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1 Motivation

Two major challenges that Superstring/M-theory faces today is the enormous number of apparently con-
sistent solutions and the difficulty to extract detailed physical consequences in even one of them.

The hierarchy of physical properties that one needs to know ranges from basic questions about the light
spectrum of particles to more sophisticated effective interaction terms due to collective effects like instan-
tons. In the presence of supersymmetry there is a corresponding hierarchy of more and more sophisticated
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topological and geometric invariants of the string geometry, which have the potential to calculate the an-
swers to these questions. The rich physical structure, which organizes this approach at the first levels, is
topological string theory. It contains per definition part of the geometry of supergravity as its limit.

Leaving philosophical speculations about the first challenge aside, it might just reflect our erratic un-
derstanding of non-perturbative string theory. A successfully strategy to decipher these non-perturbative
properties is to combine the mathematical rigidity of supergravity and topological string theory with phys-
ical consistency arguments. This bootstrap like approach revealed mirror duality, string duality, exact large
N-duality and holography. These concepts enhanced the ability to grasp the physical consequences of
string theory, which settled conceptual issues of quantum gravity, that are outside the range of perturbation
theory. M-theory is an attempt to provide a unified description of non-perturbative string theory and is
defined by various limits. Two questions are out. First whether we can develop our understanding of the
topological sub sectors and the geometry of these limits sufficiently. Secondly is the mathematical struc-
ture rigid enough to predict with some ingenuity from the knowledge of the limits the non-perturbative
completion.

2 Overview

A starting point for studying string theory in such a non-trivial space time geometry � is the non-linear �
model. The correlation functions, for simplicity we consider the partition function � first, are given by a
variational integral

� � � � ��� ����	��

�
����� ������
�� �������! #"�$�% &�% '�( (1)

over all embeddings of the world-sheet ) in �
�+* ) � � (2)

and the world-sheet metric � . The dependence of such correlation functions on the topology and geometry
of � , which is treated here as a classical background, might be taken as a first step to describe stringy
geometry. It is of direct practical importance as it determines the effective action in 4d for string compacti-
fications on � . Of particular interest will be the dependence of terms in the low energy effective action on
the geometric moduli of � . Understanding this depends on the geometry is a prerequisite for quantizing
the latter.

However in the generic case correlation functions like (1) are far too complicated to handle. Here we
want to study the exceptions. One can be found within super symmetric compactifications of critical string
theory. Using diffeomorphism and Weyl invariance, maintained for the critical case in the first quantized
version, the dependence on the degrees of freedom of the world-sheet metric � simplifies drastically even
in the quantum theory. The world-sheet super symmetry gives rise to nilpotent operators , , which define
a theory whose physical operators are cohomology classes w.r.t. , . It is called topological string theory.
The reader might wonder how formal the expression (1) is. Certainly we have suppressed all fermionic
degrees of freedom in

�
. The full actions will be spelled out in Sec. 4. However even if we kill some

suspense let us remark that the expression for the integration over � , which is just as in the bosonic string
in (1), is surprisingly accurate for our purpose. It turns out the fermions, which we need to add play merely
the rôle that the ghost system plays in the bosonic string.

Physically this reduction to the topological sub sector of the theory can be thought as a semi-classical
approximation of (1) in which the variational integral is replaced by integral over the moduli space - of
the classical solutions . �0/ . � �21

. E.g. for the Polyakov action these are the minimal area maps. The
path integral measure collapses to a measure on - , which depends merely on the topological properties
of the map (2) and on the cohomology classes of the inserted operators. This defines so an intersection
theory on - . The intersection numbers are topological invariants of the classical solutions. Examples are
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the Gromov-Witten invariants, which are symplectic invariants of � . � models with
��� 	 �
�

world-sheet
super symmetry, realized on Calabi-Yau manifolds ��� , allow for two possibilities to pick , , leading to
what is known as the � and the � topological string model[207]. Exchanging this choice underlies the
mirror duality and which leads to two different ways to solve both models. The � -model approach is
more effective. Open topological string theory exists as well. Preservation of at least one world-sheet, operator restricts the boundary conditions on Calabi-Yau three folds with

��� � ���
holonomy either to

special Lagrangian branes for the � -model and holomorphic submanifolds for the � -model. It had been
observed in 1992 that the open topological models are reductions of open string field theory and that this
reduction leads to Chern-Simons theories on the branes [199].

The remarkable fact is that in super string theories the restriction to the classical solutions leads to
exact calculations of certain low derivative terms in the effective supergravity action in 4d. This ability to
perform exact calculations including non-perturbative effects is typically reflected by non-renormalization
in the effective theory. For example in

� � �
super symmetric gauge theories the protected terms are the

kinetic terms of the moduli fields � , which give the exact � dependence of the gauge couplings as well as of
the masses of the BPS states. Both terms are calculated by genus zero � � 1

topological string amplitudes.
In
��� �

supergravity theories one obtains in addition from ��� 1
topological string amplitudes the exact

moduli dependence of the coupling of the anti-self-dual graviphoton field strength �	� to the anti-self-dual
part of the Riemann curvature 
�� , i.e. the coupling 
 '�� ��� � ��� � � � � � ��� �� 
�����
�� [20][8]. In

� � �
theories one can get the superpotential from disk amplitudes and the gauge kinetic terms from the annulus
amplitudes. Higher genus open string amplitudes appear in the effective action of � deformed gauge
theories [170].

Reconstruction of these exact terms in the low energy effective action of a field theory by solving the
topological string theory in a suitable chosen geometry � is called geometrical engineering. In general
one would like to understand emergence of nearly flat 4d space-time � � % 	 within ��� % 	 dynamically. Often
one considers ��� % 	 � ����� � � % 	 as ansatz. In generalizations like wrapped geometries [187] or com-
pactifications with RR/NS background fluxes on � [174], which preserve at least

� � �
supersymmetry

one can still use topological string methods to calculate the protected terms. � � being compact leads to
traditional compactifications including non-trivial supergravity solutions, as e.g. black hole solutions on� � % 	 . The gauge sector in � � % 	 can be studied even for non-compact � � if gravity can be consistently
decoupled. This is similar to the decoupling of bulk gravity in brane world scenarios with non-compact
transversal directions.

The second class of exactly solvable examples are non-critical string theories [87][54]. Here the un-
derstanding of the infinite symmetries is much more advanced and has lead to the solvability of the string
theories with �� �

or equivalently !� �
dimensions, including the Liouville direction, for the bosonic

case. Super symmetric versions exists a well. For the non-critical case the quantization of the two dimen-
sional metric degrees of freedom gives rise to the Liouville sector, which augments (1) in the quantum
theory. The theory consist of ghost-, matter- and Liouville sector and has an nilpotent operator , with an
induced cohomological structure[202], which is strikingly similar to the one in the topological sector of
the critical string. The choices of matter are

�#" 	%$ �
minimal models for �'& �

and the free boson for the
� � �

limiting value[132]. The infinite symmetries which underly the solvability of non-critical string are
well understood. An elegant way to summarize the structure is to say that


!�)( � � � � ��� is the * � � � function
associated to a vacuum orbit in an infinite Grassmanian, which is physically described by an infinite 2d
fermion system.

Major insights in �+ �
strings have been obtained via the double scaled matrix model [87][54]. The

finite
� � � matrix model, for which i.g. several realizations exist, provides a discretization of the string

world sheet � in terms of ribbon graphs. A vertex of valence
"

represents a regular
"

-gon in the dual
discretization of ) and it is simplest to fix

" � �
. More importantly the dual

"
-gons of a graph give a

discretization of the space of metrics on ) modulo isomorphism. The continuum limit can be understood
as an improving approximation of the world-sheet and its metric by graphs with an increasing number
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�
of the vertexes. The key intuition is that for a larger number

�
of
"

-gons the metric is approximated
increasingly accurately by the deficit or surplus angels in gluing the tiles and moreover that the number of
graphs which approximate a metric in a given isomorphism class becomes a good measure on the space
of metrics. Therefore integrating over metrics can eventually replaced by counting contributions of the
sum of graphs, just as the Feynman graph expansion of the matrix model. The continuum limit requires a
regularization procedure in which one takes

�
to infinity while tuning the coupling(s) of the matrix model

to a critical value � � ��� so that a parameter � ��� � � � ��� �������	��
� stays finite[54] [203]. The double
scaling limit regularizes the total area, whose unregularized value goes like � ��
 � � � 
�� 	" ��� ��� ( [23] as
the number of

"
-gons goes to infinity. One can show[23] that a genus � contribution is suppressed with���

as
� ���

and enhanced with
� � � � � � " � ��� (�� ��� as � � � � , where � ����� � � . The double scaling

definition of � is chosen to counterbalance these effects and to get a finite all genus expansion in � .
A qualitative different relation to matrix models is provided by the Kontsevich model [203][140]. It

describes the
� � 	 � �

pure 2d gravity case1 by an hermitian matrix model whose ribbon graphs model the
cell decomposition of the moduli space � � % � of the world-sheet with � descendant operator � � insertions.
The matrix model partition function calculates correlators � � 	 ��� � ��� 
 as topological intersections numbers
on � � % � . The cell decomposition replaces close string insertions by holes and strongly resembles the
formalism of open string field theory. The couplings ��! of the operators �"! are given in terms of symmetric
functions of the hermitian matrix eigenvalues, i.e by the Miura variables � ! �$#&%�' ! . Results for a given
correlator � � 	 � ��� ��� 
 are exact as long as the rank

�
of the matrix

'
is large enough to provide enough

independent symmetric functions for the � ! .
Exact calculations in higher dimensional topological strings have been boosted by mirror symmetry

[37] and in non-critical string theory by the double scaled matrix model approach and the Kontsevich type
matrix model. The subjects have never been independent as one needs to couple the topological � and
� theories to worldsheet gravity to get the � � amplitudes for � � �

, see [20] for the � -model. The
solution of pure 2d gravity is used explicitly in the calculation of the � -model amplitudes by localization
[141] together with Hodge integrals[68][135]. A more surprising link between the topological string on
the conifold and the � � �

string at the selfdual radius [103] has been pointed out in [89].
Two more recent developments motivate to revisit this connection. Dijkgraaf and Vafa observed in 2002

that the exact terms in the effective action of
� � �

and
� ���

supersymmetric gauge theories can be
calculated also by an hermitian matrix model. Even though this has been explained in the meantime within
the supersymmetric field theory framework, it is natural to relate it to topological string calculations by
geometrical engineering and in fact it was discovered in this way. This leads to a matrix model descrip-
tions of the topological string on non-compact Calabi-Yau and the quest for an unified description of the
integrable structure behind topological strings in various dimensions[2].

A second motivation comes from the study of open/closed string duality. In the context of non-critical
string theory the Kontsevich model has long been considered to be the simplest example of gauge the-
ory/string duality. The gauge theory part describing the open string sector is played by the finite

�
-

Kontsevich matrix model, while the closed string part is played by the non-critical topological string
coupled to

� ��	 " �
matter. Recent progress in solving the Liouville approach to critical string theory and

classifying its boundary conditions revealed that the Kontsevich matrix model emerges as the action on the
FZZT brane. This was anticipated from the � -model description of open string theory on local Calabi-Yau
spaces[2]. It can also be shown by calculating the exact loop-operator in the double scaling limit of the
matrix model[155] [109] or by doing a reduction of cubic string field theory[82] on FZZT branes.

An simple example of open/closed string duality in the case of critical topological string theory had
been proven by Gopakumar and Vafa in 1999. The closed string side is played by the topological string
on the non-compact Calabi-Yau geometry of two complex line bundles over the compact space

� 	
namely(") � � ��� � � � � ��� � � � � 	

. The topological open string geometry is reached from
(*)

by contracting
the volume � of the

� 	
and then deforming complex structure of the emerging singular geometry to the

1 It has an extension to the coupling of 2d gravity to +�,�-/.10 matter [140][205][204].
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smooth cotangent bundle
( � � ����� of

���
. The latter is a Lagrangian submanifold � in

(
w.r.t to a

natural symplectic structure on
(

and Witten’s picture [199] of open topological string relates it to Chern-
Simons theory on

� �
. Exact solvability of topological Chern-Simons gauge theory on

� �
is provided by

its relation to the 2d WZW model[201]. The closed topological string on
(*)

can be solved exactly by
localization [68]. This solvability on both sides provides a luxury, which is not readily available in the
analogous situation in the ������� /	��

� string/gauge theory correspondence, namely to check explicitly
that the partitions functions of gauge- and closed string theory are the same in the large

�
expansion of

Chern-Simons theory when the volume of the
� 	

is identified with � � � � ��  .

Beside the partition function, which is a topological invariant of the three manifold � , Chern-Simons
gauge theory is famous for calculating topological invariants associated to Wilson line expectation values
along knots or links inside � . What is the topological string question answered by these quantities and what
are the new parameters associated to the Wilson line ? An particular answer for the unknot in

� �
are open

string amplitudes ending on a non-compact branes � which meets the
� 	

of
(")

in an
� 	

[169]. The new
parameter is the area of minimal disk ending on the

� 	
, which is non-contractible within � . The geometry

of
( )

and � has a systematic generalization.
( )

contains the algebraic torus � � ��� � � �
as an open subset

(one
� �

for each line bundle and one for the
� 	

). Moreover
��� �
���

acts on
( )

with the natural extension of
the multiplicative action of

��� �
���
on itself. Varieties with this property are called toric varieties[81][167]

[50][47], here in three complex dimensions. They are characterized by the degeneration of the � action,
representable here as linear trivalent graphs embedded in three real dimensions. The vertices represent�
�

patches and the graph caries the information about the transition functions. � is characterized by
the property that is is a Lagrangian which is invariant under

��� �
����� � . Non-compact toric Calabi-Yau
manifolds with invariant non-compact special Lagrangian branes are a simple natural class of backgrounds
on which all open and closed topological string amplitudes be calculated by localization w.r.t. the torus
action. The question how to understand these general amplitudes comes back to Chern-Simons gauge
theory. The answer is provided by the trivalent topological vertex, which solves the problem for the open
topological amplitudes among three stacks of invariant non-compact special Lagrangian branes in a

� �
patch, and gluing rules for connecting these amplitudes on a patch to global amplitudes compatible with
the global � action. As maybe expected the answer for the vertex is related to the amplitude of a link of
three unknots in

���
.

The exact calculations in the topological sector of string theory have been an indispensable guide to the
non-perturbative behavior of critical string theory. Virtually everything known about dualities involving
strong coupling regimes is known from the analysis of the topological sub sectors of the corresponding
theories. An overview over the dualities in this context is given below

Topological theories come with integrable structures, which reflect their often not immediately appar-
ent symmetries. M-theory gives hints, but the non-perturbative formulation of string theory is illusive.
Exploring possible non-perturbative completion of the topological string is a very serious chance in this
context.

On various aspects of the dualities depicted here there have been recently very good lectures. In par-
ticular on the connection between matrix models and topological string in [158] and on the connection to
Chern-Simons theory and aspects of open/closed duality in [159]. Older physical application of topologi-
cal string theory using many of the above connections are review in [134] and newer can be found in [163].
Most of the material presented here can be studied in more detail in [105]. [197] is an introduction with
the virtue of assuming very few prerequisite. An particularly important field on the borders of the material
we present and yet don’t reach is categorical mirror symmetry, see [181][125][150] and [11] for physically
motivated reviews.
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Fig. 1 Dualities relevant for the topological string of type II on backgrounds with two and heterotic string
in backgrounds with four covaraint constant spinors.

3 Semi-classical approximation and super symmetric localization

Let us sketch the reduction of supersymmetric critical string theory to its topological sector. The two
dimensional � -model action

� � � 	 � 	 � � � 
���� � � ��� � � 	 � 	�� 	 � 	���� � � depends generically on the metric�
of � , the NS-two form field � on � and eventually other background fields. A possible attempt

to make sense out of (1) is to expand the action around the classical solution of the equation of motion�  � $ 		 $�
 $ ��� � 1
� � � 	 � 	 � � � � � � ��
 	 � 	 � ��� � . � ���� . � �. � �

				 $�
 $ ���
� ��� � �

(3)

The quadratic semi-classical approximation in . � in (1) leads then

� � � � � � ����	� 
 � � ��� � � � 
���� �����  #"�$ % &�% '�(
� �

$ ��� % & � � �  #"�$
��� % & � % '�( � � . ��� � �����&
 �� � ��� ��� ����� � � � � 
� � �

� �
$ ��� % & � � �  #"�$

��� � � � � � ( �
� # ���� . � � � � ��
 	 � � 	 � �
. � � �

(4)

Here assumed that the determinant can be regularized and we have to consider all classical solutions, which
are minimal embeddings of the world-sheet into � . It is useful to organize these contributions in a sum
over different topological classes of such embeddings as indicated in (4). In the closed string case these
classes are labeled by the genus of the domain ) � and the cohomology class � ��� � 	� �

of the image
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� � � ) � ��� . However depending on the case it might be that there are families of classical solutions of a given
topological type parametrized by moduli of the minimal embedding and eventually the complex structure
of � called � � . In this case one has to integrate over a suitable measure over this moduli space, which is not
indicated in the sums in (4). Naturally the semi classical approximation will be good all the configurations
“localize” close to extrema of the classical action.

It is a general fact that in supersymmetric extensions of (4) there is an exact localization to classical
configurations for correlation functions with a suitable fermion zero mode structure. This has its origin
simply in the rules of Grassmann integration over the fermionic fields � !

� � 	 ����� � � � � 	 ��� � � � � ����	 � � 	 � �������� � ��� � � � � 	 � ��� � � � � 1 �
(5)

For a field configurations for which the supersymmetric variations do not vanish for all variations of the
fermionic fields one can use the supersymmetry transformation to eliminate fermions from the action. By
the second identity in (5) the fermionic measure will then produce a

1
. Putting the argument around the

only contributing field configurations are the ones for which the fermionic variations are stationary, but
these are the classical configurations as we will see.

3.1 A simple supersymmetric index

This mechanism is independent of the dimension and can be demonstrated already in the
1
d case, i.e. for

an ordinary integral � � 
 � � � � 	 � � � � �  #"�$�% � � % � � ( over the bosonic variable � and Grassmann variables
� 	 and � � . The action

� � � 	 � 	 	 � � � � �
� �
	 � � � ��	 � � � 	 � � 	 (6)

where � � � � is an arbitrary function of � . One checks easily that action ��, 	 ��
 * � . � � 1
and measure. � � � � � 	 � � � � � 1

are invariant under the following supersymmetric transformations

. � ��� 	 � 	 ��� � � �.�� 	 ��� ��	 �.�� � � ��� 	 	 � � (7)

Away from the fix points of the fermionic transformations, i.e. for
	 ���� 1

, we can set
� 	 ��� � � � � �� &

and use the supersymmetry transformation to eliminate the first fermion, i.e. with �� � � � . � and �� � �� � � .�� � , � � �
	 �
one gets

� � �� 	 1�	 �� � � � � � � 	 � 	 	 � � � . So in the hatted variables there is no �� 	 to “soak
up” the

� �� integration and the integral vanishes. To be more explicit we transform the integration measure
also to the hatted variables. Since the transformation is singular we consider a nearby transformation� � � �
� � � � � �
� � �� & ,

� 	 � � � �� & and send
� � 1

after transforming the integral. Note that 
�� � � � �
is

invariant under � � �� ��� � � � � , therefore
� �� � 	� � � . In the transformed integral one finds beside terms

which go to
1

with
�

only a term which is total derivative w.r.t.
� � integral and vanishes at the boundary.

Since the integral gets contributions only from the critical points of � ) � � � � � 1
, we can collect the

contributions near those points by considering � � � � � � � � � � ��� �� � � � � � ��� , with  � � � ) ) � � � � , which
yields a Gaussian integration. The partition function

� � �
! �#" � � � � � 	 � � � � �  #"�$�% � � % � � ( � �

$�
 $ �
�

! �$" � � � � � 	 � � � � ���� � � � "�$ � $ � ( � � � � � � � �
� �

$ �
� ) ) � � � �% � ) ) � � � � % �

(8)
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becomes a primitive version of a supersymmetric index. It counts sum of zeros of � ) � � � weighted with
� �

(
� �

) for positive (negative) slope at � ) � � � � . If � )�� � � is continuous a
� �

zero of � ) � � � can only disappear
together with a

� �
zero under deformations of � ) � � � , which leave the behavior of � ) � � � for

% � % � �
invariant, see Fig. 2. That means that � is an invariant under such deformations and can be thought as
a topological invariant of � � � � . This idea extends to interesting indices, see Secs. 9.4 and 9.5. We can

Z=1 Z=−1 Z=0

f=h’ f=h’ f=h’

x x x

Fig. 2 Deformation invariance of the simple index

interprete (8) by defining � ��� 1 ��	 � �	 � � 1 � and the fermionic integral definition of the Pfaffian����� � � � 
�� ! � � ! �
	���
�� 	� � � � � ������� as well as usual bosonic Gaussian integration as the expression

� � �
$ �

����� � ��
� � # � � � � (9)

We might further interprete (8) by defining � ��� � � � � ) ) ��� � � and � ��� � � � ) ��� � and the meromorphic
differential�

� �
�$" �

� ���� � �
�#" �

� ���� &��� 	
(10)

which we want to integrate over
� 	

. It has a pole of first order at infinity and � is the residuum at this of
this pole which can be

1�	�� �
. We can express now � as the follwing residuum expression

� � ��� � � �
$ �

% � ) )�� � � � %� ) ) � � � � (11)

where � encircles all finite critical point and we take always the positive branch of the root. In this formal-
ism the critical points are the analogs of the Calabi-Yau manifold. It is a far shot, but conceptually true, that
the solution the B-model by the period integrals can be viewed as generalization of this example from zero
to three complex dimensions in which in particular (10) is identified with (266,267) and (280) the analog
of the first integration to � . A model, almost as simple as the above, with a manifold and a holomorphic
vector bundle was used in [17] to proof the vanishing of instanton contributions to

� � �
superpotentials

in
� 1�	����

compactifications.
An important lesson from these simple examples is that the fermionic integral and the fermionic sym-

metries decide crucically about the contribution of the expression. Less subtle then the above argument,
which involves supersymmetry, is the following general consideration. An operator � , e.g. the Dirac op-
erator, usually pairs the fermions �� � � in the action. If this operator has zero eigenvalues, some fermions
disappear from the action and the integral becomes zero as above. Fortunatly fermions are geometrical non
trivial sections and their zero modes are captured by “easy” cohomological information of the geometry
much like the zero modes of the Laplacian count harmonic forms, which are related to cohomology. The
Atiyah-Singer index theorem links a net count of the zero modes to topological invariants, which are often
quite easy to evaluate. This idea is made more explicite in Sec. 9.4 and 9.5.
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4 Supersymmetric nonlinear � -models

Essential features of the
1 ! topological toy model carry over to super symmetric � -models and other

supersymmetric theories. A
� ! (supersymmetric) � -model is simply a

� ! field theory associated to a
manifold � such that the fields are coordinates (and supercoordinates) of � , which depend only on one
variable. It is natural to think this one variable as the time and the whole setup as (supersymmetric)
quantum mechanics on � . In

� ! dimensional � models, the case relevant to string theory, the coordinates
(and supercoordinates) of � depend on two variables the WS coordinates of the string and � -model fields
can be viewed as a map �+* ) � � from the worldsheet ) to the targetspace � .

As in the 0d toy case we search in these models for field configurations which are fixpoints under some
super symmetry transformation. The super symmetry generators become nilpotent operators , on the
Hilbert space of the filed theory. The cohomology of , is a natural structure to extract topological invari-
ants of the classical bosonic configuration space. In more interesting situations indices can occur, which
are invariant under some deformations, but are family indices w.r.t. others. Physically the family indices
can be particular correlation functions. Their dependence on certain geometrical deformation parameters,
e.g. of the target space metric, can often be exactly calculated e.g. in an all genus string loop expansion.
This is the main physical benefit from topological theories. Apart form this more interesting geometry
there is only one new conceptual issue in the 2d case and that are potential anomalies of the

� ! quantum
field theory on the WS.

The original references for the following are [206][146] and especially [207]. We have adopted the
conventions from the review [105]. There is a well known dictionary between properties of the worldsheet
theory and properties of � . In particular if � is a Kähler manifold the � -model will have

����	����
worldsheet

supersymmetry [216]. The inverse statement is not quite true, i.e. one can construct more general geometric
backgrounds that allow for

����	����
worldsheet supersymmetric � -models[83].

In order to have superconformal invariance � has to be a Calabi-Yau manifold. A Calabi-Yau manifold
is Kähler manifold with vanishing first Chern class of its tangentbundle � 	 � � � � � 1

. This is equivalent
to the statement that there exists a hermitean metric � for which the Ricci curvature vanishes 
 � �� � 1

.
This in turn is equivalent to the statement that the holomomy group of � is contained in

��� � ���
. We call

a Calabi-Yau threefold a manifold where the holonomy is the full
��� � � �

(or a least
��� ���
� � � � ), which

implies that there are exactly two covariant constant spinors on � . This leads to
� � �

supergravity
theories in 4d for the compacification of type II on � . Many of the above facts and concepts are reviewed
in detail in Sec. 9. We will start the discussion of the symmetries of the actions at the classical level and
comment then on the potential anomalies and their cancellation.

4.1
����� �
	��
�

nonlinear � -model

Let us first treat the
����� �
	��
�

case. For this case the target space needs to have just a Riemannian metric.
We parametrize the map � * ) � � by � � , where

� � ��� 	 ! where ! is the real dimension of � . The
worldsheet is parametrized by

� 	 �� , hence � is given in local coordinates as � � ��� 	 �� � The fields of the �
model have the following transformation properties under worldsheet and targetspace reparametrizations.
With � and �� the canonical and anti-canonical bundle of ) and � � the complexified tangentbundle of� one has WS-fermions which transform as � �� � � � �� ���� � �
� � � ���

and � � � � � � � ���� � �
� � � ���
,

where � denotes sections of the indicated bundles. The Lagrangian of the non-linear 2d � -model is then
given by

� � � � � � � � � � �� � ��� � � � 	 � � � 	 �� � � � �� � ��� � �� � � � �� � �� � ��� � �� � �� � �� � �
	 
 ����

� � �� � �� � 
� � �� � �

(12)
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The covariant derivatives � �� � � � � are obtained using the pullback of the Levi-Civita connection from �
as � �� � �� � 	

	 ���� �� � 	 � �	 �� � � � 
 � 
� (13)

and 
 � ��

� is the Riemann-Tensor of � . Here we assumed a flat world-sheet or a local trivialization
of � �� , so that no spin connection appears in (13). Soon global properties of � �� and �� �� become all
important.

With Grassmann valued supersymmetry parameters
� � � � � � � �� � and

� � � � � �� � �� � one checks at
the classical level the following supersymmetry transformation

. � � � ��� � � �� ��� � � ��.�� �� � � � � 	 � � � � � � 
� � �
 ' � '�.�� �� � � � � � 	 � � � � � � 
� � �
 ' � '� � (14)

These equations (14) are quite similar to (7) and we would like to define nilpotent operators from the
supersymmetry transformations. The obstruction is that there are no global trivial sections of � � �� or �� � ��
unless � � �

. This means that there no global supersymmetry transformations on the worldsheet unless2

� ���
.

In the case of the worldsheet beeing a torus one can chose globally defined sections
� � � � � � ���� �

and
� � � � � �� � �� � to obtain globally defined supersymmetry generators , � � � 1

and , �� � 1
on the

Hilbert space
�

. E.g. we can chose
���

both to be in trivial sections of � ���� and �� � �� respectively.
In view of (14) we have to chose corresponding trivializations for � �� � � � �� ���� � �
� � � ���

and � � � �� � � �� � � � � � � � �
and this simply means that the fermions will have periodic boundary conditions on � � .

These boundary conditions are called twisted boundary conditions. , � and , � are globally defined and, � % � 
 � , � % � 
 � 1
for

� ���
forces the cohomological states to be in the

(�� 1
super symmetric

ground state of the Hamiltonian [208]

� � �
� ��, � 	 , � 
 � �

� � � � � � � � � � �
(15)

Generically the non-trivial information in the double twisted model is the Witten index. It is simplest
written in the operator formalism

� � � � � � %
��� �
��� $	��
 �$	� � � � %
��� �
��� 	
(16)

where � � � � � ��� and � � / � � count the left/right moving fermion numbers so that � ��� � �
� 	 , � 
 � 1
while

� ��� � �
� 	 , � � � 1
. The � model cohohomology is equivalent to cohomology of � , much in the same

way as we will made explicit in Sec. 6.1 and 8.1. Since (162) is the Laplacian and the fermion number,
measured by

��� � � �
, corresponds to the form degree, the Witten index is equal to the Euler number � � � �

of � [208]. The insertion of
��� �
� �

kills the information about the time evolution and spatial exitation of
the string. The latter fact reduces the model to constant maps, i.e. supersymmetric quantum mechanics on� , i.e. the index can also be obtained starting with a

� ! supersymmtric � model on � . The consideration
that leads to the index is referred to as quantizing the zero mode sector. If further global quantum numbers
are present one can get slightly finer information then just the Euler number, by inserting the corresponding
charge operator in the trace. These ideas play a rôle in extracting BPS numbers for instance associated to
branes see Sec. 6.16.

2 The quest for covariant constant spinors is familiar on the target space in order to obtain spacetime supersymmetric compact-
ifications. It requires restricted holonomies, see section 9.9, which is equivalent to the familiar ����+���� 0���� condition for �����
( ��� , ) II (heterotic) compactifications 6d internal manifolds.
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Much more detailed information survives in the string context if one choses only
� � to be in a trivial

section. The corresponding index is called the elliptic genus3

� � � � � � % ��� �
��� 
 $	��
 �$	� � � � %
��� �
� �

 �$	� � �
(17)

Here only the left moving states are forced in the left moving groundstate. The trace over the right moving
states explores information which goes far beyond cohomological information of � . It can be defined
for 2d supersymmeric field theories and is conformally invariant even if the underlying field theory is not
[211]. It requires

��� � �


not to be anomalous, which is essentially equivalent to � being spin [213]. It

carries information, which is robust under certain deformations. In the case of the � model on � � � � �
is

the Dirac index of the loop space of � [209, 210]. This index varies with the volume parameters of � ,
but is independent of the complex structure of � and is the first example of the promised family indices.
There are further simple refinements possible, if as below in the

� � � � 	 �
�
theories � � comes from an� ���
� � current ��� ����� � . If the latter is not anomalous one can insert

��� � ��� � � in the trace in (17) and
even if the

� � �
� � is broken to � 
 (17) with
�
	�� � ���! ��� � inserted is still an index. A theme of the lecture is

to explore more sophisticated family indices mainly in the
��� ��� 	 �
�

context and even at genus one there
are further refinements such as (323).

4.2 Compactifications with
����� � 	����

world sheet supersymmetry

The additional structure that allows to define more general family indices for the
� � 	 �
�

worldsheet theories
are right and left

� ���
�
	
� � symmetries, so called 
 -symmetries. Since the nilpotent , operators are derived

from the supersymmetry transformations and since there are no covariant constant spinors for world sheets
of genus � �� �

there will be no well defined supersymmetry operators on general ) � without further
modifications. For the topological theory to make sense at all genus � we “change” the transformation
properties of the fields, so that the supersymmetry transformation becomes a scalar operator on the world
sheet. This modification is implemented by twisting the world sheet Lorentz group either by the vector� ���
����� � ���
� � � � ���
� 	

or the axial
� � � �
� � � � �
� � � � � �
� 	 symmetry. To do this we first gauge

the 
 -symmetries. Then we combine the
� ���
�

gauge connection with the spin connection to a twisted
world sheet spin connection. Contrary to the

� ���
� �
the

� � � � �
current develops an quantum anomaly

proportional to 
 � � ��� � 	 � � � � �
. Therefore the � model, which is obtained by twisting with the

� � � � �
connection, is only well defined on Calabi-Yau manifolds

� � 	 � � � � � 1
), while the � model, which is

obtained by twisting with the
� � � � �

connection can be considered on any Kähler manifold.

4.3 The
� � 	����

non-linear � -model

Let us now study this mechanism in the Kähler case, which has at the classical level a
� � � � 	����

super-
symmetry and hence the necessary

� ���
�
symmetries. The action is given by

� � � � � � � � � � � � � �� 	�
 � � 	 
 � �� � � � � � � � � � � � � � �� � � � � � � � � �� � �� � �� � 
 � � � � �� � �� � � �� � � � � �� � � �
(18)

Here we have split the index
�

into � and � � according to the Kähler decomposition of the CY metric. Such a
metric can locally be written as � � �� � 	 � 	 �� � � � � 	 � � � � and its Levi-Civita connection in Kähler geometry is
pure in the indices � ���! � � � �� 	 � � ! % �� as discussed in more detail in Sec. 9.2. On a non-flat Riemann surface) one has the connection� �� � �� � 	 �� � �� � ���� �� � �� � � � ! 
 	 �� � ! � 
�� � � � � � 	 � � �� � ���� � � �� � � � ! 
 	 � � ! � 
 � 	 (19)

3 Unfortunately there many notations common to distinguish the left- and right moving sectors in this context unbarred/barred
for euclidean worldsheets, ����� , ����� and without tilde/with tilde are maybe most often used.
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where � � and � �� are the components of the spin connection of ) .
In superfield formalism one can can write � � � � 
 ��� � � ��� � 	 �� � � � , where the chiral field

� � has
components � � 	 � �� 	 � � . � � is an auxiliary field that has has no kinetic terms and can be eliminated from
the action by its equation of motion � � � �� � � �� � !� . This offshell superfield formalism is particularly
useful when one couples a holomorphic superpotential � � � � � to the action, which only possible for non-
compact target spaces � . This formalism is worked out in detail including the off-shell supersymmetry
transformations in [146] and reviewed in [105]. For notational brevity we restrict ourselves to the onshell
formalism.

Classically there are now twice as many super symmetries, one set for the holomorphic and one set for
the antiholomorphic space time indices. They are generated by

� � � � � � �� � , � � � � � �� �� � and �� � . The
latter are sections of the same bundles but have opposite charges under

� ���
���
and

� � � � �
. � � � ��� � � �� ��� � � ��
. � � � � �� � � � �� � �� � � � ��.�� �� � � � �� � 	 � � � ��� � � �� � ���� � ��.�� � �� � � � � � � 	 � � � � � �� � � �� � � � � �� �� � ���.�� �� � � � � �� � 	 � � � ��� � � �� � ���� � ��.�� � �� � � � � � 	 � � � � � �� ��� �� � � � � �� �� � ��� �

(20)

The relation between the existence of two supersymmetries and the decomposition of the exterior derivative
on Kähler manifolds into a holomorphic and antiholomorphic derivative

� � �	 � 	
, which gives rise to the

Hodge decomposition of cohomology groups into ��� % 	 � � �
, has been discussed first by [216]. The fields� � , � � � , � �� and � � �� transform as before under WS transformations. W.r.t. the spacetime transformations

one has now simply a splitting of � ��
 into � 	 % � � � � � % 	 � with � referring to � 	 % � � and � 
 referring to
� � % 	 � , so e.g. � �� � � � �� �� � � �
� � 	 % � � ���

e.t.c. All transformation properties are summarized in table 1.
The action of the

� � �
���
and

� � � � �
are conveniently formulated in superfield formalism, i.e. expand

any field in Grassmann valued
� � 	�� � 	 �� � 	 �� � complex fermionic spinor coordinates on which complex

conjugation is given by
��� � � � � �� � . The WS Lorentz transformation acts on � � � � and � � � 	 (with���
	 � �

signature) and on spinors as� � �� 	 � ����� ������� � �������
� ������� � ������� � � � �� 	 �

� � � � � � � � ��� � � � � � � �� � (21)

Since the fermionic variables anticommute w.r.t. to each other the Taylor expansion in them contains only� �
terms

� � � 	�� � 	 �� � � � � � � 	 � � � � � � � � � 	 � ���!� � � � � � 	 � ��� �� � �� � � � 	 � � � �� � �� � � � 	 � � � � � � � � � �"� 	 � � � ���
(22)

In this sense one can think superspace as a thin space in the fermionic directions, which contains no second
order derivative information in a given fermionic direction. The relation to calculus with differential forms
is very obvious. The action of the vector

� ���
� �
and axial

� � � � �
symmetries on all component fields is

induced from� � � �$# * � � � 	�� � 	 �� � �&%� � � � 	 # � � � 	 � � � � � � 	 � � � �� � �� �(' ��) * � � � 	�� � 	 �� � �&%� � �('�	 ) � � � 	 �+* �,' � � 	 � � �,' �� � � � (23)
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Let us denote now the four supersymmetry operators corresponding to
� �

and �� � transformations , *
and �, * respectively. A general supersymmetry transformation is then generated by the operator

�. � � � �	,�� � � � � , � � � �� � �,�� � � �� � �, � 	 (24)

where
� , � ��� � �, � and �. � � � �. .

More generally for any infinitesimal field transformation .���� we will denote the infinitesimal transfor-
mation on the field operator . ��� by .�� �	� � � , 	 �	� � � , where , is the corresponding generating operator.
Let � be the generator of two dimensional Lorentz rotations

��
 � ��	 � �
. It is convenient to make the Wick

rotation � � � � � � � and we call �
� � � � the generator of the compact Euclidean rotation group
� � �
� � .

Beside the supersymmetry generators one has on the WS � the generator of (euclidean) time translations,�
generator of translations. Furthermore there are the 
 -charge operators associated to the

� ���
� �
and� ���
�
�

currents called � � and � � . These generators fulfill the algebra

, �� � , � � � �, �� � �, � � � 1�	
� , � 	 �, � 
 � � ��� 	 � �, � 	 �, � 
 � ��, � 	 , � 
 � ��, � 	 �, � 
 � � , � 	 �, � 
 � 1�	
� � � 	 , * � ��� , � 	 � � � 	 �, � � ��� �, � 	� � � 	 , � � � � , � 	 � � � 	 �, � � � �, � 	� � � 	 , � � ��� , � 	 � � � 	 �, � � � � �, � 	

(25)

It becomes soon important that , � and �, � have opposite charges under the 
 symmetry groups. As
already stated � � is present at the quantum only for Calabi-Yau manifolds, the conformal case, while � �
is generically present. See [146] for a further discussion of this algebra.

5 Twisting the ������������� theories and cohomological field theories

Twisting amounts to a modification the Euclidean rotation group
� � � � � by a generator of the global

� ���
�

 -symmetry groups and define the new generator of the Euclidean rotation group

� � � � � � as � )� � � � �

 . As explained our goal is to make some of fermionic , operators scalar w.r.t. � )� , so that they are well
defined on all genus world-sheets. These “scalar” operators can then be used to define a cohomological
theory on an arbitrary Riemann surface. The term twisting is familiar in the orbifold context, where it
means to modify the boundary conditions of a field along cycles of the worldsheet by an element � of a
global symmetry group

�
, e.g. for the torus with a � cycle of length

�#"
a field is periodically identified

by � � � � �#" � � �!� � � � . The analogy is appropriate since also in the above case we change the boundary
conditions of some fermionic fields to become periodic. We encountered such twisting already in the
discussion of Witten index and the elliptic genus.

Here the twisting is implemented by gauging the
� � �
�

-R symmetry group and adding the corresponding
gauge connection �

	

to the spin connection, so that the transformation property of the spinor fields depend

now on their 
 charge. In important consequence of gauging the
� ���
�

-R symmetry is that the gauge field
modifies the energy momentum tensor, see (29). Since we are dealing with a 2d quantum field theory this
program of gauging the 
 symmetry might be obstructed by anomalies. The potentially dangerous terms
in the action are the fermion kinectic terms � � � � � � � �� � � � � � � � � � � � � � �� � �� � �� in (18). As explained in Sec.
9.4 (and is wellknown from the standard model) the vector

� � � � �
will never be anomalous. The anomaly

density for the axial current is calculated also in Sec. 9.4 and from (19) we see that we have a Dirac
operator on ) � coupled to a connection of a bundle, which is the pullback by � of the holomorphic tangent
bundle to ) written as � ��� � ��% 	 � �

. The Atiyah-Singer index theorem (380) for the twisted spin complex
gives us then the anwer that the axial

� � � � �
current violation is�

�
	 
�" 
� � � �

� � 	
� � � � � 	 % � � ��� � � �

� � � � � 	 � � 	 % � � ��� � � � � �$# � 	 � � � �	�
(26)
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� � � # ��������� � � % � ��� ��# ��� ( � � � # �!� � ��� � # ������# � � � # �!� � ��� � # ������#
� � �
� � � � � � � � � � � ��� � � �
� �� � ��� � 	 % � � � � �� � ��� � 	 % � � � �
� � 	 % � � � ��� � �� � ��� � � % 	 � � � �� � �
� � � % 	 � � � � ��� � ��% 	 �
� �� � � � � 	 % � � � �� �� � � � � 	 % � � � � � � 	 % � � � ���� � �� � ��� � � % 	 � � �� �� � �
� � � % 	 � � �� � ��� � ��% 	 �

Table 1 Space time transformation of the non linear � -model fields after � and � twist. Classically and in non-
anomalous theories one can chose the twisting on the left movers ����
	��
�
� and the right movers ���� 	��
�
� independently.

��� � � % � � ��� � # ��� ( � # ������# ��� 	 � � � # ��� ��# � � 	 � �
� ���
� � � � � � � � � �
� � � " � � � � �
��)� � " � � � � �
��)� � " � �� 1 1 1 � � � 1 � � � 1 � �

� �� � � � � � �� � � 1 � � � �� � ��� � �� � � � � �� �� � � � 1 � � � 	� ��� � � ��� � � � 1 � ��� � �� � � � � � �� � � �� � � 	� ��� � � ��� � � � 1 � �
� �� � � � � � � �� �� � � �� � � �� � � �� � � ��

Table 2 Space time transformation of the non linear � -model fields and charges after � and � twist. We also indicate
the names of the fields in the � and � model.

This breaks the
� � � � �

symmetry generically to a � � . For a discussion of the
� � � � �

anomaly in the linear� -model context see [213].
The most important consequence of the above result is that on a Calabi-Yau manifold where � 	 � � � � �1

we can twist by the
� ���
� �

and the
� � �
� �

symmetry as both are anomaly free. In the
� � 	 �
�

theory we
have therefore two fundamentally different possibilities to twist

� � � ��� � # * � � � � � � � � �� � � ��� � # * � � � � � � � � � � (27)

The tables below record how the twisting changes the WS transformation properties of the fields. We do
this first for the the so

�
and the

�
twist first. In the above notation of table 1 the � twist corresponds to a��� 	 � �

twist, i.e. to a combination of the
��� �

twist on � � 	 �� � and the
��� �

-twist on � � 	 �� � , while the �
twist is

��� 	�� �
twist, i.e. a combination of the

��� �
twist on � � 	 �� � and the

� � �
-twist on � � 	 �� � . There

are the possibilities of an
��� 	�� �

twist and an
��� 	 � �

twist making �, � and �,�� nilpotent operators. They
lead to the definition of conjugated cohomological sectors and considered for them self to no new theories.
However as explained in Sec. 5.5 the combined geometry of the sectors conjugated to each other leads to
an interesting geometry, the so called ��� � geometry.

The effects on the fields and the supersymmetry transformation can be summarized in the tables 2 and
3 respectively.

As it is clear from the table 3 and (25) the following combinations

, � � ,�� � �, �
, � � �,�� � �, � (28)

are now scalar, nilpotent operators which can be used to define two different cohomological theories, the
topological � - and the topological � -model respectively. Mirror symmetry exchanges the

�
twist with
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���
� � % � � ��� � # ��� ( � � # ��� � # � � # ������#
� � �
� � � ���
� � � � � � � � " � � � � � � )� � " � � � � �
��)� � " � �, � � � � � � �� 1 � � � ��, � � � � � �� �� 1 � � 1 � ��, � � � � � � �� � � 1 � �

, � � � � � � � �� �� � � �� � � ��
Table 3 Space time transformation of the supersummetry generators after the � and � twist

the
�

twist on the � � 	 �� � side. Even before twisting , � and ,�� define cohomological theories on the
plane the torus, where covariantly constant spinors exist. One can also choose to twist only the say � � 	 �� �
side. The indices of so called half-twisted models are the closest analogs of the elliptic genus (17) at higher
genus [207][212]. This indices are shared between the � and the � model and contain information about
the couplings of

����� ���� in the heterotic string with standard embedding.
If we denote the gauge current, which corresponds to the gauge variations . � 	
 by

� 	

. It will modify

the energy momentum tensor to

�� 
�� � � 
�� � �
	

 ���
 	 � � 	� ������ 	 � �

	
 � � (29)

In the action of the gauged theory of covaraint theory the world sheet there is a coupling

	 � � �
�
� 
 � 
 �

�
� � � � �� � �� � � �

� � � 
	� � # �	#�
�
 � � % � 	
(30)

to the spin connection � . In the second equality we bosonized the
� � � � 	

current
	 � � �

and integrated
partially. Contact terms of operators with the this expression will play a rôle in determining properties of
the correlation functions.

5.1 Generalities on the physical observables

One calls an operator a chiral operator or
� � 	 � � operator � if

� , � 	 � � � 1 �
(31)

Chiral and twisted chiral superfields play an important rôle in formulating the general
����	����

worldsheet
theory, see [213]. The lowest component � of chiral superfield

�
obeys

� �, � 	 � � � 1
and is a hence a chiral

operator. An operator � is called twisted chiral or
�
� 	 � � if

� , � 	 � � � 1 �
(32)

The lowest component � of a twisted chiral superfield ) obeys
� �, � 	 � � � � ,�� 	 � � � 1

and is hence a
twisted chiral operator.

� �, � 	 � � � � 1
and

� , � 	 � � � � 1
define left chiral- and antichiral operators while� �, � 	 � � � � 1

and
� , � 	 � � � � 1

define right chiral- and antichiral operators.
The key concept is now to define a cohomological theory whose observables are the equivalence classes� � � of , closed operators. To be closed the operators have to fulfill

� , 	 � � � 1
and the equivalence relation

is as usually up to exact operators
� � � , 	�� � � , i.e.

� ��� � � , 	�� � � �
(33)
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If the vacuum is annihilated by , , which is the case if , comes from a unbroken symmetry as above, then
the correlation function of the , closed operators does not depend on the representative of the class

� � 	 ��� ��� � ! � ��, 	�� 
 � � ��� � � 
 � � � 	 ��� � � � 
 � � 1 % � 	 	���� � � !�� 	 � � ! � 	 � ��� � � , % 1 
� � 1 % ,�� 	 	 ����� � !�� 	 � � ! � 	 ��� � � � % 1 
� � � 	 ��� � � � 

(34)

Above the
�

signs are uncorrelated and the two terms vanish independently if the vacuum is , invariant.
The analogy of the definition of topological correlators with cohomological intersections 
 ' � 	 � ��� � �� � ! � ��� � � ��� � � � �

� 
 ' � 	 � ��� � � � ! � � ��� � � � is not just formal in the case of the
� � 	����

-sigma
model as we will see.

An important property of these operators is that they form position independent rings. Using the algebra
(25), the properties of the twisted chiral operators and

� � � 	 � 
�	 � � � � � � 	 � � 	 � 
 � �
� 	 � � 	 � � 
 it is easy
to see that e.g.�� 
 �� $ � � �� $ � � � � � � � � � � 	 � � � � � , � 	 �, � 
 	 � � � ����� � � , � 	 � , � 	 � � 
�� 
 �� $ � � �� $ � � � � � � � � � � 	 � � � � � , � 	 �, � 
�	 � � � ��� � � ��,�� 	 � , � 	 � � 
 (35)

and similar for the � model. Combining (34) and (35) one sees that the correlation functions of the twisted
chiral operators do not depend on the position of the insertions of the operators, which is also true for the
chiral operators. The ring structure comes from the operator product expansion. It is obvious respects
the symmetry that the OPE of two (twisted) chiral fields is (twisted) chiral again and by (35) position
independent. One defines the structure constants of the ring in a basis of the ring � ! as

� � � � � � !� � � ! � � , 	�� � � 	 (36)

i.e. identifying an element on the right hand side up to exacts term. The ring satisfies the usual associativity
� �� 
 � 
� ! � � �
 ! � 
� � . The unit � � ���

is always (twisted) chiral, so � !
� �
� � !� �

� . !� .
The position independence (35) and its realization on

"
-form operators can be formulated in a covari-

ant way as the so called descend equations, see [56] for a review. If � "(� ( � � is a , closed position
independent

1
-form operator, one can define the following non-local � -form operators1 � � , 	 � "(� ( �� � "(� ( � � , 	 � " 	 ( 
� � " 	 ( � � , 	 � " � ( �� � " � ( � 1 � (37)

Using (35) and the corresponding relation for the � -model one can find the descend operators explicitly
noting that , � ��� ( �, � ��� ) and , � � �� ( �, � � �� ) are covariant combinations

� ��� �
� � � " 	 (� � � ��� � �, � 	 � "(� (� � � � � �� � , � 	 � "�� (� � 	 � " � (� � ��� � �� � , � 	 � �,�� 	 � "(� (� �

 	
� ��� �
� � � " 	 (� � � ��� � , � 	 � "(� ( � � � � �� � , � 	 � "�� (� � 	 � " � (� � ��� � �� � , � 	 � , � 	 � "(� (� �

 � (38)

The descend equations truncate, because of the anti symmetrization in the world-sheet indices. The �, �
and �, � operators define the

� � 	�� �
and

� � 	�� � ring states which we call �� "(� (� and �� "(� (� respectively. Their

descendants �� " 	 % � (� and �� " 	 % � (� are defined as in (38) with the barred and unbarred , operators exchanged.

As an easy exercise one checks that � " � (� ( �� " � (� ) and � " � (� �� " � (� are �,�� ( ,�� ) and �, � ( , � ) exact.
The significance of the descend

"
-form operators is that one can integrate them over closed

"
-cycles � �

of the WS (or more general the topological field theory space-time) to obtain non-local operators � � � �
� �


 ��� � " � ( , which are automatically , closed, because of Stokes theorem
� , 	 � � � � � � � � 
 ��� � , 	 � " � ( � � �
 � � � � " � � 	 ( � 
 � � � � " � � 	 ( � 1

. Reversed use of Stokes theorem shows that the topological equivalence

class of � � � �
�

depends only the homology class of � � . For a
" � �

chain
�

with � �
� � )

�
� 	 �

the
difference � � � �

� � � � � )
�
� � 
 �  � " � ( � 
  � � " � ( � � , 	 
  � " � � 	 ( � � is , exact.
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5.2 A first look at the metric (in)dependence and topological string theory

In a topological theory the correlation functions are not only formally position independent, but decouple
formally from variations of the worldsheet metric � 
�� . Classically the energy momentum tensor � 
�� �	� &

�  � &���� is the generator of those variations. From the first order variation of the weight factor �  one gets
a dependence of a correlation function on metric variations . � 
��

. & � � 
 � � � � �
� �
! � � � � . � 
�� � 
�� 
 � � (39)

In a topological theory . & � � 
 � � 1
does not require that � 
�� � 1

, but in virtue of (34) that it is exact

� 
�� � � , 	 � 
�� 
 � (40)

This structure ensures general covariance or topological invariance. It plays a key role in covariant quanti-
zation of string theory, where , � � 1

is the BRST operator and the part of
� 
��

is played by the antighost
field � 
�� . It is also is the starting point of closed string field theory formulations [199]. One can have
topological invariance independently of conformal invariance and also independently of the decoupling
between ghost and matter sector [199]. For instance the � model relies on this structure and can be defined
on Kähler manifolds on which the � model is not conformally invariant.

In string theory we integrate the world-sheet metric � of ) � over all possible choices
� � . Some re-

view references for the following short account of the metric dependence are [?][74][55][173] from the
physical and [119] from the mathematical perspective. Classically the integral over � is invariant under
diffeomorphism and Weyl- and conformal transformations of the metric

�����	 � �� � � �
	�� � � � � � � � 	 � �	 �� �
	 ��

	 �� 	 � � 
 � (41)

These “gauge” invariances are present at quantum level in critical string theory, which requires an anomaly
cancellation for the latter. The integral over the metric hence contains huge gauge orbits over the diffeomorphism-
and the Weyl group, which we we divide from the path integral measure and consider

- � �
��� ��� � � /�� �
��� � ��� � ��
 � � �
��� ����� � � (42)

Large gauge transformations (LGT) refer to discrete diffeomorphism of ) � not connected to the identity the
so called mapping class group

��� � ����� �
��� � � , which does not affect the dimension or other local properties

of - � . Focussing on the latter means considering the Teichmüller space
� � � � � /�� �
��� � ��� � ��
 � .

Locally near a reference metric � � ��	 we can lineralize the problem and once this is done it is easy to
see the key property that this moduli space is finite dimensional. Infinitesimal Weyl and diffeomorphism
transformations are read of from (41)

�. � ��	 � � . � � ��	 ��� � . � 	 ��� 	 . � �� ��� . � ��� � . � � � � ��	 � ��� � 	 . � � ��	 (43)

with
� � 	 . � � ��	 � 	� ��� � . � 	 � � 	 . � � � � ��	 � � . � � � . The scalar product for the linearized metric deforma-

tions . � � ��	 near � "(� (��	 is

� � � � � . � � ��	 % . � � ��	 
 � �
�
� � � ! � . � � ��	 . � � ��	 	 (44)

where . � � ��	 * � � "(� ( � � � "(� ( 	 
 . � � � 
 is compatible with the first order approximation. It has a straightforward
generalization for other tensors on ) transforming in

�
� 	� 
 	 � ) � � �

� � � 
 	 � � ) � and allows us to define the
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adjoint of linear operators such as
� 	 , see Sec. 9.4. Locally

� � is parametrized by the linear changes . � ��	
of the metric, which are orthogonal to

�. � ��	 of (43), i.e.
1 � � . ����	 % �. ����	 
 � � . � ��	 % ��� . � � � # . � � ����	 
 �� � . ����	 % � � 	 . � � ��	 
 � � � ��	 . ����	 % � � . � ��� # . � � 
 � � � � � �	 . � � 	 % . � � 
 . Up to a small subtlety (dependence),

which we discuss below, the free variaton of . � � and
��� . � � ��# . � � span � � ) and the space of functions

on ) so that the required orthogonality enforces the conditions

� ��	 . � ��	 � 1 	 � � �	 . � � 	 � 1��
(45)

The first is tracelessness of . ����	 and in a hermitian gauge choice � � � �� we see in Sec. (??) that the second
means holomorphicity of . � ��	 . I.e. . � � � ��� � � � ��� � � � are components of holomorphic quadratic differen-
tials. Holomorphicity of a quadratic differentials in one complex dimension is equivalent to harmonicity
and the spectrum of the Laplacian is finite on compact ) , which establishes the key property.

It is easy to connect this to the discussion in Sec. 8.2. If we pick a metric � � � �� we can define from� � the components of the so called Beltrami differentials �
�
�� � � �� � � � �� �� . Holomorphicity of � implies that

� � �� � �� �� � � � 	 � � ) � is a harmonic representatives. Sec.8.2 uses Čech-cohomology to ignore trivial changes

of the metric by complex reparametrizations, which relates by (334) to the gauge condition
� � �	 . � � 	 � 1

.
To summarize can span the tangent space � - of the complex moduli space by � ! ��� ��� � � �� ���� and the

cotantgent space � � - by � " ! (� � ��� ��� with � � ��	�� ��� 	 � 	 � � ) � . For the a hermitian choice � � �� of the metric
the pairing (44) becomes a Kähler metric

� � �� � 
�� � � � � � � �� ��� � � � � �� called the Weil-Peterson metric.

δ h
~

ab

ker P 1

δ h abker P 1

gauge orbits

moduli space

Fig. 3 Schematic of the objects in the linearisation of the metric variations

Let us come to the small subtlety mentioned obove. If . � � in is the kernel of
� 	 , i.e.

� � 	 . � � ��	 ��1
we

may pick a . � so that � . � ��	 % �. � ��	 
 � 1
, without restricting . � ��	 . Such vector fields . � � in the kernel of

� 	
are elements of � � � � ) � , appropriatly called conformal Killing fields, as they don’t change the conformal
class of � ��	 . So appart from restricting changes of the metric to complex structure changes only, which
is the main effect of the divison by the gauge group, we have to subtract these null vectors because they
appear in the numerator of (42). Hence the expected dimension of - � is � 	 � � ) ��� � � � � ) � , which we
calculate in Sec. (9.3) by Hirzebruch-Riemann-Roch (365) to be

� � � � .
To avoid the peculiarities of � � � � ) � �� 1

(
�

and
�

for � � 1
and � � �

) consider � � �
and let� � � *�� � , � ���
	 ��� � 	 � � � � the complex structure variables of ) . We can describe then a first oder defor-

mation of the metric modulo Weyl and diffeomorphisms as 
�� � � � ! � �. � ��	 � ��	 � 
 � � � � � " � ( ��� . � � � � � ��� � ��� . �� � �� �� �� and if we insert that in (39) we conclude that
	
	 � � � � 
 � � � � �

�
� � � � � ��� � � � 
 � � * � � � � 
 � (46)

and similarly
�� ���� � � � �� � 
 � . Eq. 40 is strictly true, so the argument that cohomological states and the

vacuum are , closed would make topological string theory completely metric independent and therefore
trivial! However the argument involving the invariance of the vacuum fails, because the measure on the
moduli space of higher genus Riemann surfaces, which is part of the vacuum definition is not , closed. It
is a real � � � � form � � for surfaces of � � �

and the argument fails in a very specific way. If we act with ,
on it, it gives an exact form, as we will see in detail in Sec. 8.13. This is like a descend equation, but with
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exterior derivative in the moduli space direction. By Stokes or rather Dolbeaults theorem the contribution to
the integral can then only come from the boundary of - � , which represents degenerate Riemann surfaces.
If the vacuum is not , closed we cannot trust the argument about position independence either. In the
moduli space - � % � with insertion of � operators the codimension one locus, where two operators coincide
is part of the boundary components. Its contributions has to be taken into account by so called contact
terms. Most of what topological string theory is about is organizing the contributions of these boundaries.
The questions which boundaries do give contributions leads to the stable compactifications on - � % � in
which only the boundary components are included, which are in complex codimension one. These facts
will govern the coupling of the � and the � -model to WS gravity as discussed in Sec. 6.2 and 8.13.

This section sketched the leap that one can take in topological string theory from a hopeless looking
path integral to essentially a combinatorial problem. The linear approximations to the moduli space of) � scratched the surface of this subject by one

�
to be exact. We have not etablished global properties

including existence. We will say more about that for Calabi-Yau manifold in Sec. 8.3 and leave the reader
in the case of Riemann surfaces with the literature [119].

5.3 A first look at the deformation space

What is of importance is that integrals of the two form operators 
 � � " � (� defined in the Sec. 5.1 can be
added to the topological action as deformations

� � �
�
��� � �

�
� ��
� 
 	 � �

�
� � " � (� �

(47)

After the � twist we can define zero form operators � "(� (������ ��� � �� � � � �� , which have
� � ���
��� 	 � ���
�
� �

charges� 1�	����
, see Tab. 2 . This charge is offset by ,�� 	 �,�� in (38), as seen from table (3) so that � " � (� ���� is

neutral. As we shall see these operators are associated to to elements in � 	 % 	 � � �
(108,109). Similarly

the operators associated to elements in � � � 	 � � 	 � � �
(218) in the B-model � "(� (� ��� � �� � �� � � have� � � � � � 	 � ���
� � �

charge
����	 1 �

which is offset by , � 	 ,�� so that � " � (� in (38) is neutral. Derivatives
w.r.t. to � � bring down such operators in the correlation functions and neutrality implies that arbitrary
derivatives do no violate any selection rule. Generically this extends the theory to a family of theories.
In the above discussion we omitted the consideration of

� � � � � � �
	 � � % � � � �
in the � -model and bi-

vectors
� � � � � � � 	 � � � � 	�� � � � �

as these cohomology groups are trivial on manifolds with strict
��� � ���

holonomy4. Perturbations w.r.t. the full set of operators have been considered in [207][16].
It is interesting to recover this first order condition of the CFT from the spacetime point of view, see

[34, 33], where we use the linearization approach from the last section now for the space time moduli.
We know that the geometrical background has to be Calabi-Yau manifold to allow for a conformal field
theory 5. The exactly marginal deformations � " 	 % 	 ( must correspond hence to first order deformations of
the geometry, which preserve the Calabi-Yau condition. I.e. to deformations of the background metric
� 
�� � .�� 
 % � (and B-field � 
�� � . � 
�� ), which do not change the Calabi-Yau condition6 
 
�� � � � � 1

, i.e.


 
���� � � .�� � � 1 �
(48)

In analyzing this equation we have to eliminate the .�� , which come from coordinate transformations. Coor-
dinate transformations or equivalently diffeomorphism of � are generated by vectors fields

� 

, compare

4 A slight modification of the twisting procedure makes the descend operators to these fields neutral [126]
5 There is an interesting extension of these considerations for non-conformal � � +�� - � 0�� -models involving massive (non-

marginal) deformations.
6 Strictly speaking one should ask for perturbations, which leave the Ricci-form 
 in the ��� +�� 0 � � cohomology class. Though

the representatives of the deformations in the cohomology classes would be different, the counting would be the same, see Sec. 9.8.
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Sec. 8.2. An actual change of the metric .�� 
�� is orthogonal to diffeomorphism generated by the vector
field in the following sense 
 ! ��.�� 
�� � � 
 ��� � � �	� 
�� � � � � 1

, which is equivalent to the gauge condition� 
 .�� 
�� � 1
, compare (44) and (45). Expanding with this constraint (48) to linear order around 
 � � � � 1

one gets

����� � .�� 
�� � � 
 ���
 � .�� ��� � 1
(49)

Using the splitting of a Kähler metric in holomorphic and holomorphic indices one can analyze .�� � �� , and.�� � � separately. Note that .�� � �� is real, while .�� � � with .�� � � � .�� � � �� is complex. From (352) it follows
that .�� � �� is

	

 harmonic and .�� � � .�� ��� ��� �� � � � �! .�� �! �� ��� �� is

	 �� harmonic. In other words the first order
deformations factorize and correspond to elements in � 	 % 	 � � �

and � 	 � � 	 � � �
respectively. These are

also among the deformations of the � - and � -model as mentioned above and further discussed in the
following Sec. 6.1 and 8.1.

Let us first discuss the two moduli space associated to � 	 % 	 � � �
. In a basis of

� ��	 �
�
-forms

� " ! (" 	 % 	 ( , we
expand a Kähler form

� � & ����
! 
 	

��! � " ! (" 	 % 	 ( (50)

in terms of the real Kähler parameters ��!�� 1
. The range of �&! is bounded by the inequalities, which ensure

positivity of the volumes of curves � , divisors � and � , i.e.

�
� � �

1 	 �
� � � � � 1 	 �

' � � � � � � 1 �
(51)

These conditions describe a real cone in
� & � � �� , which is called the K ähler cone. The parameters � ! are

identified with the areas of dual curves � ! to
� " ! (" 	 % 	 ( , which shrink to zero area at the boundaries of the

Kähler cones7. In the � -model (106) it is natural to complexify the parameter � ! to � � ! � 
 ��� � � � � � �
by adding the integral of the antisymmetric tensor field � � � 	 % 	 � � �

to ��! . Moreover due to mirror
symmetry one has a natural choice of the complex parametrization of the complexified Kähler moduli
space - 
 , simply the complex structure parameters of the mirror � � ! 8

As it is clear from the fact that the deformations .�� � � 	 .�� � � �� change the
� � 	 � 
 � type of the metric, the moduli

space � 	 � � 	 � � �
is associated to complex structure deformations. It is fair to say that most of what we

know about the moduli space of
����	��
�

theories comes from the theory of complex structure deformations.
In particular it can be shown that the first order deformations of the complex structures elevate to finite
deformations. This more thoroughly discussed in the Sec. 8.2 and 8.3.

Let us conclude the description of emerging picture of the deformation spaces. We have found that
the

� ���
� �
�
�

neutral world sheet two form operators � " � (	 � � � � 
 with � 	 % 	 � � 	 % 	 � � 	 � � and � " � (� with

� � � 	 � � 	 � � �
correspond geometrically to complexified Kähler and complex structure deformations

of the Calabi-Yau metric and are expected to be exactly marginal from the CFT point of view. In the
low energy effective action of type II A/B string theory these marginal deformations arise as vacuum
expectation of complex scalar fields labeling the vacuum manifold of the N=2 supergravity in 4d. The
general structure of this vacuum manifold for abelian gauge groups

� ���
��
 �
and

� � � ��
 �
is that it is

locally of the form - �

 � ��� ��
 � , where - is a complex special Kähler manifold for the scalar fields
in the vector multiplets[51][52][49][73] and � is a quaternionic manifold [41] for the scalar fields in
the hypermultiplets. The subscripts indicate the real dimension of the moduli space. Its relation to the

7 At the boundary of the K ähler also a divisor may collapse. In this case � � is still the area of a curve ��� in � .
8 As a corollary all singularities of ��� occur at complex codimension one and the cone structure disappears completely.
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perturbative sector of the II A/B string compactifications on a Calabi-Yau 3 fold � is as follows

- � � ������ � � � � - � � �� & � � � "!'�( � � � �
�

� " & � � � " '�( � 	 ( - � � ������ � � � � - � � �� & � � � " 	 ( � � � � �� "!& � � � " 	 ( � 	 ( � (52)

One very far reaching definition of the mirror conjecture is that type IIA and type IIB compatifications are
completely identically if � and � are mirror pairs. This in particular implies - � � ������ � � � � - � � ������ � � �

.
The best studied object is - � � �� & � � � " 	 ( since it is literally the complex moduli space of � . The enhancement
of the Calabi-Yau metric moduli space from the complex to the quaternionic space � of Kähler multiplets is
due to the moduli of Ramond forms. The additional quaternionic dimension in � comes from the universal
dilation, whose scalar components

� � 	 � � contain in particular the type II dilation
�

.

5.4 Conformal Field Theory point of view

A most remarkable fact is that for all
� 	��

Calabi-Yau threefolds defined in weighted projective space
subject to the constraint (403) and for which the defining polynomial is of Fermat type

��� ��
� 
 	

� � � � � (53)

with � � � � � ! , � � and � �� 
 	 � � � ! there is a well founded conjecture for an exact conformal field
theory description, which captures the full perturbative sector and not just the topological part of it. The
CFT description is based on an orbifold of tensor products of minimal

��� �
super conformal field theories

found by Gepner [84]. The description is valid only at one point in complex structure and complexified
Kähler structure moduli space the so called Gepner point. In the complex moduli space the constraint (53)
literally describes this special point. In the complexified Kähler moduli the point can also be described
by (53) after dividing by phase symmetry groups such as (265,274), which identifies (53) with the mirror
manifold. It is far away from the large volume limit.

The purpose of the present section is to describe the topological sub sectors in CFT language and to link
them to the full perturbative spectrum of the string.

As it is well known [173] Vol. II
� � �

supergravity and
� � �

heterotic string
(
	 � (�	

string
compactifications with standard embedding require and

� ������	��
�
supersymmetry. Only a

� � � ��	 �
�
symmetry is gauged. The

� � �
chiral part of a superconformal algebra on the worldsheet has beside the

chiral component of energy momentum tensor9 � ��� � � � ����

���� � 
 � with conformal dimension and

� � � �
charge

� � 	 , � � ����	 1 �
an
� � � �

current
� ��� � � � ����


���� � 
 � with
� � 	 , � � ���
	 1 �

and two super currents� � � � � ��

� ��� ��� � 
��� with

� � 	 , � ��� �� 	�� �
� . The shift � can take arbitrary real values. The short distance

9 The standard notation in CFT is quite different then the one common in the discussion of � models that we used in Sec. 4. One
uses in CFT � � � � ������� and �� � � � ������� where ��������� � is the euclidean time. Correspondingly one indicates the left moving
sector which carried a � index in Sec. 4 by quantities without bar and the right moving carrying before � with quantities with bar.
Moreover the unbarred or barred super charges are now distinguished by � and � respectively, e.g. ! �#"%$ �� , �! �&"%$ �� ,
! � " �$ �� and �! � " �$ � .
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operator expansion is

� ��� � � � 1�� � �� � � � �� � � � 1���� 	� 	 � � 1�� 	
� ��� � � � � 1�� � �� � � � � � 1 ��� 	� 	�� � � 1 � 	
� ��� � � � 1�� � 	� � � � 1�� � 	� 	 � � 1�� 	

� � ��� � � � � 1�� � � �� � � � �� � � � 1 � � �� � � 1�� � 	� 	 � � 1 � 	
� � ��� � � � � 1�� � � � ��� � � � � 1�� � 1�	
� ��� � � � � 1�� � � 	� � � � 1�� 	
� ��� ��� � 1�� � �� � � 	

(54)

Let us recapitulate the standard procedure in 2d QFT which recovers the algebra of charge operators from
an operator algebra such as (54). To the operator � ��� � we assign charge operators ��� � � � � ��������� � � ��� � ,
where � � is a contour around the origin

1
and

� � � ��� * � 
 � � � �� � � . In particular for
����� � � � � � &�" � ( � 	

the charges are the modes � � of � ��� � . The transformation of the operator � � � � under
� . ����� is generated

by the commutator with � � . In radial time ordering the commutator is given by the following contour
integrals

� . � �
� � � � � � � ��� 	 � � � � � ���	�
�
 ��
 
�
 ��
 ��������� � � ��� � � � � �������

�
 ��
 ��
 ��
 ��������� � � ��� � � � � �
� �

� � ��������� � � ��� � � � � � 	 (55)

see Fig. 4. The spatial transformations . � corresponding to conformal transformations10 � � � ������� �
w

z

− =
w

w
z z

C C

Cw

0 > 0 <

Fig. 4

are generated by � ��� � , i.e. . � � .�� � . One can integrate (55) with
� � ���� � � � � � � &�" � ( � 	 to recover as

residuum the mode algebra from
� � � 	 � �

� � � � � � � � � � �
� �	 � � � � � � �
� . � % � � 	� ��� 	��

�
� � � 
 � � ��� � � �� � � 	

� ��� 	 � �
� � � � � � � �

	

� � �� � �� 
 � � � � � � � ��� � � ��� � � � � �� 
 � � � 	� � . � % � � 	
� � �� 	 � � � 
 � � � �� 	�� �� 
 � 1 	
� �
�
	�� �� � � � � �� � �

	
� � � 	 � �

� � �� . � % � � 	

(56)

10 These are holomorphic in 2d.
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with � ��
� � � � ,

� �
�
� �

� and
��� �� ��� � � * � � . In case that the

� � ����	����
CFT theory is the internal part

of a string compactification it must have � � �� ��� to cancel the Weyl anomaly. It represents the internal
manifold � . In fact ! * � �
� � � � � � � �� . The generalized GSO projection restricts the internal

� ���
�
charges to odd integer values for space time bosons and half integer values for space time fermions, see
[84, 173] for more details.

If we consider now the
��� 	 � �

twisting11 [66][56]

�� ��� � � � ��� � � ) �� 	 � ��� � � �� �
� � �

� ) �� � � (57)

then the modifications of (54) occur in the following short distance expansions

�� ��� � �� � 1�� � �� � �� � 1 � � 	� 	 �� � 1 �
�� ��� � � � � 1�� � � � � * 	� � � � � � 1�� � 	� 	 � � � 1��
�� ��� ��� � 1�� � 	� � � � 1�� � 	� � 	 � � 1 � ��) �� � � 	

� � ��� � � � � 1�� � � �� � � � �� � � 1���� �� �� � 1�� � 	 * � 	� 	 � � 1 � �
(58)

Let us point out the salient features of the operator product expansions in (58)
� Since the central term in the first OPE vanishes no ghost system is required to quantize the world

sheet theory.

� By the second OPE either
� � (

�
-twist) or

� � (
�

-twist) become a spin one currents, so either , �
� �
�
� � � � or

� �
�
� � � � becomes conformal, i.e. scalars that are defined on every genus world

sheet. The opposite super currents
� � (

�
-twist) or

� � (
�

-twist), become spin
�

fields.

� The above conformal zero modes are recognized as building blocks for nilpotent operators , � � � ., � � � �
�

� �� �� in the case of the
��� 	�� �

twist defining the
� � 	�� � twisted chiral ring as cohomology., � � � �

�
� �� �� for the

��� 	 � �
twist defining the

� � 	 � � chiral ring. The relation to geometry of �
is12 for the � -model , � 	 �

and the for the � -model ,�� 	 �	 as discussed in more detail in the
Sec. 6.1, 8.1.

� The third OPE shows that
� ��� �

has an anomalous transformation. By arguments familiar from the
BRST quantization of the bosonic string this gives rise to an anomaly in the divergence of the current,
see (383) for a derivation, which can be covariantly written as� � 
 � 
 � � � !�#" ! � 
 � � ! � � 	 � ) � � � ! ��� � � �
� � (59)

For ! � �� � �
this comes precisely with the same anomalous coefficient

�
�
as the ghost current in

the BRST quantization of the bosonic string
" � � � * � � * , see [173]. Integration the anomaly in the

divergence of the current leads to a
� ���
�

-charge violation of ! ��� � � �
� on a genus � Riemann surface.

� The last OPE finally is like the one between the BRST current and the � ghost. Integration around a
contour to isolate

� �
� , yields for the

�
twist

� , 	 � � ��� � 
 � � ��� � 	 (60)

which echos the main equation ��, � 	  � 	 � ��� � 
 � � � � � ��� � in the BRST quantization of the bosonic
string. We have seen already that

� � has
� � 	 , � � ��� 	 � �
�

, which are precisely the conformal
dimension and ghost charges the � ��� � ghost.

11 ��� marked by a prime are correlated in (29,58).
12 For Calabi-Yau manifolds this identifications can be viewed as convention and is reversed in [20].
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To summarize we have for the
� � 	 � �

twist [20] exactly the same structure as in the bosonic string if we
identify

��� � ��� � 	 � ��� � 	 � ��� � 	 � � ��� ��� 	 � � � 	  � ��� � 	 " � � � * � � * ��� � 	 � � � � ��� � 	 � ��� ��� (61)

and similar for the anti chiral half. This implies also , � 	 , � 	  � and the ghost number becomes
� ���
� �

charge.
The degenerate ground states in the Ramond-Ramond sector fulfill [151]

� �
�
% � 
 � 1 �

(62)

These Ramond-Ramond ground states have by (56)

� � �� 	 �
�
�
�

(63)

An operator � with charge , in the theory can be decomposed into a part �� which is neutral under

the
� � � �

current and a charge carrying part, i.e. � � �� � � � ! � � � , where we bosonize the current as� � � �� 	 � [178, 151]. Hence there is a natural operation, which shifts the
� � �
�

charge of every operator� � � ! � � � � � � " � � � ( ! � � � . It is easy to see that this operation induces a family of algebra automorphisms
known as spectral flow [178]

� �
� � )�

� � �
� � �

�
� 	� � � ��. ��% ��

�
� � )

�
� �

�
� 	� � ��. ��% �� �� � ��� �� ��) � � �� * �
� (64)

The Ramond ground states are related by (64) with
� � � ) 	� to states in the NS sector with

� �� % � 
 � � �
% � 
 � �

�
% � 
 � 1�	 � � 1�	 � � 1 	 
 �#� � � �� ��

% � 
 � 1
(65)

Only the
� )

in (65) correlates with the one in
� � � ) 	� and one has

��� �
for chiral and

��� �
�
for anti chiral

states. It is easy to see that (65,56) imply

� � � �� , 	 % , %  �� � ! � (66)

Massless space-time scalars are have
� , 	 �, � ��� � �
	�� �
�

. The states in the chiral- and anti chiral rings
with this property are related to the cohomology of � . The

� � 	 � � ring corresponds to � � % 	 � � �
and the� � 	�� � ring corresponds13 to � 	 % 	 � � �

. The above spectral flow operators with
� � � 	� relate space time

superpartners with each other and are identified with internal part of the spacetime susy operators [84].
The main point in Gepners construction is to identify the internal � � �� � � theory with an orbifold

of a tensor product of minimal
����	��
�

superconformal field theories. The factor theories are constructed as
cosets of supersymmetric, WZW models, see [131] for a general discussion. WZW models and cosets are
an important source of rational CFT beyond � � �

. In the simplest case based on a
� � � ����� � � � � ��� / � � � �

coset the central charge is

� ! �
� �

� � � 	 � � � �
(67)

13 The +�� -�� 0 and +��	- �&0 rings correspond to conjugated fields and contain no independent information.
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Primary states
% � 	%$ 	 � 
 of the algebra (54) are labeled in the minimal models by integers which have the

following standard range141  �  � 	1  % $ � � %  �
� ��� 1�	 ��� ��� ��� � � � � � 
	%	� � � � � # �1%� � 
 
 � ���#� � � � � # � % �� � $ � � � 1 � �
� � (68)

and have conformal dimension and charge

� � � � � � �
�
	 � � � �
��� $ � � � �

�
	 , � � $

� � � � �� � (69)

Above we discussed only the right moving part of the theory. There is a remarkable � � � � (
classifi-

cation, behind the question how to combine the � 
 % 	 % � and � �
 % 	 % � characters to a modular invariant one loop
partition function [31]. Note that above only

� �� �� . That is because all possible shifts of
$ 	 � w.r.t. �$ 	 �� are

obtainable in a separate step by orbifold constructions w.r.t. to simple current symmetries. The simplest
way to get a modular invariant theory is to start with a left right symmetric theory with states

% � 	%$ 	 �
� � 	 $ 	 � 
 ,
this corresponds to the � -series. Considering only this series there are

� 	��
possibilities to build a tensor

product theory with �� � � � � �� 
 	 � ! � � � . Note that at most one � � is allowed to be zero, because of
the � � � condition. This is the same number as � 	 � � ' � � 1

Fermat hypersurfaces in � � � � , i.e. with
� � 
 	 � � � ! , see Sec. 9.10. In fact identifying � � � ! / � � � � � � �

it is easy to see that both enumera-
tions lead to the same diophantic problem. The simplest possibility is � � � �

for � � �
	 ����� 	 �
. This leads

to ! � �
,
� � ���

, � ���
	 ����� �
, the Quintic in

���
. Gepners orbifold construction divides the symmetric ten-

sor product by a symmetry group which is generically the subgroup
���  
�� � � � � � ��� ��� 
 � � ��! ��� � �� � � � � 	

among the group generated by the simple currents and constructs a modular invariant orbifold. The effect
is that the factor theories and the space-time part are either all in the NS-NS sector or all in the R-R sector
and that the charges in the internal NS-NS sector become odd integers [84, 85]. It then easy to see that
states in

� � 	 � � ring from the invariant sector15 of the orbifold are of the form � � % � � 	 � � 	 1 � � � 	 � � 	 1 
 . For the
tensor product model that corresponds to the quintic this leads in view of (68) to

� 1��
elements. The count-

ing is the same that leads to the
� 1��

independent complex structure deformations under Eq. (264), which
are identified with elements in � � % 	 � � �

. All states in the
� � 	 � � ring are from the twisted sector. They are

more complicated to count but one checks that they yield the number of independent elements in � 	 % 	 � � �
.

It is also straightforward to identify the orbifold action, like e.g. (265,274), that leads to the mirrors � of
the manifolds � in (53) in the conformal field theory context and to check that it indeed exchanges the� � 	 � � with

� � 	�� � ring [96, 76]. A fascinating idea has been to use Cardy states [176] to classify D-branes
as boundary conditions in the rational CFT at the Gepner-point and compare with geometric pictures of
D-branes [28] in particular the triangulated category of coherent sheaves over � for the � -branes or the
category of special Lagrangian submanifolds of � for the � -branes respectively.

5.5 ��� � equations, special geometry and contact terms

The ��� � equations describe the geometry of the ground states of
� � ����	����

two dimensional theories.
The construction does not require necessarily conformal invariance, but rather the following structure. A
nilpotent operator , and its adjoint , �

� , 	 , � 
 � � (70)

14 For the orbifold procedure the following equivalences are important ���������� �� +"! � � 0 , #��$#%���& (' and ) * -+� -�#-, �* - �� -��#/.0�) ! �1* -�� -+#-,+! � �* - �� �2!�� � - �# � �3. .
15 In general there might be + � - ��0 states in the twisted sectors but for the smooth hypersurfaces, such as the quintic, there are

none.
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and a conserved fermion number. , and its adjoint , � define rings of cohomological operators � and
� � respectively. The advantage of the approach is that it derives the relevant geometry with minimal
assumptions. E.g. special Kähler geometry follows just with an additional requirement on integral charge
conservation for the � -model the � -model and even the more exotic cases introduced in [83]. To make
contact with the previous sections this can be realized as

, � � , � � , � � �, � 	 � � �
� 	 � �,�� � �, � � �, � 	 � � � � 	 � � , � � � , �� � �, � � , � 	 � � ��� � 	�� �, �� � , � � , � 	 � � ���
� 	�� � (71)

As explained we have to twist the theories by identifying the corresponding �
	

gauge connection with the
spin connection. Since only the fermion number must be conserved [44] one needs only a � � anomaly
free subgroup of the

� ���
� 	
-currents. The ��� � geometry is applicable to

� � � � 	 �
�
2d field theories with

marginal (conformal) but also relevant (non-conformal) deformations. While these theories might not have
a geometrical target space realization, it is still16 useful to think of a formal correspondence to the deRham
(Dolbeault) cohomology on a manifold � with

� , 	 , ��	 � � � � � 	 � � 	 	 �
The Ramond-Ramond vacuum states, compare (62), are defined by

, % � 
 � , � % � 
 � 1 �
(72)

Such states play the rôle of harmonic forms. We call the space of vacua
�

. The operator state cor-
respondence of 2d QFT associates to every operator � � � acting on a any vacuum state

�
a state% � 
 � � % � 
 . In order to avoid too many indices we call the zero-form operators � "(� ( � � and the

two form operators � " � ( � � . Since
% � 
 � � � % � 
 is closed, Hodge decomposition (348) applies% � 
 � � % � � 
 � � , % � � 
 � � , � % � � 
 � and by that we get a map

� & * % � 
 � %� % � � 
 � (73)

from � to
�

. If
�

is fixed and as will soon see there is preferred choice we can find a canonical map from
the ring � to the Ramond-Ramond groundstates. Moreover every � � � induces a map

� * % � 
 %� % � � 
 � (74)

from
�

to
�

. Everything we said from Eq. (72) on, could have been said verbatim for the conjugated
sector defined by , � . In particular we get for the same choice of

�
a second basis of

�
, which we call% � 
 
 , �� � ��	�� ��� 	 �

. If one has unbroken
� � �
� 	

� � symmetries as in Sec. 5.4 one could single out
% � 
 as the

lowest charge state in the Ramond-Ramond groundstate.
The following path integral argument requires only conserved fermion number. In the operator approach[7][56]

to 2d field theory one defines a state the Hilbert space � of 2d theory by the path integral over a half sphere
� ��� bounding an

� 	
. Parametrize the

� 	
by
�

and denote the fields generically by � ����� . The path integral
is a functional of the boundary field configuration � ��� � � � � on the

� 	
and defines a state

% � 
 in � as
in (76). Anti periodic boundary conditions for fermionic states on contractible loops as

� 	
on � ��� are

the natural boundary conditions in the path integral so that (76) does not yield periodic Ramond-Ramond
states in � . However the connection �

	

of the gauged

� ���
�
R-symmetry couples to the fermion number

with charge
	� , i.e. acts like a spin connection � 
 . When one transports the fermion along the

� 	
, the

connection is integrated to a Wilson loop phase rotation acting on the fermionic state as

� � � � � ��� � $ � � � ���	� � � � � � � ���
��� � �
���� � � & � � � ����� � � � � " � ( � � ��	
(75)

which rectifies the periodicity. A projection to the Ramond-Ramond groundstates at the boundary can now
be achieved by attaching a cylinder of length � to � � � , see Fig. 5. Call the combined surface � � ��� . The

16 For � model on � this formal correspondence becomes an actual correspondence.
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“evolution” of a state
% � 
 defined by the original boundary

� 	
of � ��� to the far boundary is described by� � � � % � 
 . If the length � of the cylinder goes to infinity only the groundstates in

�
survive, because they

have
1

as energy eigenvalue of � , cff (63).
After this preparation we can define the path integral version of a projector (73)

% � 
 �

�� �

� � � � � � � � �	��� � � � " � ( � � � �
�
� � � � � (76)

The � � �
limit makes the projector only sensitive to cohomological information of ring states � � �

or �� � � � . Exact pieces have non-zero energy and are completely suppressed. Note that
� � � � � % 1 


defines a preferred vacuum state. We call the image of a basis � � � � , � � 1 	�� ��� 	 �
with

�
�
� �

in
�

the
topological basis

% � 
 � �
�
� � � � . By the operator state correspondence we can also represent the rings (36)

on the vacuum states

� � % " 
 � � !� � % � 
 (77)

T 8 T 8
i

Φi

0

Fig. 5 Path integral projectors to the Ramond-Ramond ground states
�

The path integral (76) with insertions of �� � � � � defines the anti-topological basis
% � 
 
 � �

�
� �� � � . The

two basis of
�

namely
% � 
 and

% � 
 
 must be related by a linear transformation, the real structure,

% � 
 � � � �� % � 
 
 � (78)

The CPT theorem of the 2d field theory states that the effect of complex conjugating all expressions in (76)
sends

% � 
 � % � 
 
 , i.e.
% � 
 
 � � �� � % " 
 which implies � � � ���

. One has a topological bilinear pairing

� � % " 
 � � � � (79)

and an hermitian bilinear pairing called the ��� � metric

� � 
 % " 
 � � � � � 	 (80)

which are in an obvious way related by the real structure

� �
 � � � � � � �
� � (81)

Note that � � % ���� % � 
 ��� . Both bilinear pairings can be defined by the path integral as in Fig. 6. These objects
are topological to different extend. Changing the representative of the , cohomology class

% � 
 %� % � 
 � , % � 

or � " % %� � " % � � � % , will do nothing in � � % " 
 as

% " 
 and � � % are Q closed. Due to (35) the pairing
� � � is

independent of the position. That is true for all length/diameter ratios of the cylinder, i.e. the cylinder is not
needed at all in the definition. For the pairing � � � � with � � 
 % %� � � 
 % � � � % , � and

% � 
 %� % � 
 � , % � 
 the argument
does not apply as

% " 
 is not , � and � � 
 % not , closed. However from (70) and , % � 
 �� 1
( � � % , � �� 1

) follows
that these exact states have positive energy. The only states with zero energy are R-R vacua. I.e. in the
case of � � � % � we need the � � �

limit to define a topological quantity.
Locally the tangent space of the

� � 	 � ��� moduli space is spanned by elements from � � � � and � �
� � � � . It is
clear that the pairing

� � � depends only on the � moduli. Moreover one shows that as metric it is completely
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Fig. 6 Path integral representation of the topological pairing � � � and the topological-antitopological pair-
ing � � 
 � .

flat, i.e. all components of the curvature tensor vanish similar as in ! & �
strings [60]. One can therefore

find coordinates which make the metric
� � � constant. This defines the moduli dependent basis of � . As it

is clear from the construction of the basis
% � 
 and

% � 
 
 via the projection of moduli dependent elements in the
rings � and � � they will depend on the moduli � � � � 	 � �
� . In the Landau-Ginzburg approach [193]

� � �
is explicitly defined in terms of the Landau Ginzburg superpotential as

� � � � 
�� � � � � � � � � �
���$" � � �

� � � � ' � � ' 	 � ��� � � � ' �	 	 � ��� � 	
� �

� �
� 	

� � ' � �
� # � 	 � 	 � 	 � � � � (82)

Another approach to define
� � � is via the supersymmetric Schroedinger equation [42]. We will not dwell

deeper into the derivation of (82), except for remarking that it is a zero dimensional analog of the Griffith
residuum expressions (266,280) used in Sec. 8.7 to define the periods, with the identification � � �

.
The ��� � equations describe how the vacuum states in

�
vary over the moduli space parametrized by � .

One calls the corresponding bundle also
�

. Let � � be a basis, i.e. a section in
�

, and denote its connection

� �' �
� � � � � � � % 	 ' % � � 
 � (83)

If the basis of
�

changes by a “gauge” transformation
% � � 
 %� % � )� 
 � � � � % � � 
 then the connection

undergoes a gauge transformation � %� � � 	 � � � � � 	 � � . Let us consider the perturbation

� � �
�
� � � �

�
� �

� � � � � � � � � � � �
� � �� � � � � � � � �� � 	 (84)

where the two-form descendants are called � � * � � " � (� . It is easy to show that the following mixed
indices of this connection vanish in the holomorphic basis. Consider e.g. � �� � � using (81) we can write

� �� � � � � � �! � �� % 	 � � % " 
 � � � ! � � % 	 � � % " 
 . By (38) we can write 
 � �� � � � � , 	�� � and since � � is , closed we can
write

	 � � % " 
 � � & � � , 	�� � � � � � , � & � � � � � � , �
� % " 
 � . Since � � % , � 1
is closed this expression vanishes

� �� � � � 1 �
(85)

Similarly one shows that � � ! �� � � � 
 � � % 	 ! % �� 
 � 1
.

The metric connection is characterized by1 � � ! � � �� � 	 ! � � �� � �
	 ! � � % � % �� 
 � � � % 	 �! % �� 
 � � 	 ! � � % � % �� 
 � (86)

From this and the �� �! derivative, we get formulas for � � ! � and � �� �! ��
� � ! � � � � �� 	 ! � � �� 	 � �� �! �� � � � �� 	 �! � � �� �

(87)

as hermitian connection of � . Indeed the topological basis
% � 
 and the anti-topological basis

% � 
 
 form
holomorphic and antiholomorphic sections of the vacuum bundle over the moduli � and one gets the
vanishing of the following components of the curvature

� � � 	 � � � � � �� � � 	 �� �� � � 1 �
(88)
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The most important relation comes from analyzing the
� � � 	 �� � � � curvature term. Let us do this for

definiteness for the � model. Since the twisting (58) is so that �, � ��� � � � � ��� � and �, � ��� � � �� � ��� �
have dimension one, we can define�, � ��� ��� � � ��� � 	 �,�� � � ��� �� � ��� � � (89)

Here we adopt the notation to use the CFT conventions for the twisted currents. The commutators and
anticommutators in the definition of the descendants (38) can be represented by (55) as

� � * � � " � (� � � , � 	 � ,�� 	 � � ��� � � 
 � � ��� ��� � � ��� � � � �� � � �� � � � � �� � � ��� � 	�� � � * � �� " � (� � � � �, � 	 � �,�� 	 �� � � ��� � � 
 � � � � ��� � � ��� ��� � �� � � �� � � � � �� � � ��� � (90)

We calculate
� � � 	 �� � � � in

% � 
 basis i.e.

� � � 	 �� �� � 
 ! � 	 � � 
 �� ! � 	 �� � 
 � ! � � 
 � � � 	 � � " % � �	 �� % � 
 � � �	 �� � " % � 	 � % � 
 �
� � 
 � ��� � � 
 �  �� ��, � 	 � , � 	 � � �

	� ��� 
 �  �� � �, � 	 � �, � 	 �� �� � 
 � ! �� � 
 � � � � � 
 �  �� � �, � 	 � �, � 	 �� �� � 
 � � � 
 �  �� ��, � 	

� ,�� 	 � � � 
 � ! �
� � 
 ��
 � � � � 
 �  �� 	 �	 � � � � � 
 �  �� �� �� � ! � � � � � � 
 �  �� �� �� � � � � 
 �  �� 	 �	 � � � � ! �
�� � 
 � 
 � � � � 
 �  �� �� �� � � � 
 � � � 	�� � � � � � ! � � � � � � � � � 	�� � � � � � � � 
 �  �� �� �� � � ! �
�� � 
 � 
 ��� � � 
 �  �� �� �� � ����� � � � ��� � � �

� � � � � ! � � ��� � � �
�
� ��� � 
 � � � � � ��� � 
 �  �� �� �� � � ! ���

(91)

the contours of
� � ��� � 	 �� � ��� � � � ��� � 	 �� � ��� � are as in Fig. (7). Moreover we consider operators � in the� � 	 � � and �� in the
�
� 	�� �

ring, e.g. � is �, � and �,�� closed. In the language of current algebras that means
that the short distance expansion of � � � � with �, � ��� � � � � ��� � and �,�� � � � � �� � ��� � has no pole and � � � �
can be ignored when deforming � � and � � . The contours e.g. of the term in the third line can be deformed
as in fig. 7 and the contours of

� � ��� � 	 �� � ��� � encircling
� � ��� � 	 �� � ��� � give the � � 	 and �� � 	 acting

as
	

and �	 derivatives on � � by (35). Similar manipulations apply to the term in the second line of (91).
Applying Gauss’s law in both terms gives the integral over the normal derivative

��	 � � . The minus sign is
due to the orientation of * � . The normal direction is “time” evolution by � , i.e.

	�� � ��	
� � � � � � 	 � � � ,

which is used in the last line of (91), where � ��� �
is integrated around � � From now on we exploit the

j
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Fig. 7 Contour manipulation on � in the evaluation of � � � 	��� ������ � .

topological nature of the theory and take ordered limits of )� % ��# * � 	 	 � � � � 	 � � � � ��� * � � �
(92)

as depicted Fig.8. The tubes are all normalized to have perimeter
�
. Elongation � 	 and � � projects � �
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Fig. 8 Limits taking in the evaluation of � � � 	��� �� � � � .

and � ! to the Ramond-Ramond vacuum state � " % and
%
� 
 respectively. The procedure of the limits is a

prescription how to deal with short distance singularities and the only such issue in topological field theory
are contact terms see (100) and (142).

The action of � on these states yields zero. The two terms in the last line of (91) are transformed into

each other by exchanging the left- and right infinity. We discuss the
� � � � � 
 �  �� �� �� � ����� � � � ��� � � �

� � � � � ! �
explicitly. Vanishing of � % � 
 means that � may considered as acting on the full state

� � � � �
� � � � � ! � . In

Hilbert space notation is denoted as � % � � � � � � � % � 
 and similar
� � � � 
 �  �� �� �� � as � " % 
 �  �� �� �� % . We can

move the � integral to the left and since � � is projected to the groundstate the non-vanishing contribution
comes from its action on 
 �  �� �� �� . If the insertion of �� �� is on the most left part in fig (8) it will also be
projected to the groundstate in the � � �

limit and annihilated by � . Therefore is remains to consider
the contribution from integral over the middle tubus whose length is parametrized by � . This integral is

 � � �� �� � 
 �� � * � � � � ��� �� �� . � creates * � translations, so

� � 	 �� �� � � ��	 � � �� �� and the integration over * �
becomes trivial. Note that only the lower boundary * � � 1

contributes. The upper boundaries, where �� �� is
near � � in both contributions see Fig. 8, cancels. Therefore

� � � 	 �� �� � 
 ! � � 
 � � � �� ��� � ��� 
 � � � � 
 �  �� �� �� � � � � � � � � �
� � � � � ! � � � � � � �

�
� 
 � � � � � � � 
 �  �� �� �� � ! �
�� � 
 � � � " % 
 
 � � �� �� � � � � �

� � � � % � 
 � � " % � 
 � � � � � � 
 
 � � �� �� � % � 
 �
� � 
 � � � �� ��� � � " % � � � � �� �� � � � � � � � �

� � � � % � 
 � � " % � 
 � � � � � � � � � � � �
� �� �� � % � 
 �� � �� �� � � � 
 ! � � � � �� �� � 
 ! � � � � � 	 �� �� � 
 !

(93)

This is the main identity within the ��� � equations. The others are easier to derive and all are summarized
below in the topological basis

� � � 	 �� �� � � � � � � 	 �� �� �� � � 	 � � � � � �� � � 	 �� �� � � � � � 	 �� �� � � � �� � � 	 � � � � 1� � � � � � � � � �� � � �� �� � �� �� �� � � (94)

We can now define a flat
� � � 	 � � � � � � � 	 �� �� � � � �� � � 	 �� �� � � 1

connection

� � � � � � � � � 	 �� �� � �� �� ��� � 	 �� �� � (95)

The sections of the vacuum bundle are identified with the periods in the Calabi-Yau � model context. The
above flat connection goes by the name Gauss Manin connection in this context, see Sec. 8.5. Since
it is flat it seems that the theory is trivial! However flat connections can still have monodromies, over
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non simply connected manifolds, see Fig. 33,34, which are the essential data of our theories. Where
do these monodromies come from? The key is that (52), which is based on a local consideration of the
tangent spaces of metric deformations at a generic point of the moduli space fails at singular degenerations
of the space time Calabi-Yau manifold. At these loci charged Ramond-Ramond states become light, the
simplest example is the charged black hole at the conifold [184], which sits in a hyper multiplet. In the
presence of massless charged states the supergravity argument for the factorization (52) into hyper- and
vector multiplets does not apply either. In fact the logarithm in third period that produces the monodromy� 	 in (284) can be interpreted as the one loop correction of the vector multiplet gauge coupling due
to the massless hypermultiplet. An intriguing experimentally verifiable occurance of mondromies of flat
connections is the Berry Phase in quantum mechanics [18] see [162] for a review.

The ��� � equations describe the essence of the WS super symmetry constraints on the topological corre-
lators. These equations have in general to be supplemented with information about the structure constants
� 
� � and boundary conditions. But already with some

� � � �
i.e. 
 symmetry charge constraints they be-

come powerful. E.g. for ! & �
(66) implies

% , % & �
moreover these theories are rational and have

finitely many chiral primaries in this charge range. We assign to the � � of say the
� � 	 � � ring (84) the weight� � � � � � , � � � 1

. The last equation (94) called associativity guarantees the existence of a potential�
with � � ��! � � � � � � ! � . As discussed one can chose flat coordinates, which we call for convenience

also � � such that � � ��! � 	 � 	 � 	 ! � Charge conservation implies that
�

is homogeneous of degree
�

in the
weights

� � of the � � , i.e. a finite polynomial and associativity determines its coefficients up to an overall
normalization. These constraints imply indeed that there is a completely solvable discrete infinite set of
! & � � � � � 	 �
�

theories with an � � (
classification. For !�� �

there are zero and negative weight � �
and this simple way of approaching the problem loses its grip.

However if ! �  
and the 
 charges are also integer, we expect from Sec. 5.4 that beside world-sheet

super symmetry also space-time super symmetry constraints the correlators. Let us show that (94) implies
for the Calabi-Yau � models on threefolds ! � �

and odd integer R charges special K ähler geometry. In
the holomorphic basis we use (85) to write

� � � 	 �� �� � !
 � � �	 �� � !� 
 � � � � � 	 �� �� � . With
� � !� 
 ��� � �� �
� � �! and

hence � !�� � � � ! �! � ���� �! � ���� we write�	 �� � !� 
 � � � � 	 �� �� � !
 � � � � 	 � � 	 � �� � � !
 � (96)

In the case of Calabi-Yau � model the 
 charge conservation law forbids many correlators, see sections
6.1 and 8.1. In particular � � �!

� � � �! � 1
for �� �� �1 and � !��� � . !� and � �!� � ��

� . �!� � . If we specialize (96) to
� � � � 1

we can write�	 �� � � �(� � �	 �� � � � �! 	 � � ��% �! � � � � � 	 � � 	 � � � ��� � � ���	 �� 	 � 
�� ( � � � �� � � � � � �� � �!�� �� �
�! �� � � �� �� � ��

� (97)

As follows from the identification (214,215) in the B-model and (232) or Serre duality (394) the vacuum
states

% 1 
 and
% �1 
 are associated to the holomorphic

� � 	 1 � and anti-hololomorhic
� 1 	 � � forms. In particular

� � 
 � � � '
�
� �� � � �1 % 1 
 (98)

and comparing (256, 257) with (97,98) we identify the Weil-Peterson metric with a sub-block of the ��� �
metric

� � �� � � � �� � 
 �
(99)

In (93) we have related the curvature of of � � �� to a bilinear in the 3-point functions and with (99) this be-
comes the special geometry relation (262). In other words ��� � in genus 0 implies special Kähler geometry,
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but the main virtue of the formalism is that it generalized readily special Kähler geometry to higher genus.
This will become essential to solve the � -model.

It is worth mentioning the closely related contact term approach to the definition of the connection (86),
see e.g. [145] for a short introduction. It does use conformal invariance and restricts the analysis to exactly
marginal ring operators. If the operators are exactly marginal for all values of � � �
� 	 �� 
 of marginal
perturbation parameters as (84) then the most general short distance expansion in the basis � � of them is

� � ��� � � ' � 1�� � � � '% � % � � � � � ' . � ��� � ��� � 1�� � (100)

Clearly this expansion is compatible with dimensional analysis, . ����� � � ���� 	 �� . Marginality implies in first
order in � that 
 � � � � � � ��� � � ' ���
� � � � 1�� 
 gets only contributions from

� � �
and

� � 1
, which explains

that only the . -function appears on the right of (100) in this order. Exact marginality means that scale
independence, i.e. vanishing � functions, are maintained to all orders in � . To next order follows the
closing on exactly marginal operators, as opposed to arbitrary

� �
	��
�
operators, on the right in (100). The

Zamolodchikov metric is defined as the sphere correlator
� � '

� � � � � � � � � � 1 � 
 (101)

and because of conformal invariance it does not require a limit as in the ��� � case. Taking the derivatives
with respect to perturbations one gets

	�� � '	 � �
��� � � � � � � ��� � � ' � � � � ' � 1�� 
 � � � � � � �

'
� � �� ' � � � 	 (102)

which establishes � � � � as connection of the Zamolodchikov metric. So far the discussion of the contact
terms has been about a general ansatz and in particular all � � � � could have been zero. However [95] ob-
served first that in order to ensure marginality in superconformal theories with non trivial triple couplings
� !� ! the contact terms have to be present, which is of course required to get (94). The virtue of the ����� equa-
tions is to generalize this analysis to all ring states replacing � � � ' with � � � ' and non-conformal theories.

As an exercise one may derive the special geometry relation in
� � � � 	����

SCFT using the contact
term approach as a specializing of the derivation of the ��� � equations. The decomposition of

� 	 � into
" ��

comes from the possibility of picking the holomorphic basis in
� � � � 	����

WS theories. Of course the
real challenge is to understand the occurrence of the monodromies, which we identified as the data of the
theory, which however requires to understand the spacetime Ramond-Ramond states.

5.6 Surgery

As we have seen in the Sec. 5.2 the integral over the metric and positions of insertions points, i.e. the
measure on - � % � in topological string, induces a specific dependence on the former data because the
measure is not , -invariant17, which results in , % � � � 
 �� 1

.
In contrast one can define form theories, such as Chern-Simons theory, in which the Lagrangian is

simply metric independent[201], see [159] for a review. These theories are topological without any need
to reduce to cohomological sectors and said to be of Schwarz-type, while the ones which need a nilpotent
symmetry operator to define a metric independent cohomology of states are called of cohomological- or
Witten-type. We can consider 2d cohomological field theories, e.g. topological gauge theories on Riemann
surfaces, where we do not integrate over the metric and , % � � � 
 � 1

is maintained. By definition correlation
functions in such theories are then topological invariants of the defining geometry, e.g. of three manifold-
, knot- and link invariants in the case of

� ! Chern-Simons theory and of Riemann-surfaces with gauge
bundles in the second example.

17 Somestimes this is called an anomaly.
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It is a very remarkable fact that all topological types of manifolds18 in dim 2,3 can be obtained by surgery
operations from primitive building blocks. This is wellknown in the case of Riemann surfaces we start by
cutting holes –

� 	
boundaries – into two spheres

� �
and glue them together along the boundaries. This

procedure of cutting and gluing can be iterated and will obviously construct Riemann surfaces of arbitrary
genus, i.e. all topological types. Similarly oriented 3 manifolds can be obtained by starting with two solid
tori � � , i.e. 3 manifolds with boundaries, and glue them together along the � � . In this procedure one has a
freedom to identify the � � boundaries up to a

� � � � 	  � identification of the
�
� 	 � � 	�� � )�	 � ) � cycles along the

two � � . This procedure can also be iterated by cutting out solid toric from 3 manifolds and glueing along
them along the � � boundaries with the

� � � � 	� � freedom mentioned above. This is surgery operation or
rather it inverse is known as Heegaard splitting.

For physical theories on these geometries a very natural question is how the correlation functions itself
behave under the surgery operations. This can be addressed already in non-topological theories, if the
gluing is compatible with the addtional structure that is needed to define the theory. A wellknown example
is Segals operator approach to 2d conformal field theory, where the gluing is defined over a strip broadening
the

� 	
, so that the conformal structure extends to all components. The key properties of the operator

formalism needed here are sketched in Sec. 5.5. In the conformal case the above strip is conformally
equivalent to the infinite cylinders and does not imply a projection to the groundstate and

% � 
 in (76) is a
state in the Hilbert space

�
of the conformal field theory. The half disk in (76) can be replaced by any

genus Riemann surface (eventually with insertions) bounding the
� 	

. The gluing of correlators over two
boundaries is simply described by inserting a complete set of states � � � % � 
 � � � � " % at the boundary. In view
of the operator state correpondence of 2d field theories we can also write this as � � � � � � � ��� � , where the � �
are inserted in the corresponding correlations functions. The inverse of the gluing process is provided by
splitting all higher genus Riemann surfaces into pants and caps where operators are inserted. It is obvious
that all correlators can be reduced by this procedure to the two point-

� � � � � � � � � 
 � � � � % " 
 and the
threepoint correlator � � ��! � � � � � � � ! 
 � � � � % � � % � 
 � � 
��! � � 
 on the sphere, cff. (77, 79). Three basic steps
are depicted in Fig. 9.

Very important consistency conditions such as the associativity in the splitting of the fourpoint function
(first case in Fig. 9) result simpliy from the fact that the geometrical surgery is not unique while the
physical amplitudes have to be unique. In particular in CFT this provides important relations among the
conformal blocks of admissible theories. As explained below Fig. (6) the splitting factors through the
decomposition of the Hilbert space

�
into

� � �
�
� � ��� � cohohomological non-trivial and trivial

states. I.e. in cohomological theories the insertions � � � � � � � � � � depends only the cohomological class� � � � of the operators � � and the multiplicity of the representatives can be absorbed in the definition of
� � � .

Simple topological theories can be solved by the consistency conditions i n a bootstrap approach, see Sec.
5.5 Eq. (95) cff.
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Fig. 9 Graphical representation of three principal splitting procedures.

18 For simplicty we assume that they are oriented in the following.
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We give the formulas at the level of the corellators for the three basic splitting procedures below

� � � � 	 � � � 
 
 � � � ��	 � � � � ��� � 
 � � � � � � � � � � 	 
 	 (103)

� � � � ��� � � � � 
 � � �
� � � � � � ��� � � � � � � 
 & � � � � � � � � � 
 � ����� � � � 
 ��� & 	 (104)

� � � � ��� � � � � 
 � � �
� �
� � � ��� �
� � � � � � � � � � � � ��� � � � � � 
 ��� 	 � (105)

The
��� �
� ���

factor that occurs for fermions in the cut loop corresponds to the familiar
� �

loop factor for
fermions in the field theory limit. Its occurance in string perturbation theory is explained in [173].

In Chern-Simons theory with gauge group
�

the relevant Hilbert space
�
� is spanned by the conformal

blocks of the � � � model with gauge group
�

[201]. The above mentioned
� � ����	  � action is the usual

modular transformation realized on these blocks. The pictures are essentially the one in Fig. 9, with the
difference that we glue over � � boundary conditions, that the rôle of the insertions is played by Wilson
loops and that the basic object with boundaries is the filled � � instead of the punctured sphere (disk). In
effect the surgery procedure provides formulas that express all correlations functions for link invariants on
arbitrary 3 manifolds with help of the

� 	 � modular transformations on the WZW characters in terms of
the basic link invariants on � � [201].

It should be emphasized that the pictures in Fig. 9 are closly related to string loop expansions, but are
conceptually different. In the theories where the identities apply, there is no need to integrate over the
metric, let alone summing over topologies. On the other hand in string theory there is an expansion over
the genus, but the identities are modified due to contact and boundary terms.

Nevertheless the above surgery approach plays an important rôle in the calculation of topological string
amplitudes. Obviously a surgery procedure in non-trivial higher dimensional space-time geometry would
be a very important step towards summing over space-time topologies as required by quantum gravity. In
the last two years notable progress has been made in developing such space-time surgery for non-compact
Calabi-Yau manifolds. Let us list some typical situations

� In the local Calabi-Yau geometry � � � 	 � � � � � � � � ) � with � 	 � � � � � � � �
the geometry is

described by line bundels over ) � . In this case [29] provide a surgery description on )	� , compatible
with the glueing of the line bundles, that solves the theory. Remarkably there are parameters in the
theory, which interpolate between 2d Yang-Mills theory and the topological string on the local CY
geometry.

� The topolological vertex provides a surgery prescribtion, which solves the open and closed topological
on any non-compact toric CY manifold [1], see also Sec. 7.

� The mirror of geometry of the vertex is given by 3 punctured sphere with a specified sympletic
structure[2]. Surgery of Riemann surfaces compatible with the sympletic structure, i.e. up to � �

transformations, provides the general amplitudes[2].

6 The topological
�

-model

As explained in Sec. 5 only the
� � � � �

symmetry is at risk to become anomalous. The � model, which is
obtained by twisting the spin connection with the gauged the

� � � � �
vector symmetry symmetry, can be

defined for all geometries that allow for an � -model in which , � can be defined as in 5. It does not require
conformal invariance and exists in particular on any Kähler manifold. In fact only a symplectic structure
and a compatible almost structure will be required below19.

19 More general realizations e.g. in the setting of [83] are possible.
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6.1 � model without worldsheet gravity

In this section we want to describe the operators and correlation functions of topological � topological
and their relation to the geometry of the target space � . We call the anticommuting scalars from table
2 � � * � � � � and � � � * � �� � �� and the one forms i.e. sections of � and �� are denoted by � � �� � �� � �� and
� �� * � � �� . The action is then

� � � � � � � � � � � �� 	 � � � 	 � � �� � � � 
�� � � �� 	 
 � � 	 � � �� � � � � �� � �� � � �� � � � � � � �� � � �� � � � �� � �
� 
 � �!�� �
 � � �� � � � �!� � �
 � 	

(106)

where we added the term involving the antisymmetric
�
-form � � �� � � � � � 	 � � , which plays an important

rôle in the bosonic sector of the topological � model. The relevant fermionic symmetry . � �� � �, � � � � , �
acts by

. � � ��� � � � 	 . � � � � �� � � � �. � � �� � � � �� � 	 �� � � ��� � � ���! � � �� � ! 	 	 � � � � 1
. � � � 1�	 . � � �� � � � � �� � 	 � � � � � �� � � � � �� �! � �!� � �� (107)

with . � � 1
. There is a fixpoint of . on fermionic zero mode configuration when � � a holomorphic

map � * ) � � � , i.e.
	 � �� �� � 	 �� � � � 1

, on which the path integral will localize by the fermionic
zero mode integration as in Sec. 3.1, so that the bosonic integration reduced to a integration over the
moduli space - of such holomorphic maps20. This moduli space - � - � % � � � 	 � 	 � � is labeled by the
following topological data: the genus � of ) � % � , the number of marked points � on ) � % � as well as the
cycles in � that they map to (this indicated by the argument � in - � % � � � 	 � 	 � � ) and the homology class
� � � � � � ) � � � � � � � � 	 � � of the image of ) � % � in � . For genus zero we must chose three marked points
to stabilize the moduli space, see Sec. 6.3.

The
1
-form correlation observables are combinations of � � 	 � � � and � � 	 � � � the latter anticommutating

operators can be identified with the forms on � , i.e � � 	 � � � and � � � 	 � � � � One checks now using the
super symmetry transformations that under this correspondence , � and �, � are identified with the exterior
derivatives of Dolbault cohomology

	
and �	 . Since then , � , � � �, � is identified with the deRham

operator
� ��	 � �	 one can summarize the correspondence between the BRST cohomology of the , � and

the deRham cohomology of � as follows. For each form

� � � � � % � � � % � � � � � � � � � � ��� � � � � � � (108)

on � there is a topological operator

� "(� (	 "�� ( ��� � � % � � � % � � � � � � � � ��� � � � � � � � (109)

of the A-model and the operation of , � is identified with the exterior derivative

� , � 	 � 	 
 � � � � 	 	
(110)

where the form degree � of � is identified with the ghost number of � 	 , since � has ghost number
� �

.
The action can be written as

� � � � � � � � � ��, 	 ��
 � � � � � � � � � 	 ��� # � ��� � � �� � � � �� 	 �� � � ��	 � � � � � � �� � (111)

20 In considering only !�� � �! � � ! � , i.e. setting � � � �� � one neglects structure, which would give information about the
individual cohomology groups of � .
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and

�
� � � � � � � �

�
� � � 
 	 � ��� 	 �� � �� � � �� � 	 �� � � 	 � � �� � � �� � � � # � � 1�	 (112)

where � is the Kähler form � � � � � �� � � � � � � �� and � is the cohomology class
� � � ) � � of the image of ) .

The positivity holds if � is in the Kählercone. If the antisymmetric tensor field is � is non-zero we replace
� by a complexified Kähler form � � � � � � � ��� � � �� � � � � �� � � � � � � � �� .

The correlation function of physical operators

� ��
� 
 	 � � 
 '

� � � � � '�� � ����� � � � � � � � � � � ��� % � � � ��
� 
 	 � � (113)

depends on the metric of � only via the Kähler class � (or on the complexified Kählerclass � � ). Other
metric dependence in particular on the complex structure of � as well as on ) � is contained in

�
. However

this dependencies appears only as a , exact expression in (113) and decouples by (34). Moreover taking
the derivative w.r.t. � implies by (34) that the second factor in (113) is independent of � and the correlation
can be calculated for � in the Kählercone for


�� � � 1
in limit of infinite � i.e. at the classical minimum of

the action. This is another way to understand the supersymmetric localization. If we write

� � � 
 � � � �� 
 	 � � � 	 �� � �� ��	 �� � � 	 � � �� �� � 
�� � � �� 	 �� � � 	 � � �� � 
 � � ��� � � (114)

then the second term in the second line depends only of the class of the map, so it is obvious that the min-
imum is taken for holomorphic maps

	 �� � � � 	 � � �� � 1
. This equation requires to specify a holomorphic

structure
"

on ) � and one
�

on � . For fixed
�

and fixed
"

there will no maps for � � 1
. Only if we couple

the theory to gravity and integrate over
"

we have a chance to get contributions from integrals over moduli
spaces - � % � � � 	 � 	 � � of an infinite series of holomorphic maps. I.e. the path integral collapses to these
integrals over - � % � � � 	 � 	 � � , which are finite- in fact in many case zero-dimensional.

Let us discuss the selection rules for � � 1
correlators � � � ! 
 	 �

	 � 
 ' . We note from table 2 and
the identification of � � and � � � that � � has charge

$ 
 � � �
and

$ � �21
under the left and right

� ���
� 
 � �
respectively, while � � � has

$ 
 � 1
and

$ � � �
. Because of the splitting of the tangent bundle of � �

� " 	 % � ( � � "(��% 	 ( we can associate to � 	 � an element in the Dolbeault cohomology group � " � � % 	 � ( . Since
the vector

� ���
���
is unbroken in the quantum theory we get a vector charge conservation constraint

$ � �
� � ! 
 	

" ! � � � ! 
 	
$ ! � 1

. For the classical axial charge we would get naively
$ � � � � ! 
 	

" ! � � � ! 
 	
$ ! �1

. However the
� ���
� �

is anomalous. Form the kinetic terms of � and � we see that its anomaly is given
by the index of the twisted Dolbeault complex associated to � � 	 � �� on ) (378), which is calculated by the
Hirzebruch-Riemann-Roch theorem as explained at the end of Sec. 9.3 to be

$�� � � � � 1 � �
�
� � � ��� � � 1 � �
�
� � � � � � � � � � � � � � � � � � 	 � � � � � � � ���
� � �

� �
� � � � � � � " 	 % � ( ��� # � � � ) � � � � � 	 � � � ��# � � �
� � � � � � � � ��� � (115)

Combining the two charge constraints we get

��
! 
 	

$ ! � ��
! 
 	

" ! � � 	 � � � � # � � � � � � � ��� � � � � (116)

In particular for � � 1
we can have on a Calabi-Yau threefold a non-vanishing coupling � � 	 � � � � �� 	 � � � � � � 	 � � � ! � 
 , where all � 
 are

� ��	 � �
-forms. We associate a divisor � ! � � � � � �

to each � " ! (" 	 % 	 (
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with the two nondegenerate pairings 
 ' � " ! (" 	 % 	 ( � � " 
 ( " � % � ( � . !
 and 
 � � � " � ( " � % � ( � . �� . One always find

a representative of � " ! (" 	 % 	 ( that has . -function support on � ! . This implies that the point
� ! in � 	 �� � � � 


� � ! �
maps to � ! . With � denoting the cohomology class of the image

� � * � � � ) � � of the worldsheet in � we

can write the product � # � � �#" � & � � �! 
 	 ��! ! ! , where ! ! � ��� � ! is the number of intersections of � with� ! or the degree of � w.r.t. � ! . The map with ! ! � 1 � � is special. It is the constant map that maps the
worldsheet, for � � 1

the three punctured sphere ) ��% � , to a point in � . For the constant genus zero map
the path integral collapses hence to the intersection number of � � � � ��� � ! . We define

$ ! � � � � � � � � .
The general genus zero correlation function is then given by21 is

� � ��! � � � � � � 	 � � 	 � � 	 � 
 � � � � � � � � ! � �� 
 � ���
 � � �
� � 
 �� 
 � � & � � ��� 
 	

$ 
 �� 	
(117)

where the
� � 
 �� 
 � � are the result of the integration over - � % � � � 	 � 	 � � . They are called genus zero Gromow-

Witten invariants.
This deformed intersection (117) is a piece of the structure known as quantum cohomology ring of � .

It is a deformation of the classical cohomology ring on � by the parameters
$ ! . One needs in general the

deformations of all pairings
�
� � * ��� � � � indexed by � � � � � - ��% � � 	 � , see [156] and [46] for a

review, which we can be provided on the mirror side. Note that the relation to classical intersections in the
limit picks a natural normalization of the operators � 	 and of their two-point functions.
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Fig. 10 This figure shows instanton corrections to the coupling � � ��� with � ��� � � � � ��� �������
and

� � ��� with � � � � � � � �!�#" . From the left to the right we pictured an instanton of degree " contributing
of
�������

to � � ��� , an instanton of degree $ � �&% 	'$ ���)( 	*$ ���)+ contributing ,)-�.� - �� - �� to � � ��� and an
instanton of degree $ � �)% 	'$ � �/+ 	'$ � �0( contributing ,/- .� - �� - �� to � � ��� . Roughly speaking for large
radii second the coupling � � ��� is expected to be exponentially supressed against the first � � ��� . The precise
statement depends on the growth of 13254 �6'7 �98 . Such collective effects of the intantons can be analyzed best in
the � -model.

One collective effect of the instantons corrections is that structure functions � � ��! � � � behaves smoothly
at singularities in codimension two in � as for instance through flop transitions [213][10].

We note from table 2 and 3 and from (38) that the
� � � � �

as well as the
� ���
� �

charge of the operator

� " � (	 � vanishes. In view of (47) this means that non-vanishing derivatives of ����! 
 � � � such as

	
	 � � � � � � � � � � � � 


				 � � 
 �
� � � � � � � � � � � � � � " � (� � 
 (118)

do exist according to the selection rules. This non-vanishing correlators signal that a non-trivial deforma-
tion family exist, but do not contain new information once � ��! 
 � � � is known as function after summing up

21 We abbreviate :<; � � �� 4 � � 7 �� �$�5= in the following.
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all intantons or easier from a B-model calculation. By
� � ����	 � � invariance on

� �
there is a symmetry

between fixing any three of the � � 	 " 	 � 	 � 
 points and integrating over the fourth. This implies that

	 � � ��! 
 � � � � 	 � � � ! 
 � � � (119)

which is the integrability condition for the existence of a function
� "(� ( � � � with the property that

� � ��! � � � ��	 � 	 � 	 ! � "(� ( � � � 	 (120)

where we defined
	 � � �� � � . This is in perfect accordance with facts concerning

� � � � from the analysis of
the vector moduli space of

��� �
supergravity in 4d, which is identified in type IIA compactifications with

complexified Kähler moduli space. This facts can also be established in the complex structure deformation
space, see Sec. (8.5), which again is identified by mirror symmetry with the complexified Kähler moduli
space of the � -model. We should finally note that eqs. (118-120) are not written covariantly, but rather in
special coordinates. Covariant derivatives are discussed in the B-model section.

6.2 Coupling the A model to worldsheet gravity

While we have prepared our topological theories by the twist to make sense on any genus Riemann surface,
we have ignored the degrees of freedom of the worldsheet metric in our discussion so far. As explained
in Sec. 5.2 in string perturbation theory one has to integrate over the complex structure of the worldsheet
and the position of the insertion points, in other words over the moduli space of Riemann surfaces with �
insertion of operators - � % � . We have rightfully ignored that in the genus zero correlator (117), because
fixing three points kills the

� � ����	 � � invariance of
� �

, which has no complex structure deformations,
so that - � % � � "�� � � � . Despite the fact that (116) predicts a nontrivial zero point function for � � �

,
without integrating over the complex structure of ) the answer for the correlation function

� " 	 ( would
be generically vanishing. As an intuitive example consider maps from ) � � � to � � � � , allowed
by the selection rule (116). If we fix the complex structure of ) and � there would be, by definition of
inequivalent complex structures, no holomorphic maps unless we hit with the complex structure parameter
* � the one of * ' . Including all multicoverings [19] the answer

� " 	 ( � � 
!�)( � � � * ' � � . � * ' � * � � begs
to be integrated over * � as it is natural in string theory. For higher genus (116) predicts vanishing of the
correlation functions. That means if we fix the world-sheet metric there are just no holomorphic maps from
a genus � � �

Riemann surface to � .

6.3 Topological gravity

The simplest example of string theory where integration over the the moduli space discussed in Sec. 5.2 is
required is pure topological gravity. This is an good warm up example in which � is replaced by a point.
It plays a pivotal rôle for the � - as well as for the � -model coupling to gravity. The calculation of the
expected dimension (367) was for smooth curves, which represent an open top dimensional subset of the
moduli space of all curves. In order to integrate of - � we need some compactification of - � . Including
nodal curves, but so that the the automorphism group, which is finite for smooth curves of ��� �

, stays
finite is called the stable Deligne-Mumford compactification - � . Genus zero curves have a

� � � � 	 � �
automorphism and � � �

curves an
� � � � � automorphism. These can be killed either by a puncture

or the position of a node. Because of the former fact it is convenient to extend the discussion right away
to punctured Riemann surfaces. Inserting a so called puncture operator

�
at the point � � ) in the path

integral means that we want to restrict the diffeomorphism group in (42) to a subgroup which preserves
that point � . We call the moduli space with � punctures - � % � . Its dimension is enhanced by � complex
dimensions relative to - � . Intuitively one may picture the movement of the point as additional dimension
of - � % � . The more accurate picture is complementary. The restriction of the diffeomorphism group by
the part, which moves the point in the denominator of (42) enhances the dimension.
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Let us call punctures and an ordinary double points (nodes) special points of ) . The Deligne-Mumford
compactification - � % � is the appropriate compactification to define good measures on - � % � in topological
string theory. [202, 195]. It allows the above special points under the condition that they do not meet. The
further conditions that

� (i) every irreducible component of genus
1

has at least three special points

� (ii) every irreducible component of genus
�

has at least one special point

guarantee that there are no continuous automorphism groups acting on - � % � . Finite automorphism groups
� � � are like gauge symmetries which are divided out. The resulting orbifold is the connected, irreducible,
compact, non-singular Deligne Mumford stack of dimension

� � � � � � , denoted also by - � % � .

1

0 0 0 0

0

1

43

2

1

50

3

5

4

2

Fig. 11 This figure shows a stable degeneration of a genus 2 curve with 5 marked points in
� ��� . as actual

configuration above and as dual graph below.

The positive dimension of this space appears as an anomalous negative ghost number violation in the
BRST quantization. In topological gravity it is compensated by insertion of descendant fields � �

� � � whose
form degree is counted as positive ghost number. These descendant fields are constructed geometrically
as the first Chern class of the complex line bundle � � � � �� � � � over - � % � in the universal curve � ��� % � ,
which is induced from the restriction of the holomorphic cotangent bundle � � ) � % $ � of ) � to � � . The uni-
versal curve is the fibration over - � % � whose fibers are the Riemann surfaces with � punctures described
by the point

� ) 	 � 	 	�� ��� 	 � � ��� - � % � . � �����
�
�

is the roughly the cotangent bundle along the fibres.
More precisely since nodal singularities are allowed it is the corresponding relative dualizing sheaf. � � are
line bundles over - � % � , see Fig. 12.

The first Chern class � � � � 	 � � � � might be represented by the
���
	��
�

curvature form (358)

� � � � �" 	 �	 
�� ( % � $ � % � (121)

on - � % � , where � $ � is a meromorphic section of � � . It can be wedged to define the general descend
operators � �

� � � � * � � �� of form degree or ghost number
� � . We can also consider the insertion of � �

� � � �
� � � � � , the above mentioned puncture operator. What this means is that we change the moduli - � to one- � % 	 in which the diffeomorphism group in (42) is restricted to fix one point without doing anything else.
The selection rule for a non vanishing correlator

� � 
 �
� ��� � 
 � 
 � � �

� � � �

 �	 � � ��� � � 
 �� (122)
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is now given simply by counting form degrees of insertions against the dimension of - � % � , which yields
the condition [202, 195]

��
� 
 	

� ! � � �
� � � � � ��� (123)

Two easy and universal properties of the correlators (122), called topological recursion relations [200], are
the puncture equation, referred also to as the string equation

� � � � 
 �
��� � � 
 � 
 � �


 � �
 �
� � 
 �

��� � � 
 � � 	 � ��� � 
 � 
 (124)

and the dilaton equation [200]

� � 	 � 
 �
��� � � 
 � 
 ��� � � � � � � � � � 
 �

����� � 
 � 
 � (125)

Let us review the original arguments [200] that lead to (124, 125), which can be made mathematically
rigorous [106]. In both equations a puncture is removed from the left relative to the right side and the
nontrivial relation comes from loci in - � % � � 	 , where this removed point � � is together with exactly one
other � � in a genus zero component

� �� of the degenerate curve (the bold fibre in Fig. 12), so that its
removal destabilizes - � % � . We will discuss the generic case and leave the special � � 1

, � � �
and

� � �
, � � �

situations to the reader. The key point is that � � � � �� � � � over - � % � � 	 and � )� � � �� � � ) �
over - � % � , � � �
	 ����� 	 � are related in a non trivial way. If it would be the case that � � ��" �
� � )� � then
starting with the right hand side we could argue that the left hand side in (124, 125) vanishes due to (123).

These relevant issues occur at the divisors ��� in - � % � � 	 (in Fig. we show just � 	 ). The forgetful
map

" * - � % � � 	 � - � % � is a fibering map, whose fibers describes the position of the point � � , which is
essentially ) . It lifts to the universal curve

" � * � - � % � � 	 � � - � % � not as a fibering as
" �

also contracts
the unstable

���� . There is an isomorphism
� * - � % � � 	 �� � - � % � , but it is not compatible with the fibering" * - � % � � 	 � - � % � .

Now if � is a section of � ) then the evaluation � �� � � � at � � pulls back under
" �

to a section
" � � �� � � � of

� over - � % � � 	 . A simple local model near the contracted
� �� shows that

" � � �� � � � vanished with order one
at � � . This implies � � � " � � � � � � � � � � � . With � � � � 	 � � � � and the properties about characteristic
classes summarized in Sec. (9.3) one gets

� � � � �� � � � � � � (126)

The algebraic identity

� �� � � � �� � � � � � � � � � 	�
! 
 	

� !� � � �� � � � !�� 	 (127)

simplifies to � �� � � � �� � � � � � � � � � �� � � � 	 as � � � � 	 � � � � � � � � � 1
, because � � is trivial over � � as the

sphere
� �� with its three special points is rigid.

So we can evaluate

� � � � 
 �
��� � � 
 � 
 � � �

� � � 
 �
� � �� 
 	 � 
 �� � ��

� 
 	
� �

� � � 
 �
� � � � � �� 
 	 � � �� � 
 � � � � �

� ��
� 
 	

� �
� � � �


 �	 � � ��� � 
 � � 	� � ��� � � 
 �	 � ��
� 
 	

� � 
 �
��� � � 
 � � 	 � ��� � 
 � 
 (128)
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Here we used
� � � � # � � � � � 1

which follows from the definition and in the third equality we have
integrated over the fiber of

" * - � % � � 	 where
� � � � represents a section with a simple zero. Very similarly

one concludes that � �
� � �
� � ) � � �� 
 	 �

� � � � is a degree
� � � � � � section of a line bundle over the fibre

of
"

. We evaluate then again by integration over the fibre

� � 	 � 
 �
� ��� � 
 � 
 � � �

� � � 
 �
� � � �� 
 	 � 
 �� � ��� � � � � � � � � 
 �

� ��� � 
 � 
 (129)
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Fig. 12 Universal Curve ��� 2 � � � � and the forgetful map. The nodal and reducible fibre are displayed,
because there are such fibres, but they plays no r ôle in the derivations of the string and dilaton equation.
They would play a r ôle in recursion relations among different genera, which is hard from the algebraic point
op view.

With the recursive relations (124,125) and the initial conditions that the moduli space of a three pointed
sphere is a point � � � � � � � 


���
and � � 	 
 � 	�%� one can solve as an exercise all � � 1 	 �

correlators. It
seems natural to try next to consider maps which “forget” nodes to get a recursion among correlations with
different genera. From the algebraic point of view taken above this turns out to be surprisingly difficult.

Let now � ! � 
 the set of all nonnegative integers and define

��� � � �
	 � 	 	 ��� � � � �� 
 �+� �

� * 
 � 
 � �� � �
� � ��
� ���

	
(130)

with � � � � 
 % � � � * ! � � � � and

� � ��
� 
 �

� � ��� � � � 	 (131)

the free energy of 2d topological gravity. Where we rescaled the operators * �
� � � � � �
� ��� � � for latter

convenience. [200] conjectured that the partition function � � � � satisfies the Virasoro constraints

� � � � 1 	 � � � � ��� # � � � �
	 � � � � � � � � � � � � � (132)

with

� � 	 � � ��
	
	 � �

� �
	 � ��

� ��
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� � � �
� � �

	
	 � � � 	

	

� �
� � ��

	
	 � 	

� ��
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 �

� � � �
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� �
	

� �
� � ��

	
	 � � � 	

� ��
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 �

� � � �
� � �

	
	 � � � �

� � �
	

��
� 
 �

	 �
	 � � � 	 	 � � � �

	
(133)
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As an exercises one may check that (124,125) are equivalent to � � 	 � � � � � � 1
. It is well known [200]

[59] that (132) is equivalent to the fact that � is the * function of the KDV hierachy and fulfills the dilaton
equation.

6.4 Kontsevich model

All proofs of (132) are combinatorial. The first is by Kontsevich, who interprets a direct evaluation of the
correlators as ribbon graphs of the shifted Airy function matrix model, which in turn can by viewed as
the Akhiezer Baker function of the KdV hierarchy. This beautiful work [140] has been reviewed in many
places e.g. [56, 54].

It employs ideas of open/closed string duality without using those terms. As mentioned in the introduc-
tion Kontsevich’s hermitian matrix model is not related to 2d gravity by a double scaling limit. It is rather
a direct combinatorial tool, whose ribbon graphs expansion calculate all correlators of 2d gravuty, i.e. the
intersection numbers on the moduli space of n punctured genus g Riemann surfaces - � % � .

Important in associating combinatorial data to the cell decomposition of ) � % � are Jenkins-Strebel quadratic
differentials22. These are differentials � � � ��� � ��� � on ) � % � which define a flat non-degenerate metric% � ��� � % % ��� % � outside their discrete sets of zeros. A horizontal trajectory of � is an curve in ) � % � along
which � ��� � is real and positive. Jenkins-Strebel quadractic differentials have the additional property that
the union of nonclosed trajectories has measure zero. At a zero of order � of � � � �

non-closed horizon-
tal trajectories meet. Closed horizontal curves are concentric arround poles of � . The following theorem
makes this picture precise Theorem [182]: Let ) � % � be a connected Riemann surface with � poles at the
distinct points � 	 	�� ��� 	 � � , � � � � � � and associated positive real numbers

" 	 	 ��� � 	 " � . Then there is a
unique Jenkins-Strebel differential on ) � � � � 	 	�� ����	 � � 
 , whose maximal ring domains are � punctured
disks surounding � � with circumference � � .

The non-closed orbits form a graph with valence � � �
drawn on ) � % � . Thickening the edges inside) � % � one obtains a ribbon graph � � , which inherits the orientation of ) � . Vice versa one can reconstruct

from the combinatorial data � " � 
 and the oriented graph � � the Riemann surface plus a Jenkin-Strebel dif-
ferential. That is ) � % � and � are one to one to the ribbon graph � � with the total length of the edges making
a closed loop fixed. The complement to � � in ) � % � are all disks, i.e. � � defines a cell decomposition of) � % � . These crucial facts are depicted in figure Fig. 13 and 14.

l1

l3

l2

Γφ
p

p
2

3

p
1

Fig. 13 From a planar graph to a genus 0 surface with 3 holes. The fat lines are the non-closed horizontal
trajectories of a Jenkins-Strebel differential, with two first order zeros.

A metric on the ribbon graph is provided by associating to each edge a length
� � and consider the standard

metric in
� 
 � 
 � � �� . With - � � � 	� % � one denotes the set of equivalence classes of connected ribbon graphs

with the above metric. From the metric of the graph one can reconstruct a metric in a conformal class on) � % � with a unique complex structrure. Therefore the map - � % � � � �� � - � � � 	� % � , which is induced by
associating to ) � % � with a choice of � " 	 	 ������	 " � 
 the critical graph of a Jenkins-Strebel differential with

22 A subtle point in this association has been clarified in [217], where the reader finds also a review of Kontsevich’s proof.
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Fig. 14 From genus 1 surface with one and two holes to non-planar graphs.

edge length � � � � � 
 is one to one. One can restrict to trivalent graphs as these correspond to the relevant top
dimensional strata in - � � � 	� % � , then

�
� ��� � - � � � 	� % � � � � � � � � � � .
Next one has to reconstruct the line bundles � � used to define the operators � � � � 	 � � � � in Sec. 6.3

combinatorially. They are associated with the holes, which combinatorially become polygons bounding
the ribbon graph. [140] denotes by � � ���
� � � � 	��� the set of equivalence classes of series of the length
� � 	 	�� ��� 	 � ! 
 , �  �  � of edges in the polygons modulo cyclic permutations and denotes the direct limit
of � � ���
� � � � 	��� over all

�
by � � � � � � � � 	 . Over � � � � � � � � 	 there is a contractable

� 	
bundle

(�� ���
� � � � 	 ,
whose fibres are the polygons with edge lengths � � 	 	���� � 	 � ! 
 . Now - � � � 	� % � maps in an obvious way to� � � ���
� � � � 	 � � by applying the construction to all boundaries. It is a key fact proven in [140] that these
maps extend continuosly to a map

� * - � % � � � �� %� � � � ���
� � � � 	 � � , i.e. to the stable compactification
of - � % � discussed in Sec. 6.3. On the i’th � � ���
� one can define the

�
-form

�� � � �
	 � � � � � !�� 	

� � � �" � � � � �
� �" � � 	 (134)

where
" � is the total length of the i’th polygon. These

�
-forms pullback under

�
to � � representing the class

� 	 � � � � . Roughly speaking
�

extends to a bundle map and the inverse image of the
� 	

bundle over the i’th(�� � �
� � � � 	 is associated to the circle bundles in the complex line bundles � � over - � % � . Using - � % � �� �� � - � � � 	� % � one has � * 
 � ��� � * 
 � 
 � 
 � � � " � ( � �� 
 	 � 
 �� , where
" * - � � � 	� % � � � �� is the projection on

the length of all the holes. The integral is to be performed over the open strata in - � � � 	� % � represented by
the ribbon graphs � . To fix the signs, i.e. the orientation of these open strata, one evaluates the volume
form

�	� 
 � � � / ! � on the complex ! � � � � ��� � dimensional fibre of the map
"

and uses � � � * 
 � 
 � 1
.

With � � � �� 
 	 " �� � � one obtains
� ��
 � " � 	 �#" 	 	�� ��� 	 " � � � � 
 � � � " � ( �	��
 � 	


�� 
 � � � " � ( 
 � �� 
 	 " �� � � � 
 �
�	� 
 � � 
 
 � �� 
 	 � ��


��

 � � � * 
 � ��� � * 
 � 
 . Here the restriction

% ! � % � ! on the sum comes from (123).

After a Laplace transformations 
 � " � � � � � � � of both sides and using the fact that � has constant coeffi-
cients in the length

� � � � of the edges of � one gets the following main combinatorial identity

�
� 
 � � 
 


� * 
 � ��� � * 
 � 
 � ��
� 
 	

��� ! � � �
� � �
� � 
 � � 	�

� ��
� � �

� � 

�
% � � % � % �� � � � � �

�
� � � � � (135)

Here � � % � is summed over all trivalent graphs of the indicated topology, � 	 � are vertices and edges of the
graph and

% � � % � % is the order of the automorphism group of the graph.
� � � � associates to a “ribbon” � in

the graph
� � � � � � � " � ( � � � " � ( , the indices of the two “edges” of the ribbon.

The combinatorial expansion on the right hand side of (??) is the graph expansion the free energy of a
hermitian

� � � matrix model with the hermitian
� � � matrix

'
as field and hermitian

� � � matrix
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�
as source. The partition function is

� �
� � � ��� � � ' � ������ " � � ( � �� ��� " � � � ( (136)

where the normalization � � is fixed so that the integral for the free theory gives � � 
 � ' � � �� ��� " � � � (�
 � � � 
 " � (�
 	 .
Now the main claim is that with the identification

� � �
� � � � � � � � �
� � � #&%�� � " � � � 	 ( � (137)

on get the important identity

� � � �
� � � � 
�� ( � � � � �
� � ��� � ��
� � �

� � 

�
% � � % � % �� � � � � �

�
� � � � � (138)

Here we identify the ribbon propagator 
 ' � � ' ! 
 � . � 
 . ��! � �
� � �	� � � �

� " � ( . The proof of (138) is
provided by the analysis of the disconnected Feymann graph expansion of the matrix model and established
the equivalence (138) as asymptotic expansions. It is obvious that for finite

�
the � � , symmetric functions

in
� � , in (??) are become dependent for large � . In order to calculate a given intersection � � !� 
 	 * 
 � 
 one

has to go to high enough
�

to identify the right coefficient on the right handside. If the rank
�

of the
matrix

'
is finite one probes a finite dimensional subspace in the infinite dimensional coupling space of

2d gravity, but the results in this subspace are exact and in particular independent of
�

.
More recently a second combinatorial proof has been given by Okounkov and Pandharipande [168].

Very recently a proof has been given by Mirzakhani [160], which establishes an interesting relation to the
Weil-Peterson volume of the moduli space of hyperbolic Riemann surfaces with geodesic boundary condi-
tions that awaits physical interpretation. It is surprising that the established solutions of the simplest model
of topological string theory do not follow from the physical approach of closed string theory. However
recently solutions of this system have been obtained using open string theory and open/closed duality[2]
[82].

6.5 Physical approach to 2d gravity

There is a physical argument for recursion relations based on the contact term algebra of two dimensional
gravity and sewing rules for string theory[195], which up to a normalization of � * � * � * � 


� �
reproduces

all correlation functions and is equivalent to 132, see [56]. The recursion includes a reduction of the genus

� * � � ! �  * !	
 � � �
! �  

� " � (! � * � � ! � 	
�
! � �
 !

* ! � 
 � � �
� � � 
 � � � � " � (� � � * � * � �! �  * ! 
 ��� 	

� ��� 	�
& 
 	

�
� � � ��
 � �� 
 � � � � � � " ��% & (� � � * � �! �  � * ! 
 & � * �

�
! �  � * ! 
 ��� &

(139)

This recursion reads very naturally as if we could have reduced in addition to the unstable meeting of two
points also the nodes and irreducible fibres in Fig. 12 and treat all boundaries of the moduli space - � % �
at the same footing as in Fig. 15. [195] determine the

� " � (! � � � � �
and � " � (� � � 	� and � "/��% & (� � � 	�

using contact term manipulations. The puncture and the dilaton equation, which is implied in (139) can be
established rigorously in this way. However for the determination of all � 	 � 	 � one needs the assumption
of the constistency of surgery procedure at the level of the correlators, see Sec. 5.6, to restrict the contact
term algebra. Therefore, even though (139) implies (132), the approach of [195] is not a quite a proof of
(132).
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Fig. 15 Degenerations of a genus � surface corresponding to the codim one boundary in
�
2 � � in the dual

graph notations where closed lines are double points and open lines are operator insertions.

Let us sketch the argument [195] of the identification of the 2d field theory formalism with the geomet-
rical approach. 2d gravity can be constructed as cohomological supersymmetric theory with two nilpotent
operators , representing the total BRST charge and , � � , � � �, � , where , � are the left and �, � the
right super charge. The decoupling of the WS metric is not complete � , � 	 � ! 
 � ��, 	 � ! 
 � � ! , so that, and , � insertions in correlations act on the measure (308) and yield by (46) derivatives on - � % � . The
decisive field is the 2d dilaton � . Other fields have the following relation to �

� � �� � 	� � ,�� 	 � 
 	 �
�

� 	� ��, 	 ��,�� 	 � 
 
� � 	 �� � � 	� �
	 � 	 � �	 � � 	 � � �
	 �� � � � 	� � 	 � 	 � �	 � � 	 
 � � � ��	 �	 � � (140)

The theory has a gauge fixing sector similar to the superstring and in particular anti-commutating
� � 	 � �

ghost and commuting
� � 	�� � ghosts with BRST symmetry . 	 � � � � � � � � � � � , . 	 � � � � � � � � , . 	 � � � � �

� � � � � � , . 	 � � � � � � �$�
� and . 	 � � � � � � 1

. The field equations imply
�
�
� 	� � 	 � � � 	 � � � 	 � � � � � � � .

The main claim is that formally the � � classes are

� � � � �
�
� � �

� � � � � � � � 	 (141)

so that formally � � � � �
�
� � �

� � � � � . The point is that the insertion of � � � �
� � �

� � � � � 
 � produces
by (140) and (46) a two-form on - � namely

	 �	 � � � 
 � , where the
	 �	 operators act on - � % � and � stands

for cohomological states. Note that the
	 	 �	 derivatives act in the direction of the complex moduli by (46)

as well as in the direction of the fibre of the universal curve. There are operators � � � � �
"�$ � ( , so that
� � � � 
 � � 
�� ( % � $ � % � hence by (121) we get the claimed relation. The puncture operator plays a special
rôle in the field theory formalism and is given in the

� �
picture [173] by

� � � � � � �� . � � � . � �� � � � � . In order
to proof the puncture equation (124) one has to understand the contact term between

�
and � � , that is the
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integral


 ��� � % � � 

� �

� $ � ���
� � � � � � � % � � 
 � �

� 	 � ���
� � $
% $ % � � � �� � $ � � �$ � � � � �
� % � � 


� �
� 	 � ���

� � $
% $ % � � � �� � $ � � �$ � � �� , , � % � � � 	 
 � �

� 	 � ���
� � $#	

	 �	 �	 � $ � � �$ � � % � � � 	 
 �
� �

� 	 � ���
� � $#	

	 �	 �	 � 
!�)( % $ % � � % � � � 	 
 � % � � � 	 

(142)

where we replaced in the second equality the position dependence of the puncture operator by a neck
of length � � � 
�� ( % $ %

, see figure 16. The insertion of the
�
�
	 �� � comes from the integral over the

superpartners of the modulus
$
. From the definition (141) and � �

� � � as well as (140) follows the
third equality. The

�
�
	 �� � play the same rôle as the , � 	 ,�� in the derivation (93) namely to produce the

derivatives
$#	
	 �$ �	 �	 from the anti commutator � , 	 � � 
 � ��, � 	 � � 
 � � � . The logarithm occurs, because� � �

	 � � 1 � � � � � ���
with � � � � 	 � and � �

% � � � 	 

� � �

% � � � 	 

� 1

. Regular terms vanish under the
integral. Hence one concludes that

� � � � % � � 
 � . " � ( � � � % � � � 	 
 (143)

from which (124) follows. The derivation of the dilaton equation is a very similar exercise. The rest of
(139) is application of the sewing procedure of string perturbation theory with some consistency consider-
ations restricting the contact algebra [195]. We will a make a similar construction in Sec. 8.14

ε

P(x)
σn

Dε σn
P(1)

T

Fig. 16 Conformally equivalent definition of colliding points.

6.6 Integrals over the Hodge classes

Beside the � classes there are other important classes on - � % � . A smooth Riemann surface ) � has a
� dimensional vector space of holomorphic differentials in � 	 % � � ) � � � � � � ) � 	 � ��� � . On a connected
nodal curves there is an extension of this differentials. Namely on a curve of arithmetic genus � one has
� meromorphic differentials � , which are holomorphic outside the nodes, have at most a pole of order�

at each node branch and the residua on the two node branches add up to zero. These vector space
patch together to give a rank � vector bundle

(
on - � % � , which is called the Hodge bundle23. In fact

this construction applies likewise to - � % � � � 	 � � , see below. The Chern classes of the Hodge bundle,
sometimes referred to as

� ! classes, can be integrated over - � . For � � � one gets [69] [68]


 � � � �
� �
���� 	 ��( � �

% � � � � � ��� � %� � � � � � �
� � � � � �
� �
�

(144)

Here � � are Bernoulli numbers, e.g. 
 � � 	� 	 	 �
	 
 � � 	

� � � � � �
	�� ���

. Using the Grothendieck-Riemann-
Roch formula of Mumford for the Chern character of the Hodge bundle on � � % � the correlators involving

23 A similar construction on the targetspace is discussed in Sec. 8.5.
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� ! ��( � and � classes can be expressed as correlators involving only � classes and classes of boundary
divisors from stable degenerations. The appearance of the Bernoulli numbers is from the expansion of the
Todd class in the G-R-R formula. An recursive procedure in the genus for evaluating intersections with
boundary classes has been developped in [69]. It ultimatelty reduces the above intersections to intersections
of the � classes, which are fixed by the Virasoro constraints. C. Faber has written a Maple program, which
calculates in this way recursively any given integral of

� ! and � classes over - � % � .

6.7 The moduli space of maps

Let us now come to the original question of coupling the topological � -model to gravity. We want to
construct a moduli space of maps � * ) � � � , which send ) � into a class � � � � � ) ����� � � � � 	  �

,
called - � � � 	 � � . The rough expectation is that the negative dimension of the moduli space (116,368 )
for � � �

is offset by the dimension of the deformations space - � of the Riemann surface (367). In
other words we might hope to modify the complex structure

"
of ) until it is compatible with the complex

structure on � and a
� " 	 � �

holomorphic map satisfying the Cauchy-Riemann equation�	 � % � � � �
� � � � � ����� � � " � � 1

(145)

does exist. To see at least heuristically what the dimension of the moduli space of a stable compactification- � % � � � 	 � � is, consider the normal bundle exact sequence of an immersion of a non singular curve in �1 � � � � � � � ' � � � � ' � 1 �
(146)

The associated long exact sequence is 1 � � � � ) 	 � � � �
� � � ) 	 � � � ' � � � � � ) 	 � � � ' � � � 	 � ) 	 � � � �
� 	 � ) 	 � � � ' � � � 	 � ) 	 � � � ' � � 1 � (147)

Let us interpret the terms as automorphism, deformations and obstructions for the maps � . As far as the
domain curve is concerned we know that � 	 � ) 	 � � � � � � � ) 	 � � � � � �
� � ) � � � � # � ) � , and that the
dimension of - � is

� � � �
. For fixed complex structure of the domain we can identify � � � ) 	 � � � ' �

with the deformations and � 	 � ) 	 � � � ' � with the obstructions of the map � . The real objects of interest
are � � � ) 	 � � � ' � and � 	 � ) 	�� � � ' � , which are the deformations and obstructions of the map � without
fixing the domain. In order to have a stable compactification - � % � � � 	 � � we must allow in general for
marked points. In this case (147) becomes1 � � � #
� ) 	 " 	 � � � � � # � ) 	 " � �

� � �
� � � � � � �
� ) 	 " 	 � � � � �
� � ) 	 " � �
� � ��� � � � � � � � ) 	 " 	 � � � 1 � (148)

Now if a stable compactification - � % � � � 	 � � exist then � � #
� ) 	 " 	&' � �21
. Moreover at least in some

relevant situations
� � �
� ) 	 " 	�' � � 1

and since the alternating dimensions of long exact sequences is
1
, we

can calculate � �
� � ) 	 " 	�' �
, because we know � � � � ) 	 " � � � � # � ) 	 " � � � � ����� � and � � �
� � � � � � �
� � � �� � � � ��� � � � � � � 	 � � ��� � � � �

. The expected or virtual complex dimension of the moduli of stable maps is�
�
� � � - � % � � � 	 � � � � � � � ��� � � � � � � 	 � � ��� � � � ��� � � � � �
� � ) 	 " � � �
� � � � # � ) 	 " �
� � 	 � � � � # � � � � � � � � � ��� � � � � ��� � 	

(149)

where we calculated the first two terms contribution by (368) and the last two by (367) with addition of
moduli for marked points.
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This formula reflects the special rôle Calabi-Yau threefolds. By (149) the moduli space of the contribu-
tions to the zero point functions

� " � ( � � � for all genera is zero dimensional, which reduces the problem of
evaluating them to a problem of counting points, albeit a very complicated one. All topological theories
will simplify in this way as the example in 3.1. That does not mean in general that all topological observ-
able are integers, because discrete automorphism groups of the theory, which have to be identified in the
path integral, weight some these points with

��/ % � � � % factors. The remarkable fact about CY threefolds is
that an infinite number of physically relevant objects can be reduced in this way. Further comments about
the A-model coupling to gravity are exhibited in comparison with the � -model in Sec. 8.13.

One problem in this theory is that complex manifolds do not allow generic enough deformations so that
the virtual dimension formula (149) is frequenly violated and the actual dimension of the moduli space is
positive. There are two ways to overcome these class of problems:

Either we consider deformations under which the quantities under consideration are invariant. As men-
tioned below (114) a symplectic structure and a compatible almost complex structure are sufficient to
define the � -model. Under this weaker conditions one can achieve the generic situation of a zero dimen-
sional moduli space. Counting so called pseudoholomorphic curves is in this respect an easier approach to
Gromow-Witten invariants.

Or we define a virtual class and defines formally the Gromow-Witten invariants as� �
'
� � �

� � � "!'�% ' ( �
� � �� % � � � 	 � � � (150)

In particular � � � �� % � � � 	 � � has to specify what class to integrate over all positive dimensional components
of the moduli space that might occur. This problem of non-genericity due to obstructions is well known
in intersection theory and the above method to overcome it called excess intersection calculation [80].
An easy illustration can be found in Sec. 6.16. In so called perfect obstruction theories the existence of
� � � �� % � � � 	 � � is guaranteed. Below we follow an approach involving virtual localisation.

6.8 Idea of localisation

The successful setup of this point counting problem in the � -model is a very sophisticated problem, which
needs several lectures in its own. Let us mention just some key ideas and some interesting issues with
references to the literature. In the � -model we have a counting problems for each topological type of map� * ) � � � which are labeled by � and the class � � � � � � 	� �

. The virtual dimension of the moduli
space might be zero dimensional, but points have no hair. They are suitable characterized by starting with
a bigger deformation space - and impose obstructions. In particular Kontsevich considered first maps
into a toric variety ��� and imposed the restriction to maps in the Calabi-Yau variety on the moduli space- � 
 � % � � � � 	 � � by integrating over the Chern class of an obstruction bundle [141]. The principal setup is
as follows

�
'
��" � ��� ��� � � ���� � �&� � � � � ��� �� � � �

� � �

- � % � � � 	 � � �� � - � % � � � � 	 � � �� � - � % 	 � � � 	 � � ���� � � � � (151)

Here
�&� � ��� 	 is the evaluation map

�&� * - � % � � � � 	 � � � � � defined by
��� � * � ) 	 " 	 � ����	 " � 	 � � %�� �#" � � and

"
is the forgetful map encountered in Sec. (6.3). The fibres of the bundle

�
' over

� � 	&' � are
� � � ) 	 � � � � ��� and one defines� �

'
� � �

� � � "!' � % ' ( �
� � � � � ' � � (152)

In Kontsevichs principal example [141] � � 1
, � � ! , � � � ���

and
� � � � ��� , i.e. the zero section �

of
�

defines � the quintic in
� �

. We can use (365) to calculate � � � ) � 	 � �
� � � �
� ��� ��� ! � �
. Similarly
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(149) gives
�
�
� � � - � % � � ����	 ! � � � ! � �

so that we can take indeed the top Chern class for � � � � � � 
 � �
� � 
 � 	 � � 
 � to define a volume form on the moduli space. This counts zeros of the pull back and push
forward

�� of � which represents maps whose image is in � , the quitic threefold. Again the dimension count
is optimistic and the general case requires the definition of a virtual fundamental class. However the key
idea will apply, namely to push forward and pull back the torus action of the ambient space to moduli
space of the maps - � � 	 1 � � � � 	 � � and to calculate (152) by techniques from equivariant cohomology on- � � 	 1�� � � � 	 � � .

Let us give a heuristic picture how to use the induced torus on - to do the integral. For instance the
question for the topological Euler number is point counting problem asking for the zero set of the generic
section � in the tangent bundle, a � � vector field. We can use the Gauss-Bonnet theorem see Sec. 9.3
and write this as � � 


�
� �

� 

�

 � � � ��� . This is not a simplification, unless we have a good choice

for � to perform the integral, which comes up if - admits symmetries. For instance on the sphere we
can generate a vector field by rotating the sphere. This introduces a coordinate direction � and we can
choose the altitude

�
as the second and pick the diagonal constant metric in these coordinates, which is flat

everywhere but has . curvature at the poles, which leads to the Euler number
�
. The poles come of course

from the two zeros of the vector field which generates an
� 	

group action on
���

. This leads likewise to the
conclusion that � � ���
� � �

, see Fig. 17.

Fig. 17 Using the fixpoints of the � � group action on � � to calculate its Eulernumber � � � � � � �
.

Points that contribute to the integrals can hence be singled out as fixpoints under group action of a
group

� 24. The underlying principle is called localization. The key is to give general fixed sets additional
structure, which describes the group action in their normal direction in a way that is useful to address
global cohomological questions. The result which we need is the Atiyah and Bott localisation formula in
equivariant cohohomology [13]. Learning about the group and the target from the action of the group is
a highly developed subject [27, 53]. The principal construction is as follows. Let

( �
be a contractible

space - unique up to Homotopy- on which
�

acts freely and the right and assume that
�

acts on the left
on � . Then we consider the space � � � ( � � � � whose points are equivalence classes

� � 	 � � under� � � 	 � � � � � 	 � � � . This space fibres over � / �
. The fibres over

� � � � are � � � � ( � / � � , where� � � � � � � % � � � � 
 is the stabilizer of � . One defines the equivariant cohomology � �� � � �
as the

ordinary cohomology of � � , i.e � � � � � � . For example if
�

acts freely on � , i.e. all
� � are trivial then

since the fibre is contractible the cohomology of � � � � � � is that of � � � � / � �
. In the other extreme that

�
acts trivial the cohomology is � �
� � � � � � �
� � � � � � � � � �

. Here we have to clearify what � �
� � � �
the

cohomology of � � � ( � / �
is. It depends only on the group

�
and can be understood a the equivariant

cohomology of a point � �� � � " � 
 � , where
�

can act only trivially. Since the ordinary cohomology of the
point is trivial it is called cohomology class of pure weight (of the group action). However in equivariant
cohomology the cohomology of point is a rich structure. An example of principle importance in the A-
model are of course group actions of the algebraic torus � � ��� � � 
 , � � � � � � 1 
 . The construction of( �

for contineous groups requires a limit procedure, since there are no ordinary contractible spaces which
allow for free actions of

� 	
or
� �

.
� 	

can be thougt of acting freely on the “contractible” space
( � �
!� �

� ���
��� � � 	 , so that � � � 
!� �

� ���
��� � � 	 / � 	 � � �

and � � � � � " � 
 � � � � � �
is the polynomial

algebra in the variables
� � � 	 � � � � � ���

, see Sec. 9.3. In the case of the torus action � � ��� �
� 
 one has
as simple generalization

� �� � � " � 
 � � � � � � � � � � � ��� � � � 
 � � � � � 	 	�� ��� 	 � 
 � 	 (153)

24 Another way to single them out is a critical points of a Morse function.
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the polynomial ring over
�

in ! variables. � �� � � �
is a roughly speaking a cohomology theory with coef-

ficients in polynomial algebra
� � � 	 	���� � 	 � 
 � . The formal parameters

�
can also be viewed as characters of

the Lie group of � , i.e. maps
� * � � � � that is

� � ��� � � �� 
 	  and
� � is a choice of a basis[?][141].

If � is non-singular then the � fixed sets � � � are also non-singular.
An important task is to relate classes � � � �� � � �

to classes in the equivariant cohomology of the
fixpoint loci � �
� � � � � �
� � � � � �� � � " � 
 � . In ordinary cohomology one has for maps � * � � �
between compact orientable manifolds with

�
� � � � � � � ��� $
a pushforward � � * � � ��� � � � � � 	 � � �

.
If
�

is a fibering over � , i.e.
$ & 1

, then � � can be thought as integrating over the fibres. If � is
the embedding � * ��� � � then � � factors through the Thom isomorphism

� � * � � � � 	 � � � � �
� � � 	 � � � , i.e. with � � � 	 � � � � � ��� � � � � 	 � � � � � �� � � �
� � �

one has � � � " � � � � . Moreover
by the excision principle one identifies � � � � 	 � � � � � � �� � � � , where � is the normal bundle to�

. The latter can be defined in any tubular neighborhood of
�

im � . The Thom class of the normal
bundle is the Thom class

� � # � � � 	� � � � and its restriction to
�

by the pullback of the inclusion map
� � * � � � � ��� � �
� � �

is the euler class of �
� � � � � � � � � � � (154)

The consideration that lead to (154) goes through in equivariant cohomology. However a key difference
and a main result in the latter case is that � � � � is an isomomorphism up to torsion. As modules � �� � � �
and � �� � � � are direct sums of a free part and a torsion part and much scrutiny in [?] is devoted to keep
information of the torsion part. Similar as for � �
� � 	  �

where one can ignore the torsion part by pass-
ing to � �
� � 	�� �

one can consider in the equivariant classes whose coefficients are rational functions in� � � 	 	 ��� � 	 � 
 � . In this setting the equivariant euler class is invertible along � so that
� � � � � 	 � � �� " � ( . In this

way one obtains for any equivariant class � � � �
� � � �
� � �

�
� � � � �� � � � � � (155)

The pushforward of the map
" ' * � � � " � 
 given by integrating over the � and a similar map" � * � � � " � 
 factors through so that

" �� � � � " '� . Applying that to both sides of (155) yields the
integration formula of Atiyah and Bott

�
' � � �

�
�
�

� � �� � � � � � (156)

For example the euler class � � � � � � � �
� � � � maps to � �
� � � � � ��� � � � � � � , the ratio in the integral is
�

and (156) calculates the euler number as the number of fixpoints � � � � � 
 ' � � � � � � � � � .

6.9 Toric string backgrounds

Toric varieties of dim ! are varieties � � in which the ! -dimensional algebraic torus � ����� � � 
 is em-

bedded as dense open subset � � ��� �
� 
 � � � and � acts on the coordinates � "���(
 of � by multiplication� � � � � � � � � 1 
 . The following is a convenient way to characterize the embedding of � in � � .
Consider

� � ����� � ��� � ��� � � # #�# � �	� 
 ��� / � ! � � � �
(157)

where the
� � ��� �
� � action on the homogeneous coordinates � � , � � �
	 ��� � 	 � of

� � is specified by
charge vectors 


� " ! (
� � %� � 
 �

� 
�! � � 	 ��� #�� � " ! (� �  	 � " ! ( � � � 	 � ���
	 ����� 	 � 	 � ���
	 ����� 	 � �
(158)
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Let
��� �
� � act by multipliction on � � then � * � ��� ��� � / � defines the embedding of � into � � and its

action on � � . We denote the pure phase rotation part of
�

and � by
� 	 � � ���
� � and � 	 � � � � � 
 .� � * � � � � � 1 


are divisors and the product � � # � � denotes intersection.
� � ��� � � #�# # � � � 
 � is the

Stanley-Reisner ideal generated by this
#

product with � � from certain sets of generators � � � � #�#�# � � � 
 .
The necessity to substract

� � � � � � # #�# � � � 
 � is easily understood. In order to have a well defined quotient
with strata of equal dimension we need the points in

� � � � � ��� � � # #�# � �	� 
 � to have smooth
�

dimensional

orbits under
�

and separable orbits under
� 	

. In particular that the data
� " ! (� and ��� � � #�# # � � � 
 are not

independent.
The definition (157) is quite obviously modelled as a generalization of the projective spaces

� 
 (326)
for which � � ! � � , � " 	 ( � � ��	�� ��� 	��
�

is a � component vector and � � ��� 	 # #�# � 
 � 	 
 � � ��� 	 #�# # � 
 � 	 
 .
Note that the coordinates � "��!(
 in (327) are invariant under

������� �
� 	
and � acts simply by multiplication

on them. This generalizes in the following way.
� � � 	 * � ��� *#� � � is the homogeneous coordinate ring of� � and all local coordinates can be obtained as inhomogeneous coordinates by scaling

�
coordinates

� � � ,� � �
	�� ��� 	 �
to
�
. This requires the choice of a suitable combination of group generators in (158), once

these are picked we identify � " ! ( � � �
with

� � � ��21
in the scaling. By construction the inhomogeous

local coordinates are invariant under
�

and the
� " ! ( determine all coordinate transformations between the

inhomogeneous coordinate patches.
To study � � and its subspaces it is convenient to view the components of the 


� " ! ( as coefficients of
linear relations among � points � � 
 in a lattice

� �  
 of rank ! . I.e. the points are specified by integers

� " 
 (! , � � �
	�� ��� ! , � � ��	�� ��� 	 � . Cones � �� are positive linear subspaces of dimension . � 1 	�� ��� 	 ! in
the real completion of the lattice

� � ���
�
� � � 
 , whose edges are generated by points in � � 
 .

Collection of these cones, which intersect each other at most at lower dimensional faces ( � �� � � �� � � ! �� � � ),
are called fans ) and the properties of � � have a nice geometrical, combinatorial and pictorial incarnation
as properties of fans. In particular from the analysis of the fans one finds suitable choices of the 


� " ! ( and
� � � � #�# # � � � 
 so that (157) defines a smooth toric variety. Apart from stating simple examples we will not
go further in this subject, which is amply discussed in [167][81][105]. In Fig. 18 we show three fans of
simple toric varieties.

P
1

P
1

2
P

O

1

(−1) (1)

O

(1,−1,0) (1,1,0)

(1,0,1)

(1,0,−1)

O(−1) + O(−1)

(1,1,0)
(1,0,0)

(1,−1,−1)

O

O(−3)

O

2
P

(−1,−1)

(1,0)

(0,1)

∆
∆

Fig. 18 Two fans for compact
� � with �

� ���
�
��� 	 ��� for compact

� � with �
� ���

�
��� 	 � 	 ��� and two for the

non compact toric Calabi-Yau manifold � � � ���	� � � � ����
 � � with �
� ���

�
��� 	 � 	 � � 	 � ��� and � � � (

��

� � with �

� ���
�
� � ( 	

� 	 � 	 � � . Note that the first fan is 1one dimensional, the third is two dimensional and
the second and the fourth are three dimensional. This correspond to the complex dimensions of the ��

described by them.

One can also think about toric geometry as symplectic quotient construction. This is modelled as gener-
alization of the definition of

� � � ��� � � 	 / � 	 , where one first restricts the moduli of � � by � � � 	� 
 	 % � � % � � � ,
a real

��� � � 	 , and divides then by the phase
� � �
�

. The gauged linear
� � 	����

supersymmetric � model
(GLSM) is a physical implementation for performing the quotient (157) in two steps [213]. One inter-
pretes the coefficients of the vectors 


� " ! ( as
� ���
�

charges of � chiral superfields � � with lowest scalar
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component � � and the manifold ��� as the vacuum manifold parametrizes by the vacuum expectation val-
ues of the � � denoted for brevity by the same symbol. The total gauge group is

� ���
� � and in the first step
the absolute values of the � � are restricted by the correponding � -terms constraint for the vev’s

� " ! ( � � � � ��
� 
 	

� " ! (� % � � % � � � " ! ( 	 � ����	���� � 	 � �
(159)

The Fayet-Illioupoulos terms � " ! ( ��� with � " ! ( � 1
are identified with Kähler parameters of � � . Gauge

invariance requires as second step to divide by the
� 	

symmetry and defines ��� � � �� 
 	 � � " ! ( � � 	 � � � / � 	 .
The � " ! ( � 1

constraints is necessary for smoothness of the gauge orbits[213]. E.g. for
� � this ex-

cludes precisely � 	 #�#�# � 
 � 	 . Similar as the non-linear
� � 	 �
� � model the above gauged linear � has

classically unbroken
� ���
� �

and
� � � � �

symmetries. By a similar consideration of the transformation of
the fermionic measure as in Sec. 9.4 one checks that the axial

� ���
� �
parametrized by

�
develops an

anomaly � � � � ! � " ! ( � 	 � ( " ! ( � , where � 	 ��( " ! ( � is the firts Chern class of the � ’th
� � � �

gauge bundle

and � " ! ( � � �� 
 	 � " ! (� . The theory has
� " ! ( angles � � �
	 ������	 �

which are shifted by the anomalous trans-
formations by

� " ! ( � � " ! ( � � � � " ! ( and the � " ! ( become scale dependent by a one-loop contribution with
� �� 
 � " ! ( � � " ! ( . Hence the theory is

� ���
� �
anomaly free and scale independent if � " ! ( � 1

, � � .
On the geometrical side it is easy to see the relevance of this condition for the existence of a trivial

canonical class. To establish condition d.) in Sec. 9.8 we start in inhomogenous coordinates of a patch
where the

� ! 	 1�� -form is

�
� � � " ! (	 � � ��� � � � " ! (
 . Coordinate transformations to other inhomogeneous

coordinate patches are determined by the
� " ! ( as explained in (158) cff. Now it is not hard check that the

Jacobian
� � � � � $ � � 
� $ � � 
 � is a homogeneous function of degree � " 
 ( in the variables � " ! ( . It is therefore only

possible to extend

�
trivially to all patches, iff � " ! ( � 1

, � � . As an exercise the reader may check by
transforming between the two patches of

� 	
that the cotangent bundle

� � � transforms as � ��� �
� and for
� ��� ������� 	

, defined by
� " ! ( ����� ��	 �
	��
�

,

�
� � � � � � (

�
fibre � base direction) transforms trivially, see

(400). To summarize one has the following

� � � � � � � � #�% �"��� 
�
���� � " ! ( � �
�
� " ! (� � 1�	 � � ��� � ��� ���
��� 
 � � � 
�
��	� � �

� � 
 
!� �
� ��� �#�
� � � ����� � � ��
 (160)

In Fig. 18 the second and the last fan represents Calabi-Yau manifolds with trivial canonical bundle. As
a consequence of (160) all points generating these fans lie in a (hyper)plane in

� � � � �
. In contrast

to the first fan )
� � in
� � � �

and the third fan )�� � in
� � � � �

, the fans for Calabi-Yau manifolds
in
� � � � �

do non cover this space
� �

. It can be shown in general that � � is compact iff ) covers� �
[167][81]. Hence toric varities with trivial canonical bundle can never be compact.

Each generator of a one dimensional cone i.e. all points � "��!( other the



in Fig. 18 correspond to
divisors. As further explained in [81][167][105] the divisors � � are not independent, but fullfill the rela-
tions 
�! � � �� 
 	 � "��!(! � � � 1

, � � ��	���� � 	 ! . The ideal � � ��� � � # #�# � � 
 
 � is generated by the intersection
of those divisors, whose points do not lie on a common top dimensional cone. This information suffices
to calculate the complete intersection ring, up to a normalisiation which is fixed by the Euler number, as
� � � 	 	�� ����	 � � � / � � ��� � � 	���� � 	 � � 
 	 
 ! 
�� . Independent divisor can be identified with the generators of the
cohomology group � � � 	 � � � 	  � . In particular � � � 	 � � � 	  � � � . The

� " ! ( represent curves � " ! ( , which

vanish on the � ’th wall of the Kähler cone and � � # � " ! ( � � " ! (� . In a nonsingular compact toric variety
we can pick a basis � 	 	�� ����	 � � of divisors � ! � � �� 
 	 � � � � with � � �  

such that � � # � " ! ( � . !� .
The associated line bundles � � � � � � � generate the Picard-group of

'
. The class of any curve � is

� � � � # � 	 	���� � 	 � # � � � . With suitable numeration of the points which we find � 	 # � � , � 	 # � � ,� 	 # � � # � � and � 	 # � � # � � for the four cases in Fig. 18. � ��� �
� � � ��� �
����� 	
is the resolved conifold

and the ambiguity in tringulating the correponding fan in Fig. 18 correponds two different possibilities to
resolve the conifold by blowing up a

� 	
.
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Each toric variety comes with a natural symplectic structure which is given by the real 2-form in coor-
dinates � ! � % � ! % � � � �

� � ��

�

! 
 	
� � !	� � �� ! � �

�

�

! 
 	
� % � ! % � � ��� ! � 
�

! 
 	
� � ! � � � ! (161)

on � � � � . It extends via (157,158) over � � . In the case of
� 	 � ���

we have drawn in Fig. 19 the� 	 � � �
action, which sweaps out the

���
. This yields a very useful interpretation of dual25 toric diagrams

as projections of ��� under the moment map, which forgets about the phase rotations � 
� � � � � � on
the
� ! . The pictures show as linear subspace of

� 
 the base � of the � 
� fibration parametrized by
% � � % �

subject to (159). The information which cycles in � 
� degenerate is easily reconstructable from � [152].
E.g. the two end points of the intervall in the

� 	
diagram are the loci where the

� 	
degenerates. The

relation to Fig. 17 and the usefulness of this point of view for localisation calculations should be obvious.
E.g. in the

���
case � is the triangle

	
in Fig. 19. The direction of the edges of

	
hold the information,

which cycle in a base
� � 	 � � � � 	 � � �� 	� � degenerate. The correponding vanishing cycles are indicated

in the Fig. 19. Inside of
	

the
�

and � cycle are non-degenerate, i.e. the generic fibre is � �� , which
degenerates over the 1d faces of

	
to
� 	

’s and over the 0d faces, corners of
	

to � " � 
 ) � . These are the
fixpoints of � � and the remark after (156) yields � � � � � � �

. � in the last example in Fig. 19 is the open
convex subspace of

� �
bounded by the compact face

	
, and the non-compact faces � 	 , � � and � � , while

in the second example it is the open convex subspace of
� �

bounded by � 	 	�� ��� 	 � � .
2

P
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1

Fig. 19 Two fans for compact
� � with �

� ���
�

��� 	 � � for compact
� � with �

� ���
�

��� 	 � 	 � � and two
for the non compact toric Calabi-Yau manifold � � � � ��� � � � ��� 
 � � with �

� ���
�
��� 	 � 	 � � 	 � ��� and

� � � (
��
 � � with �

� ���
�
� � ( 	

� 	 � 	 � � .

The conditions on
� " ! ( in (160) reduce the dimension in which the points in the corresponding toric

diagram are embedded by one, see Fig. 18. A similar reduction occurs for the toric diagrams representing
the degenerations. A way to think about this is that instead of the generic � 
� fibration over � one can
consider a

� � � 
 � 	� fibration and one dimension less is necessary to describe the degenerations in � 
 � 	�

by directions in � . This is only possible if � � is non-compact, which is the case for toric Calabi-Yau
manifolds. To obtain this structure we establish it in a patch and show that is possible extend it over the
non-compact toric CY manifolds. In a patch e.g. for ! � � � � with coordinates � 	 	 � � 	 � � we consider
three Hamiltonians� � � � % � 	 % � � % � � % � 	 � � � � % � � % � � % � 	 % � 	 ��� ��� � � � 	 � � � � � � (162)

They parametrize the base and generate flows
	 � � ! � � � � 	 � ! 
 � etc, whose orbits define the fibre. The

distinguished
�

orbit in the fibre is generated by
� �

. E.g. for ! � �
the only toric CY is

�
, which can be

25 The reader will recognize that the pictures in Fig. 18 and 19 are dual in the sense that � -dimensional subspaces are mapped to� ��� dimensional subspaces. For the detailed description of the pictures see exercise (164).
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either viewed in polar coordinates � � % � % � � � as
� 	

(
�
) fibration over

�
(
% � % ) or in � � � � � � coordinates

as
�

(
�

) fibration over
�

( � ). The latter fibration can be obtained as above by taking
� � � � � � � � � � as

base, while
	 	 � � � � 	 � 
 � �

generates as orbit the real part
�

. In the general case
� 	

generates the real
part of � 	 ��� � � 
 , while

� � � , � � � generate independent phase rotations� 	 � � � 	 � � � ��� � � � � � * � � 	 	 � � 	 � � �&%� � � � " � � � � � ( � 	 	 � � � � � � � 	 � � � � � � � (163)

designed not to affect the phase of � 	 ��� � � 
 and therefore the
�

fibration structure. To see that this fibration
structure extends globally consider as above (160) inhomogeneous coordinates obtained by scaling with� " ! ( . In each patch defined by � � � � �

, � � �
	�� ��� 	 �
we can obtain the product � "��!(	 ��� � � "���(
 from the

homogeneous coordinate product � 	 ����� � � by scalings (158) with � " ! ( � � � � . Precisely if � " ! ( � 1
(160)� 	 ��� � � � is invariant under such scalings and defines gobally

� 	 ��� � � � 	 � ��� 	 � � � and therefore a global�
fibration structure. The

� � � can be defined in inhomogenous coordinates in a patch and the action can be
extend by the usual coordinate transformations to other patches. Because the

� � � act on the exponentials
it is slightly more convenient to lift the multplicative relation between the coordinates to additive relations
and described the

� � � as follows. We pick ! � �
independent generators

� � � in the � ’th patch defined by� � � � �
, � � �
	�� ��� 	 �

and write them in homogeneous variables. Since � 	 � � � � � � / � 	 and the � 

in (159) generate

� 	
by the Poisson bracket and since moreover the Poisson bracket is linear, the

� � � are
defined only modulo addition of � 
 . This ambiguity is of course fixed in any patch � � � � �

, � � �
	�� ��� 	 �
by setting the coefficients of

% � � � % � , � ���
	 ����� 	 �
to zero. This ensures that

� � � generates orbits within that
patch. Note that the

% � � do not change the phase of � 	 ��� � � � if the sum of the cofficients of the
% � ! % � is

zero. This sum does not change upon adding � 
 , if all � " 
 ( � 1
.

As an example we show in Fig. 20 the degeneration of � �	 for the � ���
����� ���
geometry, which is

defined by
���
��	��
	 ��	 � �

acting on the coordinates
� � 	 	 � � 	 � � 	 � � � . To cover the geometry we need three

patches. Patch � � �� 1
, with coordinates

� 	 � � 	 � �� , � � � � � / � � , � � � � � / � � , patch � � �� 1
with

coordinates � 	 � � 	 � �� � � 	 � �� , � � � � � / � � � ��/ � � , � � � � � / � � � � � /	� � , and patch � � �� 1
with coordinates

� 	 � � 	 � �� � � 	 � �� , � � � � � / � � � � � / � � , � � � � � / � � � ��/	� � . We let (163)
the action on the

� � in the first patch and collect the phase shifts on the variables
� � , � � ��	�� ��� 	 �

as
� � � � � 	 ��� � 	���� 	 	 � � � . With the same notation we have on the � patch � � ��� �$� � � � 	 	 ��� � 	���� 	 � � � �
and in the

�
patch � � ����� �$� 	 � � � 	 � � � � 	 	�� � 	 � . The

� 	 	�� � parametrize two independent cycles
of the � �	 and can be fairly naturally be identified with a basis

� 	 /
�#" � � ��	 1 �
and

� � / �$" � � 1�	��
�
of

� 	 � � �	 	  � . Note that
� � /
�#" also carries a natural integer structure, but the identification is of course up

to
� � � � 	  � . If

� 	 � � � � 1
,
��� 	 � � � � 1��

or
� � � � � � � 1#�

the cycles
� 1�	��
�

, (
� ��	 1��

) or
� ���
	��
� �

degenerate. The former locii in the
�

-patch project on the
� � � � 	 � � � � -plane to the lines

� � � � 1
, (
� � � � 1

)
or [
� � � � � � � � 1

]. We define an association of � 
 � � � 	 	 � � ��� � 	 � � �	 	� � to lines in the
��� � � 	 � � � � -

plane by � � � � � � � 	 � � � � 1
. � 
 is the cycle, which does not vanish along the line and its orientation

is fixed by choice of the
� 	

actions in � � . The corresponding vanishing cycle fullfills � # � 
 � 1
and its

orientation is fixed by ��� � 
�� 1
. In all patches we can read the � 
 from the � � % � % � . Equivalently we may

transform the
� � � to the patches � � % � % � ���

as explained above, namely by suitably adding � 
 of (159).
Then the projection to the

� � � � 	 � � � � -plane is performed as explained for the first patch above.
The lines in this figure correpond to stationary points in the Hamiltonian flows in the angular directions

and also of the flow induced by
� 	

. The direction of
� 	

is perpendicular to the shown plane. The identifi-
cation above is made so that the vectors � coincide with the direction of the vanishing cycle in � 	 � � �	 	� � .
The zero coefficient sum in (159,162) implies a zero force condition on each vertex i.e. � �� 
 	 � � � 1

.
Smoothness correponds to

%
� � � � � % ���

for � � �� � � ending on a vertex. As an exercise one checks in Fig.
20 the vanishing cycles for the � ��� � � � � ��� � ����� 	

examples. Further one may check that the generic
� 
	 fibration can be obtained by choosing the Hamiltonians in a patch as� � � � % � � % � 	 � � �
	 ��� � 	 ! 	 (164)

and that the basis � and the torus degenerations in Fig. 19 are reconstructed very similar as above.
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6.10 Harvey-Lawson special Lagragian Branes

In the toric non-compact Calabi-Yau spaces one can define a very simple class of special Lagrangian
branes. It is sufficient to discuss this for � � patch, where one the following three Lagragian cycles

� 	 * � � � � 1�	 � � � � � 	 	 � 	 � 1�	 
�� � � 	 � � � � � � 1
� � * � � � � � � � 	 � � � � 1�	 � 	 � 1�	 
�� � � 	 � � � � � � 1
� � * � � � ��� � � � 1 	 � � � � � � 	 � 	 � 1�	 
�� � � 	 � � � � � � 1 (165)

The � � are moduli. These submanifolds are Lagrangian, because the
� � � constraints imply

� % � 	 % � �� % � � % � � � % � � % � while

���� � 	 � � � � � � 1

implies
� ��� 	 � � � � � � � � 1

, so that � % � � � � % � � % � � � ��� 	 �
� � ��� � � � 1

. Similarly one shows with � �� 
 	 � � � " / �
that

�
% � � � � � 	 � � � 	 � � � � ��� 
�� � � , i.e. � �

are special Lagrangian with the same calibration. The � � are obviously � �	 fibrations with fibres generated
by
� � � over

� 	
. The boundary conditions are so that one

� 	
, e.g. in the class

� 1 	 � �
for � 	 shrinks to

zero and completes the halfline parametrized by
� 	

to
�

, while the other in the class
� �
	 1��

for � 	 , has
minimal radius

! � 	 . The topology of all � � is therefore
� 	 � � . The geometry implies that there is natural

holomorphic disk build as an
� 	

fibration, the
� 	

is in the
���
	 1 �

class, over
� � � bouding the topological

non-trivial
� 	

in � 	 . The � � are the volumes of these disks and in Fig. 21 all volumes are positive if
�� � � � � � 1
. Similar as the Kähler parameters � get complexified by the integral of the � field 
 � � the

open string parameters � � are complexified by the Wilson loop 
  � � � 
 � � . This complexification and
holomorphicity renders singularities in the complex � space to codimension one. Similar as in the conifold
flop transition the continuation to negative volumes including all multi coverings of the disk is not singular.

6.11 Localisation in the moduli space of maps

We spent some time now to explain the torus action in the target space � � . The final goal is to use its
implications for holomorphic maps from the world-sheet � * ) � � � � into the target space. Recall that
the key idea here is to pull back the torus action on the moduli space of stable maps, find its its fixpoints
in - � % � � � � 	 � � and use (156) to perform the integrals like (152) or more generally (150). First of all
to define a fixpoint in - � % � � � � 	 � � the geometric image � � ) � � should not move under � 
 . That is not
to say that it pointwise fix. In particular a genus zero component of )	� can map to the

���
’s that are the� 	

fibrations over the closed lines in Fig. 19 or 20, where the
� 	

in the class specified by � 
 acts on it,
but it cannot map anywhere else. Marked points in Fig. 11 must map to the fixpoints of � 
 otherwise
the map would not be invariant under the torus action. Similarly the map of a higher genus component
cannot multicover the

� 	
line with branch points. Such higher genus components must be contracted

Copyright line will be provided by the publisher



pop header will be provided by the publisher 59

|x |

|x |

|x |

L

L

L

2

3

2

3
1s

2

2

2
1

rα

(1,0)

(−1,−1)

(0,1)

rα1

1

2

L1

L

L 3

2

Fig. 21

to the fixpoints. The map of a genus zero component to a line is given in homogeneous coordiantes by� �
� 	 * � � � � � 1 * ����� * 1 * � 
 �	 * 1 * � ��� * 1 * � 
 �� * 1 * ��� � * 1�� . This is only part of the map which
can carry degree ! 
 . The upshot is that the fixed points are labelled by “decorated graphs” � similar as in
Fig. 11. The decoration indicates the genus � � and target fixpoint of the contracted components (vertices)
and the target line and the degree ! 
 � of the uncontracted � � 1

components (lines). The total degree of
the map is simply ! � � � ! 
 � and the total genus is � � ��� � � � � � � � � � , where � � � � is combinatorial
Euler number of the graph. Fig. 22 shows the graphs for � ���

and ! � �
maps. The � 	 " 	 � 	 � run over the

fixpoints of the toric diagram of the traget space for which an embedding of the graph in the toric diagram
is possible.
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After capturing the data of fixed maps in - � % � � � 	 � � as graph � , we have to give equivariant expres-
sions for

� / � � � � � � * ��/ � � � � � and � � � � * � �� � in (??). The relevant model for - � % � � � 	 � � is � � �
� ) 	 " 	 � �
in (148) and we have to select normal directions in � � �
� ) 	 " 	 � � , i.e. the ones which move the map out of
the fixed configuration, this part will indicated by a

� � ��� superscript. We can use the splitting of (148) to
write

�
� � � � � � �

� � � �
� � ) 	 " 	 � � � � ��� � � � � � � # � ) 	 " � � � ��� �� � � �
�
� � � � � ��� � � � � �
� � ) 	 " 	 � � � � ��� � (166)

One can provide expressions for the equivariant euler classes by constructing explicite sections of the
bundles � � # , � �
� and

� � �
in local coordinates. The weights

� � of the torus action will be defined by
(164) in a patch and extended by coordinate transformations over � � . Let us consider as an example
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the map of a
� 	

component with degree ! 
 to a line (edge of the toric graph) � � � 	 � � � . For this
we want to compute the weights of the moving sections of � �
�
� � � � � ��� � � � � ) 	 � � � � � � . We note the
splitting of the tangent bundle in � � � % � � � � ���

due to
1 � ��
 � � � � ��� � 1

. Since over� 	
all complex vectors bundles split in complex line bundles we have � � � % � � � ������� 
 � 	� 
 	 � � � � � . The

first line bundle is the tangent bundle of
� 	

and the degrees of the line bundles in the normal directions
can be straighforwardly calculated within toric geometry. Let � � � ! 	 	�� ��� 	 !1� � be the class of

�
given

by by � � � # #�# � � � � � . Each � � represents a normal direction � � � � � with � � � � �� 
 	 ! ! � � � # � " ! ( � . We
can always pick local toric coordinates such that

� � is a coordinate on � and
� � � ����� � � � � � are normal

coordinates. Locally the map � * � 	 � � is given by
� 
�� � � 
 . For a

�
� ( � 	 � � �
� map we find

the following basis of sections of � � � ) 	 � � � � � � : � � ���� � , � � ��	���� � 	�� ! 
 and
� � ���� � � , � � ��	���� � 	 � � � ! 
 ,

� � �
	�� ��� 	 � � �
. The toric coordinate transformations determine the weight

� 
 	�� � � of the torus action
on the tangential direction

� � %� �
	�� � � � 
 � � � and the normal directions
� � � %� �
	�� � � � � � � � � � in terms of

the basis
� 	 	���� � 	�� 
 used in (164). The equivariant euler class of the moving part is the product of the

torus weights of the sections, where the ones with trivial weights are omitted. A litte calculation yields" � 	 ( 
 � 
 ��
 �" 
 � � ( � � ��
 �� � 
 � 	! 
 	 � � � �� 
 	 	�

 � � � � � � � , as contribution to

	� " � � ( .
It is possible [141][94] to evaluate all expressions in (166) for a fixed map from the combinatorial data

of the correponding graph in more or less closed form. E.g. the expression we evaluated above will appear
then for every

� 	
component of ) � mapped to a line � � � � . To give the whole expression denote the

vertices of the graph by � the genus of the irreducible component assiciated to this vertex � � � � . Note that �
has to map to a fixpoint under � 
 in � � , which is a vertex of the toric diagrams of the types in Fig. 19,20.
Let � � � � be all edges of the graph ending on � and

� � the toric weights of the coordinate of the line � to
which this edge is mapped. Note � must be a compact line in the toric diagram. We refer to the number of
edges ending at � as the valence

� 
 
 � � � . Further denote by � � � � all lines (flags) that end on a vertex of the
toric diagram and

���
its weight. In the cases of flags

���
is the weight the coordinate

���
that vanishes at

the vertex. Flags and edges are very similar, only that flags can also stand for insertions of marked points
on one vertex. Note that � 
 -invariance implies that marked points can only be inserted at the vertices.

�
� � � � � � � �

��� �
� 
�� ! � 
 �� ! � � � � � � 
 �


 � 	�
! 
 	

� � � � 
 ��
� 
 	

�
�
 � � � � � � " � ( � � � �� " � ( � � � � �
	 � " � ( � 	 �

� % ��	 � " � (�
 	
� �
! �

�

�






� 






�
�
�

������ �� " � (
�
���

 �
�� �
	 � " � ( � � �� " � (

�
���

 �
���� 	 � �1%�( � 1

�
�

�� �� " � ( � � " � ( � � � 	&( � �
�� �

�

�� �� " � (
�

���

 � � � �

�� 	 � �1%�( � 1
(167)

Here
� � � � 	&( ��� � � � � 
 �

� � � ��� � ��( ��� and
(

is the Hodge bundle defined in Sec. ??. Like
(

the field
� �

is descendant class on the moduli space - � " � ( % � of the component of ) � % � , which is contracted a vertex
It remains to construct the obstruction bundle � � � � � � � � ' � . For compact � the virtual fundamental

class
� - � % � � � 	 � ��� � � � does no embed into

� - � % � � � � 	 � ��� � � � for � � 1
and it is therefore not clear26 how

to restrict in the moduli space of higher genus maps from those mapping to � � to those mapping to � ,
see last section of[88].

The � �21
localization for the quintic is discussed in [141], here we focus on the non-compact toric

cases which can be solved to all genus by localization. We identify
��� � � , i.e. with the canonical bundle

� � over the compact base, e.g. � ���
��� for the local � ���
��� � �
�
or � ��� �
� � � ��� �
� for the resolved

conifold. Now we have to construct the class � � � � � ' � and the moving part of its pushforward under � in

26 I like to thank Tom Coates for a note regarding this and the reference [88].
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equivariant cohomology. That was done in [135] and gives

� � � � � �

 � 	�
! 
 	

�� " � � � � � 
 � ( � 	�


 
 	
� � � �
! � ��� � " � ( �

�
�

� 

� � � �

� � " � (
� � � � � ��	 � " � ( � 	 	 � � % ( � 1

�
�

�
� � " � (

� � � � � ��	 � " � ( � 	 � � " � ( � � � � 	�( � � 	 � � % ( � 1 �
(168)

Here � ) are the non-compact edges. Now (156) can be applied to give

� �
� � � ",' % ' � ( �

� � � � � ' � � � � �
% � � � � � � % � � �

� �
�
�� � � � � (169)

The integration in this formula is over suitable products of the classes � � and � ! ��( � � in the expansion of� � �� " ��� ( over the
� � � � � � � � � dimensional moduli space - " � ( % � of contracted components ) � " � ( % � of the

domain curve. This can be viewed as an excess intersection calculation. The result of these 2d-gravity
integrals was described in Sec. 6.3. For a given � and class � all graphs have to be summed up to yield
the contributions of this class. A considerable complication is that each graph comes with a particular
automorphism factor

% � � � � � � % , reflecting the discrete symmetries of the fixed map, by which one has to
divide. It is easy to see that each edge gives a contribution ! � to

% � � � � � � % , the rest of the symmetry factors
can be obtained similarly like for a Feynmann graph expansion. The result will not depend on the value of
the torus weghts

� � .
6.12 Localization of open string amplitudes

Heuristicly it is relatively easy to generalize these formulas to include open strings bounding the special
Lagarangian branes discussed in Sec. 6.10. The boundaries of a Riemann-surface with � holes ) � % ��% & have
to map to the non-trivial

� 	
in � � . Any disk component attaches to the rest of ) � % ��% & � 	 in a marked point

and � 
 invariance implies that this marked point is mapped to a fixpoint. Therefore each disk component
� will map to a disk like the one shown in Fig. 21 with winding � � around the

� 	 � � .
The relevant deformations � � � ) 	 � � � ' � � and obstructions � 	 � ) 	 � � � ' � � are expressed by the

weights [93]

� �
�
�� � � � � 				 
 � � ! �

� �� � ! 
 	 ! ������ � � � 	�
! 
 	�� � � � �� � � � � ��� � �

(170)

The flag corresponds to the halfline in Fig. 21, which is the image of the disk under the moment map.
The combinatoric of the open fixed graphs is rather abvious. We add to the figures in (22) flags, which are
decorated by the winding � . Note that such a flag contributes

��/ � to
% � � � � � � % . Different then the closed

string localization the open string localization is not based on a mathematical rigerous understanding of
the open string moduli space. The evidence comes, among other considerations, from a comparison with
the mirror calcalations in []. The result of the calculation has a residual dependence on one combination of
torus weight. The choice of the normal bundel

� � can be absorbed in this weight depence, which is ralated
to the framing ambiguity in Chern-Simons theory []. As an excercise one may that disk contribution with
all windings � in Fig. 21 add up to the generating function

� � � � � 	� 
 	
� " � �

�
	 ���� �
� � � � � � � (171)

This function is the superpotential for the
�����

theory which lives on � � � 	 % � .
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6.13 Localization on � ��� �
� � � ��� �
����� 	
and � ���
��� �����

.

The explicte formulas (169,167, 168,170) as well the solution of 2d gravity using the matrix model ap-
proach or the Virasoro constraints sublemented by the reduction of the integrals using the �	! ��( � classes as
described below (144) give an in general combinatorial very tedious but complete solution for the closed
and open string on non-compact toric Calabi-Yau spaces.

As a longer exercise the reader can check for example that the � � 1
multi covering formula (183)

comes out for � ��� �
��� � ��� � ��� � 	
. To do that one can make a choice for the values of the weights

in which is apparent that most of the graphs vanish, see [68] [105]. Using special weights and closed
expressions for certain classes of Hodge integral [68] prove the following all genus result. Let

� � � 	 � � �
��
� 
 	

� � ��� � � " � ( � � � � ��
� 
 �

��

 
 	

� �


� � ��� � $ 
 	 (172)

where the
� �

 are the Gromow-Witten invariants defined in (150). ! �  

specifies the degree in � � � � 	  �
,

which is generated by the
� 	

and
$ * � � 	�� ���$" � � . The result of Faber and Pandharipande [68] gives all

� �



by the formula

� � � 	 � � �
��

 
 	

$ 

! 
 � ��� 
 �� � � � (173)

In this special geometry we can understand all contributions as the multicovering of the
� 	

, which is the
only non-trivial holomorphic curve in this geometry, by maps of various degree and genus.

In general non-compact Calabi-Yau can support holomorphic curves in infinitly many classes � . E.g.
for the closed string amplitudes on � ���
����� � �

[135] obtain

� "�� ( � � � �
	 	 � � $ � � � 	 �	 � �%�%� 	 �� � 	 � � � � 	 �� � � � 	 	 	 � 	 	��	 � � ��� �

� " 	 ( � � �	 � � 	� � � 	 �	 � � � 	 �� � � � � � 	 �	 � � � � 	 � � 	��	 �
��� �

� " � ( � �
� � � �

� 		 �
� � 	 �� �

� � 	 � 	 �� � � � � � � 	��	 � ���
� " � ( � � �	 � � 	 � �

� 	� � 	 �
� 	 �� � � � 	 �� � � 	 � 	 ��	 �� � � 	 � 	 � � 	 � 	��� � � ��� �

� " � ( � �	 � � � 	 � � �
� 	� � � � �

� 	 �	 � � �
� � 	

�
	 � � �

� � � � 	 	 �� � �
� � 	 � � � � � 	��	 � � �

��� �
� " � ( � � �� � � � � � � � � �

� 		 � � � �
	
�
� 	 �	 � �

	
�
� � 	 	 �� � � 	 �

� � � � 	 	 �� � 	 � � � � � � �
	 � 	 � 	 �� 	 � � �

� ��� �
(174)

Due to the non-trivial holomorphic curves in all degrees it is hard to to give
� � � 	 � � in closed form, even

though closed expressions for the
� " � ( � � � can be given using mirror symmetry and the � -model [135].

The combinatoric of the � -model localisation calculation is involved. E.g. for the genus
�

degree
�

terms
one has to sum over � � 1)�

graphs.

6.14 BPS invariants for branes wrapping curves

Many fascinating topological and physical ideas enter the reintepretation of
� " � ( � � � as BPS counting

function[91]. The argument splits in a supergravity and a geometrical part

� The
��� �

supergravity action contains terms � � � � 
 ' � ��� � � " � ( � � 	 �� � � � � � �� 
��'� 
�� , which cou-
ple the anti-selfdual part of the curvature 
�� with the anti-selfdual part of the graviphoton field
strength � � . The above terms are part of the component form of 
 ' � � � � ��� � � " � ( � � 	 �� � � � ��� ��� 	 ,
where � ��� � � � � ! 
 � � �
�� � ! 

�� and � � �
�� � � � � � 
�� � 
 
�� � � � � � � � � � � � ���

is a chiral multiplet.
The structure of

� � �
supergravity in TypeII string on � implies that in the topological limit� " � ( � � � � 
!� � �� � �� � � " � ( � � 	 �� � is identified with the topological string free energy (209) [20][8]. It

depends only on vector multiplets. This statements require like (52) a certain genericity assumptions.

Copyright line will be provided by the publisher



pop header will be provided by the publisher 63

T
T

T
T

RR

Fig. 23 BPS saturated one-loop graph contribution to
� � 2 � ��� �

Moreover supergravity puts the following restriction on this amplitude[8]. It is generated at one-loop
and at one-loop only, the corresponding graph is shown in Fig. 23. The only particles which can con-
tribute in the loop are BPS states. Their mass is determined by their charge. Once mass and spin of the
BPS particle is known is contribution to

� " � ( � � � can be evaluated by a Schwinger-loop calculation.

� In the geometrical consideration one has to identify the mass and spin of BPS particle with the geo-
metrical properties of the embedded branes. The mass is easy and will be discussed below. The spin
part is more complicated and is discussed in Sec. 6.16

Because the type II string coupling � � � � is in a hyper multiplet and the above decoupling one expects
that the strongly coupled � -theory-

��� �
and the weakly coupling IIA description

��� �
are equivalent

points of view. The former description involves BPS states as coming from � �
branes the latter as coming

from � � � � 1 bound states. In both cases the extended branes wrapping curves � in � in the class � .
The mass is given straightforwardly as

� � � 	 � � � � # � � �$" � � � & � � ��
� 
 	 � �

�
�
� � � � �#" � � 	 � � � � � � 	� � 	 � �  	

(175)

were the first term is the minimal volume of the curve on which the extended brane wraps. The second can
be either viewed as the momentum � of � �

on the � theory circle or as the number � of � 1 branes. The
latter form in arbitrary number boundstates with the � � brane.

Consider now an M-theory compactification on � to five dimensions. The space time BPS states fall
into representations of the rotational group of the 5d Lorentz group � � � � � 	 ��� � � ����� � � � � ���
� 	 .
As mentioned the low energy interpretation of the free energy

�
in 4d relates it to the 5d BPS spectrum

through a Schwinger one loop calculation of the 4d 
 ' � � � ��� �� 
 � � effective terms27. Note that these 4d
calculations are sensitive to the off shell quantum numbers, i.e. to � � ���
� � � � � ����� 	 . Only BPS particles
annihilated by the supercharges in the

�
	 	��
 � representation contribute to the loop. They couple to the anti-
selfdual graviphoton field strength � and the anti-selfdual curvature 
 only via their left spin eigenvalues of
their representation under � . The right representation content enters solely via its multiplicity and a sign��� �
� � � �� , in particular any contribution of long multiplets is projected out by these signs. To summarize,
the dependence of

�
on the BPS spectrum is via a supersymmetric index

� � � 	 * � � � %�� ��� �
��� � � � � �� � � � 	
(176)

where � � � " �� � � " �	
, and all spin information entering

�
is carried by � 
��
 � � � ���
	 � ��� times the

following combination

�
� �� % � ��

��� �
� � � �� ��� " �	 � �
� � '� �� % � ��
� ��� � � ��

� 
 �
� " � (' � � � (177)

27 A similar one loop calculation corrects the effective gauge coupling �
2 � ��� � � � � through threshold effects in heterotic

strings [124].
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The multiplicities of the BPS states
� '� �� % � �� enters only via the index like quantity � " � (' . Indeed the basis

change of the left spin from
� � � �

to

� � � � � �� � � � � � 	 � � � � � (178)

relates the left spin to the genus � of � as explained in Sec. 6.16 and defines the integer Gopakumar-Vafa
invariants � �' associated to a holomorphic curve � of genus � in the class � . The expansion of

�
in terms

of these BPS state sums is now obtained by performing the Schwinger loop integral, which for given mass
� � � 	 � � and

" �� quantum numbers is

� �
�

� *
*

� � � �
 � � ��� � �� � � � %���� � � � � � � � � �� � � (179)

In performing it for all � � � 	 � � and � we note that
� � is a very convenient basis as

� % � � ��� � � � � � � � � �� � �
 � ��� � �� � � � and that the sum over � gives a . function, which makes the
� * integration trivial, so that we

get quite straightforwardly

� � � 	 � � � ��
� 
 �

� � ��� � � " � ( � � �
� � � � �

� � � � � � ��� ��
� 
 �

�
' � � � "!' % � (

��
� 
 	

� " � ('
�
�
� � � ��� � �� � � ��� � $ ' �

� � � � �
� � � � � � ��� ��

� 
 �
�

' � � � "!' % � (
��
� 
 	

� " � (' ��� � � ��� 	 � � � " � � � � (
�

$ ' � 	
(180)

with

$ ' � � � � � � � �� � � � � �
� �

� � 	 � � � * � $ � �� � $ � � �� 	 $ � � � � � �
The cubic term � � � � in the Kähler parameters � � is the classical part of the prepotential

� "(� ( given in
(295) without the constant term, and

� � � � � � &� 
 	 � ��%� 
 ' � � � � � is the classical part28 of
� " 	 ( . Using the

expansion

�
�

�
 � � ��� � �� � � � �
� 
 �

� � ��� � ��� �
� � � 	 � � �� � ��� � � ��� � �
� ��� �

(181)

and a � � � � � � �

� 
 	
	� � regularization of the sum over � with � ��� � � � � � � 
 �

� � 	 , we see that for � � �
the � � 1

constant map terms from localization (144) [68]

� � 
 '� % � � ��� � � � � � � � � �
���� 	 ����� �
� � � �

% � � � � � ��� � %� � � � � � �
� ��� � � ��� � (182)

are reproduced if we set � "(� (� � � � � . This choice also reproduces the constant term proportional to � � ��� in� "(� ( . In
� " 	 ( there is a � ���
� term which requires an additional regularization. More importantly expanding

28 These terms do not follow entirely from the Schwinger-loop calculation and added here for completness.
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(180) in
�

and comparing with (209) predicts the multicoving formulas at all genus. Specialized to one
Kähler class such that � is identified with the degree ! �  

we get

� "�� ( � � � � �� � � � � ' � � � �
� � �� ���$" � � � � ��� �

��

 
 	

� "(� (
 � � � � $ 
 � 	
� " 	 ( � � 
�� � �� 	 � ��


 
 	
� ��
� � "(� (
 � � " 	 (
 � � � 	 � $ 
 � 	

� " � ( � ���� � 1 � ��

 
 	

� �
� 	 1 � "(� (
 � � " � (
 � � � � 	 � $ 
 � 	

� " � ( � ��� �
� � � % � � � � � ��� � %
	 � � � � � �
� � ��� � � �
�

� ��

 
 	

� % � � � % � � 
� � � � � � �
� �
� � ��� � � � � � 
��� � � ��� �

� ��� � � � � ��
� � ��� 	
 � � � 
 � �0� � � � � � $ 
 � �
(183)

Using resummations like (181) one checks that the partition function ��� � � � �
	�� � � � � � � has the follow-
ing product form29

� � � ���� � � 	 � 	 $ � � �
'

� � ��
� 
 	

� � � $ �� $ ' � � � �
� 

� � ��

� 
 	
� ��� ��

 
 �

� � � $ ��� 
 � 	� $ ' � " � 	 ( � 
 � � � � � �� �
� �
� 

�	�

(184)

in terms of the invariants � " � (' . This product form resembles the Hilbert scheme of symmetric products
written in terms of partition sums over free fermionic and bosonic fields with an integer

� � �
�
charge as

well as the closely related product form for the elliptic genus of symmetric products. As it has already
been pointed out in [90], it is also reminiscent of the Borcherds product form of automorphic forms of
 � � 	 � 	� � , see [25] and [142] for a review. Here the idea is that integrality of the � " � (' is related to the fact
that they are Fourier coefficients of other (quasi)automorphic forms, see also [130].

6.15 BPS count, heteroric string and modular functions

As the above ideas originate to some extend from the duality of N=2 Type II to the heterotic string, some
of the strongest predictictions for the � �' invariants on compact Calabi-Yau manifolds can be made if dual
pairs of heterotic/type II compactifications are known, see Fig. 1. The relevant Calabi-Yau manifolds are
K3 fibrations over

� 	
[122] [133] and the heterotic weak coupling limit is translated to infinite volume

limit of the base
� 	

. The heterotic prediction relies on a perturbative WS one-loop calculation in the
weak coupling limit and makes therefore only predictions for � �' if � is a class entirely in the � � fibre.

Information about other classes �� is supressed, because of
$�
' � 1

in the weak coupling/infinite base limit.
The one-loop (torus) amplitude is[9]

� � ���
� � *�* � ��� ��
�
% � % � �� � � �

�" 	��
� � � � 	 � � * �� � * � � � � � �� 
 � � � 	 � �/� �� 
 � � � � � * �
	�' � � � * 
 � (185)

The integrand can be understood as an index on the heterotic WS theory very similar to (323)[108] and the
integral over the fundamental region

�
of the torus can be calculated using the modular properties of the

integrand in an ingeneous way[108][25] [154]. For the � � fibrations without reducible fibres one finds in
the holomorphic limit[138]

� � � � � 
 � � % ��� � 	 � 	�� � ��� ��� �� � �
� � ��� � � � � � � ���� 	 �

� � ��� � � � � � ��� ��� � � � � � � ��� � 	� � � � � � (186)

29 Here we dropped the ����� + � �"! �# � �2* + ��0�0 factor of the classical terms at genus � -&, .
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Similar as in the case of elliptic Del-Pezzo surfaces
�

embedded in Calabi-Yau manifolds [116] the product
factor can be interpreted as the Goettsches formula for the cohomology of the resolved Hilbert scheme of
points on the surface

�
or the � � respectively. The formula (186) can also be viewed as an extension of

the analysis of [215] to a situation with less supersymmetry.
Example: The degree

� �
hypersurface in the weighted projective space � � � � ��	 �
	 � 	 � 	 � � , see Sec. 9.10

is a K3 fibration, which is dual to the
� � heterotic string discussed in [122]. In this case � � $ � is [129]� "�	 (� � �

� � � � � � � �� � �
� � �

	
� � �
� � � 	 � � $ ��

� �
� ��� �
� $ � ��� �
, where � � $ � � � � � � $ � �� and � � � $ � �

� ��� � 
 � % � ��� � 	 � � � $
�
� generate the ring of modular forms for the congruence subgroup � � � 	 � , and � � �( � � � � � � � ��� � � � � � � ��� � � � � � . The embedding of the Picard lattice of the � � into the Calabi-Yau � is

specified by the replacement of
� � ��� � $ 
 � 	" � � �!( � � � � � � � � � 
 


� � � � � � � $ '�� � in (186), where � is the single

class in the � � fibre. Comparing with (180) one gets predictions in a closed form for � �' for all � and all
� . Below are the first few listed �

� ��, � � ' �����
� � '��	� � �	��
�� �
�	�	�	��
�� � '�� ,�� � � � '��	� '������, � � '�� � � , '��	�	�	� ' � ,�� ' �	� '��	� � �������
� � ��� 
	'��	� � � ,�� ,�,�� � ������ � � � ��� � �	� �	� �����' � � � ,�,�� ' ������ � � � ,�� �����
...

...
...

...
... �����

Many of these predictions from string duality have been checked in in [138] using the geometrical
techniques described in the next section .

6.16 Geometric interpretation of the BPS numbers and their relation to Donaldson-Thomas
invariants

As usual in theory of BPS solitons the degeneracy of the BPS states comes from the cohomology of
the moduli space of the solitonic solutions, in this case of the brane solution. This moduli space is the
vacuum manifold of the brane world volume theory, which is parametrized by the zero modes and the
cohomological information is extracted by quantizing this zero mode sector as shortly discussed in Sec.4.1.

In the following we will discuss only single wrapped branes. For the M2 brane the eleven dimensional
tangent space splits

1 � � 	 � � 	 	 � � ' � � 1
. The normal space

� 	
is decomposed into

� � � ,
where

�
is the normal direction in the CY M and

�
are the spacial directions of

� ! Minkowski space.
The CY tangent space splits as well

1 � � � � ' � � � � 1
. The unbroken space-time symmetries� ��� � ��
 � 	 � � � � � �
��� transversal to the brane become 
 -symmetries of the fields on the brane-world-

volume. For holomorphic curves in � complex dimensional Kähler manifolds the generic structure group
of normal bundle

��
 ��� � � � �
� � restricts because of property (ii) in Bergers list, Sec.9.9, to
� � � � � ��� . For

Calabi-Yau manifolds it follows from the adjunction formula (402) and the vanishing of the first Chern-
class that � 	 � �
� # � � � � ��� ��� � � � � 	 � � � � � , i.e. over � the

� � �
� � � � � � ���
� �
can be identified

with the
� � � � �

connection in the canonical bundle � � � � � � . This identification of the 
 -symmetry
transformation of the normal bundle with the WS transformations on � leads to a natural twisting of the
brane-world-volume theory [21].

Let us describe the transformation properties of theses fields on the brane under
� � � ��
 � � 	 � �

the
Lorentzgoup on the brane and

� � � � ��
 � 	 � � � � � � � � % � � ��� � �
� 	 % � the R-symmetry from the normal
direction

� Before twisting the eight fermions � � � � 	�� � � transforms as spinor with helitity � � � 	� under� � and as spinor under
� � � ��� ���
� � % � � ��� � �
� 	 % � � � � � � � % � � ��� ���
� 	 % � . The

� � � � � % �
connection is identified with the connection in � � . It changes the helicity of fields in

!
� therefore
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by
1�	�� 	� depending on their

� ���
� � % � charge

� � � � 	 � � 1 	 	� � � �
� 1�	 	� � � � � � � 	� 	 1�� � �

� � �
	 1�� � � �
� � � � � 	� 	�� 1�	 	� � � �

� 	� � 	 % � � � � ��� 1 � 	
� 	� 	 1�� � �
� 1�� 	 % � � � � � �
	�� 	� 	 1�� � �

� 1�� 	 % � � (187)

here the
� ���
� � % � charge is combined with the helicity in

� � to the first entry � � � 	� 	 1�	 � � in the
twisted representation � � , which implies that the field is a section of � &� .

� For the eight bosons � corresponding to the coordinates of the normal directions

� � � 1�	 � � 	� 	 	� � � �
� 1 	 1�� � � � � � 1�	 1�� � �

� � �
	 	� � � � �
� � � � 1�	
� 	� 	 	� � � �

� 1�� 	 � � � � � 	� 	�� 1�	 1 � � �
� 	� � 	 � � (188)

Clearly the zero modes of the bosons transforming as � � 	� 	
� 1 	 1�� � �
� 	� � 	 � � and the fermions trans-

forming as � � 	� 	�� 1�	 	� � � �
� 	� � 	 � � correspond to deformations (and superdeformations) of � in the CY

direction and parametrize the moduli space - � of movements of � within � . Fermionic and bosonic
zero modes form the field content of a supersymmetric � model on - � and after quantization one gets the
cohomology of the moduli space of - � weighted in addition with the 
 quantum number of the fermions
modes from their

� � ����� � % 	 transformation. The corresponding representations are identified with the
Lefshetz decomposition of the cohomology of the Kähler manifold (351) - � . Other fermionic modes in
� � transform as

�
scalars the

� 1 	 1 �
and

� ��	 � �
form and � holomorphic and � antiholomorphic one forms

on the genus g curve � if the latter does not degenerate. The corresponding zero modes are then forms on� � � � �
�
dimensional torus, which form

� � ����� � % � representations
� � 	� 	 1�� � ��� 1 	 1 � � � � 	 , cff. (351). By

the definition (177) only the multiplicity
��� " �	 � � �

and the sign
��� �
��� � �� of the cohomology of - � are

relevant for the determination of � �' . This alternating sum is just the Euler number
��� � � � � � - � � , with

� � � � � � � - � � . For classes � in � with non degenerate genus � curves we get therefore as coefficient
of
� � � 	

� �'
����� �
� � � � - � � � (189)

An instructive example is a that of a ruled surface (RS) inside � . Familiar ruled surfaces are the Hirzebruch
surfaces � � fibrations of a

� 	
bundle over

� 	
. More generally the base can be a higher genus surface )	� .

We want to calculate the � �' for the class of the fibre. The genus zero fibre curve � � � 	
is smoothly

embedded and zero is the maximal genus of a curve in the class. Due to the fibration structure of the RS
the moduli space - � � ) � is identified with the base. So (189) applies and gives � �'

� ��� � � 	 � � ) � � �� � � � . The embbeding of ) � is locally described by � � � � � � � � �
� ) � with
� � � � � � � � . Unless

� � 1
(
� � � � � �

) the curve ) � is not rigid in � and for �'� 1
the curve ) � can be deformed to

� � � � � �
points in � , as in the Fig. 24.

The
��� � �
� � % 	 content before deformation is 
 � � � � 1�� � 
 	� � with � � 
 � � � � � � � � � � ) � �

and after deformation 
 ) � � � � � �
� � 1 �
with � � 
 ) � � � � � � � � � ����� � ��� � " ��� � . I.e. the total

BPS numbers
� �� �

� % � �� change by states with � � � 1 � � 
 	� � � right representation content, when the complex

structure moduli space of � is deformed. So in contrast to the � " � (' , the
� '� �� % � �� are not invariant under the

change of the complex structure. Notice that the successful microscopic interpretation of the 5d black hole
entropy requires deformation invariance and relies on the index-like quantity � �' and not on

� �� �
� % � �� .

Example: Such ruled surfaces appear typically if one embedds the Calabi-Yau in a weighted projective
space. E.g. the degree

� 	
hypersurface in � � � �����
	���	���	�� 	 � � , see Sec. 9.10, contains a ruled surface

with a genus 15 curve as base30. The genus � � � �
curve is semi stable because the relevant complex

30 Such case have been investigated [137], [127], because there have interesting gauge symmetry enhancements, when the � �
shrinks.
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deformation moduli are frozen as an artifact of the embedding. For other realization of the same family
that is not necessarily the case.

Above is a good example to get a rough idea of some concepts of virtual intersection theory. The virtual
dimension of the brane moduli space here is expected to be zero by (149) or here equivalently by (193). In
this preferred situations the intersection problem is reduced to point counting, but the situtation might not
be achievable as in the example above and the moduli space remains positive. In this particular case the
excess intersection calculation amounts to integrate � 	 � � ) � � over ) � .

P1 P1

C
M  = Σg

C
M  = 

complex structure
      deformation 2 (g−1) points

Fig. 24 The index � 2= of the � �
- � " moduli space of the fibre in a ruled surface is constant under complex

defomations, while the
� 2� �� � � �� jump.

In the type IIA picture one transversal direction parametrized previously by a scalar in � 1�	
� 	� 	 	� � � �
� 1 � 	 % � �

is dualized on the 3d World-Volume to a
� � � �

gauge field. The flat
� ���
�

connection has
� � zero modes on

� exactly as the � � �
	
� 	� 	 1�� � �
� 1�� 	 % � � fermions in � � . Since these zero-modes parametrize the

� � di-
mensional torus � 
 � � � � , called the Jacobian of � see [101] Chap 2.7, one gets a SQM on a space - with a
fibration structure � 
 � � � � � - � - �

, see Fig. 25. The proposal [91] for the � � � �
� � � � � � � �
� � 	
ac-

tion on - is that � � � - � � � '� �� % � ��
� " �	


 	 � � � 	 " �� 
 � � 	 � � � . Again one can conclude that the contribution � �'
of smooth genus curves in the class � is the

��� �
� � � � � weighted sum of the right representations multiply-
ing the non degenerate fibre contribution

� � in the representation decomposition. This is
��� � � � � � - � � .

On the other extreme are the curves which are maximally degenerate. They have genus zero and come
from genus � curves with � nodes. The Euler number of the fibres with . nodes is � � � ��� � � � . � % � . Due
to the fibration structure the Euler number of � � - �

is calculated as the Eulernumber of the locus in the
base where the completly degenerate fibres sit times one. This is the

��� �
� � � � � weighted sum of the right
representations on the cohomology of this locus and therefore

� �'
����� �
� ��� � � "

�
( � � - � �

(190)

In [128] a calculational scheme for the intermediate cases was given. E.g. if no reducible fibres contribute
one obtains

� ��� �'
� ��� � � " ��� � "

� � ( � � ( �
�
� 
 �
� ��� � % � � � � � � " � ( � 	 � � % ! * �

�
� �

! � 	�
� 
 	

��� � � � � � ��� � � � 	 � � % � * � � �
(191)

Here � " � ( is the moduli space of the curve � with
"

points, e.g. � "(� ( � - � . In the case that � lies in
a surface

�
in � , one can use similarly as in (186) formulas for the cohomology of Hilbert scheme to

calculate � � � " � ( � , see [128] for examples.
As we saw above we obtain BPS states by wrapping D–branes on supersymmetric cycles in � . More

generally we can wrap 6-branes on � itself, 4-branes on divisors and 2-branes on a curves ��� � ,
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Jac(C)

smooth C
2 nodal curve

MC

I

Ig

g−2

degenerate Jac(C)

Ig−1

1 nodal curve

Fig. 25 Moduli space of � �
- � " brane bound states as a Jacobian fibration over the deformationspace���

.

possibly bound to some 0-branes. We leave out the 4-branes as we don’t know an index yet carrying
deformation invariant information. At the level of RR charges a configuration of the other branes can be
cast into a short exact sequence of the form1 � ��� � � � ' � � � 


� � 1
(192)

where
�

is the ideal sheaf describing this configuration and � is the subscheme of � consisting of the
curve � and the points at which the 0-branes are supported. Counting BPS states therefore leads to the
study of the moduli space

� ! � � 	 � � of such ideal sheaves
�

, which has two discrete invariants: the class
� � � � � � � � � � 	� �

and the number of 0-branes � � � � � 

�

plus an integral contribution form � .
With the analogue of the Hirzebruch-Riemann-Roch theorem for sheaves, the Grothendieck-Riemann-
Roch theorem31 , one can calculate the virtual dimension of the deformations of ideal sheaves

�
inside a

threefold � as [157]�
� � � � � � �
� ��� 	 # 	
�
��� 	�� ��� �
� ��� 	 # �

�
��� 	�� � � � 	 # � �

(193)

This reflects again the special rôle of Calabi–Yau threefolds and one expects that the number of BPS states
with these charges is obtained by counting points. As is in the case of Gromov–Witten invariants, these
configurations can appear in families, and one has to work with the virtual fundamental class. However the
situation is considered easier in many respects. For example there is no finite automorphism group acting
on

� ! � � 	 � � so one expects directly integer BPS numbers as result. This number of points is called the

Donaldson–Thomas invariant
�� " ! (' [64], [188].

Since both invariants, Gopakumar–Vafa and Donaldson–Thomas, keep track of the number of BPS
states, they should be related. The relation is in fact a consequence of the S–duality in topological
strings [165], and takes the following form. The factor in (184) coming from the constant maps gives the
McMahon function � � $ � � � � � � � 	" 	 � 	 �	 ( � to the power

� � . This function appears also in Donaldson–
Thomas theory [157], calculable on local toric Calabi–Yau spaces e.g. with the vertex [1]. However, in
Donaldson–Thomas theory the power of the McMahon function is � . Note also that if (180) holds then

�

or � restricted to this class is always a finite degree rational function in
$ � symmetric in

$ � � 	
	 	 , since

the genus is finite in a given class � . Thanks to this observation one can read from the comparison of the
expansion of � � � � in terms of Donaldson–Thomas invariants

�� " � (' �  

� � � �
�� � � 	 $ � 	%$ � � �
' % ! � �

�� " ! (' $ !� $ ' (194)

31 For Calabi-Yau 3 folds there is an even simpler agument that the differerence below vanishes. Serre duality applies the 
 ���
groups and relates 
 ��� �� and 
 ��� �� on three folds with trivial canonocal bundle.
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with the expansion in terms of Gopakumar–Vafa invariants [157]

� � � ���� � � 	%$ � 	%$ � � $ � ��� � � 
� � � � � �
�� � � 	 � $ � 	%$ � (195)

the precise relation between
�� " � (' and � " � (' . Eq. (180) and (184) then relate the two types of invariants to

the Gromov–Witten invariants
� " � (' � �

as in (172).

7 Large N transitions and the topological vertex

The most effective method to solve the open and closed topological string on open toric Calabi-Yau mani-
folds imploys the connection of open topological string to Chern-Simons theory [199].

The procedure involves to steps. The first is to provide a building block of the open string amplitude on
a
�
�

patch. Such a patch is defined by the trivalent vertices in the figures 20. The most general boundary
conditions for the open string in this

� �
geometry are stacks of arbitray numbers of � -branes wraping the

three special Lagrangian submanifolds discussed in Sec. 6.10. The second step is a space-time surgery
procedure for the amplitudes. It is based on the principles of localisation w.r.t. to the

� �
actions of toric

geometry. The half lines in Fig. 6.10 support only disks with arbitrary boundary conditions � � on each of
the

� 	
’s of the brane configuration and the closed lines in Fig. 20 support only

� 	
components of the image

curves. Since the latter can be glued by disks, it is suggestive that the sugery will procede by summing
over all possible boundary conditions of the disks. More precisely the contribution to the degree of a map
is fixed by the degree ! � of the

� 	
components of the image curves. Two disks with winding total � � on

the left and on the right glue to a degree ! � � � � component of the image curves. For this reason one
has has to consider only finitely many boundary conditions if the degree of the map under consideration is
fixed.

7.1 Chern-Simons Theory as Gauge Theory description of the Open String

One of the crucial insights used in the derivation of the vertex are the equivalence of the open topological
string on � � � � with Chern-Simons

� ��� �
gauge theory on the real three manifold � � . In this geometry

there is a canonical symplectic form � � � �� 
 	 � " � � � $ � where
$ � are coordinates on � � and

$ � are
coordinates of the cotangential bundel. The � � section is at

" � � 1
and obviously � � is Langrangian

submanifold � % ' � ��1
. We can define an almost complex structure with coordinates

� � � $ � � � $ � . This
is enough to define the � model. In general the complex structure is integrable and � is Kähler. The form
�
� ��� 	 � ��� � � ��� � is of type

� ��	 1��
and no-where vanishing32 and

�
% ' � � � �

� � � � � so that � � is special
Lagrangian as well.

The special Lagrangian boundary conditions are the ones which respect the vector symmetry and the
� twisting with , � as BRST operator is possible in this geometry. As we will see below the � type
reduction of open string field theory in this geometry is not corrected by world-sheet instantons. It includes
the coupling to worldsheet gravity and in absence of non-trivial maps this becomes similar as the � -model
directly a problem of integrating over the open string moduli space - � % & . Like in the � -model (306)
one can use the close similarity between the topological structures of the topological subsectors and the
bosonic string provided by (61) in defining the measure on - � % & .

The key step is the reduction of the twisted open string field theory action on � � � � to its zero mode
sector. This action is defined by an integral over all open string field functionals

�
with a BRST operator, and � the folding star product

���  � � �
�
� � �

�
� � � , � � �

� � � � � � �
(196)

32 With point d.) of Sec. 9.8 this also defines a local Calabi-Yau manifold.
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In the � � � � geometry (196) the zero mode sector is decribed by a Chern-Simons theory, whose gauge
group is

� ��� �
. In the reduction step the following identifications are made

�
� � �

�$"
� � � 	 � � � 	 , 	 , � � � 	 � � � 	 � � �

' �
	

(197)

where � is a
� ��� �

gauge field one form corresponding to the trivial bundle over � � , see [199] and [159]
for a review of the reduction. Hence the actions reduces to the Chern-Simons action

� �  �
�#"

� � � �
' �

�
� � � � � � �

� � � ��� � �
(198)

It is important to understand to what extend WS instanton corrections are captured by this action. Like in
Sec. 6.1 the � model localization (114) implies that instantons are holomorphic maps of the WS to � .
The Lagrangian condition is designed so that minimal surfaces bounding � are

� " 	 � �
holomorphic curves.

We can integrate � � � � in � � � � with � � � �� 
 	 " � � $ � . The non BRST trivial part of the A-model action
can now be written similar as in (112) as

�
� � � �


 	 � � � 	 �� � �� � � �� � 	 �� � � 	 � � �� � � �� � � �
� � � �

� � � � � � �
� � � � � � � � � � � 1 	

(199)

where the last integral vanishes, because its integrand is pulled back from � where � vanishes. The right-
hand side is positive unless � is a constant map (zero mode) and because of the boundary conditions it
must map ) � % & to � . The action (198) captures exactly these degenerate maps and is uncorrected in the
� � � geometry. However non-trivial open string instantons do exist, when � is not a trivial class, i.e in
particular in any compact CY and on more complicated non-compact examples where more SLAGS exist.
In this case we have as usual a weight � � � 
 � � �� � � � for the bulk instanton action and gets an instanton
corrected action

� � � ��� �
�#"

� � � �
' �

�
� ��� � � � �

� � � ��� � � ��
�
� � � � � � � % � �
	�� � � � � � 	 (200)

where
� � � �

is a determinant ratio.
A reduction for the � twisting can done on any Calabi-Yau space for the boundary of space filling �

branes. In this case the identifications are

� � � 	 , 	 , � � �	 	 � � � 	 � � �
'
�
� (201)

lead to the holomorphic Chern-Simons actions of a field theory in six dimensions

� � �  �
�
� � � '

�
� � �� � � �	 � � �

� ��� � � � � �
(202)

Dimensional reduction of this action locally along the normal bundles to holomorphic curves in � lead
tractable B-model open string calculations in non-compact Calabi-Yau manifolds [4][3] and the matrix
model approach to the � -model [57][58].

7.2 Geometric transitions

We discussed in Sec. 7.1 a gauge theory description of the open topological string � � � geometries. Ge-
ometric transitions link such open string geometries to a dual geometries for the closed topological string.
More precisely the claim is that the large

�
gauge theory corresponds exactly to the closed topological
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string in the geometry after the transition. This is a topological version of t’Hoofts conjecture claiming
a string description for large

�
QCD. In comparison with Maldacenas conjecture the topological closed

string side corresponds to type IIB on � � � � , while the topological gauge theory side corresponds to the	 ! ��� 	
super Yang-Mills theory on the branes.

The simplest example of such a transition is the conifold transition. Consider the family of affine
complex quadratic 3d hypersurfaces � 


in
���

� � � 	 � � ��� �	 ��� �� ��� �� ��� �� � � � 1��
(203)

� � is a singular hypersurface, because � ��� 	 1 � � 1
and
� � "���% � (� �

�
� 1

, � � have a common solution � � � � 1 

,

called a nodal singularity or node. One calls the point � � 1
in the parameterspace where the node appears

the conifold point. The name comes from the fact that for � � 1
the solutions

�
of � ��� 	 1 � can be rescaled� � ��� 	 1 � � 1���� � � � ��� 	 1 � � 1 �

so � � forms a cone.
The node in � � can be smoothed in two ways. Either deform the hypersurface � � � � 
 �
 � . Then the

node is deformed to an
� �

and the total smooth geometry is that of the cotangent bundle � � ��� of the three
sphere. To see this, consider real � � 1

and introduce real parameters
��� ! 	 � ! � by

� ! � * � ! � � � ! . Written
as real equations (203) implies �� � � � ! 
 	

� � ! � � � with
� � * � � � � � ! 
 	 �

�! � 1
and � � � 
 	 � ! � ! � 1

.
From the first equation follows that

� ! parametrize a compact
���

. We can chose a
���

section of � 

with

radius
� � � � for � � � 1

. The second equation ensures that � ! parametrize the non-compact cotangent
bundle of the sphere. To see this consider

� �� � � � � ! 
 	
� ! � � ! � 1

and identify the cotangent direction� � ! with � ! . As a more detailed exercise one may cover � � ��� by patches and local coordinates
� �� 	 �� �

and check that the �� coordinates transform as cotangent bundle of
� �

. As a further exercise one may show
that as cone over

� � � �
� the base of � � is

��� � ��� , see [36]. The reader should notice that the choice
� � � �

� does not restrict the generality of the construction. A phase in � � % � % � � � can be absorbed by

defining
� ! � * ��� ! � � � ! � � �
	� and modifies the choice of the complex structure in � � � � .

One can also resolve the node in � � by blowing up an
� 	

. The idea of a blow up is to modify � �
only over the singularity

� � � � � 1 
 � � ��� 1 

. I.e. we search a smooth complex manifold �� �

so that a biholomorphic map
" * � �� � � " � 	 � � � � � � � � � � � exists. To find �� � we make a linear

change to new complex coordinates
� 	 � �

��� 	 � � � � and
� � � �

� � ��� � � � � � � , so that � 

is described by

� 	 � � � � � � � � � . Now we define �� � by two equations

� � � �� � � � � � 	 � �
� � � � � � � �� � � � 1��

(204)

Here
� � � * � � � are homogeneous coordinates of

� 	
, i.e.

� � � 	 � � � � � � � � 	 � � � � with � � � �
and� � � 	 � � � �� � 1�	 1 �

. To see that (204) describes a smooth threefold we can view it e.g. as complete inter-
section defined by � 	 � � 	 � � � � � � � � 1

and � � � � � � � � � � � � � 1
. A singularity of a complete

intersection � 	 � 1�	 ����� 	 � � � 1
occurs if

%�
 �
� � � � �� � � � & �
for some point in � 	 � 1 	�� ��� 	 � � � 1

.

This is not the case here, because
� � � 	 � � � �� � 1�	 1��

. Moreover as
� � � 	 � � � �� � 1�	 1 �

(204) enforces�
� # � � � 	 � � � � � � � � 1
and every non-trivial solution to the latter equation fixes uniquely an equiv-

alence class in
� � � * � � � . This makes

" * � � 	 	 � � 	 � � 	 � � 	 � � * � � � %� � � 	 	 � � 	 � � 	 � � � biholomorphic
outside

�
and

" � 	 � � � . The sigular set
�

is the trivial solution ��� 1
in � � . Over this point in � � the

coordinate
� � � * � � � is unrestricted and parametrizes

� 	
, so that

" � 	 � � � � � 	
. As an exercise choose

coordinates for the two patches in
� 	

, i.e. for
� � �� 1

,
��� � � � / � � 	 � 	 � � � 	 � � � � 	 � and for

� � �� 1
,� �� ��� � / � � 	 �� 	 � � � 	 �� � ��� � � . (204) describes the transition functions for the non-compact

�
directions,

which transform as the line bundle coordinates of �� � � � ��� �
� � � ��� �
��� � 	
, see (400). Note that

(204) identifies the
� 	

coordinate
� � � � / � 	 � � � / � � with the direction in which

�
is approached

in
���

. The geometry � ��% � * � �� � has also a parameter, namely the size � � 
 � � � of the
� 	

, which
is not visible in (204). To make it visible we pass to the sympletic quotient construction by introduc-
ing variables � � by

� 	 � � 	 � � , � � � � � � � , � � � � 	 � � and
� � � � � � � , which fullfill the constraint
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� 	 � � � � � � � �21
identically. If

� " 	 ( � � ��	�� ��	�� �
	��
�
acts by (158) on � � then (157) defines �� � . To

see this identify the patches for � 	 �� 1
given by

��� � � � / � 	 	 � 	 � � 	 � � 	 � � � � 	 � � � and for � � �� 1
by� �� � � 	 / � � 	 �� 	 � � � � � 	 �� � � � � � � � with the ones above. The constraint

% � 	 % � � % � � % � � % � � % � � % � � % � � �
in the symplectic quotients contains with � the size of the

� 	
. Note we could also identify

� 	 � � 	 � � ,� � � � � � � , � � � � � � � and
� � � � 	 � � then

� " 	 ( � ��� ��	 �
	��
	 � �
�
. The two identifications are related by

a flop.
For the applications of the transition to toric non-compact Calabi-Yau manifolds it is importnant that

the � � action defined in (163) is preserved during the transition. In the patch, where � � �� 1
it acts as� � 	 	 � � 	 � � 	 � � � %� � � � � " � � � � � ( � 	 	 � � � � � � 	 � � � � � � � 	 � � � . This translates to an action

� � � 	
%� � � � � � � � � 	

and
� � � �

%� � � � � � � � � � on the
�

variables, which leaves the deformed conifold equation
� 	 � � � � � � � �

� invariant. Hence it is possible to understand the � ����� geometry also as an � � � � fibration and re-
construct it from the degenerations of the

� � ���
	 1�� � � 	 and the � � � 1�	��
� � � � cycle of � � . The
former vanishes at

� 	 � 1 � � � and the latter at
� � � 1 � � � . Both loci in � 


have the topology of
a cylinder whose

� 	
is the � and the

�
cycle respectively. Let us denote

� � � � � �
and assume as before

that � � �
. One choses


�� ��� �
and the two coordinates along the axis the cylinders as coordinates of the

base
� �

and
� 	 	 � � and

� � ��� �
as coordinates of the � � � � fibre. The degeneration graphs cannot be

drawn in two dimensions, because the value of

������ �

affects what cycle degenerates. E.g. for
� � 1

and� � � � the � - and the
�
- cycle degenerates. The line from

� � 1
to
� � � � is drawn in the degeneration

graphs as a dashed line. As it is shown in Fig. 26 over the upper half of the interval from
� � 1

to
� � � �

the topology of the fibration is that of a solid torus namely a
� 	

in the class � fibered trivially over a disk� � and in the lower half an solid torus build form an
� 	

in the class
�

fibered trivially over � 	 . As it is
explained in [201] the way two solid tori can be glued topological to an

� �
is to glue the

�
and � cycles

after an
�

transformation. This is the Heegaard glueing of
� �

.

b
a

a

a

b

b

D
b

aD

(0,1)

Re(z)=0

Re(z)=−µ

(1,0)

Fig. 26 The
� � fibration structure of the � � in the

� � � � geometry.

The transition can then neatly by depicted by the degeneration graphs in the � � � � fibration. Closed
lines in plane correspond to

� 	 � ���
and dashed lines into the picture correpond to

� �
. The diameter of

both is visible as the length of the lines.

7.3 The closed string geometry for large
�

Chern-Simons theory on � �����
This leads to the construction of the topological vertex [1] as reviewed in more detail in [159]. The
topological vertex amplitude is the building block for calculation any closed or open string amplitude in
any toric CY variety by

� Solving the general problem on a
� �

patch for arbitrary conditions on three stacks of � -branes on
Harvey-Lawson special Lagrangian cycles with topology

� 	 � � � [107] as in Fig. 29 This amplitude
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S3

P1

µ,0M 0,0M
0,tM

Fig. 27 The deneration loci of the
� � fibrations in the conifold transitions. The precise nature of the

fibration over the base on the left handside representing
� � � � is explained in Fig. 26. Here we show this

figure from above. The fibration over the right handside representing � � � ��� � � � � � ��
 � � is explained
in Fig. 20. The cross representing the singularity � � � � can also be seperated so that the middle line has
slope � � , which is the flopped � � � � � � � � � � � 
 � � geometry .

Fig. 28 The normal bundle to a link is not uniquely defined. In general one has an integral ambiguity. The
choice made in the right picture leads to a self-linking number � � .

can be calculated in terms of the large
�

expansion of link invariants � 	 	 � � $ � of Chern-Simons
theory on

���
[1]. In a specific framing one has

� 	 �
	 � 	 � � $ � � �

	 % � � % � �
� 	

�� � % 	 �
	���� �� 	 $$� � � � � � � � � � � �

	 �
� � � � $ � � 	 � � �� � $ �
� 	 � � $ �

	
(205)

where
� 	 �	

�
	 � are the usual tensor product coefficients and  	 � � � � � � � � � � � � �
� and

� � is the length
of the row of the � ) � � line in the Young-Tableaux of 
 . Note that

$ � � � with
�

the string coupling.
i.e. � 	 � % 	 � % 	 � is exact in

$
and contains all genus information. All possible boundary conditions on

the stack of
� � -branes are encoded in 
 . Below we list the vertices with a total of up to

�
boxes at

the outer legs
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� � � �
�

$ �� � $ � ��
	

� � �
$ � � $ � �
� $ � � � � 	 � � � �

$ �
� $ � �
� � $ � � � � 	 � � �

� $
� $ � � � � $ � �
� � 	

� � $ �
� $ � ��$ � � $ � �
$ � $ � �
� � 	 � � �

$ � � � $ � � $ � � � �
� $�� �
� � $ � �
� � 	

� �
� � $ � � $ � � �
�

$ �� � $ � �
� � $ � � � � 	 � � � � $���� $ � � � � � � $ ��$ � � � $ � �
� � 	

� � �
� $

� �� � � $�� $ � � � $ � �
� � 	 � � �
� $ � �� $ � �
� ��� ��$ � $ � � � $ � � � � �

(206)

U(N )
3

U(N )
 2

Φ : Σ g,h

U(N )1

moment map
projection of C3

|z |

|z |

|z |3

1

2

Fig. 29 Moment map projection of the vertex and an amplitude with genus 2 and boundary conditions
specified by three representations � � of

� � �
�
�

of three stack of D-branes wrapping Harvey-Lawson special
Lagrangian cycles of topology � ����� � .

� Providing gluing rules: If � � � 	�� � � and
' � � are the associated toric varieties then

� � ' � � � �
� � � ' � � � � ��� �
� 
 " � ( � � 
 " � ( � � ��' � � � � � (207)

with � is the Kähler parameter “size” of the connecting
� 	

. The quantity
��� �
� 
 " � ( � � 
 " � ( � , with� � , � the number of boxes in the Young-Tableaux of the intermediate representation, can be viewed

as propagator. Here again we ignore the data of the framing, which are essential to patch together
arbitrary toric varieties.

For instance the Calabi-Yau geometry 	
���
��� � � �

is covered by three patches, with the moment map
projection as in Fig. 31 The partition function � ��
 for closed strings is obtained by gluing three vertices
with trivial representation , � � #

on the outer legs by three propagators

� � 
 � �
	
� % 	 � % 	 �

��� �
� � � 
 " 	 � ( � � � � 
 " 	 � ( � $ � � � � � � � 	 � 	 �� � � 	 � 	 �� � � 	 � 	 � � � (208)
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1

(−1)

2Γ
e

l(Q) t−

Γ

Γ

...

...

Fig. 30 Gluing of graphs along a connecting propagator

(−2)R2

R 3
(−2)

R1
(−2)

Q Q

Q1

3 2

Fig. 31 The moment map projection that shows the degeneration of the torus action
��� � � � on � � � (

��

� �

All � represent the volume of the hyperplane
� 	

, so that � is the single Kähler parameter of � ���
������� 

.

The calculation is easily performed and by taking the logarithm we get the generating function for the
all genus contribution

� � � 	 � � �
��
� 
 �

� � � � � � " � ( � � � � (209)

All
� " � ( have an expansion

� " � ( � � '
� �
'
$ ' , where the

� �
'
� �

are the Gromow-Witten invariants for
the holomorphic map from ) � to a curve in the class � � � � � � 	� �

of the image curve in � .

8 The topological
�

-model

Since the axial
� � �
�
�

, whose gauge connection is added to the spin connection to define the � -model,
develops an anomaly of its current proportional to 
 � 	 
 "


� � 
 � � ��� � 	 � � � � �
the twisted � -model is

only consistent for Kähler manifold with vanishing first Chern class, i.e. Calabi-Yau manifolds.
Our plan for the treatment of the B-model is as follows. In next two sections we will present the

principal structure of the topological � -model and its coupling to gravity. We will then recall some facts
about families of complex manifolds. The integrability of the complex structure deformations on Calabi-
Yau manifolds will be presented in some detail following the proof of Tian, partly because it is one of
the main classical results, but also because it leads directly to the formulation of Kodaira-Spencer theory
of gravity. The behavior of the periods under infinitesimal deformations of the complex structure is the
preparation for the derivation of the special Kähler geometry relation from geometry. After that we discuss
two methods to obtain the Picard-Fuchs equations, which play a central role to actually solve the B-model.
The quintic hypersurfaces is the main example, however we aim for a presentation, which paves the way
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for generalizations to the bulk of the known Calabi-Yau; complete intersections in weighted projective
space.

8.1 The topological � without worldsheet gravity

The scalar BRST operator is in this case, see table 3,

, � � �,�� � �, � � (210)

The scalar fields on the worldsheet are conveniently chosen as

� � � * � � � � � �� � � � �� � 	 � � * � ��� � � � � � �� � � � �� � 	 (211)

while the one form fields are

� �� * � � �� � � # ��� � � �
	 1�� 	 � � �� * � � �� � � # ��� � � 1�	��
� �
(212)

The supersymmetry transformation . � �� �, � � �� �,�� is obtained by setting �� � � � �� � � �� and
� � � 1

. � � � 1 	 . � � � � �� � � �. � � � 1 	 . � � � � 1
. � �
 � � � �� 	 
 � � � (213)

The zero form observables � "(� ( are now related to forms in

�
"(� % � ( � � 	�� 	 � ��% 	 � �

with the identification
of the scalar Grassmann fields on the worldsheet to forms and vectors on � � � � 	 � � � � and

� � 	 �� $ � . I.e.
to each form on � of type

� � � � � � � � ���� � � � � � � � � � � � � � � ��� � � � � � � � 	
	 � � � � ����� �

	
	 � ��� (214)

we associate a
1
-form operator on )

� "(� (	 � � � � � � � ���� � � � � � � � � � � � � ��� � � � � � � � � ��� ��� � � � (215)

One checks that the , � operator is identified with the Dolbeault operator �	 which increases the anti
holomorphic form degree

1 ��� �
�
� � � � 	�� 	 � 	 % � � � ��� �

�
� 	 � � 	�� 	 � 	 % � � � ��� � ����� ��� � �

� 
 � � 	�� 	 � 	 % � � � ��� � 1 �
(216)

and one has with ��, � 	 � " 	 (	 
 � � � "(� (�� 	 the identification

� ���� �
� � % ,��� � , � � 
�

� % 	 
 � � � % �
� � 	�� 	 � 	 % � � � �

(217)

The selection rules from the 
 -symmetries are as before � � " � � � � $ � � ! ��� � � � . It follows that
for � � 1

we have again the possibility of a non-vanishing three point function � � � � � 
 � � � � 
 � � � � 
 
 , if we
consider three local operators � � � � 
 associated to

� " ! ( � � " ! (#���
� � �� 		 � � � � 	 � � 	 � 	 % � � � �

(218)

Eq. (213) shows that there is a fixpoint of the fermionic symmetry at the constant maps

	 
 � � � 1��
(219)
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We expect therefore that all contributions to the path integral are localized to constant maps. This is the
main simplification in the B-model. For constant maps ) � is mapped to a point in � . These maps are
of course much easier to control then the holomophic maps of the � -model and in particular they are
not affected by the sizes, i.e. Kählerparameter of � . The � -model without worldsheet gravity is like a
Kaluza-Klein reduction. By writing the action in the form

� � � � � � � ,�� 	�� 
 � ��� (220)

with

��� � � �� � � � 	 �� � �� � � � �� 	 � � �� � (221)

and

� � �
���
��� � � � � � � �� 
 � � � � �� � � � � � � � � � !�� �� ! � (222)

one can conclude the following. � does not depend on the complex structure of ) , which decouples from
the B-model at genus

1
. The Kähler variations of � are , � exact and decouple likewise. It is also �

independent as � can be absorbed in a field redefinition in � . For more details see [207]. In the off shell
formulation of [146][147] one can simply write the complete action as , commutator

� � ��, � 	 �� 
 which
makes the above points more obvious.

Since the fixpoints of the fermionic maps of the � -model are constant maps, mapping all ) to a point in
the Calabi-Yau manifold � , their moduli space contains � and in the special case of the three punctured
sphere, i.e. in the case of the three point function it is actually � , since these three points can be fixed on���

by an
� � ����	 � � transformation and the sphere itself has no complex deformations. For this reason all

we have to find is a canonical measure on � , which we integrate over � to get the three point function.
Using Kaluza Klein reduction methods this measure has been found long ago [183]

� � ��! ��� � � � � "(� (� � � "(� (� � � "(� (� � 
 ���
'
�
� � "��!(#� ��� � � " � (�� ��� � � " ! (#� ��� �

�
� � � � � � � � �� � � � � �� � � � � �� � � (223)

Here

�
��� �

is unique non-vanishing holomorphic
� ��	 1��

form, which exists on every Calabi-Yau, see Sec.
(9.8). Using the isomomorphism (231) � %� �� we can define a non-holomorphic two point function

� � �� � �
' �� "!��( � �� " �� ( � (224)

8.2 First order complex structure deformation

The expressions (223) and (224) depend as anticipated only on the complex structure of � and not on
its Kähler structure. We saw in section 5.3 that deformations of the action by 
 � � " � (� � with � " ! ( �

� "���% 	 (�� � � 	 � � �
are first order complex structure deformations of � . Our aim is to explain in this section

the local tangent space of the complex structure moduli space from a different point of view, put forward
by Kodaira and Spencer [139] and to explain in the next section why the first order deformations on a
Calabi-Yau manifold are unobstructed.

Consider a
� � real dimensional manifold and a covering of it by coordinate patches � � , � � ��	�� ��� 	 �

,
which are homeomorphic to a neighborhood

� � � � � with coordinates � "��!(� �#" �
,
� � ��	���� � 	 � . It is a

complex manifold if the transition functions � " ��! ( * � " ! ( �#" � � � " � ( �#" � , defined for
" � � � ��� ! , are

biholomorphic. One attempts to define a family of complex manifolds � � , by considering a family of
transition functions � " � (� � � " ��! (� � � " ! ( 	 � � , which depend also holomorphically on the complex parameters
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. The difficulty is that some

�
dependence of � "�� ! (� � � " ! ( 	 � � corresponds just to different choices of local

coordinates systems on the same complex manifold. In order to decide whether the � " ��! ( � � " ! ( 	 � � really
induce changes of the complex structure [139] considers in every patch

� ! an infinitesimal coordinate

changes that is characterized by a holomorphic vector field
� " ! ( ��� � � � � � 
 	

� � � � 

� "!$ � � 
 % � (� � �� $ � � 
�

. Next

consider the composition of transition functions in � � � � � � � ! . Per definition� "�� ! (� � � " ! ( 	 � � � � "�� � (� � � " ��! (	 � � " ! ( 	 � � 	 ����� 	 � " ��! (�
� � " ! ( 	 � � 	 � � (225)

holds. Differentiation w.r.t. to
�

gives

	 � "�� ! (� � � " ! ( 	 � �	 � � 	 � "�� � (� � � " � ( 	 � �	 � � ��
' 
 	

	 � "��!(�	 � " � ('
	 � " ��! ('

� � " ! ( 	 � �	 � �
(226)

Denote general vector fields by

� " ��! ( ��� � � ��
� 
 	

	 � " ��! (� � � " ! ( 	 � �	 � 	
	 � " � (� 	 � " ! ( � � " ! � ( � � � 	 � � � (227)

Note that � " ! ! ( ��� � � 1
since � " ! ! (� � � " ! ( independently of

�
. Therefore eq. (226) written covariantly

in terms of the vector fields (227) implies � " !�� ( � � � � � � " ��! ( � � � . For general � 	 " 	 � (226) is a Čech33

1-cocycle condition for the � "�� � (
� "�� � ( ��� ��� � " ! �!( ��� � � � " ��! ( ��� � � 1 �

(228)

The exact 1-cocycles come precisely from the infinitesimal coordinates changes setting � " ��! ( ��� � � � " � ( ��� � �� " ! ( ��� � , while the true changes of complex structure correspond to 1-cocycles, which are not exact, i.e.
elements of � 	 � � 	 � � , where � are sheaves of vector fields � � � � � � �

. The Čech-Dolbeault the-
orem (334) with � � � � � � �

implies that complex structure deformations are given by elements in
� � % 	 � � 	 � � �

, which we also call � .

8.3 Unobstructedness of the complex deformation space

As explained in [139] the existence of a global complex structure deformation requires the vanishing of
higher Čech cohomology groups for vector fields. Tian [189] and Todorov [192] have proven that these
higher order conditions are automatically fulfilled on a Calabi-Yau space.

The elements � ��� � � � � �� � � 	 � � � � �� �� $ � in � "(� % 	 ( � � 	 � � �
in the complex moduli space can be used to

deform the �	 operator to �	 � � � �	 � � ��� ��� so that �	 � � � � � � 1
, defines what a holomorphic function on �

is w.r.t. the new complex structure. The requirement that �	 �� � 1
leads to�	 � ��� ��� �

� � � ��� � 	 � ��� � � � 1�	
(229)

where
� � 	�� �

is the Lie bracket. For � � � � � � � � � � 	 $ � � � � % � � � � , with � � � 	
� � �

� � � �� � � % � � � % � � � � � � � � � ��� � � � � � � � ,
and � � � ��� � � % 	 � � � similarly defined one has

� � 	 � � � � � � � 	 � � � � ��� �
� � 	 � � � 	 � � � � 	 � 	 (230)

giving above a
� 1�	 �
�

form vector field from two
� 1 	 � �

-form vector fields. Condition (229) is equivalent to
the vanishing of the Nijenhuis tensor (329) [139].

33 Čech cohomology made a prominent physical appearence in topological charge quantization in [6].
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The main idea of the proof is that the existence of the holomorphic
� � 	 1�� form induces an isomorphism

� "���% � ( � � 	 � � � �� � � � 	 % � � � � �
(231)

under which the condition (229) is converted into a cohomological question, which is solved by the
	 �	

lemma. This conversion of the deformation problem to a cohomological question, which is solved by an
analog of the

	 �	 Lemma extends to deformations of
� � metrics [121][112] as well as to the extended

moduli space considered in [16].
Contraction with the homolomorphic

� � 	 1�� form associates to � � � � �� � % � � � % �� � � � �� � � ��� � � � � �� � �� $ � �� "���% � ( � � 	 � � �
an �� � � � � 	 % � � � �

as

�� � �
� � � � � � �

� �� � % � � � % �� �
�
� % � � % � � � % � � � ��� � � ����� � � ��� � � � �� � � ����� � � � �� � (232)

with the inverse

� �� � � �
�

� � � � � � %
�
% � �� � % � � % � � � % � � �� � � % � � � � � % �� � % � � � % �� � � � �� � � � ��� � � � �� � 		 � � (233)

where
%
�
% �

is defined in (392). One checks that � is harmonic iff �� is harmonic and the operation is
invertible i.e. � � � � � � � , which shows (231).

Since

�
is holomorphic the hat operation (232) commutes with �	 and we get�	 �� � � �	 � � � ��

�� � 	 � � � * � �� � �� 	 �� � 	 (234)

as equivalent to the condition (229).
The main technical instrument is the following Lemma (Tian-Todorov)

� �� 	 �� � * � �� � 	 � � � 	
�� � � � � � � � # � � � �� � �� � � � # � � 	 (235)

where � # � � �
	 � � � �� � � � � �� � � � �� � � � ��� � � � �� � is a contraction. The calculation is a straightforward exercise
whose solution is made explicit in [189]. Eq. (235) becomes particularly useful, if one can choose “gauge”
representatives for � and � so that

� � # � � ��� � # � � � 1
. To control this “gauge” condition Tian considers

a Taylor expansion � ��� � � � 	 � � � � � ��� ��� �
with � � sections of � � � 	

�
"(� % 	 ( � � � ���

and starting data�	 � � �	 , i.e. � � 1�� � 1
. To order

�
(229) states �	 � 	 � � � � 1

and we already argued that in order to get rid
of complex coordinate transformations we should consider � 	 � � "(� % 	 (�� � � 	 � � �

only. One wants now to

prove inductively that
	 ��! � 	� � ! � 	� 
 	 � � � 	 � !�� � � � 1

for �'� �
which by (234) is equivalent to

�	 �� ! �
�
�
!�� 	�
� 
 	

� �� � 	 �� ! � � � 	 � �1% ��� � �
(236)

First step of induction: To first order in
�

one has simply as above �� 	 � � � � 	 % 	 � � �
and we pick the

harmonic representative �� 	 . In fact on compact Kähler manifolds it follows from (344,348) that every
harmonic representative fulfills �	 � 	 � �	 � � 	 � 1

. Moreover with
	 �� � 	 � , see sect. 9.2 also

	 �� 	 � 1
holds. This implies � # � 	 � 1

and by (235)
� �� 	 	 �� 	 � � 	 �� � 	 � � 	 � is

	
-exact. On the other hand for

�� 	 � � � � 	 % 	 � � �
hence �	 � 	 � 1

it is immediate from the definition of the bracket that �	 � �� 	 	 �� 	 � ��	 	 �� � 	 � � 	 � � 1
. The

	
, �	 Lemma of Kähler geometry ([100], p 149) states that if a form

� �
�
� % 	

is �	 closed and
�

-,
	

- or �	�� exact then it can be written as
� � 	 �	 � . Applied to the bracket we can

write
� �� 	 	 �� 	 � � 	 �	 � 	 for some � 	 �

�
	 % 	 . Identifying �� � � 	� 	 � 	 we have constructed a solution to�	 �� � � 	� � �� 	 	 �� 	 � � 1

.
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General induction: If for some
�

one has solved for �� � with
	 �� � � 1

and �	 �� � � 	� � � � 	� 
 	 � �� � 	 �� � � � � �1
, � ���
	�� ����	 �

, then
�
�
� 
 	

� �� � 	 �� � � 	 � � � ��	
�
�
� 
 	

� � � � � � � 	 � � � �

(237)

and one also checks that

�	 �� �
�
� 
 	

� �� � 	 �� � � 	 � � �
��

� �	 	 �� �
�
� 
 	

� � � 	 � � � 	 � � �
�� �

� �
� 	 �� �

�
� 
 	

� � 	�
! 
 	

� � � ! 	 � � � ! � 	 � � � 	 � � � � � � � 	 � � ! 	 � � � 	 � � � ! � �
�� �

� 1 �
Here we used first (235), then the fact that �	 and � commutes, (237) for ��! with �  �

and the Jacobi
identity for (230). By the

	
, �	 Lemma one can set �� � � 	 � 	� 	 � � and since

	 �� � � 	 � 1
the induction

proceeds. Moreover one has arguments that the series converges in � � � 	 % 	 � � �
[189].

Hence there exist always a family of Calabi-Yau manifolds with varying complex structure parameters,
whose complex dimension is � "���% 	 ( � � 	 � � �

. Tians and Todorovs result is very important also with respect
to the world sheet theory, where is very not-trivial to establish that a deformation of type (47) is exactly
marginal and does lead to family of

��� �
SCFTs.

Mirror statement On a Calabi-Yau threefold one has the above mentioned isomorphism between � "���% 	 ( � � 	 � � �
and � � % 	 � � �

, which is induced by the unique
� ��	 1��

form

�
. Thanks to the above isomorphism the � -

model and � -model physical operators are associated to � � % 	 and we mirror symmetry can be interpreted
as the following identification of these spaces � � % 	 � � � 	 � 
 � � % 	 � � �

. Here � and � are mirror
manifolds. As a corollary one has � � � � � � � � � �

if ! is odd.

8.4 Kodaira-Spencer gravity as space-time action for the B-model

There are three space time actions known, which reproduce as classical equations of motion the unob-
structedness of complex structures on the Calabi-Yau. Kodaira-Spencer gravity [20], Hitchins three-form
action [112] and Hitchins general threeform action [113]. The first[20] and the last [172][?] reproduce the
B-model also at one loop. But even Einsteins gravity poses no problem up to one loop [191]. While it
is not clear how the suggested spacetime descriptions make sense as full quantum theory, the worldsheet
B-model approach makes remarkable predictions at higher loops.

Kodaira-Spencer theory of gravity is theory on � which couples exclusively to the complex moduli
of � . Its tree level result reproduces the � -model without the coupling to worldsheet gravity, i.e. its
genus zero sector[20]. It is a space time gravity theory in the sense that is does couple to the Calabi-
Yau metric as far as complex structure dependence is concerned. It reproduces the (229) in the form�	 � ��� � � 	� 	

�� � ��� � � � ��� ��� � 1
as its equation of motion and its Feynman graph expansion corresponds to

the iterative solution to that equation exactly in the form as given above. In fact by the
	 	 �	 -Lemma we have

shown e.g. in the second induction step that one has an � 	 with
	 �	 � 	 � �� � 	 	 � 	 � , hence �� � � 	� 	 � 	 . By

(235) the first statement means also �	 � � �� � 	 � � 	 � . Combining the two facts one gets a solution for �� �
in the form

�� � � � �
� �	 	 �� � 	 � � 	 � � �

�� � 	 � � 	 � � (238)

We have used a “gauge”
	 ���! � 1

and it is easy to see that the recursive solution comes with the freedom
���! � �	 � , which one can fix be requiring �	 � ��! � 1

. We can then define the “propagator” as � �
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� 	� �� 	 � � �	 � 	��� �� 	 . With this “propagator” one can recursively write the solutions to �� ! . E.g. �� � �
� � � � 	 � � �

�� � 	 � � 	 ��� � � �

. It follows from the construction of ��! that only �� 	 fulfills the Laplace
equation, while ��! for �'� �

correspond to “massive modes.”

A

A

A

A2A2 A

A

A

1

1

1
1

1

3

Fig. 32 Perturbative solution of the Kodaira-Spence equation in Tians form �� � ��� � � �� � �� � ��� ��� � ��� �'� �
" by Feynmann graphs with massless fields (weavy lines) and massive fields (solid lines).

It is not hard to see [20], that the Kodaira-Spencer action

� � � � �� 	 	 �� � 	 � � � � �
'
�
� �� � � �� � � �

�
��� � 	 � � � � � � � 	 � � � ��� � � � � 	 � � � � �

(239)

has �	 � �� 	 � �� � � � 	� 	 ��� � 	 � � � � � � � 	 � � � � � � � 1
as e.o.m. and reproduces the Feynman graph

expansion above. Here we have defined as � � the massive part of � ��� � and
�
� is background value of

the complex structure. It has further be shown that (239) is the reduction of closed string field theory
to the topological modes and it has been argued that its path integral defines the generating function for
all correlators of the topological B-model coupled to worldsheet gravity. However the action has not been
made sense of as quantum theory. So its solution is indirect by means of the holomorphic anomaly equation
of the topological B-model. Nevertheless the divergent factors in the graph expansion of (239) lead to an
analysis of the leading behavior at the boundaries of the complex moduli space of the Calabi-Yau space

once the ones of the three point couplings are known. For one modulus � one gets � �"�
	 � �� � � � ��
 � � � �

	 � � � � � � 
 . This
result is useful to fix the holomorphic ambiguity.

8.5 The periods and infinitesimal deformations of the complex structure

The integral (223) can expressed in terms of holomorphic functions on the complex moduli space parametrized
by
�
, which are integrals of the holomorphic

� ��	 1��
-fom over a fixed topological basis of three cycles of �

' ! ��� � � � � �
�
��� � 	 � ! ��� � � �

� �

�
��� � 	 � � 1 	���� � 	 � � % 	 � (240)

These are called period integrals of periods for short. Here we have chosen an integral symplectic basis of
� and � cycles of the integral homology � � � � 	  �

such that � ! � � 
 � . 
! , while � � � � � � � � �
� � � 1
.

The choice of such a basis in � � � � 	  �
and its dual basis

� � � 	 � � � in the integral cohomology � ��� � 	� �
with �

'
� ! � � 
 � � � � � ! � � �

' � 
 � � ! � � �
� � �


 � . 
! (241)

is unique of to an � � � � �
	� � transformation. The two dual symplectic bases
� � ! 	 � ! � and

� � � 	 � � � are
topologically and do in particular not depend on the complex structure. What we call

� � 	 1 � form

�
��� �

does depend on the complex structure. This dependence is captured by the period integrals, w.r.t to the
fixed basis

�
� � 	 � � ��
��� � � ' ! ��� � � ! � � ! ��� � � ! � (242)
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The symplectic group over
�

is defined by

� � ) � � ) 	 � � � " � � � 	 � � ��� # � ) � � 1 �
��� 1 � �

(243)�
is a symplectic invariance and we have a natural action on the period vector

� * � � ' !
� ! � � � �� � � ���

(244)

The
' ! are homogeneous projective coordinates of the complex structure moduli space and one can

choose locally inhomogeneous coordinates

� ! �
' !
' � � ����	�� ��� 	 � * � � � % 	 (245)

as the complex structure parameters[99, 189]. This can be viewed as local Torelli theorem for Calabi-Yau
manifolds. A global Torelli is proven for � � (and Enriques surfaces) [14], but seems not to hold on general
Calabi-Yau manifolds.

In virtue of (245) the � ! must be expressible as functions of � . The precise relation comes from the
infinitesimal calculus describing changes of the

� � 	 1 � -form

�
in � � � � �

under changes of the com-
plex structure. The decomposition of � � � � �

into
� " 	 $ �

type � � � � � � �
� � 	 
 � � � % 	 � � �

varies over
the complex moduli space parametrized by � . We are concerned with � � �

. One wants to describe
the varying of � � % 	 � � � � as a bundle

� � % 	 over the moduli domain � � � �
of � , called the Hodge

bundle. However the spaces � � % 	 do not fiber holomorphically over � � � �
. One defines therefore

first a Hodge filtration �
� � � � � ����� � � � 
 �� 
 � by ��� � � � ���

� � � � � % ! � � � � �
, with � � � � 	 � � �

� � � � � � � !�� � � 	 � � �
. Obviously � � % 	 � � �

is recovered as � � % 	 � � � � � � � � � � � 	 � � �
and one has

an isomorphism � � % 	 � � � � ��� � � � / ��� � 	 � � �
. The ��� � � � � form holomorphic bundles

� � over � � � �
and the holomorphic Hodge bundle

� � % 	 can be defined as
� � % 	 � � � / � � � 	 , see [101] for a precise

definition of � � � �
. There is a bilinear form on � � � � 	  � / # � % � �!� �

, � � 	 � � ����� � � ��"/� � 	 (�� � � ' ��� � (246)

with the following properties

, � � � 	 	 � � � 	 � � � 1�	 ��� 
!� � ��" ) � � � " 
 �#� $ ) � � � $ (247)

� � � 	 � � ��� � � 	 , � � 	 �� � � 1 	 ��� 
!� � � � � 1 ��� � � % 	 � (248)

In mathematical terms , is called a polarization on the Hodgestructure � � � � 	  � / # � % � �!� �
and (247) and

(248) are the first and second Riemann bilinear relations, see [100, 101]. In particular
� � % � defines a line

subbundle � in � ��� � �
and

�
��� �

defines a section of it. Since is is expandable in the fixed integer frame�
� ! 	 � 
 � by the periods (242) it has a flat connection that is called Gauss-Manin connection. The Picard-
Fuchs equations that the periods fulfill, which we derived latter, can be viewed as one manifestation of the
flatness of the Gauss-Manin connection. Despite the fact that the connection is flat the period vector

�
(244) will have a monodromy

� � � � � � ��	  � , if transported around loops � � � encircling singular points� � in the complex moduli space. To understand the possibility of a monodromy remember that the moduli
space is not simply connected. Singular or orbifold loci of � are cut out. As exemplified at the end of Sec.
9.7 not simply connected manifolds can have non trivial holonomy of flat connections34. The monodromy
group is generated by transport around all loops

� � in � 	 � - �
� ��� � � � � � � � ��� � 	 � � � � � � " � � � 	� � 	 (249)

34 This monodromy is called a “Wilson line” in physics.
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where one has relations, e.g. in the situation depicted in figure 33 one has � � 	��� � � � � � � � . The homotopy
group of - and the symplectic monodromies around the loops determine the period vector as solution to
a Riemann-Hilbert problem.

z= 8z=0 z=1

γγ
10

γ 8

Fig. 33 Moduli space of a one complex parameter Calabi-Yau manifold compactified to
� � with three

singular points. In general singularities are divisors in
�

.

By taking a derivative w.r.t. the complex structure coordinates
� ! the

� ��	 1 �
form changes as follows

	
�

	 � ! � � ! ��� 	 �� � � � �� " ! ( ��� � 	 (250)

where �� " ! ( ��� � � � � % 	 is a basis and � ! ��� 	 ��
� depends on the complex moduli as made explicite after (258).
This can be seen as follows. Let as in section (8.2) � 
 � � 	 � � define a family of holomorphic coordinates
on � , which vary with the complex structure parameter

�
, so that � 
 � � 
 � � 	 � � � . Via � 
 � � 	 � � the� ��	 1 �

-form

�
� 	� � � � � � ��
�� � � � 
 � � � � � � depends on the complex structure

�
and by derivation we get

	
�

	 � ! � �
� �
	 �	 � ! � 
�� � � � 
 � � � � � � � �

� � � � 
�� � � � 
 � � � 	 � � � � �	 � ! �
(251)

To analyze
� " � � � (��� � requires an infinitesimal calculus in the neighborhood of the reference complex struc-

ture
�
� . It is easy to convince oneself that the

� 1 	 �
�
part

� " � � � (��� � 			 "(� % 	 (
� � " ! ( ���

��� ��
, where � " ! ( �

� "���% 	 ( � � 	 � 	 % � � �
is the object we encountered in Sec. 8.2. The isomorphism (231) implies then (250).

Upon taking further derivatives we get	
	 ' �

�
� �

� � � � % � � � � % 	
	 �

	 ' � 	 ' �
�
� � 	 � � � % � � � � % 	 � � 	 % �

	 �
	 ' � 	 ' � 	�' !

�
� ��� � � � % � � � � % 	 � � 	 % � � � � % � �

(252)

8.6 Special Kähler geometry

Let us discuss the consequences of the first property (247), which follows from simple consideration of
type. If we insert (242) in 
 '

�
� �� � �

�
� 1

, a consequence of (252) and (247), we can conclude that
� ! � 	� �� � � � � ' � � � . That implies that the � � are indeed not independent but determined as derivatives

of the single function35

� � �
� &�
� 
 �

' � � � (253)

called the prepotential. Note that � is not a symplectic invariant. It follows further from the first transver-
sality that � is homogeneous of degree

�
in

' � , i.e. � &� 
 � ' � �� � � �
� � � . The implication of the second

35 Note that on even complex dimensional Calabi-Yau manifolds there will be no relative sign in (241) basis nor in (242) and�����	�
� � ����
�� 
 � � gives already an algebraic relation between the periods. Using further transversalities one find an
intriguing mix between algebraic and differential relations between the periods in the even case.
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line in (252) 
 '
�
� � �� � � � � �

�
� 1

follows already from the degree two homogeneity of � and contains

no new information. The last line of (252) shows that 
 '
�
� � ���� � � ��� ��� �

�
is nonzero and we calculate

� ��	 � � � � � �
'
�
�

	 �
	 � � 	 � � 	 � �

�
� 	 �
	 � � 	 � � 	 � � �

��� ' � � �
	 �

	 � � 	 � � 	 � �
� "(� ( � � � 	 (254)

where
� 	 � 	 � runs form

�
to � � 	 . To derive this we used (240,241,242) and the homogeneity of degree

two of � to pass to the inhomogeneous variables � . Each of the three derivatives w.r.t. to the complex
structure parameters

�� � � has to hit one
� � � in

�
� 	� � � � � � ��
�� � � � 
 � � � � � � to produce the

� 1 	 ���
part.

It is clear by (251) that the eq. (254) is up a normalization equivalent to (223). It turns out that mirror
symmetry identifies � � ��! � � � � � �� � � � � � � � �

� "(� ( � � � at a special point in the moduli space with (117). The

right hand side of (254) is not covariant. It is valid only in the coordinate system defined by the periods' � or the inhomogeneous coordinates � � . The period expression is however valid in any parametrization
of the complex structure. If we make a coordinate transformations of the latter

' � � � � ��' � we need no
covariant derivatives on the right hand side to compensate for the derivatives of

��� �� � � by
�
, because by (252)

only terms contribute, for which all derivatives by
�

act on

�
��� �

. In any complex structure coordinates we
can therefore express the triple couplings in terms of the period integrals as

� � ��! � � �
� 	 � 	 � 	 !

�
� &�


 
 �
��' 
 	 � 	 � 	 ! � 
 � � 
 	 � 	 � 	 ! ' 
 �

(255)

and � � ��! transforms like � � � � � - � � � � under Kähler- and general coordinate transformations in the
complex moduli space - . Note that � � ��! is by (244 an symplectic invariant, if the derivative is w.r.t.
to invariant complex structure parameters, such as the

�
in Sec. 8.7. The triple coupling are the Yukawa

couplings of the moduli fields in the effective action of heterotic string compactifications, see e.g. [92, 173].
Let us come to the two point function (224) and is relation to (248). As we have discussed the

� ��	 1��
form

�
��� �

lies a complex line bundle
� � % � . This bundle is called the vacuum bundle � in physics. Is has

a natural gauge transformation

�
%� � � " � ( � where � ��� � is holomorphic, which leads to another nowhere

vanishing
� ��	 1��

form. We have by (248) a positive hermitian norm
� �
�
	
�
� � % %

�
% % � * � ��
 '

�
� �� , which

is is related to the norm (392) by a volume factor
% %
�
% % � � � � %

�
% �

. We define a now potential

� � � 
!�)( � � '
�
� �� 	

(256)

which will turn out to be Kähler potential of the moduli space metric. Clearly the gauge transformation
become Kähler transformations � %� � � � � �� and � 
 is a section of real line bundle. We can define a
candidate Kähler metric on the moduli space

�
� � 	
� 	 � �	 � 	 � �

(257)

Note by (358) that the Kähler form to this metric is the curvature form � of the hermitian metric
� �
�
	
�
�

on � . Using (250) we can relate this metric to (224)

�
� � 	
� � 
 ' �� " � ( � �� " � 	 (


 '
�
� �� �

(258)

These couplings (224) are the kinetic terms of the moduli fields [92, 173]. We determine �	! ��� 	 �� � ���	 � � � .
Let us compare that metric

�
� � 	 with the standard way one defines a metric on the space of metrics on� . The metric on the Calabi-Yau moduli space factorizes at least locally in the Kähler- and the complex
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structure deformations space, see Sec. 5.3 and [34, 33] for further background,

� �
� � 	 . � � . � � 	 � �

�1� �
' �
� �� � ! �
 .�� � ! .�� �� �
 � � # � � ��	 � �� � � � 	 (259)

where we just took the complex structure deformations into account. The metric (259) is called the Weil-
Peterson metric of the complex moduli space. In Sec. 5.3 we have already identified pure deformations
of the metric with elements in � 	 � � 	 � � �

, the precise relation is .�� " � (�� �� � � � �� ����� � . � � � � � � " � ( ��� � � �� . � � .
Using (233) in (259) we note the remarkable fact that the two metrics (257) and (259) coincide. This was
first proven in [189] and implies the local Torelli theorem as well as the fact that the holomorphic sectional
curvature of the Weil-Peterson metric is negative and bounded away form zero [189].

From (256) and (242) follows a simple � � � � � 	  � invariant formula for its Kähler potential in terms of
the periods

� � � 
!�)( � � �' ��
	 �	 ' � � ' � 	 ��	 �' �� � � � 
!�)( � � � ) � �

(260)

This statement in terms of the inhomogeneous coordinates � � � ' � / ' � , � � ��	�� ��� 	 � � % 	 reads

� � 
 " � % �� ( � � % ' � % � � � � � �� � � � � 	 � � "(� ( � �	 � � � "(� ( � � ��� � "(� ( � � "(� ( � � (261)

As it obvious the � � ��! � � � � � � � � � � - � � � as well as the real Kähler potential � � � �� � derive from the
holomorphic section

� "�� ( � � � � � � over the complex moduli space - . This justifies the name prepotential
for
� "(� ( and the structure defined by (257),(261) and (254) supplemented with the requirement that the

Chern class represented by the curvature two form � of the vacuum line bundle � defines an even integral
class36 on - is known as special K ähler geometry.

The integrability condition for the existence of
� "(� ( , given

� � �� ��	 � �	 �� � � � 	 �� � and � � ��! , is


 
� �! � � � �	 �! � 
 � � � � � � 	 	 �! � 
� � � � �! . 
� � � � �! . 
� � � � ��� �� � 
�! (262)

The upshot of special K ähler geometry is that the relevant quantities are fixed by the section
�

of the
holomorphic line bundle � � over the compactified moduli space. As it is well known in complex geometry
such sections are fixed by a finite set of data, basically a Riemann-Hilbert problem to find sections of
the Hodge-bundle, which observe certain monodromies. This fact underlies our ability to solve the two
derivative effective action of

��� �
gauge theories exactly.

This structure we have discussed here mainly form the geometrical point of view has been independently
discovered in the vector multiplet moduli space of

� � �
supergravity theories in four dimensions [51,

52, 49]. The connection to string compactifications has been made in [33, 185] and a more mathematical
view is offered in [73]. In making contact with the supergravity literature note that [51, 52, 49] uses for the
homogeneous sections

�
� � � � � ' � 	 � � �  � � � � � 	 (263)

over - , which are not holomorphic
	 �! ' � � �	 �! � � � 1

, but covariantly holomorphic with respect to
the Kähler connection � �! � �
	 �! � 	� � �! � , i.e. � �! � � � � �! � � � 1

, with the effect that � � �� � � �  � 	 �
�
� �� � � � 	 � � �

. In particular the earlier literature on
� ���

black holes [71, 186] uses  ��� � , because
the gravitino variations have been worked out in this conventions [52]. In the inhomogeneous coordinates
� � � ���

� � � ���
� � the Kähler factor cancels.

36 A K ähler manifold (261) whose K ähler form is the curvature two-form 
 of line bundle
�

representing a class in � � + � -�� 0
is called K ähler-Hodge in the mathematical literature. As is was pointed out in [48] the fermions already in � � , susy require that	 
�
 is an even integral class.
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8.7 Picard-Fuchs equation from the symmetries of the ambient space

Let us now discuss an explicit simple example of such a mirror symmetry computation. The principle
example is the quintic in the projective space

� �
, which is discussed in great detail in the paper [37]. It is

defined as the zero locus of a homogeneous polynomial of degree
�

in � � , e.g.

��� ��
� 
 	

� � � �� � �
�
��
� 
 	 � �

� ��
� 
 	 �

�� � � ���
�

��
� 
 	 � �

� 1
(264)

The
�

appears here as one of the
� 1 �

possible complex structure deformations of the full family of quintics.
A deformation is generate by perturbing

�
�
� � �� 
 	 � �� with a parameter multiplying a monomial of

degree
�
. We count (5) � �� , (20) � � � � � , (20) � �� � �� , (30) � �� � �� � ! , (30) � � � � � � ! , (20) � � � � � ! � �
 , (1) � �� 
 	 ,with � 	 " 	 � 	 � � ��	���� � �

hence
�
� � monomials. Not all of those lead to independent complex structure

deformations, because the complex linear transformations of the coordinates � � of
���

leads to completely
equivalent forms of the constraint. The group of those has dimension

� � � �
. Finally there is one relation

by
� � 1

leading to
� 1��

. The symmetric deformation in (264) is chosen with hindsight, because we can
see it as the unique complex structure deformation on the mirror manifold of the quintic � . The mirror is
constructed as

 �� orbifold of the original quintic � . The orbifold is generated by phase rotations on the
homogeneous coordinates

� �

� � � �
	�� � �#" � � " � (� / �
� � � 	 � ����	�� 	 ��	 � ���
	�� ����	 � 	
(265)

with � " 	 ( � � �
	 	 	 1�	 1 	 1 �
, � " � ( � � �
	 1�	 	 	 1 	 1 �

and � " � ( � � �
	 1�	 1�	 	 	 1 �
. It leaves precisely the perturbing

monomial � �� 
 	 � � invariant. This one deformation parameter
�

can be identified with the one Kähler
deformation � of the original quintic � which has Hodge numbers � 	 % 	 � �

and � � % 	 � � 1 �
. The one

element in � 	 % 	 � � �
comes from the restriction of the unique Kähler form of

� � to the hyper surface. The� 1��
elements of � 	 � � 	 � � �

we counted above and explained their relation to � � % 	 � � �
before.

The holomorphic
� ��	 1 �

form can written explicit in every patch
� 
 of

���
as a residuum expression[98]�

��� � ���
�
�
�
�� 	

(266)

where the contour surrounds the single pole at
� � 1

inside
� �

and the measure is

� � ��
! 
 	

��� �
� ! � ! � ! � � 	 � � ��� � �� � ! � � ��� � � � � � (267)

In each coordinate patch
� 
 , � 
 � �

and
� � 
 � 1

so the sum (267) collapses to a single term. The� ! makes (267) applicable to hypersurfaces in weighted projective space � � � � � 	 	 ��� � 	 � � � , which are
generalizations of

���
, see (398). An important consistency condition for

�
is its invariance under the� �

action � � � � � � . Let us consider the parametrization of the complex structure by the parameters
� � ,� � 1 	���� � 	 �

in
� � � �� 
 	 � � � �� � �

� � �� 
 	 � � . Theses are redundant parameters and can be “gauged” by
the

� � �
��� � � ��� 	 � � � � � transformation on the homogeneous parameters

� � 	 * ��� � * � � � of
� �

to one
parameter. Let us summarize the “gauge invariances” of

�
�
� �

, which are obvious from (266) and (267).

� It is invariant under the change
� � � � � � with � � � �

. Defining the logarithmic derivative
� � �� � �� � � , this homogeneity of degree

1
is expressed as

��
� 
 �
� �
�
� � � � 1��

(268)
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� It is invariant under the
� �

actions
�
� � 	�� � � � � � � � � � 	 � � � � � , � 	 " � ��	�� ��� 	 �

with � � � �
. These

are compensated on
�

by
� � � transformations

� � � 	 � � � � � � � � 	 � � 	 � � � , which leave the form �
invariant. As differential relations one has

� � � � � � �
�
�
� � � 1�	 � ���
	�� ��� 	 � �

(269)

These two equations mean that

�
�
� � �

�
��� �

does depend only on the combination
� � � � � � � � � � � � �� ��

,
where we chose the sign for latter convenience. Instead of fixing the gauge immediately we first notice the
obvious differential relations� 	

	 �
�
� �

�
�
� �
�
�

�
� ��
� 
 	

	
	 � � �

�
�
� �
�
�

�
(270)

With
� � � � � �� � � , � � � �

� � , the commutator
� � � 	�� $� � � � � � and

�
�
� ��� �

as well as
� � � � for � � �
	 ��� � 	 �

we rewrite � � ��
�
� �

�
� � �
�
�

� �
� 	 � � � � � � � �

� ��
� 
 	
� � �

�
�
� �
�
�� 	 � � � � � � � �� �

�

� �
! 
 	

���
�
� � � �

�
� � � �

� ��
� 
 	
� � �

�
�
� �� �

! 
 	
� � � � � �

�
��� � � � �

�
��� � (271)

The last line means that the factorizing differential operator � � � � � � � � �
� � � � � 
 	 ��� � � � � annihilates
�
��� �

and it also annihilates the periods

� � ��� � ��� �
�

�
��� �

(272)

with � � � � ��� � �
. One checks that �

�
��� �

is already exact, i.e. 

�
� �
�
��� � � 1

so that the periods� � ��� � � 

�
�

�
��� �

, which correspond to the four independent cycles � � � � � � � �
are determined by the

four solutions of differential equation

� � � � � � ��
� 
 	

��� � � � � � ��� � � 1 �
(273)

Note that the mirror has � � % 	 � �
and hence 4 elements in the middle cohomology � �
� � 	� � � � � % � �

� � 	 � � 	 � � � � � . The four period integrals over the dual four homology 3-cycles, which are invariant
under the

 �
� group correspond to four independent solutions of eq (273). The 3-cycles are in a fixed

topological basis of � � � � 	� �
. This basis is independent of the complex structure. The trick in the

derivation of the differential equation was to fix the gauge symmetry at the very end (last line of (271)). This
results in a considerable simplification in the derivation of the period equations compared with the Griffith
reduction method discussed below. The method is adjusted to derive the systems of Picard-Fuchs operators
of multi parameter Calabi-Yau hypersurfaces and complete intersections in toric ambient spaces, which
have the corresponding

� �
actions, see [115][138]. It will give in general as above differential operators

allowing for too many solutions, which need to be reduced to lower order differential operators. In the
simplest case this is accomplished by factorization. As one example of this type consider the hypersurface
of degree 12 in

� � �
	��
	 � 	���	 � � , which has � 	 % 	 � � � � �
and � � % 	 � � � � �
� �

. We mod � out by an 	 � �  � �  � acting as

� � � �
	�� � �#" � � " � (� / �
�
� � � 	 � � ��	���	 ��	 � ���
	 ��� � 	 � 	
(274)
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with � " 	 ( � � ��	 �
��	 1 	 1�	 1��
, � " � ( � ��� 	 1�	�� 1�	 1�	 1��

and � " � ( � ��� 	 1�	 1�	 � 1�	 1��
. The invariant constraint,

which we interpret as mirror admits two complex structure deformations � � % 	 � � � � �

��� � 	 � 	 �	 � � � � 	 �� � � � � �� � � � � �� � � � � �� � �
�
��
� 
 	 � �

� � � � � 	 � � � � (275)

It is convenient to express the multiplicative relation between the monomials in (275) in vectors37� " 	 ( ����� � � 1�	 1 	 ��	 �
	 ��	��
� � " � ( ��� 1 � ��	 ��	 1�	 1�	 1�	�� ��� (276)

such that equations corresponding to (270) are now written as

�

 � � 
� � �

� 	
	�� � � � 


� � 
�
�
�
� �
�
�

� �

 � � 
� � �

� 	
	 � � � 
 � � 
�

�
� � �
�
�

� ���
	�� �
(277)

Similar symmetry considerations as above lead to the conclusion that
� ��� �

depends only on� 	 � ��� � � 
 � � 
� �
�

� 
 � � 
�� 	 � ���
	��
(278)

and the reduction of (277) leads after factorization to the differential operators
� � � � � �� � �

� 	 � � �	 ��� �	 � � � � � � � �� 
 � � � � 	 � ��� � � � ��� � 	
� � � � �� � � �� 
 	 ��� � � � � 	 � � � � � � (279)

We will discuss the solution to (273,279) below.
Let us first perform the integral over the small circle

�
say in the patch

� ! , i.e. � ! ���
to bring the

expression of the
� � 	 1 � form to one which is familiar from the study of Riemann surfaces. In order to do re-

duce one integration over
� � � to the residuum integration 
 � ��

� �#" � we perform a coordinate transforma-

tion from
� � 	 � ��� �� ! ����� � � � to

� � 	 ��� � �� ! �������� � � ��� � � 	�� � under which the measure
� � 	 � � ��� �� � ! � ��� � � � �

goes to
� �

�� $ � �
� 	 � � 	 � ��� � �� � ! ����� � � � � ��� � � � � � � �!� . Because of transversality

�!��� 1
has no common

solution with
� �21

and we can always pick an � and � so that
� �

�� $ � � ��21
for

���21
. Therefore the

integrand will have a single pole at
	
�

and integration leads to�
��� � � �

�
� ! � ! � � 	 � � ��� �� � ! ��� � � � � � � ��� � � � ��

�� $ �
�

(280)

This form of the
� � 	 1 � form is analogous to the well known

� ��	 1 �
form

�
� � $
�

in the case of an elliptic

curve realized as cubic in
� �

with the inhomogeneous equation in the
� ���

patch given in the Weierstrass
form

� � � 	 � � � � � � � � � . It can be verified that it is nowhere vanishing [98].

8.8 Picard-Fuchs equation from the Dwork-Griffith reduction method

From the formal definition of the period
� ��� � � 


�
�

�
��� �

, with

�
given in (266) we can alternatively

derive a fourth order differential equation for the period in terms of the moduli
�

by the Dwork-Griffiths
reduction method. We mention this methods, because in general the symmetries of the ambient space are

37 They will identified with the generators of the Mori cone in Sec. 8.9.
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not sufficient to find the full set of Picard-Fuchs equations. The key observation for this algorithm comes
as follows. Consider on the ambient space

� � � 	 � � 	 	 ��� � 	 � � � the
� � � �
�

-form

� � �
�" � �
� � �

��� �
� � � � � � � � � � � � � � � � � � � � � 	 � ����� � � � � � � � ��� � �� � � � � ��� � � � � �
Here � � � � � are homogeneous of degree ! � in � , i.e. � � ! 
 	 � ! � ! ���� � � � ! � � � . We further assume that

� 	 � � � � 1 	 � �� 
 	 � � � ! , where ! is the homogeneous degree of
�

, � � ! 
 	 � ! � ! �� � � � � ! . With
this assumptions the total derivative of

�
simplifies

� � � ��
! 
 	

� �
�
�

� � � 	 � ! 	 ! � � �
�� � 	 ! ��! � �

� �
�� �
��
� 
 	

� ! � � ��� � � � � � ! � � � � ��� �
� � � � 	 � ��� � � �� � � � ��� � � � � � �
If we choose now the ��� so that � � � 1

for
" �� � and ! ! � ! ���
� �
��� � ! for � � � � * � ��! � � � the second

term vanishes. In other words if
�� $ � � � "�$ ( � �� �

� � is homogeneous of degree
1

w.r.t. the coordinate weights
� � then

�
�
� � 	 ! �� � � 	 � � �

�
	 ! �� � � (281)

holds under the integration sign.
Let us mention in passing that for Calabi-Yau manifolds defined by a transversal complete intersections

of � polynomials, i.e. as the zero set
� 	 � ����� � � � � 1

in a weighted projective space the analog of (266)
is �

� �
� �
� ��� �

� �

��
! 
 	

� " ! (�� � � 	 (282)

where
� � are circles around the

� � � 1
and similar as before

�� $ � � � � � � � �! 
 	 � � � 
�� � � � is exact iff it is of

total degree zero. This leads to the partial integration rule[98]

�
! �
 �

� !
� � � �

� �� !
� 	 � � !� �
 
 	 � � �


� � �
� � � �

� � 	 �� �
 
 	 � � �

� � � 	 � � �� �
 
 	 � � �


� 	 (283)

where we omitted the factor � �! 
 	 � " ! (� , which is however of relevance for a scaling argument as in (271).
The idea is to take up to four derivatives of the period

� ��� �
w.r.t. the complex structure moduli

�
, and

rewrite the emerging expression by the repeated use of the partial integration rules (281) or (283) w.r.t.� � into expressions, which have lower powers of
�

in the denominator and lower homogeneous degree
polynomials in � in the numerators. Eventually all emergent terms can be manipulated into the form of
moduli dependent functions times lower derivatives of

� ��� �
w.r.t. to the moduli

�
. The relation derived

in this way is one Picard-Fuchs operator. For the quintic one starts with four derivatives of
� ��� �

and the
emerging relation is of course the same 4th order generalized hypergeometric differential equation as in
(273). In the multi moduli examples one has to consider various derivatives of

� ��� �
w.r.t. to different

combinations
�

as starting point and the calculation becomes quite tedious. Nevertheless one can give
criteria when the left ideal of differential relations is sufficient to determine

� ��� �
and systematize the

calculations somewhat using a Groebner basis for the ring of monomials in the � [114, 115].

Copyright line will be provided by the publisher



pop header will be provided by the publisher 91

8.9 Explicite periods and monodromies

A solution to (273) will correspond a priori to an arbitrary linear combination of period integrals. To
understand the physical duality symmetries and the mirror map of the model it is important to find a basis
of solutions which corresponds to an integral basis of � �
� � 	  �

. This can be achieved by requiring that
the monodromy group is realized by a subgroup of � � � 	 	� � . In rescaled variables

� � �� � � � � (273)
has regular singular points at

�� � 1 	 ��	 �
. I.e. the moduli space is

� � � 1�	��
	 � 

and we drop the tilde

from the
�
. At

�
�
� 1

the indical equation, i.e. the condition on
�

in solving (273) with a local power
series ansatz

� ��� � � ��� � �
�
� � � � 
 �

�
�
��� � �

�
� � , is

� � � 1
. This degeneracy of solutions implies that

beside the unique power series solutions one has three logarithmic solutions. Because of the logarithms
the mondromy around this point has in a suitable basis an upper triangular from with a maximal shift
symmetries. Near

�
�
� �

the indicial equation has solutions � 1�	��
	��
	�� 
 and near
�
�
� ��/ � � 1

one
has solutions � ��/ � 	�� / ��	 � / � 	 	�/ � 
 for

�
. The latter implies that one has an order

�
monodromy around� � �

. The order two degeneration of the solutions at
�
�
� �

indicate three power series and one
logarithmic solution. The monodromies around these special points are easily worked out. We refer to
the basis (296), which is the canonical large radius basis of the mirror. For the quintic further input data
needed in (296) are 
 � � � � ��1

and � 	 	 � 	 	� . In this basis and referring to the rescale variable
�

the
monodromies are

� � � ��
��

� 1 1 1
� � 1 1
� �
� � � �

� � ��� 1 �

�
�
�

� 	 � 	 � ��
��
� 1 � � 11 � 1 11 1 � 11 1 1 �

�
�
�

� 	 � � 	
�

� ��
��
�
	 � � � �
� � 1 1
� �
� � � �
� ��� 1 �

�
�
�

� �
(284)

In this parametrization
� � �

is the Gepner point,
� � �

is the conifold point and
� � 1

correponds to
large volume on the mirror. Our notation is that monodromies which go counter clock wised are positive,
see Fig. 33. One has of course the relation � � 	

�
� � 	 � � . Remarkable is the monodromy � � around� � 1

. This is the point of maximal unipotency. A monodomy is called quasi-unipotent of index at most �
if here is some

�
so that

� � � � � � ! � 	 � 1
(285)

As it has been shown [148] if the period map is semi stable the monodromy is unipotent. This means�����
. Moreover [179] shows that the maximal � that occurs as monodromy of periods is � � �
� � � � � �

.� � saturates this bound and is of the maximal unipotency
�
. This means in particular that a solution with

cubic logarithm appears at this point. As was argued in [37] discovering (292) is that this structure is
needed to map to the large radius expansion of the mirror manifold given by (??). A corollary to the mirror
conjecture is then that all Calabi-Yau manifolds have at least one point of maximal unipotent monodromy
[161].

The monodromies in original paper [37] have been worked out in variable � � � � �
� . This yields in the

above basis

� � � ��
��
� � � ��� � � � 	

� ��� 	 � �
� � �
	 1 � � ���

�
	 1 � 	 �
��� �

�
�
�

� 	 � 	 � ��
��
� 1 � � 11 � 1 11 1 � 11 1 1 �

�
�
�

� 	 � � ��
��

� 1 � 1
� � � � � 1
��� � �
	 �
� � � �

�
�
�

� 	

(286)

with � � � � � � ! � 	 � ! . In the unfolded moduli space there are five copies of the conifold and encircling
all five yields � � � � �

� , see Fig. 34.
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There are general theorems that guarantee that the analysis of solutions and mondromy performed by
Candelas et al. for the quintic[37] extends to any family of Calabi-Yau manifolds over its complex moduli
space - . Let us summarize some of the relevant general results

� 1.) As we know from Tian-Todorov - is � ��% 	 dimensional and unobstructed, see Sec. 8.3.

� 2.) Viehweg shows that - is a quasi-projective scheme, see [196] for review.

� 3.) It is not known in generality what singular fibres can occur in the family. However all singularities
appear at most in complex codimension one in - . The correponding loci

�
, the discriminant compo-

nents of the Picard-Fuchs system, in - can have themselves singularities and tangencies. Application
of general theorems about desingularizations of Hironaki [110] guarentees that the latter can always
be resolved so that �� are specified by smooth divisors with normal crossing, i.e. with no tangencies.

� 4.) The theorem of W. Schmidt[179] puts restrictions on the singularities of the periods at the bound-
ary of - . In particular no period can be degenerate worse then with


!�)( ��� � ��� � �
at the components

of �� .

In practice 2.) guarantees that there is a compactification of - while 3.) and 4.) guarantee that a local
solution of all periods can be obtained everywehre in - solving an ansatz with infinite power series and
logarithms of finite power. Monodromies for more parameter families have been investigated in [38][123]
[39]. The case (275) shows some features of the resolution of

�
annd has been reviewed in same detail in

[134].
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Fig. 34 Quintic monodromies in the unfolded � modulispace

8.10 Integrality of the mirror map

While the integrality of instanton expansion of the
� " � ( has found, at least physically, a completly satis-

factory explanation as counting of BPS states, see Sec. 6.14, the integral expansion of all known mirror
maps at the point of maximal unipotent monodromy remains mysterious.

We exponentiate (292) invert it and expand
� � $ �

in
$ � � � . Call

"
	
� 	� " 	 ( in analogy with the nor-

malized
" � � $ � � � ��� 	� � invariant function of the elliptic curve. Both expansions have positive integral

coefficients

" � � 	
	
� � 	�	 � � � � � � 	�$ � � � 	 � �
� � 1�$ � � � � 	 � � � ��� 1 $ � � � 1 � 	�� � � � � � � $ � � �����

"
	

� 	
	
� � � 1 � 	 ��� ��� � $ � � � 	 1�1
� � 1 1 $ � � � � � � � � � 1 � ��� � $ � � � ��� � � ��� � � � 1 � ��1 	 $ � � � ���

(287)

The integrality should be related to monodromy group � � � � � 	 	� � generated by � � and � 	 , but it is
unknown what the integer coefficients are counting. For the example of degree 12 in

� ���
	��
	���	���	 � � we get
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! %�
	# �!� � 
�
 � 
�
!� � # � �� � � � � 1
� � 1 � ��� 1 1
� ��� � ��1 � �
� � � 1 � � ��1	 � 	 � 	 � � � ��1 1 1�1 � � ��� 	 � � � ���� �
� �
��1�� � � � � � � � � � � � �
� � ��1 ��� 1 1 � 1 1
� � 	 � � 	 ��� 	 � �
� � 1 �
��1 1�1 ��� � 	 � � � ��� � � � � � � 1 1� � ����1 � � 1���1�� � 1 � 	�� � � � ��� 1 � � � � � 	 1 � 1���� � � 1�� � � � ��1
� ��� � � � � � � 1 � �
� 	
� � � 1 � ��� 1 1 1�1 � � 	 � � 1�� 	 � � ��� � � � � � � 	 � � �
���

Table 4 BPS degeneracies �
�
2 �= 4
7 associated to rational and elliptic curves on the Quintic in

� �

for each of the two functions
" 	 � 	� � and

" � � 	� � an integral two parameter expansion

" 	 � 	
	 �

� � 	 	 � � � � � � 	�$ 	 � � � 	 � �
� � 1�$ �	 � � � 	 � � � ��� 1 $ �	 � ��� �
$ � � � 	

	 �
� 	 � 1 � � 	 1 ��� 	 � $ 	 � � � 1 ��� �
� � 1 � $ �	 � ��� � �

..." � � 	
	 �

� � ��$ � ��$ 	 � 		 � � 	 1 � � 	 1 � � 	 1 $ � � 	 1 $ � � �
$ �	 � 		 � � 1 � � 1 � ��� � 1�1 � � � � 	 1 $ � � � � � 1�1 $ �� � � 1 � � 1 $ �� � ��� �

(288)

The occurance of the
"
-function[38] at

" � � " 	 % 	 � 
 � has been related to string duality between type II on to
the heterotic string on � � � � � [122, 123], see [134] for a review. These primitive observations may point
towards number theoretic applications of topological string theory. Intriguing observations for Calabi-Yau
manifolds over finite fields have been made in [40]

8.11 Solutions to the Picard-Fuchs equations for all complete intersection in toric ambient
spaces

For a Calabi-Yau in an general toric ambient space one can determine the generators of the Mori cone of� . These are vectors, which represent curves � " � ( , � � �
	 ����� 	 � 	 	 in the Calabi-Yau space � that are
dual to the Kählercone� " � ( � � � " � (� % 	 	 ����� 	 � " � (� % � � � " � (	 	�� ��� 	 � " � (�

� 	 � � % � ���
	 ��� � 	 � 	 % 	 � � � � � � % 	 � � � �
(289)

Their first entries
� " � (� % 	 	 ����� 	 � " � (� % � are the (multi)degree(s) of the algebraic constraints

� 	 � 1�	�� ��� 	 � � �1
defining the Calabi-Yau manifold w.r.t to the dual divisors of the � " � ( . The second set of entries� " � (	 	�� ��� 	 � " � (� are the intersections of the curve � " � ( with the toric divisors of the ambient space. These

curves and the intersection numbers can be determined purely combinatorial from the toric description of
the ambient space, see [115] for details. E.g. for the quintic one has

� " 	 ( � ����� � ��	 �
	��
	��
	 � � .
With these data and and the classical intersections numbers  ��	 � � � � � � 	 ��� � , which is also deter-

mined combinatorial (it is  	 	 	 � �
for the quintic), one can write down a local expansion of the periods

convergent near the large complex structure point, which is characterized by its maximal unipotent mon-
odromy. We review in the following just the essentials and refer to [115] for further details. A particular
set of local coordinates

� � on the complex structure moduli space on � is defined by� 	 � ��� � � �
� 
 �

� 
� � � ��
� 
 	

� 
 � � 
�� � ���
	�� ��� 	 � � 	 � � �
(290)
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in terms of
� � , the coefficients in the polynomial constraints of the complete intersection in the torus

variables (264). A point of maximal unipotent monodromy is then always at
� 	 � 1

. Let � � � % � � � % � � be
obtained by the Frobenius method38 from the coefficients of the holomorphic function �

�


� 	

�
�

defined as

�
��� 	 	 ��� � 	 � & 	 � 	 	�� ��� 	 � & � � �� � � � �

� � 	 � ��� � & 	 � 	 � ��� � & � &�
� 
 	

� � � � � ��

� � � 	 	�� ����	 � & 	 � 	 	�� ��� 	 � & � � � �� 
 	 � � �
� � &� 
 	 �� " � (� � � � � � � � �� �� 
 	 � ��� � � &� 
 	 � " � (� � � � � � � ���
� � � % � � � % � � ��� 	 	�� ��� 	 � & � � 
 	� � � � � 	 � � � � ��� 	 � � � � ��� 	 	 ��� � 	 � & 	 � 	 	�� ����	 � & � % � � � 
 � � �

(291)

Define also � � � % � � � % � � � �
� � � % � � � % � � ��� 	 	 ��� � 	 � & � % � ��� " � � (�
 � � / � ��� 	 	�� ����	 � & 	 � 	 	���� � 	 � & � % � � � 
 � � . At the large

complex structure point the mirror map defines natural flat coordinates on the Kähler moduli space of the
original manifold �

� � �
' �
' �

� �
�#" �

� 
!�)( ��� � ��� � � � 	 � ���
	 ��� � 	 � 	 (292)

where
' � � �

��� 	 	 ����� 	 � & 	 � 	 	�� ��� 	 � & � % � 
 � is the unique holomorphic period at
� � � 1

and
' � �

� � are
the logarithmic periods. Double and triple logarithmic solutions are given by [115]

� " � (� � �
� &�
	 % � 
 	  ��	 � � 	 �

��� 	 	 ����� 	 � & � 	 � ���
	�� ��� 	 � � (293)

� " � ( � �
�

&�
� % 	 % � 
 	  ��	 � � ��	 �

��� 	 	���� � 	 � & � 	 (294)

where  ��	 � are the classical intersection numbers  ��	 � � � � � � 	 � � � .
The prepotentials � "(� ( � ' � �

in homogeneous or
� "(� ( � � � � in inhomogeneous coordinates can now be

written as

� "(� ( � �  ��	 � ' � ' 	 ' �
� � ' �

� � ��	
' � ' 	
� � � � ' � ' � � � � � � ���� ���$" � � ��' � � � � � ' � � � � � $ �

� ��' � ��� � "(� ( ��� ' � � � � �  ��	 � � � � 	 � �� �
� � ��	 �

� � 	� � � � � � � � � � � ���� ���$" � � � � � $ � � (295)

where
$ � � �
	�� � �#" � � � � , � � � 	�%� 
 � � � � � � and � is the Euler number of

'
. The real coefficients � ��	 are

not completely fixed. They are unphysical in the sense that � � � 	 �� � and � ��	 � � $ � do not depend on them. A
key technical problem39 in the calculation is to invert the exponentiated mirror map (292) to obtain

� � � � � .
An integral symplectic basis for the periods is given by

� � ' � ����
�
� �� � "(� ( � � � 	 � � � "(� (	 � � � "(� (

�
�
�

� � ' � �����
�
� �� � � � � � � � � �� �

� � � � � � � � � " � (" � � ( � � � � � $ � � � � 	 � � � � $ �� � � � � � � � �� � � ��	 � 	 � � � � 	 � � � � $ �
�

�
�
�

�
(296)

38 The holomorphic period � + � � -������ - � ; 0 can also be directly integrated using a residuum expression for the holomorphic+ � - � 0 form [115].
39 We wrote an improved code for that [144].
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This period vector can be uniquely given in terms of (294),(291) by adapting the leading log behavior. The
� ��	 are further restricted by the requirement that the Peccei-Quinn symmetries � � � � � � �

act as integral
� � ��� � 	 	 � ��	  �

transformations on
�

. Note that
� "(� ( can be read off from the periods and since � � are

flat coordinates, we have

� ��	 � � $ � ��	 � � 	 � � 	 � � � "(� ( �  ��	 � � �

 � % 
 � % 
 � � � � "(� (
 ! � ! 	 ! �

$ 

� � $ 
 	 (297)

where the sum counts the contribution of the genus zero worldsheet instantons. We defined
$ 
 � � � � � � ��� 
 � � �

where the tuple
� ! 	 	�� ��� 	 ! & � specifies a class � in � ��� � 	� �

. The expansion predicts the first column in
table 4. Higher genus predictions will be discussed in sec. 8.14.

The vectors
� " � ( are technical core data of mirror symmetry for toric complete intersections, some

programs which aid to find these vectors for these manifolds are available at [144]. Let us summarize the
multitude of information they contain
� 1.) They contain the degrees of the constraints and the

� �
actions of the toric variety of ambient space

and fix thereby � .

� 2.) Equivalently they can be viewed as
� � � �

charges vectors for the fields in the linear � model [213].

� 3.) They span the Mori cone of � , which is dual the Kähler cone of � .

� 4.) They specify the point of maximal unipotent monodromy in the moduli space of � namely� " � ( � 1
, where the

� " � ( � 1
of (290) are good local coordinates near this points and all mondromies

� � around
� " � ( � 1

,
� ����	�� ��� 	 � � 	 � � �

satisfy (285) with
� ���

and � � �
� � � � � �
.

� 5.) The periods of � are generalized hypergeometric functions with symplectic basis at
� " � ( � 1

given by (296) and the
� " � ( are for those functions what the constants

� 	 � 	 � are for ordinary hyperge-
ometric functions � � 	 �
� 	 � 	 � 	 � � (291).

Similar, in fact simpler, solutions can be obtained for the toric local Calabi-Yau Calabi-Yau manifolds, see
[45].

8.12 Rational expressions for the threepoint couplings in generic complex structure parameters

In the previous section we have focused on expressions of the genus
1

prepotential
�

, which are be ex-
panded around the large complex structure point. The expansion parameter

$ � �
	�� ���$" � � contains � ,
which maps in the � -model to the complexified area of curves in the Calabi-Yau. The phase in � is so that$�� 1

if the real area in � goes to infinity. This is the natural expansion for the Gromow-Witten invariants,
where small

$
corresponds to large areas and hence supressed instanton corrections.

For global considerations and the calculation of the holomorphic anomaly it is necessary to have ex-
pressions for the three point couplings in terms of the complex structure parameters.

One way to derive them is to start with full system of Picard-Fuchs operators � � � � � � � 1
, � � ��	�� ��� 	 �

.
With reference to (242,254,255) we now define

� " ! � % � � � % ! 
 ( � � 
 ��� 
 	 ! �� � #�# # 	 ! 
� 
 � 
 � � 
 	 ! �� � # #�# 	 ! 
� 
 � 
 �* � � 
 ��� 
 	�� � 
 � � 
 	���� 
 � � (298)

In this notation, � " � ( with � � � � �
describes the various types of triple couplings and by (252) and

consideration of type � " � ( � 1
for � � � � 1�	��
	��

. If we now write the Picard-Fuchs differential operators
in the form

� � � �
�

� " � (� 	 � 	
(299)
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then we immediately obtain the relation

�
�

� " � (� � " � ( � 1 �
(300)

Further relations are obtained from operators
	 � � � � . If the system of PF differential equations is complete,

it is sufficient for deriving linear relations among the triple couplings and their derivatives, which can be
integrated to give the Yukawa couplings up to an overall normalization. In the derivation, we need to use
the following relations which are easily derived

� " � % � % ��% � ( � � 	 � � � " � % ��% � % � (
� " � % 	 % ��% � ( � �� 	 � � � " � % 	 % ��% � ( � 	� 	 � � � " � % ��% � % � (
� " � % � % ��% � ( ��	 � � � " 	 % � % � % � ( � 	 � � � " � % 	 % � % � (
� " � % 	 % 	 % � ( ��	 � � � " 	 % 	 % 	 % � ( � 	� 	 � � � " � % � % 	 % � ( � 	� 	 � � � " � % 	 % ��% � (
� " 	 % 	 % 	 % 	 ( � 	� � 	 � � � "(��% 	 % 	 % 	 ( � 	 � � � " 	 % ��% 	 % 	 ( ��	 � � � " 	 % 	 % ��% 	 ( ��	 � � � " 	 % 	 % 	 % � ( � �

(301)

Exercise: Show that for Calabi-Yau ! -folds one gets the relation � " 
 � 	 % � % � � � ( � 
 � 	� 	 � � � " 
 % ��% � � � ( .
From the Picard-Fuchs equation for the quintic (273) we get � " � ( � � ��� � � ��� �
�

and40 � " � ( � � � � � � #
� � ��� ��� . Using (300) and from (301) � " � ( � � 	 � � " � ( we can integrate

� � � � � � 	�� � � �� � �� ��� ) � " � (
� " � ( � � �� � � �
� � � � � 	 (302)

where we fixed � to match the � -model normalization � � � � � � � � � $ � .
For the system (279) we consider first � 	 	 	 � � � � 	 	 � � � � in (300) to express e.g. � " � % � ( � � � � % � � % � � in

terms of � � � � � � � , � � � � � � � and � � � � � � � . Using
	 � � � 	 	 	 � � � 	 	�	 �� � � � 	�	 � � 	 � � � � � 	 �� � � � in (300) we may

express � " � % � ( in terms of � " � % � ( and integrate41 w.r.t.
� 	 . Proceeding this way we get after rescaling of� ��� � � � � 	 and � � 	 � � the triple couplings

� ����� � �
� � � �

	 � ����	 � � " 	 � � (� � 	 � �
	

� ��	 	 � " � � � 	 (��	 � � � �
	 � 	 	 	 � 	 � 	 � � " 	 � � 	 (� 	 � � � � �

	 (303)

where we defined the components of the discriminant as
	 	 ��� � � � � � � � � � � � 	 	 � � � � � � � � (304)

The
�

point couplings (297) can now be recovered using the mirror map (292) in a special gauge 
 � �
�
� �

in the bundle � � � as

� ��	 � � $ � �
�

' �
�
�
� ��!

	 � �	 � �
	 � �	 � 	 	 � !	 ��� � � � � � � � ��� � $ ��� � (305)

8.13 Coupling the � model to topological gravity

We consider again the moduli space introduced in Sec. 5.2

- � � 
 
 %%( � ( 

� (�� #&%�
 � � ��� � � � / � �
� � ��� � � 
 � � �
with expected dimension

� � � �
(366). In the covariant quantization of string theory the metric inde-

pendence of the theory, up to this finite dimensional space (42) we presently discuss, is expressed by a

40 For reference we note also �
� � � � � + ������� ������� � � � 
�0 , � � ��� ��� + � �����	� ��� ,&0 and �

� � � � ,�� � .
41 To fix the function � + � � 0 in the ��� integration, we have to calculate �

� � � ��� and �
� ��� ��� in a similar fashion.
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nilpotent BRST operator just like in (40). Conformal invariance is maintained for � models on Calabi-Yau
spaces. To take advantage of this extra bonus of the � -model note that in a conformal fields theory �



 � 1
and (40) splits in the following two components corresponding to � � � � � ��� � and � �� �� � �� ��� � . Now we
can borrow literally the treatment of the measure from the critical bosonic string. In the the case of the
bosonic string the situation is exactly as in the topological � -model on a Calabi-Yau 3 fold (61), where
the ghost number is identified with the

� � � �
axial charge of the � -model. The geometrical reason for this

equivalence is that (367) and (368) give the same anomaly if
� � � � � � � � �

and � 	 � � � � � 1
. As we saw

in Sec. 5.4 the � ��� � and the , � 	  � have ghost number
� �

and
�

respectively and there is a ghost num-
ber anomaly of � � � � � �
� � � ) � � on a higher genus wordsheet, which corresponds to the axial current
anomaly � � � � � �
� � � ) � � .We can use therefore the same measure over the complex moduli space is in
the bosonic string. From the Beltrami-Differentials � ! � � ! ��� � �� 	 � , � ����	�� ��� 	 � � � � in � 	 � � ) � , which
represent tangent directions of - � , we define

� ! * � �
���
! ��� � � � ' � . " ! ( � � ' � � � � �

���
� � � ��� � � � ! ��� � � �� �� �� ! ��� � � � ! � �� ! 	 (306)

The definition of � " ! ( in itself does not require conformal invariance but just (40). We used after the second
equality the standard metric in a conformal gauge and the expressions for the Beltrami-Differentials. In
the last equality we used

� � 	����
supersymmetry and the fact that

� � 	 �� � are � � �
fields after the � -twist

to define

� ! � �
���
� � � � � � ! 	 �� ! � �

� �
� � � �� � �� ! � (307)

Because of the antisymmetry of
�

and the Kähler structure on the moduli space - � the quantity

� � � �
� ��� ��
! 
 	

� ! 
 # � � � � �
� � ��� ��
! 
 	

� ! �� !�� # � � � � � �� � (308)

is a top-form on - � . Here
# � � � �

or
# � � � � � �� � means contraction with

� � � � � ��� � � � � � � � � � or� � � � � � �� � � � ����� � � � � � � � � � � �� � � � � � and suitable normalization. That is we inserted � � � � times � " ! (
to compensate the ghost or axial anomaly, which is by the index theorems (cff section9.3) identified with
the dimension of - � . The integral

� " � ( � � �
�
� � (309)

is the central observable of the topological � model. How does this discussion of the dimension of the
moduli space relate to (149). In the A-model we counted the geometrical virtual dimension of the moduli
space of non-trivial maps and found that the deformations of the metric - � are offset by the obstructions
of having a a nontrivial holomorphic map to � , so that the virtual dimension of the moduli space of maps
is zero. Here we kill the deformation space of - � by viewing the � -model fields as ghost system from
which we construct a top form to integrate over - � . The topological � -model is one of those examples of
string theories, where general covariance (40) is maintained by an , � 	  � operator, whose charge violation
measure the dimension of the moduli space, but the decoupling of ghost and matter sector is not imposed
[199].

As part of the prerequisite for coupling topological theories to gravity [202] the measure � � must be
closed

� � � � 1
. To see that consider

1 � ����, 	 � � � ��
! 
 	

� ! 
 
 �
� ��� ��
� 
 	

��� �
� � � 	 � � 	 � ��� ��, 	 � � 
�	 ����� � �%� � � 
 (310)
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and use the fact that � , 	 � � 
 yields the � � � 
 ��� � � � � � � , whose insertions can be interpreted as derivative
on - � according to (46). A second prerequisite is that � � is basic, i.e. that it vanishes for all variations
of the metric induced by infinitesimal diffeomorphism. These correspond to the last two terms in (43)
and the property is easily checked. We will show below explicitly by manipulations similar to the one
that lead to (310) that the , commutator of the measure is exact. The metric dependence comes from the
boundaries of - � . Combinatorial the calculation is like non-topological higher string loop calculations,
apart from the much more sophisticated integrals over - � . The compactifications of - � % � is identical to
the one discussed in Sec. 6.2. Its boundary components come from pairwise collision of inserted points
and nodes. In

� ! gravity we got from these boundaries the topological recursion relations. In the case
of the � -model there is an interesting modification namely that the boundary components contribute only
in anti-holomorphic derivatives of

� � , which gives rise to recursion relations involving antiholomorhic
derivatives. Since without boundary component contributions the

� " � ( would be holomorhic one calls
these recursions the holomorphic anomaly equations. They are no more anomalous then the topological
recursion relations.

8.14 The holomorphic anomaly

We want to consider in this section perturbations of a more general form then in Sec. 5.3 namely

� � �
�
� � � �

�
� �

� � � � � � � � �
� �� � � � �� � � (311)

Here the WS two-form field � � � " � ( is the B-model field (38) which comes from a � � � "(� ( in the� � 	 � � ring. We will use here the CFT notation introduced in Sec. 5.5, i.e. � � * � � , � 	 � , � 	 � � �

 �
� � ��

	 � �� �� 	 � � �

 and �� � � * � � �, � 	 � �, � 	 �� � � �

 � � � ��
	 � �� �� 	 �� � � � 
 . In an unitary theory �� � � � � � � � , but it will

be important in the following to view �� � as an independent parameter. As explained in Sec. 5.3 the WS
two-form fields in (311) are neutral. Therefore we can expect that arbitrary � ��" � � � � functions like for
� � �

� " � (� � % � � � % � � � � �
� �
� � � � � ��� � � � �

� ��� ��
! 
 	

� ! �� ! 
 (312)

do not vanish. Is it stands (312) is not well defined. We first have to specify how to deal with the contact
terms, which are necessarily present in an interacting supersymmetric theory, see (93) or (100). Now in
the case � � 1

there are the three
� � � � � 	 � � conformal Killing fields. The zero mode integral of their

superpartners compensates for three descendant operations and with the
� � � ����	 � � symmetry we set three

points to
1�	 ��	 �

. The generic genus zero correlation is then

� "(� (� � % � � � % � � � � �
�
� � � � � 1�� � � � ���
� � � � � � ��� � � � � ��� � � � � 
 (313)

This has no contact interaction among the first 3 fields. It is natural to make this function symmetric in
its indices. Therefore we exclude all contact interactions from the regions of the integrations. This the
regularization we adopt for general � .

In view of (311) we can insert 
 � � � operators by taking � � derivatives
	 � of � " � (� � % � � � % � � in an the attempt

to obtain � " � (� % � � % � � � % � � . In order to achieve our short distance regularization we have to subtract the would
be contact terms in the integration over ) . This is very naturally achieved by taking covariant derivatives
w.r.t. the Weil-Peterson metric, i.e.

	 � � 	 � � � � . In the ��� � formalism we can isolate the contact term
as the difference between

	 � � , � ,�� % " 
 � � � � 	 � % 1 
 � � � � � � ! � � � ! ��� � � � �� � � � % 1 
 . The logic is that in
the term

	 � � , � ,�� % " 
 � the field � � in the integral 
 � � � explores the region near � � in (76), while in the
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second it does not. The , � , � generate the descendant field from � � in (76) in order to compare the two
terms. In particular applying this to

% " 
 � % 1 
 and using (97,98) we get a contact term with the
�

operator� � � � �� # � � ��	 � # �
. Roughly speaking this non triviality of the vacuum comes from the coupling of� � to the

� � � � 	
current (30). One can argue that the above contact term is proportional to the integral

of 
 integrated over the Riemann surface. The above consideration for the half sphere (76) , fixes the
normalization and in general gives the Euler number � of ) . Subtracting both contact terms one concludes
that the insertion of 
 � � " � (� into on a genus � correlation function with the right short distance prescription

is given by the covariant derivative of � " � (� � % � � � % � �� � ��	 � � � � � � � � � � � 	 � � 	 (314)

This reflects the fact that � " � (� � % � � � % � � is a tensor over the complex moduli space of the Calabi-Yau - trans-
forming in � � � � � � � - �

� � � � � � in as a generalization of the genus zero discussion in Sec. 8.6. The last
factor can also be understood by building the higher genus Riemann surface ) � by sewing it from a sphere.
This involves � times a

% � 
 � � � � " % � � � � insertion as we will see shortly, which results in
� " � ( transforming

as section of � � � � � w.r.t. to Kähler transformations. To summarize the contact algebra analysis yields that
all correlators can be obtained from the vacuum correlators

� � as

� " � (� � % � � � % � � � � � 	 � ��� � � � � " � ( � (315)

They are symmetric, because of the vanishing of the corresponding curvature terms in Kähler connections.
Let us therefore investigate similarly as in Sec. (91) the derivative w.r.t. �� � of the correlator

	
	 �� � � � ��� �

�
� �

� � � � �
� �� �� � �� � � � � � � ��� ��! % �! 
 	 � ! �

�! � # � � � � � �� �
� � �

�
	
� ��� ��
� � � 
 	

	 �
	 � � 	 �� �

�
� � � � � � �! �
 � �

! �
�! �
 � �

�
�! � # � � � � � �� �

� � �
�
	 �	 � � ��� 	 � �

�
�

�
� � � � 	

(316)

The contour of
� � 	 �� � are originally as in Fig. 7 encircling �� � � � . The deformation and splitting of the

contour yields a sum of terms in which the
� � and �� � encircle one

� �
� � � � � � � � � � ��� � � ! � � � ��� � � !
and one

� �
� � � �� � � � � �� � ��� � � �! � � �� ��� � � �! in each summand. Together with the integral in the definition

of the � ! and �� ! and the charges , � and , � associated to
� � ��� � and �� � ��� � we can write the result of

the contour deformation as

� ,�� 	 � ! 
 � 
 � � � ��� � � ! � * � !
��, � 	 �� ! 
 � 
�� � � ��� �� �� ! � * �� ! � (317)

In Sec. 5.5 where the
� � ��� � 	 �� � ��� � are integrated over a contour we got the � � 	 mode of the � , which

corresponds to derivative of a insertion position. Here we get the � ! and �� ! , which convert according
to (46) into a derivative in the moduli space. Both effects are related and lead to exact forms on - � and- � % � . The boundary components

	 - � , where the integral in the last line of 316 contributes according
to Cauchy’s theorem are in real codimension two as indicated by the form degree of

�
. They are the

standard stable degenerations encountered in Sec 6.2 Fig 15. The whole point specific of the � -model is
to now figure out what the

� � � , � � � and � � � are. This turns out to be much easier then in the
� ! gravity

case. It is a bosonic string higher loop sewing consideration [173] with simplifications. There will be no
new information in the

� � � above what we summarized in (315). Since 
 � � "���( operators correspond to
functions on - � as opposed to the

�
classes there is no interesting recursion to expected.
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Fig. 35 A-type sewing
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Fig. 36 B-type sewing

It remains to analyze the � and � degeneration depicted in Fig. 35 and 36 respectively. Near the
boundary component in the moduli space corresponding to the degenerate surface in the figures the normal
direction to the boundary can be parametrized by the length of the tube * � . The moduli space of the
boundary components consist of the

� � � � dimensional moduli space of the irreducible curves of genus
� � �

in case A or � and � � � in case B respectively with measure
� � �� � � ��� � . That is we loose three

complex dimensions in the moduli space of the irreducible components and hence three � �� . As we make
the tube infinitely long or equivalently infinitesimal thin the data remembered about the shape are merely
the two insertion points

�
and

�
, the length and the twist of the tube. In particular two ���� are replaced by� � � �

� � � � ��
� � � � � � ��� with � � � 	 �

and since we want calculate a string amplitude we have to insert a
complete set of states for the � � . The contribution of the boundary is hence

�
� ' �

� �� � � �� �� � � ! ��� � ! � � 		 * � � � �� �� � � � � � � �
� �� � � � � � � � � � � � � � � �

� �� � � � � �
� ��� ��
� 
 	

�� � ��� � �
(318)

The integration over
� ! � � and

� ! � � is over the fibre ) � of the universal curve. We can hence convert, e.g.

the
� �
� � � � � �� � � � � insertions in a descendant field � " � (� integrated over ) � . Only if the 
 �� �� integral

extends over the tube one gets a contribution proportional to * � which does not cancel under the derivative
in 318 and one can focus on this integration domain. The correlation function factorizes upon complete
insertion of states in operator approach, which gives

�
� ' �

� � �� � � ��� � 		 * � � � % � � � 	 ��� �� % � 
 � � ! � 
 � � ��� � � � � ��� � � � � � ��� ��� 
 	 �� � ��� � � �
(319)

Here we also used the fact that propagation on the tube projects on the groundstate. With the manipulations
from the Sec. 5.5 and the normalizing the perimeter of the tube to one we get

� � % � � � 	 � �� �� % � 
 � � ! � 
 � � � �� % � � � 	 � �� �� % �� 
 � �!! � � ! � �

 � 
 �
� * � � �� % �� �� % �� 
 � � 
 � � �! � � �
 � * � �� �! �� �
 � � 
 � � �! � � �
 � * * � � � ��! (320)

Using this result in the boundary contribution of the � or � type degeneration and (315) one gets the
contributions from the boundaries

�	 �! � " � ( � �
� �� � ��! � � � � � � " ��� 	 ( ( � ��� 	�

� 
 	
� � � " � ( � � � " ��� � ( � (321)
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The factor
	� comes the fact that we over count the

integration over � � and � � in (319) by two in the � degeneration, as the � � 	 � � does not change the
complex structure and in the � degeneration we doubled the non symmetric terms.

For � � �
the situation is more tricky and interesting. Because of � � � � �
� � �

we have to kill the
infinite automorphism by the insertion of one operator to start with a stable curve. Hence we have to
consider �	 �! 	 � � " 	 ( . That leads in addition to the � degeneration to a contact term between � � �� ���	 �! 	 � � " 	 ( � �

� �� � ��! ��� � � � � �� 	 � � � � �! � �
(322)

The first term above is from the � type degeneration. The contact term sees global properties of the Calabi-
Yau and is the most interesting one have encountered. There are two ways to normalize the contact term.
Compare with the operator

� 	 � � 	 �� � � �
� � � �

* �
� %
��� �
� � � � � 	 $	� �$ ����

(323)

formulation
� " 	 ( [19] and calculate the � �� term as in [43].

As connection explained further in [20] the topological or holomorphic limit of the genus one free en-
ergy � " 	 ( ��� � is related to the holomorphic Ray-Singer torsion [175]. The latter describes aspects of the
spectrum of the Laplacians of

	 � % 	 � �	 � �	 �� � �	 �� �	 � of a del-bar operator �	 � * � 	 �� � � � � � 	 � 	 �� � � �
coupled to a holomorphic vector bundle

�
over � . More precisely with a regularized determinante over

the non-zero mode spectrum of
	 � % 	 one defines42 [175]

� 	  � � � � � � 	 
 �
�
� # ) 	 �� " � 	 ( � 
 �� % 	 . One case

of interest,
� � � � � � with

	
� % 	 * � 	

�
� � � % 	 , leads to the definition of a family index � " 	 ( ��� � �

	� 
�� ( � �� 
 � � � 	 
 �
� �
� # ) 	

� 	
� " � 	 ( � 
 � � 	 depending only on the complex structure of � . As was shown in

[20] the holomorphic and antiholomorphic dependence of this object on the complex structure [24] yields ,

which can be integrated using special geometry to F " 	 ( ��� � � 	� 
�� ( � � " � ( � � � � � �� � �" � � (�� � � � " � � � ��� � � � � � � � � � ��� � � � � � � � � 1 �
this is the same expression that was derived in [19] using world-sheet arguments. Global topological data
enter (8.14) via  � � � � 	 	 � �	 � and its large volume behaviour � " 	 ( ��� � � � & ���� 
 	 � � 
 ' � � � � � � � � . The
latter as well as local topological data of other singular limits in the complex structure moduli space of �
determining the leading behaviour of � " 	 ( ��� � and fix the holomorphic ambiguity � ��� � .

The counting functions for the GW invariants are obtained as a holomorphic limit of the result of the
integration

� � ��� � � � � ��
!� � �� ��� � � � � 	 �� � of (8.14). One difficulty in integrating
� � � � 	 �� � is the possibility

of adding an holomorphic piece to it. Its from is however restricted to

� � ��� � � �
�
� 
 	

� ��� ��
! 
 �

" " ! (� ��� �
	 � ! (324)

where � is the number of components
	 � of the discriminant, and

" " ! (� ��� �
are polynomials of degree � .

Using the expansion (180) and the genus one data of the quintic discussed in (8.9) one obtains the BPS
numbers in table 4 and 5.

9 Complex-, Kähler- and Calabi-Yau manifolds.

Let us describe in the following the definitions and key properties of the manifolds mentioned above.
A quick introduction from the physics point of view is [117], a more extensive one is [32]. A good
introduction of supersymmetric compactifications with emphasis on Calabi-Yau manifolds and orbifolds is
[97][72]. One purpose of this section is to give a guide to further mathematical references which are given
as we go along.

42 [172] reviews these facts and relates the Ray-Singer torsion to Hitchins generalized 3-form action at one loop.
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! 
 % � #�� � ( � � � � � � 	

� 1 1 1
� 1 1 1
� 1 1 1
	 � ��	 � ��1 � � � � 1
� � � 	
� � � � � ��1 1 � � � � � ��� � 1 � � �
��1
� � � � � 1 � � � � � � � � ��1 � � � � 	�	 � � � � � � � ��� � 	�� � � � � � 1� � � � �
	 � ��� � � � � � � � � � ��� �
��� 	 � � ��� � 1�� � 1 �
� � � 1 � 	 � � � 1 � � � � 	 � � 1 1
� �
� � � � � 	 � 1 � � � 1�� ��� � � � � � ��1 � ��1 �
	 � 	
� � � 	 1 � � � � 	�� ��1 1�1 � ����1 �
� 1��
��� � ��� � �
� � � ��1

Table 5 BPS degeneracies �
�
2 �= 4
7 associated to genus 2,3,4 curves on the Quintic in

� �

9.1 Complex manifolds

Consider a real
� � dimensional manifold � with a covering by coordinate patches � � , � � ��	�� ��� 	 �

,
which are homeomorphic to a neighborhood

� � � � � . Then we can pick � "���(� �#" �
,
� � ��	���� � 	 � complex

coordinates on each � � . � is a complex manifold, if all transition functions� " ��! ( *�� " ! ( �#" � � � " � ( �#" � 	 (325)

defined for
" � � � � � ! , are biholomorphic.

Obviously
� � is a non-compact complex manifold with one chart. It is also Kähler. One may hope

to get examples of compact complex manifolds by considering constraints like � � � 	 	 ��� � 	 � � � � 1
, which

are holomorphic in all variables. While this leads indeed to a complex manifold, it fails to define compact
ones, because of the maximum modulus theorem, which states that the maximum value of the modulus of
a non constant differential function on an arbitrary domain � is taken at the boundary of � . If now � � 1
is solved for some � � in a compact domain � of the other variables, � � takes its maximal modulus on the
boundary of � and the construction fails to define a differentiable compact manifold.

A way out is to use identifications on
� � � by discrete shift symmetries, i.e. consider tori � � � �

� � � / � � � , where the lattice � � � ��  � � as abelian groups. If one chooses a complex structure on
� � �

by aligning real and imaginary directions of � � � � � �� � � � with the basis of � � � one gets compact
complex tori � �
 . They are flat and have hence trivial holonomy. Dividing by discrete rotations

�
of the

lattice � � � leads to orbifold compactifications. If
�

acts as a discrete irreducible subgroup of
� � � � �

in
the fundamental representation on the complex coordinates of � �
 then one gets a complex orbifold with
curvature singularities at the fixset of

�
. The corresponding lattice automorphisms have been classified

[67]. Remarkably one can prove that this curvature singularities can be smoothed to get a Kähler manifold
with

��� � � �
holonomy.

An alternative route to construct simple compact complex manifolds is by dividing by
� � * � � � � 1 


actions. E.g.
� � is defined as the space of complex lines through the origin in

� � � 	 . This is the space of
equivalence classes of

� � 	 	���� � 	 � � � 	 � in
� � � 	 � � 1 
 with the equivalence relation

� � 	 	���� � 	 � � � 	 � � � � � 	 	 ��� � 	 � � � 	 � 	 (326)

where
� � � �

. For the charts we take

� � � � � � �� 1 % � � � � � 


and as their coordinates � "��!(� � � � / � � . On � � � � ! we have the transition functions

�0"���(� � � �� ! /	� �� ! � � " ! (�� " ! (�
	

(327)
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which are biholomorphic.
� � is a obviously compact and a Kähler manifold as we shall see.

A hypersurface constraint in
� � of the type

� � � 	 	���� � 	 � � � 	 � � 1
must be homogeneous of some degree

! in the � � , i.e.
� � � � 	 	�� ��� 	 � � � � 	 � � � 
 � � � 	 	�� ��� 	 � � � 	 � , to be well defined on the equivalence classes.

It defines a compact complex Kähler manifold. This manifold is smooth if � is transversal, i.e.
�!� �� 1

for
��� 1

. We will give a short overview about the application of this construction and generalizations to
Calabi-Yau manifolds in Sec. 9.10.

Conceptional it is an important question if and how many complex structures an even dimension real
manifold possesses. A necessary prerequisite to have a complex structure is a differentiable endomorphism
of the tangentbundle

� * � � � � � with
� � � ���

.
�

corresponds to multiplication of the tangentbundle
by � � ! � �

and manifold with this structure is called an almost complex manifold 43. With
�

we can
define projectors � � �

� � �
� � � �

on the holomorphic sub-bundle and the antihomlomophic sub-bundle of the tangents bundle�� � �
� � � � � � �

respectively. According to a theorem of Niremberg and Newlander a necessary and sufficient44 condition
for the existence of complex coordinates, i.e. a complex structure, is that the Lie bracket (230) of two
holomorphic vector fields

' 	��
is always a holomorphic vector field [166] (see [105] and [32] Chap. V.

for physicists review). Written with the projectors one formulates this condition as�� � ��' 	���� � � 1#�
(328)

This integrability condition leads to
� � ' 	 ��� ����� � ' 	 ��� � � � � � ' 	�� � � � ' 	�� � � 1

. In local flat
coordinates

� � 	 	 � � � �	 	 � and with
� 	� � �
 � � . 	
 , i.e.

� 	 � � 	� � � �
 � � � 	� � 	 � � �
 � , this means that the
so called Nijenhuis tensor vanishes identically [166]

� �	 
 * � � �	 � 	 � � �
 � 	 
 � �� � � � �


� 	 � � �	 � 	 	 � �� � � 1 �

(329)

Once complex coordinates � ! � � ! � � � ! with

	 ! * � 	
	 � ! �

�
� � 	

	
� ! � � 		 � ! � 	 	 �! * � 	
	 �� ! � �

� � 	
	
� ! � �

	
	 � ! � (330)

are defined, we can split � 
 � � � � � �
�

, which is spanned over
�� � � , � � �
	 ��� � 	�� � with complex

coefficients � � as � 
 � � � 	 % � � � � ��% 	 � . Here � � ! 	 � ! 
 � * � � ! 	 � ! � � 
 and each vector
�

in � 
 �
decomposes as

��� � ��
! 
 	

� ! 	
	 � !

� ��
! 
 	

� � � ! � � � � � ! � 	 ! � � � ! � � � � � ! � 	 �! � � * � 	 % � � � ��% 	 � (331)

The transition function of � 	 % � � � � ��% 	 � spanned by
	 ! ,

� 	 �! � are [anti-]holomorphic and we call it the
[anti]holomorphic tangent bundle. Obviously under complex conjugation � ��% 	 � � � 	 % � � . Similarly
the cotangent bundle splits � �
 � � � � 	 % � � � � � � % 	 � into a holomorphic and an anti-holomorphic sub

43 A complex manifold is almost complex, because multiplying the basis of ��� of a complex manifold with coordinates� � ��� � ���	� � by � ��
 � , maps

� 

�� �

�� ������ � 

�� �
� 

�� ��� , i.e. � �  �� ��� 

�� � �  �� ��� 

�� � . In holomorphic and

anti-holomorphic coordinates this means � �� ��� � �� , � �
�� � � � � � 
 �� and � ��� ��� �
� � �44 That is the nontrivial part.
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bundle spanned by
� � ! and

� �� ! * � � � �! respectively45. Sections of � � � �
 � are called
�
-forms

�
� and

can be decomposed into sections of �"� � � 	 % � � � 	 � � ��% 	 , which are called
�#" 	 $ �

-forms

�
� % 	 , i.e the space

� � of
�

forms splits into the space � � % 	 of
� " 	 $ �

-forms � � � � � 
 � � 	 ��� % 	 . If
�

is integrable46, the de
Rham exterior derivative splits likewise into� ��	 � �	 	 (332)

i.e. for � � � � � % � � � % � � % �� � � � � % � � � � � � � � ��� � � � � � � � �� � � ��� � � � �� � � ��� % 	 one has
	 � ���
	 ! � � � % � � � % � � % �� � � � � % � � � � � ! � � � � � � � ��� � � � � � � � � �� � � ��� � � � �� � � � � � 	 % 	�	 � ���
	 �! � � � % � � � % � � % �� � � � � % � � � � � �! � � � � � � � ��� � � � � � � � � �� � � ��� � � � �� � � � � % 	 � 	 (333)

so that
� � � % 	 � � � � 	 % 	 � ��� % 	 � 	 . It follows by consideration of the

� " 	%$ �
type that the equation

� � � 1
on � � implies

	 � � 1
, �	 � � 1

and �	 	 ��	 �	 � 1
. Since �	 is nilpotent we can define the cohomology

� � �� �
�
� � � ��� � �� .

A central result is the Čech-Dolbault isomorphism, which follows from the Čech-deRham isomorphism
see [100] page 43-44 and the �	 -Poincaré Lemma. It states for sheaves of vectors fields � that

� 	 � � 	
�
� � � ��� �� � � % 	�� � � 	 � � � (334)

For example � 	 � � 	 � � � � � � �� � � % 	 � � 	 � � � � * � � % 	 � � �
.

9.2 Kähler manifolds

A hermitian metric is a positive-definite inner product � � � �� � � �
. Locally it can be given by a

covariant tensor � �� % � � � �� � � � � � � � � � �� such that � � �� � � � � � and ��� � � �
one has � � � � �� � �� � 1

, if not all
� � � 1

. Note that the first index of � � �� is only summed over the unbarred � ���
	�� ��� 	 � and the second only
over barred �� � � �
	���� � 	 �� indices respectively. To define an hermitian metric an almost complex structure
is sufficient. Hermiticity is the condition � ��' 	�� � � � � � ' 	 � � � on the real metric, which becomes

� � �
� � �� � 	� � ��	 (335)

in coordinates. It does not constraint � further then admitting
�

and any metric say � ) , because for any
such � ) the metric � � �

� 	� � � )� �
� � �� � 	� �

)
��	
�

is hermitian. In particular on any complex manifold we can
define a hermitian metric see [139] Chap 3.5. Multiplying (335) with

� �
� , defining

�
� �

� � �
� � � � and

using
� �
�
� �� � � . �� we see that

�
� �

� � � � � . Hence we can define a 2-form � � �
� �

� � � � � � � . In
complex notation this becomes

� � � ��
� % � 
 	 � �

�� � ��� � � � �� � (336)

This is a real form �� � � of type
���
	��
�

and is called the fundamental form associated to the hermitian
metric. Because47 � * � � � #
� � � �� � � 1

one gets by wedging � n-times� ��
 � � �
� �

� � � �
� #
� � � �� � � � 	 � � �� 	 � ��� � � � � � � � �� � � � � �
� #
� � � � � �� � � 	 � ��� � � � � � � (337)

45 To avoid too complicated notations ��� ( � � � ) will mean in the following the holomorphic tangent bundle � � � � � (cotan-
gent bundle � � � � � � � � � � ).

46 On an almost complex manifold one can project � -forms
�

with .�� ’s and � �� ’s ( � � . � � ) to + . - ��0 -forms
� � � � . As �

depends on the coordinates one gets  � � � � � +� � 0 � � � � � � � � +� � 0 � � � � � � +" � 0 � � � � � � +� � 0 � � ��� � � � and one may define� � � � � � +� �� 0 � � � � � and �� � � � � � +" � 0 � � � � � . One can check that the condition �� ��� � is equivalent to �	�� 7�
 � .
47 Note in coordinates � � - � � � one has the block form

�
�
� �

� �

���
�����

�� ��� and e.g. [32] defines

���
�  �� �&+

�
��� 0 � � � �

� �
�� .
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a positive volume form on � , which implies also that � is orientable.
An hermitian metric whose fundamental form is closed

� � � 1
is called a Kähler metric. An complex

manifold endowed with a Kähler metric is called a Kähler manifold.
� � � 1

implies
	 � � �	 � � 1

, which
is equivalent to

	 ! � � �� � 	 � � ! �� and �	 �! � � �� � �	 �� � � �! . The latter equations are integrability conditions for the
existence of a local Kähler potential � � � 	 �� � which is real and yields the metric as follows

� � �� ��	 � 	 �� � � � 	 �� � � � �� � �
	 � �	 � � � � 	 �� � � (338)

Note that despite the form above � cannot be exact. For if � � � � would have been exact (337) could not
be true, because using Stokes theorem the integral 
 � � would be zero. That means that

�
	 � �	 � � is not
globally defined. Indeed as far as the definition of � goes � � � 	 �� � only needs to be defined up to a Kähler
transformation � � � 	 �� ��� � � � 	 �� � � � � � � � �� � �� � , so � 
 will be a section of a nontrivial line bundle over� . In general two Kähler forms � and � ) are in the same class in � ��� � 	 � �

, if we can find a smooth
global real function � on � and

� ) � � � 	 �	 � � � 	 �� � (339)

Above property (338) simplifies the expressions for the Christoffel symbols and the curvature tensors
� � � � !� � � � ! �
 	 � � � �
 	 � �!� � �� � � 
 �! �	 � � � 
 ��
� � � 
 � �� ! �
 � ��	 � �	 �� � ! �
 � � � �� �
	 � � ! �� � � �	 �� � � �
 � 	 
 
� �� ! � � �	 �� � 
 � !� � � 
 � �� � � ! �
 
 � �� ! �
 � ��	 � �	 �� 
!�)( �
� # � � � �� � � (340)

Note that the pure index Christoffel symbols are the only non-vanishing ones and that 
 � �� ! �
 � 
 ! �� � �
 �
 � �
 ! �� , because of the integrability condition. The other non vanishing components of the Ricci tensor are
of type 
 �� � ! �
 , 
 � �� � �
 and 
 �� � �
 ! . From the Ricci tensor one defines the Ricci form

� � � 
 � �� � � � � � � �� � � � 	 �	�
!�)( � � # � � � �� � � �� � � 	 � �	 ��
!�)( � � #
� � � �� � � (341)

It satisfies
� � � 1

, but is not exact, despite the form it is written above, because

�� ( �
� # � � � �� � is a density

and not a function.
We now turn to harmonic theory for complex manifolds. On

� " 	 $ �
-forms � � 	

� � 	 � � � � % � � � % � � % �� � � � � % � � � � � � �� ��� � � � � � � � � �� � � � ��� � � � �� � we have an local inner product defined by a hermitian metric

� � 	 � � � � � � �
" � $ � � � � � � � � � �� � � � � �� � � � � � � � � � �� � � � � �� � (342)

where � � � � � � � � �� � � � � �� � � � � � �
 � � ��� � � � �
 � � ! � �� � ����� � ! � �� � � ! � � � � ! � �
 � � � � �
 � . With this we can define an global inner
product ��� % 	 � ��� % 	 � �

� � 	 � � � �
'
� � 	 � � � � � � ��
 	 (343)

with
� � 	 � � � � � 	 � � 	 � � 	 � � � 1 ��� 
!� � � � � 1�	

(344)

which makes � � % 	 in a pre-Hilbert space. One can define the Hodge operator48 � * ��� % 	 � � � � 	 % � � � i.e.
� * � %� ��� by

� � 	 � � �	��
 � ��� � �� 	 (345)

48 Here the conventions are as in [139]. The � operator in [100] maps � 2 ;

�
� � � � � � � � � � � � � , so it involves an additional

complex conjugation � 2 ;
� ������� �� .
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with �� � 	
� � 	 � � � � � � � � � % �� � � � � �� � � � � � � � ��� � � � � � � � �� � � ��� � � � � �� � � 	

� � 	 � � � � � � � ��� % � � � � � � � � � � � � � � ��� � � � � � �� � � � � � � ��� � � � � � � and � � � � � � � � % �� � � � � �� � ����� �
� � 	 �� � � � � � � � % � � � � � � � � � . Explicetly

�#� � � � ��� �
� ��" � � 	 ( � � � � �" � $ � � � � " � � � � � $ � � �
� ! � � � � ! ��� � � � � �� � � � � �
 � � � � �
 �� � � � � � � � � � � ! � � � � ! � % �
 � � � � �
 � � � � � � � ��� � � � � � � � � � �� � � ����� � � � �� � � � �

(346)

One checks � �� � �#� and � � � � ��� �
� � 	 � for � a
�#" 	%$ �

-form.
With the norm

� # 	�# �
we can define the adjoint operators

	 � * � � % 	 � � � � 	 % 	 and �	 � * � � % 	 � � � % 	 � 	
by

�
	 � � 	 � � * ��� � 	 	 � � 	 
 �#� � �	 � � 	 � � * � � � 	 �	 � � (347)

respectively. On a compact manifold one has �	 � � � � 	 � . With the adjoint operator one can define
beside the de Rham Laplacian

	 � ��� � � � � � �
the Laplacians

	 � � 	 	 � � 	 ��	 and
	 �� � �	 �	 � � �	 � �	 .

The Hodge theorem states that every element � � � � % 	 has an unique orthogonal decomposition into a
harmonic form � , an exact piece �	 � with

� � � � % 	 � 	 and a co-exact piece �	 � � with
� � � � % 	 � 	 i.e.

� � % 	 � � � % 	 � �	 � � % 	 � 	 � �	 � � � % 	 � 	 � (348)

This is in analogy with the de Rham decomposition � � � � � � � ��� � 	 � � � � � � 	 . The usual argument
shows that if � is closed, i.e. �	 � � 1

, then the �	 � � piece in the decomposition is zero, because �	 � � �	 �	 � �
and thus

1 � � �	 � 	 ��� � � �	 � � 	 �	 � ��� , which implies �	 � � � 1
. This in turn means that every �	 closed

form can be uniquely decomposed into a harmonic form w.r.t.
	 �� and a �	 exact piece, which implies

� � % 	�� � � � �� � � % 	 � � �
.

Using
� �	 � � � � � � � � � � �� � � � � �� � ����� �
� � � 	 � �� � � � � � � � � � �� � �� � � � � �� � one can show that the Kähler � form is harmonic.

Hence � 	 % 	 � � � � �
on a Kähler manifold. Similarly one shows that all � � , � � ��	���� � 	 � are nontrivial

elements in � � % � � � �
. A very important result for Kähler manifolds is the Laplacians are all equivalent

	 � � 	 �� �
�
� 	 
 	 (349)

where
	 �� � �	 �	 � � �	 � �	 ,

	 � � 	 	 ��� 	 � 	
and

	 � � � � ��� � � �
. As a consequence of (349)

	 � like	 � and
	 �� does not change the

� " 	%$ �
-type and taking the harmonic forms as unique representatives we

get the Hodge decomposition of the deRham cohomology groups

� � � � � � �

� � 	 
 �
� � % 	 � � � �

(350)

On the cohomology of a Kähler manifold with � � �
� � � � � �
one can define the exterior product with

the standard Kähler form � defined on
� � , i.e. � � �� � � � � � � � �� � , as lowering operator

� � , the
adjoint operator as raising operator

� � and the diagonal operator, which associates to each form of degree�
the eigenvalue

� � � � � /
�
, as � . Then � 	 �

�
fullfill the Lie algebra of � � ��� 	 � � , � � � 	 � � � � � � ,� � 	 �

� � � � � �
and the cohomology decomposes into irreducible representations. More precisely the

Hard Lefshetz Theorem [101] says the following:
� � � � ! * � � � ! � � � � ! is an isomorphism and with� � � ! * � � � � %
� � � ��� � 	 * � � � ! � � � � ! � ��� ��� � � % � � � � � � � ! the primitive cohomology one has the

Lefshetz decomposition

� � � � � � �

!
� � � � ! � � � � ! � � � �

(351)

The primitive parts of the cohomology play the rôle of highest weight vectors.
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Examples: The cohomology of
� � forms a representation


�� 
 � . The cohomology of the two torus (
�
� � 	 � � ��� ��

) decomposes as
� � 	 � � 
 �
 � , where the two

� 	 �
representations are

� � and
� �� while

� �
	 � � � � �� � form
the


��
 � representation. Check that the cohomology of the � � � torus has the � � � � 	 � � decomposition
 ���
	 ��� 
 �
 ��� � � � � �� 
 	
� � � �� � �

� � � � �� � � � �
� � 
��
 � .

Let us note for further reference that the action of
	 � on

"
-forms � can be expressed in terms of

covariant derivatives and the curvature tensors as

� 	 � � � 
 � � � � 
 � � ��� � � � � 
 � � � � 
 � �'" 
 � 	 
 � �
�
 � � � � 
 � 
 � �

� " � " � � � 
 � � 	 
 �

 � �

� �
 � � � � 
 � 
 (352)

By consideration of type follows that every holomorphic
� " 	 1 �

-form � is harmonic and vice versa. We
have �	 � � � 1

as it maps to � � % � 	 which is trivial. If
	 �� � � 1

then from �	 � �	 � � 1
follows �	 � � 1

.
Forms of Kähler manifolds are related by complex conjugation � � % 	 � � 	 % � , which implies for the

cohomology groups � � % 	 � � � � � 	 % � � � �
, since complex conjugation commutes with

	 � . The star
operator � * � � % 	 � � � � 	 % � � � is another bijection which commutes with

	 � and hence

� 	 % � � � � � � � % 	 � � � � � � � 	 % � � � � � �	�
(353)

Let us mention briefly further important facts about Kähler manifolds. The property of the Christof-
fel symbol to have only pure indices leads to the fact that parallel transport of a vector generates only
the holonomy group

� � � � � ��
 ��� � � rather then
��
 ��� � � , which would be the holonomy of a generic

orientable manifold.
Another well known fact is that

� � is a Kähler manifold. This can be established by giving with
the Fubini-Study metric an explicit. In the � � , � � 1�	 ������	 � patches the Kähler potential is given by
� "���( � � "��!( 	 �� "��!( � � 
�� ( � � � % � "��!( % �
� , where

% � "���( % � � � � �
 � % � "��!(� % �
. Using (327) we see that � "��!( � � "��!( 	 �� "���( � �

� " � ( � � " � ( 	 �� " � ( � � 
!�)( $ �$ � � 
!�)( �$ ��$ � . The latter two terms are holomorphic and antiholomorphic functions

respectively on � � � � � . Hence they do not affect the metric � � �� ��	 � 	 �� � � � 	 �� � , which is globally well
defined. Dropping the index for the patch we get

� � � 	 �	 
!�)( � � � % � % � � � � � � � � � � � � �� � % � % � � �� � � � � � � � � � ����� � % � % � � � � �
(354)

This defines a positive-definite metric. With
�
� # � � � % �� � � 	" 	 � � $ � � ( � 
 � one calculates the Ricci tensor 
 � �� ���	 � 	 �� 
!�)( �
� # � � � �� � � � � � �
� � � �� . If the Ricci tensor is proportional to the Kähler metric one calls the metric

Kähler-Einstein.

9.3 Characteristic classes of holomorphic vector bundles

In the last section we encountered the holomorphic tangent bundle of � as an example of a holomorphic
vector bundle

(
with a hermitian metric, which we call � ��	 in the general case. The connection one form

��! � � 	 ! � � � � 	 	 � �! � 1
(355)

defines the unique affine connection, which is compatible with the hermitian metric, i.e
� � � 1

, and
compatible with the complex structure. One defines the curvature two form as � � � � � � � � . The
differential geometry approach to Chern classes � � ��( � � � � � � � 	 � �

of a rank
�

holomorphic vector
bundle is to define them in terms symmetric function of the eigenvalues of the curvature form as

� � ( � � �
� # � � � ��#" � � ��� � �
� � �

��( � ��� � ��#" � % � � � ���
(356)

and to prove then that they do not depend on the metric[22][190].
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Topologically one can represent the Chern class � ! as the Poincaré dual to the degeneracy cycle� � � ! � 	 � � � � � �+* � 	 � � � � � ��� � � � ! � 	 � � � � 1 
�	
(357)

where
� � � � � generic � � sections � � of

(
become linearly dependent. This is described as Gauss Bonnet

formula II in Chap 3.3 of [100], see also [80][111] for the approach using classifying spaces. The simplest
example of the above dual descriptions arise for line bundles � . Let

% � % � be a metric on a line bundle � ,
where � is a section of � . Local trivialization of � are � * � % �

� � � � , where � � is a holomorphic
function and

% � % � � � � � � % � �
% �

for some function � � � � , which is positive if the metric is. The curvature
2-form given by

� � � �	 	 
�� ( � � � � (358)

defines the Chern-class of � represented by � 	 � � � � �� � � � � � � �
� � �
. This class is Poincaré dual to the

divisor class
� � � which defines � and is uniquely recovered from � as the locus where the generic section

vanishes. As a corollary the first Chern class of a holomorphic vector bundle is also the first Chern class of
the determinant bundle � � � � � (

� 	 ��( � � � 	 � � � � � (359)

For the tangent bundle we identify the curvature 2-form � with � �� � � � � ��)
 � �� ! �
 � � ! � � � �
 and get a
representative for � 	 � � � �

(which we also call � 	 � � �
)

� 	 � � � � ��#" � �� � 
 ! �
 � � ! � � � �
 � � ��#" 	 �	 
�� ( �
� # � � ! �
 � � (360)

The canonical line bundle is the determinant line bundle of the holomorphic tangent bundle � ' �
� � � � 	 % � � . By (359) and (364) we have therefore

� �$" � 	 � � ' � * � � �#" � 	 � � � � � 	 % � � � � � �#" � 	 � � � � � � �#" � 	 � � � �	�
(361)

Let us derive this also using as an explicit representative of the Chern class the curvature 2-form. Given an
complex structure and a Kähler metric � � �� we have a connection on � � 	 % � � described by the holomorphic
Christoffel symbols. This connection induces a connection on the line bundle � ' and a straightforward
calculation shows on total antisymmetric forms

� � � 	 � �� � � � � � � � % � � � � 
 � �� � � � � � � % � � Therefore we can identify� � � � of (358) with
�
� # � 	 � � � �� � and by (358) the first Chern class of � ' is

� �$" � 	 � � ' � � � � � � �$" � 	 � � � �	�
(362)

If one uses the Poincaré Hopf theorem that the Euler number � � � �
of a manifold of dim � is given by the

sum of indices of zeros of a generic vector field, i.e. a section of the tangent bundle, then by (357) the dual
to � �

� � � �
is � 	 . Counting these zeros leads then to the Gauss-Bonnet formula

� � � � � � 	 � � � �
' � �

� � � �	�
(363)

Let us discuss further properties of the Chern classes. By (356) one has � �
� ( � � �

, � ! � � � ( � � 1
and

the Whitney product formula � ��( � � � � � ��( � � � � � from the properties of the determinant, see [26] for
a proof from the topological definition. It is also easy to see[100] that

� ! ��( � � ����� �
� ! � ! ��( � (364)

and � ! � � � ( ��� � � � � ! ��( � for � * � � � )
a differentiable mapping. A further important property is the

splitting principle [26]. For an exact sequence of holomorphic vector bundles or sheaves one has
1 � ( �
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� � � � 1
one has � � � � � � ��( � � ��� � . One considers often classes � � such that � � ( � � � �� 
 	 � � � � � �

where � � are Chern classes of line bundles. One reason that this is useful is that the splitting principle
implies that if one wants to derive polynomial identities among Chern classes of vector bundles, one may
replace the vector bundles by direct sums of line bundles. This opens up a calculational machinery with
classes, which behave e.g. more natural on direct products as the Chern character

��� ��( � � � �� 
 	 � $ � .All expression are polynomial, defined by expanding up to degree
�

in � � . Obviously
��� ��( � � � ���� � ( � � ��� � � � and

��� � (
� � � � ��� � ( � ��� � � � . A little playing with symmetric functions reveals��� � ( � � � � � 	 � 	� � � � 	 � � � � � � 	� � � � 	 � � � 	 � � � � � � � �������

, where we set � ! � � ! � ( � . Similar is the
Todd genus defined

# � � ( � � � �� 
 	 $ �	 � � � � � ��� 	� � 	 � 		 � � � � 	 � � � � � 	� � � 	 � � ��� ���
. A central theorem

is the Hirzebruch-Riemann-Roch formula, which gives the arithmetic genus � ��( � � � ! ��� � � ! � ! � ( � of
a vector bundle over a manifold � , see [111] for the proof

� ��( � ���
' �
� ��( � � # � � � � �	�

(365)

In sections 6.1,6.2 and 8.13 we needed applications of (365). Namely to count the deformation space
(42) of a Riemann surface49 ) � . As seen in section 8.2 the complex structure moduli of the metric are given
by elements in the Čech cohomology group � 	 � � � with � � � ) and for ��� �

there are no conformal
Killing vectors generating global diffeomorphims i.e. one has � � � � � � 1

. However for � ���
the shift� � � � �

on the torus accounts for � � � �
and for � � 1

the three generators of
� � � � � 	 � � � � � � � �� � � 


on
���

account for � � � �
. For a vector bundle

�
of rank

�
over the Riemann surface ) the formula (365)

gives

� � � ) 	 � � � � 	 � ) 	 � � � �
� �
� � � � � # � � � � � �

�
��� � � 	 � � ��� ��� � �

� � 	 � � ��� � �
� � 	

� � � � � � � � � � �
(366)

The virtual dimension of the deformation space is obtained by setting
��� � with rank

�

�
� � - � � � 	 � � � � � � � � � � � �
� �
� � � � � # � � � � � � � � � � (367)

In the integral over the metric moduli space in string amplitudes one sacrifice in the � � 1 	 �
cases � � � ��	��

additional parameters, the position of insertion points, to offset the negative contributions to (367) from
the conformal Killing fields. Another application leads to the formula (115) describing the dimension of
the deformation space of holomorphic maps � * ) � � . The movement of the curve in � is described
infinitesimal by a vector field � � � � � � � � � on � . The vector field must be holomorphic

	 �� � � 1
so

that the deformed map stays holomorphic. Also we are not counting vector fields which correspond to
reparametrizations of ) . That is we look at elements of � � �� � ) 	 � � � � � ��� � � � � � � � � � � �

and (365)
gives us

� � � � � � � � � � � � 	 � � � � � � � � � �
�
� �
� � � � � � � � � 	 � � � ����� � � � �

� � 	 � � ��� � � 	 � � � � # � � �
� � � � � � � � � �
(368)

Generically the movement of the map is unobstructed and � 	 � � ��� � � ��� � 1
. In the case the above is

also the dimension of the deformation space. In the case of Calabi-Yau three folds we get for genus
1

that the dimension of the deformation space is
�
. We can think about this in two ways. Either we don’t

49 This related by the Atiayh-Singer index formula to the index of the Dirac operator and hence to the ghost zero modes. An
overview about index formulas for physicist can be found in [65] and the connections to the zero modes is in explained e.g. in [173].
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fix points on
���

, then we have to mod out by the 3 dim automorphism group
� � ����	 � � of

� �
and the

expected dimension of the moduli space is
1
. That is the way the corrections in

� "(� ( are interpreted. Or
we kill

� � ��� 	 � � by marking three points on the
� �

required to map into three divisors, which put three
constraints and yields again a zero dimensional moduli space. That is the interpretation of corrections in
� � ��! � � � .

Let us introduce for reference in the next section the Pontrjagin classes for real vector bundles
�

as the
Chern class of the complexification of

� 
 of
�

[111]

" ! � � � ����� �
� ! � � ! � � 
 � (369)

The Euler class of the real vector rank r bundle
�

can now be defined as � �
� � � � " � �
� � �

. The Gauss-
Bonnet formula, e.g. 
 ' � � � � � � � � � �

fixes the sign. The Pontrjagin class of a complex vector bundle(
is defined via the Pontrjagin of its realization

( � � ( � �( as
" ! ��( � � ��� � � ! � � ! ��( � � . By the

splitting principle and Whitneys formula [26] one gets � � � ( � � � ��( � � . The � -roof or Dirac genus is
defined as symmetric polynomial in � �� and can therefore be expressed in terms of the Pontrjagin classes
�� ��( � � � �� 
 	 $ � � �� � � � "�$ � � � ( � � � 	�%� " 	 � 	

� � � �
� � " � 	 � 	 " � � ��� ���

. A usefull formula with applications to

the Calabi-Yau tangent bundle is that
# � ��( � � � � � " � ( �� � ( � .

9.4 Axial anomaly

Let us consider the functional integral

� � � � � � � � � � �� � �  � � � � � � �� � � � � � � $ � �� � � (370)

for fermions on a manifold � with Dirac operator � � � � 1 	 �
	 1 � . A more detailed treatment of

the following couple of paragraphs can be found in [162]. For � to admitt a spin structure it must be
orientable

� 	 � � � � � 1
and the second Stiefel-Whitney class50 � � � � � �

must vanish as well[180, 149]
for review. We assume also even dimensionality to have a chiral decomposition of the spin representation� � � � � � � into two irreducible representation of dim

� � � 	 , with the usual projector on the chiral sub

bundles
� � � 	� � � � � � � with

� � � � � 11 ��� � .

One is interested in the axial or chiral
� ���
� �

symmetry generated by infinitessimal transformations
� )�� � � � � � � � �
� � � � � � � � � � and �� ) � � � � �� � � � � � � � � � � � � � � . By the usual Noether current argument the
vanishing of the linear change 
 � � � � � � � 	 
 " 
� of the action

� � under the chiral symmetry transformation
implies classically the conservation of the axial current

	 
 �� � 
 � � � ��	 
 " 
� � � � � 1
.

Following e.g. [77] it is easy to see at least at a formal level51 how this fails due to the anomalous
transformation of the measure. Let � � an orthonormal eigen system � � ! % � 
�
 � 
 � � � � � �! � 
 � . ! 
 of
wave solutions to the Dirac operator. The Grassmann nature of � � � �

�
� � � and �� � � � � � �� � is

captured in the Grassmann valuedness of the coefficients
�
�
	 � � and the path integral measure can be

written as � � � �� � � �
� �

� � �
� � � . The Jacobian of the infinitessimal transformation � ) � � � ��� � �

� � � � � � � � � � � � � � �
��)
� � � reads in the

�
� parametrisation

� )
�
� � � �

% � ) 
 � � � �
% � � � � � � � � � % � � 
 � � �

� . � � � ��� � �
% � � � � � � % � ��
 � � � . Using the fact that fermion measure transforms with the inverse Jacobian�
� #
� . � � � ��� � �
% � � � � � � % � � 
 � � 	 � �
	�� ��� � % 
!�)( � . � � � � � � � � � � � % � � % � � 
 ��� � �
	�� ��� � � %�� � � � % � � � � � � % � � 
 � � �

50 That is the first Pontrjagin class (first Chern class for complex manifolds) must vanish modulo two. In this case all intersections
in � � + � -�� 0 are even (Wu’s Theorem).

51 That means that we tacitly assume that there will be a suitable regularization of the infinite sums and products below. A
discussion of the axial anomalies of 2d

� +�,&0 gauge theories can also be found in Chap 19.1 of [171].
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� 	 � ��� � � � � � �
% � � � � � � % � � 
 � and performing the same argument for the � � we see that the vanishing of the

total change of the exponent of (370) linear in
� � � � implies an anomaly term in the

" 

� current conservation

	 
�" 

�
� � ��� � � � � 1�	 ��� #�� � � � � � � � � � � � � � � � �

�
� ��
� � � �

� �
�

� � �
% � � % � � 


�
(371)

The quantity � � � � is called the anomaly density. For the vector
� ���
� �

symmetry the contribution of the�
� and � � cancels. Now since � � is hermitian the eigenspaces spanned by

% � � 
 with � � % � � 
 � �
�
% � � 


are orthogonal to each other. On the other hand as � � � 	�� � 
 � 1
the eigenvalues of the states

% � � 
 and� � % � � 
 are negatives of each other. Therefore the sum in � � � � has only contributions from the zero modes� 
 � 1
. With the

� � in the trace the total current violation evaluates to���#�
� 	 � � � 
 � � � � � � � � � � � � 1 � �
�
� � � � � ��� 1 � �
�
� � �
� �
� � � � % 	 � � � � � � % 	 � � �
� � � � % 	 � �
� � � � � � % 	 	 (372)

where the last equality used that
	 � � � � � � � � 	 � � � � � � is a Fredholm operator, i.e. kernel

and cokernel are finite dimensional, and linear algebra. Nothing about the above principal setting will
change if in addition to the spin connection we couple to a gauge bundle as well and consider � �
� � � � 
 � �
	�
 � � 
 � � 
 � .

More importantly it is obvious that under smooth deformations away from singularties of the back-
ground geometry � 
 � � 
 , the spectrum of � � will change contineously and once an eigenvalue disap-
pears from the kernel of � � it appears on the image of � � and hence disappears from the complement
of the image (cokernel), see Fig. 37. As a difference one expects therefore the index only to change if
we do something really violent to geometry. The precise nature of the topological quantity behind this
expectation was found by Atiyah and Singer, as we review in the next chapter. Fig. 37 compares the defor-
mation invariance argument in various disguises. Column one is familiar for Sec. 3.1. The second column
showing the cricitical points of a Morse function is included for completness, a discussion can be found in
Sec. 10.5 of [105]. The third- and the fourth column can really be made equivalent statements. E.g. for
supersymmetric quantum mechanics on a target � , , � � � � ,

	 � � and the index in both cases is
(376).

If the index does not vanish we do have fermion zero modes and � � � � �
vanishes due to the Grassmann

integration. If the index does vanish we don’t know yet, since there could be zero modes in equal numbers.
In this case we have to analyze the � � � ( � of the Dirac complex described below. Still a topological
question, but less protected against background changes. It will tell us what fermion zero modes the
operators have to carry which we might wish to insert into � � � � �

to obtain a non-vanishing result.

9.5 Atiyah-Singer index theorem

The difference of the right hand side of () can be viewed as the index of an elliptic complex
(

of complex
vector bundles

( � � � � �
�

over � , where
�

is the principal � � ��� ��� � � bundle. Atiyah and Singer [12]
define the elliptic complexes in a wider context and obtain a generalisation of (365). As usual a complex(

[12] is described by a sequence of maps ! � * � � � 	�( � � � � � � 	&( � � 	 � given by pseudo differential
operators ! � of order � with ! � � 	 ! � � 1

.

1 � � � � 	�( � � 
 �� � � � � 	&( 	 � 
 �� � � ��� 
 � � ���� � � � � � 	&( � � 	 ��� 1 �
(373)

In local coordinates � of � and a local trivialisation of
(

with coordinates � � � � �
	 ��� � 	 � � %�
 �
� ��( �
we can write ! � � � �� � � � � � , where � is a

� � � matrix and � � is a differential operator of order � .
The symbol of ! denoted � � ! � is obtained by the Fourier transform of the derivatives in ! , i.e. replacing
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Fig. 37 Four variations of the idea of deformation invariance of indices

� � �� $ � � " � . Then
� � 	 " � are local coordinates of the bundle � � � . The bundles

( � � � pull back under" * � � � � to bundles
" � ( � � � � � . The complex is elliptic if the symbol complex is exact for

" �� 1
1 � " � ( � � " 
 � (� � � � " � ( 	 � " 
 � (� � � � � ��� � " 
 � � � (��� � � � � " � ( � � 	 � 1 �

(374)

In particular if there are only two bundles it means that � � ! � is invertible. According to [?] � � � ( � �� � % ! � / � � ! � � 	 is finite dimensional and � ��( � � � ��� �
� � � � � ( � exists. With a metric on
( � we can define

an adjoint operator ! �� * � � � 	�( � � 	 � � � � � 	�( � � and fold the elliptic complex with a single operator � *� � � � ( � � � � � � � � ( � � � 	 � , where � � ! � � � ! �� � � 	 . Defining � � � � � � 	 � � and ��� � � � � 	 � � � 	 with
“Laplacian”

	 � � ! � � 	 ! �� � 	 � ! �� ! � it is clear from (374) that � � 	 � � * " � ( � � " � ( � is an isomorphism
outside

" � 1
(the zero section of � � � ). It follows that

	 � and � are operators of an elliptic complex and� � % � � � � � � � ��( � while � � ��� % � � � � � � � � 	 � ( � so � ��( � � �����
�
	 � . One can generalize the proof
for (365) in [111] to obtain [12]���#�
� 	 � ����� � � � � '

�
� � � � � �

�

��� � � � � � � ����� � # � � � � 
 � � (375)

Examples:
� De Rham complex: If

( � � � � � � � on an even � � � �
dimensional manifold and � � ! is

the exterior derivative, then using the relation of the Euler class to the top Chern class � � � � � �� 
 � 
 	 � � � � � 
 � , see cff (369), we get

���#�
� 	 ! � �
' � � � � � � � � � �

(376)

� Dolbeault complex: If
( � �

�
��% � on a complex � dimensional manifold and � � �	 then

���#�
� 	 �	 � ��
! 
 	

��� �
� ! � � % ! � �
'

# � � � � � �
(377)
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is the arithmetic genus.

� Twisted Dolbeault complex: If
( � �

�
� % � � (

with
(

a holomorphic vector bundle on a complex �
dimensional manifols and � � �	 � then

���#�
� 	 �	 � � � � ( � � �
!
��� �
� ! � ! ��( � � �

' �
� ��( � # � � � � � �

(378)

is the Hirzebruch-Riemann-Roch formula.

� Spin complex: If
(

is the 2-complex
( � � � � �

�
over a

� � dimensionalmanifold, where
�

is
the principal � �#��� � � � � bundle and � � � � � � , with � is the Dirac operator coupled to the spin
connection then

���#�
� 	 � � � �
' �� � � � �	�

(379)

� Twisted Spin complex: If
( �� � ( � � (

, where
(

is a gauge bundle � �� � � � � , with connection
� 
 and � is the Dirac operator coupled to the spin connection and

(
, i.e. � � � � � � 
 � �
	 
 � � 
 � � 
 �

���#�
� 	 � �� � �
' �� � � � � � � ��( � � (380)

� � � system: The following standard example from bosonic string theory [55][173] uses techinques of
this and the last section. Let � � � � 	 � � be a section of

�
� 	� 
 	 � ) � � �

� � � 
 	 � � ) � over a Riemann
surface and compare (340)

� �
� * � � � � � � 	 	 � �� � � � �� 	 �� � 	 � � �

�
��� � ��� � � 	� 	

� �� * � � � � � � 	 	 � �� ��� � � �� � � 	 � � � � � �� � � � � 	 � � �� ��� � ��� � � 	� 	 (381)

where the inner product is � � 	 	 � � 
 � 
�� � � � ! � � � � �� � � � �	 � � . In a conformal theory real traceless
symmetric tensors transforming as a subbundle of

� � � � � � � � � are of special interest and of the

form
� � � � 	�� � � �� � � � � � with � � �

�
� ��� �� 	�� ��� �

. One defines on them

�
�

� � �
�
� � � �� * � � � � � � 	���

�
� � � � � � 	� � � � � � � 	 � * � � � 	 � � � � (382)

where the inner product is= � � 	 	 � � 
 
 � � � � ! � � � � �� � � � � �	 � � � � �� � 	 � . Note that the choice of the
metric is � � �� � � �� � � 	� � � � , � � �� � � �� � � � � � � � with vanishing pure components.

� 	 above is as in
(43). In particular that � � � � � � 	
� � � �� ��� � �� �� � 	 � � � � � 	 � � �� � �� � system has the action

� � 	
� � �

	�� 	 � 
 �	
� 


� � � � � � � 	 �� � � � � �� �� 	 � � �� � . We want to calculate the anomaly density of the
� � � � � � � � � � � � � � ,

� �� � � � � �� � �� , � �� �� � � � � � �� � �� �� and � � � � � � � �� � � � ghost number current. The Laplacians above
become

	 	 � � �	 � 	 and
	 � � � 	 � �	 with � � . � � * " ��� � � " � � � and isomorphism outside the zero

section. One expands � � � � � � � � and � � � � � � � � as eigenfunctions of
	 	 � � othonormal w.r.t.

the inner product � � 	 	 � � 
 , repeats the Noether procedure as well as the analysis of the transformation
of the fermionic measure as in (9.4). This exercise is made made explicite in [78] and one finds the
anomalies of the ghost currents

" � � � � � � � and
" �� � � �� �� � �� is

	 �� " � ��" � ��� 	 �� � and
	 � " �� ��" � ��� 	 �� �

with 
�� � ��� 	 ���� � � � � � �
	 � � 


� � � � � � 	 � � 
 . Again these sums contribute only if the eigen
functions � � of

	 	 and � � of
	 � are zero modes. E.g. if

	 	 � �
� �

� � � ,
� � 1

then
�
�
� � 	 � � � �� 	 	 	 � � �

	 � � � 	 � � � is a eigenfunction of
	 � , so the corresponding contributions to the sum cancel

and the integral over the anomaly density is
��� % 	 	 � � � % 	 � � ��� %�� 	 � � � ��� %�� 	 � ���#�
� 	�� 	 �
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���#�
� 	 � � 	 � �����
�
	 � � 	� � �� � � ) � � �� � � ) � . Here we used in the last step (375) with
���#�
�
	 � � 	� ����#�
� 	 � � 	 � � 
 � � � " � � ( � � � " � � � � � (� " � ( ��� � � ) � � with � � ) � � � 	 � � ) � and the expressions of Sec.

9.3. Hence the anomaly density must be � ��� 	 ���� � �� �
! � 
 and the current anomaly in covariant

form is
	 
 " 
 � � ! � 
 (383)

A physics approach to proof (375 is to evaluate the anomaly density integral in (9.5) by a heat kernel
regularization, see [79] for a review, with further references. For instance the calculation of the last example
using the heat kernel i.e. without resorting to the index theorem is an exercise whose solution is found in
Appendix B2 of [55]. Interesting are also the proofs by supersymmetric localisation [5] [75], very much
in the spirit of Sec. 3.1.

9.6 Family indices

The key idea in Sec. 9.4 and 9.5 is to throw away details of the eigenvalue spectrum of � and concentrate
on the roughest topological information, which is of course deformation independent. Trying to keep the
full information is maybe overambitous at the current state of understanding and ingenuity is required to
formulate addressable questions. A sucessfull stragegy is to throw away this time the zero modes and the
take the determinate

�
� # ) � of the rest of � .

9.7 Metric Connection and Holonomy

To describe spinor connection on curved spaces one introduces beside the curved indices � 	 � 	 �����
the flat

tangent indices � 	 � 	�� ��� which are lowered and raised with the flat metric
� � � � �
� 
 ( ��� �
	��
	 ����� 	��

� ��� �� � 	
�

and

its inverse.
The Clifford algebra is defined by the anti commutator of ��� � 	 � � 
 � � � � � . In the smallest represen-

tation the � symbols are
� 	 � � � 
 � � 	 � � � 
 matrices. The generators of the Lorentz group in the spinor

representation
�

of dimension
� 	 � � � 
 are given by the commutator � �� � � � �� � � � � � �� � � � 	 � � � ,

i.e.
��%� �
	�� � � � � � � �� � � � under the spin group which is a cover of proper, ortochronous Lorentzgroup��
 �

�
� �
	 � ���
�

. We do not display spinor indices
� 	 � ��� � like in

�� � � � � � � 	� � 	 , � 	 � � �
	�� ��� 	 � � / ���
explicitly. For more on spin representations in various dimensions, see e.g. [173].

The relation to curved indices � 	 � ��� �
, lowered and raised by the curved metric

� ' � and its inverse� ' � , is provide by the � -bein � � ' and its inverse � �� ( � � ' � �� � . �' and � � ' � '� � . �� ) which fulfills� ' � � � � ' � �� � � � . One has � � � � � ' � ' and � ' � � '� � � etc., from which follows ��� ' 	 � � 
 �� � ' � . A torsion free � � ' � � � �� ' Riemann connection leaves the metric invariant
�  � ' � � 1 ��	  � ' � � � �  �' �

�
� � � �  � �

�0' (384)

which implies the formula for the Christoffel Symbols�  ' � � �
� �  � �
	 ' �

�
� � 	 � � ' �

� 	
�
� ' � � � (385)

The spin connection �
�
' � is defined as

� ' �
�
� ��	 ' �

�
� � � � ' � � �� � �

�
� � � � ' 	 (386)

which implies that

�
� �' � �

� �
�
' � 	 �

�
� 	 ' �

�
	 ' � � � �

� � 	 � 	 ��� # � �
' � 	 ��� 	 ' �

�
� � 	 � � � ' � � � 	
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(387)

The connection on a spinor is then

	 ' � ��� 	 ' � �� �
� �' � �� � � � (388)

and for any other representation carrying only flat indices of the tangent space one has to replace � �� � by
the appropriate generator of the Lorentz group, i.e. � �� � � � � � . �� ��� � � . �� for vectors etc.

If a vector
� �

is parallel transported around a infinitesimal rectangle along two tangent vectors
�� � )

and
�� � � with area element �

� � � � � � � its infinitesimal rotation is . � � � � 	� . � ' � 
 �' � �
�
� ,

which is one way to explain the effect of curvature

� � ' 	 � � � � � � � 
  ' � � �  	0��� #�� 
  ' � � ��	 ' �  � � � 	 � � � ' �
� � �� � �  ' � � � � ' � �  � � �

(389)

Note 
 '� � � � � 
 '� � � and also for a Kähler manifold the only non vanishing elements of 
 !� �� 
 is pure

in � 	 � . That means that a holomorphic vector stays holomorphic under parallel transport and . � � � 
 !� � 

spans the Lie algebra of

� � � � . Near the identity
� � � � �� ��� � � � � � � � � and the

� � �
�
part is generated by

the trace part of the Riemann tensor which is the Ricci tensor . � � � 
 !� � ! � �
	 . � 
 �� 
 
 �� .
Once one knows the holonomy group � ��
 on vectors the transformation properties of tensors, forms

and spinors becomes a matter of representation theory. In particular the following holds see e.g. [120]. If
� ��
 is the holonomy group of a connection

�
on � � on a simply connected manifold � then a tensor

section
� � � � � � � � � � � � is covariantly constant (parallel) iff

� % $ � is locally fixed by � ��
 .
The restriction to simply connected is quite important. Non simply connected manifolds can have

monodromy even if they are flat. Consider e.g. the easy example of a non-simply connected space which
is topological � � � 	 � � � with the metric� � � � 
 � � � � � � � � � � � �� � � ��� � � 	 (390)

where � � � 1 �
� � 1 � is the generator of

��
 � �
�
rotations in

� �
. � is flat, jet a vector parallel

transported around the
� 	

gets rotated in the
� �

directions. Similar examples a flat connections on tori,
with monodromy. In the case of a gauge connection we call such configurations Wilson lines.

9.8 Calabi-Yau manifolds

A general Calabi-Yau manifold is a compact Kähler manifold � with vanishing first Chern class � 	 � � � � �1
. The following statements are essentially equivalent for complex � dimensional Kähler manifolds � , up

to some important subtleties for non-simply connected cases, which we discuss below. Together with the
Kähler property they are used to define a (general) Calabi-Yau manifold

� a) The canonical class is trivial.

� b) The first Chern class of the tangent bundle vanishes52 � 	 � � � � � 1
.

� c) It exists a Kähler metric � whose Ricci tensor vanishes 
 � �� � � � � 1
.

� d) There exists an up to a constant unique nowhere vanishing holomorphic
� � 	 1 � form

�
.

� e) The holonomy group � ��
 of � is a subgroup of
��� � � � .

52 We assume that we have a connection without torsion on ��� .
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� f) � admits a pair of globally defined covariantly constant (parallel) spinors
�

and �� of opposite
chirality if � is odd and of the same chirality if � is even.

Complex tori of all dimensions are general Calabi-Yau manifolds with trivial holonomy. In ! � � 
 ���
the torus is the only topological type of a Calabi-Yau manifold. In ! � � 
 � �

the � � -surface is the
only topological type of a Calabi-Yau manifold with

� � ��� � �
�
, while in ! � � 
 � �

the number different
topological types of Calabi-Yau manifolds is � � 1 � . This estimate comes from explicit construction mostly
of hypersurface and complete intersections in toric ambient spaces, see also Sec. 9.10.

In physical applications one is mainly interested in how many super symmetries are unbroken in com-
pactifications to four dimensions. An important situation is when the number of supercharges is reduced by� / 	

by a compactification of the ten dimensional supergravity on the six real dimensional internal manifold� . This is the case if
�

and �� are the only covariantly constant spinors [35]. This in turn holds generically,
without further non-trivial background fields, if �

��
 � ��� � ���
and in an interesting special case, namley

the � 	
 � � ��/ � � FHSV model with [70] �
��
 � ��� ����� � � � . Important applications emerging from this

scheme are the 10d heterotic compactification, which leads to
� ���

supersymmetry in 4d and the 10d
type II compactifications, which lead to

� � �
supersymmetry in 4d. This

	� susy scheme with exactly
two spinors excludes cases involving non-simply connected manifolds such as � �
 and � 	
 � � � and other
products e.g. � � � � � . On non-simply connected manifolds the relation between c.) and d.) is more
subtle as they can have flat metrics, which do have non-trivial holonomy. They lead to interesting super-
symmetry reduction by what is called generalized Scherk-Schwarz mechanism or geometrical Wilson lines
[153]. Other interesting examples for conceptual questions are compactification of type IIA or IIB to 6d
on � � , which has � � 
 � ��� � �
�

. This reduces the number of supercharges by
��/ �

and leads to
� ��	 � �

and
� � 	 1 �

supersymmetry in � ! respectively. A phenomenological very interesting compactifiction with�����
in 4d is � -theory compactification on an elliptically fibred Kähler manifold with � ��
 � ��� � 	 �

.
From the string point of view the important condition is the vanishing of the first Chern class � 	 � � � � �1

, which would have to be supplemented by the simply connectedness to restrict to the
	� super symmetry

scheme. The first reason is that this is the sufficient condition for the unbroken axial
� ���
�

on the world-
sheet, necessary to define the B-twist. More importantly it is known that the non-linear � -model is not
conformally invariant for the Ricci-flat metric. The four loop � -function does not vanish in this geometry
[102]. However it has be shown in [164][118] by analyzing the form of the possible counter terms that
the total perturbative � -function can be set to zero by a change in the metric so that


!�)( � � # � � � � �/� �� �� �
!�)( � � # � 	 � 
 � �� �� � � � � 	 �� � , where
� � � 	 �� � is a globally defined real function on � , which is not the absolute

square
% � � � � % � of a holomorphic � � � � . By (341) this implies that the curvature two form becomes non

nonzero, but the first Chern class stays trivial � 	 � � � � � 1
. Ricci-flat manifolds are not vacuum solutions

of string theory. One may wonder whether the considerations about the covariantly constant spinors
�
, ��

make sense. They do, because what is required is that
� � � � �� � � � � � ��� � � �� � � � �� is zero, where �

is a form potential for the Ricci-form � � � � , where �	 � � � � � � � and
	 � � � � � .

On a Calabi-Yau manifold on has two important forms. The Kähler form � and the
� � 	 1 � form

�
. They

are linked by the fact that

�
� �� is proportional to the volume form and there is a natural normalization

which makes

�� �

a calibration

� �
� �

����� �
� � � � � � 
� � �� � � � � �� �
(391)

Imposing (391) reduces the freedom in the constant in e.) to a phase [120].
Let us now discuss the relation between the statements a.) to f.). In order to connect a.)-d.) to e.) and

f.) we will assume that � is simply connected and not of product form.
a.) 	 b.) follows from (361).
c.)

�
b.) is a simple consequence of the independence of the Chern classes on the choice of the Kähler

metric. Once one knows that there exists a Ricci-flat metric clearly � 	 � � � � �21
and that holds for all

Kähler metrics.
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b.)
�

c.) is a corollary to Yau’ theorem [214], which proves the conjecture that E. Calabi formulated in
(1956). It states that given the data

� (C.a) a Kähler metric � ,a Kähler form � , a Ricci form � on � and a real closed
���
	 � �

form � )
, which

represents the Chern class
� � � � � � ) � � �#" � 	 � � � �

one can construct

� (C.b) a unique metric � ) on � with associated Kähler form � ) such that
� � ) � � � � � � � �
� � 	 � �

and
the Ricci form of � ) is � )

.

In particular � 	 � � � � � 1
can be represented by � ) � 1

and then according to the above there exists a
unique metric � ) whose Ricci form is � )

. Therefore its Ricci tensor vanishes.
One can formulate simpler equivalent versions of (C.a) and (C.b) as requirements on the existence of

functions on � as follows. � � � )
is a �	 exact and ! closed real

� �
	��
�
form. By the

	 	 �	 Lemma one has
a real function � on � so that � � � ) � � 	 �	 � up to a constant  . Recalling (340) how � is derived from
the positive function multiplying

� 	 � ��� � � � � � in (337), which is itself determined by �
�
� � , we conclude

that � must make its appearance also in � � � � � � � ) � � . In fact the constant  can be fixed by normalizing
the volume 
 ' � � � � � 
 ' � � . The simplification is that instead of requiring � ) to lead to a prescribed � )
one requires that it leads to a prescribed volume form and the statement about � and � )

can be replaced
by a statement about � . Similarly one can formulate the

� � ) � � � � � condition in (C.b) as a search for a real
function � as in (339). � can be made unique by requiring 
 ' � � ��
 � � 1

. So the simplified version of
(C.a) and (C.b) is

� (C’.a) that for every given Kähler metric � , Kähler form � and a real smooth function � on � with

 ' � � � � � 
 ' � �

one can construct

� (C’.b) a unique smooth real function � on � such that (i) � � � 	 �	 � is a positive
���
	 � �

form � ) , (ii)

 ' � ����
 � � 1

and (iii)
� � � � 	 �	 � � � � � � � � .

Yau proved that the non-linear p.d.e (iii) on � admits a unique solution which fulfills (i) and (ii). This is an
existence proof and up to date no explicit solutions for � and53 e.g. the Ricci-flat metric on any compact
Calabi-Yau manifold has been given.

c.)
�

e.) at the end of Sec. 9.7 we argued that the holonomy group of a Kähler manifold is generically� � � � . Moreover wee saw that the Ricci-tensor is generating the
� ���
�

part of
� � � � �� � � � � � � � � � � . On

a Ricci-flat manifold this part is not generated and the holonomy is reduced to
��� � � � .

e.)
�

d.) An
� � 	 1�� -form can always locally written as

�
� � % � � � % � � � � � � � � � � % � � � � � . It is therefore in the

total antisymmetric representation of the holonomy group
��� � � � , i.e. a singlet invariant under � ��
 . By

the fact quoted in the last paragraph of Sec. 9.7 one has that
�
�
� 1

. Since � has no mixed indices�	 � �
�
� � � �

�
� 1

and

�
is holomorphic. This implies that � � � � has to be a globally defined holomorphic

holomorphic function over the compact manifold � and hence a constant. Note that � , locally written as
� � �� � � � 	 � � � � 	 � ��� � � � � � � � � �� , and � , locally written � � � �� 
 	 % � � � % � , are also covariantly constant.
The normalization (391) established at a point requires

% � % � �
, but is since all quantities are covariantly

constant (391) will hold at any point.
�

is also harmonic
	 ��
�
� 1

as beside �	 � � 1
also �	 � � � � � 	 �

�
� 1

, because � * � �
% � � � ��% �
and

	 * � �
% � � � � � 	 % � � � 1 
 .
d.)

�
a.) We just constructed with

�
a trivial constant section of the canonical bundle � � � � 	 % � � .

53 It is not that difficult to find a K ähler metric on a Calabi-Yau manifold, e.g. by constructing the induced metric of the Fubini-
Study metric on the quintic in � � , see [190].
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d)
�

b): Assume a nowhere vanishing holomorphic
� � 	 1�� exists. We get then a globally well defined

scalar function

%
�
% � � �

� �

�
� � � � � � � �

�
� � � � � � � 	 (392)

where the indices are raised by the hermitian metric � � �� . Locally

�
is given by

�
� � % � � � % � � � � � � � � � � % � � � � � ,

where � � � � is a non-vanishing holomorphic function in each patch. We can obtain �� � � % � � � � � � ��
� � � � � � � � � and

it follows that � � �
� # � � � �� � � � � � �
� � � � � � . Inserting in (360) we get � 	 � � � � � � �� � 	 �	 
�� ( %

�
% �

which is exact

since

!�)( % � % �

is a scalar, hence � 	 � � � � � 1
in cohomology.

f.) 	 d.) is proven in generality in [198]. This is done using representation theory. Let us just give
a simple relevant example namely the threefold case, � � �

. We must figure out how many spinors
transforming as singlets under the holonomy

��� � ���
. Under generic rotations in the internal 6d space

vectors transform by
��
 � � � and the associated spin group with the same Lie algebra is isomorphic to��� � 	 �

. The spinor representation in �)! is
� �� � �

dimensional and splits according to the chirality into
representations

��� 	��� �
of this

��� � 	 �
. Now the holonomy is reduced to

��� � ���
and embedding the

��� � ���
in��� � 	 �

singles out an
� � �
�

, i.e. one has
��� � ���

�
� � �
� � ��� � 	 �

. The decomposition of the
��� 	 �� �

into the
representations of this

� � � �
and

��� � � �
is unique

��� 	 �� � � ��� 	 � � � � 	 �� � 	 � � �
� , where the superscripts
are the

� � �
�
-charges. Hence we can conclude that there are indeed one invariant and therefore covariantly

constant spinor of each helicity. Bilinears of the covariantly constant spinors can be used to build the
covariantly constant tensors discussed above. In particular the almost complex structure as

� �	 � � � � � � �	 � ,
the metric as � 
 �� � � � � � 
 % �� � and the

� ��	 1 �
form as

�
� ��! � � � � � � � � � ��! � . In this way one can show f.)

�
d.) see [32] for details. Furthermore it is easy to see that the eight spinors can be generated from

� � � � �
as � � � ���� � 	 , � � � � ��� 	

, � � ��! � � � � and decomposed as

� �
�
��% � � �

�
��% 	� � � � � � �

�
� % �� � �� � � � �� � � �

� % �� � �� �! � � � �� �! � 	 � � � % � � � % �� � � � � � � � � � � � � � � � � � � � � � % ��� � � � �
(393)

On � �
 one has therefore eight covariant constant spinors and on � 	
 � � � four.

A very general tool in Čech cohomology is Serre duality which states for any sheaf
(

on � that

� ! � ( � � �� � � � ! � ( � � � ' � � (394)

Using the Čech-Dolbeault isomorphism � ! � ( � �� � ! �� � � 	&( �
, � � � � 	 � � � � � � � � � % � � � �

and � ' �
� ' we relate on a Calabi-Yau manifold the cohomology groups � � % � � � � �� � ��% � � � � � �

by taking( � � � � �
or by complex conjugation the cohomology goups � � % � � � � �� � � � � % � � � �

. This particular
result can be seen also in a more direct way by contracting a

� " 	 1��
form � � � � � � � � � � � � � ��� � � � � � � with the

unique
� 1 	 � � form to define a

� 1�	 � ��" � -form �� �� � 
 � � � � �� � � 	
� � �
�
�� � � � � �� � � �� � � � � �� � . One shows easily that this

is an invertible map that commutes with
	

, i.e. ��� % � � � � �� � � % � � � � � � �� � � � � % � � � �
. As an exercise

use the index theorem (365) to argue that � 	 % � � � � % � on a Calabi-Yau 3-fold.
With � �
% � � � � � � ��% � ���

e.q. (393) implies that one has at least two covariantly constant spinors on a
Ricci-flat manifold. In order to show that one has only this two on a manifold with � � 
 � ��� � � � we shall
show that � � % � � 1

for
1 & " & � . On a compact Kähler manifold harmonicity of

� " 	 1��
-form implies

holomorphicity as argued after (348) by consideration of type. Specializing (352) to 
 � � �! �
 � 1
for Kähler-

and 
 � �� � 1
for Ricci-flat manifolds harmonicity means

� � � � � � � � � � � � � 1
. On a compact manifold one

can use pairing and partial integration to see that this requires
� � � � � � � � � � � 1

(and also �	 � � 1
). From

these equations we conclude that all harmonic
�#" 	 1��

forms are covariantly constant. However that would
mean that they are invariant under

��� � � � , which is impossible for
1 & " & � as only the trivial and the

total antisymmetric representation are invariant.
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9.9 Bergers List

Let us finally show here Bergers list of the possible holonomy groups on simply connected irreducible
and non-symmetric manifolds of real dimension � with some additional information about the properties
of the metric and the number

� � ,
� � of complex covariant constant spinors with positive and negative

chirality [198] respectively. If � is odd the spinor representation is irreducible and we have just one type
of spinor. The last part comments on the special forms that exist on this manifold. See [120, 104, 198] for
more background.

� (i) �
��
 � � � � ��
 � � � ,generic oriented manifold, not nec. spin.

� (ii) � � � � with � � �
: �

��
 � � � � � � � � , K ähler manifold, K ähler, not nec. spin; � ���
	 � �
Kähler

form.

� (iii) � ��� � , � � �
: �

��
 � � � � ��� � � � ,Calabi-Yau manifold, Ricci-flat, K ähler,
� � � �

for � odd,� � � �
for � even; � ���
	 � �

Kähler form and

�
� � 	 1 � holomorphic form.

� (iv) � � 	 � , � � �
: �

��
 � � � � � " � � � , Hyperk ähler manifold, Ricci-flat, K ähler,
� � � � ���

;
� 	 � 	 � ��� � �
� triplet of

� ��	 � �
forms.

� (v) � � 	 � , � � �
: � � 
 � � � � � " � � � � " ���
� , Quaternionic K ähler manifold, Einstein, not Ricci-flat,

not K ähler .

� (vi) � � �
: � ��
 � � � � � � , G2-manifold, Ricci-flat,

� � �
;
�

associative 3-form, � � coassociative
4-form.

� (vii) � � �
: � � 
 � � � � � " � � � �
� ,Spin(7) manifold, Ricci-flat,

� � � �
;
�

Cayley 4-form.

9.10 Examples of Calabi-Yau spaces

The tool that makes constructing of Calabi-Yau spaces easy is the perfect control over the first Chern class
in algebraic geometry. As an application of some statements in Sec. 9.3 we want to calculate the first
Chern class of

� � , following [26]. As every projective space
� � has a tautological sequence1 � � � ��� � � � � � 	 � , � 1 �

(395)

� � � � � � 	 � � � � � � � � � 	 % � � �� 
 , where �� is the line in
� � � 	 , which defines

�
as point in

� � , and the
quotient space , is defined by (395). � �

is parametrized by the homogeneous variables
� � 	 * � ��� *�� � � 	 � ,

which, as maps to
�

, are section of the dual space � , called the hyperplane bundle. We can write tangent
vectors in � � � as linear combinations of

� � � � 	! 
 	
� � ! � ! � �� $ � , which is scaling invariant under the

� �
action

and maps ��� " � � 	 ( to � � � . There is a kernel
�

of that map, namely we have � � � �� $ � ��1 � � � � as it
just generates the scaling action. These facts are expressed in the Euler sequence1 � � � � � " � � 	 ( � � � � � 1 �

(396)

The Chern class of
�

is
�

and the Whitney formula and (trivial) splitting principle gives

� � � � � � � � � � � � � � 	 	 (397)

where we denoted � � � 	 � � � .
A weighted projective space � � � � is defined similarly as

� � cff. (326), only that
� �

acts now by

� � 	 	���� � 	 � � � 	 � � � � � � � 	 	 ��� � 	 � � � 
 � � � � 	 � 	 (398)
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where the integral weights
� � contain no common factor. Common factors � in subsets of the weights lead

to � ! quotient singularities of � � � � . A similar argument as before shows that [63]

� � � � � � � � � � � 	�
� 
 	

��� � � � � � 	 (399)

All weights are in
 

and order to be compact
� � � 1

. This prevents us to define compact � � � with
� 	 � � � � � � � ��1

, but � � � ��� � 	 ��	 � � is a well known example of a non-compact Calabi-Yau two man-
ifold, better know as � ��� ��� line bundle over

� 	
called � ��� ��� � � 	

. The notation � � � �
� � 	
means

the following. If we introduce local coordinates on
� 	

, i.e. according to (327) � " 	 ( � � � / � 	 in � " 	 ( and� " � ( � � 	 / � � � ��/ � " 	 ( in � " � ( , we have local coordinates
� � "��!( 	 � "!��( � on � � � � � � 	

with the transition
function

� � " � ( 	 � " � ( � � � � " 	 (� � " 	 ( � � 	
�

� " 	 ( � �
(400)

� ��� ��� can be viewed as the cotangent bundle over
� 	

parametrized by
� � � and

�
� � � � � � is a non-

vanishing
����	 1 �

form. Note that � 	 � � � � � � ��� .
Compact examples as easily obtained, e.g. as hypersurfaces in the projective spaces above. Let us

consider a smooth degree ! hypersurface � in
� � . � is defined as zero locus of a degree ! polynomial�

, which is sufficiently general so that
� �21

and
�!���21

has no common solution. It is a section of
� 
 � � � � � ! � . Since

�
is smooth we have a splitting of the tangent bundle � � � as follows1 � � � � � � � % ' � � ' � 1 	

(401)

where
� ' is the normal bundle to � , which is identified with � � ! � % ' because

�
is a coordinate of

�
near � .

��� � � 
 � � � 
 $ � � � � 	 � � 
 � ��� � ! � , i.e. � 	 � � 
 � � ! � and the adjunction formula gives

� � � � � ��� � � � � � 	� � � ! � � ��� � � � � � � ! � � � � ��� 	
(402)

i.e. a Calabi-Yau hypersurface in
� � has to have degree ! � � � �

. In this case
�

is a section � � � � � � of
the canonical line bundle � � � � � 	 � � � ��� . This gives in for dimension three one case, the quintic in

� �
.

For weighted projective spaces one has

� � � � � � � � 	� 
 	 � � � � � � ���� � ! � � ��� � � ! � �
�
� � � � � ��� � 	

(403)

where the degree ! of a quasihomogeneous polynomial
�

is defined by the scaling
� � � � 	 � 	 	���� � 	 � � � 
 � � � � 	 � �� 
 � � � 	 	�� ����	 � � � 	 � . Together with the transversality condition

� � � 1
at
� � 1

it leads
� � � �

examples
of Calabi-Yau threefolds [136]. This sample contains many mirror pairs.

This in turn has a fairly obvious generalization to hypersurfaces (and complete intersections), which live
over coordinate ring of a general toric variety defined by (157,158). In this context Batyrev provided a sys-
tematic construction of mirror pairs, as sections � � � � � " ��� ( � and � � � � � � " � � ( � respectively[15].
Here

� � is the projective space associated to the integral polyhedron
	

[81]. Batyrev showed that if the
	

polyhedron is reflexive then a smooth sections of � � � � " � ( � exists, the dual reflexive polyhedron
	 �

ex-
ists and the generically smooth section of � � � � " � ( � has mirror Hodge numbers � � % 	 � � � � � � � � % 	 � � �

.
Reflexive polyhedra in four dimensions relevant for the CY threefold case have been classified [143]. This
class of Calabi-Yau manifolds exihibits about 30.000 different Hogde numbers. As explained previously� 	 	 and � � 	 are the only independent ones and the corresponding distribution for the sample is shown54 in
Fig. 38.

54 Special thanks to Maximillian Kreuzer for sending me this figure
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Fig. 38 Hodge Numbers of Hypersurface in Toric Varieties.

These and generalized constructions like complete intersections and orbifolds of tori and the afore men-
tioned manifolds are the bulk of the systematically explored examples of Calabi-Yau mirror pairs, see [144]

Copyright line will be provided by the publisher



122 Sh. First Author: Preliminary Notes: Introduction in Topological String Theory on Calabi-Yau manifolds

for computer generated lists with about
� 1 � � � 1 	

topological inequivalent examples55, though slightly more
exotic cases, e.g. hypersurfaces and complete intersections in Grassmannians and flag manifolds do exist
in unknown numbers.

An encouraging observation in view of this enormous numbers is that at least in Type II string theory
there is in some sense only one connected component of the Calabi-Yau moduli space. In fact a conjecture
formulated by Miles Reid that all Calabi-Yau spaces are in the same moduli space connected by singular
transitions [177] finds a physical application in that [184] shows that the singularity in physical quantities
as calculated in conformal field theory at the conifold transition between topological different Calabi-Yau
spaces is merely a breakdown of the perturbative low energy description due to a non-perturbative black
hole becoming massless at the transition point. The full non-perturbative theory at low energy exhibits
spontaneous breaking by acquiring an Higgs vacuum expectation value. Also it has been shown that all
hypersurfaces in toric Calabi-Yau can be connected by such physically innocuous transitions.
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55 The lower number is the number of inequivalent Hodge numbers the higher is an estimate of all topological different phases
in the K ählercone, which have not been systematically constructed.
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