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6-Dimensional Chiral Gauged Supergravity

There is a well-known non-chiral N = (1,1)

gauged supergravity in six dimensions (Ro-

mans), which arises from a consistent (warped)

S4 reduction of the massive type IIA the-

ory in ten dimensions. This has a negative

(AdS-type) scalar potential. The theory

cannot be truncated to chiral N = (1,0)

supergravity.

There exist also inequivalent chiral N =

(1,0) gauged supergravities in D = 6, for

which the scalar potential has the opposite

sign. (Sezgin/Nishino, Salam/Sezgin.)

The simplest example is the “Salam-Sezgin

theory,” which is a gauging of pure N =

(1,0) supergravity coupled to one vector

multiplet and one tensor multiplet.



The bosonic Lagrangian is
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where g is the gauge-coupling constant.

The theory has a (Minkowski)4 × S2 vac-

uum, with

ds26 = e
1
2φ0 ηµν dx
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2φ0 dΩ2

2

F(2) =
1

4g
e
1
2φ0 Ω(2) , φ = φ0 = const.

The positive scalar potential balances the

negative contribution of from the Freund-

Rubin term. The dilaton provides a “self-

tuning” field that selects Minkowski space-

time.

(Minkowski)4× S2 is the vacuum of a con-

sistent S2 Pauli reduction, yielding an N =

1 four-dimensional supergravity.



Higher-Dimensional Origins
Cvetič, Gibbons, Pope

A sphere reduction gives a negative cos-
mological constant, so to get Salam-Sezgin
from a higher dimension, we need a differ-
ent type of reduction. First, we shall dis-
cuss how it arises from an S1 reduction of a
non-compact SO(2,2) gauged supergravity
in D = 7.
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Nine scalars described by the “vielbein”
παA. The indices α are SO(4)c; the indices
A are SO(4,m− 4)g, with metric ηAB.

In the “vacuum” with παA = δαA, the com-
pact gauging SO(4)g has V = −4g2 Φ1/2,
but the non-compact SO(2,2)g gauging has
V = +4g2 Φ1/2.



As well as providing the right sign for the

potential, the non-compact gauging is also

essential for allowing a chiral truncation upon

reduction to D = 6. This can be illustrated

in the D = 7 gravitino transformation rule

δψµ = Dµε− 1
20gMααΦ1/4 Γµ ε+ (F,H)µε

The term involving Mαα reduces to give a

chirality-reversing term in D = 6. But in

the non-compact gauging, if παA = δαA, we

have Mαα = 0, and hence chiral truncation

consistent.

Other “conspiracies” occur too, and a fully

consistent and supersymmetric reduction to

give the Salam-Sezgin theory is possible.

This involves setting all AABµ = 0 except

A12
µ = −A34

µ = 1
2Aµ (the U(1) gauge field

of Salam-Sezgin), and setting the Kaluza-

Klein vector to zero.

Reminiscent of the Z2 truncation in Horava-

Witten.



The seven-dimensional SO(2,2) gauged su-
pergravity can itself be obtained via a con-
sistent reduction from D = 10, N = 1 su-
pergravity. It can be viewed as a limiting
case of the (non-compact version of) the
consistent S4 reduction from D = 11.
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where

DµA = dµA + 2gAAB µ
B , ∆ = MAB µ

A µB

MAB = παA π
α
B , ηAB µ

AµB = 1

The four coordinates µA subject to

µ2
1 + µ2

2 − µ2
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4 = 1

define the 3-dimensional hyperboloid H2,2,
embedded in Euclidean space E4 with the
standard metric

ds2 = dµ2
1 + dµ2

2 + dµ2
3 + dµ2

4

This has isometry group SO(2)×SO(2) =
SO(2,2) ∩ SO(4).



Ghost-Free Non-Compact Gaugings

The scalar fields MAB play an essential rôle
in the non-compact gauging.

If there were no scalars in the theory, the
only way to have SO(2,2)-invariant kinetic
terms would be to contract FABµν FCDµν with
the (indefinite-signature) Cartan-Killing met-
ric of SO(2,2). This would imply wrong-
sign kinetic terms, and hence ghosts.

In any ground state (constant scalars), the
non-compact gauge group is spontaneously
broken to a compact subgroup. This is re-
flected in the metric ds2 = MABDµ

ADµB

on the internal space, which has only SO(2)×
SO(2) isometry in the παA = δαA vacuum.

Although the reduction from D = 10 to
D = 7 on H2,2 is really just an analytic
continuation of the S3 reduction that gives
an SO(4) gauged supergravity, the nature
of the “internal space” is very different: S3

is a homogeneous space, while H2,2 is not.



D = 10 to D = 6 Reduction

Solving µ2
1 + µ2

2 − µ2
3 − µ2

4 = 1 by writing

µ1 + i µ2 = cosh ρ eiα , µ3 + i µ4 = sinh ρ eiβ

the metric on H2,2 is

ds23 = cosh2ρ dρ2 + cosh2 ρ dα2 + sinh2 ρ dβ2

Combining the D = 10 to D = 7 reduction
with the further S1 reduction to the Salam-
Sezgin theory, the reduction ansatz is

dŝ210 = (cosh2ρ)
1
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This allows any solution of the six-dimensional
Salam-Sezgin theory to be lifted back to an
exact solution of ten-dimensional N = 1
supergravity.



Uniqueness of (Minkowski)4 × S2 Vacuum
Gibbons, Güven, Pope

Consider a more general configuration in
the Salam-Sezgin theory with maximal four-
dimensional symmetry:

ds26 = W (y) ds24 + gmn dy
m dyn , φ = φ(y)

Fmn = f(y) εmn , Fµν = Fµn = 0 H(3) = 0

where ds24 satisfies Rµν = Λ gµν and has
maximal symmetry (Minkowksi, AdS or dS).
From the Einstein and dilaton equations we
find

∇m(W4∇m(φ− 4 logW )) + 4ΛW2 = 0 .(1)

Integrating over the (compact) internal 2-
space Y with metric gmndymdyn implies

Λ
∫
Y
W2 = 0 , hence Λ = 0

and thus Minkoswki4 spacetime. Then
multiplying (1) by (φ − 4 logW ) and inte-
grating implies φ = 4 logW . The tracefree
part of the Rmn equation implies ∇m∇nW2 =
1
2∇

2W2gmn and hence Km = εmn∇nW2 is
a Killing vector on Y .



The field equation for F(2) implies

F(2) = 1
2qW

−6 εmndy
m ∧ dyn

carries magnetic charge q. The trace of

the Rmn equation implies that the Gauss

curvature κ of Y (i.e. Rmn = κgmn) inte-

grates to give

χ = 1
2π

∫
Y
κ

= 1
2π

∫
Y

[
4(∇W )2

W2
+ 3

8q
2W−10 + 2g2W−2]

This shows Y has positive Euler number,

and since, by assumption, it is complete,

compact and non-singular, it must be topo-

logically S2. The Killing vector Km then

must have circular orbits with 2 fixed points

(i.e. azimuthal symmetry).

We can therefore write the metric as

ds26 = W (ρ)2 ηµν dx
µdxν + dρ2 + a(ρ)2 dψ2

and the remaining ODEs can be solved

exactly to give



Axisymmetric Solutions

ds22 = e
1
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1
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, r21 =

8
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The metric is regular only if r0 = r1 (i.e.
q = ±4g), in which case W = 1, φ =
0 and, setting r = r0 tan 1

2θ, we recover
the Salam-Sezgin (Minkowski)4 × S2 vac-
uum with metric

ds22 = 1
4r

2
0 (dθ2 + sin2 θ dψ2)

on the internal space Y . This is therefore
the only non-singular solution with a four-
dimensional maximally-symmetric spacetime.



3-Brane Solutions

The more general axisymmetric solutions,

with r1 6= r0, describe configurations with

conical curvature singularities at one or both

“poles” of the 2-sphere, at r = 0 and r =

∞. Choosing ψ to have period 2π, the in-

ternal space Y is smooth at r = 0, but has

a conical singularity with deficit angle

δ = 2π (1−
r21
r20

)

at r = ∞. The 3-brane tension is positive

(δ > 0) if r0 > r1 and negative if r0 < r1.

Dirac quantisation of the magnetic charge

q implies

4g

q
= N = integer

and hence

δ = 2π(1−N2) ≤ 0

Thus the 3-brane tension is negative.



Pauli Reductions
Gibbons, Pope

Pauli (1953) was the first to propose that
one might obtain non-abelian gauge fields
from the isometries of an internal manifold
in a dimensional reduction. His Ur example
was a reduction on S2 giving SU(2) Yang-
Mills. However, such a reduction on a coset
manifold will not, in general, be consistent
with the higher-dimensional equations of
motion. For example, reducing pure Ein-
stein gravity on a space with Killing vectors
Km
I would give a lower-dimensional “Ein-

stein equation” of the form

Rµν − 1
2Rgµν =

1
2gmnK

m
I K

n
J (F

I
µρ F

J
ν
ρ − 1

4gµνF
I
ρσ F

J ρσ)

which doesn’t make sense because the pref-
actor on the right-hand side depends on the
coordinates ym of the internal space.

This problem can however be evaded in
special theories, notably certain supergrav-
ities, where contributions from additional
fields cancel the undesirable y-dependence.



Examples are the S7 and S4 reductions of
D = 11 supergravity, and the S5 reduction
of type IIB supergravity. However, the sim-
plest case, realising Pauli’s Ur example, is
the S2 reduction of the Salam-Sezgin the-
ory. The bosonic reduction ansatz is

dŝ26 = e
1
2φds24

+e−
1
2φgmn(dy

m + gAiKm
i )(dyn + gAjKn

j )

Ĥ(3) = H(3) − 2ge
1
4φF i ∧Ka

i ê
a

F̂2 = 2ge
1
2φεabê

a ∧ êb − µiF i

φ̂ = −φ

where êa = ea+ gAiKa
i . The three coordi-

nates µi satisfy µi µi = 1 and parameterise
the internal 2-sphere, whose Killing vectors
are Km

i = (8g2)−1 εmn∂nµi.

The four-dimensional SU(2) gauge bosons
Aiµ enter in the ansätze for F̂2 and Ĥ(3)

as well as dŝ26, and these extra contribu-
tions in the six-dimensional Einstein equa-
tions imply that one gets consistent four-
dimensional equations of motion.



The Four-Dimensional Theory

Substitution of the ansatz into the six-dimensional

field equations yields consistent four-dimensional

equations derivable from the Lagrangian

L4 = R− 1
2(∂φ)

2 − 1
4e
−φ(F i)2 − 1

12e
−2φH2

3

The fermions reduce consistently too, yield-

ing a four-dimensional N = 1 theory com-

prising supergravity coupled to an SU(2)

Yang-Mills multiplet and a scalar multiplet.

The 3-form H(3) can be dualised to an ax-

ion σ, so that

L4 = R− 1
2(∂φ)

2 − 1
2e

2φ (∂σ)2

−1
4e
−φ(F i)2 + 1

4σ(F
i · ∗F i)

The theory is non-chiral.

The complete four-dimensional reduction

will also have infinite towers of massive fields,

whose mass scale is given by

M ∼ g e
1
2φ0



Non-Abelian pp-waves

Cariglia, Gibbons, Güven, Pope

The four-dimensional theory admits super-

symmetric non-Abelian pp-waves, general-

ising solutions found by Coleman in flat

spacetime. They take the form

ds24 = 2du dv+H(u, z, z̄) du2 + dz dz̄

Ai = Ai(u, z, z̄) du

with the dilaton φ and axion σ being arbi-

trary functions of u. The SU(2) Yang-Mills

potentials and the function H are given by

Ai = 1
2[χ

i(u, z) + χ̄i(u, z̄)]

H = K(u, z) + K̄(u, z̄)

−1
4[e

−φχi χ̄i + (φ̇2 + e2φσ̇2) zz̄]

where χi(u, z) and K(u, z) are arbitary func-

tions holomorphic in z.



Anomaly-Free D = 6 Chiral Supergravities
Bergshoeff, Pope, Sezgin, Stelle in progress

Six-dimensional chiral theories are subject
to gravitational, gauge and mixed anoma-
lies, and the Salam-Sezgin theory itself is
anomalous.

The procedure that we used in reducing on
S1 from D = 7 to D = 6 involved a chiral
truncation. In fact it was at this stage that
the anomaly was introduced. It is closely
analogous to the procedure whereby one
can obtain the (anomalous) N = 1 super-
gravity in ten dimensions by reduction of
D = 11 supergravity on S1, combined with
a chiral truncation (i.e. a Kaluza-Klein re-
duction on S1/Z2).

The cure for the anomaly in that case is to
invoke the Horava-Witten mechanism, with
anomaly inflow on the 9-brane surfaces at
endpoints of the S1/Z2 interval being pro-
vided by the introduction of E8×E8 gauge
fields.



Thus the anomalous theory obtained in a
classical Kaluza-Klein reduction is rendered
anomaly-free by brane contributions in the
full M-theory picture, leading to the E8×E8
heterotic string in D = 10.

The chiral truncation that we performed
in order to obtain the Salam-Sezgin theory
was actually more restrictive than a simple
Z2 factoring. In a full discussion at the level
of M-theory and string theory, we need to
perform a strict Z2 factoring (yielding more
fields classically than in the truncation to
Salam-Sezgin). Additionally, we need to in-
troduce appropriate gauge fields on the 5-
branes at the endpoints of the S1/Z2 inter-
val, together with Green-Schwarz anomaly-
cancelling terms, in order to achieve an
analogue of the Horava-Witten mechansim.

By this means, one should be able to ar-
rive at an anomaly-free six-dimensional the-
ory, whose low-energy limit will be con-
tained within the more general class of chi-
ral supergravities constructed by Nishino
and Sezgin.


