)
(D.47)

Vanishing of both expressions on the bispinor side yields (because of the di�erent relative signs in the brackets of
both results) ∇ρ = ?∇?ρ = 0, which for vanishing torsion corresponds to dρ = ?d?ρ = 0. Let us try to recover
dand ?d? also in the case with torsion. According to (G.23) or (G.27) any connection which is compatible with
the metric can be written as

Γmnk = Γ(LC) k
mn + Tmn

k + T km|n − Tnk|m (D.48)

ωca
b = ω(LC) b

ca + Tca
b + 2T b(c|a) (D.49)

so that

r∇cρ(r)
ca1...ar−1︸ ︷︷ ︸

−ε(d)(?∇?ρ(r))

= r∇(LC) cρ(r)
ca1...ar−1︸ ︷︷ ︸

−ε(d)(?d?ρ(r))a1...ar−1

+ 2rT cdcρ
(r)
da1...ar−1

− r(r − 1)T bc[a1|ρ
(r)
cb|a2...ar−1]︸ ︷︷ ︸

ε(d)(?ıT ?ρ(r))a1...ar−1

(D.50)

As indicated below the brackets, the same result is obtained via ?∇ ? ρ = ?(d? ρ− ıT ? ρ) and then using (D.36)
for ?(ıT ? ρ), considering T as a vector valued 2-form.

As a next step we should study the e�ect of multiplying the bispinor with another bispinor which again can
be expanded in antisymmetrized products Γb1...bp of Γ-matrices. Using (D.2), we obtain

6ω(p) 6ρ(r) =
min{p,r}∑
k=0

k!
(
p
k

)(
r
k

)
ωa1...ap−k

ck...c1ρ(r)
c1...ckap−k+1...ap+r−2k

Γa1...ap+r−2k (D.51)
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The Γa1...ap+r−2k 's get mapped to ea1 · · · eap+r−2q by /−1. For forms which are not of de�nite degree, the result
can then be written as

6ω 6ρ /−1

7→
∑
k≥0

1
k!
ω

←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
ρ (D.52)

which de�nes the Cli�ord multiplication between forms. The Cli�ord multiplication of two self dual forms
is either 0 or another self-dual form:

6ω(p) 1
2 (11 + Γ#) 6ρ(r) 1

2 (11 + Γ#) =
{
6ω(p) 6ρ(r) 1

2 (11 + Γ#) for r even
0 for r odd

(D.53)

Note �nally that the matrix-commutator on the bispinor side naturally de�nes an (algebraic) bracket on the
form-side

[6ω, 6ρ]
/−1

7→
∑
k≥0

1
k!

(
ω

←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
ρ−ρ

←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
ω
)
(D.54)

Although this is a valid and consistent map, it is not the most natural object from the form point of view. On the
lefthand side we have the possibility to think of the gamma matrices as fermionic supermatrices as suggested in
section 2.7 on page 26 and consider the graded commutator which would include an additional sign (−)pr in front
of the second term for forms ω(p) and ρ(r) of de�nite degree. Then one can use that ω(p)

←−
∂
∂ea = −(−)p ∂

∂eaω
(p)

and therefore ω(p)
←−
∂

∂ea1 · · ·
←−
∂

∂eak = (−)kp+kε(k)
∂

∂eak · · ·
∂

∂ea1 ω
(p) in order to interchange the position of ω and ρ

and arrives at

[6ω, 6ρ]︸ ︷︷ ︸
with odd Γ′s

/−1

7→
∑
k≥0

(
1− (−)k

) 1
k!
ω

←−
∂

∂ea1
· · ·
←−
∂

∂eak
ηa1b1 · · · ηakbk ∂

∂ebk
· · · ∂

∂eb1
ρ = (D.55)

=
∑
k≥0

2
(2k + 1)!

ω

←−
∂

∂ea1
· · ·

←−
∂

∂ea2k+1
ηa1b1 · · · ηa2k+1b2k+1

∂

∂eb2k+1
· · · ∂

∂eb1
ρ (D.56)

This contains as a special case the anticommutator of the gamma-matrices themselves

{
Γa,Γb

}
7→ 2ea

←−
∂

∂ea1
ηa1b1

∂

∂eb1
eb = 2ηab (D.57)

The Hodge star as de�ned in the previous intermezzo corresponds to a multiplication with
√
−ε(d)Γ# from

the right. It would of course be possible to absorb the prefactor in the de�nition of Γ#. This, however, would
spoil (Γ#)2 = 1 in general dimensions. Let us now continue with the discussion of the properties of the chirality
matrix. From (D.19) we obtain in particular

Γ#Γa1...ap ⊗ Γap...a1Γ# = (−)p(d−p)Γ#Γa1...ap ⊗ Γ#Γap...a1 =

= (−)p(d−p)
(√
−ε(d)

(d− p)!

)2

εcd...cp+1
ap...a1Γcd...cp+1 ⊗ εbd...bp+1a1...apΓbd...bp+1 (D.58)

Using εcd...cp+1ap...a1εbd...bp+1a1...ap = −ε(p)p!(d− p)!ηcd...cp+1,bd...bp+1 (see footnote 2) we get

Γ#Γa1...ap ⊗ Γap...a1Γ# = (−)p(d−p)ε(d)ε(p)
p!

(d− p)!
Γbd...dp+1 ⊗ Γbd...dp+1 (D.59)

Reversing the order of the indices of one of the Γ's on the righthand side of the equation (contributing a factor
ε(d−p) = ε(d)ε(p)(−)p(d−p)), we arrive at

Γ#Γa1...ap ⊗ Γap...a1Γ# =
p!

(d− p)!
Γb1...bd−p ⊗ Γbd−p...b1 (D.60)

In particular in ten dimensions and for p = 5, we obtain

Γ#Γa1...a5 ⊗ Γa5...a1Γ# = Γb1...b5 ⊗ Γb1...b5 for d = 10 (D.61)
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Trace The trace of all antisymmetrized products of Gamma-matrices vanishes in even dimensions:

trΓa1...a2k+1 = trΓa1...a2k+1Γ#Γ# even d= ±trΓ#Γa1...a2k+1Γ# ⇒ trΓa1...a2k+1 = 0
trΓa1...a2k = ±trΓa2ka1...a2k−1 ⇒ trΓa1...a2k = 0

trΓa1...ap = 0 ∀p ≥ 1 for even d (D.62)

Fierz identity (see e.g. [118]) The Fierz identity is simply a completeness relation. Given a basis
{
|ek >

}
of

a vector space, de�ne its dual basis via < ek||el >= δlk. The completeness relation then reads∑
k

|ek >< ek| = 11 (D.63)

In our case the vector space is the space of all 2[d/2] × 2[d/2]-matrices and in even dimensions the antisym-
metrized products of Γ-matrices form a basis of it: {11,Γa,Γa1a2 , . . . ,Γa1...ad} ≡ {ΓI}. In odd dimensions this is
still a generating set, but not linearly independent. The dual basis to {ΓI} in even dimensions is simply given
by 2−d/2 · {11,Γa,Γa2a1 , . . . ,Γad···a1} ≡ {ΓI} (acting on the original basis by contracting all spinor indices). One
can convince oneself that we have indeed (using trΓa1...ap = 0)

2−d/2δαβ δ
β
α = 1 (D.64)

2−d/2

p!
Γap...a1

α
βΓb1...bq βα = δqpδ

b1...bp
a1...ap ≡ δ

q
pδ
b1
[a1
· · · δbpap] (D.65)

The completeness relation or Fierz identity thus reads

d∑
p=0

2−d/2

p!
Γa1...ap α

βΓap...a1
γ
δ = δ

α
δ δ

γ

β (D.66)

Using (D.60) it can be rewritten as

d/2−1∑
p=0

2−d/2

p!

(
Γa1...ap α

βΓap...a1
γ
δ + (−)p(Γa1...apΓ#)αβ(Γap...a1Γ#)γδ

)
+

2−d/2

(d/2)!
Γa1...ad/2 α

βΓad/2...a1
γ
δ = δ

α
δ δ

γ

β

(D.67)
which further simpli�es when contracted with chiral spinors for which Γ# → 11. The identities (D.66) and
equivalently (D.67) can be rewritten in various ways. One appearance of the Fierz identity which is of particular
interest, is to contract the identity (D.66) with Γc α̃αΓcγ̃γ which yields (after relabeling in the result α̃ → α,
γ̃ → γ)

d∑
p=0

2−d/2

p!
( ΓcΓa1...ap︸ ︷︷ ︸
Γca1...ap+pηc[a1Γa2...ap]

)αβ( ΓcΓap...a1︸ ︷︷ ︸
Γcap...a1+pηc[apΓap−1...a1]

)γδ = Γc αδΓcγβ (D.68)

Some relabeling yields

d∑
p=0

(−)p

2d/2p!
(d− 2p) (Γa1...ap)αβ(Γap...a1)γδ = Γc αδΓcγβ (D.69)

Finally we can use again (D.60), in order to arrive at

d/2−1∑
p=0

(−)p

2d/2p!
(d− 2p)

(
(Γa1...ap)αβ(Γap...a1)γδ − (−)p(Γa1...apΓ#)αβ(Γap...a1Γ#)γδ

)
= Γc αδΓcγβ (D.70)

Contracting the identity with chiral spinors Ψβ = (ψβ , 0) and Φδ = (φδ, 0) leads to

d/2−1∑
p=1, odd

2 (d− 2p)
2d/2p!

(Γa1...apΨ)α(Γap...a1Φ)γ = −(−)ΦΨ(ΓcΦ)α(ΓcΨ)γ (D.71)

d = 4, 6 :

(ΓcΨ)α(ΓcΦ)γ = −(−)ΦΨ(ΓcΦ)α(ΓcΨ)γ (D.72)
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d = 10:

1
2

(Γa1Ψ)α(ΓapΦ)γ +
1
24

(Γa1a2a3Ψ)α(Γa3a2a1Φ)γ = −(−)ΦΨ(ΓcΦ)α(ΓcΨ)γ (D.73)

In 10 dimensions this can be further rewritten, using the symmetry properties of the gamma matrices in their
fermionic indices. We will come back to that in subsection D.3.4.

D.2 Explicit 10d-representation

In the following we will give an explicit representation of the Dirac-Γ-matrices in 10 dimensions which we are
using throughout this document. The presentation is based on the one given in the appendix of [9].

D.2.1 D=(2,0): Pauli-matrices (2x2)

We start with the 3 Pauli matrices

τ1 ≡
(

0 1
1 0

)
, τ2 ≡

(
0 −i
i 0

)
, τ3 ≡

(
1 0
0 −1

)
(D.74)

τ iτ j = iεijkτk + δij11 (D.75)

[τ i, τ j ] = 2iεijkτk (D.76)

{τ i, τ j} = 2δij11 (D.77)

tr τ i = 0, det(σi) = −1 (D.78)

(τ i)† = τ i (D.79)

D.2.2 D=(3,1), 4x4

De�ne γk ≡ τk ⊗ τ2, γ4 ≡ 11⊗ τ1,γ5 ≡ 11⊗ τ3. The tensor product can be understood in di�erent ways when
writing down the resulting matrices. We understand it as plugging the lefthand matrix into the righthand one:

γk ≡
(

0 −iτk
iτk 0

)
, γ4 ≡

(
0 11
11 0

)
≡ iγ0, γ5 ≡

(
11 0
0 −11

)
(D.80)

{γµ, γν} = 2δµν11 (D.81)

tr (γµ) = 0 (D.82)

(γµ)† = γµ (D.83)

γ1γ2γ3γ4 =
(

0 −iτ1τ2τ3

iτ1τ2τ3 0

)(
0 11
11 0

)
=
(

11 0
0 −11

)
= γ5 (D.84)

γ2, γ4 and γ5 are real and symmetric, while γ1 and γ3 are imaginary and antisymmetric.

D.2.3 D=(7,0), 8x8

We can de�ne seven purely imaginary 8× 8 matrices λi as follows:

λi =
{
γ2 ⊗ τ2, γ4 ⊗ τ2, γ5 ⊗ τ2, γ1 ⊗ 11, γ3 ⊗ 11, iγ2γ4γ5 ⊗ τ1, iγ2γ4γ5 ⊗ τ3

}
(D.85)

with iγ2γ4γ5 = iτ2 ⊗ τ2τ1τ3 = τ2 ⊗ 11 =
(
τ2 0
0 τ2

)

{λi, λj} = 2δij11 (D.86)

tr (λi) = 0 (D.87)

(λi)† = λi (D.88)

λ1 · · ·λ6 = (γ2γ4γ5γ1γ3iγ2γ4γ5)⊗ τ2τ1 = −(γ1γ3)⊗ τ3 = (iτ2 ⊗ 11)⊗ τ3 = iiγ2γ4γ5 ⊗ τ3 = iλ7(D.89)
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D.2.4 D=(8,0), 16x16

Now we can de�ne 8 real symmetric 16× 16 matrices σµ ≡ {λi ⊗ τ2, 11⊗ τ1}

σi ≡
(

0 −iλi
iλi 0

)
, σ8 ≡

(
0 11
11 0

)
(D.90)

{σµ, σν} = 2δµν11 (D.91)

(σµ)† = σµ (D.92)

tr (σµ) = 0 (D.93)

χ ≡ σ1 · · ·σ8 = λ1 · · ·λ7 ⊗ τ2τ1 = 11⊗ τ3 =
(

11 0
0 −11

)
(D.94)

D.2.5 D=(9,1),32x32

Finally we de�ne the real Dirac-matrices for 10-dimensional Minkowski-space as Γa ≡
{

11⊗ iτ2, σµ ⊗ τ1, χ⊗ τ1
}

Γ0 ≡
(

0 11
−11 0

)
≡ −iΓ10, Γµ ≡

(
0 σµ

σµ 0

)
,Γ9 ≡

(
0 χ
χ 0

)
(D.95)

Γaαβ ≡
(

0 γaαβ

γaαβ 0

)
, with γaαβ ≡ {δαβ , σµαβ , χαβ}, γaαβ ≡ {−δαβ , σµαβ , χαβ} (D.96)

The small γa (chiral gamma matrices) are thus all real and symmetric! The Dirac matrices obey

{Γa,Γb} = 2ηab11 (D.97)

Γ# ≡ Γ0 · · ·Γ9 = iΓ1 · · ·Γ10 = σ1 · · ·σ8χ⊗ iτ2(τ1)9 = 11⊗ τ3 =
(

11 0
0 −11

)
(D.98)

(Γ#)2 = 11, Γ#Γa = −ΓaΓ# (D.99)

(Γa)† = Γa, (Γ#)† = Γ# (D.100)

trΓa = 0, trΓ# = 0 (D.101)

Intertwiners The unitary intertwiners A, B and C are de�ned via

(Γa)† = AΓaA†, −(Γa)∗ = B†ΓaB, −(Γa)T = C†ΓaC (D.102)

We can choose

Aαβ = −Γ0Γ# =
(

0 δβα
δαβ 0

)
(D.103)

B = Γ# (D.104)

C = BA† = −Γ#Γ0Γ# = Γ0 (D.105)

The Dirac conjugate is ψ̄ ≡ ψ†A. In the Lorentz-covariant expression ψ̄Γmφ, there appears therefore the
combination

(AΓa)αβ =
(
γaαβ 0
0 γaαβ

)
, γaαβ sym and real (D.106)

The other conjugate is the charge conjugate spinor ψc ≡ Cψ̄T = CATψ∗ = Bψ∗ = Γ#ψ∗.

D.3 Cli�ord algebra, Fierz identity and more for the chiral blocks in
10 dimensions

Above we have de�ned

Γaαβ =
(

0 γaαβ

γaαβ 0

)
(D.107)

The Cli�ord algebra for the Γ′s reads in terms of the smallo γ′s:

γ(a|αγγ
|b)
γβ = ηabδαβ (D.108)

γ(a|αβγ
|b)
βα = 16ηab (D.109)
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D.3.1 Product of antisymmetrized products of gamma-matrices

Antisymmetrized products of Γ′s are block-diagonal for even number of factors and block-o�diagonal for odd
number of factors4. The chiral blocks read:

γa1...a2k α
β ≡ γ[a1|αγ1γ|a2|

γ1γ2
· · · γ|a2k]

γ2k−1β
= (−)kγa1...a2k

β
α (D.110)

γ
a1...a2k+1
αβ = (−)kγa1...a2k+1

βα , γa1...a2k+1 αβ = (−)kγa1...a2k+1 βα (D.111)

The schematic expansion of antisymmetrized products of Γ-matrices given in (D.4) has the same form for the
chiral blocks, if we suppress the index structure:

γ[k]γ[l] ∝ γ[|k−l|] + γ[|k−l|+2] + . . .+ γ[k+l] (D.112)

Indeed, without the spinorial indices, even the exact equations (including the correct prefactors) look identically
for the small γ′s:

γa1...apγb1...bq =
min{p,q}∑
k=0

k!
(
p
k

)(
q
k

)
η[ap|

[b1
|
η|ap−1|

|b2
|
· · · η|ap+1−k|

|bk
|
γ|a1...ap−k]

|bk+1...bq
]
(D.113)

In particular we have

γa1γb1...bl = γa1b1...bl + l · ηa1[b1γb2...bl], γb1...blγa1 = γb1...bla1 + l · γ[b1...bl−1ηbl]a1 (D.114)

γa1a2γb1...bl = γa1a2b1...bl − l · ηa1[b1|γa2|b2...bl] + l · ηa2[b1|γa1|b2...bl] +
−l(l − 1)ηa1[b1|ηa2|b2γb3...bl] (D.115)

γa1a2γb1b2 = γa1a2b1b2 − 2ηa1[b1|γa2|b2] + 2ηa2[b1|γa1|b2] − 2ηa1[b1|ηa2|b2] =
= γa1a2b1b2 + ηa2b1γa1b2 + ηa1b2γa2b1 − ηa1b1γa2b2 − ηa2b2γa1b1 +

+ηa1b2ηa2b1 − ηa1b1ηa2b2 (D.116)

Reintroducing the spinorial indices for the last line yields (remember that we do not use our graded conventions
in this part of the appendix):

γa1a2
α
γγb1b2γ

β = γa1a2b1b2
α
β + ηa2b1γa1b2

α
β + ηa1b2γa2b1

α
β − ηa1b1γa2b2

α
β − ηa2b2γa1b1

α
β +

+ηa1b2ηa2b1δβα − ηa1b1ηa2b2δβα (D.117)

If we regard γa1a2
α
γ as a matrix with collected indices (a1, α) and (a2, γ), we can use the above equation also

to construct an inverse to this matrix: Contracting a2 and b1, we obtain

γa1
cα
γγcb2γ

β = 8γa1b2
α
β + 9ηa1b2δβα (D.118)

and therefore

1
9
γa1

cα
γ
(
γcb2γ

β − 8ηcb2δβγ
)

= ηa1b2δβα (D.119)

If two indices in (D.117) are contracted, it turns into

γabα
γγbaγ

β = 90δβα (D.120)

The equations (D.118) and (D.120) are special cases of the following equations (which are in turn a direct
consequence of (D.114) and (D.115)):

γb1γ
b1...bl = l · δ[b1

b1
γb2...bl] = (11− l)γb2...bl , γb1...blγbl = (11− l)γb1...bl−1 (D.121)

γa1
b1γ

b1...bl = (10− l) · γa1b2...bl + (11− l) (l − 1)ηa1[b2γb3...bl] (D.122)

γb2b1γ
b1...bl = (11− l) (12− l) γb3...bl (D.123)

4For example, the product of two gamma-matrices reads

Γa1a2 α
β ≡ Γ[a1|α

γΓ|a1] γ
β =

=

 
γ[a1|αγγ

|a2]
γβ 0

0 γ
[a1
αγ γ

a2] γβ = −γ[a1| βγγ
|a2]
γα

!
≡
„

γa1a2 α
β 0

0 γa1a2α
β

«
γa1a2 α

β = −γa1a2
β
α

γ[0]α
β ≡ δαβ (no index-grading here!) �
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D.3.2 Hodge duality

In the intermezzo on page 169, we had de�ned the Hodge star operator such that it coincides with the multi-
plication of Γ# from the right. Remember

Γ#α
β ≡ Γ0...9α

β =
(

11 0
0 −11

)
(D.124)

Γ#Γa1...ap =
1

(10− p)!
(−)p(p+1)/2εa1...ap

c1...c10−pΓc1...c10−p =
1

(10− p)!
Γc10...cp+1εc10...cp+1

ap...a1 (D.125)

The chiral blocks of Γ#coincide either with plus or minus the unit matrix:

γ#α
β ≡ γ0...9α

β = δαβ =
1

10!
εc1...c10γ

c1...c10 α
β with ε01...9 ≡ 1 (D.126)

γ#
α
β ≡ γ0...9

α
β = −δβα =

1
10!

εc1...c10γ
c1...c10

α
β (D.127)

Any chiral block γ[p] of Γ[p] is therefore always equal (not only �Hodge-dual�) to a γ[10−p]:

γa1...a2k α
β =

1

(10− 2k)!
(−)kεa1...a2k c1...c10−2kγ

c1...c10−2k α
β =

1

(10− 2k)!
γc10...c2k+1 α

βεc10...c2k+1
a2k...a1 (D.128)

−γa1...a2kα
β =

1

(10− 2k)!
(−)kεa1...a2k c1...c10−2kγ

c1...c10−2kα
β =

1

(10− 2k)!
γc10...c2k+1α

βεc10...c2k+1
a2k...a1 (D.129)

γa1...a2k+1 αβ =
1

(9− 2k)!
(−)(k+1)εa1...a2k+1c1...c9−2kγ

c1...c9−2k αβ =
1

(9− 2k)!
γc10...c2k+2 αβεc10...c2k+2

a2k+1...a1(D.130)

−γa1...a2k+1
αβ =

1

(9− 2k)!
(−)(k+1)εa1...a2k+1c1...c9−2kγ

c1...c9−2k
αβ =

1

(9− 2k)!
γ
c10...c2k+2
αβ εc10...c2k+2

a2k+1...a1 (D.131)

In particular this leads to a self duality constraint for γ[5]:

γa1...a5 αβ = − 1
5!
εa1...a5

c1...c5γ
c1...c5 αβ (D.132)

γa1...a5
αβ =

1
5!
εa1...a5

c1...c5γ
c1...c5
αβ (D.133)

This is the same behaviour as for the Γ[p]'s themselves in odd dimensions, where Γ# coincides with the unit
matrix. This means that a bispinor with two chiral indices cannot just be seen as a sum of odd (same chirality)
or even (opposite chirality) forms, but as a self-dual sum of odd an even forms. This is also further discussed
in the intermezzo on RR-�elds on page 104.

For the �ve-form we had Γ#Γa1...a5 ⊗ Γa5...a1Γ# = Γd1...d5 ⊗ Γd1...d5 , which turns into −γa1...a5 αβγγδa5...a1
=

γαβd1...d5
γd1...d5 γδ and −γa1...a5

αβ γa5...a1 γδ = γd1...d5 αβγ
d1...d5
γδ and thus

γa1...a5 αβγγδa5...a1
= γa1...a5

αβ γa5...a1 γδ = 0 (D.134)

D.3.3 Vanishing of gamma-traces and projectors for the gamma-matrix expansion

For any even p (2 ≤ p ≤ 8) we have

γa1...ap α
α = 0, 2 ≤ p ≤ 8, p even (D.135)

The reason is that there is no invariant constant tensor with p antisymmetrized indices apart from the ε-tensor
for p = 10 and the Kronecker delta for p = 0:

γa1...a10
α
α = −γa1...a10 α

α = 16εa1...a10 , γ[0]
α
α ≡ γ[0]α

α ≡ δαα = 16 (D.136)

With the same argument we get γaαβγ
αβ
b ∝ δab and �xing the proportionality by taking the trace yields

γaαβγ
βα
b = 16δab (D.137)

Alternatively this can be derived from γaαβγ
b βγ = ηabδγα + γabα

γ (the Cli�ord algebra for the chiral blocks and
thus a special case of (D.113)) together with (D.135). In the same manner we get for all other forms (using
(D.113) and (D.135))

γ
a1...ap
αβ γβαbp...b1 = 16p!δa1...ap

b1...bp
for p ∈ {1, 3} (D.138)

γa1...a5
αβ γβαb5...b1 = 16εa1...a5

b5...b1 + 16 · 5!δa1...a5
b1...b5

(D.139)

γa1...ap α
βγbp...b1

β
α = 16p!δa1...ap

b1...bp
for p ∈ {2, 4} (D.140)
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The extra term in the γ[5]γ[5] contraction on the righthand side of the second line is due to the fact that the
trace of γ[10] does not vanish according to (D.136). Any other contraction, where the number of bosonic indices
does not match, vanishes

tr (γ[p]γ[q]) = 0 for p 6= q, and p, q ≤ 5 (D.141)

The results of above can be used to project to the coe�cients of γ-matrix expansions:

Aαβ = Aaγ
aαβ +Aa1a2a3γ

a1a2a3 αβ +Aa1...a5γ
a1...a5 αβ ,

with Aa1...ap =
1

16p!
γap...a1 βαA

αβ for p ∈ {1, 3} and Aa1...a5 =
1

32 · 5!
γa5...a1 βαA

αβ (D.142)

Dαβ = Daγ
a
αβ +Da1a2a3γ

a1a2a3
αβ +Da1...a5γ

a1...a5
αβ ,

with Da1...ap =
1

16p!
γβαap...a1

Dαβ for p ∈ {1, 3} and Da1...a5 =
1

32 · 5!
γβαa5...a1

Dαβ (D.143)

Bαβ = B[0]δ
α
β +Ba1a2γ

a1a2 α
β +Ba1a2a3a4γ

a1a2a3a4 α
β , Ba1...ap =

1
16p!

γap...a1
β
αB

α
β (D.144)

Cα
β = C[0]δ

β
α + Ca1a2γ

a1a2
α
β + Ca1a2a3a4γ

a1a2a3a4
α
β , Ca1...ap =

1
16p!

γap...a1β
αCα

β (D.145)

For the �rst two expansions it was used that due to the restrictions (D.132) and (D.133) on γ[5], the corresponding
expansion coe�cients can always be chosen to obey (anti) self-duality constraints of the form

Aa1...a5 = − 1
5!
Ac1...c5ε

c1...c5
a1...a5 (D.146)

Da1...a5 =
1
5!
Dc1...c5ε

c1...c5
a1...a5 (D.147)

which lead together with (D.139) to an extra factor of two and thus to a normalization factor 1
32 instead of 1

16
for p = 5.

D.3.4 Chiral Fierz

Remember
10∑
p=0

1
32p!

Γa1...ap α
βΓap...a1

γ
δ = δ

α
δ δ

γ

β (D.148)

or

4∑
p=0

1
32p!

(
Γa1...ap α

βΓap...a1
γ
δ + (Γ#Γa1...ap)αβ(Γap...a1Γ#)γδ

)
+

1
32 · 5!

Γa1...a5 α
βΓa5...a1

γ
δ = δ

α
δ δ

γ

β (D.149)

We want to make a distinction of the di�erent cases corresponding to the chiral indices:∑
p∈{0,2,4}

1
16p!

(
γa1...ap α

βγap...a1
γ
δ

)
= δαδ δ

γ
β (D.150)

0 ·+−4
4

∑
p∈{1,3}

1
16p!

γa1...ap αβγap...a1
γδ +

1
32 · 5!

γa1...a5 αβγa5...a1
γδ︸ ︷︷ ︸

=0

= 0 (D.151)

0 ·
∑

p∈{1,3}

1
16p!

γa1...ap
αβγap...a1 γδ +

1
32 · 5!

γa1...a5
αβγa5...a1 γδ︸ ︷︷ ︸

=0

= 0 (D.152)

∑
p∈{1,3}

1
16p!

γa1...ap αβγap...a1 γδ +
1

32 · 5!
γa1...a5 αβγa5...a1 γδ = δαδ δ

β
γ (D.153)

Only the �rst and the last give nontrivial information.

δαβ δ
γ
δ +

1
2
γa1a2 α

βγa2a1
γ
δ +

1
4!
γa1a2a3a4 α

βγa4a3a2a1
γ
δ = 16δαδ δ

γ
β (D.154)

γaαβγa γδ +
1
3!
γa1a2a3 αβγa3a2a1 γδ +

1
2 · 5!

γa1...a5 αβγa5...a1 γδ = 16δαδ δ
β
γ (D.155)
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Contracting γ, δ in (D.154) yields 16δαβ = 16δαβ , contracting γ, β instead, yields5

δαδ +
1
2
γa1a2 α

γγa2a1
γ
δ +

1
4!
γa1a2a3a4 α

γγa4a3a2a1
γ
δ = (16)2δαδ (D.156)

γaαβγa βδ︸ ︷︷ ︸
10δαδ

+
1
3!
γa1a2a3 αβγa3a2a1 βδ +

1
2 · 5!

γa1...a5 αβγa5...a1 βδ = (16)2δαδ (D.157)

We can also contract (D.154) with γbαργb γσ to arrive at

0 = γbβργb δσ +
1
2
γa1a2 α

βγ
b
αρ︸ ︷︷ ︸

γ[3]+γ[1]

γb γσγa2a1
γ
δ︸ ︷︷ ︸

γ[3]+γ[1]

+
1
4!
γa1a2a3a4 α

βγ
b
αρ︸ ︷︷ ︸

γ[5]+γ[3]

γb γσγa4a3a2a1
γ
δ︸ ︷︷ ︸

γ[5]+γ[3]

−16γbδργb βσ (D.158)

Now we use that γ[3]is antisymmetric in βρ and that γ[5]γ[5] = 0 (mixed terms like γ[5]γ[3] also vanish, because
some η are contracted with antisymmetric indices of γ[5]). Symmetrizing the above equation in βρ yields

0 = γbβργb δσ + 2ηb[a1γ
a2]
ρβ ηb[a2γa1]σδ − 16γbδ(ρ|γb |β)σ =

= γbβργb δσ + 2δ[a1
a2
γ
a2]
ρβ γa1 σδ − 16γbδ(ρ|γb |β)σ =

= γbβργb δσ + δa1
a2
γa2
ρβγa1 σδ − δa2

a2
γa1
ρβγa1 σδ − 16γbδ(ρ|γb |β)σ =

= γbβργb δσ + γaρβγa σδ − 10γa1
ρβγa1 σδ − 16γbδ(ρ|γb |β)σ =

= −8γbβργb δσ − 16γbδ(ρ|γb |β)σ (D.159)

γb(βρ|γb |δ)σ = 0 (D.160)

We could have used directly equation (D.73) to derive this result. This is a very important identity because
it is so simple and can be used to derive many other identities. One example will be useful for us in the main
part. Consider the contraction of the bosonic indices of two γ[2]'s:

γabαβγab
γ
δ =

(
γaαργbρβ − ηabδαβ

)
(γγσa γb σδ − ηabδγδ ) = (D.161)

= γaαργγσa γbρβγb σδ − γaαργa ρβδ
γ
δ − γ

b γσγb σδ δ
α
β + 10δαβ δ

γ
δ (D.162)

In order to make use of (D.160) we symmetrize the lower spinorial indices and obtain

γabα(β|γab
γ
|δ) =

(
γaαργbρβ − ηabδαβ

)
(γγσa γb σδ − ηabδγδ ) = (D.163)

= γaαργγσa γbρ(β|γb |δ)σ︸ ︷︷ ︸
− 1

2γ
b
βδγb ρσ (D.160)

− γaαργa ρ(β︸ ︷︷ ︸
10δα(β

δγδ) − γ
b γσγb σ(δ︸ ︷︷ ︸

10δγ(δ

δαβ) + 10δα(βδ
γ
δ) = (D.164)

= − 1
2 γ

aαργb ρσγ
σγ
a︸ ︷︷ ︸

−8γαγb (D.9)

γbβδ − 10δα(βδ
γ
δ) (D.165)

We can thus express γ[2]γ[2] by γ[1]γ[1] and Kronecker deltas

γabα(β|γab
γ
|δ) = 4γαγa γaβδ − 10δα(βδ

γ
δ) (D.166)

5As a consitency check we can in addition contract α, δ and get for the �rst Fierz

16 + 16
1

2
2!δa1a2

a1a2
+ 16

1

4!
4!δa1...a4

a1...a4
= (16)3

1 +

„
10
2

«
| {z }

45

+

„
10
4

«
| {z }

210

= (16)2 = 256

and for the second one

10 +

„
10
3

«
| {z }

120

+
1

2

„
10
5

«
| {z }

252

= 256 �



Appendix E

Noether

E.1 Noether's theorem and the inverse Noether method

Most of the following presentation is based on [95, p.67f, p.95], although somewhat modi�ed. Consider an action
of the quite general form

S[φIall] ≡
∫
dnσ L(φIall, ∂µφ

I
all, ∂µ1∂µ2φ

I
all, . . .) (E.1)

In most of the applications there appear no higher derivatives than ∂µφIall. Let us treat global and local sym-
metries at the same time and consider a symmetry transformation with in�nitesimal transformation parameter
ρ(σ). The transformation can be expanded in derivatives of the transformation parameter:

δ(ρ)φ
I
all ≡ ρaδaφ

I
all︸ ︷︷ ︸

δ0
(ρ)φ

I
all

+ ∂µρ
aδµaφ

I
all︸ ︷︷ ︸

δ1
(ρ)φ

I
all

+ ∂µ1∂µ2ρ
aδµ1µ2
a φIall︸ ︷︷ ︸

δ2
(ρ)φ

I
all

+ . . . (E.2)

In order to de�ne properly the variational derivatives for this more general case, consider �rst the variation of
the Lagrangian1

δL = δφIall

(
∂L
∂φIall

− ∂µ
∂L

∂(∂µφIall)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ

I
all)
− . . .

)
+

+∂µ

(
δφIall ·

∂L
∂(∂µφIall)

+
∑
k≥2

k−1∑
i=0

(−)i∂ν1 . . . ∂νk−1−iδφ
I
all · ∂νk−i . . . ∂νk−1

∂L
∂(∂µ∂ν1 . . . ∂νk−1φ

I
all)

)
(E.3)

The total derivative term reduces to a boundary term in the variation of the action, while the remaining term
de�nes the variational derivative. As the boundary of a boundary vanishes, one can further partially integrate

1 In (E.3) we have reformulated the variations containing derivatives of the �elds φIall using schematically the following iterated
'partial integration':

∂ka · b = ∂
“
∂k−1a · b

”
− ∂k−1a · ∂b =

= ∂
“
∂k−1a · b

”
− ∂

“
∂k−2a · ∂b

”
+ ∂k−2a · ∂2b =

= ∂
h
∂k−1a · b− ∂k−2a · ∂b+ . . .+ (−)k−1a · ∂k−1b

i
+ (−)ka · ∂kb =

= ∂

"
k−1X
i=0

(−)i∂k−1−ia · ∂ib
#

+ (−)ka · ∂kb

This equation is applicable in (E.3), because the indices of the partial derivatives are all contracted and symmetrized and therefore
behave like one-dimensional derivatives. In our case the above formula takes the explicit form

δ(∂µ1 . . . ∂µkφ
I
all) ·

∂L
∂(∂µ1 . . . ∂µkφ

I
all)

=

= ∂µ
h k−1X
i=0

(−)i∂ν1 . . . ∂νk−i−1δφ
I
all · ∂νk−i . . . ∂νk−1

∂L
∂(∂µ∂ν1 . . . ∂νk−1φ

I
all)

i
+ (−)kδφIall · ∂µ1 . . . ∂µk

∂L
∂(∂µ1 . . . ∂µkφ

I
all)

�
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the boundary term in order to obtain a convenient form that determines the boundary conditions:2

δS =
∫

Σ

dnσ δφIall

(
∂L
∂φIall

− ∂µ
∂L

∂(∂µφIall)
+ ∂µ1∂µ2

∂L
∂(∂µ1∂µ2φ

I
all)
− . . .

)
︸ ︷︷ ︸

≡ δS

δφI
all

+

+
∫
∂Σ

δφIall

(
∂L

∂(∂µφIall)
− 2∂µ2

∂L
∂(∂µ∂µ2φ

I
all)

+ 3∂µ2∂µ3

∂L
∂(∂µ∂µ2∂µ3φ

I
all)
− . . .

)
︸ ︷︷ ︸

(bc)µI

×

× 1
(n− 1)!

εµν1...νn−1dσ
ν1 ∧ · · · ∧ dσνn−1 (E.4)

A general variation δφIall determines via δS = 0 the equations of motion δS
δφIall(σ)

= 0 (and the boundary conditions

nµ(bc)µI = 0 with nµ the normal one form), while for a symmetry transformation δ(ρ)φIall the variation of the
action has to vanish o�-shell. Then the variation of the Lagrangian has to be a divergence independent from
the equations of motion:

δ(ρ)L
!= ∂µKµ(ρ) with nµKµ(ρ)

∣∣∣
∂Σ

= 0 (E.5)

The symmetry variation of the Lagrangian is thus on the one hand equal to a divergence and on the other hand
(according to (E.3)) equal to the equations of motion plus another divergence. One can therefore de�ne an
object whose divergence is proportional to the equations of motion. So let us de�ne the current

jµ(ρ) ≡ δφIall ·
∂L

∂(∂µφIall)
+
∑
k≥1

k∑
i=0

(−)i∂ν1 . . . ∂νk−iδφ
I
all · ∂νk−i+1 . . . ∂νk

∂L
∂(∂µ∂ν1 . . . ∂νkφ

I
all)
−Kµ(ρ) (E.6)

Note that Kµ(ρ) is determined only up to o�-shell divergence free terms. The same is of course true for the
current. Using this de�nition, we can deduce from the above (E.3) that

∂µj
µ
(ρ) = −δ(ρ)φIall

δS

δφIall
(E.7)

This equation shows one direction of Noether's theorem:

Theorem 2 (Noether) To every transformation δ(ρ)φ
I
all

which leaves the action S invariant, there is an on-
shell divergence-free current jµ(ρ) whose explicit form is given in (E.6). Its o�-shell divergence is given in (E.7).

The such de�ned Noether current is unique up to trivially conserved terms of the form ∂νS
[νµ].

In turn, for any given on-shell divergence-free current j̃µ (see (E.8)), which is furthermore itself on-shell
neither vanishing nor trivial, there is a corresponding nonzero symmetry transformation δφI

all
of the form given

in (E.12) .

2Stokes' theorem reads Z
Σ(n)

dω =

Z
∂Σ

ω(n−1)

For any Σ that can be covered by one single coordinate patch, we can writeZ
Σ

dσµ1 ∧ . . . ∧ dσµn∂[µ1ωµ2...µn] =

Z
∂Σ

dσµ1 ∧ . . . ∧ dσµn−1ωµ1...µn−1

where on the righthand side the coordinate di�erentials dσµ have to be understood as pullbacks dτ i∂iσ
µ(τ) on the boundary.

For the integral of a divergence term likeZ
Σ
dnσ ∂µv

µ ≡
Z

Σ
dσ1 ∧ . . . ∧ dσn ∂µv

µ

we can use the fact that

dσ1 ∧ . . . ∧ dσn ∂µv
µ = dω

with

ω ≡
1

(n− 1)!
vµεµµ1...µn−1dσ

µ1 ∧ . . . ∧ dσµn−1

Applying Stokes then leads to Z
Σ
dnσ ∂µv

µ =

Z
∂Σ

1

(n− 1)!
vµεµµ1...µn−1dσ

µ1 ∧ . . . ∧ dσµn−1 �
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Remark: The equation (E.7) for the o�-shell divergence can serve for reconstructing the symmetry transfor-
mations for a given current. In the Hamiltonian formalism , the current (or better the charge) generates the
transformations via the Poisson bracket. In the Lagrangian formalism one can simply calculate all functional
derivatives δS

δφIall
(i.e. the equations of motion) and try to express the divergence of the current as a linear

combination of them. This method � let's call it inverse Noether � determines the transformations up to
trivial gauge transformations (see e.g. [95, p.69]) and we are using it frequently in the main part, in particular
to derive the BRST transformations.

Proof of the theorem: We have already shown the �rst part (every symmetry transformation induces a
conserved current) by deriving (E.7). The uniqueness up to trivial terms follows from the algebraic Poincaré
lemma. This does not yet show the inverse. For a given on-shell divergence-free current j̃µ we do not necessarily
have the form (E.7), but its o�-shell divergence can also depend on derivatives of the equations of motion:

∂µj̃
µ = −yI(0)

δS

δφIall
− yIµ1

(1) ∂µ1

δS

δφIall
− . . .− yIµN ...µ1

(N) ∂µ1 . . . ∂µN
δS

δφIall
(E.8)

However, one can always rede�ne the current such that we get the form (E.7). This is achieved by performing
the iterated 'partial integration' of footnote 1 on page 181. We have schematically

yI(k)∂
k δS

δφIall
= ∂

[
k−1∑
i=0

(−)i∂iyI(k) · ∂
k−1−i δS

δφIall

]
+ (−)k∂kyI(k) ·

δS

δφIall
(E.9)

We can then rewrite schematically the divergence of the current as follows

∂µj̃
µ = −

N∑
k=0

yI(k)∂
k δS

δφIall
=

= −∂

[
N∑
k=1

k−1∑
i=0

(−)i∂iyI(k) · ∂
k−1−i δS

δφIall

]
−

N∑
k=0

(−)k∂kyI(k) ·
δS

δφIall
(E.10)

To summarize, if we de�ne

jµ ≡ j̃µ +
N∑
k=1

k−1∑
i=0

(−)i∂µ1 . . . ∂µiy
Iµµ1...µk−1

(k) · ∂µi+1 . . . ∂µk−1

δS

δφIall
(E.11)

δφIall ≡
N∑
k=0

(−)k∂µ1 . . . ∂µky
I µ1...µk
(k) (E.12)

we get ∂jµ = −δφIall δS
δφIall

and thus discover that the above de�ned δφIall is a symmetry transformation. We

assumed that the current was on-shell neither vanishing nor trivial, while we rede�ned it with on-shell zero
terms only. Therefore the new current will not be trivial and its divergence is o�-shell non-zero. The symmetry
transformations constructed above are therefore (at least o�-shell) non-zero as well. This completes the proof.
�

We should add that an on-shell vanishing current does not in general imply vanishing transformations. In
fact all Noether currents of gauge transformations are vanishing on-shell. The gauge transformations will be
discussed in the following, where one discovers that the equations of motion are not independent but are related
via the Noether identities. Going back to our construction of the transformations from an arbitrarily conserved
current one can make use of these dependencies instead of only rede�ning the current. This avoids ending up
with an identically vanishing current after the rede�nitions.

E.2 Noether identities and on-shell vanishing gauge currents

Equation (E.7) is valid for any symmetry transformation, global as well as local ones. For local ones, however, the
relation has to hold for any local parameter ρa which is much more restrictive and allows to extract additional
information. Let us assume that there is some highest component jµN µN−1...µ1

a , or in other words ∃N , s.t.
j
µk µk−1...µ1
a = 0 ∀k > N . The expansion of jµ(ρ) in derivatives of the transformation parameter ρ takes the
form

jµ(ρ) ≡ ρajµa + ∂µ1ρ
ajµµ1
a + . . .+ ∂µ1 . . . ∂µN−1ρ

ajµµ1...µN−1
a (E.13)



APPENDIX E. NOETHER 184

Now we plug this expansion and the one of δ(ρ)φIall (E.2) into the equation for the current-divergence (E.7):

ρa∂µj
µ
a + ∂µ1ρ

a (jµ1
a + ∂µj

µµ1
a ) + ∂µ1∂µ2ρ

a
(
j(µ1µ2)
a + ∂µj

µµ1µ2
a

)
+ . . . =

= −ρaδaφIall
δS

δφIall
− ∂µ1ρ

aδµ1
a φIall

δS

δφIall
− ∂µ1∂µ2ρ

aδµ1µ2
a φIall

δS

δφIall
− . . . (E.14)

Depending on whether we have a local or global symmetry, we get a number of recursive relations:

∂µ1j
µ1
a = −δaφIall

δS

δφIall
if ρa 6= 0 (E.15)

∂µ2j
µ2µ1
a = −jµ1

a − δµ1
a φIall

δS

δφIall
if ∂µ1ρ

a 6= 0 (E.16)

∂µ3j
µ3µ2µ1
a = −j(µ2µ1)

a − δµ2µ1
a φIall

δS

δφIall
if ∂µ1∂µ2ρ

a 6= 0 (E.17)

. . .

∂µN j
µN µN−1...µ1
a = −j(µN−1 µN−2...µ1)

a − δµN−1...µ1
a φIall

δS

δφIall
if ∂µ1 . . . ∂µN−1ρ

a 6= 0 (E.18)

0 = −j(µN µN−1...µ1)
a − δµN ...µ1

a φIall
δS

δφIall
if ∂µ1 . . . ∂µNρ

a 6= 0 (E.19)

The �rst equation (E.15) is present already for a global symmetry and corresponds to the Noether's theorem
for global symmetries. If the transformation parameters are instead local and arbitrary, the complete set of
equations is forced. Taking then the divergence of the second equation, the double divergence of the third and
so on, and adding them with appropriate signs, we can remove all currents from the equations and arrive at a
version of the Noether's identities:

δaφ
I
all

δS

δφIall
− ∂µ1

(
δµ1
a φIall

δS

δφIall

)
+ . . .+ (−)N+1∂µ1 . . . ∂µN+1

(
δµN+1...µ1
a φIall

δS

δφIall

)
= 0 (E.20)

From the recursive equations above, one can also obtain an interesting statement about the current of a gauge
symmetry (compare [95, p.95]):

Proposition 6 : The Noether current of a gauge symmetry vanishes on-shell up to trivially conserved terms
(see (E.21)). In turn, if a given global symmetry transformation has an on-shell vanishing current (see (E.35)),
then one can extend the transformation to a local one (see (E.40)).

Proof Start with a given gauge symmetry δ(ρ)φIall and its corresponding current jµ(ρ) with the expansion given
in (E.13), which de�nes the number N of the highest derivative on ρ. We want to show that the current of a
local symmetry is of the form

jµ(ρ) =
N∑
k=0

λµIµ1...µk
(ρ) ∂µ1 . . . ∂µk

δS

δφIall
+ tµ(ρ) (E.21)

for some coe�cients λµIµ1...µk
(ρ) and with a term tµ whose divergence vanishes o�-shell: ∂µt

µ
(ρ) ≡ 0. (Due to the

algebraic Poincaré lemma, this means that there is some antisymmetric tensor S[µν]
(ρ) such that tµ(ρ) = ∂νS

[µν]
(ρ) . )

In order to reduce the length of the equations, de�ne �rst3

Eµk...µ1
a ≡ δµk...µ1

a φIall
δS

δφIall
, Eµk...µ1

a = E(µk...µ1)
a (E.22)

Aµk+1 µk...µ1
a ≡ jµk+1 µk...µ1

a − j(µk+1 µk...µ1)
a , Aµk+1 µk...µ1

a = Aµk+1 (µk...µ1)
a , A(µk+1 µk...µ1)

a = 0 (E.23)

3Note that from

k · j(µk µk−1...µ1)
a = j

µk µk−1...µ1
a + (k − 1)j

(µk−1 µk−2...µ1)µk
a

one can deduce

j
µk µk−1...µ1
a − j(µk µk−1...µ1)

a =
2

k

k−1X
i=1

j
[µk|µk−1...|µi]...µ1
a �
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The �rst object is symmetric in all indices and the second is symmetric in the last k indices and vanishes when
symmetrized in all indices. Using this notation, we can rewrite the recursive equations (E.16)-(E.19) in the
following form

jµ1
a = −Eµ1

a − ∂µ2j
µ2µ1
a (E.24)

jµ2 µ1
a = Aµ2 µ1

a − Eµ2µ1
a − ∂µ3j

µ3µ2µ1
a (E.25)

. . .

jµN−1 µN−2...µ1
a = AµN−1 µN−2...µ1

a − EµN−1...µ1
a − ∂µN jµN µN−1...µ1

a (E.26)

jµN µN−1...µ1
a = AµN µN−1...µ1

a − EµN ...µ1
a (E.27)

This set of equations can now formally be solved for all components of the current, starting from the N -th
equation. We end up with

jµ1
a = −∂µ2A

µ2 µ1
a + ∂µ2∂µ3A

µ3 µ2µ1
a − ∂µ2∂µ3∂µ4A

µ4 µ3µ2µ1
a + . . .+

−Eµ1
a + ∂µ2E

µ2µ1
a − ∂µ2∂µ3E

µ3 µ2µ1
a + ∂µ2∂µ3∂µ4E

µ4 µ3µ2µ1
a − . . . (E.28)

jµ2 µ1
a = Aµ2 µ1

a − ∂µ3A
µ3 µ2µ1
a + ∂µ3∂µ4A

µ4 µ3µ2µ1
a − . . .+

−Eµ2µ1
a + ∂µ3E

µ3 µ2µ1
a − ∂µ3∂µ4E

µ4 µ3µ2µ1
a + . . . (E.29)

. . .

jµk µk−1...µ1
a = Aµk µk−1...µ1

a − ∂µk+1A
µk+1 µk...µ1
a + . . .+ (−)N−k∂µk+1 . . . ∂µNA

µN µN−1...µ1
a +

−Eµk...µ1
a + ∂µk+1E

µk+1...µ1
a − . . .− (−)N−k∂µk+1 . . . ∂µNE

µN ...µ1
a (E.30)

. . .

jµN−1 µN−2...µ1
a = AµN−1 µN−2...µ1

a − ∂µNAµN µN−1...µ1
a − EµN−1...µ1

a + ∂µNE
µN ...µ1
a (E.31)

jµN µN−1...µ1
a = AµN µN−1...µ1

a − EµN ...µ1
a (E.32)

In order to obtain the complete current jµ1
(ρ) we have to contract the k-th term jµ1 µk...µ2

a (with interchanged
µ1 ↔ µk!) with ∂µ2 . . . ∂µkρ

a and then add all the terms. Interchanging µk and µ1 for the k-th equation a�ects
(because of the symmetries) only the term A

µk µk−1...µ1
a 7→ Aµ1 µk...µ2

a . We will sort the Aa-terms with respect
to the number of indices on Aa and the Ea-terms with respect to the number of derivatives on ρa:

ja(ρ) =
N∑
k=2

(
k−2∑
i=0

−(−)k−i∂µ2 . . . ∂µ2+i−1ρ
a∂µ2+i . . . ∂µkA

µk µk−1...µ1
a + ∂µ2 . . . ∂µkρ

aAµ1 µk...µ2
a

)
︸ ︷︷ ︸

≡tµ1
(ρ,k)

+

−
N∑
k=1

∂µ2 . . . ∂µkρ
a
N−k∑
i=0

(−)i∂µk+1 . . . ∂µk+iE
µk+i...µk+1µk...µ1
a (E.33)

The second line vanishes on-shell, but it remains to show that the �rst line tµ1
(ρ) ≡

∑N
k=2 t

µ1
(ρ) has trivially

vanishing divergence. The second term in the �rst line is written separately (not in the sum over i), because
in contrast to the other terms it has the µ1 index at the �rst position (which is not symmetrized like the other
positions). This di�erence in treatment disappears in the divergence with contracted µ1. We use this fact to
show the trivial vanishing (without the use of equations of motion) of the divergence of for every single tµ1

(ρ,k):

∂µ1t
µ1
(ρ,k) =

=
k−1∑
i=0

(−)k−i+1∂µ1 . . . ∂µi+1ρ
a∂µi+2 . . . ∂µkA

µk µk−1...µ1
a −

k−1∑
i=0

(−)k−i∂µ2 . . . ∂µ2+i−1ρ
a∂µ2+i . . . ∂µk∂µ1A

µ1 µk...µ2
a

=
k−1∑
i=1

−(−)k−i+1∂µ1 . . . ∂µiρ
a∂µi+1 . . . ∂µkA

µk µk−1...µ1
a −

k−1∑
i=1

(−)k−i∂µ1 . . . ∂µiρ
a∂µi+1 . . . ∂µkA

µk µk−1...µ1
a +

−(−)k−i∂µ1 . . . ∂µkρ
aA(µk µk−1...µ1)

a︸ ︷︷ ︸
=0

−(−)kρa∂µ1 . . . ∂µk A
(µk µk−1...µ1)
a︸ ︷︷ ︸

=0

= 0 (E.34)

This completes the proof of (E.21) or of one direction of the proposition.
Now consider that we have a global transformation (constant parameter ρc) δ0

(ρc)
φIall = ρacδaφ

I
all with Noether
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current jµ(ρc) = ρac j
µ
a , which itself vanishes on-shell

jµa =
N∑
k=0

λµIµ1...µk
a ∂µ1 . . . ∂µk

δS

δφIall
(E.35)

∂µj
µ
a = −δaφIall

δS

δφIall
(E.36)

If we plug (E.35) into (E.36) we already discover relations between the equations of motion, which look like
the Noether identities for local symmetries. Indeed, if jµa vanishes on-shell, also ρajµa vanishes on-shell, even
for local ρa. For consistent equations of motion (some which have solutions at all) certainly also its derivative
vanishes on-shell. The combination j0

(ρ) ≡ ρajµa therefore corresponds to a symmetry transformation with a
local parameter, i.e. a gauge symmetry, although this current is in general not yet in the standard form of
a Noether current (where its divergence does not contain derivatives of δS

δφIall
, but only the plain equations of

motion):

∂µ(ρajµa ) = ∂µρ
a · jµa + ρa∂µj

µ
a = (E.37)

=
N∑
k=1

∂µρ
aλµIµ1...µk

a ∂µ1 . . . ∂µk
δS

δφIall
−
(
ρaδaφ

I
all − ∂µρaλµIa

) δS

δφIall
(E.38)

In order to get a proper Noether current (where the righthand side does not contain any derivatives of the
equations of motion) we can use our insights from the proof of Noether's theorem, i.e. equations (E.8)-(E.12).
We learn that if we de�ne the whole current to be

jµ(ρ) ≡ ρajµa −
N∑
k=1

k−1∑
i=0

(−)i∂µ1 . . . ∂µi∂νρ
aλνIµµ1...µk−1

a · ∂µi+1 . . . ∂µk−1

δS

δφIall
(E.39)

we get a proper Noether current with corresponding symmetry transformations

δ(ρ)φ
I
all ≡ ρaδaφ

I
all − ∂µρaλµIa +

N∑
k=1

(−)k+1∂µ1 . . . ∂µk
(
∂νρ

aλνI µ1...µk
a

)
(E.40)

The transformation (E.40) is a local symmetry transformation which completes the proof of the proposition. �

Theorem 3 Every on-shell vanishing symmetry transformation is a trivial gauge transformation as de�ned
below:

δφI
all

on−shell= 0, δS = 0 ⇒ δφI
all

=
∫
ddσ AIJ (σ, σ′)

δS

δφI
all

(σ′)
withAIJ (σ, σ′) = −AJI(σ′, σ) (E.41)

See in [95] (theorem 17.3 on page 414 or theorem 3.1 on page 17) for a proof of this theorem. See [95, p.69]
for a discussion of trivial gauge transformations.

E.3 Shortcut to calculate the Noether current

There is a nice shortcut to calculate the current: multiply both sides of (E.7) with some local parameter η(σ),
integrate over the world-volume Σ and perform a partial integration to arrive at∫

Σ

dnσ ∂µη · jµ(ρ) +
∫
∂Σ

(. . .) = δ(η,ρ)S (E.42)

where δ(η,ρ)φIall ≡ η · δ(ρ)φIall. One thus obtains the current by multiplying the variation with an independent
local parameter η and reading o� the coe�cient of ∂µη. This trick is better known for global symmetries4

calculating just jµa .

4If one is just interested in jµa one can consider a variation not with the full variation δ(ρ)φ
I
all, but only with its derivative free

part δ0
(ρ)
φIall ≡ ρ

aδaφIall (see (E.2)) and allow local ρa even in the case of a global symmetry. Multiplying both sides of (E.15) with

ρa we get ρa∂µj
µ
a = −δ0

(ρ)
φIall

δS
δφI

all

. Integrating over Σ and partially integrating �nally yields

δ0
(ρ)S =

Z
Σ
dnσ ∂µρ

a jµa +

Z
∂Σ

(. . .)

The (conserved) Noether current thus can be read o� from the derivative-free variation of the action as the coe�cient of ∂µρa. We
could then proceed with a variation δ1

(ρ)
φIall ≡ ∂µρaδ

µ
aφ
I
all to derive jµµ1

a from the coe�cient of ∂µ∂µ1ρ
a, and so on. All this is

done at the same time in (E.42). �
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E.4 Noether current for the commutator of two symmetries

Determining the Noether charge for the commutator of two symmetries is a very simple task in the Hamiltonian
formalism. As the charges generate the symmetries via the Poisson bracket, we have δ1φIall =

{
Q1, φ

I
all

}
and

δ2φ
I
all =

{
Q2, φ

I
all

}
. The Jacobi identity for the Poisson bracket then implies for the commutator of the symmetry

transformations that [δ1, δ2]φIall =
{
{Q1, Q2} , φIall

}
. In other words {Q1, Q2} = δ1Q2 = −δ2Q1 is the charge

corresponding to the symmetry transformation [δ1, δ2]. After dropping the integration over space, this relation
also holds for the currents, i.e. δ1j

µ
2 = −δ2jµ1 is the divergence-free (on-shell) current corresponding to the

transformation [δ1, δ2].
Of course one expects to obtain the same result within the Lagrangian formalism. And on-shell this indeed

has to be the case. O�-shell, however, there might be a di�erence to the Hamiltonian formalism. In order to
capture all the subtleties, we will therefore derive in the following the o�-shell Noether current corresponding
to [δ1, δ2] within in the Lagrangian formalism. As it turns out, the derivation is a bit more involved than one
might expect.

The current corresponding to the symmetry transformation [δ1, δ2] can in principle easily be computed if we
know Kµ1 and Kµ2 with δL = ∂µKµ for the symmetries δ1 and δ2. By acting with the commutator symmetry on
the Lagrangian, we get a simple expression for the total derivative term for this symmetry:

[δ1, δ2]L = δ1∂µKµ2 − δ2∂µK
µ
1 = ∂µ

(
2δ[1Kµ2]

)
(E.43)

Knowing the total derivative term (up to trivially conserved terms), the corresponding current is simply (ac-
cording to (E.6))

jµ[δ1,δ2] = [δ1, δ2]φIall
∂

∂(∂µφIall)
L+

+
∑
k≥1

k∑
i=0

(−)i∂ν1 . . . ∂νk−i [δ1, δ2]φIall · ∂νk−i+1 . . . ∂νk
∂L

∂(∂µ∂ν1 . . . ∂νkφ
I
all)
− 2δ[1Kµ2] (E.44)

The nontrivial part is now to show that this current is (at least on-shell) equal to δ1j
µ
2 or −δ2jµ1 , which

was suggested by the Hamiltonian formalism. We start with two currents corresponding to two symmetry
transformations

∂µj
µ
1 = −δ1φIall

δS

δφIall
, ∂µj

µ
2 = −δ2φIall

δS

δφIall
(E.45)

How not to do it. The way to derive the desired result presented in the main part of the original version
of this thesis was unfortunately wrong (although luckily without bad consequences). Let me shortly sketch it
and point out the trap. Acting in (E.45) with δ1 on ∂µj

µ
2 and subtracting δ2 of ∂µj

µ
1 , one obtains

∂µ (δ1j
µ
2 − δ2j

µ
1 ) = −[δ1, δ2]φIall

δS

δφIall
+ 2δ[1φIallδ2]

δS

δφIall
(E.46)

So far everything is correct, and it is tempting to argue that the last term is vanishing. The reasoning would

be δ[1φIallδ2]
δS
δφIall

?= δ[1φ
I
allδ2]φ

J
all

δ2S
δφJallδφ

I
all

= 0. The last step is true for symmetry reasons, but the step before

is simply wrong, because it misses an integration of the form δ[1φ
I
allδ2]

δS
δφIall

=
∫
dσ̃ δ[1φ

I
allδ2]φ

J
all(σ̃) δ2S

δφJall(σ̃)δφIall
.

This integration, however, destroys the symmetry argument. Moreover, not only the derivation is wrong, but
also the result (by a factor of two). Following the wrong argument of above, δ1j

µ
2 − δ2j

µ
1 would be the current

of [δ1, δ2] instead of δ1j2 = −δ2j1 = 1
2 (δ1j

µ
2 − δ2j

µ
1 ) (the result from the Hamiltonian reasoning).

Correct derivation in the Lagrangian formalism. It will be very useful in the following to use a shorthand
notation in which repeated indices which are at the same vertical position are simply symmetrized, like for
example in (∂ν)2Aν ≡ ∂ν∂νAν≡̃∂(ν1∂ν2Aν3). Only if they are at opposite vertical position they are summed
over. In this context one should also be aware that lower index positions in the denominator correspond to upper
index positions in the nominator. This notation is similar to the one introduced on page 147 for antisymmetrized
indices.

Let us now once more act in (E.45) with δ1 on ∂µj
µ
2 (without subtracting δ2∂µj

µ
1 ) and reformulate the

righthand side such that we obtain the desired result plus some rest:

∂µ (δ1j
µ
2 ) = −δ1δ2φIall

δS

δφIall
− δ2φIallδ1

δS

δφIall
= (E.47)

= −[δ1, δ2]φIall
δS

δφIall
+

−δ2δ1φIall
δS

δφIall
− δ2φIallδ1

δS

δφIall
(E.48)
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This time we should be more careful about the variation δ1 of the variational derivative δS
δφIall

and we assume

that we study a point σµ which is not at the boundary of the manifold Σ (which means that the variational
derivative of boundary terms with respect to φIall(σ) vanishes):

δ1
δS

δφIall(σ)
=

δ(

0︷︸︸︷
δ1S )

δφIall(σ)
+ [δ1,

δ

δφIall(σ)
]S = (E.49)

=
∫
dnσ̃

(
δ1φ
J
all(σ̃)

δ2S

δφJall(σ̃)δφIall(σ)
− δ

δφIall(σ)
(
δ1φ
J
all(σ̃)

δS

δφJall(σ̃)

))
= (E.50)

= −
∫
dnσ̃

(
δ

δφIall(σ)
δ1φ
J
all(σ̃)

)
︸ ︷︷ ︸
δ(σ−σ̃)

∂(δ1φ
J
all

)

∂φI
all

(σ)+∂̃µδ(σ−σ̃)
∂(δ1φ

J
all

)

∂(∂µφIall)
(σ̃)+∂̃µ∂̃µδ(σ−σ̃)

∂(δ1φ
J
all

)

∂(∂µ∂µφIall)
(σ̃)+...

δS

δφJall(σ̃)
= (E.51)

= −
∂(δ1φJall)
∂φIall

δS

δφJall
−
∑
k≥1

(−)k(∂µ)k
(

∂(δ1φJall)
∂((∂µ)kφIall)

δS

δφJall

)
(E.52)

The righthand side vanishes on-shell which shows that the symmetry transformation of an equation of motion
is always another valid equation of motion. Likewise we can expand δ2δ1φIall as

δ2δ1φ
I
all = δ2φ

K
all

∂(δ1φIall)
∂φKall

+
∑
k≥1

(∂µ)kδ2φKall ·
∂(δ1φIall)
∂(∂µ)kφKall

(E.53)

Plugging the above two expansions into the variation (E.48) of the current-divergence yields

∂µ (δ1j
µ
2 ) = −[δ1, δ2]φIall

δS

δφIall
+

−
∑
k≥1

(∂µ)kδ2φKall ·
∂(δ1φIall)
∂(∂µ)kφKall

δS

δφIall
+
∑
k≥1

(−)kδ2φIall(∂µ)k
(

∂(δ1φJall)
∂((∂µ)kφIall)

δS

δφJall

)
(E.54)

Now we can use the schematic formula −∂ka · b + (−)ka∂kb = −∂
(∑k−1

l=0 (−)l∂k−1−la · ∂lb
)
from footnote 1.

The total derivative can then be added to δ1j
µ
2 on the lefthand side. Therefore the current de�ned by

jµ[δ1,δ2] ≡ δ1j
µ
2 +

∑
k≥1

k−1∑
l=0

(−)l(∂µ)l
( δS

δφIall

∂(δ1φIall)
∂(∂µ)kφKall

)
· (∂µ)k−1−lδ2φ

K
all (E.55)

obeys

∂µj
µ
[δ1,δ2] = −[δ1, δ2]φIall

δS

δφIall
(E.56)

and is thus the o�-shell Noether current corresponding to the commutator symmetry [δ1, δ2]. Remember that this
Noether current is de�ned only up to trivially conserved terms. The fact that the current jµ[δ1,δ2] is antisymmetric
in 1 and 2 also implies that

δ1j
µ
2 = −δ2jµ1 − 2

∑
k≥1

k−1∑
l=0

(−)l(∂µ)k−1−lδ(1|φ
K
all · (∂µ)l

( ∂(δ|2)φ
I
all)

∂(∂µ)kφKall

δS

δφIall

)
(E.57)

Only on-shell these results coincide with the ones from the Hamiltonian formalism.
Note that one could also start with equation (E.6) for the current jµ2 and act on it with δ1 (instead of acting

on the divergence of this equation). In order to turn the result into something resembling (E.44), one needs to
make use of several commutators like [ ∂

∂((∂ν)kφIall)
, ∂µ] = δνµ

∂
∂((∂ν)k−1φIall)

∀k ≥ 1 (0 for k = 0), which imply

by induction [ ∂
∂(∂kνφ

I
all)
, ∂lρ] =

∑k
c=1

(
l
c

)
δν...νρ...ρ∂

l−c
ρ

∂

∂(∂k−cν φIall)
∀k ≥ 1. The derivation of the latter commutators

involves the formula
∑r
i=0

(
i
c

)
=
(
r+1
c+1

)
. Following this path becomes extremely clumsy and I managed to follow

it to the end only if the Lagrangian depends maximally on �rst order derivatives.



Appendix F

Torsion, Curvature H-�eld and their
Bianchi identities

In the following we are frequently making use of the (super)vielbein and its inverse, i.e. a local frame in
(co)tangent space di�erent from the coordinate basis. We denote it via

EA ≡ dxMEMA (F.1)

EA
KEK

B ≡ δA
B (F.2)

EA ≡ EA
K∂K (F.3)

The one forms EA are chosen in such a way that they obey nice properties, i.e. in a Riemannian space it is natural
to choose an orthonormal frame, while if no metric is present, it can be replaced by other requirements like e.g.
invariance under supersymmetry for �at superspace. The structure group is then the set of transformations of
the vielbein which do not change these properties.

To be a useful concept, the frame should be invariant under the covariant derivative.

0 != ∇MENA ≡ ∂MENA + ΩMB
AEN

B − ΓMN
KEK

A (F.4)

This relates the spacetime connection to the structure group connection.

F.1 De�nition of torsion and curvature and H-�eld

F.1.1 Torsion

There are at least three ways to de�ne the torsion. Let us start with the component based one and derive
from this the more geometric (coordinate independent) de�nintion. So at �rst we de�ne the (super) torsion
components simply as the antisymmetric part of the connection coe�cients

TMN
K ≡ Γ[MN ]

K (F.5)

The structure group connection ΩMA
B is given by demanding that the covariant derivative of the vielbein

vanishes

0 != ∇MENA = ∂MEN
A − ΓMN

KEK
A + ΩMB

AEN
B (F.6)

Antisymmetrizing in (M,N) and comparing with (F.5) yields1

TA = dEA − EB ∧ ΩBA (F.7)

This can be used as an alternative de�nition to (F.5). Consider now the commutator of two covariant derivatives
on a scalar (super) �eld (with ∇Kϕ = ∂Kϕ)

[∇M ,∇N ]ϕ = 2∇[M∂N ]ϕ = (F.8)

= −2Γ[MN ]
K∂Kϕ (F.9)

1Note that in the present text form components are de�ned as e.g. TA = TMN
AdxM ∧dxN with no (!) factor 1

2
in front which

corresponds to a de�nition of the wedge product as dxMdxN ≡ dxM ∧ dxN ≡ dx[M ⊗ dxN ] ≡ 1
2

`
dxM ⊗ dxN − dxM ⊗ dxN

´
. You

will thus usually �nd in literature a factor of 2 on the righthand side of (F.5) and a factor 1
2
in (F.10). To go from one convention

to the other, simply replace TMN
K by 2TMN

K in all equations in component form. (For a p-form the factor is of course p!).
Coordinate independent equations like (F.7) remain untouched because of the compensating rede�nition of the wedge product and
the resulting rede�nition of the exterior product. �

189
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or simply

∇[M∇N ]ϕ = −TMN
K∇Kϕ (F.10)

which is yet an alternative and equivalent de�nition of the torsion.

F.1.2 Curvature

For the curvature, let us start with the de�nition via the commutator of covariant derivatives acting on vector
�elds

∇[M∇N ]v
A = −TMN

K∇KvA +RMNB
AvB (F.11)

This is not only a de�nition, but also a proposition that the commutator takes this form. Let us check this and
by doing this get a de�nition of the curvature in component form

∇[M∇N ]v
A =

= ∂[M (∂N ]v
A + ΩN ]B

AvB) + Ω[M |C
A(∂|N ]v

C + Ω|N ]B
CvB)− Γ[MN ]

K(∂KvA + ΩKBAvB) = (F.12)

= ∂[MΩN ]B
AvB + Ω[N |B

A∂|M ]v
B + Ω[M |C

A(∂|N ]v
C + Ω|N ]B

CvB)− T[MN ]
K∇KvA = (F.13)

= −T[MN ]
K∇KvA +

(
∂[MΩN ]B

A + Ω[M |C
AΩ|N ]B

C
)
vB (F.14)

We can thus read o�

RMNB
A = ∂[MΩN ]B

A − Ω[M |B
CΩ|N ]C

A (F.15)

which in form language reads

RA
B = dΩAB − ΩAC ∧ ΩCB (F.16)

We �nally can rewrite this in terms of Γ by using (F.6) in the simpli�ed form

ΩMB
A = ΓMB

A − EBR∂MERA (F.17)

⇒

RMNB
A = ∂[M |

(
Γ|N ]B

A − EBR∂|N ]ER
A
)
−
(
Γ[M |B

C − EBR∂[M |ER
C
) (

Γ|N ]C
A − ECS∂|N ]ES

A
)

(F.18)

RMNK
L = ∂[M |Γ|N ]K

L + EK
B∂[M |EB

RΓ|N ]R
L + EA

L∂[M |ES
AΓ|N ]K

S − EKBEAL∂[M |EB
R∂|N ]ER

A +

−
(
Γ[M |K

C − ∂[M |EK
C
) (

Γ|N ]C
L − ECS∂|N ]ES

AEA
L
)

= (F.19)

= ∂[M |Γ|N ]K
L − Γ[M |K

PΓ|N ]P
L (F.20)

RMNK
L = ∂[M |Γ|N ]K

L − Γ[M |K
PΓ|N ]P

L (F.21)

The same expression can be derived (even simpler) by acting with the commutator of covariant deriavtives on
a vector vM with a curved index instead of the �at index.

F.1.3 Summary, including H-�eld-strength

Let us add the �eld strength H of the antisymmetric tensor �eld B to our considerations. We then have

H ≡ dB (F.22)

TA ≡ dEA − EC ∧ ΩCA (F.23)

RA
B ≡ dΩAB − ΩAC ∧ ΩCB (F.24)

In coordinate basis ('curved indices') we have

HMNK ≡ ∂[MBNK] (F.25)

TMN
K ≡ Γ[MN ]

K (F.26)

RMNK
L ≡ ∂[M |Γ|N ]K

L − Γ[M |K
CΓ|N ]C

L (F.27)

The commutator of covariant derivatives on an arbitrary rank (p,q)-tensor �elds (as a generalization of (F.10)
and (F.11)) reads

∇[M∇N ]t
A1...Aq
B1...Bp

=

= −TMN
K∇Kt

A1...Aq
B1...Bp

+
q∑
i=1

RMNC
Ait

A1...Ai−1CAi+1...Aq
B1...Bp

−
q∑
i=1

RMNBi
Ct
A1...Aq
B1...Bi−1CBi+1...Bp

(F.28)
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This can be generalized yet a bit more, if we want to include �elds that do not transform tensorial, like
e.g. the compensator �eld. If we denote the representation of the structure group transformation, or better the
representation of an Lie algebra element, byR(L ··) (where LAB is the matrix of the fundamental representation),
the covariant derivative can be written as

∇M = ∂M +R(ΩM ··) (F.29)

The commutator takes the general form

∇[M∇N ] = −TMN
K∇K +R(RMN ·

·) (F.30)

This is in particular interesting for the compensator �eld, where we have a negative shift as representations and
therefore2

∇MΦ = ∂MΦ− Ω(D)
M (F.31)

∇[M∇N ]Φ = −TMN
K∇KΦ− F (D)

MN (F.32)

Using the de�nition of the torsion, exterior derivatives of p-forms η(p) can be rewritten with covariant
derivatives, thus allowing to switch to �at coordinates

∂[M1ηM2...Mp+1] = ∇[M1ηM2...Mp+1] + pT[M1M2|
KηK|M3...Mp+1] (F.33)

In particular
H = ∂MBMM = ∇ABAA + 2TAACBCA (F.34)

F.2 The Bianchi identities

Bianchi identities all base on the nilpotency of the exterior derivative d2 = 0. The objects H, TA and RAB are
all de�ned using the exterior derivative. Acting a second time with the exterior derivative (using d2 = 0) yields
consitency conditions (the Bianchi identities) which have to be ful�lled by any valid H, TAor RAB . While these
identities are trivially ful�lled, if the original de�nitions for these objects are used, the imposure of constraints
on them makes a check necessary.3

F.2.1 BI for HABC

The most simple Bianchi identity is the one of the H-�eld H = dB (F.22). It just reads

dH != 0 (F.35)

The supergravity constraints onH that we will obtain, however, are all in �at coordinates, so that it is convenient
to rewrite the Bianchi identity (using (F.33)) with covariant derivatives and then contract with vielbeins in order
to turn the curved indices into �at ones:

∇AHAAA
!= −3TAACHCAA (F.36)

Regarding the torsion as a vector valued 2-form and using the generalized de�nition of the interior product, this
can also be written as

∇H ≡ dH − ıTH
!= −ıTH (F.37)

2It is even possible now to de�ne a covariant derivative of a connection (see (5.62) on page 49 or footnote 2 on page 209 for the
representation of the structure group and its algebra on the connection)

∇M Ω̃NA
B = ∂M Ω̃NA

B −∂NΩMA
B − [ΩM , Ω̃N ]A

B| {z }
R(ΩM ··)Ω̃NAB

If the two connections coincide, we obtain

∇MΩNA
B = ∂MΩNA

B − ∂NΩMA
B − [ΩM ,ΩN ]A

B = 2RMNA
B �

3Let us look at an example to make this point clear: one of the supergravity constraints that we get is Hαβγ = 0. As H was

de�ned via H = dB in the beginning, this is actually a di�erential equation for B of the form EαMEβ
NEγK

`
∂[MBNK]

´
= 0. One

could try to calculate the general solution for this equation (which might be quite hard) and then calculate the H-�eld via H = dB
which will of course trivially obey the Bianchi identities. However, one prefers not to solve for B, but to calculate additional
constraints on H using the Bianchi identities. The idea is to get the full information about H without solving for B. The same
story holds for the other objects. �
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F.2.2 BI for TA

Remember TA = dEA − EC ∧ ΩCA (F.7). Acting on this equation with the exterior derivative yields

dTA = −dEC ∧ ΩCA + EC ∧ dΩCA = (F.38)
(F.16)
= −TC ∧ ΩCA − ED ∧ ΩDC ∧ ΩCA + EC ∧RCA + EC ∧ ΩCD ∧ ΩDA = (F.39)

= −TC ∧ ΩCA + EC ∧RCA (F.40)

The Bianchi identity for the torsion (sometimes also called the �rst Bianchi identity) thus reads

dTA + TC ∧ ΩCA
!= EC ∧RCA (F.41)

Again we want to rewrite it in terms of the covariant derivative. The �exterior� covariant derivative of T reads

∇MTMM
A = ∂MTMM

A − 2TMM
KTKM

A + ΩMB
ATMM

B (F.42)

∇TA = dTA + TB ∧ ΩBA − ıTTA (F.43)

The above Bianchi-identity can thus be rewritten as

∇ATAAD + 2TAACTCAD
!= RAAA

D (F.44)

∇TD + ıTT
D != RD ≡ EC ∧RCD (F.45)

F.2.3 BI for RA
B

Remember RAB = dΩAB − ΩAC ∧ ΩCB (F.16). Acting on it with the exterior derivative yields

dRAB = −dΩAC ∧ ΩCB + ΩAC ∧ dΩCB = (F.46)

= −RAC ∧ ΩCB − ΩAD ∧ ΩDC ∧ ΩCB + ΩAC ∧RCB + ΩAC ∧ ΩCD ∧ ΩDB = (F.47)

= −RAC ∧ ΩCB + ΩAC ∧RCB (F.48)

The Bianchi identity for the curvature (also called second Bianchi identity) thus reads

dRAB +RA
C ∧ ΩCB − ΩAC ∧RCB︸ ︷︷ ︸

[R,Ω]AC

!= 0 (F.49)

Again we want to rewrite this in terms of covariant derivatives and �at indices and therefore consider the
antisymmetrized covariant derivative

∇MRMMA
B = ∂MRMMA

B − 2TMM
KRKMA

B − ΩMA
CRMMC

B + ΩMC
BRMMA

C (F.50)

∇RA
B = dRAB − ΩAC ∧RCB +RA

C ∧ ΩCB − ıTRAB (F.51)

We thus can rewrite the above Bianchi-identity as

∇MRMMA
B + 2TMM

KRKMA
B = 0 (F.52)

∇RA
B + ıTRA

B = 0 (F.53)

If the structure group is restricted to e.g. Lorentz plus scale transformations (see section F.4 on page 194), we
get

RMMa
b = F

(D)
MMδba +R

(L)
MMa

b (F.54)

and RMMα
β =

1
2
F

(D)
MMδα

β +
1
4
R

(L)
MMabγ

ab
α
β (F.55)

The above Bianchi identity then has to hold seperately for Lorentz and Dilatation part. In particular we have

∇MF
(D)
MM + 2TMM

KF
(D)
KM = 0 (F.56)
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F.2.4 Alternative derivation from the Jacobi identity

The above derivations of the Bianchi identities were based on the nilpotency d2 = 0 of the exterior deriva-
tive. The Bianchi identities for curvature and torsion are equivalently obtained from the Jacobi identity for
commutators:

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 (F.57)

Applying this to covariant derivatives, using (F.30) yields

0 = [∇M , [∇M ,∇M ]] = (F.58)

= −2
[
∇M , TMM

K∇K
]

+ 2 [∇M , R(RMM ·
·)] = (F.59)

= −2∇MTMM
K∇K − 2TMM

K [∇M ,∇K ] + 2R(∇MRMM ·
·) + 2RMMM

K∇K = (F.60)

= 2
(
RMMM

K −∇MTMM
K
)
∇K − 2TMM

K
(
−2TMK

L∇L + 2R(RMK ·
·)
)

+ 2R(∇MRMM ·
·) =(F.61)

= 2
(
RMMM

K −∇MTMM
K − 2TMM

LTLM
K
)
∇K + 2R

(
∇MRMM ·

· + 2TMM
KRKM ·

·) (F.62)

Both brackets have to vanish separately, which correctly reproduces the identities (F.44) and (F.52).

F.3 Shifting the connection

Some expressions might look simpler if one changes the connection ΩMA
B to some new connection Ω̃MA

B . As
usual, the di�erence

∆MA
B ≡ Ω̃MA

B − ΩMA
B (F.63)

transforms as a tensor (the inhomogenous term in the transformation cancels). The new torsion looks as follows:

T̃A = dEA − EC ∧ Ω̃CA = (F.64)

= TA − EC ∧∆C
A = (F.65)

Or simply

T̃MM
A = TMM

A + ∆MM
A (F.66)

The expression for the new curvature is a bit more involved and reads4

R̂A
B = dΩ̃AB − Ω̃AC ∧ Ω̃CB = (F.67)

= RA
B + d∆A

B −∆A
C ∧ ΩCB − ΩAC ∧∆C

B −∆A
C ∧∆C

B = (F.68)

= RA
B + ∇∆A

B + TK∆KA
B −∆A

C ∧∆C
B (F.69)

R̃MMA
B = RMMA

B +∇M∆MA
B + TMM

K∆KA
B −∆MA

C∆MC
B (F.70)

or equivalently

R̃MMA
B = RMMA

B + ∇̃M∆MA
B + T̃MM

K∆KA
B + ∆MA

C∆MC
B (F.71)

Proposition 7 The Bianchi identities for TA and RA
B on the one hand and T̃A and R̃A

B on the other hand
are equivalent if the objects are related via (F.66) and (F.70).

4Of similar interest is a change in the de�nition of the vielbein. Note that local structure group transformations of the vielbein
which go along with a structure group transformation of torsion and curvature also include a corresponding transformation of
the connection. Instead we want to look at an independent transformation of the vielbein and consider general local Gl(n)
transformations.

ẼA = EBJB
A

with ∇̃M ẼA = 0. For the new torsion, we get

T̃A = dẼA − ẼC ∧ ΩC
A =

= dEBJB
A − EB ∧ dJB

A − EBJBC ∧ ΩC
A =

= TBJB
A − EB ∧∇JB

A

or

T̃MM
B = TMM

BJB
A +∇MJM

A

The curvature remains untouched

R̃A
B = RA

B

Alternatively one might be interested in shifts of the vielbein (resulting in T̃ = T+d(∆E)A−(∆E)C∧ΩC
A) or linear transformations

of the connection of the form Ω̃ = JΩJ−1 �
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Proof In fact this is a rather trivial statement. The Bianchi identities do not put restrictions on the
elementary objects (the connection and the vielbein), but on the derived objects (torsion and curvature). In the
same way they do not put restrictions on the di�erence tensor. Let us make this statement more precise. If the
Bianchi identity for TAand RAB is ful�lled, then these objects can locally be written as TA = dEA−EC ∧ΩCA

and RAB = dΩAB −ΩAC ∧ΩCB for some EA and some ΩAB . If we revert the derivation of (F.66) and (F.70),
these equations then simply imply that T̃A and R̃AB can locally be written as T̃A = dEA − EC ∧ Ω̃CA and
R̃A

B = dΩ̃AB−Ω̃AC∧Ω̃CB with Ω̃MA
B = ΩMA

B+∆MA
B and therefore necessarily obey the Bianchi identities.

This proves the proposition. �
For the �rst Bianchi identity, we will also provide a brute force proof: Remember the �rst Bianchi identity

(F.44) for which we temporarily introduce the symbol J :

JAAA
D ≡ ∇ATAAD + 2TAACTCAD −RAAAD

!= 0 (F.72)

The transformed J reads

J̃AAA
D (F.66)(F.70)(F.72)

= JAAA
D +∇A∆AA

D + ∆AC
D(TAAC + ∆AA

C)− 2∆AA
C(TCAD + ∆[CA]

D) +

+2∆AA
C(TCAD + ∆[CA]

D) + 2TAAC∆[CA]
D +

−∇A∆AA
D − TAAC∆CA

D + ∆AA
C∆AC

D = (F.73)

= JAAA
D (F.74)

This proves the proposition again for the �rst Bianchi identity. The brute force proof for the second is left to
the reader as an exercise ;-)

F.4 Restricted structure group

As we discussed earlier, the (in�nitesimal) local structure group transformations in the type II supergravity con-
text are block-diagonal ΛAB = diag (Λab,Λαβ,Λα̂β̂) and are in addition restricted to Lorentz transformations
and scale transformations in order to leave invariant the supersymmetry structure constants γcαβ:

Λab = Λ(D)δba + Λ(L)
a1

a2 (F.75)

Λαβ =
1
2

Λ(D)δα
β +

1
4

Λ(L)
a1a2

γa1a2
α
β (F.76)

Λα̂β̂ =
1
2

Λ(D)δα̂
β̂ +

1
4

Λ(L)
a1a2

γa1a2
α̂
β̂ (F.77)

Also the connection is a sum of a scaling connection and a Lorentz connection which makes perfect sense as it
is supposed to be a Lie algebra valued one form:

ΩMa
b = Ω(D)

M δba + Ω(L)
Ma1

a2 (F.78)

ΩMαβ =
1
2

Ω(D)
M δα

β +
1
4

Ω(L)
M a1a2

γa1a2
α
β (F.79)

ΩMα̂β̂ =
1
2

Ω(D)
M δα̂

β̂ +
1
4

Ω(L)
M a1a2

γa1a2
α̂
β̂ (F.80)

with
Ω(L)
M a1a2

≡ Ω(L)
Ma1

cηca2 = −Ω(L)
M a2a1

(F.81)

F.4.1 Curvature

It is well known that the curvature is a Lie algebra valued two form. Let us quickly recall the reason. The
curvature is de�ned to be

RA
B = dΩAB − ΩAC ∧ ΩCB (F.82)

If ΩAB is Lie algebra valued, dΩAB is still Lie algebra valued, as the exterior derivative acts only on the
coe�cient functions and not on the Lie algebra generator. In addition, the term ΩAC ∧ΩCB can be written as
1
2 [Ω,Ω]AB , and the commutator of two Lie algebra elements is again a Lie algebra element.

Let us now see how the structure group reduces into irreducible parts or in particular how the curvature
decays into the Lorentz part and the scaling part (if the latter is present). First of all, the result is clearly block
diagonal if the connection is of this type

RA
B = diag (Rab, Rαβ, Rα̂β̂) (F.83)



APPENDIX F. TORSION, CURVATURE H-FIELD AND THEIR BIANCHI IDENTITIES 195

such that the curvature de�nition (F.82) decays into the three blocks

Ra
b = dΩab − Ωac ∧ Ωcb (F.84)

Rα
β = dΩαβ − Ωαγ ∧ Ωγβ (F.85)

Rα̂
β̂ = dΩα̂β̂ − Ωα̂γ̂ ∧ Ωγ̂ β̂ (F.86)

For the bosonic part of the curvature the seperation of scaling part and Lorentz part is quite obvious

Ra
b = d

(
Ω(D)δba + Ω(L)

a
b
)
−
(

Ω(D)δca + Ω(L)
a
c
)
∧
(

Ω(D)δbc + Ω(L)
c
b
)

= (F.87)

= dΩ(D)︸ ︷︷ ︸
≡F (D)

δba +
(
dΩ(L)

a
b − Ω(L)

a
c ∧ Ω(L)

c
b
)

︸ ︷︷ ︸
R

(L)
a
b

(F.88)

Where the Lorentz curvature R(L)
a
b is antisymmetric if we pull down the index b with the Minkowski metric.

We can thus extract from the complete curvature the scale part and the Lorentz part (here for 10 spacetime
dimensions)

F (D) =
1
10
Ra

a (F.89)

For the fermionic parts we get similarly (δαα = −16 in our conventions)5

Rα
β =

1
2
F (D)δα

β +
1
4
R(L)

a1
bηba2γ

a1a2
α
β (F.90)

F (D) = −1
8
Rα

α (F.91)

and

Rα̂
β̂ =

1
2
F (D)δα̂

β̂ +
1
4
R(L)

a1
bηba2γ

a1a2
α̂
β̂ (F.92)

F (D) = −1
8
Rα̂

α̂ (F.93)

F.4.2 Alternative version of the �rst Bianchi identity

The ordinary Riemannian curvature (without torsion) obeys Rabcd = −Rbacd = −Rabdc, R[abc]d = 0 and
Rabcd = Rcdab (The last is a consequence of the others). For the bosonic components of our curvature we have
(using Gab = e2Φηab with ∇MGab = 2(∂MΦ− Ω(Dil)

M )Gab to pull down bosonic indices)

Rabcd = −Rbacd, R(ab)cd = 0 (F.94)

Rabcd = −Rabdc + 2F (Dil)
ab Gcd, Rab(cd) = F

(Dil)
ab Gcd (F.95)

R[abc]d = ∇[aTbc]|d − 2(∂[aΦ− Ω(Dil)
[a )Tbc|d + 2T[ab|

ETE|c]|d (F.96)

5In order to see how the curvature decays into Lorentz and scale part, let us �rst consider the building blocks seperately:

∂MΩMα
β =

1

2
∂MΩM δα

β +
1

4
∂MΩMa1a2γ

a1a2
α
β

ΩMα
γΩMγ

β =

„
1

2
ΩM δα

γ +
1

4
ΩMa1a2γ

a1a2
α
γ

«„
1

2
ΩM δγ

β +
1

4
ΩMb1b2γ

b1b2
γ
β

«
=

=
1

16
ΩMa1a2ΩMb1b2| {z }

antisym in (a1a2)↔(b1b2)

γa1a2
α
γγb1b2γ

β =

(D.117)
=

1

4
ΩMa1cη

cdΩMda2γ
a1a2

α
β

The curvature thus takes the form

⇒ RMMα
β =

1

2
∂MΩ

(Dil)
M δα

β +
1

4

“
∂MΩ

(Lor)
Ma1a2

− Ω
(Lor)
Ma1c

ηcdΩ
(Lor)
Mda2

”
γa1a2

α
β ≡

≡
1

2
F (Dil)δα

β +
1

4
R(Lor)

a1
bηba2γ

a1a2
α
β �
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Let us write down the antisymmetrization of the indices in R[abc]d explicitely and several times, with permuted
indices:

R[abc]d = Rabcd +Rcabd +Rbcad (F.97)

R[dab]c = Rdabc +Rbdac +Rabdc (F.98)

R[cda]b = Rcdab +Racdb +Rdacb (F.99)

R[bcd]a = Rbcda +Rdbca +Rcdba (F.100)

From this we learn, how we can express the di�erence Rabcd −Rcdab (which vanishes in the Riemannian case),
in terms of antisymmetrized and symmetrized terms. Consider the sum (F.97)-(F.98)-(F.99)+(F.100):

R[abc]d −R[dab]c −R[cda]b +R[bcd]a =
= 2Rabcd − 2Rab(cd) − 2Rcdab + 2Rcd(ab) + 2R(ca)bd − 2Rac(db) + 2Rbc(da) − 2Rda(bc) − 2Rbd(ac) + 2R(db)ca =
= 2 (Rabcd −Rcdab) + 2 (−FabGcd + FcdGab − FacGdb + FbcGda − FdaGbc − FbdGac) (F.101)

The identity corresponding to Rabcd = Rcdab in the Riemannian case thus reads

2 (Rabcd −Rcdab) = (F.102)

= 2 (FabGcd − FcdGab + FacGdb − FbcGda + FdaGbc + FbdGac) +R[abc]d −R[dab]c −R[cda]b +R[bcd]a

with R[abc]d = ∇[aTbc]|d − 2(∂[aΦ− Ω(Dil)
[a )Tbc|d + 2T[ab|

ETE|c]|d.

F.4.3 Scaling-curvature

A covariant way to calculate the scaling �eld strength F
(D)
MN is as follows: Consider the covariant derivative

∇MΦ = ∂MΦ− Ω(D)
M of a compensator �eld Φ (a �eld transforming with a shift under scaling transformations

δΦ = −Λ(D)). We can calculate F (D)
MN via the ususal commutator of covariant derivatives6

∇[M∇N ]Φ = −TMN
K∇KΦ −F (D)

MN︸ ︷︷ ︸
R
“
F

(D)
MN

”
Φ

(F.103)

Note that the curvature (or �eld strength) appears �naked� in di�erence to any action on tensor �elds. The
above equation will be particularly useful when we have constraints on ∇MΦ which then determine the scaling
curvature via

F
(D)
MN = −∇[M∇N ]Φ− TMN

K∇KΦ (F.104)

F.5 Dragon's theorem

In the following we will need the commutator of two covariant derivatives acting on the torsion with afterwards
all lower indices antisymmetrized. Due to (F.28), it is given by7

∇M∇MTMM
A = −TMM

K∇KTMM
A − 2RMMM

KTKM
A +RMMB

ATMM
B (F.105)

and can, using the �rst Bianchi identity (F.44), be rewritten as

RMMB
ATMM

B =
= ∇M∇MTMM

A + TMM
K∇KTMM

A + 2
(
∇MTMM

K + 2TMM
LTLM

K
)
TKM

A (F.106)

It is convenient to introduce a new symbol for the terms of the curvature Bianchi identity

IA
B ≡ ICCCAB ≡ ∇CRCCAB + 2TCCDRDCAB (F.107)

so that the Bianchi identity (F.52) simply reads IAB
!= 0. Then the following theorem holds (originally due to

Dragon in [15]; slightly modi�ed in order to include dilatations):

6Let us check explicitely the validity of (F.103):

∇[M∇N ]Φ = ∂[M∇N ]Φ− Γ[MN ]
K∇KΦ =

= ∂[M (∂N ]Φ− Ω
(D)
N ]

)− T[MN ]
K∇KΦ =

= −F (D)
MN − T[MN ]

K∇KΦ �

7Of course (F.28) implies a more general relation than (F.105), namely one of the form [∇M ,∇N ]TKL
A = . . .. However, the

lower indices are intentionally antisymmetrized in (F.105), in order to get the weakest possible condition that we need to proof the
theorem later on. You'll see... �
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Theorem 4 (Dragon) Given a block diagonal structure group consisting of Lorentz transformation and dilata-
tion in a type II superspace, the torsion Bianchi identity (F.44) together with the algebra (F.105) or equivalently
(F.106) imply the curvature Bianchi identities (F.52) IA

B = 0 up to one remaining equation for the scale part,

namely I
(D)
γγ̂c

!= 0 or equivalently

∇[γF
(D)
γ̂c] + 2T[γγ̂|

DF
(D)
D|c]

!= 0 (F.108)

where F
(D)
MN is the �eld strength of the scale connection Ω(D)

M .

It is natural to proof this theorem in two steps, the �rst being useful enough to write it as a seperate
proposition. Let us include one more index into the antisymmetrization of IAB and de�ne

IB ≡ ICCCCB ≡ ∇CRCCCB + 2TCCDRDCCB (F.109)

so that we can make direct use of the torsion-Bianchi-identity (F.44) due to the appearance of RCCCB . Clearly

IB
!= 0 is a consequence of IAB

!= 0 and is in general a weaker condition. The following proposition treats this
weaker condition:

Proposition 8 In any dimension and for any structure group, the equation IB
!= 0 (with IB given by (F.109))

is implied by the �rst Bianchi identity (F.44) and the algebra (F.105) or equivalently (F.106).

Proof of the proposition:

IB = ∇MRMMM
B + 2TMM

KRKMM
B = (F.110)

(F.44)
= ∇M

(
∇MTMM

B + 2TMM
CTCM

B
)

+ 2TMM
KRKMM

B = (F.111)
(F.105)

= −TMM
C∇CTMM

B − 2RMMM
CTCM

B +RMMC
BTMM

C + (F.112)

+2∇MTMM
CTCM

B + 2TMM
C∇MTCM

B + 2TMM
KRKMM

B = (F.113)

= 3TMM
C
(
R[CMM ]

B −∇[CTMM ]
B
)
− 2

(
RMMM

C −∇MTMM
C
)
TCM

B = (F.114)
(F.44)

= 6TMM
CT[CM |

DTD|M ]
B − 4TMM

DTDM
CTCM

B = (F.115)

= 2TMM
CTMM

DTDC
B = 0 (F.116)

Indeed IB = 0 is a consequence of the torsion Bianchi identity (F.44) RMMM
B = ∇MTMM

B+2TMM
CTCM

B

and (F.105). �

Proof of the theorem: Let us now show that in the case of the type II superspace the antisymmetrized
version already implies (up to one term) the complete one. Remember the object ICCCAB ≡ ∇CRCCAB +
2TCCDRDMA

B introduced in (F.107). It is Lie algebra valued and thus has (for our block diagonal structure
group) no mixed components in A,B:

ICCCA
B = diag (ICCCab, ICCCαβ, ICCCα̂β̂) (F.117)

In addition it splits into dilatation and Lorentz part

ICCCA
B = I

(D)
CCCδA

B + I
(L)
CCCA

B (F.118)

with the latter term being antisymmetric in A,B for bosonic a, b. The complete object is �xed by determing8

ICCCa
b. Given the equation ICCCCB = 0, we want to show that ICCCAB = 0. Consider �rst B = b:

0 = 4I[CCCa]
b = ICCCa

b (F.119)

Similarly, for B = β:

0 = 4I[γ̂γ̂γ̂α]
β = Iγ̂γ̂γ̂α

β = 0 (F.120)

0 = 4I[cγ̂γ̂α]
β = Icγ̂γ̂α

β = 0 (F.121)

0 = 4Iccγ̂α]
β = Iccγ̂α

β = 0 (F.122)

0 = 4Icccα]
β = Icccα

β = 0 (F.123)

8The following proof is based on a block-diagonal connection of the form ΩMA
B = diag (ΩMa

b,ΩMα
β,ΩMα̂

β̂) where the three

entries are related by ∇Mγaαβ = ∇Mγa
α̂β̂

= 0 which in turn is equivalent to ΩMα
β = 1

4
ΩMa

bγabα
β and ΩMα̂

β̂ = 1
4

ΩMa
bγab α̂

β̂.

The Bianchi identity for its torsion TA = (Ta, Tα, T α̂) is equivalent to the one for the Torsion TA = (Ťa, Tα, T̂ α̂) when information
about the connection-di�erence ∆MA

B is available. �
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This implies

Icγ̂γ̂a
b = 0 (F.124)

Iccγ̂a
b = 0 (F.125)

Iccca
b = 0 (F.126)

Equivalently we get from the equations for B = β̂:

Icγγa
b = 0 (F.127)

Iccγa
b = 0 (F.128)

There is thus only one component of Iγγ̂cab left to determine. For this we get

0 = Iγγ̂[ca]
b = (F.129)

= I
(D)
γγ̂[cδ

b
a] + I

(L)
γγ̂[ca]

b (F.130)

Taking the trace in (a,b) yields

0 = 9I(D)
γγ̂c + I

(L)
γγ̂ac

a (F.131)

In order that they vanish independently, it is thus enough to check only one equation, namely I(D)
γγ̂c

!= 0 which
reads explicitely

∇[γF
(D)
γ̂c] + 2T[γγ̂|

DF
(D)
D|c]

!= 0 (F.132)



Appendix G

About the Connection

Let us refer to both, spacetime and structure group connection, simply as �the connection�. Properties of the
one are translated to the other via the condition of covariantly constant vielbeins ∇MENA = 0:

ΓMN
A = ∂MEN

A + ΩMN
A (G.1)

We will use symbols without any decoration (like hats or whatever) to describe a general connection and objects
derived from it. In our application to the Berkovits string, however, we use the undecorated symbol ΩMαβ

for the leftmoving connection only, which hopefully does not lead to confusions. To be more explicit, in the
application we work with several di�erent connections which are all blockdiagonal. In the action there appear
only ΩMαβ and Ω̂Mα̂β̂. The spinorial ΩMαβ induces via ∇Mγcαβ a connection ΩMa

b for the bosonic subspace

which in turn induces a connection ΩMα̂β̂ via ∇Mγcα̂β̂ = 0. The collection of those will be denoted by ΩMA
B

(left-mover connection). The same can be done for Ω̂Mα̂β̂ leading to a connection Ω̂MA
B which we call the

right-mover connection.

ΩMA
B =

 ΩMa
b 0 0

0 ΩMαβ 0
0 0 ΩMα̂β̂

 , Ω̂MA
B =

 Ω̂Ma
b 0 0

0 Ω̂Mαβ 0
0 0 Ω̂Mα̂β̂

 (G.2)

The supergravity constraints are derived from the Berkovits string using a mixed connection

ΩMA
B ≡

 Ω̌Ma
b 0 0

0 ΩMαβ 0
0 0 Ω̂Mα̂β̂

 (G.3)

where Ω̌Ma
b is an a priori independent connection for the bosonic part which is only at some parts of the

calculation set to either the right or the left mover connection. In order to have covariantly constant structure
constants (γcαβ, γ

c
α̂β̂

) the latter connection is inadequate and we need to use either one of the �rst two or s.th.
inbetween, an average connection, which we denote by

Ω←→MA
B ≡ 1

2

(
ΩMA

B + Ω̂MA
B
)

(G.4)

By de�nition the connections ΩMA
B , Ω̂MA

B and Ω←→MA
B (but not ΩMA

B) obey

∇Mγcαβ = ∇̂Mγcαβ = ∇←→Mγ
c
αβ = 0 (G.5)

∇Mγcα̂β̂ = ∇̂Mγcα̂β̂ = ∇←→Mγ
c
α̂β̂

= 0 (G.6)

This relates the three matrix-blocks of the connection components. E.g. for the left-mover connection the
spinorial connection ΩMαβ(being a sum of scale and Lorentz connection) determines the remaining two blocks
(see footnote 7 on page 49 for a derivation):

ΩMa
b = Ω(D)

M δba + Ω(L)
Ma

b, with Ω(L)
Mab = −Ω(L)

Mba (G.7)

ΩMαβ =
1
2

Ω(D)
M δα

β +
1
4

Ω(L)
Mabγ

ab
α
β (G.8)

ΩMα̂β̂ =
1
2

Ω(D)
M δα̂

β̂ +
1
4

Ω(L)
Mabγ

ab
α̂
β̂ (G.9)

Please note again that the considerations in the following sections are for a general connection ΩMA
B and

not speci�c to the leftmoving one. In particular the block diagonality and also ∇Mγcαβ = ∇Mγcα̂β̂ = 0 are only
used if this is explicitely mentioned.
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G.1 Connection in terms of torsion and vielbein (or metric)

A given torsion and vielbein do not determine yet the connection completely. It can be determined by having
additional structures (like metric or some group structure constants) that one wants to be covariantly constant.
In the case where a metric is present, the connection is uniquely determined by the torsion and the (non)metricity
of the metric. Remember the form of the torsion:

TA = dEA − EC ∧ ΩCA (G.10)

T[MN ]
A = ∂[MEN ]

A + Ω[MN ]
A (G.11)

Assume that there is some given symmetric tensor �eld GAB (call it metric, although it might be degenerate).
In �at indices, (non)metricity (metricity for MABC = 0) reads

MABC ≡ ∇AGBC = (G.12)

= EA
M
(
∂MGBC − 2ΩM(B|

DGD|C)

)
= (G.13)

≡ EA
M
(
∂MGBC − 2ΩM(B|C)

)
(G.14)

Here we used GAB to pull down indices, although there might be no inverse to pull indices up. It is quite
common that the metric in the comoving frame (i.e. in �at indices) is constant, like the Minkowski metric, and
then the derivative part above vanishes. This is, however, not obligatory. In any case, nonmetricity is part of
the symmetric part (in the last two indices) of ΩMB|C only. Let us directly compare (G.14) (solved for the
connection term) with (G.11) (rewritten in terms of �at indices and with one index pulled down via GAB

ΩA(B|C) =
1
2
(
EA

M∂MGBC −MABC

)
(G.15)

Ω[AB]|C = TAB|C − EAMEBN∂[MEN ]
DGDC︸ ︷︷ ︸

(dED)ABGDC

(G.16)

From those two equations we can derive the ΩAB|C without any symmetrization. To this end, write down the
antisymmetrized connection three times with permuted indices

ΩAB|C − ΩBA|C = 2Ω[AB]|C (G.17)

ΩBC|A − ΩCB|A = 2Ω[BC]|A (G.18)

ΩCA|B − ΩAC|B = 2Ω[CA]|B (G.19)

Note that

ΩAB|C = −ΩAC|B + 2ΩA(B|C) (G.20)

and consider 1
2 ((G.17) + (G.19)− (G.18)):

ΩAB|C − ΩA(C|B) + ΩC(B|A) − ΩB(C|A) = Ω[AB]|C + Ω[CA]|B − Ω[BC]|A (G.21)

or
ΩAB|C = Ω[AB]|C + Ω[CA]|B − Ω[BC]|A + ΩA(C|B) + ΩB(C|A) − ΩC(B|A) (G.22)

with ΩAB|C ≡ EA
MΩMB

DGDC . Now one can plug in (G.15) and (G.16), in order to get the relation to non-
metricity and torsion. For our purpose it is, however, more convenient to use only the torsion (G.16) and leave
ΩA(B|C) instead of replacing it by nonmetricity.

ΩAB|C = TAB|C + TCA|B − TBC|A − (dED)ABGDC − (dED)CAGDB + (dED)BCGDA +
+ΩA(C|B) + ΩB(C|A) − ΩC(B|A) (G.23)

Some readers might be more familiar with the derivation in curved indices (de�ning ΓMN |K ≡ ΓMN
LGLK):

Γ[MN ]|K = TMN |K (G.24)

ΓK(M |N) =
1
2
(
∂KGMN −∇KGMN︸ ︷︷ ︸

≡MKMN

)
(G.25)

Equation (G.22) of course holds likewise for the spacetime connection

ΓMN |K = Γ[MN ]|K + Γ[KM ]|N − Γ[NK]|M + ΓM(N |K) + ΓN(K|M) − ΓK(M |N) (G.26)
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This time we replace not only the terms antisymmetrized in the �rst two indices with the torsion (G.24) but
also the terms symmetrized in the last two indices with the (non)metricity (G.25):

ΓMN |K =
1
2

(∂MGNK + ∂NGKM − ∂KGMN ) + TMN |K + TKM |N − TNK|M −
1
2

(MMNK +MNKM −MKMN )

(G.27)
If the metric GMN is nondegenerate, one can raise the index and the connection is completely determined.

In ten-dimensional superspace, however, the situation is di�erent as we have a nondegenerate metric only in the
bosonic subspace.

Consider �nally a second connection

Ω̃MA
B ≡ ΩMA

B + ∆MA
B (G.28)

Due to (G.1), we also have

Γ̃MK
L = ΓMK

L + ∆MK
L (G.29)

⇒ T̃MK
L = TMK

L + ∆[MK]
L (G.30)

The equations (G.22) and (G.26) certainly also hold for ∆:

∆AB|C = ∆[AB]|C + ∆[CA]|B −∆[BC]|A + ∆A(C|B) + ∆B(C|A) −∆C(B|A) (G.31)

The vielbein part of (G.23) drops out in the di�erence of two connections and we get with (G.30)1

∆AB|C = (T̃ − T )AB|C + (T̃ − T )CA|B − (T̃ − T )BC|A + ∆A(C|B) + ∆B(C|A) −∆C(B|A) (G.32)

G.2 Connection in Superspace

At least in the ten dimensional type II superspace, there is no natural nondegenerate superspace metric. Only
the bosonic part GMN can be inverted and the remaining undetermined connection coe�cients have to be
�xed by additional conditions. The expression (G.23) for the structure group connection in �at indices is more
appropriate than (G.27), because in �at indeces we have a clear split of the bosonic and fermionic subspace
of the tangent space and the only nonvanishing components of the metric GAB is the bosonic (and invertible)
metric Gab. The connection is from now on block diagonal of the form ΩMA

B = diag (ΩMa
b,Ωmαβ,Ωmα̂β̂).

Due to the degeneracy of GAB , equation (G.23) determines only the components ΩAbc or equivalently ΩMb
c of

the structure group connection, i.e. those with bosonic Lie algebra indices.
In order to determine the remaining components ΩMαβ and ΩMα̂β̂, we have to give additional information

on what properties we want our connection to have. In supergravity it is a reasonable demand that the structure
constants of the supersymmetry algebra, i.e. the gamma matrices, are covariantly constant:

∇Mγaαβ
!= 0 (G.33)

∇Mγaα̂β̂
!= 0 (G.34)

This does not only �x uniquely the form of ΩMαβ and ΩMα̂β̂ in terms of ΩMa
b, but it also restricts the latter

to be the sum of a Lorentz connection and a scale (or dilatation) connection:2

ΩMαβ =
1
4

ΩMa
bγabα

β +
1
2

Ω(D)
M δα

β (G.35)

ΩMα̂β̂ =
1
4

ΩMa
bγab α̂

β̂ +
1
2

Ω(D)
M δα̂

β̂ (G.36)

1Some of our supergravity constraints will determine ∆[ab]|c = −3Habc, ∆[αb]|c = −Tαb|c, ∆[α̂b]|c = T̂α̂b|c, ∆a(b|c) = 0,

∆α(b|c) = ∇αΦGbc and ∆α̂(b|c) = −∇̂α̂ΦGbc, so that the di�erence tensor reads

∆ab|c = −3Habc (= −2Tab|c = 2T̂ab|c)

∆αb|c = −2Tα[b|c] +∇αΦGbc = −2Tαb|c

∆α̂b|c = 2T̂α̂[b|c] − ∇̂α̂ΦGbc = 2T̂α̂b|c �

2Let us give at this point only a short argument for this. According to (D.2)-(D.4) we have schematically Γ[k]Γ[1] ∝ Γ[|k−1|] +
Γ[k+1] ∀k, if Γ[k] denotes a term proportional to a completely antisymmetrized product of k gamma matrices. Let us restrict now
to ten dimensions. The same schematic equation then holds for the chiral submatrices γ[k]. The connection can due to its index
structure be expanded in even antisymmetrized products:

ΩMα
β ∝ γ[0] + γ[2] + γ[4]

When this connection acts on another gamma matrix, we get schematically

ΩM [α|
γγcγ|β] ∝ (γ[0] + γ[2] + γ[4])γ[1] ∝ γ[1] + (γ[1] + γ[3]|{z}

0

) + (γ[3]|{z}
0

+γ[5])
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with

ΩMa
b ≡ ΩM [ac]G

cb︸ ︷︷ ︸
≡Ω

(L)
Ma

b

+Ω(D)
M δba (G.37)

Because of the split in Lorentz and scale connection, the block-diagonality of the structure group and the
degeneracy of the superspace metric, equation (G.23) can be rewritten as

ΩAb|c = TAb|c+TcA|b−Tbc|A−(dEd)AbGdc−(dEd)cAGdb+(dEd)bcGdA+Ω(D)
A Gcb+Ω(D)

b GcA−Ω(D)
c GbA (G.38)

or

Ωab|c = Tab|c + Tca|b − Tbc|a − (dEd)abGdc − (dEd)caGdb + (dEd)bcGda + Ω(D)
a Gcb + Ω(D)

b Gca − Ω(D)
c Gba(G.39)

Ωαb|c = Tαb|c + Tcα|b − (dEd)αbGdc − (dEd)cαGdb + Ω(D)
α Gcb (G.40)

Ωα̂b|c = Tα̂b|c + Tcα̂|b − (dEd)α̂bGdc − (dEd)cα̂Gdb + Ω(D)
α̂ Gcb (G.41)

which determines ΩMa
b via

ΩMa
b = EM

CΩCa|dGdb with GacG
cb ≡ δba (G.42)

The remaining components ΩMαβ and ΩMα̂β̂ are then �xed via (G.35) and (G.36).
Let us in the following calculate ΩMa

b more explicitely in the WZ gauge in order to extract the Levi Civita
connection of the bosonic subspace.

G.3 Extracting Levi Civita from whole superspace connection (in
WZ-gauge)

Remember our de�nition GMN = EM
a e2Φηab︸ ︷︷ ︸

Gab

EN
b in the application to the Berkovits string and the Wess

Zumino gauge (H.76,H.77,H.92):

EM
A
∣∣
~θ=0

=

 em
a ψm

α ψ̂m
α̂

0 δµ
α 0

0 0 δµ̂
α̂

 , EA
M
∣∣ =

 ea
m −ψaµ −ψ̂aµ̂

0 δα
µ 0

0 0 δα̂
µ̂

 , ΩMA
B
∣∣ = 0 (G.43)

with em
aea

n = δnm, ψa
µ ≡ eamψmαδαµ, ψ̂a

µ̂ ≡ eamψmα̂δα̂µ̂

As bosonic metric, we could either take just the leading component in the ~θ-expansion of Gmn, or the one given
by the bosonic vielbein ema and the Minkowski metric:

g̃mn ≡ Gmn| = em
a e2φηab︸ ︷︷ ︸

g̃ab

en
b, gmn ≡ emaηabenb = e−2φg̃mn (G.44)

The �rst is naturally induced by the superspace 'metric', while the second is by construction covariantly con-
served with respect to the connection ωmab ≡ Ωmab

∣∣ (in contrast to g̃mn because of the scaling compensator

�eld φ). We want to write the superspace connection at ~θ = 0 as the Levi Civita connection w.r.t. g̃mn or gmn
plus additional terms.

The superspace connection was derived above starting from (G.22) or (G.23), arriving at the equations
(G.39-G.41) for Ωab|c,Ωαb|c and Ωα̂b|c in terms of the torsion and the exterior derivative of the supervielbein
dEd. We can also use the general equation (G.23), in order to determine the form of the Levi Civita connection
for gmn in terms of the bosonic vielbein. We just have to set the torsion and the symmetric part to zero.
However, as we already use the supervielbein in order to switch from �at to curved indices and vice versa, we
better should write the bosonic vielbeins explicitely in the resulting equation:

ea
mωLCmb

d[g] · ηdc = −eamebn(ded)mnηdc − ecmean(ded)mnηdb + eb
mec

n(ded)mnηda (G.45)

The γ[3]-parts vanish due to the graded antisymmetrization of the indices. The γ[1] parts are �ne because they can be absorbed
by acting with the bosonic connection on the bosonic index. Only the γ[5] part remains and cannot be removed. As it stems from
the γ[4]-part in ΩMα

β, we conclude that the corresponding coe�cient has to vanish and only scale and Lorentz connection remain.
The sketched argumentation can be done rigorously which leads to the stated results for the relation between bosonic and fermionic
connection. �
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For the metric g̃mn instead, the symmetric part of the Levi Civita connection is no longer zero. We still have
torsionlessness and metric compatibility as characterizing properties. The latter condition implies via (G.14)
that

ω
(LC)
m(b|c)[g̃] =

1
2
∂mg̃bc = ∂mφ · g̃bc (G.46)

Using again (G.23) with vanishing torsion, we arrive at

ea
mωLCmb

d[g̃] · g̃dc = −eamebn(ded)mng̃dc − ecmean(ded)mng̃db + eb
mec

n(ded)mng̃da +
+eam∂mφ · g̃bc + eb

m∂mφ · g̃ca − ecm∂mφ · g̃ab (G.47)

In both cases (for g̃ and g) the corresponding Levi Civita connection is certainly sitting in the superspace
connection in the terms with dEd in (G.39-G.41) at ~θ = 0. Indeed one can write3

(dEa)mn| = (dea)mn (G.48)

(dEa)MN | = TMN
a| (G.49)

This is consistent with the fact that Ωαb|c and Ωα̂b|c as given in (G.40) and (G.41) vanish at ~θ = 0 in the
WZ-gauge (where Eα

M
∣∣ = δα

M and ΩµAB
∣∣ = 0. In order to calculate Ωab|c

∣∣ as given in (G.39), we need
the the exterior derivative of the vielbein (as given above) with �at bosonic indices. As the constraints on the
torsion components will also be given in �at indices, we will express everything in terms of torsion components
with �at indices:

(dEd)ab
∣∣ = ea

meb
n(ded)mn − 2ψ[a

Meb]
n TMn

d
∣∣ + ψa

Mψb
N TMN

d
∣∣ = (G.50)

= ea
meb

n
(
(ded)mn + ψm

Aψn
B TAB

d
∣∣)− 2e[a|

mψm
Aeb]

n
(
en
c TAc

d
∣∣ + ψn

B TAB
d
∣∣) =(G.51)

= ea
meb

n
(
(ded)mn − ψmAψn

B TAB
d
∣∣)− 2e[a|

mψm
A TA|b]

d
∣∣ (G.52)

Plugging this result into (G.39) yields Ωab|c at ~θ = 0 in terms of torsion components with �at indices and
derivatives of the bosonic vielbein only:

Ωab|c
∣∣ = Tab|c

∣∣ + Tca|b
∣∣ − Tbc|a

∣∣ − (eamebn ((ded)mng̃dc − ψmAψn
B TAB|c

∣∣)− 2e[a|
mψm

A TA|b]c
∣∣)+

−
(
ec
mea

n
(
(ded)mng̃db − ψmAψn

B TAB|b
∣∣)− 2e[c|

mψm
A TA|a]b

∣∣)+

+
(
eb
mec

n
(
(ded)mng̃da − ψmAψn

B TAB|a
∣∣)− 2e[b|

mψm
A TA|c]a

∣∣)+
+ Ωa| g̃cb + Ωb| g̃ca − Ωc| g̃ba (G.53)

Now we can express everything in terms of the Levi Civita connection w.r.t. g̃ (G.47), torsion terms with �at
indices and covariant derivatives of the compensator �eld:

3In the Wess Zumino gauge we can express dEa| by dea plus torsion terms as we will demonstrate now. First we have

dEa| =

deaz }| {
∂[mEn]

a
˛̨
dxmdxn +2 ∂[mEN ]

a
˛̨
dxmdxN + ∂[MEN ]

˛̨
dxMdxN

As Ema| = ema, we have
(dEa)mn| = (dea)mn

Now remember the de�nition of the torsion TA = dEA − EB ∧ ΩB
A which reads for fermionic form indices at ~θ = 0 in the

Wess-Zumino gauge (H.95,H.96):

∂[MEN ]
A
˛̨̨

= TMN
A
˛̨̨
− Ω[MN ]

A
˛̨̨

(H.96)
= TMN

A
˛̨̨

Similarly we have

∂[MEn]
A
˛̨̨

= TMn
A
˛̨̨
− Ω[Mn]

A
˛̨̨

(H.96)
= TMn

A
˛̨̨

+
1

2
δM

B ΩnB
A
˛̨̨

For A = a, we can thus write in summary

(dEa)MN | = TMN
a| �
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Ωab|c
∣∣ = ea

mωLC dmb [g̃]g̃dc + Tab|c
∣∣ + Tca|b

∣∣ − Tbc|a
∣∣ +

− (eam∂mφ− Ωa|)︸ ︷︷ ︸
∇aΦ|+ψaM (∂MΦ)|︸ ︷︷ ︸

δMA (∇AΦ)|

g̃cb − (ebm∂mφ− Ωb|) g̃ca + (ecm∂mφ− Ωc|) g̃ba +

+ (eamebng̃cd + ec
mea

ng̃bd − ebmecng̃ad)ψmAψn
B TAB

d
∣∣

+2e[a|
mψm

A TA|b]c
∣∣ + 2e[c|

mψm
A TA|a]b

∣∣ − 2e[b|
mψm

A TA|c]a
∣∣ (G.54)

While for the use of ωLC dmb [g̃] above the partial derivatives of the compensator φ combine with the scale connec-
tions to covariant derivatives, either the scale connections or the partial derivatives remain explicitely for the
use of ωLC dmb [g] (G.45). In summary we have for the two cases

Ωab|c
∣∣︸ ︷︷ ︸

eamωmbde2φηdc

= ea
mωLC dmb [g̃]g̃dc + 2 Ta[b|c]

∣∣ − Tbc|a
∣∣ +

−2 ∇[bΦ
∣∣ g̃c]a − ∇aΦ| g̃bc −

(
2e[b

mg̃c]a + ea
mg̃bc

)
ψm

A (∇AΦ)| +
+
(
2eame[b

ng̃c]d − e[b
mec]

ng̃ad
)
ψm

Aψn
B TAB

d
∣∣

+2eamψmA TA[b|c]
∣∣ − 2e[b|

mψm
A TAa|c]

∣∣ − 2e[b|
mψm

A TA|c]a
∣∣ = (G.55)

= ea
mωLC dmb [g]ηdce2φ + 2 Ta[b|c]

∣∣ − Tbc|a
∣∣ +

−2(∇[b|Φ
∣∣ − e[b|

n∂nφ)ηc]a − (∇aΦ| − ean∂nφ)ηbc −
(
2e[b

mg̃c]a + ea
mg̃bc

)
ψm

A (∇AΦ)| +
+e2φ

(
2eame[b

nηc]d − e[b
mec]

nηad
)
ψm

Aψn
B TAB

d
∣∣ +

+2eamψmA TA[b|c]
∣∣ − 2e[b|

mψm
A TAa|c]

∣∣ − 2e[b|
mψm

A TA|c]a
∣∣ (G.56)

We have written the terms in a way that one can clearly distinguish between terms anti-symmetric in b, c
(Lorentz-part) and terms symmetric in b, c (scale-part). In the second version (G.56), the whole second line

could be written as +2 Ω(D)
[b

∣∣∣ e2φηc]a + Ω(D)
a

∣∣∣ e2φηbc which is, however, less convenient for plugging the con-

straints into it. The Levi Civita connection ωLC dmb [g] does not transform under scale transformations in the
way it should, which is repaired by the non-covariantly transforming partial derivatives ∂kφ. They are thus the
minimal extension of the Levi-Civita connection to make it transforming properly under the whole structure
group. Combining these terms with ωLC dmb [g] just leads back to ωLC dmb [g̃] which apparently has a scale part.
This seems strange for a Levi Civita connection, but is only true in the frame ema where the �at metric is not
Minkowski.

Assuming that ∇Mγaαβ = ∇Mγaα̂β̂ = 0, we can �nally (according to (G.35) and (G.36)) write down the
connection when acting on fermionic indices. We restrict to the version with the Levi Civita action for gmn =
em

aηaben
b:

Ωmγα| =
1
4
ωm[b|c]γ̃

bc
γ
α +

1
2
ω(D)
m δγ

α =

=
1
4
em

a

{
ea
nωLC dn[b| [g]ηd|c] + 2e−2φ Ta[b|c]

∣∣ − e−2φ Tbc|a
∣∣ +

−2(∇[b|Φ
∣∣ − e[b|

n∂nφ)ηc]a − 2e[b
mηc]aψm

A (∇AΦ)| +
+
(
2eake[b

nηc]d − ebkecnηad
)
ψk

Aψn
B TAB

d
∣∣ +

+e−2φ
(

2eanψnA TA[b|c]
∣∣−2ebnψnA TA(a|c)

∣∣ + 2ecnψnA TA(a|b)
∣∣︸ ︷︷ ︸

−2e[b|nψnA TAa|c]|−2e[b|nψnA TA|c]a|

)}
γbcγ

α

−1
2

(
∇aΦ| − ean∂nφ+ ea

mψm
A (∇AΦ)|

)
︸ ︷︷ ︸

≡−ω(D)
m =−Ω

(D)
m

˛̨̨
δγ
α (G.57)

An equivalent expression with γbcγα and δγα replaced by γbcγ̂ α̂ and δγ̂ α̂ is obtained for Ωmγ̂ α̂.
A second useful way to write the connection Ωab|c

∣∣ is to bring it to a form which is the bosonic version of
(G.23) and from which we can read o� the bosonic torsion and nonmetricity. To this end, we rewrite (G.50) as

(dEd)ab
∣∣ = ea

meb
n
(
(ded)mn − Tmnd

)
+ Tab

d
∣∣ (G.58)
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Plugging this into (G.39) yields

Ωab|c
∣∣︸ ︷︷ ︸

eamωmb|c

= −eamebn(ded)mng̃dc − ecmean(ded)mng̃db + eb
mec

n(ded)mng̃da +

+eamebn Tmnd
∣∣ g̃dc + ec

mea
n Tmn

d
∣∣ g̃db − ebmecn Tmnd∣∣ g̃da

+ Ω(D)
a

∣∣∣ g̃cb + Ω(D)
b

∣∣∣ g̃ca − Ω(D)
c

∣∣∣ g̃ba (G.59)

As we have in the Wess-Zumino gauge Ωmbe| = em
aωab

e, the obtained equation is simply the bosonic version

of (G.23) with ω(D)
ma

b = Ω(D)
m

∣∣∣ δba. The bosonic torsion coincides with Tmn
d
∣∣.

Tmn
d
∣∣ = em

aen
b Tab

d
∣∣ + 2e[m

aψn]
B TaB

d
∣∣ + ψm

Aψn
B TAB

d
∣∣ (G.60)



Appendix H

Supergauge Transformations, their
Algebra and the Wess Zumino Gauge

This appendix contains, like most of the others, considerations which are valid not only for our application to
the Berkovits string in ten dimensions, but as well for other dimensions and for di�erent supergravity theories.
The curved indices M as well as the �at indices A contain bosonic indices m or a as well as fermionic indices M
or A. For extended supersymmetry the latter are further split into several irreducible fermionic indices. E.g.
for type II in ten dimensions (our application) we have M=(µ,µ̂) and A=(α,α̂) where α̂ is either of the same or
of opposite chirality as α. We only assume the presence of a (super)vielbein EMA and of a (super)connection
ΩMA

B in the supergravity theory. Discussions of other �elds (like the B-�eld) are of course only relevant for
theories containing these �elds.

The supergravity transformation (local supersymmetry) is in some sense a special class of superdi�eomor-
phism transformations. If the general superdi�eomorphisms are parametrized by a vector �eld ξA(

�
x ) ≡ ξA(x,~θ),

the local supersymmetry will be parametrized by only ξA(x, 0). Likewise, general coordinate transformations
in the bosonic submanifold are parametrized by ξa(x, 0), while all the higher ~θ-components of ξA correspond to
additional auxiliary gauge degrees of freedom. Similarly, the local structure group transformations Lab(

�
x ) (e.g.

Lorentz-transformations or in our application also scale transformations) have auxiliary gauge degrees in the
higher ~θ-parts. Following roughly [17, p.127-144], we want to bring e.g. the vielbein into a particular form, using
(and thereby �xing) some of those shift symmetries, and to identify the bosonic spacetime di�eomorphisms and
the local supersymmetry transformations with the bosonic and fermionic stabilizers of this (Wess-Zumino-like)
gauge respectively. But let us at �rst have a look at the general transformation properties of the super�elds.

H.1 Supergauge transformations of the super�elds

H.1.1 In�nitesimal form

In the following, we make frequent use of some structure group connection ΩMA
B and the corresponding

covariant derivative ∇M . As long as nothing else is announced, the equations are valid for any connection (in
particular, it is not meant to be the left-moving connection only).

Transformation of a general tensor �eld We are interested in a combination of an in�nitesimal su-
perdi�eomorphism transformation (or better the corresponding Lie derivative) and a local structure group
transformation. For an object with only curved indices, the transformation reduces to the Lie derivative. The
Lie derivative of a vector �eld

��
v ≡ vM∂M e.g. reads as usual

L��
ξ
vM ≡ (L��

ξ

��
v )M = (H.1)

= ξK∂Kv
M − ∂KξMvK (H.2)

It can be rewritten in terms of covariant derivatives as

L��
ξ
vM = ξK∇KvM −∇KξMvK − 2ξKTKLMvL (H.3)

For one-forms the covariant expression of the Lie derivative contains a torsion term with opposite sign:

L��
ξ
ωM ≡

(
L��
ξ

(ωNdxN )
)
M

(H.4)

= ξK∂KωM + ∂Mξ
KωK = (H.5)

= ξK∇KωM +∇MξKωK + 2ξKTKMLωL (H.6)

206
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In contrast to the above, it is convenient for objects with �at indices, not to consider them as being contracted
with basis elements, when acting with the Lie derivative, but to really only act on the component functions,
which transform like scalars under di�eomorphisms1.

L��
ξ
vA = ξK∂Kv

A = (H.7)

= ξK∇KvA − ξKΩKBAvB (H.8)

This is a covariant object from the di�eomorphism point of view, but the connection transforms inhomogenously
under the structure group transformations. The entire gauge transformation of vA, however, contains also a
local structure group transformation:

δvA = L��
ξ
vA + L̃B

AvB (H.9)

As the structure group connection itself is Lie algebra valued, the second term in (H.8) can be absorbed in the
structure group transformation:

LB
A ≡ L̃BA − ξKΩKBA (H.10)

The combined di�eomorphism and local structure group transformation can thus be written as

δvA = ξK∇KvA + LB
AvB (H.11)

The �rst term is a covariantized (w.r.t. the structure group) version of the Lie derivative (H.7), and we will
therefore denote it by

L(cov)
��
ξ

vA ≡ ξK∇KvA (H.12)

In general L(cov)
��
ξ

will be de�ned as the LAB = 0 part of the complete transformation, i.e. a Lie derivative w.r.t.

��

ξ , accompanied by a structure group transformation with L̃A
B = ξKΩKAB whose representation we denote

with R
(
L̃ ·
·
)
(see also before (F.29) on page 191):

L(cov)
��
ξ
≡ L��

ξ
+R

(
ξKΩK··

)
(H.13)

1Note the (common) convention used in (H.1) to de�ne L��
ξ
vM as the M -th component of the Lie derivative of

��
v and not the

Lie derivative of the M -th component function! This convention is extended to objects with an arbitrary number of curved indices,
i.e.

L��
ξ
t
N1...Nq
M1...Mp

≡
„

L��
ξ

`
t
L1...Lq
K1...Kp

dxK1 ⊗ . . .⊗ dxKp ⊗ ∂L1 ⊗ . . .⊗ ∂Lq
´«N1...Nq

M1...Mp

In cases where we want to act explicitely on e.g. the component functions, we can denote it with e.g. L��
ξ

(vM ) = ξK∂Kv
M . This is

of course not the component of a tensor, but it makes sense in calculations like L��
ξ

(vM∂M ) = L��
ξ

(vM ) ·∂M + vML��
ξ

(∂M ). From

the Lie derivatives for general vectors (H.2) and one forms (H.5) we can in turn read o� the transformation of the basis elements

L��
ξ

(∂M ) = −∂M ξN ∂N

L��
ξ

(dxM ) = ∂N ξ
M dxN

For �at indices, however, we use just the opposite convention, i.e. we do not regard the �at index to be contracted with any basis
element when acting with the Lie derivative. The action on an object with both, �at and curved indices will thus be de�ned as
follows

L��
ξ
tNBMA ≡

„
L��
ξ

`
tLBKAdxK ⊗ ∂L

´«N
M

In cases where we want to calculate something di�erent we will use a more explicit notation like on the righthand side in the above
equation. The reason for this convention is the following. Starting in a coordinate basis, it is natural to express the transformed
tensor in the coordinate basis again, while if one starts in a non-coordinate frame eA, it is more natural to express the result in the
transformed basis:

ṽ ≡ v + L��
ξ
v = v + L��

ξ
vA · eA + vAL��

ξ
eA =

„
vA + L��

ξ
vA
«„

eA + L��
ξ
eA

«
| {z }

ẽA

Let us �nally give the Lie derivative of the local vielbein and its inverse (using (H.3) and (H.6)) which will also be discussed in
the equations (H.16) and following:

L��
ξ

(EA) =
“
ξKΩKA

B −∇AξB − 2ξKTKA
B
”
EB

L��
ξ

(EA) =
“
−ξKΩKB

A +∇BξA + 2ξKTKB
A
”
EB �
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On one-forms we thus have L(cov)
��
ξ

ωA ≡ ξK∇KωA, while on objects with curved index the structure group

transformation has no e�ect and the covariantized Lie derivative reduces to the ordinary Lie derivative. When
acting on a more general tensor with curved and �at indices, L(cov)

��
ξ

thus takes the following form:

L(cov)
��
ξ

tNBMA = ξK∂Kt
NB
MA − ∂KξN tKBMA + ∂Mξ

KtNBMA + ξKΩKCBtNCMA − ξKΩKACtNBMC = (H.14)

= ξK∇KtNBMA −
(
∇LξN + 2ξKTKLN

)
tLBMA +

(
∇MξL + 2ξKTKML

)
tNBLA (H.15)

This transformation is usually called a supergauge transformation [17, chapter XVI]. As it reduces for
curved indices to the ordinary Lie derivative, its action on tensor components (given above) is determined by
the Lie derivative, the Leibniz rule and the transformation of the supervielbein. In addition the transformation
of the structure group connection will be of interest, as it transforms inhomogenously under the structure group
transformation. For completeness (even if the given information will be a bit redundant), let us write down
explicitely the transformations (supergauge + structure group) for all the type II supergravity super�elds of
our interest:

Supervielbein A general in�nitesimal gauge transformation (a Lie derivative corresponding to a superdi�eo-
morphism plus a local structure group transformation) of the supervielbein EMA looks as follows:

δEM
A = ξK∂KEM

A + ∂Mξ
KEK

A + EM
BL̃B

A (H.16)

Rede�ning the local structure group transformation parameter, this can be written in terms of covariant deriva-
tives

δEM
A = ξK ∇KEMA︸ ︷︷ ︸

0

+∇MξKEKA + ξK
(
ΓKML − ΓMK

L
)
EL

A︸ ︷︷ ︸
2TKMA

+EMB
(
L̃B

A − ξKΩKBA
)

︸ ︷︷ ︸
LBA

= (H.17)

= ∇MξA + 2ξCTCMA︸ ︷︷ ︸
≡L(cov)

��
ξ

EMA

+LBAEMB (H.18)

For some purposes, also the explicit form with partial derivatives (but in the new parametrization) will be
useful:

δEM
A =

∇MξA︷ ︸︸ ︷
∂Mξ

A + ΩMC
AξC +2ξCTCMA︸ ︷︷ ︸

L(cov)
��
ξ

EMA

+LB
AEM

B︸ ︷︷ ︸
R(L)EMA

(H.19)

For the inverse vielbein we get likewise (or via δE−1 = −E−1δE · E−1)

δEA
M = ξK∂KEA

M − ∂KξMEAK − L̃ABEBM (H.20)

or δEA
M = −∇AξM − 2ξCTCAM︸ ︷︷ ︸

L(cov)
��
ξ

EAM

−LBAEAN (H.21)
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The structure group connection transforms tensorial with respect to the superdi�eomorphisms but of
course not like a tensor (but inhomogenous) with respect to the structure group transformation.2

δΩMA
B = ξK∂KΩMA

B + ∂Mξ
KΩKAB − ∂M L̃A

B︸︷︷︸
LA

B+ξKΩKA
B

−[L̃,ΩM ]AB = (H.22)

= ξK∂KΩMA
B + ∂Mξ

KΩKAB − ∂MLAB − ∂MξKΩKAB − ξK∂MΩKAB +
−[L+ ξKΩK ,ΩM ]AB = (H.23)

= 2ξK∂[KΩM ]A
B − ξK [ΩK ,ΩM ]AB − ∂MLAB − [L,ΩM ]AB (H.24)

⇒
δΩMA

B = 2ξKRKMA
B︸ ︷︷ ︸

L(cov)
��
ξ

ΩMAB

−∂MLAB − [L,ΩM ]AB︸ ︷︷ ︸
−∇MLAB=R(L)ΩMAB

(H.25)

The scale connection The above transformation of the connection is valid for a general one. In our applica-
tion to the Berkovits-string, however, the structure group on the supermanifold is restricted as follows. Firstly,
the connection is block-diagonal. Secondly, each block decays into Lorentz- plus scale transformation. Finally,
the blocks are not independent in the end, but let us assume for the moment, that they are. Then we have three
scale connections, namely the trace of each block respectively. In detail we have for the �mixed connection� (see
appendix G)

ΩMA
B =

 Ω̌Ma
b 0 0

0 ΩMαβ 0
0 0 Ω̂Mα̂β̂

 = (H.26)

=

 Ω̌(D)
M δba 0 0
0 1

2Ω(D)
M δα

β 0
0 0 1

2 Ω̂(D)
M δα̂

β̂

+

 Ω̌(L)
Ma

b 0 0
0 1

4Ω(L)
Mabγ

ab
α
β 0

0 0 1
4 Ω̂(L)

Mabγ
ab
α̂
β̂

 (H.27)

RMNA
B =

 F̌
(D)
MNδ

b
a 0 0

0 1
2F

(D)
MNδα

β 0
0 0 1

2 F̂
(D)
MNδα̂

β̂

+

 Ř
(L)
MNa

b 0 0
0 1

4R
(L)
MNabγ

ab
α
β 0

0 0 1
4 R̂

(L)
MNabγ

ab
α̂
β̂

(H.28)
The scale connection (or dilatation connection) simply transforms as

δΩ(D)
M = ξK∂KΩ(D)

M + ∂Mξ
KΩ(D)

K − ∂M L̃(D), δΩ̂(D)
M = ξK∂KΩ̂(D)

M + ∂Mξ
KΩ̂(D)

K − ∂M ˜̂
L(D)(H.29)

δΩ(D)
M = 2ξKF (D)

KM − ∂ML
(D) , δΩ̂(D)

M = 2ξK F̂ (D)
KM − ∂M L̂

(D) (H.30)

with F (D)
KM = ∂[KΩM ], F̂

(D)
KM = ∂[KΩ̂M ] (H.31)

We also could have started with the pure left-mover connection ΩMA
B = diag (ΩMa

b,ΩMαβ,ΩMα̂β̂) to derive
δΩ(D)

M or the pure right-mover connection Ω̂MA
B to derive δΩ̂(D)

M . We will now return to the notation of this
appendix, where ΩMA

B is just a general connection, and not necessarily the left-mover one.

2Let us quickly rederive the correct structure group transformation of the connection via the transformation property of the
covariant derivative:

δ(L)v
A = vBLB

A

δ(L)∇MvA = δ(L)

“
∂Mv

A + ΩMB
AvB

”
=

= ∂M

“
vBLB

A
”

+ δLΩMB
AvB + ΩMB

AδLv
B =

= ∂Mv
B · LBA + vB∂MLB

A + δLΩMB
AvB + ΩMB

AvCLC
B =

=
“
∂Mv

B + ΩMC
BvC

”
· LBA + vC

“
∂MLC

A + δLΩMC
A + LC

BΩMB
A − ΩMC

BLB
A
”

For ∇MvA to transform covariantly, we need to have

δ(L)ΩMC
A = −∂MLCA−LCBΩMB

A + ΩMC
BLB

A| {z }
≡−[L,ΩM ]C

A

=

= −∇MLCA �
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The superspace connection We will not need the superspace connection ΓMN
K as frequently as the

structure group connection, but let us discuss its transformation for completeness. As it is inert under structure
group transformations, the supergauge transformation reduces to the Lie derivative. Remember the relation

ΓMN
K = ΩMN

K + ∂MEN
A · EAK (H.32)

which is a direct consequence of ∇MEMA = 0. The Lie derivative of ΓMN
K can thus be derived from the

Lie derivative (or alternatively from the supergauge transformation) of the structure group transformation and
the vielbein. Both, vielbein and structure group transformation are tensorial with respect to di�eomorphisms
and thus the inhomogenity in the transformation of ΓMN

K can only result from the inhomogenity of the Lie
derivative of ∂MENA, which is (using commutativity of partial and Lie derivative3) ∂M∂NξLELA. The Lie
derivative of the connection thus reads

L��
ξ

ΓMN
K = ξL∂LΓMN

K + ∂Mξ
LΓLNK + ∂Nξ

LΓML
K − ∂LξKΓMN

L + ∂M∂Nξ
K︸ ︷︷ ︸

[∂ξ,ΓM ]NL+∂M (∂ξ)NK

(H.33)

The �rst two terms are just the Lie derivative of a matrix valued one form dxMΓMN
K , while the last three

terms are the usual inhomogenous transformation of a structure group connection (compare (H.25)), here with
the Gl(n)-matrix M̃N

K ≡ −∂NξK . The same transformation can be derived by comparing e.g. the tensorial
transformation of L��

ξ
∇MvK on the one side with ∂M (L��

ξ
vK)+L��

ξ
ΓMN

K ·vN +ΓMN
KL��

ξ
vN on the other side

(using again that Lie and partial derivative commute). The Lie derivative of the connection is in some sense the

3For a scalar �eld Φ(ph), whose partial derivative becomes the component of a vector �eld, it is quite obvious that partial and
Lie derivative commute:

L��
ξ
∂MΦ(ph) = ξK∂K∂MΦ(ph) + ∂M ξ

K∂KΦ(ph) = ∂M (ξK∂KΦ(ph)) = ∂ML��
ξ

Φ(ph)

For a nontensorial object like ∂M t
N1...Nq
M1...Mp

(or also the connection) it is less clear whether it makes sense to de�ne a Lie derivative

on it. However, it will be very convenient to do so, and we will simply take the de�nition coming from in�nitesimal di�eomorphisms

(with x′ = x+ ξ). Note that ∂′M t
′N1...Nq
M1...Mp

(x′)
˛̨̨
x′=x

= ∂M t
′N1...Nq
M1...Mp

(x), which leads to

L��
ξ
∂M t

N1...Nq
M1...Mp

(x) ≡ ∂M t
N1...Nq
M1...Mp

(x)− ∂′M t
′N1...Nq
M1...Mp

(x′)
˛̨̨
x′=x

= ∂M (L��
ξ
t
N1...Nq
M1...Mp

(x))

We can likewise extend the de�nition of L(cov)
��
ξ

= L��
ξ

+R
`
ξKΩK ·

·´ to nontensorial objects by de�ning e.g.

R(L) ∂P t
NB
MA ≡ ∂P

“
R(L) tNBMA

”
The structure group transformation R(L) thus commutes with the partial derivative by de�nition and we thus have the same
property for the covariantized Lie derivative

L(cov)
��
ξ

∂P t
NB
MA = ∂P (L(cov)

��
ξ

tNBMA)

Note that this is also consistent with a proper transformation property of the covariant derivative:

L(cov)
��
ξ

∇P tNBMA = L(cov)
��
ξ

“
∂P t

NB
MA + ΓPK

N tKBMA − ΓPM
KtNBKA +R(ΩP ·

·) tNBMA

”
=

= ∂P

 
L(cov)

��
ξ

tNBMA

!
+

 
L(cov)

��
ξ

ΓPK
N

!
tKBMA + ΓPK

NL(cov)
��
ξ

tKBMA −
 

L(cov)
��
ξ

ΓPM
K

!
tNBKA − ΓPM

KL(cov)
��
ξ

tNBKA +

+R
 

L(cov)
��
ξ

ΩP ·
·

!
tNBMA +R(ΩP ·

·) L(cov)
��
ξ

tNBMA =

= ∇P

 
L(cov)

��
ξ

tNBMA

!
+

„
L��
ξ

ΓPK
N

«
tKBMA −

„
L��
ξ

ΓPM
K

«
tNBKA +R

 
L(cov)

��
ξ

ΩP ·
·

!
tNBMA =

= ∇P
“
ξK∇KtNBMA +

“
∇M ξK + 2ξLTLM

K
”
tNBKA −

“
∇KξN + 2ξLTLK

N
”
tKBMA

”
+

+
“

2ξLRLPK
N +∇P (∇KξN + 2ξLTLK

N )
”
tKBMA −

“
2ξLRLPM

K +∇P (∇M ξK + 2ξLTLM
K)
”
tNBKA +

+R
“

2ξLRLP ·
·
”
tNBMA =

= ξK ∇P∇KtNBMA| {z }
∇K∇P tNBMA−2TPK

L∇LtNBMA+2RPKL
N tLBMA − 2RPKM

LtNBLA +R(2RPK ·
·) tNBMA

+
“
∇M ξK + 2ξLTLM

K
”
∇P tNBKA −

“
∇KξN + 2ξLTLK

N
”
∇P tKBMA +

+∇P ξK∇KtNBMA +∇P
“
∇M ξK + 2ξLTLM

K
”
tNBKA −∇P

“
∇KξN + 2ξLTLK

N
”
tKBMA

+
“

2ξLRLPK
N +∇P (∇KξN + 2ξLTLK

N )
”
tKBMA −

“
2ξLRLPM

K +∇P (∇M ξK + 2ξLTLM
K)
”
tNBKA +

+R
“

2ξLRLP ·
·
”
tNBMA =

= ξK∇K∇P tNBMA +
“
∇P ξK + 2ξLTLP

K
”
∇KtNBMA +

“
∇M ξK + 2ξLTLM

K
”
∇P tNBKA −

“
∇KξN + 2ξLTLK

N
”
∇P tKBMA �
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di�erence of two connections and is therefore a tensor. This can be seen by expressing the partial derivatives
on ξM in terms of covariant ones and discover that the remaining connection terms combine to curvature and
torsion.4

L��
ξ

ΓMN
K = 2ξLRLMN

K +∇M
(
∇NξK + 2ξLTLNK

)︸ ︷︷ ︸
≡−MN

K

(H.34)

Remember that above we have seen the Lie derivative of the superspace connection as a combination of a Lie
derivative on its form index (the �rst lower index) plus a Gl(n) structure group transformation with transfor-
mation matrix M̃N

K ≡ −∂NξK . Equivalently it can be seen as a combination of a supergauge transformation
(regarding only the �rst index as curved one) plus a modi�ed Gl(n) transformation with the matrix (compare
(H.10))

MN
K ≡ −∂NξK − ξPΓPNK = (H.35)

= −∇NξK − 2ξPTPNK (H.36)

Indeed the above Lie transformation can be written as

L��
ξ

ΓMN
K = 2ξLRLMN

K −∂MMN
K − [M,ΓM ]NK︸ ︷︷ ︸

=−∇MMN
K

(H.37)

which perfectly agrees with the form of a gauge transformation of a structure group connection given in (H.25).
Let us �nally note that

[L��
ξ
,∇M ]vK = (L��

ξ
ΓMN

K)vN (H.38)

which provides another way to calculate the Lie derivative of the connection. For the Levi Civita connection

this equation implies that the Lie derivative commutes with the covariant derivative, if
��

ξ is a killing vector.

Tensorial super�elds Usually, all additional �elds present in a supergravity theory (like B-�eld, RR-�elds or
dilaton) are contained in super�elds that transform homogenously (tensorial) under supergauge transformations
and structure group transformations. The gauge transformation of a tensor �eld with index structure tNBMA

transforms as
δtNBMA = L(cov)

��
ξ

tNBMA + LC
BtNCMA − LACtNBMC︸ ︷︷ ︸
R(L ··)tNBMA

(H.39)

where L(cov)
��
ξ

was given in (H.15). The above transformation is of course also valid for scalar �elds where simply

the structure group transformation vanishes. If a B-�eld (a two form, i.e. an antisymmetric rank two tensor) is
present, its general gauge transformation contains in addition the one-form gauge transformation B → B + dΛ
which will brie�y be discussed in a separate section at a later point. Another example of a tensorial super�eld in
our application to the Berkovits string is the bispinor-super�eld Pαβ̂ which contains the RR-�elds in the leading
component in the ~θ-expansion. In order to act with the structure group transformation LAB (appearing in the
general transformation (H.39)) on the bispinor indices, we need LAB to be block diagonal. This is described in
the main part (see (5.65)). A �nal remark about our application in the main part is about the appearance of
a compensator �eld Φ which does not transform homogenously under the structure group, but via a shift (see
discussion below (5.159)).

H.1.2 Algebra of Lie derivatives and supergauge transformations

H.1.2.1 Commutator of Lie derivatives

The SUSY algebra on scalar �elds and tensors with curved indices should be entirely implemented in the su-
perdi�eomorphisms (independent from any accompanying local structure group transformation which appeared
above). The commutator of two di�eomorphisms yields the vector Lie bracket of the transformation parameters[

L��
ξ 1

,L��
ξ 2

]
= L

[
��
ξ 1,

��
ξ 2]

(H.40)

4Alternatively we can derive the same result, starting from (H.32)

L��
ξ

ΓMN
K = L(cov)

��
ξ

(ΩMA
BEN

AEB
K) + ∂M (L(cov)

��
ξ

EN
A) · EAK + ∂MEN

A ·L(cov)
��
ξ

EA
K

Using the covariant expressions of the supergauge transformation of ΩMA
B and EM

A then leads to (H.34). �
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where the vector Lie bracket reads[
��

ξ 1,
��

ξ 2

]M
= ξK1 ∂Kξ

M
2 − ξK2 ∂KξM1 = (H.41)

= ξK1 ∇KξM2 − ξK2 ∇KξM1 − 2ξK1 TKL
MξL2 (H.42)

If we plug in the local basis elements
��

EA ≡ EA
M∂M in place of ξ1/2, the above equation only holds, if the

covariant derivative acts only on the curved index. The covariant derivatives do not vanish when we act on the
curved index of EAM only. We thus do not only get the torsion term, as one would naively expect, but instead

[
��

EA ,
��

EB ] =
(
2Ω[AB]

C − 2TABC
) ��

EC = (H.43)

= −2(dEC)AB
��

EC (H.44)

For objects with �at indices it is thus convenient to extend the Lie derivative to the supergauge transformation,
which is covariantized with respect to the structure group.

H.1.2.2 Algebra of covariant Lie derivative and structure group action

Let us restrict our considerations for a moment to a structure group vector vA. We �rst want to study the
commutator of two covariantized Lie derivatives.

[L(cov)
��
ξ

,L(cov)
��
η

]vA = ξL∇L
(
ηK∇KvA

)
− (ξ ↔ η) = (H.45)

=
(
ξL∇LηK − ηL∇LξK

)
∇KvA + ξLηK [∇L,∇K ] vA = (H.46)

=
(
ξL∇LηK − ηL∇LξK − 2ξLTLPKηP

)
∇KvA + 2ξLηKRLKBAvB = (H.47)

= L(cov)

[
��
ξ ,

��
η ]
vA + 2ξLηKRLKBAvB (H.48)

For a one form we arrive likewise at

[L(cov)
��
ξ

,L(cov)
��
η

]ωA = L(cov)

[
��
ξ ,

��
η ]
ωA − 2ξLηKRLKABωB (H.49)

On curved indices, however, the super gauge transformation reduces to the Lie derivative[
L(cov)

��
ξ

,L(cov)
��
η

]
vM =

[
L��
ξ
,L ��

η

]
vM = L

[
��
ξ ,

��
η ]
vM = L(cov)

[
��
ξ ,

��
η ]
vM (H.50)[

L(cov)
��
ξ

,L(cov)
��
η

]
ωM = L(cov)

[
��
ξ ,

��
η ]
ωM (H.51)

On a more general tensor tNBMA we therefore have the following commutator of supergauge transformations
(remember footnote 1)[

L(cov)
��
ξ

,L(cov)
��
η

]
tNBMA = L(cov)

[
��
ξ ,

��
η ]
tNBMA + 2ξKηLRKLCBtNCMA − 2ξKηLRKLACtNBMC︸ ︷︷ ︸

R
„
−ı��

ξ
ı��
η

(R··)

«
tNBMA

(H.52)

In particular we have for supergauge transformations along the coordinate basis

[L(cov)
∂K

,L(cov)
∂L

]tNBMA = 2RKLCBtNCMA − 2RKLACtNBMC = R
(
−ı∂K ı∂L(RCD)

)
tNBMA (H.53)

The algebra of two in�nitesimal structure group transformations is rather simple5

[R(L1) ,R(L2)] = −R([L1, L2]) (H.54)

5The minus sign comes from our de�nition how the structure group matrix acts on vectors and forms. E.g. on a vector we have
R(L1)R(L2) vA = R(L1) (L2B

AvB) = L1C
AL2B

CvB = (L2L1)B
AvB = R(L2L1) vA⇒ [R(L1) ,R(L2)]vA = −R([L1, L2]) vA.

Similarly for one forms R(L1)R(L2)ωA = R(L1) (−L2A
BωB) = L1A

CL2C
BωB = (L1L2)A

BωB = −R(L1L2)ωA⇒
[R(L1) ,R(L2)]ωA = −R([L1, L2])ωA. If one prefers, one can get rid of the minus sign by either rede�ning the action of
R(L) with a minus sign or with a transposed L (not only for antisymmetric L). This is because [LT1 , L

T
2 ]T = −[L1, L2] and

−[−L1,−L2] = −[L1, L2]. �
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The commutator between supergauge transformation and structure group transformation �nally reads[
L(cov)

��
ξ

,R(L)
]

= R
(

(L(cov)
��
ξ

L)
)

(H.55)

which is easily checked by acting e.g. on a vector vA. The complete algebra can be written in one single equation
as[

L(cov)
��
ξ

+R(L1) , L(cov)
��
η

+R(L2)
]

= L(cov)

[
��
ξ ,

��
η ]

+R
(

2ξKηLRKL·· + L(cov)
��
ξ

L2 ·
· −L(cov)

��
η

L1 ·
· − [L1, L2]··

))
(H.56)

H.1.2.3 Commutator of covariantized Lie derivative (supergauge) and covariant derivative

In Riemannian geometry the commutator of Lie derivative and covariant derivative vanishes, if the vector along
which the Lie derivative is taken is a killing vector. We want to see what relation there is for a more general
connection. Let us �rst consider the commutator of the Lie derivative and the covariant derivative with curved
index on a superspace vector [

L��
ξ
,∇M

]
vK = [L��

ξ
, ∂M ]︸ ︷︷ ︸

=0

vK + L��
ξ

ΓMN
K · vN (H.57)

According to footnote 3, the �rst term vanishes and we have[
L��
ξ
,∇M

]
= 0 ⇐⇒ 0 = L��

ξ
ΓMN

K

(
(H.34)

= 2ξLRLMN
K +∇M

(
∇NξK + 2ξLTLNK

))
(H.58)

In the case of a Levi Civita connection, the Lie derivative of the connection vanishes, if the Lie derivative of the

metric vanishes, i.e. if
��

ξ is a killing vector6. In general, however, we have the condition that the Lie derivative
of the connection has to vanish.

Let us introduce just for the moment the symbol R̃ to denote the action of a Gl(n) matrix (like the superspace
connection ΓM ··) on the curved indices. Acting on an arbitrary tensor, the commutator of above becomes[

L(cov)
��
ξ

,∇M
]

= R̃
(

L��
ξ

ΓM ··
)

+R
(

L(cov)
��
ξ

ΩM ··
)

(H.59)

How does this commutator modify, if we choose the covariant derivative with �at index?[
L(cov)

��
ξ

,∇A
]

=
[
L(cov)

��
ξ

, EA
M∇M

]
= (H.60)

(H.21)
= −

(
∇AξM + 2ξCTCAM

)
∇M + EA

MR̃
(

L��
ξ

ΓM ··
)

+ EA
MR

(
L(cov)

��
ξ

ΩM ··
)

(H.61)

6This is quite natural, as the Levi Civita connection is built only out of the metric. Nevertheless, let us check this statement
explicitly with the derived formula, in order to see whether it is consistent. In the Riemannian case we have

L →→
ξ

Γmn
k = 2ξlRlmn

k +∇m∇nξk

and the killing vector condition reads (pulling down the indices with the covariantly conserved metric gmn)

∇(mξn) = 0

We can rewrite the above Lie derivative as

L →→
ξ

Γmn|k = 2ξlRlmnk +∇m∇nξk =

= 2ξlRlmnk +
1

2
∇m∇nξk +

1

2
∇n∇mξk −Rmnklξl =

killing
= 2ξlRlmnk −

1

2
∇m∇kξn −

1

2
∇n∇kξm −Rmnklξl =

= 2ξlRlmnk −
1

2
∇k∇mξn +Rmkn

lξl −
1

2
∇k∇nξm +Rnkm

lξl −Rmnklξl

= 2ξl Rlmnk| {z }
−Rnkml

−Rkmnlξl +Rnkm
lξl −Rmnklξl =

= −
“
Rnkm

l +Rkmn
l +Rmnk

l
”
ξl = 0 �
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Finally we allow for an additional structure group transformation, in order to see the commutator of a general
gauge transformation with the covariant derivative:

[
L(cov)

��
ξ

+R(L··) , ∇A
]

=
(
−(∇AξD + 2ξCTCAD)︸ ︷︷ ︸

(L(cov)
��
ξ

EAM )EMD

−LAD
)
∇D +

+R̃
(
2ξLRLA ·· +∇A

(
∇·ξ· + 2ξLTL ··

))︸ ︷︷ ︸
EAML��

ξ
ΓM ··

+ R
(
2ξCRCA ·· −∇AL··

)︸ ︷︷ ︸
EAML(cov)

��
ξ

ΩM ··

(H.62)

When acting on scalar �elds, only the �rst term remains.
The idea of the above considerations was of course that part of the gauge transformations become just the

local supersymmetry transformations, while the fermionic components of the covariant derivative should contain
the supersymmetric covariant derivative. We therefore expect, at least for the �at case, a vanishing result for
the fermionic components of this commutator. We will come back to this question after having established the
WZ-gauge.

H.1.2.4 Algebra of the gauge transformations

The algebra in subsection H.1.2.2 was assuming that the variation acts on all objects, including the transfor-
mation parameter of the �rst transformation. This is not true for �eld-independent transformation parameters.

If
��

ξ is just the transformation parameter of the symmetry, then this parameter does not transform itself. On

the other hand, there is no need for the transformation parameter to coincide with
��

ξ . Instead,
��

ξ can be a
functional of transformation parameter and of the the �elds. We thus have to treat its variation seperately.

A general gauge variation has the form δtNBMA = L(cov)
��
ξ

tNBMA + R(L · ·) tNBMA, where
��

ξ and the structure group

matrix L are local and may or may not depend on the �elds of the theory. Acting a second time with such a
variation yields

δ1δ2(. . .) =

= δ1

(
L(cov)

��
ξ2

+R(L2 ·
·)
)

= (H.63)

= δ1

(
L ��
ξ2

+R
(
ξK2 ΩK·· + L2 ·

·)) (. . .) = (H.64)

=
(

L
δ1

��
ξ2

+R
(
δ1ξ

K
2 ΩK·· + ξK2 δ1ΩK·· + δ1L2 ·

·)) (. . .) +
(

L ��
ξ2

+R
(
ξK2 ΩK·· + L2 ·

·)) δ1(. . .) = (H.65)

=
(

L(cov)

δ1
��
ξ2

+R
(
ξK2

(
L(cov)

��
ξ1

ΩK·· −∇KL1 ·
·
)

+ δ1L2 ·
·
))

(. . .) +

+
(

L(cov)
��
ξ2

+R(L2 ·
·)
)(

L(cov)
��
ξ1

+R(L1)
)

(. . .) = (H.66)

=
[
L(cov)

δ1
��
ξ2

+R
(
2ξK2 ξ

L
1 RLK·

· − ξK2 ∇KL1 + δ1L2 ·
·)+

(
L(cov)

��
ξ2

+R(L2 ·
·)
)(

L(cov)
��
ξ1

+R(L1 ·
·)
)]

(. . .)(H.67)

Finally we take the commutator and use the commutation relation (H.56) of above

[δ1, δ2] = R
(
4ξK2 ξ

L
1 RLK·

· + ξK1 ∇KL2 − ξK2 ∇KL1 + δ1L2 · · − δ2L1

)
+

+L(cov)

[
��
ξ2 ,

��
ξ1 ]+δ1

��
ξ2 −δ2

��
ξ1

+R
(

2ξK2 ξ
L
1 RKL·

· + L(cov)
��
ξ2

L1 −L(cov)
��
ξ1

L2 − [L2, L1]
)

(H.68)

[δ1, δ2] = L(cov)

[
��
ξ2 ,

��
ξ1 ]+δ1

��
ξ2 −δ2

��
ξ1

+R
(
2ξK1 ξ

L
2 RKL ·

· + [L1, L2]·· + δ1L2 ·
· − δ2L1 ·

·) (H.69)

If
��

ξ and L are �eld dependent and transform like all the other �elds, we have δ1
��

ξ2 = [
��

ξ1 ,
��

ξ2 ] and δ1L2 =
L(cov)

��
ξ1

L2 − [L1, L2] and the above equation is the same as (H.56), while if both parameters do not transform

at all, we have a similar, but still di�erent algebra with some di�erent signs and some terms missing. The
above important equation will help us to �nd the SUSY-algebra in this huge algebra. By going to the WZ-
gauge, we will �x part of the superdi�eomorphisms and local structure group transformations. The remaining
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transformations, which stabilize this gauge will then have a �eld-dependent
��

ξ , which we can plug into the above
equation.

H.1.3 Finite gauge transformations

In order to choose an explicit gauge it is useful to know the �nite form of the gauge transformations (only
then you can decide whether a particular gauge is accessible or not). For superdi�eomorphisms and local
structure group transformations (i.e. Lorentz transformations and perhaps dilatations), we know the �nite
form anyway. Let us denote the transformed �elds by a prime (for superdi�eomorphisms) and by a tilde
(for structure group transformations). The vielbein transforms homogenously under both transformations, i.e.
E′M

A(
�
x ′) = ∂xN

∂x′M
EN

A(
�
x ′) under superdi�eomorphisms and ẼM

A(
�
x ) = EM

B(
�
x )ΛBA(

�
x ) under structure

group transformations. Altogether this reads

Ẽ′M
A(

�
x ′) =

∂xN

∂x′M

(
EN

B(
�
x )ΛBA(

�
x )
)

=
(
∂xN

∂x′M
EN

B(
�
x )
)

Λ′B
A(

�
x ′) (H.70)

Likewise a more general tensor �eld with index structure tNBMA transfoms as

t̃′NBMA(
�
x ′) =

∂xK

∂x′M
∂x′N

∂xL
tLDKC(

�
x )ΛAC(

�
x )(Λ−1)DB(

�
x ) (H.71)

Other examples for such homogenous transformations (apart from the vielbein) are a RR-super�eld with
P̃ ′δδ̂( �

x ′) = Pγγ̂(
�
x )ΛγδΛγ̂ δ̂ (where the structure group transformation ΛAB is supposed to be a blockdiagonal

one), or a dilaton scalar super�eld with simply Φ̃(ph)

′
(

�
x ′) = Φ(ph)(

�
x ).

The �nite inhomogenous transformation of the connection super�eld reads7

Ω̃′MA
B(

�
x ′) =

∂xN

∂x′M

(
−∂NΛAB + (Λ−1)ADΩNDC(

�
x )ΛCB

)
(H.72)

Ω̃(D)′
M (

�
x ′) =

∂xN

∂x′M

(
Ω(D)
N (

�
x )− ∂NΛ(D)(

�
x )
)

(H.73)

In the main part of this thesis we have also introduced a compensator �eld Φ, which transforms by a shift under
scale transformations, i.e. Φ̃′(

�
x ′) = Φ(

�
x ) − Λ̌(D)(

�
x ) (where Λ̌(D) denotes the dilatation or scale part of the

bosonic block).

H.2 Wess-Zumino gauge

H.2.1 WZ gauge for the vielbein

Superdi�eomorphisms x′M = FM (
�
x )

inf
= xM + ξM (

�
x ) with

�
x = (

→
x ,~θ) parametrise many more gauge degrees

of freedom than just the bosonic di�eomorphisms x′m = fm(
→
x )

inf
= xm + ξm(

→
x ,~θ = 0). Let us write

�
x ′ as

x′M = x′
M
0 (

→
x ) + xN︸︷︷︸

θN

x′
M
N (

→
x ) +O(~θ

2
) (H.74)

We have

∂x′M

∂xN
=

(
∂x′m

∂xn
∂x′m

∂xN
∂x′M

∂xn
∂x′M

∂xN

)
~θ=0=

(
∂x′m0
∂xn x′

m
N

∂x′M0
∂xn x′

M
N

)
(H.75)

In the following we will see that it is possible to �x the vielbein for vanishing ~θ to

EM
A
∣∣ =

(
em

a ψm
A

0 δM
A

)
(H.76)

7De�ning Ω
(D)
M ≡ 1

dim
ΩMa

a and Λ(D) ≡ 1
dim

Λaa yields the transformation (H.73) in the second line. However, having in mind

the de�nition of the mixed connection (H.27) yields the same transformation for each of the scale connections Ω
(D)
M (with Λ(D)),

Ω̂
(D)
M (with Λ̂(D)) and Ω̌

(D)
M (with Λ̌(D)) respectively.

In our application to the Berkovits string, we have introduced a compensator �eld Φ via Gab = e2Φηab which transforms under
the bosonic scale transformations Λ̌. The distinction, however, is not important, as Λ, Λ̂ and Λ̌ get coupled by the gauge �xing of
Tαβ

c = γcαβ and Tα̂β̂
c = γc

α̂β̂
anyway. �
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with inverse

EA
M
∣∣ =

(
ea
m −ψaM

0 δA
M

)
(H.77)

where ψa
M ≡ ea

mψm
AδA

M (H.78)

em
aea

n = δnm (H.79)

We want to show that the above gauge can always be reached if the original supervielbein had full rank. To
this end, let us call the supervielbein in the above gauge E′M

A(x′) and only the original general one EMA.

We should have the relation ∂x′M

∂xN
E′M

A(x′) = EN
A(x). Indeed, multiplying E′M

A(x′) from the left with the

transposed (~θ = 0)-Jacobian without ordinary di�eos (∂x
′m
0

∂xn = δmn ) yields(
δmn

∂x′M0
∂xn

x′
m
N x′

M
N

)(
em

a ψm
A

0 δM
A

)
=

 en
a

(
ψn

A + ∂x′M0
∂xn δM

A
)

x′
m
N em

a
(
x′
m
Nψm

A + x′
M
N δM

A
)  != EN

A
∣∣ (H.80)

This �xes some of the auxiliary gauge parameters:

x′
m
N = ea

m EN
a| , x′

M
N =

(
EN

A − x′mNψm
A) δAM (H.81)

So all the x′MN are �xed. In contrast, x′M0 (
→
x ) are still free and they parametrize bosonic di�eomorphisms and

local supersymmmetry. We still have many more un�xed auxiliary gauge parameters (the higher θ-derivatives
of x′) whose �xing we will discuss in subsection H.2.4.

H.2.2 Calculus with the gauge �xed vielbein

Before we proceed with the gauge �xing of the connection, let us have a look at some consequences of the special
vielbein gauge. The new bosonic vielbein ema(

→
x ) = Em

a(
→
x , 0) o�ers a second possibility to switch from curved

to �at indices and one has to be careful, in order not to mix up things. The inverse of the supervielbein behaves
di�erently than the inverse of the bosonic vielbein. While in superspace the inverse is with respect to a sum
over all superspace indices, the sum for the bosonic inverse runs only over the bosonic indices

EM
AEB

M = δAB ⇒ EM
a| EbM

∣∣ = δab (H.82)

Em
a| ebm = δab (H.83)

It therefore makes a di�erence which vielbein is used to change from �at to curved indices and vice verse.
Consider an arbitrary supervector VM :

Vm| eam = VCEm
C
∣∣ eam = (H.84)

= VcEm
c| eam + VCEm

C∣∣ eam (H.85)

or in summary

Vm| eam = Va| + VC| ψmCea
m (H.86)

For upper bosonic indices the situation is better because the WZ-gauge removes the disturbing additional term:

V a| eam = V NEN
a
∣∣ eam = (H.87)

= V nEn
a| eam + V N EN

a|︸ ︷︷ ︸
=0

ea
m (H.88)

so that we get the nice relation
V a| eam = V m| (H.89)

We can do the same considerations for fermionic indices and arrive at the opposite situation

ΨM| δAM = ΨA| (H.90)

ΞM∣∣ δMA = ΞA∣∣ − Ξb
∣∣ ψbMδM

A (H.91)
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H.2.3 WZ gauge for the connection

Similar to the supervielbein-case it is likewise possible to reach a special gauge at ~θ = 0 for the connection
componets with fermionic form-index:

ΩMA
B
∣∣ = 0 (H.92)

Let us show that this gauge �xing is really accessible. We would like to reach the gauge (H.92) using the local
structure group transformations of higher order in ~θ (i.e. with ΛAB

∣∣ = δA
B). Remember the structure group

transformation of the connection

Ω̃MA
B(x) = −∂MΛAB + (Λ−1)ADΩMD

C(x)ΛCB (H.93)

Reaching the gauge �xing condition (H.92) is thus possible by simply choosing

ΛMA
B ≡ ∂MΛAB

∣∣ != ΩMA
B(x)

∣∣ (H.94)

H.2.4 Gauge �xing the remaining auxiliary gauge freedom

In addition to the ordinary Wess Zumino gauge

EM
A
∣∣ = δM

A (H.95)

ΩMA
B
∣∣ = 0 (H.96)

we can demand the gauge �xing condition ∂(MEN )
A
∣∣ != 0 using the gauge parameter ∂M∂N ξA

∣∣. Indeed all
the other higher components of ξA and LAB can be �xed by imposing8 (see e.g. [119])

∂(M1 . . . ∂Mn
EMn+1)

A
∣∣ != 0 (H.97)

∂(M1 . . . ∂Mn
ΩMn+1)A

B
∣∣ != 0 ∀n ∈ {1, . . . ,dim(M)− 1} (H.98)

where dim(M) shall denote the number of fermionic dimensions, e.g. 32 for type II in ten dimensions. Actually
the above equations even hold for n = dim(M) (the highest components of E and Ω), but then trivially, as the
total graded symmetrization of n+ 1 fermionic indices (which is an antisymmetrization in fact) in n dimensions
always vanishes. For n > dim(M) even the derivative without graded symmetrization vanishes trivially as usual.
The second equation is even true for n = 0 (due to (H.96)) while the �rst is modi�ed for n = 0 to EM

A
∣∣ = δM

A

(H.95).
This gauge is useful to calculate explicitely higher orders in the ~θ-expansion of the vielbein or the connection

in terms of torsion and curvature. Let us consider at �rst the connection. For the n-th partial derivative of the
component with fermionic form index we can write

∂M1 . . . ∂Mn
ΩMn+1A

B
∣∣ =

= ∂(M1 . . . ∂Mn
ΩMn+1)A

B
∣∣︸ ︷︷ ︸

=0 (H.98)

+
2

n+ 1

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂Mn
Ω|Mn+1]A

B
∣∣ = (H.99)

=
2

n+ 1

n∑
i=1

∂M1 . . . ∂Mi−1∂Mi+1 . . . ∂Mn

(
RMiMn+1A

B + Ω[Mi|A
CΩ|Mn+1]C

B
)∣∣ = (H.100)

=
n

n+ 1
∂(M1 . . . ∂Mn−1|

(
2R|Mn)Mn+1A

B + Ω|Mn)A
C · ΩMn+1C

B − ΩMn+1A
C · Ω|Mn)C

B
)∣∣ (H.101)

(H.98)⇒ ∂M1 . . . ∂MnΩMn+1A
B
∣∣ =

2n
n+ 1

∂(M1 . . . ∂Mn−1RMn)Mn+1A
B
∣∣ ∀n ≥ 1 (H.102)

Unfortunately, due to the n-dependent factor 2n
n+1 , this relation cannot easily be integrated. In particular,

although the above equation implies ∂MΩNA
B
∣∣ = RMNA

B
∣∣, we have in general ∂MΩNA

B 6= RMNA
B . Also

ΩNA
B 6= xMRMNA

B .
8Looking at the in�nitesimal transformations

δ
“
∂M1 . . . ∂MnEMn+1

A
”˛̨̨

= ∂M1 . . . ∂Mn

“
∂Mn+1ξ

A + ΩMn+1B
AξB + 2ξCTCM

A
”˛̨̨

=

δ
“
∂M1 . . . ∂MnΩMn+1A

B
”˛̨̨

= −∂M1 . . . ∂Mn

“
∂Mn+1LA

B + [L,ΩMn+1 ]
”˛̨̨

it seems quite obvious that the parameters ∂M1 . . . ∂Mn+1ξ
A
˛̨̨

and ∂M1 . . . ∂Mn+1LA
B
˛̨̨

can be used to shift

∂(M1 . . . ∂MnEMn+1)
A
˛̨̨
and ∂(M1 . . . ∂MnΩMn+1)A

B
˛̨̨
to whatever value one likes. A rigorous proof that (H.97) and (H.98)

are accessible, however, should consider the �nite transformations. �
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The calculation for the components of the vielbein is very similar

∂M1 . . . ∂MnEMn+1
A
∣∣ =

= ∂(M1 . . . ∂Mn
EMn+1)

A
∣∣︸ ︷︷ ︸

=0 (H.97)

+
2

n+ 1

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂Mn
E|Mn+1]

A
∣∣ = (H.103)

=
2

n+ 1

n∑
i=1

∂M1 . . . ∂Mi−1∂Mi+1 . . . ∂Mn

(
TMiMn+1

A + E[Mi

BΩMn+1]B
A
)∣∣ = (H.104)

=
n

n+ 1
∂(M1 . . . ∂Mn−1|

(
2T|Mn)Mn+1

A + E|Mn)
BΩMn+1B

A − EMn+1
BΩ|Mn)B

A
)∣∣ (H.105)

For the second and third term in the bracket we can use (H.97) and (H.98) again, so that the third term will
vanish while from the second term we get a contribution only when all derivatives act on the connection, because
EMn

B
∣∣ = δMn

B . Using (H.102), we arrive at

∂M1 . . . ∂Mn
EMn+1

A
∣∣ = ∀n ≥ 1

=
2n
n+ 1

∂(M1 . . . ∂Mn−1TMn)Mn+1
A
∣∣ +

2(n− 1)
n+ 1

δ(M1
B ∂M2 . . . ∂Mn−1RMn)Mn+1B

A
∣∣ (H.106)

In particular we get for n = 1

∂MEN
A
∣∣ = TMN

A
∣∣ , ∂MΩNA

B
∣∣ = RMNA

B
∣∣ (H.107)

The higher ~θ-components of the vielbein and connection parts with bosonic form index (EmA and ΩmAB)
can likewise be expressed in terms of torsion and curvature:

∂M1 . . . ∂Mn
ΩmAB

∣∣ =
2
n

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂Mn
Ω|m]A

B
∣∣ + ∂m ∂(M1 . . . ∂Mn−1ΩMn)A

B
∣∣︸ ︷︷ ︸

=0 (H.98)

= (H.108)

= 2 ∂(M1 . . . ∂Mn−1|

(
R|Mn)mA

B +
1
2

Ω|Mn)A
CΩmCB −

1
2

ΩmACΩ|Mn)C
B

)∣∣∣∣(H.109)
(H.98)⇒ ∂M1 . . . ∂Mn

ΩmAB
∣∣ = 2 ∂(M1 . . . ∂Mn−1|R|Mn)mA

B
∣∣ ∀n ≥ 1 (H.110)

Although in contrast to (H.102) we do not have an n-dependent factor, we have in general ∂MΩmAB 6= 2RMmA
B

away from ~θ = 0. The reason for this fact is the symmetrization on the righthand side. Also we have ΩmAB 6=
2xMRMmA

B for ~θ 6= 0.
For the vielbein the situation is again similar:

∂M1 . . . ∂Mn
En

A
∣∣ =

2
n

n∑
i=1

∂M1 . . . ∂[Mi| . . . ∂Mn
E|m]

A
∣∣ + ∂m ∂(M1 . . . ∂Mn−1EMn)

A
∣∣︸ ︷︷ ︸

=0 (H.97),(H.95)

= (H.111)

= 2 ∂(M1 . . . ∂Mn−1|

(
T|Mn)m

A +
1
2
E|Mn)

BΩmBA −
1
2
Em

BΩ|Mn)B
A

)∣∣∣∣ = (H.112)

(H.97),(H.98)
=

(H.95)
2 ∂(M1 . . . ∂Mn−1TMn)m

A
∣∣ + δ(Mn

B ∂M1 . . . ∂Mn−1)ΩmBA
∣∣ (H.113)

In particular for n = 1 we get

∂M Em
A
∣∣ = 2 TMm

A
∣∣ + δM

B ΩmBA
∣∣ (H.114)

while for n > 1 we can use (H.110) to arrive at

∂M1 . . . ∂Mn
En

A
∣∣ = 2 ∂(M1 . . . ∂Mn−1TMn)m

A
∣∣ + 2δ(M1

B ∂M2 . . . ∂Mn−1RMn)mB
A
∣∣ ∀n ≥ 2 (H.115)

In practice we are given constraints on torsion and curvature components with only �at indices. Rewriting
the equations (H.102),(H.106),(H.110),(H.114) and (H.115) with �at components yields the following rekursion
realtions
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∂M1 . . . ∂Mn
ΩMn+1A

B
∣∣ =

2n
n+ 1

δ(Mn

C∂M1 . . . ∂Mn−1)(EMn+1
DRCDA

B)
∣∣ ∀n ≥ 1 (H.116)

∂M1 . . . ∂MnEMn+1
A
∣∣ =

2n
n+ 1

δ(Mn

C∂M1 . . . ∂Mn−1)(EMn+1
DTCD

A)
∣∣ + (∀n ≥ 1)

+
2(n− 1)
n+ 1

δ(Mn−1
CδMn

B ∂M1 . . . ∂Mn−2)(EMn+1
DRCDB

A)
∣∣ (H.117)

∂M1 . . . ∂Mn
ΩmAB

∣∣ = 2δ(Mn

C ∂M1 . . . ∂Mn−1)(EmDRCDA
B)
∣∣ ∀n ≥ 1 (H.118)

∂M Em
A
∣∣ = 2δMC Em

DTCD
A
∣∣ + δM

B ΩmB
A
∣∣ (H.119)

∂M1 . . . ∂MnEn
A
∣∣ = 2δ(Mn

C ∂M1 . . . ∂Mn−1)(EmDTCD
A)
∣∣ +

+2δ(Mn

BδMn−1
C ∂M1 . . . ∂Mn−2)(EmDRCDB

A)
∣∣ ∀n ≥ 2 (H.120)

Let us do the �rst steps of the iteration, in order to see what is happening:

n = 0 : ΩMA
B
∣∣ = 0, ΩmAB

∣∣ ≡ ωmAB (H.121)

EM
A
∣∣ = δM

A, Em
a| ≡ ema, Em

A∣∣ ≡ ψmA (H.122)

n = 1 : ∂M1ΩM2A
B
∣∣ = δM1

CδM2
D RCDA

B
∣∣ , ∂MΩnAB

∣∣ = 2δMCen
d RCdA

B
∣∣ + 2δMCψn

D RCDA
B
∣∣(H.123)

∂M1EM2
A
∣∣ = δM1

CδM2
D TCD

A
∣∣ , ∂MEn

a| = 2δMCen
d TCd

a| + 2δMCψn
D TCD

a|
∂MEn

A∣∣ = 2δMCen
d TCd

A∣∣ + 2δMCψn
D TCD

A∣∣ + δM
BωnB

A (H.124)

n = 2 : ∂M1∂M2ΩM3A
B
∣∣ =

4
3
δ(M2|

Cδ|M1)
EδM3

F TEF
D
∣∣ RCDA

B
∣∣ +

4
3
δ(M2|

CδM3
D∂|M1)RCDA

B (H.125)

∂M1∂M2ΩmAB
∣∣ = 2δ(M2

C (2δM1)
Een

f TEf
D
∣∣ + 2δM1)

Eψm
F TEF

D
∣∣ + δM1)

EωmE
D
)
RCDA

B
∣∣ +

+2δ(M2
Cem

d ∂M1)RCdA
B
∣∣ + 2δ(M2

Cψm
D ∂M1)RCDA

B
∣∣ (H.126)

∂M1∂M2EM3
A
∣∣ =

4
3
δ(M2

CδM1)
EδM3

F TEF
D
∣∣ TCD

A
∣∣ +

4
3
δ(M2

CδM3
D ∂M1)TCD

A
∣∣ +

+
2
3
δ(M1

CδM2)
BδM3

D RCDB
A
∣∣ (H.127)

∂M1∂M2En
A
∣∣ = 2δ(M2

C (2δM1)
Eem

f TEf
D
∣∣ + 2δM1)

Eψm
F TEF

D
∣∣ + δM1)

EωmE
D
)
TCD

A
∣∣ +

+2δ(M2
Cem

d ∂M1)TCd
A
∣∣ + 2δ(M2

Cψm
D ∂M1)TCD

A
∣∣ +

+2δ(M2
BδM1)

Cem
d RCdB

A
∣∣ + 2δ(M2

BδM1)
Cψm

D RCDB
A
∣∣ (H.128)

. . .

Apparently this iteration gets very involved for higher orders, but in principle we can express every superviel-
bein component and superconnection component in terms of the bosonic vielbein, the gravitinos, the bosonic
connection and the torsion and curvature components. Note �nally that the components ΓMN

K of the super-
space connection do not vanish at leading order like the structure group connection. Instead we �nd because of
ΓMN

K =
(
∂MEN

C + EN
BΩMB

C
)
EC

K for the leading order that

ΓMN
K
∣∣ (H.96)

= ∂MEN
C
∣∣ ECK∣∣ (H.129)

Using some of the equations above, this implies in particular

ΓMn
K
∣∣ = 2 TMn

a| EaK
∣∣ + 2 TMn

A∣∣ δAK + δM
BωnB

AδA
K = (H.130)

= 2δMCen
d TCd

a| EaK
∣∣ + 2δMCψn

D TCD
a| EaK

∣∣ +

+2δMCen
d TCd

A∣∣ δAK + 2δMCψn
D TCD

A∣∣ δAK + δM
BωnB

AδA
K (H.131)

ΓMN
K
∣∣ = δM

CδN
D TCD

a| EaK
∣∣ + δM

CδN
D TCD

A∣∣ δAK (H.132)

H.3 Partial Gauge Fixing of the B-super�eld

Although the gauge �xing of the B-�eld is not necessary in order to obtain the supergravity transformations,
we will discuss it at this place, as it is very similar to the gauge �xings of connection and vielbein. Again we
want to �x only the auxiliary gauge degrees but leave the gauge freedom of the bosonic two-form. The B-�eld
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gauge symmetry is of the form B → B + dΛ, with some one-form Λ. Let us split the gauge transformation into
three cases with di�erent index structures:

BMN → BMN + ∂[MΛN ] (H.133)

BMn → BMn + ∂[MΛn] (H.134)

Bmn → Bmn + ∂[mΛn] (H.135)

In the ~θ-expansion, we thus have

∂K1 . . . ∂Kp
BMN

∣∣ → ∂K1 . . . ∂Kp
BMN

∣∣ +
1
2
∂K1 . . . ∂Kp

∂MΛN
∣∣ − 1

2
∂K1 . . . ∂Kp

∂N ΛM
∣∣ (H.136)

∂K1 . . . ∂Kp
BMn

∣∣ → ∂K1 . . . ∂Kp
BMn

∣∣ +
1
2
∂K1 . . . ∂Kp

∂MΛn
∣∣ − 1

2
∂n ∂K1 . . . ∂Kp

ΛM
∣∣ (H.137)

∂K1 . . . ∂KpBmn
∣∣ → ∂K1 . . . ∂KpBmn

∣∣ +
1
2
∂m ∂K1 . . . ∂KpΛn

∣∣ − 1
2
∂n ∂K1 . . . ∂KpΛm

∣∣ (H.138)

The gauge symmetries of the �rst two lines can be used to set ∂(K1 . . . ∂Kp
BM)N

∣∣ − ∂(K1 . . . ∂Kp
BN )M

∣∣ and
∂(K1 . . . ∂Kp

BM)n

∣∣ to any value one likes. This �xes ΛM up to a de-Rham closed term (as usual) and up to
the bosonic gauge parameter Λm|. We want to choose a gauge in such a way that for p ≥ 1, the higher orders
in the ~θ-expansion can be expressed in a simple way in terms of the H-�ux HMNK ≡ ∂[MBNK]. To this end
consider

3p · ∂(K1 . . . ∂Kp−1HKp)MN =

= 3
p∑
i=1

∂K1 . . . ∂[Ki| . . . ∂Kp
B|MN ] = (H.139)

= p∂K1 . . . ∂Kp
BMN −

p∑
i=1

(
∂K1 . . . ∂M . . . ∂Kp

BKiN − ∂K1 . . . ∂N . . . ∂Kp
BKiM

)
= (H.140)

= (p+ 2)∂K1 . . . ∂Kp
BMN − (p+ 1)

(
∂(K1 . . . ∂Kp

BM)N − ∂(K1 . . . ∂Kp
BN )M

)
(H.141)

This suggests to choose the gauge

∂(K1 . . . ∂KpBM)N
∣∣ − ∂(K1 . . . ∂KpBN )M

∣∣ != 0 ∀p (H.142)

which �xes ∂K1 . . . ∂Kp
∂[MΛN ]

∣∣ . The above equation is a trivial statement for p equal or bigger as the
fermionic dimensions (i.e. 32 for a ten-dimensional spacetime and type II), because the graded symmetrization
of fermionic indices (i.e. their antisymmetrization) vanishes when the number of indices exceeds the dimension.
On the other hand the statement is a very strong one for p = 0, where we simply get BMN | = 0.

The choice for the gauge in the case with mixed index structure is not as obvious as above:

3p · ∂(K1 . . . ∂Kp−1HKp)Mn =

= 3
p∑
i=1

∂K1 . . . ∂[Ki| . . . ∂KpB|Mn] = (H.143)

= p∂K1 . . . ∂Kp
BMn −

p∑
i=1

(
∂K1 . . . ∂M . . . ∂Kp

BKin − ∂K1 . . . ∂n . . . ∂Kp
BKiM

)
= (H.144)

= (p+ 1)∂K1 . . . ∂KpBMn −
(
(p+ 1)∂(K1 . . . ∂KpBM)n − p∂n∂(K1 . . . ∂Kp−1BKp)M

)
(H.145)

Instead of setting ∂(K1 . . . ∂Kp
BM)n

∣∣ to zero (which is of course a valid choice, too), it seems more convenient
here to choose

∂(K1 . . . ∂KpBM)n

∣∣ =
p

p+ 1
∂n ∂(K1 . . . ∂Kp−1BKp)M

∣∣ ∀p (H.146)

which �xes ∂K1 . . . ∂Kp∂MΛn
∣∣. Now we have �xed as much as we can and hope that the remaining components

behave in a nice way:

3p · ∂(K1 . . . ∂Kp−1HKp)mn =

= 3
p∑
i=1

∂K1 . . . ∂[Ki| . . . ∂KpB|mn] = (H.147)

= p∂K1 . . . ∂Kp
Bmn −

p∑
i=1

(
∂K1 . . . ∂m . . . ∂Kp

BKin − ∂K1 . . . ∂n . . . ∂Kp
BKim

)
= (H.148)

= p∂K1 . . . ∂KpBmn − p
(
∂m∂(K1 . . . ∂Kp−1BKp)n − ∂n∂(K1 . . . ∂Kp−1BKp)m

)
(H.149)
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Indeed, the gauge �xing condition (H.146) is �ne to remove the last terms for ~θ = 0. Plugging (H.142) in
(H.141) and (H.146) in (H.145) and (H.149), we can express all auxiliary components of B in terms of some
H-�eld components:

∂K1 . . . ∂Kp
BMN

∣∣ =
3p
p+ 2

· ∂(K1 . . . ∂Kp−1HKp)MN
∣∣ ∀p ≥ 1, BMN | = 0 (p = 0) (H.150)

∂K1 . . . ∂KpBMn

∣∣ =
3p
p+ 1

· ∂(K1 . . . ∂Kp−1HKp)Mn

∣∣ ∀p ≥ 1, BMn| = 0 (p = 0) (H.151)

∂K1 . . . ∂Kp
Bmn

∣∣ = 3︸︷︷︸
3p
p

∂(K1 . . . ∂Kp−1HKp)mn

∣∣ ∀p ≥ 1 (H.152)

Again, the constraints on the components of H wil be given in �at coordinates. Rewriting the above set of
equations correspondingly, produces derivatives acting on the vielbein. We thus get again a recursion relation
which is coupled to the recursion relation for the vielbein.

H.4 Stabilizer

In order to recover the supergravity transformations, we need to determine those supergauge transformations
which leave the Wess-Zumino-gauge and the additional gauge �xing conditions untouched.

H.4.1 Stabilizer of the Wess Zumino gauge

Let us start with the vielbein which was �xed to EM
A
∣∣ = δM

A (H.76), and remember the general transforma-
tion (H.19)

δEM
A = ∂Mξ

A + ΩMC
AξC︸ ︷︷ ︸

∇MξA

+2ξCTCMA + LB
AEM

B (H.153)

Let us denote the �rst components in the ~θ-expansion of the transformation parameters as follows

ξA ≡ ξA0 + xMξAM + . . . (H.154)

LA
B ≡ L0A

B + xMLMA
B + . . . (H.155)

The ~θ = 0 component of EM
A in the WZ gauge then transforms as

δ EM
A
∣∣ = ξAM + ΩMC

A
∣∣︸ ︷︷ ︸

=0 (H.92)

ξC0 + 2ξC0 TCM
A
∣∣ + L0B

A EM
B
∣∣︸ ︷︷ ︸

δMB (H.76)

= (H.156)

= ξAM + 2ξC0 TCM
A
∣∣ + L0 B

AδM
B (H.157)

In order to preserve the gauge of the vielbein, we thus need that the above variation vanishes

ξAM = −δMB (2ξC0 TCB
A
∣∣ + L0 B

A
)

(H.158)

This result is very general, without any restriction on the structure group. In order to become more explicit,
let us now assume that the structure group is block-diagonal and split the index A into (a,A). (Remember,
the fermionic index might further decay, e.g. for type II in ten dimensions into A = (α, α̂).) The vector ξA can
then be written as

ξa = ξa0 − 2xMδM
BξC0 TCB

a| +O(~θ
2
) (H.159)

ξA = ξA
0 − xMδM

B (2ξC0 TCB
A∣∣ + L0 B

A)+O(~θ
2
) (H.160)

In this appendix, we will not make use of any torsion constraints. This will be done in the main part.
The gauge �xing condition of the connection was ΩMA

B
∣∣ = 0, while its general gauge transformation reads

(H.25)
δΩMA

B = 2ξKRKMA
B − ∂MLAB − [L,ΩM ]AB (H.161)

The gauge is thus preserved if

LMA
B != 2δMDξC0 RCDA

B
∣∣ (H.162)

or

LA
B(
→
x ,~θ) = L0A

B(
→
x ) + 2xMδM

DξC0 RCDA
B
∣∣ +O(~θ

2
) (H.163)
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H.4.2 Stabilizer of the additional gauge �xing conditions

Remember the additional gauge �xing conditions (H.97) and (H.98)

∂(M1 . . . ∂MnEMn+1)
A
∣∣ != 0, ∂(M1 . . . ∂MnΩMn+1)A

B
∣∣ != 0 ∀n ≥ 1 (H.164)

Stabilizing the �rst condition

δ ∂(M1 . . . ∂Mn
EMn+1)

A
∣∣ =

= ∂(M1 . . . ∂Mn|
(
∂|Mn+1)ξ

A + Ω|Mn+1)C
AξC + 2ξCTC|Mn+1)

A + LB
AE|Mn+1)

B)∣∣ = (H.165)

= ∂(M1 . . . ∂Mn|
(
∂|Mn+1)ξ

A + δ|Mn+1)
B (2ξCTCB

A + LB
A
))∣∣ (H.166)

implies

∂M1 . . . ∂Mn+1ξ
A
∣∣ = −∂(M1 . . . ∂Mn|

(
2ξCTCB

A + LB
A
)∣∣ δ|Mn+1)

B ∀n ≥ 1 (H.167)

This is actually recursion relation again. For the second fermionic derivative of the transformation parameter
e.g., we get

∂M1∂M2ξ
A
∣∣ = −2ξC(M1| TC|M2)

A
∣∣ − 2ξC0 ∂(M1|TC|M2)

A
∣∣ − L(M1M2)

A = (H.168)

= 2ξC0
(
2 TC(M1|

E
∣∣ TE|M2)

A
∣∣ − ∂(M1|TC|M2)

A
∣∣ − RC(M1M2)

A
∣∣)+

+2L0 (M1|
C TC|M2)

A
∣∣ (H.169)

Stabilizing �nally the second additional condition (the one on the connection)

δ ∂(M1 . . . ∂MnΩMn+1)A
B
∣∣ =

= ∂(M1 . . . ∂Mn|
(
2ξKRK|Mn+1)A

B − ∂|Mn+1)LA
B − [L,Ω|Mn+1)]AB

)∣∣ = (H.170)

= ∂(M1 . . . ∂Mn|
(
2ξKRK|Mn+1)A

B − ∂|Mn+1)LA
B
)∣∣ (H.171)

implies

∂M1 . . . ∂Mn+1LA
B
∣∣ = 2 ∂(M1 . . . ∂Mn|

(
ξCRCDA

B
)∣∣ δ|Mn+1)

D ∀n ≥ 1 (H.172)

Like above, this is a recursion relation, starting with the second fermionic derivative

∂M1∂M2LA
B
∣∣ = 2ξC(M1| RC|M2)A

B
∣∣ + 2ξC0 ∂(M1|RC|M2)A

B
∣∣ =

= 2ξC0
(
−2 TC(M1|

E
∣∣ RE|M2)A

B
∣∣ + ∂(M1|RC|M2)A

B
∣∣)− 2L0 (M1|

C RC|M2)A
B
∣∣

The two conditions (H.167) and (H.172) are restricting only terms of order 2 and higher in ~θ of the transformation
parameters ξA and LA

B and therefore do not a�ect our earlier result (H.159)-(H.160) and (H.163) for the
stabilizer of the WZ gauge.

H.4.3 Local Lorentz transformations as part of the stabilizer

For a reasonable gauge �xing we should still have local Lorentz invariance and the bosonic di�eomorphism as
part of the stabilizer group. We recover the local structure group transformations, if we set

ξC0 = 0 (H.173)

which leads to

LA
B(
→
x ,~θ) = L0A

B(
→
x ) +O(~θ

2
) (H.174)

ξa = O(~θ
2
) (H.175)

ξA = −xMδM
BL0 B

A +O(~θ
2
) (H.176)

The leading components of all super�elds with �at indices obviously then transform only under the local
structure group transformation L0A

B , because the coupled superdi�eomorphism a�ects only higher orders
in ~θ. When acting on a more general tensor of e.g. the form tNBMA, the coupled di�eomorphism contributes via
the matrix (∇LξK + 2ξCTCLK) acting on the curved indices (compare (H.15)). For the leading component, i.e.
~θ = 0, the nonvanishing part of this matrix is just

−(∇Kξ
P + 2ξDTCKP )

∣∣ = δK
BL0 B

AδA
P (H.177)
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In other words, the bosonic curved indices m,n, . . . do not transform, while the fermionic curved indices
M,N , . . . transform under the structure group.

For the behaviour on �rst order in ~θ, it is already instructive to consider the action of the above transfor-
mation on a scalar super�eld like a dilaton super�eld Φ(ph):

δΦ(ph) = ξC∇CΦ(ph) = −xMδM
BL0 B

C∇CΦ(ph) +O(~θ
2
) (H.178)

That means for the ~θ-component λM ≡ ∇MΦ(ph)

∣∣, that it transforms, as if M was a spinor index.

δλM = ∂Mδ(Φ(ph))
∣∣ = (H.179)

= −δMBL0 B
C ∇CΦ(ph)

∣∣ = (H.180)

= −δMBL0 B
CδC

NλN (H.181)

Although it might seem intuitive that (curved) fermionic indices transform under the structure group, it is
important to note that this is only due to the WZ-gauge, which couples part of the superdi�eomorphisms to
the local structure group transformations. Originally, the curved fermionic index M does not transform under
structure group transformations.

H.4.4 Bosonic di�eomorphisms as part of the stabilizer

The equations for the stabilizer are given in �at indices ξA. We will need this to extract the local supersymmetry
transformations. But in order to see whether the transformation with parameters ξM (

�
x ) = (ξm0 (

→
x ), 0, 0) and

L̃A
B = 0 (not LAB , which has absorbed part of the di�eomorphism), corresponding to bosonic di�eomorphisms,

is contained in the stabilizer, a change to curved indices is preferable. Instead of using the vielbein to switch
from �at to curved index, we check this directly. The transformation of the vielbein components with this
parameter is

δ EM
A
∣∣ = ξk0∂k EM

A
∣∣︸ ︷︷ ︸

δMA

+ ∂MξK
∣∣︸ ︷︷ ︸

=0

EK
A
∣∣ = 0 (H.182)

δ∂(M1 . . . ∂Mn
EMn+1)

A
∣∣ = ∂(M1 . . . ∂Mn|

(
ξk∂kE|Mn+1)

A + ∂|Mn+1)ξ
kEk

A
)∣∣ = (H.183)

= ξk∂k∂(M1 . . . ∂Mn|E|Mn+1)
A
∣∣ = 0 (H.184)

The same is true for the connection

δ ΩMA
B
∣∣ = ξk0∂k ΩMA

B
∣∣ + ∂MξK

∣∣︸ ︷︷ ︸
=0

ΩKAB
∣∣ = 0 (H.185)

δ∂(M1 . . . ∂MnΩMn+1)A
B
∣∣ = . . . = 0 (H.186)

H.5 Local SUSY-transformation

This section could actually be another subsection of the �stabilizer� section. But as we have special interest in
the local SUSY transformations, we make it a seperate section.

H.5.1 The transformation parameter

The supersymmetry transformations are de�ned to be the set of transformations within the stabilizer with

SUSY: ξc0 = L0A
B = 0, 0 6= ξC

0 ≡ εC (H.187)

From (H.158) and (H.162) we thus get

ξM
A = −2εC TCM

A
∣∣ , LMA

B = 2εC RCMA
B
∣∣ (H.188)

Or more explicitely (compare (H.159),(H.160) and (H.163)):

ξa(ε) = −2xMδM
DεC TCD

a| +O(~θ
2
) (H.189)

ξA(ε) = εA − 2xMδM
DεC TCD

A∣∣ +O(~θ
2
) (H.190)

LA
B(ε) = 2xMδM

DεC RCDA
B
∣∣ +O(~θ

2
) (H.191)
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Remember that the gauge transformation corresponding to these parameters is of the form

δε = L(cov)
��
ξ (ε)

+R(L(ε) ··) (H.192)

We should �nally note that the separation of the gauge transformations into local structure group transforma-
tions, local bosonic di�eomorphisms and local supersymmetry contains some arbitraryness. In particular when
the structure group contains an abelian subgroup (e.g. dilatations), a rede�nition of local supersymmetry with
such an abelian structure group transformation does not change the supersymmetry algebra. In fact the choice
L0A

B = 0 as part of the stabilizer of the gauge �xing is not possible any longer if such a subgroup (e.g. the
local scale transformation) is �xed. In the case where we �x for example (in our application in the main part)

the leading component of the (bosonic) compensator �eld Φ to Φ| != 0 or Φ| != Φ(ph)

∣∣, we get the additional
stabilizer condition

(
ξC”∇CΦ”− L(D)

)∣∣ != 0 or
(
ξC”∇CΦ”− L(D)

)∣∣ != ξC∇C Φ(ph)

∣∣ or equivalently
L

(D)
0 (ε) != εC ∇CΦ| & ξA(ε)→ ξA(ε)− 1

2
xMδM

AεC ∇CΦ| (H.193)

or L(D)
0 (ε) != εC (”∇CΦ”| − ∇C Φ(ph)

∣∣) & ξA(ε)→ ξA(ε)− 1
2
xMδM

AεC (”∇CΦ”| − ∇C Φ(ph)

∣∣)(H.194)
Alternatively, we could have �xed the complete super�eld Φ to zero (before going to WZ-gauge). Then the
scale part of the connection is not structure group valued and therefore has to be treated as a di�erence tensor.
Only the Lorentz part can then be used for the implementation of the WZ-gauge.

H.5.2 The supersymmetry algebra

In order to read o� the algebra of the local supersymmetry transformations from (H.69), we need the transfor-

mation of
��

ξ itself under a second supersymmetry transformation

δε1ξ
A(ε2) = −2xMεC

2 δε1TCM
A
∣∣ +O(~θ

2
) = (H.195)

= −2xMεC
2 δM

B L(cov)
��
ξ (ε1)

TCB
A

∣∣∣∣ +O(~θ
2
) = (H.196)

= −2xMδM
DεC

2 ε
B
1 ∇BTCD

A
∣∣ +O(~θ

2
) (H.197)

and also the transformation of LAB under supersymmetry:

δε1LA
B(ε2) = 2xMεC

2 δε1RCMA
B
∣∣ +O(~θ

2
) = (H.198)

= 2xMεC
2 δM

D L(cov)
��
ξ (ε1)

RCDA
B

∣∣∣∣ +O(~θ
2
) = (H.199)

= 2xMεC
2 δM

DεE
1 ∇ERCDA

B
∣∣ +O(~θ

2
) (H.200)

For the algebra (H.69), we still need the Lie bracket of the vector �eld:

[
��

ξ 1,
��

ξ 2]A = ξC1 ∇CξA2 − ξC2 ∇CξA1 − 2ξC1 TCB
AξB2 (H.201)

For simplicity, let us restrict to the leading component, although we would have enough information to calculate
higher orders as well:

[
��

ξ (ε1),
��

ξ (ε2)]A
∣∣∣∣ = εC

1 δC
MξM

A(ε2)− εB
2 δB

MξM
A(ε1)− 2εC

1 TCB
A
∣∣ εB

2 = (H.202)

= −2εC
1 ε

B
2 TBC

A
∣∣ + 2εB

2 ε
C
1 TCB

A
∣∣ − 2εC

1 TCB
A
∣∣ εB

2 = (H.203)

= 2εC
1 TCB

A
∣∣ εB

2 (H.204)

Having derived only the leading component of the vector-Lie bracket, we should restrict to the leading component
for the rest as well. The algebra (H.69) then becomes

[δε1 , δε2 ] = L(cov)

(−2εC
1 TCDA|εD

2 +O(~θ))
��
E A

+R
(

2εC
1 ε

D
2 RCD ·

· +O(~θ)
)

(H.205)
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H.5.3 Transformation of the �elds

The supersymmetry transformation of the �elds is simply given by

δε = L(cov)
��
ξ (ε)

+R(L(ε)··) (H.206)

where ξA(ε) and LAB(ε) are of the special form given in (H.187)-(H.191). Let us derive the transformations
of all the �elds that we will need. In order to extract the transformation of the (leading) components, we will
again make frequent use of the Wess Zumino gauge (H.76) and (H.92) (using Ema| ≡ ema, EmA

∣∣ ≡ ψmA). In
any supergravity theory we have a vielbein and a structure group connection which we will consider �rst.

H.5.3.1 Vielbein (bosonic vielbein and gravitino)

Remember, the vielbein transforms according to (H.19) as

δEM
A = ∂Mξ

A + ΩMC
AξC︸ ︷︷ ︸

∇MξA

+2ξCTCMA + LB
AEM

B (H.207)

In practice, we will be given constraints on torsion components with �at indices, s.t. it is useful to rewrite the
equations in those components. In addition, we plug in the explicit form of ξA(ε) and LBA(ε) given in (H.189)-
(H.191) to obtain the local supersymmetry transformation of the nonvanishing leading vielbein components (the
bosonic vielbein and the gravitino(s))::

δεem
a = 2εCem

b TCb
a| + 2εCψm

B TCB
a| (H.208)

δεψm
A = ∂mε

A + ωmC
AεC︸ ︷︷ ︸

∇mεA

+2εCem
b TCb

A∣∣ + 2εCψm
B TCB

A∣∣ (H.209)

H.5.3.2 Connection

Remember the general gauge transformation of the structure group connection (H.25)

δΩMA
B = 2ξKRKMA

B − ∂MLAB − [L,ΩM ]AB (H.210)

In the case where a scale part of the connection is present, this transforms accordingly as (see (H.30))

δΩ(D)
M = 2ξCF (D)

CM − ∂ML
(D) (H.211)

For the stabilizer of WZ-gauge with ΩMA
B
∣∣ = 0 and δ ΩMA

B
∣∣ = 0 and for the choice ξc0 = L0A

B (corre-
sponding to local supersymmetry (H.187) and (H.188)) the nontrivial part of the above equations becomes (for
~θ = 0):

δ ΩmAB
∣∣ = 2ξC

0 RCmA
B
∣∣ (H.212)

δ Ω(D)
m

∣∣∣ = 2ξC
0 F

(D)
Cm

∣∣∣ (H.213)

More explicitely (replacing εγ ≡ ξγ0 , ε̂γ̂ ≡ ξγ̂0 ) this reads

δ Ωmab
∣∣ = 2εγ

(
em

d Rγda
b
∣∣ + ψm

δ Rγδa
b
∣∣ + ψ̂m

δ̂ Rγδ̂a
b
∣∣∣)+

+2εγ̂
(
em

d Rγ̂da
b
∣∣ + ψm

δ Rγ̂δa
b
∣∣ + ψ̂m

δ̂ Rγ̂δ̂a
b
∣∣∣) (H.214)

δ Ω(D)
m

∣∣∣ = 2εγ
(
em

d F
(D)
γd

∣∣∣ + ψm
δ F

(D)
γδ

∣∣∣ + ψ̂m
δ̂ F

(D)

γδ̂

∣∣∣)+

+2εγ̂
(
em

d F
(D)
γ̂d

∣∣∣ + ψm
δ F

(D)
γ̂δ

∣∣∣ + ψ̂m
δ̂ F

(D)

γ̂δ̂

∣∣∣) (H.215)

H.5.3.3 Compensator �eld

A compensator �eld is not necessarily present in a supergravity theory. In our context such a �eld Φ is used to
allow a scale transformation of the metric in �at indices:

GAB ≡ e2ΦηAB (H.216)



APPENDIX H. SUPERGAUGE TRANSFORMATIONS, THEIR ALGEBRA AND THE WZ GAUGE 226

Where ηAB is some constant metric which is invariant under the orthogonal transformations. In our case, its
bosonic part is just the Minkowski metric and the rest is zero. There is no way, how a constant metric can
scale. Therefore the compensator �eld Φ takes over the scaling of GAB under scale transformation by simply
getting shifted with the scale parameter

R(L) Φ = Φ− L(D) (H.217)

Similarly, the covariant derivative will be de�ned to act only on Φ (and not on ηAB) in such a way that the
covariant derivative of GAB has the form that is indicated by its indices.

∇MGAB = 2(∂MΦ− Ω(D)
M )GAB (H.218)

⇒ ”∇MΦ” = 2(∂MΦ− Ω(D)
M ) (H.219)

The general gauge transformation of the compensator �eld thus reads

δΦ = ξK
(
∂KΦ− Ω(D)

K

)
︸ ︷︷ ︸

”∇KΦ”

−L(D) (H.220)

De�ne

φ ≡ Φ| (H.221)

φM ≡ ∂MΦ| (H.222)

For the lowest component , this implies the following local SUSY transformation in the WZ gauge

δεφ = εγφγ + ε̂γ̂φγ̂ (H.223)

The transformation is zero, if we combine it with an additional scale stabilizer transformation (H.193)

L(D) = ξC
0 φC (H.224)

Note that the transformation of the connection is such that the covariant derivative of the compensator �eld
transforms like a vector

δ∇AΦ = ξB∇B∇AΦ− LAB∇BΦ (H.225)

In particular we have for the SUSY transformation of the �rst theta-components

δε ∇AΦ| = εB ∇B∇AΦ| (H.226)

H.5.3.4 Scalar super �eld (e.g. dilaton and dilatino)

The Dilaton �eld is a scalar and thus has the simple transformation

δΦ(ph) = ξC ∇CΦ(ph)︸ ︷︷ ︸
ECM∂MΦ(ph)

= L��
ξ

Φ(ph) (H.227)

De�ne now the dilatino to be

λA ≡ ∇AΦ(ph)

∣∣ = δA
M ∂MΦ(ph)

∣∣ (H.228)

λM = ∂MΦ(ph)

∣∣ (H.229)

⇒ Φ(ph) = φ(ph) + xµλµ + xµ̂λ̂µ̂ +
1
2
xMxN ∂M∂N Φ| + . . . (H.230)

This de�nition of the dilatino implies according to (H.227) for the dilaton φ(ph) the transformation

δΦ(ph) = εCλC (H.231)

For the transformation of the dilatino we use the fact that the variation of a covariant derivative is simply the
covariantized Lie derivative (supergauge transformation) plus the structure group transformation of the new
tensor according to the new index structure (see footnote 3 on page 210 and (H.15)). We thus have

δ(∇AΦ(ph)) = ξC∇C∇AΦ(ph) − LAB∇BΦ(ph) (H.232)
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with ξC and LAB given in (H.187)-(H.191). For the fermionic components at ~θ = 0, this reads simply

δλA = εC ∇C∇AΦ(ph)

∣∣ (H.233)

Apparently, we need some equations of motion at this point, in order to say more. We can, however, relate this

expression explicitely to the ~θ
2
component ∂M∂N Φ(ph)

∣∣ of the dilaton:
δλA = εCδC

M ∂M(EA
K∂KΦ(ph))

∣∣ = (H.234)

= εCδC
M (

∂MEA
K
∣∣ ∂KΦ(ph)

∣∣ + δA
K ∂M∂KΦ(ph)

∣∣) (H.235)

Now we can use that

∂MEA
K
∣∣ = − EA

L
∣∣ ∂MEL

B
∣∣ EBK∣∣ = (H.236)

= − EA
L∣∣ ∂MEL

B
∣∣︸ ︷︷ ︸

∂[MEL]
B|

EB
K
∣∣ = (H.237)

= −δAL TML
B
∣∣ EBK∣∣ (H.238)

The transformation of before can then be rewritten as

δλA = −εC TCA
b
∣∣ ebk∂kφ(ph) + εC TCA

b
∣∣ ψbKλK − εC TCA

B∣∣ λB +

+εCδC
MδA

K ∂M∂KΦ(ph)

∣∣ (H.239)

H.5.3.5 Bispinor �elds (RR-�elds)

Apart from that we will be interested in the transformation of RR-�elds

δPαβ̂ = ξC∇CPαβ̂ + Lγ
αPγβ̂ + Lγ̂

β̂Pαγ̂ (H.240)

The leading component, that we de�ned in the main text as pαβ̂ = e−8φ(ph) Pαβ̂
∣∣∣, then transforms as

δpαβ̂ = −8εCλCpαβ̂ + e−8φ(ph)εC ∇CPαβ̂
∣∣∣ (H.241)

H.5.3.6 Two or three form (e.g. B-�eld and H-�eld)

Finally we consider the transformation of a two form (e.g. the B-�eld) and of a three form (e.g the H-�eld):

δBAB = ξD∇DBAB − 2L[A|
DBD|B] (H.242)

δBMN = ξD∇DBMN + 2(∇[M |ξ
L + 2ξPTP [M |

L)BL|N ] = ξK∂KBMN + 2∂[M |ξ
LBL|N ] (H.243)

δHABC = ξD∇DHABC − 3L[A|
DHD|BC] (H.244)

δHMNK = ξD∇DHMNK + 3(∇[M |ξ
L + 2ξPTP [M |

L)HL|NK] = ξL∂LHMNK + 3∂[M |ξ
LHL|NK] (H.245)

It makes some di�erence whether we consider the �elds with �at or with curved coordinates. The di�erence
lies in the transformation of the vielbeins. Physically, we are interested in the transformation of the bosonic
B-�eld Bmn| and H-�eld Hmnk| with curved indices. If we assume that H = dB and B thus is a gauge �eld,
we can make use of the WZ-like gauge BMN | = BmN | = 0 and ∂KBmn| = 3 HKmn|, in order to become more
explicit for the transformation of Bmn|. For the B-�eld transformation it thus makes sense to take the version
in terms of partial derivatives instead of covariant ones.

δ Bmn| = εDδD
K ∂KBmn| + 2∂[m|ε

D BD|n]

∣∣ = (H.246)

= 3εD HDmn| (H.247)

Rewritten in �at coordinates, the result becomes

δε Bmn| = 3εDem
aen

b HDab| + 6εDψ[m
Aen]

b HDAb| + 3εDψ[m
Aψn]

B HDAB| (H.248)

So far we have only used simpli�cations coming from the WZ-like gauge but no supergravity constraints yet.
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Ŝα̂α

β̂β, 44
TA, 50
TAB|C , 58
T ∗(ΠTM), 119
TA, torsion 2-form, 189
T̂ (t,t′,t′′), 122
T (t,t′,t′′)(σ), 125
T (t,t′,t′′)(σ,θ), 127, 133, 138
T (t,t′,t′′)(x, c, b, p), 121
TAB

C , 75, 90
TMN

K , torsion components, 189
Tm1...mt

n1...nt′k1...kt′′ (x), 121
U(b | f), 34
[d/2], integer part of d/2, 168
∆AB

C , 98
∆MA

B , 73, 89
ΓMN

K , 50
Γa, graded gamma matrix, 26
Γ#, chirality matrix, 168
Γa, gamma matrix, 167
Γ[k], schematic for Γa1...ak , 167
Γa1...ap , antisymmetrized product of gamma matrices,

167
Ω, BRST operator, 126, 137
Ω←→MA

B , average connection, 73, average connection,
80, average connection, 199

ΩMA
B , 50, mixed connection, 199

Ω̂MA
B , right mover connection, 73, right mover con-

nection, 199
Ω̂Mα̂β̂, 44, 74
Ω̃, 137
ΩMA

B , left mover connection, 73, left mover connec-
tion, 199

ΩMαβ, 44, 74
Ω(L)
Ma1a2

, Lorentz connection, 51
Ω̌Ma

b, 50
Ω(D)
M , scale connection, 51

Φ+
m(σ′,θ′), anti-super�eld, 132

Φ, compensator �eld, 61
φIall, 181
Φm(σ,θ), 127, 132
Φ(ph), dilaton super�eld, 79
ΠTM , 119
ΠM

N , 149
Π̄M

N , 149
ΠA
z , 45, 145

Πa
z , 145

in �at superspace, 39
Παz , 145
ΠA
z , 145

Πα̂z , 145
Σ, world-volume, 125
βmn, beta-transform, 152
βm, 135
δcov, 54
δc1...cnd1...dn

, antisymmetrized Kronecker delta, 169
δMN , graded Kronecker, 18
δM

N , graded Kronecker, 18
δNM , numerical Kronecker delta, 18
�, end of footnote, vii
εm1...md , volume ε tensor, 169
ε(d), 168
εc1...cd , 168
ηµm, 135
ηab, 145
δcovS

δxK
, 56

γ̃abα
β , 95

γ̃cαβ, 92
γ̃c α̂β̂, 92
γcαβ, 37

γ[k], schematic for γa1...ak , 177
γa1...a2k α

β, 177
γaαβ, chiral gamma matrix, 176
λα, pure spinor ghost, 37
λm(σ), 136
λα, pure spinor ghost, 41
λµ, dilatino, 79
λ̂µ̂, dilatino, 79

λ̂
α̂
, right-moving pure spinor ghost, 41

µ(θ), fermionic integration measure, 132
∇, 172
∇̌MΦ, 62
∇̂zλβ̂, 44
∇z̄λβ, 44
ωzα, antighost, 41
ω←→mA

B, 85

ωmA
B, 83



INDEX 236

ωm...mηm...m, 147
ω̂z̄α̂, right-moving antighost, 41

(. . .)
←−
∂

∂cM
≡ ∂(. . .)/∂cM , right derivative, 29

(. . .)
←−
∂

∂xK
≡ ∂(. . .)/∂xK , right derivative, 28

∂m, coordinate basis element of TM , 119
∂m, 146
∂M on T ⊕ T ∗, 150
∂M on T ⊕ T ∗, 150
∂M (. . .) ≡ ∂(...)

∂xM
≡ ∂

∂xM
(. . .), left derivative, 28

∂
∂cM

(. . .) ≡ ∂(...)
∂cM

, left derivative, 29
φ, bosonic compensator, 81
φ0(M), sign (−)φ0(M) in graded summation, 8
φph, dilaton, 81
∇, 172
ρ(r), r-form, ρ, 119
ρ

(r)
θ (σ), 131
ρm(σ), 136
σµ, worldvolume coordinates σµ, 125
/, 169
?, Hodge star, 104, 170
θ, 145
θ̂, 145

θ̂
µ̂
, 39

~θ, 145
θM, 145
θµ, 39, 131, 145

θ̂
µ̂
, 145

θ, 126
ξA(

�
x ), 206

a = aM tM , generalized vector �eld, 148
bm, ≡ ∂m, 119
bmn, antisymmetric tensor �eld, 81
b̂m, quantized b, 120
cM , ghost, 7
cm, ≡ dxm, 119
d, exterior derivative, 119
d(∂m), 122
dK(σ), 125
dK(σ,θ), 128, 133, 138
dK(k,k′), 122
dw, world-volume exterior derivative, 125
dH , twisted exterior derivative, 125
dP , Lichnerowicz-Poisson di�erential, 163
dw, worldvolume dimension, 126, 132
dzα, 40
d̂z̄α̂, 40
dxm, 146
dxm, 119
em

a, bosonic vielbein, 81
fd
C , 69

gmn, bosonic metric, 81
gs(. . .), 10, 12
hmnk, bosonic H-�eld, 81
ıKρ, 120
ıK(k,k′)ρ(r), 163

ı
(p)

K(k,k′) , 120, 164
ıT (t,t′,t′′) , 122

ı
(p)

T (t,t′,t′′) , 123
ıvρ, interior product, 119
ıvω, 7

jz, BRST current, 44
jz, 40
̂z̄, right-moving BRST current, 44
̂z̄, 40
jµ(ρ), Noether current, 182
o, generator for exterior derivative, 119
o(σ), 125
o(σ,θ), 128, 138
oMi , 10
pm, =̂∂m, 119, 122
pzα, 40
p̂z̄α̂, 40
s(. . .), BRST di�erential, 125
s̃, 137
signg(...)(. . .), 10, 12
tM , 136, 148
tM , 146
tM , 148
v, general vector �eld, 119
→
x , 44, 145
�
x , 44, 145
xM , coordinates of supermanifold, 6, 39, 145
xm, bosonic coordinates, 6, 39, target space coordi-

nates, 125, 145
xM, fermionic coordinates, 6, 145
xµ, 145
xµ̂, 145
x+

m, anti�eld, 131

abstract, ii
action

in general background, 44
algebra

Cli�ord ∼, 167
Gerstenhaber ∼, 161
Schouten ∼, 161
SUSY ∼, 224

algebraic bracket, 120, 120, 164
between forms, 173
Buttin's ∼, 121, 164

almost complex structure, see complex structure
alternatives to pure spinor, 41
antibracket, 32, 131, 161
anti�eld, 131
antighost gauge symmetry, 41
antihermiticity

of the generalized complex structure, 149
antiholomorphic

generalized ∼, 149
antisymmetric

rank 2 tensor �eld B, 190
antisymmetric tensor �eld

bosonic ∼ bmn, 81
antisymmetrization, 146
Antisymmetrized

product of Γ-matrices, 167
antisymmetrized

Kronecker delta, 169
appendix, 145
associativity

of graded matrix multiplication, 17
auxiliary



INDEX 237

gauge degrees of freedom, 206
average connection, 80
average connection Ω←→MA

B , 73, 199

B-�eld, 190
B-�eld

gauge transformation, 48
B-transform, 151
Baker-Campbell-Hausdor� formula, 36
basis element

combined ∼ tM , 148
combined ∼, 146

Berkovits string, see pure spinor string
beta-transform, 152
Bianchi identitiy, 72
Bianchi identity

H-�eld ∼, 191
curvature ∼, 192
�rst ∼, see torsion ∼
for H, 91
for curvature, 72
for the torsion, 100
scale curvature, 192
second ∼, see curvature ∼
torsion ∼ , 192

big bracket, 121, 164
derived bracket of the ∼, 124

big graded equal sign, 13
body, 7
boldface philosophy, 146
bosonic curvature, 83
bosonic structure group

Lorentz plus scale, 61
bosonic torsion, 82
bracket

(Froehlicher-)Nijenhuis ∼, 166
algebraic ∼, 120, [K,L]∆, 120, 164
anti ∼, 32
anti-∼, (. . . , . . .), 131, 161
big ∼, 164
big ∼, 121
Buttin's ∼, 162
Buttin's algebraic ∼, 121, 164
Buttin's di�erential ∼, 165
commutator, [. . . , . . .], 120
courant ∼, 151
derived ∼, 121, 162
derived ∼ of the big ∼, 124
derived ∼, 164
derived ∼ of the algebraic bracket, 123
Don't make a break, make a ∼, 116
Dorfman ∼, 124, 150
Dorfman-Schouten ∼, 152
Fröhlicher Nijenhuis ∼, 124
Gerstenhaber ∼, 161
Lie ∼ of degree n, [. . . ,(n) . . .], 160
Lie ∼ of vector �elds, 159
Loday ∼, 162
Poisson, 146
Poisson ∼, 30
in T ⊕ T ∗, 119

Richardso-Nijenhuis ∼, 166

Richardson-Nijenhuis ∼, 121
Schouten, 124
Schouten ∼, 160, 165
Schouten ∼ on generalized multivectors, 152
Schouten-Nijenhuis ∼, see Schouten ∼
some algebraic ∼ between forms, 173
super-Poisson ∼, 127
vector Lie ∼, 124
Vinogradov, 117
Vinogradov ∼, 164
Vinogradov ∼, 162

break
Don't make a ∼, make a bracket, 116

BRST
in �at superspace, 115

BRST di�erential
exterior derivative as ∼, 122

BRST-current, 44
building blocks

of ps action, 43
Buttin's

algebraic bracket, 164
di�erential bracket, 165

Buttin's algebraic bracket, 121, 164
Buttin's bracket, 162

Campbell
Baker-∼-Hausdor�-formula, 36

canonical antisymmetric 2-form, 149
canonical metric GMN of T ⊕ T ∗, 148
Cartan formulae, 162
charge conjugate, 176
chiral

Cli�ord algebra, 176
chiral Fierz identity, 180
chiral gamma matrices, 176
chirality

w.r.t. SO(d, d), 157
chirality matrix, 168
Cli�ord algebra, 167

chiral ∼, 176
Cli�ord map, 169
Cli�ord multiplication, 173
coinciding indices, 11
collected constraints, 73
combinatorical formula, 188
combined basis element tM , 148
combined basis element tM , 146
commutator, 120

of covariant derivatives, 190
of covariant derivatives on compensator, 196

commuting
graded ∼, 7

commuting nilpotent variables, 15
compensator �eld

bosonic, 81
commutator of covariant derivatives, 196

compensator �eld Φ, 61
complex conjugation

graded ∼, 13
of graded commuting variables, 19

complex structure



INDEX 238

generalized ∼, 149
generalized ∼, 136

components
of ~θ-expansion, 218

conclusions, 143
conformal weight, 43
conjugate momentum, pm, 119, 122

graded de�nition, 33
connection, 80, 199

average ∼, 80
average ∼ Ω←→MA

B , 73, 199
left mover ∼, 73, 199
Lie derivative of superspace ∼, 210
Lorentz ∼, 51
mixed, 50
mixed ∼, 80, 199
right mover ∼, 73, 199
scale ∼, 51
shift in ∼, 193
structure group transformation, 209
supergauge transformation, 209

constraints
collected ∼ on the background �elds, 73

convention
graded summation ∼, 7
mixed ∼, 7
NE ∼, 7
NW ∼, 7

conventions, 145
coordinates

target space ∼ xm, 125
worldvolume ∼, 125

counterexample, 30
to the gradi�cation theorem, 15, 23

Courant bracket, 151
covariant derivative

commutator of ∼ on compensator �eld, 196
exterior ∼, 191, 192

covariant variation, 54
covariant variational derivative, 56
covariantized Lie derivative, 207, see supergauge trans-

formation
curvature, 190

Bianchi identity, 72, 192
bosonic ∼, 83
form of ∼ for restricted structure group, 194
Lorentz ∼, 192
scale ∼, 192
with shifted connection, 193

curved index, 145

Darboux coordinates, 33
de Rham super�eld, 132, 135
decomposable

multivector, 163
multivector valued form, 163

degree
total ∼, 145

delta function
for Grassmann variables, 127

derivative
Dorfman ∼, 151

extended exterior ∼, 122
for fermionic variables, 15
functional ∼, 127
left ∼, 146
left- and right ∼, 28
Lie ∼, 122, 159
right ∼, 146

derived bracket, 121, 162, 164
of the algebraic bracket, 123
of the big bracket, 124
of the Poisson bracket, 124

determinant
de�nition with Levi Civita symbol, 170
super ∼, 25
super∼, 24

di�eomorphism
bosonic ∼ as part of WZ-stabilizer, 223

di�erence tensor, 73, 89
intermezzo on ∼, 97

di�erential
Lichnerowicz-Poisson ∼, 163

di�erential bracket, see derived bracket
Buttin's ∼, 165

dilatation
contribution to SUSY, 86

dilatation connection, see trace connection
dilatino, λµ, 79, 82, 226
dilaton, 79, 81, 226
dilaton-super�eld, 79
dimension

negative ∼, 25, 35
of a graded vector space, 25

Dirac
conjugate, 176
gamma matrices
representation, 175

Dirac operator, 172
Don't make a break, make a bracket, 116
Dorfman bracket, 124, 150
Dorfman derivative, 151, 152
Dorfman-Schouten bracket, 152
Dragon's theorem, 197

Einstein
graded ∼ summation convention, 7

Einstein frame, 81
embedding

of multivector valued forms in operator space, 120
of tensors into the space of di�erential operators,

161
equal sign

graded ∼ =g, 9
extended exterior derivative

twisted, 125
extended worldsheet SUSY, 140
exterior covariant derivative, 191, 192
exterior derivative, d, 119

on multivector valued forms, 122
twisted ∼, 125
world-volume ∼ dw, 125

fermionic supermatrix



INDEX 239

inverse of ∼, 23
�eld strength

scale ∼, 51, 192
Fierz identity, 174

chiral ∼, 180
�rst Bianchi identity, see torsion BI, 192
�xing two of three Lorentz trafos, 73
�at background, 39
�at index, 145
�at superspace, 39

as a solution of the pure spinor string in general
background, 114

BRST transformations, 115
footnote

1. distinct Z2-gradings, 8
2. permutation signature, 10
1. matrix multiplication in B. DeWitt, 16
2. Kronecker for mixed conventions, 18
3. complex conjugation of Grassmann variables,

20
4. inverse of a supermatrix, 23
5. inverse of a fermionic supermatrix, 23
6. negative dimensions, 25
1. hermiticity and unitarity and BCH for super-

groups, 36
1. second x-derivative and bdry, 44
2. degenerate limit, 44
3. degenerate limit, 45
4. invertible bosonic supermatrix, 45
5. bringing GAB to a simple form via rep's, 46
6. reasoning for choice of structure group index

positions, 48
7. reason for restriction to Lorentz and scale trafos,

49
8. extracting dilatation and Lorentz part of con-

nection, 52
9. di�erent antighost gauge symmetry, 52
10. covariant derivative on gamma, 53
11. covariant derivative of a multivector valued

form, 56
12. suggestion for bosonic dza, 62
13. independence of choice of bosonic connection

Ω̌Ma
b, 62

14. BRST of d, mixed �rst-second order formal-
ism, 65

15. no trivially conserved part, 69
16. remark on the dilaton, 79
17. bosonic local scale invariance and bosonic co-

variant derivative, 81
18. comment on the reduced structure group of

Sαα̂
ββ̂ , 89

19. about the torsion in the H-BI, 91
20. torsion di�ers from γcαβ only by Lorentz plus

scale trafo, 92
21. about Tα(c|d), 94
22. scaling weight; γ̃aαβ , 95
23. combinatorical remark, 97
24. some consistency check, 97
25. another calculational remark, 102
26. example for grading shift, 105
27. comment on the twisted di�erential, 107

28. constraint on dilaton from comparing di�erent
constraints on curvature, 111

1. Courant and Dorfman bracket, 117
2. Vinogradov bracket, 117
1. prefactor in forms, 119
2. ghosts and forms, 119
3. exterior derivative versus BRST di�erential,

122
4. [d, ıK ]ρ = ıdKρ , 122
5. combinatorical remark, 123
6. building blocks of [K,L], 124
7. worldvolume index, 125
8. confusion about dw, 125
9. about the super�eld de�nition, 126
10. super-Poisson bracket, 127
11. delta function for Grassmann variables, 127
12. comparison with [71] and [73], 131
13. antibracket, 131
1. worldsheet SUSY transformations, 137
1. compatibility of GCS with canonical metric,

149
2. twisted Dorfman bracket, 150
3. dual coordinate; relation to Hull's doubled ge-

ometry, 151
4. letter for beta transform βmn, 152
5. contribution of beta transformation to extended

Dorfman derivative, 152
6. generalized Nijenhuis tensor versus generalized

Schouten bracket, 153
7. twisted generalized Nijenhuis tensor, 153
8. Poisson bracket of T ⊕T ∗ basis forms a Cli�ord

algebra, 157
1. Lie bracket of degree n, 160
2. Poisson algebra for symmetric multivectors, 161
3. derived bracket, 162
4. order of the indices of a multivector valued

form, 163
5. Lichnerowicz-Poisson di�erential dP , 163
6. interior product (of maximal order), 163
7. star product induced by composition of interior

products, 163
8. Vinogradov bracket, 164
1. product of antisymmetrized products of gamma-

matrices, 167
2. antisymmetrized Kronecker symbol, 169
3. alternative Hodge-de�nition, 171
4. explicit form of antisymmetrized product of two

Gamma-matrices, 177
5. combinatorical consistency check, 180
1. iterated partial integration , 181
2. Stokes' theorem, 182
3. symmetrized current components, 184
4. trick for Noether current, 186
1. missing factor in wedge product, 189
2. covariant derivative of a connection, 191
3. example for use of BI's, 191
4. rotated vielbein, 193
5. curvature decays in scale and Lorentz part, 195
6. commutator of covariant derivatives on com-

pensator �eld, 196
7. weakest possible condition for Dragon's theo-

rem, 196



INDEX 240

8. remark about connection w.r.t. proof of Dragon's
theorem, 197

1. form of di�erence tensor, 201
2. argument for Lorentz plus scale connection, 201
3. exterior derivative of supervielbein and viel-

bein, 203
1. components of Lie derivative, 207
2. transformation of ΩMA

B , 209
3. commutation of Lie derivative and partial deriva-

tive, 210
4. Lie derivative of connection, 211
5. minus sign in structure group algebra, 212
6. killing vectors and Lie derivative of the connec-

tion, 213
7. �nite transformation of scale connection, 215
8. accessibility of extended WZ gauge, 217

form
generalized ∼, 121
multivector valued ∼, 162

form degree, k, 120
Fröhlicher Nijenhuis bracket, 124
Fradkin-Tseytlin term, 79
frame

Einstein- and string ∼, 81
Froehlicher-Nijenhuis bracket, see Nijenhuis bracket
functional derivative, 127

gamma matrix
chiral ∼, 176
graded ∼, 26

gauge �xing
of two Lorentz-plus-scale transformations, 92

gauge I, 80
gauge II, 81
gauge transformation

Noether identities and vanishing currents, 183
of the B-�eld, 48
trivial ∼, 186

general
commutator of covariant derivatives, 190

general linear group
supergroup, 34

generalized
(almost) complex structure, 149
antiholomorphic, 149
holomorphic, 149
Nijenhuis tensor, 153
one-form, 148
vector �eld, 148

generalized complex structure, 136
generalized form, 121
generalized geometry, 148
generalized multivector, 121, 152
generalized Nijenhuis tensor, 136

twisted ∼, 153
generator

for exterior derivative d= {o, . . .}, 119
geometry

generalized ∼, 148
Gerstenhaber algebra, 131, 161
getting rid o� the ps-constraint, 41
ghost, 7

as form, 119
kinetic term, 44

ghost current, 59
gauge invariant, 54

graded
complex conjugation, 13
hermitean conjugation, 13
Kronecker delta, 18
Lie algebra, 160
Lie bracket, 160
Poisson bracket, see Poisson bracket
transposed, 13

graded commuting, 7
graded equal sign, 9

big ∼, 13
graded gamma matrix, 26
graded inverse, 23
graded Jacobi identity, 160
graded Lie algebra, 35
graded matrix, see supermatrix
graded Poisson bracket, 30
graded summation convention, 7
gradi�able, 14
gradi�cation, 14

counterexample, 15, 23
grading shift, 37
grading structure, 10, 12

relative sign of ∼'s, 10, 12
Grassmann

delta function, 127
gravitino

local SUSY, 86
Green Schwarz action, 39
Green Schwarz string, 39
group

structure ∼, 194
groups

super ∼, 34

H-�eld, 190
Bianchi identity, 191

H-twist, 125
H-�eld

bosonic ∼ hmnk, 81
hatted index

distinction IIA/IIB, 93
Hausdor�

Baker-Campbell-∼-formula, 36
hermitean conjugate

of matrix products, 18, 22
hermitean conjugate matrix, 16
hermitean conjugation

graded ∼, 13
Hitchin sigma model, 135
Hodge dual, 168
Hodge duality

for chiral gamma matrices, 178
Hodge star, 169
holomorphic

generalized ∼, 149

identities
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Noether ∼, 184
identity

Fierz, 174
IIA, 93
IIB, 93
ill-de�ned

graded equal sign for coinciding indices, 11
index

curved, 145
�at, 145
schematic ∼ notation, 120
schematic ∼ notation, 147, 160

index-position-shift, 93
induced bosonic torsion, 205
in�nite reducible, 41
integrability

in terms of a derived bracket, 156
of a generalized complex structure, 153

integration measure µ(θ), 132
interior product, 119, 161

extended de�nition ıT (t,t′,t′′) , 122

of order p, ı(p)K , 120
of order p, 164
w.r.t. multivector valued form, ıK , 120
with a multivector valued form, 163

intermezzo
Cli�ord map and Hodge star, 169
di�erence tensor, 97
�xing two of three Lorentz-plus-scale transforma-

tions, 92
reduced bosonic structure group, 61
RR-�eld equations, 104

intertwiner, 176
invariant 1-form, 39
inverse Noether, 183
inverse of a fermionic supermatrix, 23
inverse of a supermatrix, 23
inverse vielbein, 189
isotropic

maximally ∼ subspace, 150

Jacobi identity
for the structure constants, 36

Jacobi-identity
for Dorfman bracket, 151

κ-symmetry, 39
killing vector, 213
kinetic ghost term, 44
Kronecker delta

antisymmetrized ∼, 169
for mixed conventions, 18
graded ∼, 18

Kurzfassung, i

landscape, 2
LATEX, vii
left derivative, 28, 146
left mover connection, 73, 199
left-right symmetry, 44
Legendre transformation

graded version, 33

Leibniz rule
for Lie derivative, 159

Levi Civita
extracting ∼ from superspace connection, 202

Levi Civita symbol, 170
Lichnerowicz-Poisson di�erential dP , 163
Lie algebra

graded ∼, 35
Lie algebroid, 159
Lie bracket

of degree n, 160
of vector �elds, 124

Lie derivative, 122, 159
covariantized ∼, 207, see supergauge transforma-

tion
in terms of covariant derivatives, 206
of superspace connection, 210
with respect to a multivector valued form, 164
with respect to multivector valued form, 122

Lie-bracket
of vector �elds, 159

linearized SUGRA, 115
little Fierz, 180
local Lorentz transformation, 222
local SUSY, 223

gravitino, 86
of the fermionic �elds, 80

Loday bracket, 162
Lorentz connection, 51
Lorentz current, 54
Lorentz curvature, 192
Lorentz transformation

�xing two of three ∼'s, 92
Lorentz transformations

local ∼, 222
LYX, vii

map
Cli�ord ∼, 169

matrix
of type A,B,C and D, 16

matrix inverse, 23
matrix multiplication

graded ∼, 16
maximally isotropic subspace, 150
measure µ(θ), 132
metric

bosonic ∼ gmn, 81
canonical ∼ GMN of T ⊕ T ∗, 148
signature, 145

metricity, 200
mixed connection, 50, 80, 199
mixed convention, 7
mixed summation conventions, 33
momentum

conjugate ∼, graded de�nition, 33
conjugate ∼ pm, 119

Moyal product, 120
multiplication

Cli�ord ∼, 173
multivector, 160, 165

generalized ∼, 121, 152
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symmetric ∼, 160, 161
multivector degree, k′, 120
multivector valued form, 120, 162

NE convention, 7
negative dimension, 25, 35
Nijenhuis

Richardson-∼ bracket, 166
Richardson-∼ bracket, 121
Schouten-Nijenhuis bracket, see Schouten bracket

Nijenhuis bracket, 124, 166
Nijenhuis tensor

generalized ∼, 153
generalized ∼, 136
twisted generalized ∼, 153

nilpotency, 68
nilpotent commuting variables, 15
Noether, 181

inverse ∼, 183
Noether current, 182
∼ for commutator of symmetries, 188
trick to calculate the ∼, 186

Noether identities, 184
Noether's theorem, 182, 184
noncommutative product, 163
nonmetricity MABC , 200
norm, 22
normal ordering, 163
northeast-southwest, see NE
northwest-southeast, see NW
notation

schematic index ∼, 120
schematic index ∼, 147, 160

notations, 145
NW convention, 7

on-shell
vanishing current, 184
vanishing transformation, 186

ordering, 120
normal ∼, 163

orthonormal basis, 61
orthonormal frame, 189

parity inversed �ber, 119
permutation, 10
pluralis, vii
Poisson

Lichnerowicz ∼ di�erential dP , 163
Poisson bracket, 126

derived bracket of the ∼, 124
graded ∼, 30
in T ⊕ T ∗, 119
sign convention, 146
super-∼, 127

Poisson sigma model, 135
product

interior ∼, see interior product, 161
extended, 122
with a multivector valued form, 163

noncommutative ∼, 163
of antisymmetrized Γ-matrix-products, 167
of interior products, 120

star ∼, 163
star ∼, 120

projector
for gamma matrix expansion, 178

proposition
antibracket of multivector valued forms (3a), 132
antibracket of multivector valued forms (3b), 133
Bianchi identities for shifted connection, 193
commutator of quantized multivector valued forms,

130
left-right symmetry, 44
on-shell vanishing current, 184
orthonormal basis, 61
super Poisson bracket of multivector valued forms

(1b), 139
super-Poisson bracket of multivector valued forms,

128
the graded equal sign is an equivalence relation,

12
transitivity of the big graded equal sign, 14
weak Dragon, 197

pure spinor
SO(d, d) ∼, 157

pure spinor string, 40
in �at background, 40

quantization
of a multivector valued form, 120

quantization rules, 121

rekursion realtions for vielbein and connection compo-
nents, 218

relative sign of grading structures, 10, 12
remarks in advance, vii
representation

of gamma matrices, 175
of the structure group, 191
of the structure group: R, 207

residual shift-reparametrization, 71
restricted structure group, 194
restriction of the structure group to Lorentz and scale,

74
Richardson-Nijenhuis bracket, 121, 166
right derivative, 28, 146
right mover connection, 73, 199
RR-p-form, 104
rumpf, 7
rumpf-index grading shift, 37

scale connection, 51
supergauge transformation, 209

scale curvature
Bianchi identity, 192

scale �eld strength, 51
scale invariance

two ways of �xing the ∼, 224
scale transformation

contribution to SUSY, 86
scaling �eld strength, 196
schematic index notation, 120, 147, 160
Schouten algebra, 161
Schouten bracket, 124, 135, 160, 165

on generalized multivectors, 152
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Schouten-algebra, 131
Schroedinger representation, 129
second Bianchi identity, see crvature Bianchi identity72,

see curvature ∼
self duality of γ[5], 178
shift

symmetries, 206
shift in connection, 193
shift-reparametrization

residual, 71
shortcut

to calculate the Noether current, 186
sigma-model, 125

Hitchin ∼, 135
Poison ∼, 135

sign
relative ∼ of grading structures, 10, 12

signature
of the canonical metric on T ⊕ T ∗, 148

signature of a permutation, 10
signature of the metric, 145
signs

terrible ∼, 9
skew symmetry of degree n, 160
skew-symmetric, 160
slash, 169
small graded equal sign, 12
special linear group

supergroup, 34
spinor

SO(d, d) ∼, 157
stabilizer

of additional connection gauge, 222
of additional vielbein gauge, 222
of connection WZ gauge, 221
of the WZ gauge, 221
of vielbein WZ gauge, 221

star product, 120, 135, 163
Stokes' theorem, 182
string, see pure spinor and Green Schwarz
string frame, 81
structure

grading ∼, 10, 12
structure constants

real ∼, 36
structure group, 194

bosonic, 61
bosonic ∼, 61
�xing two of three blocks, 92
Lorentz and scale, 50
representation R, 191
restriction to Lorentz and scale, 74

summation convention, 7
summation conventions

mixed ∼, 33
super-Poisson bracket, 127
superdeterminant, 24, 25
superembedding formalism, 41
super�eld, 126, 137

de Rham ∼, 132
de Rham ∼, 135

supergauge transformation, 208

connection, 209
scale connection, 209
supervielbein, 208

supergravity
linearized, 115
transformation, 206

supergroups, 34
supermanifold

coordinates xM of a ∼, 6
supermatrix, 16

determinant, 24
fermionic ∼, 23
inverse, 23
trace, 24

superspace
�at, 39

supersymmetry
transformation, 206

supersymmetry-invariant 1-form, 39
supertrace, 24
supervielbein, see vielbein

supergauge transformation, 208
SUSY

covariant derivative, 137
extended worldsheet ∼, 140
generator, 137
gravitino, 86
in �at superspace, 39
local ∼, 223
local ∼ of the fermionic �elds, 80
trafo of the �elds, 225

SUSY algebra, 224
symmetric

skew-∼, 160
symmetric multivector, 160, 161
symmetries

shift∼, 206
symmetry

left-right, 44
of the Dorfman bracket, 151

symplectic group
supergroup, 35

Tachyon, 44
target space, M , 125
terrible signs, 9
theorem

Dragon's ∼, 197
gradi�cation, 15
Noether's, 182, 184
on-shell vanishing symmetry transformation, 186
Stokes, 182

torsion, 189
Bianchi identity, 192
bosonic ∼, 82
with shifted connection, 193

total degree, 145
trace

graded matrix ∼, 24
of chiral gamma matrices, 178
of gamma matrices, 174

transform
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B-∼, 151
beta-∼, 152

transformation
of the connection under the structure group, 209

transpose
of matrix products, 18

transposed
graded ∼, 13

transposed matrix, 16
trick

to calculate the Noether current, 186
trivial gauge transformation, 186
trivially conserved, ∂νS[νµ] , 182, 184
trivially conserved current, 69
Tseytlin

Fradkin-∼-term, 79
twisted

Dorfman bracket, 150
exterior derivative, 125

twisted generalized Nijenhuis tensor, 153
two

type IIA, 104
type IIA/IIB distinction, 93
type IIB, 104

two ways of �xing the scale invariance, 224
type A,B,C and D matrices, 16
type IIA, 104
type IIA/IIB distinction, 93
type IIB, 104

unit matrix
graded ∼, 18

unitary group, 34

vanishing current, 184
vanishing transformation, 186
variation

covariant ∼, 54
variational derivative

covariant ∼, 56
vector �eld

Lie bracket, 159
vector valued form, 162, 165
vielbein, 189

bosonic ∼ em
a, 81

inverse ∼, 189
vielbein 1-form

in �at superspace, 39
Vinogradov bracket, 117, 131, 162, 164

wedge product, 146
weight

conformal ∼, 43
Wess-Zumino gauge, 215

extension to ∼, 217
for the connection, 217
for the vielbein, 215

Wess-Zumino part of GS action, 39
world-volume, Σ, 125
world-volume exterior derivative dw, 125, 131
worldsheet, 136
worldsheet SUSY

extended ∼, 140

WZNW-model, 37, 41

Y-formalism, 41
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