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1. GOLYSHEV CONJECTURE

Let V be a smooth Fano threefold with PicV ∼= ZH. We will consider only Gromov–
Witten invariants of genus 0.

Definition 1. Put K = −KV . Consider a matrix of normalized two-pointed invariants

A =




0 a01 a02 a03

1 a11 a12 a13

0 1 a22 a23

0 0 1 0


 ,

where aij = 1
degV

〈K3−i, Kj, K〉j−i+1 = j−i+1

degV
〈K3−i, Kj〉j−i+1, degV = (−KV )3. This

matrix is called the counting matrix of V .

Definition 2. Given the counting matrix A, define the matrix M in the following way.
Consider C[t], D = t ∂

∂t
and the matrix M

Mi,j =

{
Ai,j · (Dt)

j−i+1 if j − i+ 1 ≥ 0,

Ai,j otherwise.

Put L̃(α) = detright(D(1 − αt)E − M), α ∈ C. Divide L̃(α) by D from the left:

L̃(α) = DL(α). The equation of type L(α)Φ = 0, where L̃ = DL, is called D3 equation.

This procedure means the following. We consider the quantum D-module QV on
C[t, t−1]. I. e. let H(V ) be a algebraic cohomology ring with basis {Hi}. Consider a
trivial vector bundle over C[t, t−1] with fiber H(V ). Denote the global sections given in
the fibers by {Hi} ⊗ 1 ∈ H(V ) ⊗ C[t, t−1] by {hi}. This, the space of the sections is
H(V ) ⊗ C[t, t−1] and generated (over C[t, t−1]) by {hi}. Consider and a (flat) connection
∇ defined on sections hi as

〈∇hi, t
d

dt
〉 = h ? hi,

where h corresponds to H and ? is a quantum multiplication . Put D = C[t, t−1, D]. Then

this module is represented by some operator L̂V : QV ' D/DL̂V . To state the mirror–type
conjecture on the Fano threefolds we need to regularize it. This means that we need to
convolute it with the canonical exponent, i. e. with the push-forward under the morphism

x→ 1
x

of D/(z∂ − z)D. Notice that the operator L̂V is divisible by t on the left. Divide.

In fact the convolution means that we need (after naively extension to C[t] as D/Dt−1L̂V )
to do the Fourier transform and pull back with respect to the inversion-of-coordinate
morphism. After changing variables we obtain the counting operator.

Now state Golyshev’s mirror–type conjecture.

Put d = ind (V ) (i. e. −KV = dH), n = (−KV )3, N = n
2d2 . Let X0(N)W be the

quotient of the modular curve X0(N) by the Atkin–Lehner involution (given by z → − 1
Nz

,
where z is the coordinate on the upper half-plane). Consider the local coordinate q = e2πiz

on X0(N)W around the image of the cusp (i∞). Notice that for N ’s that correspond to the
considering Fano threefolds X0(N)W are rational curves. Consider a (global) coordinate
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T (the inverse of a Conway–Norton uniformizer) with center in the image of the cusp
(i∞) which behaves locally as q, i. e. at this point T (q) = q + q2 · F (q), where F is a
series on q.

Conjecture (Golyshev). For each smooth Fano threefold V with Picard group Z there
exist a particular αV such that the function

Φ = (q
1

24

∏
(1 − qn)q

N

24

∏
(1 − qNn))2 · T−

N+1

12

is a solution of the equation L(αV )Φ = 0 with respect to t = T
1

d .

So, we have the predictions for counting D3 (and the numbers ai,j) for all of 17 varieties
of the Iskovskikh list.

This conjecture has been checked recently for all varieties. Check it for three of them
using the theorem for complete intersections in toric varieties.

2. COMPLETE INTERSECTIONS IN THE TORIC VARIETIES

Consider those Fano threefolds from the Iskovskikh list that can be represented as
complete intersections in toric varieties (except for the complete intersections in projective
spaces, whose Gromov–Witten invariants are well-known). That is,

V1: a smooth hypersurface of degree 6 in P(1, 1, 1, 2, 3).
V2: a smooth hypersurface of degree 4 in P(1, 1, 1, 1, 2).
V ′

2 : a smooth hypersurface of degree 6 in P(1, 1, 1, 1, 3).

We need to obtain the following theorem.

Theorem 1. Counting matrices for V1, V2 and V ′
2 are:

0 240 0 576000 0 48 0 2304
1 0 1248 0 1 0 160 0
0 1 0 240 0 1 0 48
0 0 1 0 0 0 1 0

0 137520 119681240 21690374400
1 624 650016 119681240
0 1 624 137520
0 0 1 0

To prove it, we find their one-pointed invariants (with descendants) and then find prime
two-pointed ones in their terms.

Combine one-pointed invariants in the following generating series.
Definition 3. Let γi and γ̌i be the dual bases of H∗(V ), β ∈ H2(V ),

deg β = (−KV ) · β = d. Then

IV
d = IV

β = ev∗(
1

1 − ψ
· [M̄1(V, β)]virt) =

∑

i,j

〈ψiγj〉βγ̌j,

IV =
∑

d>0

IV
d · qd.

Givental’s theorem for complete intersections with non-negative canonical class in
smooth toric varieties enables one to find the I-series for them. To find the I-series in

2



our case, i. e. in the case of smooth Fano complete intersections in the singular toric
varieties we should generalize this theorem.

Theorem 2. Let Y be a Q-factorial toric variety and Y1, . . . , Yk be the divisors that
correspond to the edges of the fan of Y . Consider a smooth complete intersection V of
hypersurfaces V1, . . . , Vl that does not intersect the singular locus of Y . Assume that
−KV > 0 and PicV = Z. Let i : V → Y be the natural embedding. Let ` be a nef
generator of H2(Y ). For β = d` put qβ = qd. Let Λ ⊂ H2(V ) be the semigroup of
algebraic curves as cycles on V .

Then I-series of V is the following.

IV = e−αV q
∑

β∈Λ

qβ · i∗

(∏l

a=1((Va + 1) · . . . · (Va + β · Va))∏k

a=1((Ya + 1) · . . . · (Ya + β · Ya))

)
,

where αV = 0 if the index of V is greater than 1, and αV =
∏r

a=1(` · Va)!/
∏k

a=1(` · Yk)! if
the index is 1.

(Remark that the correction term here is exactly one from Golyshev’s conjecture.)

The idea of the proof of this theorem is the following. Blow up the singularities of Y .

Ṽ

g

��

j
// Ỹ

f

��

V
i

// Y

They are away from V , so in the neighbourhood of V the map g is isomorphism. Then

apply Givental’s theorem for complete intersections in the smooth toric varieties for Ỹ and
Ṽ (find the correction term by the dimensional reasons). The terms with the exceptional

divisors vanish, and we get the expressions for the I-series of Ṽ , which is the same (because
of the isomorphism) as for V .

Remark that we suppose that V is Fano with Picard number 1 just for simplicity and
for our case. We can proof the analogous theorems for the cases of greater Picard number
and Calabi–Yau varieties. Such theorems will differ only in the correction term.

This theorem enables us to find one-pointed invariants 〈τiH
j〉d of our Fano threefolds.

Now we have to find the two-pointed ones.
Applying twice the divisor axiom in the form

〈τd1
γ1, . . . , τdn

γn〉β =
1

(γ0 · β)
(〈γ0, τd1

γ1, . . . , τdn
γn〉β−

∑

k,dk>1

〈τd1
γ1, . . . , τdk−1(γ0 · γk), . . . , τdn

γn〉β)

(where γ0 is the divisor class) and by induction we get the expressions for one-pointed
invariants in terms of three-pointed ones with descendants (such that at least one of
cohomology class in them is of dimension 2). Now use the topological recursion

〈τd1
γ1, τd2

γ2, τd3
γ3〉β =

∑

a,β1+β2=β

〈τd1−1γ1,∆
a〉β1

〈∆a, τd2
γ2, τd3

γ3〉β2

(where ∆i and ∆i are dual bases of H∗(V )).
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Thus we have the following expressions for one-pointed invariants in terms of two-
pointed prime ones. Put IV =

∑
d≥0 diq

i. Then

d2 =
1

4
a01,

d3 =
1

18
a01a11 +

1

27
a02,

d4 =
1

64
a2

01 +
1

96
a01a

2
11 +

1

144
a02a11 +

1

128
a01a12 +

1

192
a02a11 +

1

256
a03,

d5 =
17

3600
a2

01a11 +
13

2700
a01a02 +

1

600
a01a

3
11 +

47

18000
a02a

2
11 +

43

12000
a01a11a12+

9

8000
a03a11 +

1

1125
a02a12,

d6 =
191

103680
a01a02a11 +

13

28800
a02a11a12 +

19

43200
a02a

3
11 +

25

41472
a2

01a12+

1

13824
a03a12 +

29

82944
a01a03 +

49

51840
a2

01a
2
11 +

37

172800
a03a

2
11 +

83

86400
a01a

2
11a12+

1

2304
a3

01 +
1

3888
a2

02 +
1

4320
a01a

4
11 +

1

6912
a01a

2
12.

These expressions are birational, so we can inverse them.

a01 = 4d2,

a11 =
1

2

3000d4d5 − 168d2d4d3 − 1000d2
2d5 + 280d3

2d3 + 729d3
3 − 3888d6d3

−495d3d5 + 261d2d
2
3 − 312d4d

2
2 + 432d2

4 + 56d4
2

,

a02 = 3(−4455d2
3d5 + 1620d2d

3
3 − 2640d3d4d

2
2 + 3888d3d

2
4 + 224d3d

4
2 − 3000d2d4d5+

1000d3
2d5 + 3888d2d6d3)/(−495d3d5 + 261d2d

2
3 − 312d4d

2
2 + 432d2

4 + 56d4
2),

a12 = −
1

4
(11648448d3

2d
2
3d6 + 64300500d2

3d
2
5d2 − 28921320d2

2d5d
3
3 − 16547328d4

2d6d4−

19740000d4d
2
5d

2
2 + 10065024d2

2d
2
4d

2
3 − 25660800d2d4d

2
3d6 + 69517440d4d5d6d3+

34223040d4d5d
3
2d3 − 5387200d5

2d5d3 + 44789760d2
2d6d

2
4 + 4811400d2d4d

4
3−

13034520d4d5d
3
3 − 8755008d4

2d4d
2
3 + 2032128d6

2d6 − 40837500d3d
3
5 − 1748992d7

2d4+

8689152d5
2d

2
4 − 40310784d6d

3
4 + 14432256d2d

4
4 − 18524160d3

2d
3
4 − 15116544d2

6d
2
3+

5668704d4
3d6 +3719736d3

2d
4
3 +1391936d6

2d
2
3 +3620000d4

2d
2
5 +26640000d2

4d
2
5 +7558272d2

3d
3
4−

531441d6
3 + 125440d9

2 − 52853760d2
4d5d2d3 − 25738560d2

2d5d6d3)/(−495d3d5 + 261d2d
2
3−

312d4d
2
2 + 432d2

4 + 56d4
2)

2,

a03 = −2(448d6
2 − 1600d4d

4
2 + 36288d3

2d6 + 1584d3
2d

2
3 − 20352d2

2d
2
4 − 49560d2

2d3d5−

93312d2d6d4 + 54432d2d4d
2
3 + 82500d2d

2
5 − 15309d4

3 − 126360d4d5d3 + 55296d3
4+

81648d2
3d6)/(495d3d5 − 261d2d

2
3 + 312d4d

2
2 − 432d2

4 − 56d4
2).
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(Remark that we use here algebraic minimality of our varieties, i. e. that the algebraic
cohomologies of them are generated by the Picard group.)

Thus we obtain the counting matrices of V1, V2 and V ′
2 and prove theorem 1.

Thus, Golyshev’s conjecture reproduces the Iskovskikh classification. What is the next
step? There are three ways to develop:

• We can consider a smooth Fano threefolds with greater Picard number and re-
produce Mukai’s classification of them. The problem is: we need to consider a
multi-dimensional version of all above, which is more technically difficult.

• We can go to the four- and more-dimensional land. The problem of classification of
Fanos of dimension greater than 3 is opened. The difficulty we meet is: in this case
we can’t suppose that our varieties are almost minimal (i. e. whose cohomologies
are generated by Picard group generator except maybe for the middle ones), which
is used to state Golyshev’s conjecture.

• We can try to classify the singular (say, terminal or canonical) Fano threefolds.
This problem is also opened. The difficulty in this way is that we need to work
with Gromov–Witten invariants of singular varieties.
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