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6-Dimensional Chiral Gauged Supergravity

There is a well-known non-chiral N = (1,1)
gauged supergravity in six dimensions (Ro-
mans), which arises from a consistent (warped)
S4 reduction of the massive type IIA the-
ory in ten dimensions. This has a negative
(AdS-type) scalar potential. The theory
cannot be truncated to chiral NN = (1,0)
supergravity.

There exist also inequivalent chiral N' =
(1,0) gauged supergravities in D = 6, for
which the scalar potential has the opposite
sign. (Sezgin/Nishino, Salam/Sezgin.)

T he simplest example is the “Salam-Sezgin
theory,” which is a gauging of pure N =
(1,0) supergravity coupled to one vector
multiplet and one tensor multiplet.



The bosonic Lagrangian is
1
L = R—1(86)% — Le? HE) — 129 F2,
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where g is the gauge-coupling constant.

The theory has a (Minkowski)s x S? vac-
uum, with
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The positive scalar potential balances the
negative contribution of from the Freund-
Rubin term. The dilaton provides a ‘self-
tuning” field that selects Minkowski space-
time.

(Minkowski)4 x S2 is the vacuum of a con-
sistent S2 Pauli reduction, vielding an N =
1 four-dimensional supergravity.



Higher-Dimensional Origins
Cvetic, Gibbons, Pope

A sphere reduction gives a negative cos-
mological constant, so to get Salam-Sezgin
from a higher dimension, we need a differ-
ent type of reduction. First, we shall dis-
cuss how it arises from an S! reduction of a
non-compact SO(2,2) gauged supergravity
in D=7.
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Nine scalars described by the *vielbein”
7@ 4. The indices a are SO(4).; the indices
A are SO(4,m —4)4, with metric nyp.

In the “vacuum” with %4 = 6%, the com-
pact gauging SO(4), has V = —4¢42®1/2
but the non-compact SO(2,2), gauging has
V = +4¢2d1/2,



As well as providing the right sign for the
potential, the non-compact gauging is also
essential for allowing a chiral truncation upon
reduction to D = 6. This can be illustrated
in the D = 7 gravitino transformation rule

The term involving Mo reduces to give a
chirality-reversing term in D = 6. But in
the non-compact gauging, if 7@ 4 = 0%, we
have Ma,o = 0, and hence chiral truncation
consistent.

Other “conspiracies’ occur too, and a fully
consistent and supersymmetric reduction to
give the Salam-Sezgin theory is possible.
This involves setting all A;j‘B — 0 except
Al2 = —A34 = 14, (the U(1) gauge field
of Salam-Sezgin), and setting the Kaluza-
Klein vector to zero.

Reminiscent of the Z5 truncation in Horava-
Witten.



The seven-dimensional SO(2,2) gauged su-
pergravity can itself be obtained via a con-
sistent reduction from D = 10, N = 1 su-
pergravity. It can be viewed as a limiting
case of the (non-compact version of) the
consistent S4 reduction from D = 11.
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Map = 7%an%g, nappp® =1

The four coordinates uA subject to
pi+ps—p3—pg=1

define the 3-dimensional hyperboloid H2:2,

embedded in Euclidean space E4 with the
standard metric

ds? = dp3 + du3 + dp3 + duj

This has isometry group SO(2) x SO(2) =
S0(2,2)NSO(4).



Ghost-Free Non-Compact Gaugings

The scalar fields M 45 play an essential rOle
in the non-compact gauging.

If there were no scalars in the theory, the
only way to have SO(2,2)-invariant Kinetic
terms would be to contract F57 FCD 1 with
the (indefinite-signature) Cartan-Killing met-
ric of SO(2,2). This would imply wrong-
sign Kinetic terms, and hence ghosts.

In any ground state (constant scalars), the
non-compact gauge group is spontaneously
broken to a compact subgroup. This is re-
flected in the metric ds? = M 45 Du DuP
on the internal space, which has only SO(2) x
SO(2) isometry in the 7% 4 = §% vacuum.

Although the reduction from D = 10 to
D = 7 on H22 is really just an analytic
continuation of the S3 reduction that gives
an SO(4) gauged supergravity, the nature
of the “internal space” is very different: S3
is a homogeneous space, while H22 is not.



D =10 to D = 6 Reduction

Solving uf + u3 — p3 — pg = 1 by writing
11 +ipn = coshpe®, usz—+iug =sinhpe
the metric on H2%2 is

ds3 = cosh 2p dp? 4 cosh? pda? 4 sinh? p d3?

Combining the D = 10 to D = 7 reduction
with the further St reduction to the Salam-
Sezgin theory, the reduction ansatz is

1 1 1
ds?, = (cosh?2p)4{e 4%dsZ + e4%dz>
1 h2
l 2 Z¢ d 2 COS d - A 2
-I-Qge[/o-l-coS P (do = gA)
sinh? p .
d A
—I—Cosh2 (dB + gA)<1}
ey =
~ 1 1
e? = (cosh2p) 2e 29

This allows any solution of the six-dimensional
Salam-Sezgin theory to be lifted back to an
exact solution of ten-dimensional N =
supergravity.



Uniqueness of (Minkowski), x S2 Vacuum
Gibbons, Guven, Pope

Consider a more general configuration in
the Salam-Sezgin theory with maximal four-
dimensional symmetry:

dsg = W(y)ds3 + gmndy™dy™, ¢ = ¢(y)
where ds? satisfies R, = Agu and has
maximal symmetry (Minkowksi, AdS or dS).

From the Einstein and dilaton equations we
find

V(W4 Vim(¢p —4logW)) +4AW?2 =0.(1)

Integrating over the (compact) internal 2-
space Y with metric gmndy™dy"™ implies

Afyw2=o, hence A =20

and thus Minkoswkis spacetime. Then
multiplying (1) by (¢ — 4logW) and inte-
grating implies ¢ = 4logW. The tracefree
part of the R,,, equation implies V,,V, W2 =
IV2W2gmn and hence K™ = ™V, W2 is
a Killing vector on Y.



The field equation for Fi,y implies
Foy = %q WO emndy™ A dy™

carries magnetic charge q. The trace of

the R,,, equation implies that the Gauss
curvature k of Y (i.e. Rmn = kgmn) inte-
grates to give
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This shows Y has positive Euler number,
and since, by assumption, it is complete,
compact and non-singular, it must be topo-
logically S2. The Killing vector K™ then
must have circular orbits with 2 fixed points
(i.e. azimuthal symmetry).

We can therefore write the metric as

dst = W (p)2 v datde” + dp® + a(p)? dy?

and the remaining ODEs can be solved
exactly to give



Axisymmetric Solutions
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The metric is regular only if rog = r1 (i.e.
g = =$4g), in which case W = 1, ¢ =
O and, setting » = rg tan%@, we recover
the Salam-Sezgin (Minkowski)s x S2 vac-
uum with metric

ds5 = %15 (d9° 4 sin? 0 dy?)
on the internal space Y. This is therefore

the only non-singular solution with a four-
dimensional maximally-symmetric spacetime.



3-Brane Solutions

The more general axisymmetric solutions,
with rq #= rg, describe configurations with
conical curvature singularities at one or both
“poles” of the 2-sphere, at r = 0 and r =
oo. Choosing ¥ to have period 2w, the in-
ternal space Y is smooth at » = 0, but has
a conical singularity with deficit angle

3
0

at r = oco. The 3-brane tension is positive
(6 > 0) if ro > r1 and negative if rg < r1.
Dirac quantisation of the magnetic charge
q implies
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q

and hence
§=2m(1l—-N?)<0

Thus the 3-brane tension is negative.



Pauli Reductions
Gibbons, Pope

Pauli (1953) was the first to propose that
one might obtain non-abelian gauge fields
from the isometries of an internal manifold
in @ dimensional reduction. His Ur example
was a reduction on S?2 giving SU(2) Yang-
Mills. However, such a reduction on a coset
manifold will not, in general, be consistent
with the higher-dimensional equations of
motion. For example, reducing pure Ein-
stein gravity on a space with Killing vectors
K}” would give a lower-dimensional “Ein-
stein equation” of the form

wa N %ng . I J 1 I J
jgmnK}nKy(Flup FI/ p— Zg,uVFpg F pO‘)
which doesn’'t make sense because the pref-

actor on the right-hand side depends on the
coordinates ¢y of the internal space.

This problem can however be evaded in
special theories, notably certain supergrav-
ities, where contributions from additional
fields cancel the undesirable y-dependence.



Examples are the S’ and S% reductions of
D = 11 supergravity, and the S® reduction
of type IIB supergravity. However, the sim-
plest case, realising Pauli’'s Ur example, is
the S2 reduction of the Salam-Sezgin the-
ory. The bosonic reduction ansatz is

1
ds3 = e2%ds]
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e 2%gmn(dy™ + gATKI™) (dy" + gAVK )
A 1,
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where ea = e% + gAZKa The three coordi-
nates p* satisfy p'pu® = 1 and parameterise

the internal 2-sphere, whose Killing vectors
are K™ = (8g2)~1emo,ut.
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The four-dimensional SU(2) gauge bosons
A’L enter in the ansdtze for F» and Hs
as well as dsG, and these extra contribu-
tions in the six-dimensional Einstein equa-
tions imply that one gets consistent four-
dimensional equations of motion.



The Four-Dimensional Theory

Substitution of the ansatz into the six-dimensional
field equations vields consistent four-dimensional
equations derivable from the Lagrangian

L4=R—5(06)% — ze~*(F")? — 15¢ °?Hj

The fermions reduce consnstently too, yield-
ing a four-dimensional N/ = 1 theory com-
prising supergravity coupled to an SU(2)
Yang-Mills multiplet and a scalar multiplet.
The 3-form H3)y can be dualised to an ax-
ion o, so that

La = R—3(0¢)° - 5¢*? (90)?
—e P(F)? + Zo(F" - «F")

The theory is non-chiral.

The complete four-dimensional reduction
will also have infinite towers of massive fields,
whose mass scale is given by

1
M ~ ge§¢0



Non-Abelian pp-waves
Cariglia, Gibbons, Guven, Pope

The four-dimensional theory admits super-
symmetric non-Abelian pp-waves, general-
ising solutions found by Coleman in flat
spacetime. They take the form

dsg 2dudv + H(u, 2z, z) du® + dzdz
A = AYu,z,z)du
with the dilaton ¢ and axion o being arbi-

trary functions of u. The SU(2) Yang-Mills
potentials and the function H are given by

Ai
H

%[Xi(u, 2) + X' (u, 2)]

K(u,z) 4+ K(u, z)

e %' X" + (% + e2952) 2]
where x*(u, z) and K (u, z) are arbitary func-
tions holomorphic in z.



Anomaly-Free D = 6 Chiral Supergravities
Bergshoeff, Pope, Sezgin, Stelle in progress

Six-dimensional chiral theories are subject
to gravitational, gauge and mixed anoma-
lies, and the Salam-Sezgin theory itself is
anomalous.

The procedure that we used in reducing on
Sl from D =7 to D = 6 involved a chiral
truncation. In fact it was at this stage that
the anomaly was introduced. It is closely
analogous to the procedure whereby one
can obtain the (anomalous) N = 1 super-
gravity in ten dimensions by reduction of
D = 11 supergravity on S!, combined with
a chiral truncation (i.e. a Kaluza-Klein re-
duction on S1/75).

The cure for the anomaly in that case is to
invoke the Horava-Witten mechanism, with
anomaly inflow on the 9-brane surfaces at
endpoints of the S1/Z5 interval being pro-
vided by the introduction of FEg x Eg gauge
fields.



Thus the anomalous theory obtained in a
classical Kaluza-Klein reduction is rendered
anomaly-free by brane contributions in the
full M-theory picture, leading to the Egx Fg
heterotic string in D = 10.

The chiral truncation that we performed
in order to obtain the Salam-Sezgin theory
was actually more restrictive than a simple
Z» factoring. In a full discussion at the level
of M-theory and string theory, we need to
perform a strict Z» factoring (yielding more
fields classically than in the truncation to
Salam-Sezgin). Additionally, we need to in-
troduce appropriate gauge fields on the 5-
branes at the endpoints of the 51/22 inter-
val, together with Green-Schwarz anomaly-
cancelling terms, in order to achieve an
analogue of the Horava-Witten mechansim.

By this means, one should be able to ar-
rive at an anomaly-free six-dimensional the-
ory, whose low-energy limit will be con-
tained within the more general class of chi-
ral supergravities constructed by Nishino
and Sezgin.



