A- GOMBEROFF

M. HENNEAUX

F. WILCZEK

Co

Valdivia

THERMAL DEZAY OF THE

CONSTANT

IN TO BLACK HOLES

Membrane

$$t_{\pm} = T_{\pm}(\tau)$$

1 =
$$f_{\pm}^{2} \dot{T}_{\pm}^{2} + f_{\pm}^{-2} \dot{R}^{2}$$
, $f = f(R(ta))$

$$f_{\pm}^{2} = \frac{1 - 2M_{\pm}}{r} - \frac{r^{4}}{l_{\pm}^{2}}$$

$$= \frac{1}{4\pi} \left(\frac{3}{l_{\pm}^{2}} - 3 \right)$$

$$= \frac{r^{4}}{r} + \frac{r^{4}}{l_{\pm}^{2}}$$

$$= \frac{1}{4\pi} \left(\frac{3}{l_{\pm}^{2}} - 3 \right)$$

$$= \frac{r^{4}}{r} + \frac{r^{4}}{l_{\pm}^{2}}$$

$$= \frac{1}{4\pi} \left(\frac{3}{l_{\pm}^{2}} - 3 \right)$$

$$= \frac{r^{4}}{r} + \frac{r^{4}}{l_{\pm}^{2}}$$

$$= \frac{1}{4\pi} \left(\frac{3}{l_{\pm}^{2}} - 3 \right)$$

$$= \frac{r^{4}}{l_{\pm}^{2}} + \frac{r$$

$$E_{t}^{2} = \frac{1}{4\pi} \left(\frac{3}{\ell^{2}} - \lambda \right)$$

Orientation \ \begin{array}{c} - t increases anticleckmise around cosmological norizon \\ - Tincreases when intener is on right side

interior: "-" | exterior "+"

$$\Delta M = \frac{1}{2} (\alpha^2 - \mu^2) R^3 - \mu f_+^2 \dot{T}_+ R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_+^2 \dot{T}_+ R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_+^2 \dot{T}_+ R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_+^2 \dot{T}_+ R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_+^2 \dot{T}_+ R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_+^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

$$= \frac{1}{2} (\alpha^2 + \mu^2) R^3 - \mu f_-^2 \dot{T}_- R^2$$

Turning points

$$\Delta M = \frac{1}{2} (x^{2} - \mu^{2}) R^{3} - \varepsilon_{+} \mu f_{+} R^{2}$$

$$= \frac{1}{2} (x^{2} + \mu^{2}) R^{3} - \varepsilon_{-} \mu f_{-} R^{2}$$

$$\varepsilon_{\pm} = sgn T_{\pm}$$

Hass Diagram

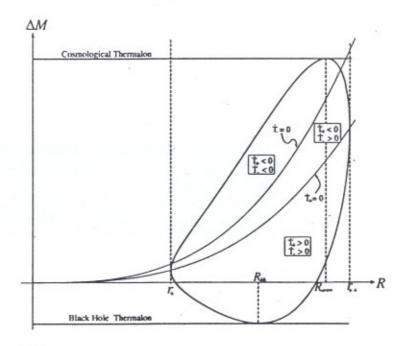
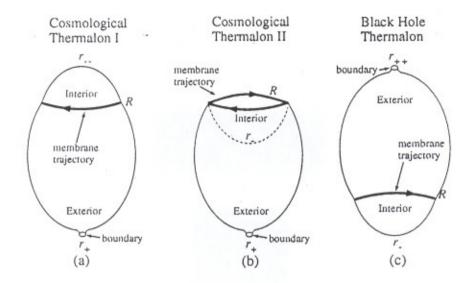


FIG. 2: The closed curve shows the points R where $\dot{R}=0$ for a given mass gap ΔM . The thermalons are located at the maximum (cosmological thermalon) and minimum (black hole thermalon) of the curve. The curves where R is such that for a given ΔM , $\dot{T}_{\pm}=0$ are also shown. All the "+" parameters are held fixed.


Decay of de Sitter space thorngh cosmological thermalon

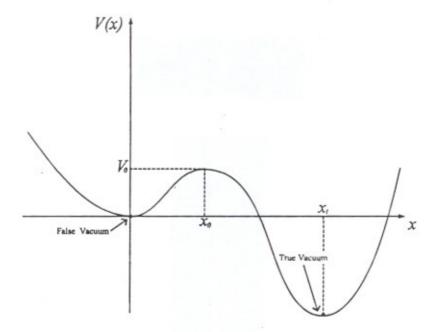
$$R^2 = \frac{\ell_+^2}{1+x^2}$$

$$x = \frac{3}{4} \left[-8 + \left(8^2 + \frac{8}{9} \right)^{\frac{1}{2}} \right]$$

$$\mathcal{T} = \frac{l_+ (\alpha^2 - \mu^2)}{2\mu}$$

Can also compate Narion Hareshold &

Transition between (a) and (b)


occurs when $r_{-}=r_{-}$: Nariai threshold

smooth $M_{-} \leq \frac{l}{3\sqrt{3}}$ mantained

Herrephrent. Action continuous

Note however above threshold

(b) rincreases from r, to R

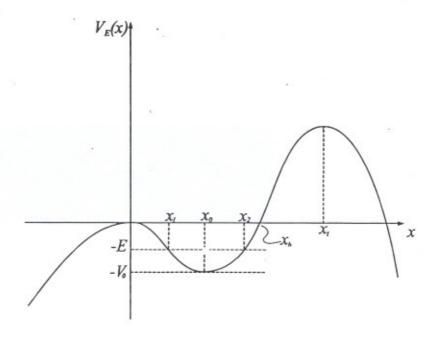


FIG. 2: The Euclidean system consist in the particle placed in a potential $V_E = -V$. The Euclidean action evaluated in particular orbits dominate the path integral describing particular decay processes. At zero temperature, is the instanton which starts at rest at x = 0, $t = -\infty$, bounces at $x = x_b$ and comes back to x = 0 at $t = \infty$. At higher inverse temperatures β , the corresponding instantons are periodic orbits, bounded between two turning points, x_1 , x_2 , with period $\beta\hbar$. This happens at some particular value of the energy -E. When the temperature is high enough the static orbit at the bottom of the potential well $x = x_0$, the thermalon, becomes dominant.

Action in cludes contribution of area of horizon.
Which is not boundary

ground substraction

Thermalm =
$$\frac{1}{4} \left[A(r_{-}) - A(r_{+}r_{-}) \right]$$

 $\frac{-1}{4\pi} V_{3} + \alpha^{2} \frac{3}{8\pi} V_{4}$

abore Misshold

TABLE I: Instantons and Thermalons Compared and Contrasted.

C-1-4:f +1-	December that the sale time	Department on B	D	D
	Process that the solution		Range of validity if used to	rorinula for decay rate
The state of the s			approximate decay rate by	
tion of motion	dominate path integral	in one-dimensional	steepest descent	
		potential		
Instanton at zero	Tunneling through po-	Time dependent. Starts	Dominates for	
temperature	tential barrier	at x_1 at $t = -\infty$,		2 2
2.2		bounces at x_2 and comes	$eta\sim 0$	$\Gamma = \frac{2}{\hbar} \text{Im} F = \frac{2}{\hbar} \text{Im} E$
		back to x_1 at $t = \infty$.		n n
		The bounce is localized		
#I		in time (for large values		10
		of $ t > T$, $x \ll (x_2 - t)$		
		(x_1)).		
Instanton at non-	Tunneling through po-	Time dependent, starts	Dominates for	
	tential barrier at non-			$\Gamma = \frac{2}{\hbar} \text{Im} F$
	zero temperature	comes back to x_1 after a		\hbar
	•	full period $\Delta t = \beta$	ω	
1.1				
Thermalon	Going over the barrier by	Time independent.	Dominates for	
	a thermal kick	Stands at the bottom of		$\Gamma = \frac{\omega \beta}{\pi} \text{Im} F$
	4	the Euclidean potential	1	$I = \frac{1}{\pi} IIII^{r}$
		for all times	ω	1000
		Tot all villion		
			In overlap region, $\beta \hbar \sim \frac{2\pi}{3}$	F has imaginary part be-
				cause extremum is a saddle
			eral be included.	point due to unstable state
			Here ω is the frequency of	
,			oscillations in Euclidean	
18			time of perturbations	
			around the thermalon. It is	
			assumed that there is only	l .
	<u> </u>		one such stable Euclidean	
		7	mode. For motion in a	24
			potential $\omega = V''(x_T)$	L

$$\frac{1}{l_{\infty}^{2}} = \frac{4}{3} q \left(\pi q + \sqrt{-\pi \lambda} \right)$$

above los cosmologicol constantis negativo transition to autidesitter.

What about actual universe

Planck units 10-120

Ape of universe 1060

use as time available for estimates, although perhaps A relaxed only during part of 4.2600 of universe.

If ly started at -Planch scale

ly=1 imbolly , ly=1000 now

each undestron reduces light by of 2 ~ 1 mm of the

So need 10 120 events to occur in 1060 planck time units

 $\Gamma = \frac{10^{120}}{10^{60} l_{+}^{3}} = \frac{10^{60}}{l_{+}^{3}} \tag{*}$

For to be realizable in available range 9264

10-120 < AéB < 1060

2 ~ 10-120

B not too small for semiclassical regime

weed detailed analysis of A

 $A = \omega \beta \times \dots$

mivolves

Hembrane deformation