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Kerr-de Sitter Black Holes

Four-dimensional rotating black holes were stud-
led extensively in the 1960's. The general such
solution of the Einstein equations R, = 3\ guv
has two parameters; the mass M and the an-
gular momentum a.

In dimension D, the general rotating black hole
has [(D —1)/2] independent rotatation param-
eters, describing rotations in [(D — 1)/2] or-
thogonal 2-planes. The general such solution
to the vacuum Einstein equations R;, = 0 was
found by Myers and Perry (1986).

The rotating black holes with cosmological con-
stant are of particular interest for the AdS/CFT
correspondence, for studying the case with ro-
tating boundary. The general Kerr-de Sitter
metric in D = 5 (with 2 rotation parameters)
was found by Hawking, Hunter and Taylor-
Robinson (1998). They also found the Kerr-de
Sitter metrics in arbitrary dimension D, in the
special case that all [(D — 1)/2] rotation pa-
rameters a; are set equal.



Kerr-Schild Metrics

Solving the Einstein equations for the general
Kerr-de Sitter metrics from first principles is
very difficult. An easier approach is to make
an inspired guess, based on the structures seen
in the known special casesof D =4 and D = 5,
and in arbitrary dimension with A = 0. How-
ever, testing that the guessed metric indeed
satisfies R, = (D —1) Aguv is also quite tricky.
A great simplification can be achieved by writ-
ing the metric in Kerr-Schild form.

A Kerr-Schild metric takes the form

Juv = guv + huv,  hu = f ku kv

where k, is a null geodesic vector with respect
to the “fiducial” metric g,u:

Clearly, the inverse metric gM” is given exactly
by

G = ghv — pv



Remarkably, the Ricci tensor is given exactly
by

—~~

RF, = RM, — !y RPy + 3V ,V, hHP
+3VPV hyy — AVPV hH,

In other words, the “linearised approximation”
IS exact.

This can provide a relatively simple way of ver-
ifyng that g, satisfies the Einstein equations,
provided that the fiducial metric g, is not too
complicated.

The previously-known D =4 and D = 5 Kerr-
de Sitter metrics can be written in Kerr-Schild
form with g, being the de Sitter metric. It is
therefore natural to expect that this should be
possible in all dimensions.



D = 4 Schwarzschild in Kerr-Schild Form

As a simple example, consider the Schwarzschild
metric

dr? 2M
d32=—th2—|—%—|—r2d§22, F=1-°""
/’f‘

Rewriting this as
ds® = —F (dt — F~1dr)(dt + F~tdr) + r2dQ3
and defining du = dt — F~1 dr gives
2M
ds® = —du® — 2du dr + r2dQ3 + —— du?

.
A final redefinition £ = u + r gives

) OM
ds® = —di? 4 dr® 4 r?dQ5 + =— (df — dr)?
[’/i

which is in Kerr-Schild form, written with
Minkowski spacetime as the fiducial metric,
and k = dt — dr as the geodesic null 1-form.



de Sitter in Spheroidal Coordinates

The required fiducial metric for Kerr-de Sitter
is de Sitter spacetime, but written in an un-
usual system of spheroidal coordinates. The
discussion is a bit different according to whether
the dimension is even or odd, consider D =
2n + 1 =odd here. First, we write de Sitter as

dy2
Next, write the S27—1 metric as

ds® = —(1 — \y?) dt° + >+ dQ5,

n
A5, 1 = > (diii + if d¢7)
k=1
where

Zl“k:

Now change to spher0|dal coordinates (7, u;, ¢;):

A+ X))y 57 = (P +ad)pd, Y pp=1
k



The Kerr-de Sitter Metrics

The de Sitter metric in these coordinates is

ds® = —W(l — )\r2)dt2 + Fdr?
r2 —I—a
+Z1+/\ Q(duz + pi de?)

2
A (r2 4 a?) pidp;
+W(1—>\r2 (Z; 1+ Aa? )

The construction of the Kerr-de Sitter metric
IS now simple. It is given by

2M
ds? = ds® + — (K dat)?

where

az/v% do;
1+ )\ai

U:ZQ QH(T —|—a2)

kydxt = Wdt—l—Fdr—Z




The form of these metrics was suggested by
generalisation from the known X =0 and D =
4,5 Kerr-de Sitter metrics. Checking that they
indeed satisfy the Einstein equations is a me-
chanical exercise, made (relatively) simple by
using the Kerr-Schild evaluation of RM,. We
have verified this explicitly (using Mathemat-
ica) in all dimensions D < 11. Since there are
no features of the metrics peculiar to D <11,
we can be confident that the metrics satisfy
the Einstein equations for all D.

T he metrics in even dimension D = 2n are very
similar in structure. Essentially, one again has
n latitudinal coordinates u; satisfying u; u; = 1,
but now only (n—1) azimuthal coordinates ¢,.
Correspondingly, there are just (n — 1) associ-
ated rotation parameters a;.



Boyer-Lindquist Coordinates

To study the global structure, it is advanta-
geous to change to Boyer-Lindquist type co-
ordinates. After the appropriate coordinate
transformations, the metrics become

U dr?
ds? = —W(l—ArQ)dTQ—I—V_gM
2M " w2 do;
T ldr — 1 My 1\2
A 21+Aa§)
noop2 —I—a
T2 T 2[uz+uz (dg; — Xaj dr)°]
A (r? 4 a?)p; dp;
+ 5 (Z )2,
W(l—Ars)", 1—|—)\az-
where
1 >N 112, .2y U
Vo = T—Q(l—)\r ) 11 (r —I—az-)zﬁ,

1=1
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Horizons

Horizons occur where V(r) vanishes; say at r =
rg. Introducing angular velocities

a; (14 Aa?)
3+ a?
we define the Killing vector

0
87‘ _I_ 3@075
This becomes null on the Killing Horizon at
r=Trr.

Q' =

Y

The Surface Gravity k is defined by
EV V;/ €M — /QEIUJ
restricted to the horizon, leading to
1 1
k=rg(1l—\r%) -

H EZ: TE -+ a TE
From this, one obtains the Hawking Temper-
ature

Ty = —
H 27



Complete Euclidean-Signature Einstein Metrics

Real metrics of positive-definite metric signa-
ture can be obtained by sending

T — —1T, a; — 1a;

In 1978, Page obtained the first example of
a complete, non-singular Einstein metric on a
compact manifold (S2 bundle over S2), by tak-
ing a limit of the Euclideanised four-dimensional
Kerr-de Sitter metric. This was generalised to
five dimensions in 2004, by Hashimoto, Sak-
aguchi and Yasui. We can now extend this to
arbitrary dimensions.

Compact metric achieved when radial coordi-
nate ranges between two zeros r = r; and
r = ro of V(r). Metric singularities at the end-
points u; = 0 of the latitutinal coordinates u;
are removable if the azimuthal angles ¢' have
period 2.



Near endpoints » = rqy and r = ro, the metric
takes the form (e.g. r =rq):

ds® ~ dp® + wip?dr? + gij(de’ — Qidr)(dy’ — Qdr)
+gijdp’dp’

where k1 is the surface gravity and QY is the

angular velocity at » = rq. The conical sin-

gularity at p = 0 is removable if 7 has period
27 /K1 at fixed

Py =@ QT
Define a new Euclidean ‘time” coordinate
Y1 = k17 that has period 2.

We need local charts with coordinates (wl,goil)
and (¢o,¢%) at r =ry and r = r,. All periods
are 2m. Transition functions are given by the
matrix S of linear transformations

K
()= (o )02
©h 282 5t ¥

k1



The transition matrix S must be invertible, and
both S and S—! must have integer entries,
since all coordinate periods are 2w. Thus S
must be an SL(n + 1,7) matrix, implying

k1] = |ko| =k, 1— % =kk;

for integers k;.

The construction then gives T™ bundles over
S2  characterised by the winding numbers k;
of the image of the equator around the n cy-
cles of T™. (The S? is coordinatised by (r,1).)
The metrics extend smoothly onto manifolds
that are associated SP—2 bundles over S2 with
structure group T (acting on the azimuthal
coordinates ¢').

The SL(n + 1,7) conditions are satisfied by
choosing the parameters M and a; so that
r1 = 7o (and rescaling to a non-singular ra-
dial coordinate covering this non-zero proper-
distance interval), and, with the limit ro» — rq
(and hence k — 0),

a; (1 — )\ag)(rg — r%) _
K (r% — a%)(r% — aZ-Q)

ki



Charged Kerr-de Sitter Black Holes

In four dimensions, charged Kerr-de Sitter black
holes are well known. They are solutions of the
coupled Einstein-Maxwell equations with a cos-
mological constant. (Kerr-Newman-de Sitter;
found by Carter, 1968.)

It is not immediately obvious what is the natu-
ral generalisation to consider in higher dimen-
sions: For example, pure Einstein-Maxwell so-
lutions, or Einstein-Maxwell with additional “Chern-
Simons” terms? (The latter is dimension-specific.)

From a string theory viewpoint, it is most nat-
ural to consider charged black-hole solutions in
supergravity theories; this allows the possibility
of supersymmetric (BPS) special cases.

Since this becomes a dimension-specific ques-
tion, let us focus on D = 5.



Charged Rotating Black Holes in D = 5
Gauged Supergravity
M. CveticC, H. Lu and C.N. Pope

The Lagrangian is

In five dimensions, there can be two indepen-
dent rotation parameters. Finding the general
such charged solution is rather complicated.
We shall specialise to the case where the two
rotation parameters are set equal.

A useful guide to the form of the solution is
that it should specialise to results of Hawking,
Hunter and Taylor-Robinson when the charge
iIs zero. It should also specialise to results of
Cvetic and Youm when the cosmological con-
stant is zero. With these in mind, we made an
ansatz, and fixed functional dependences by
imposing the equations of motion. This leads
to:



The Charged Solution

2 2
d32 —(1—2)\7“ _%4_@ )d —|———|—7“ dQQ
2 7%
__4 * 102 — 2(M + Q) r2] (5in? 0 des -+ o2 0 dip)?
2M 2
—2J (ABr? + +Q—Q—4)><
’r T
dt (sin® 6 d¢ + cos? 6 dip)
A = \FQ [dt — J (sin? 6 d¢ + cos? 0 dip)]
’I“
where
C1 Cc2
W = 1—>\T2+r2+r4
S = 14 A82J°
c1 = 2M +20J2 (M + Q) — 22 J2(2M + Q) 8
+2X2 74 (M + Q) 82

o = (A\BJP-1)2Q*+ T2 (\Q*+2(M + Q))
and
dQ% = d6? + sin? 0 d¢? + cos? 0 dip?

IS the metric on the unit 3-sphere.



There are four non-trivial parameters: (M, J,Q, 3).
The first three correspond to mass, rotation
and charge. The meaning of 3, which is triv-
ial (absorbable by rescaling) when A = 0, but
non-trivial when A #= 0, is not so clear.

A simpler presentation of the metric, in terms
of left-invariant 1-forms o; on S3, is

2W dt?  dr? E
ds? =~ + o+ (0 +03) + 07 (03 + )
where
J2Q?  2J°(M+ Q)
2 2
bs = %fr (1— 6 + v )
J 2M+Q Q2
;= - 2p2 (Aﬁrz—l— r2 _7“4>

One can consider “extremal” cases, where Q =
+M. The solutions with Q = 4+ M include the
BPS solutions found by Gutowski and Reall.
The solutions with Q = —M include BPS solu-
tions found by Klemm and Sabra:

2
G-R: Q=M, J:%\/_)\M’ B=__°_

AM
K-S: Q=-M, =0



Global Structure of the Metrics

More generally, all Q = —M solutions (arbitrary
B) are BPS. Also all Q = +M solutions with
62 = —-1/(\J?).

The metric has event horizons where W(r) =
0. Suppose A < 0 (AdS), and let » = r4 Dbe
the outermost horizon. To avoid the curvature
singularity at » = 0, we must have r > 0.
There will be naked Closed Timelike Curves
(CTCs) unless b(r)? > 0 for all r > r_..

The Klemm-Sabra solution, i.e. Q = —-M, 8=
0, has CTCs. The more general solutions ob-
tained by relaxing the 8 = 0 condition with
Q = —M again have CTCs.

The Gutowski-Reall solution has no CTCs. The
more general Q = +M supersymmetric solu-
tions have CTCs.

The general non-supersymmetric solutions, with
the four free parameters (M, J, Q,3), will be
regular (i.e. no singularities or CTCs outside
the horizon) for appropriate ranges of the pa-
rameters.



