Generalized Givental's theorem
 and classification of Fano threefolds

Victor Przyjalkowski

1. GOLYSHEV CONJECTURE

Let V be a smooth Fano threefold with $\operatorname{Pic} V \cong \mathbb{Z} H$. We will consider only GromovWitten invariants of genus 0 .

Definition 1. Put $K=-K_{V}$. Consider a matrix of normalized two-pointed invariants

$$
A=\left[\begin{array}{cccc}
0 & a_{01} & a_{02} & a_{03} \\
1 & a_{11} & a_{12} & a_{13} \\
0 & 1 & a_{22} & a_{23} \\
0 & 0 & 1 & 0
\end{array}\right]
$$

where $a_{i j}=\frac{1}{\operatorname{deg} V}\left\langle K^{3-i}, K^{j}, K\right\rangle_{j-i+1}=\frac{j-i+1}{\operatorname{deg} V}\left\langle K^{3-i}, K^{j}\right\rangle_{j-i+1}, \operatorname{deg} V=\left(-K_{V}\right)^{3}$. This matrix is called the counting matrix of V.

Definition 2. Given the counting matrix A, define the matrix M in the following way. Consider $\mathbb{C}[t], D=t \frac{\partial}{\partial t}$ and the matrix M

$$
M_{i, j}= \begin{cases}A_{i, j} \cdot(D t)^{j-i+1} & \text { if } j-i+1 \geq 0 \\ A_{i, j} & \text { otherwise }\end{cases}
$$

Put $\widetilde{L}(\alpha)=\operatorname{det}_{\text {right }}(D(1-\alpha t) E-M), \alpha \in \mathbb{C}$. Divide $\widetilde{L}(\alpha)$ by D from the left: $\widetilde{L}(\alpha)=D L(\alpha)$. The equation of type $L(\alpha) \Phi=0$, where $\widetilde{L}=D L$, is called $D 3$ equation.

This procedure means the following. We consider the quantum D-module Q_{V} on $\mathbb{C}\left[t, t^{-1}\right]$. I. e. let $H(V)$ be a algebraic cohomology ring with basis $\left\{H_{i}\right\}$. Consider a trivial vector bundle over $\mathbb{C}\left[t, t^{-1}\right]$ with fiber $H(V)$. Denote the global sections given in the fibers by $\left\{H_{i}\right\} \otimes 1 \in H(V) \otimes \mathbb{C}\left[t, t^{-1}\right]$ by $\left\{h_{i}\right\}$. This, the space of the sections is $H(V) \otimes \mathbb{C}\left[t, t^{-1}\right]$ and generated (over $\mathbb{C}\left[t, t^{-1}\right]$) by $\left\{h_{i}\right\}$. Consider and a (flat) connection ∇ defined on sections h_{i} as

$$
\left\langle\nabla h_{i}, t \frac{d}{d t}\right\rangle=h \star h_{i}
$$

where h corresponds to H and \star is a quantum multiplication. Put $\mathcal{D}=\mathbb{C}\left[t, t^{-1}, D\right]$. Then this module is represented by some operator $\widehat{L}_{V}: Q_{V} \simeq \mathcal{D} / \mathcal{D} \widehat{L}_{V}$. To state the mirror-type conjecture on the Fano threefolds we need to regularize it. This means that we need to convolute it with the canonical exponent, i. e. with the push-forward under the morphism $x \rightarrow \frac{1}{x}$ of $\mathcal{D} /(z \partial-z) \mathcal{D}$. Notice that the operator \widehat{L}_{V} is divisible by t on the left. Divide. In fact the convolution means that we need (after naively extension to $\mathbb{C}[t]$ as $\mathcal{D} / \mathcal{D} t^{-1} \widehat{L}_{V}$) to do the Fourier transform and pull back with respect to the inversion-of-coordinate morphism. After changing variables we obtain the counting operator.

Now state Golyshev's mirror-type conjecture.
Put $d=\operatorname{ind}(V)$ (i. e. $\left.-K_{V}=d H\right), n=\left(-K_{V}\right)^{3}, N=\frac{n}{2 d^{2}}$. Let $X_{0}(N)^{W}$ be the quotient of the modular curve $X_{0}(N)$ by the Atkin-Lehner involution (given by $z \rightarrow-\frac{1}{N z}$, where z is the coordinate on the upper half-plane). Consider the local coordinate $q=e^{\frac{N}{N \pi} z}$ on $X_{0}(N)^{W}$ around the image of the cusp $(i \infty)$. Notice that for N 's that correspond to the considering Fano threefolds $X_{0}(N)^{W}$ are rational curves. Consider a (global) coordinate
T (the inverse of a Conway-Norton uniformizer) with center in the image of the cusp $(i \infty)$ which behaves locally as q, i. e. at this point $T(q)=q+q^{2} \cdot F(q)$, where F is a series on q.

Conjecture (Golyshev). For each smooth Fano threefold V with Picard group \mathbb{Z} there exist a particular α_{V} such that the function

$$
\Phi=\left(q^{\frac{1}{24}} \prod\left(1-q^{n}\right) q^{\frac{N}{24}} \prod\left(1-q^{N n}\right)\right)^{2} \cdot T^{-\frac{N+1}{12}}
$$

is a solution of the equation $L\left(\alpha_{V}\right) \Phi=0$ with respect to $t=T^{\frac{1}{d}}$.
So, we have the predictions for counting $D 3$ (and the numbers $a_{i, j}$) for all of 17 varieties of the Iskovskikh list.

This conjecture has been checked recently for all varieties. Check it for three of them using the theorem for complete intersections in toric varieties.

2. COMPLETE INTERSECTIONS IN THE TORIC VARIETIES

Consider those Fano threefolds from the Iskovskikh list that can be represented as complete intersections in toric varieties (except for the complete intersections in projective spaces, whose Gromov-Witten invariants are well-known). That is,
V_{1} : a smooth hypersurface of degree 6 in $\mathbb{P}(1,1,1,2,3)$.
V_{2} : a smooth hypersurface of degree 4 in $\mathbb{P}(1,1,1,1,2)$.
V_{2}^{\prime} : a smooth hypersurface of degree 6 in $\mathbb{P}(1,1,1,1,3)$.
We need to obtain the following theorem.
Theorem 1. Counting matrices for V_{1}, V_{2} and V_{2}^{\prime} are:

0	240	0	576000	0	48	0	2304
1	0	1248	0	1	0	160	0
0	1	0	240	0	1	0	48
0	0	1	0	0	0	1	0
	0	137520	119681240	21690374400			
	1	624	650016	119681240			
	0	1	624	137520			
	0	0	1		0		

To prove it, we find their one-pointed invariants (with descendants) and then find prime two-pointed ones in their terms.

Combine one-pointed invariants in the following generating series.
Definition 3. Let γ_{i} and $\check{\gamma}_{i}$ be the dual bases of $H^{*}(V), \beta \in H_{2}(V)$, $\operatorname{deg} \beta=\left(-K_{V}\right) \cdot \beta=d$. Then

$$
\begin{gathered}
I_{d}^{V}=I_{\beta}^{V}=e v^{*}\left(\frac{1}{1-\psi} \cdot\left[\bar{M}_{1}(V, \beta)\right]^{\mathrm{virt}}\right)=\sum_{i, j}\left\langle\psi^{i} \gamma_{j}\right\rangle_{\beta} \check{\gamma}_{j} \\
I^{V}=\sum_{d \geqslant 0} I_{d}^{V} \cdot q^{d}
\end{gathered}
$$

Givental's theorem for complete intersections with non-negative canonical class in smooth toric varieties enables one to find the I-series for them. To find the I-series in
our case, i. e. in the case of smooth Fano complete intersections in the singular toric varieties we should generalize this theorem.

Theorem 2. Let Y be a \mathbb{Q}-factorial toric variety and Y_{1}, \ldots, Y_{k} be the divisors that correspond to the edges of the fan of Y. Consider a smooth complete intersection V of hypersurfaces V_{1}, \ldots, V_{l} that does not intersect the singular locus of Y. Assume that $-K_{V}>0$ and Pic $V=\mathbb{Z}$. Let $i: V \rightarrow Y$ be the natural embedding. Let ℓ be a nef generator of $H_{2}(Y)$. For $\beta=d \ell$ put $q^{\beta}=q^{d}$. Let $\Lambda \subset H_{2}(V)$ be the semigroup of algebraic curves as cycles on V.

Then I-series of V is the following.

$$
I^{V}=e^{-\alpha_{V} q} \sum_{\beta \in \Lambda} q^{\beta} \cdot i^{*}\left(\frac{\prod_{a=1}^{l}\left(\left(V_{a}+1\right) \cdot \ldots \cdot\left(V_{a}+\beta \cdot V_{a}\right)\right)}{\prod_{a=1}^{k}\left(\left(Y_{a}+1\right) \cdot \ldots \cdot\left(Y_{a}+\beta \cdot Y_{a}\right)\right)}\right)
$$

where $\alpha_{V}=0$ if the index of V is greater than 1 , and $\alpha_{V}=\prod_{a=1}^{r}\left(\ell \cdot V_{a}\right)!/ \prod_{a=1}^{k}\left(\ell \cdot Y_{k}\right)$! if the index is 1 .
(Remark that the correction term here is exactly one from Golyshev's conjecture.)
The idea of the proof of this theorem is the following. Blow up the singularities of Y.

They are away from V, so in the neighbourhood of V the map g is isomorphism. Then apply Givental's theorem for complete intersections in the smooth toric varieties for \widetilde{Y} and \widetilde{V} (find the correction term by the dimensional reasons). The terms with the exceptional divisors vanish, and we get the expressions for the I-series of \widetilde{V}, which is the same (because of the isomorphism) as for V.

Remark that we suppose that V is Fano with Picard number 1 just for simplicity and for our case. We can proof the analogous theorems for the cases of greater Picard number and Calabi-Yau varieties. Such theorems will differ only in the correction term.

This theorem enables us to find one-pointed invariants $\left\langle\tau_{i} H^{j}\right\rangle_{d}$ of our Fano threefolds. Now we have to find the two-pointed ones.

Applying twice the divisor axiom in the form

$$
\begin{aligned}
&\left\langle\tau_{d_{1}} \gamma_{1}, \ldots, \tau_{d_{n}} \gamma_{n}\right\rangle_{\beta}=\frac{1}{\left(\gamma_{0} \cdot \beta\right)}\left(\left\langle\gamma_{0}, \tau_{d_{1}} \gamma_{1}, \ldots, \tau_{d_{n}} \gamma_{n}\right\rangle_{\beta}-\right. \\
&\left.\sum_{k, d_{k} \geqslant 1}\left\langle\tau_{d_{1}} \gamma_{1}, \ldots, \tau_{d_{k}-1}\left(\gamma_{0} \cdot \gamma_{k}\right), \ldots, \tau_{d_{n}} \gamma_{n}\right\rangle_{\beta}\right)
\end{aligned}
$$

(where γ_{0} is the divisor class) and by induction we get the expressions for one-pointed invariants in terms of three-pointed ones with descendants (such that at least one of cohomology class in them is of dimension 2). Now use the topological recursion

$$
\left\langle\tau_{d_{1}} \gamma_{1}, \tau_{d_{2}} \gamma_{2}, \tau_{d_{3}} \gamma_{3}\right\rangle_{\beta}=\sum_{a, \beta_{1}+\beta_{2}=\beta}\left\langle\tau_{d_{1}-1} \gamma_{1}, \Delta^{a}\right\rangle_{\beta_{1}}\left\langle\Delta_{a}, \tau_{d_{2}} \gamma_{2}, \tau_{d_{3}} \gamma_{3}\right\rangle_{\beta_{2}}
$$

(where Δ_{i} and Δ^{i} are dual bases of $H^{*}(V)$).

Thus we have the following expressions for one-pointed invariants in terms of twopointed prime ones. Put $I^{V}=\sum_{d \geq 0} d_{i} q^{i}$. Then

$$
\begin{gathered}
d_{2}=\frac{1}{4} a_{01}, \\
d_{3}=\frac{1}{18} a_{01} a_{11}+\frac{1}{27} a_{02}, \\
d_{4}=\frac{1}{64} a_{01}^{2}+\frac{1}{96} a_{01} a_{11}^{2}+\frac{1}{144} a_{02} a_{11}+\frac{1}{128} a_{01} a_{12}+\frac{1}{192} a_{02} a_{11}+\frac{1}{256} a_{03}, \\
d_{5}=\frac{17}{3600} a_{01}^{2} a_{11}+\frac{13}{2700} a_{01} a_{02}+\frac{1}{600} a_{01} a_{11}^{3}+\frac{47}{18000} a_{02} a_{11}^{2}+\frac{43}{12000} a_{01} a_{11} a_{12}+ \\
\frac{9}{8000} a_{03} a_{11}+\frac{1}{1125} a_{02} a_{12}, \\
d_{6}=\frac{191}{103680} a_{01} a_{02} a_{11}+\frac{13}{28800} a_{02} a_{11} a_{12}+\frac{19}{43200} a_{02} a_{11}^{3}+\frac{25}{41472} a_{01}^{2} a_{12}+ \\
\frac{1}{13824} a_{03} a_{12}+\frac{29}{82944} a_{01} a_{03}+\frac{49}{51840} a_{01}^{2} a_{11}^{2}+\frac{37}{172800} a_{03} a_{11}^{2}+\frac{83}{86400} a_{01} a_{11}^{2} a_{12}+ \\
\frac{1}{2304} a_{01}^{3}+\frac{1}{3888} a_{02}^{2}+\frac{1}{4320} a_{01} a_{11}^{4}+\frac{1}{6912} a_{01} a_{12}^{2} .
\end{gathered}
$$

These expressions are birational, so we can inverse them.

$$
\begin{gathered}
a_{01}=4 d_{2}, \\
a_{11}=\frac{1}{2} \frac{3000 d_{4} d_{5}-168 d_{2} d_{4} d_{3}-1000 d_{2}^{2} d_{5}+280 d_{2}^{3} d_{3}+729 d_{3}^{3}-3888 d_{6} d_{3}}{-495 d_{3} d_{5}+261 d_{2} d_{3}^{2}-312 d_{4} d_{2}^{2}+432 d_{4}^{2}+56 d_{2}^{4}}, \\
a_{02}=3\left(-4455 d_{3}^{2} d_{5}+1620 d_{2} d_{3}^{3}-2640 d_{3} d_{4} d_{2}^{2}+3888 d_{3} d_{4}^{2}+224 d_{3} d_{2}^{4}-3000 d_{2} d_{4} d_{5}+\right. \\
\left.1000 d_{2}^{3} d_{5}+3888 d_{2} d_{6} d_{3}\right) /\left(-495 d_{3} d_{5}+261 d_{2} d_{3}^{2}-312 d_{4} d_{2}^{2}+432 d_{4}^{2}+56 d_{2}^{4}\right), \\
a_{12}=-\frac{1}{4}\left(11648448 d_{2}^{3} d_{3}^{2} d_{6}+64300500 d_{3}^{2} d_{5}^{2} d_{2}-28921320 d_{2}^{2} d_{5} d_{3}^{3}-16547328 d_{2}^{4} d_{6} d_{4}-\right. \\
19740000 d_{4} d_{5}^{2} d_{2}^{2}+10065024 d_{2}^{2} d_{4}^{2} d_{3}^{2}-25660800 d_{2} d_{4} d_{3}^{2} d_{6}+69517440 d_{4} d_{5} d_{6} d_{3}+ \\
34223040 d_{4} d_{5} d_{2}^{3} d_{3}-5387200 d_{2}^{5} d_{5} d_{3}+44789760 d_{2}^{2} d_{6} d_{4}^{2}+4811400 d_{2} d_{4} d_{3}^{4}- \\
13034520 d_{4} d_{5} d_{3}^{3}-8755008 d_{2}^{4} d_{4} d_{3}^{2}+2032128 d_{2}^{6} d_{6}-40837500 d_{3} d_{5}^{3}-1748992 d_{2}^{7} d_{4}+ \\
8689152 d_{2}^{5} d_{4}^{2}-40310784 d_{6} d_{4}^{3}+14432256 d_{2} d_{4}^{4}-18524160 d_{2}^{3} d_{4}^{3}-15116544 d_{6}^{2} d_{3}^{2}+ \\
5668704 d_{3}^{4} d_{6}+3719736 d_{2}^{3} d_{3}^{4}+1391936 d_{2}^{6} d_{3}^{2}+3620000 d_{2}^{4} d_{5}^{2}+26640000 d_{4}^{2} d_{5}^{2}+7558272 d_{3}^{2} d_{4}^{3}- \\
\left.531441 d_{3}^{6}+125440 d_{2}^{9}-52853760 d_{4}^{2} d_{5} d_{2} d_{3}-2573850 d_{2}^{2} d_{5} d_{6} d_{3}\right) /\left(-495 d_{3} d_{5}+261 d_{2} d_{3}^{2}-\right. \\
\left.312 d_{4} d_{2}^{2}+432 d_{4}^{2}+56 d_{2}^{4}\right)^{2}, \\
a_{03}=-2\left(448 d_{2}^{6}-1600 d_{4} d_{2}^{4}+36288 d_{2}^{3} d_{6}+1584 d_{2}^{3} d_{3}^{2}-20352 d_{2}^{2} d_{4}^{2}-49560 d_{2}^{2} d_{3} d_{5}-\right. \\
93312 d_{2} d_{6} d_{4}+54432 d_{2} d_{4} d_{3}^{2}+82500 d_{2} d_{5}^{2}-15309 d_{3}^{4}-126360 d_{4} d_{5} d_{3}+55296 d_{4}^{3}+ \\
\left.81648 d_{3}^{2} d_{6}\right) /\left(495 d_{3} d_{5}-261 d_{2} d_{3}^{2}+312 d_{4} d_{2}^{2}-432 d_{4}^{2}-56 d_{2}^{4}\right) .
\end{gathered}
$$

(Remark that we use here algebraic minimality of our varieties, i. e. that the algebraic cohomologies of them are generated by the Picard group.)

Thus we obtain the counting matrices of V_{1}, V_{2} and V_{2}^{\prime} and prove theorem 1.
Thus, Golyshev's conjecture reproduces the Iskovskikh classification. What is the next step? There are three ways to develop:

- We can consider a smooth Fano threefolds with greater Picard number and reproduce Mukai's classification of them. The problem is: we need to consider a multi-dimensional version of all above, which is more technically difficult.
- We can go to the four- and more-dimensional land. The problem of classification of Fanos of dimension greater than 3 is opened. The difficulty we meet is: in this case we can't suppose that our varieties are almost minimal (i. e. whose cohomologies are generated by Picard group generator except maybe for the middle ones), which is used to state Golyshev's conjecture.
- We can try to classify the singular (say, terminal or canonical) Fano threefolds. This problem is also opened. The difficulty in this way is that we need to work with Gromov-Witten invariants of singular varieties.

References

[1] A. Givental, A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996), 141-175, alg-geom/9701016.
[2] V. Golyshev, The geometricity problem and modularity of some Riemann-Roch variations, Dokl. Akad. Nauk 386 (2002) 583-588.
[3] V. Przyjalkowski, Quantum cohomology of smooth complete intersections in weighted projective spaces and singular toric varieties, math.AG/0507232.

