
On localization and 
some of its applications

in supersymmetric gauge theories
Frank FERRARI

Université Libre de Bruxelles
International Solvay Institutes

Lisbon, June 30th, 2009

1



Our goal is to describe methods that allow rigorous, 
first-principle derivations of non-perturbative results in 
four dimensional super Yang-Mills theories. Our main 
interest will be in the minimally supersymmetric N=1
case. This is ambitious but remarkably we shall have 
some success in this case. This is based on research 
published over the last two years, but also on work in 
progress.    

We shall also discuss the case of N=2, for pedagogical 
reasons and also because the N=2 technology is an 
extension of the N=1 technology. 
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To achieve our goal, we have to answer several obvious 
questions:

1) If we claim that we do derivations from first 
principles of non-perturbative results, then we must 
have a non-perturbative definition of the theory to 
start with...

2) We also need a computational tool that allows to 
make calculation that are usually (naïvely?) believed to 
be intractable...

What allows us to answer both of these questions is a 
tool called LOCALIZATION.
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The most important mathematical result for physics may 
well be the formula for the gaussian integral,

∫
dX exp

(
−1

2
tXAX + tJX

)
=

(2π)n/2

√
det A

exp
(1
2

tJA−1J
)

This formula summarizes all what we know (at least in 
principle) from perturbative quantum field theory...

To go beyond perturbation theory, we need to learn how 
to compute integrals that are more complicated (at least 
superficially) than simple gaussians.
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Usually, we “compute” more complicated integrals by 
doing a saddle-point approximation, which reduces the 
problem to gaussian integrals.

Remarkable property: it is known that in some cases, 
the saddle-point approximation yields the exact result.

Examples:

- The Harish-Chandra Itzykson-Zuber integral

- The canonical partition function of a classical 
integrable system.

- The gaussian integral

∫
dU exp TrAUBU−1 =

det
(
eaibj

)
∏

1≤i<j≤n(ai − aj)(bi − bj)
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This can be explained as follows.
Duistermaat and Heckman 1982, 1983
Berline and Vergne 1982, 1983

An equivariant differential is a form invariant under the 
U(1) action,            . On these forms,         and we 
can define the equivariant cohomology at some degree. 

LV ω = 0 δ2 = 0

 Let      be a 2p-dimensional manifold with a U(1) action 
generated by V, and differential forms        that are 
polynomials in a variable a (that can be viewed as an 
element of the Lie algebra of U(1) is one wish). Assign 
degree 2 to a and define the equivariant differential to 
be               . Taking into account the degree of a, 
this operator increases the total degree of a form by 
one. Note also that             and that    acts as a 
graded differential.

M
ω(a)

δ = d + ιaV

δ2 = LaV δ
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This is a useful notion because even on a topologically 
trivial space (like     ) the equivariant cohomology can 
be non-trivial: we can find closed equivariant forms that 
are not exact. 

R2p

This is nice because the integrals of equivariantly-closed 
forms

can be computed exactly using the following trick.

I(a) =
∫

M
ω(a)

Deform the integral to I(a, ε) =
∫

M
ω(a) ∧ exp

(
−δη

ε

)

  must be an odd-degree equivariant form such that 
has a positive definite zero-form part       . 
η

(δη)0
δη
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Then         does not depend on  .  I(a, ε) ε

∂I

∂ε
= −

∫

M
ω(a) ∧ δη ∧ exp

(
−δη

ε

)

= −
∫

M
δ
(
ω(a) ∧ η ∧ exp

(
−δη

ε

))

= −
∫

M
d
(
ω(a) ∧ η ∧ exp

(
−δη

ε

))
= 0 .

    is an even formδη

    and      are equivariantly closedω δη

       since we pick the top formδ = d with good boundary conditions
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Since         does not depend on  , we can compute it in 
the         limit, for which a saddle-point approximation 
becomes exact.

I(a, ε) ε
ε→ 0

η = agµνV νdxµ

δη = a2|V |2 + a∇νVµdxν ∧ dxµ

euclidean metric invariant
 under U(1)

The integral then localizes on the fixed point of the U(1) 
action (corresponding to V=0) and we obtain the Berline-
Vergne formula,

zero-form part

∫

M
ω(a) = (−2π)p

∑

x∗

ω0(a)|x∗
√

det g(x∗)
Pf ∂µVaν(x∗)
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Let’s rephrase the discussion in a suggesting language.

ω =
1
q!

ωµ1···µqdxµ1 ∧ · · · ∧ dxµqω =
1
q!

ωµ1···µqθ
µ1 · · · θµq

anticommuting Grassman variables

odd form fermionic

even form bosonic

d = θµ ∂

∂xµ
ιV = V µ ∂

∂θµ

δ = V µ ∂

∂θµ
+ θµ ∂

∂xµ
= Q

supercharge
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Field theory set-up:
∫

Dµ O e−S

Assume that we have a fermionic operator     (typically 
a suitable linear combination of supercharges). Its 
square is a bosonic transformation that vanishes on a 
suitable class of operators (e.g. if it vanishes on gauge 
invariant operators we are dealing with the equivariant 
cohomology of the gauge group).

Q

Q · S = 0 (SUSY invariance)
Q · O = 0 (restriction on the type of operators that 

we can consider: “chiral sector”, “SUSY-
preserving sector”, “topological 
observables”)
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S = S0 + Q · Π , Q · S0 = 0

As far as the integral converges,   can be chosen at 
will, and if the purely bosonic part (i.e. independent of 
fermions) of    is definite positive, the path integral 
localizes on the set of field configurations satisfying

Π

Π

Q · Π =0

This yields typically a set of partial differential 
equations and/or algebraic constraints, whose most 
general solution is parametrized by some parameters 
(“moduli”)   . The original path integral is then replaced 
by an integral over this moduli space (which can be 
infinite-dimensional).

µ
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N=2 super Yang-Mills (in the euclidean)

SU(2)1 × SU(2)2 × SU(2)R ×U(1)A

α-indices α̇-indices α-indices
︸︷︷︸

    4D rotation group
(euclidean Lorentz group)

Aµ , φ , φ† λαα , λ̄αα̇

η = εαα̇λ̄αα̇ , χµν = (σ̄µν)α̇
αλ̄α

α̇ , ψµ = (σµ)ααλαα

µ-indices SU(2)1 × SU(2)diag

λ̄α̇
α =

1
2
δα̇
αη − 1

2
(σ̄µν)α̇

αχµν , λαα = −1
2
σ̄αα

µ ψµ

︸︷︷︸
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Q = εαα̇Q̄αα̇

Q · Aµ = ψµ , Q · ψµ = 2
√

2∇µφ ,Q · φ = 0

Q · φ† = −
√

2η , Q · η = 2i[φ, φ†]

Q · χµν = −2F−µν − 2Dµν

Q · Dµν = −
(
∇µψν −∇νψµ

)− + i
√

2[φ, χµν ]

Q2 = gauge transformation

L =
1
g2

tr
(1

2
F 2 + 2|∇φ|2 + [φ, φ†]2 −D2 + fermions

)

− iθ

32π2
εµνρσ trFµνFρσ

=
1
g2

Q · Π− iτ

16π
εµνρσ trFµνFρσ

τ =
θ

2π
+ i

4π

g2
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Π =Π 1 + Π2 + Π3

Π1 =
1√
2

trψµ∇µφ† ,

Π2 = − i

2
tr η[φ, φ†] ,

Π3 =
1
2

trχµν(Dµν − Fµν)

Q · Π1 = 2 tr |∇φ|2 + fermions ,

Q · Π2 = tr[φ, φ†]2 + fermions ,

Q · Π3 = tr(|F−|2 + |D|2) + fermions
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On constrained instantons

The usual approach to N=2 (Seiberg-Witten) is to 
perform a semi-classical approximation at weak coupling 
(instantons) and resum the instanton series, which is 
supposed to yield the exact results.

People have tried to use this method from 1994-1995 to 
check SW from direct instanton calculations.

The problem is: strictly speaking, there is no instanton 
solutions (no smooth solution to the classical e.o.m.) for 
non-zero vev of the scalar field, whereas the semi-
classical approximation should be valid at large vev:

〈φ〉 = diag(a1, . . . , aN ) , |ai − aj | $ Λ
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So people have devised some sort of modified semi-
classical expansion: instead of using exact solutions to 
the e.o.m., which do not exist, they use solutions of 
modified equations, then argue that in the semi-classical 
limit the neglected terms are subleading. This is known 
as the “constrained instanton” method.

N. Dorey et al., hep-th/0206063

A basic feature of this method is that, since the field 
configurations one integrate over are not exact solutions, 
there is a potential on the would-be “moduli” space.

Somewhat mysteriously, this kind of awkward 
approximation scheme is supposed to yield the exact 
result...
Let us see that this is actually a consequence of 
localization. F. F and V. Wens, unpublished
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L =
1
g2

Q · Π− iτ

16π
εµνρσ trFµνFρσ

The standard semiclassical approximation corresponds to 
localization on the solutions to

Q · Π =0

which is the empty set (or more precisely which 
corresponds only to singular field configurations). But the 
localization theorem clearly does not work a priori if 
the fixed points are singular points of the manifold over 
which we integrate.

However, one has                       . One could try to 
use any of the three terms to localize. 

Π =Π 1 + Π2 + Π3
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Q · Π1 = 2 tr |∇φ|2 + fermions ,

Q · Π2 = tr[φ, φ†]2 + fermions ,

Q · Π3 = tr(|F−|2 + |D|2) + fermions

Let us use the third term only. Then the fixed point 
equations are simply

F− = 0 , D = 0

The fixed points that contribute must have finite action 
and this implies that the boundary conditions must be 
such that the gauge field is pure gauge at infinity. With 
these b.c., the most general solution is given by the 
ADHM construction.
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So the integral over the gauge fields in reduced to an 
integral over the ADHM moduli space.

It is not too difficult to deal with the fermionic path 
integrals in a general instanton background.

One then find precisely the prescription of the 
constrained instanton formalism, now derived in a clear 
way from a localization theorem.

The potential “on the moduli space” now comes simply 
from the fact that the solutions to               yield 
non-zero         and         .

Q · Π3 = 0
Q · Π2Q · Π1

It is also clear that the result is exact (there can be no 
other non-perturbative contribution).
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Summary ∫
DϕO e−S0−Q·

R
d4x Π3

∫

M
DµO(µ) e−S0(µ)

∑

k≥0

∫

Mk

dµkO(µ) e−S0(µ)

localization on Q · Π3|bosonic = 0

M = ∪k≥0Mk, k=topological charge

︸ ︷︷ ︸

︸ ︷︷ ︸
finite dimensional integral
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So we see an example where the idea of localization 
yields a definition of what we mean by the non-
perturbative quantum field theory (in the particular 
sector of Q-closed operators).

Note that consistency implies that the instanton series 
must converge! Indeed, we don’t have any other possible 
contribution to the path integral and thus if we had 
only an asymptotic series then it would mean that the 
theory do not have a non-perturbative completion.

The series usually has a finite radius of convergence, 
which means that we need to analytically continue the 
series. This is a mathematically unambiguous procedure 
that is associated with a lot of physics. We shall have 
more to say about this later.
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The spaces      have singularities corresponding to zero-
size instantons. These singularities actually correspond 
to the singular fixed points of the “big” localization 
prescription            .  

Mk

Q · Π =0

One can show that all the physical information of the 
theory is contained in operators for which the 
singularities are actually integrable.

On the other hand, the singularities play a role for 
operators that are ambiguous in the quantum theory. 
Since this is an important point of principle that we 
shall encounter later, let us give more details on this 
point.
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uk = trφk

Because the gauge group is U(N) (or SU(N)), we are 
dealing with NXN matrices and thus there are relations 
of the form                             that imply that all 
the physical information is contained in uk for 1≤k≤N.

uN+p = Pp(u1, . . . , uN )

u2N = PN (u1, . . . , uN ) + aq = PN (u1, . . . , uN )

It turns out that the operator uk is integrable for 
k<2N. However, for k≥2N, there is an ambiguity of the 
form zeroXinfinity that shows up at one instanton. This 
ambiguity is physical: the operator can indeed be 
redefined

consistently with all the U(1) charges of the theory. In 
particular,

u2N → u2N + aq
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uN+p = Pp(u1, . . . , uN )

More generally,one can define

It should be obvious that     , corresponding to a 
particular arbitrary choice of what is meant by the 
operator uN+p, can be chosen arbitrarily (as long as it 
has the correct classical limit and is consistent with the 
U(1) symmetries of the theory). In particular, if doesn’t 
make any sense to claim that one computes     ! 

Pp

Pp

One can choose a regularization of the instanton moduli 
space (for example: the non-commutative deformation), 
and this will fix unambiguously the definition of all the 
operators.
This is similar to the definition of composite operators in 
ordinary perturbation theory, by choosing a particular 
regularization and renormalization scheme.
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To remember: 

Singularities on the moduli space are associated with 
arbitrary choices in the field theory (corresponding to 
field redefinitions) but are not associated with non-
trivial physics.

One must be careful in interpreting the result of 
calculations, by making the distinction between non-
trivial physical content and arbitrary choices!
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Historical remark
Constrained instantons are relevant because we 
formulate the theory on     and we must specify the 
b.c. at infinity for the scalar.

R4

One may ask whether the full structure of the action 
as S = topological term + Q( ) is useful.
This structure was actually used in 1988 by Witten to 
formulate the theory on an arbitrary compact four-
manifold, in which the coupling to gravity is made by 
using the “twisted” Lorentz that we have singled-out in 
our notation. On a compact manifold, there is no problem 
of b.c.
In this sense the theory on      is more subtle than on 
a compact manifold - and was indeed solved using 
localization much later.

R4

27



∑

k≥0

∫

Mk

dµkO(µ) e−S0(µ)

These integrals are still far too complicated to compute.

e−S0(µ) = qke−Q·(π1+π2)|µ

q = e2iπτ

One can use this structure to localize the integrals over 
a subspace of      (Hollowood 2002) but the resulting 
integrals are still to hard to evaluate. 

Mk

In 2002, Nekrasov found a remarkable way to enhance 
the power of the localization technique. The idea is to 
introduce a deformation of the theory, that preserves 
the nice features of the underformed theory (existence 
of Q etc) while breaking the rotation group (going to 
the equivariant cohomology of the rotation group).
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The deformation we need is called the Omega 
background. The best way to understand it is by doing a 
Scherk-Schwarz dimensional reduction from the six 
dimensional N=1 gauge theory.

SU(2)1 × SU(2)2 × SU(2)R ×U(1)A

SU(2)1 × SU(2)diag

︸︷︷︸

5th direction -> use      in Ω1 SU(2)1 × SU(2)diag

6th direction -> use      in Ω2 SU(2)1 × SU(2)diag

[Ω1,Ω2] = 0

Ω =Ω 1 + iΩ2 = Ω+ + Ω−

self-dual anti self-dual
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This point of view on the Omega background allows to 
find easily the supercharges that are preserved: they 
correspond to the supercharges of the 6D theory that 
are invariant under the Omega-rotations.

Ω+ = 0 : four supercharges

In general: a deformation of Q is preserved and was 
used by Nekrasov.

Actually there is a second supercharge, Q’, that is 
preserved! It will play a crucial rôle in the N=1 story.

30



Q2 = gauge transformation + rotation Wµ = Ωµνxν

Q · Aµ = ψµ , Q · χµν = −2F−µν − 2Dµν

Q · φ = −Wµψµ , Q · ψµ = 2
√

2
(
∇µφ + WνFµν

)

L =
1
g2

tr
(1

2
F 2 + 2|∇φ− ιW F |2 +

(
[φ, φ†]

+i(∇W∗φ−∇W φ†) + iW ∗
µWνFµν

)2 −D2 + fermions

L =
1
g2

tr
(1

2
F 2 + 2|∇φ− ιW F |2 +

(
[φ, φ†] + i(∇W∗φ−∇W φ†)

+ iW ∗
µWνFµν

)2 −D2 + fermions
)
− iθ

32π2
εµνρσ trFµνFρσ

=
1
g2

Q · (Π1 + Π2 + Π3)−
iτ

16π
εµνρσ trFµνFρσ
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Localization using                                

yields constrained instantons in the Omega background.

Π3 =
1
2

trχµν(Dµν − Fµν)

∑

k≥0

∫

Mk

dµkO(µ) e−S0(µ)

e−S0(µ) = qke−Q·(π1+π2)|µ

Using this structure, the integrals over       for fixed k 
localize on a finite set of fixed points!

Mk

The end result has a remarkable form.
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= qk
∑

|!k|=k

µ2
!k

O!k

integral over the
moduli space

instanton 
factor

coloured partition
of size k

operator on
 the configuration

        labeled by                        !k

operator evaluated
on a particular instanton

measure on the
 ensemble of 

coloured partitions

localization on 
some particular 
configurations

moduli

∫

Mk

dµk O(µk)e−S
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The ensemble of (coloured) partitions

Ordinary partition k

14 = 5 + 3 + 3 + 2 + 1
Number of boxes =     instanton charge |k|

µk =
1

|k|!ε|k| dim Rk

deformation
parameter

dimension of the 
associated

irrep. of the 
symmetric group

measure
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A coloured partition is a collection of N ordinary 
partition,                   , with a measure factor that 
generalizes the case of the ordinary partitions. 

!k = (k1, . . . , kN )

When the deformation parameter   (i.e. the Omega 
background) goes to zero, the sum over coloured 
partitions can be evaluated by using a suitable saddle-
point approximation (the sum is dominated by a single 
very large coloured partition, and the shape of the 
associated generalized Young tableau can be computed 
explicitly). 

ε
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This formalism was used by Nekrasov et al. in 
2002-2003 to solve for the N=2 gauge theories 
(Seiberg-Witten).

It was a truly remarkable achievement, crowning many 
years of developments in instanton calculus.

N. Nekrasov, Adv. Theor. Math. Phys. 7 (2004) 831, hep-th/0206161
               hep-th/0306211
N. Nekrasov and A. Okounkov, hep-th/0306238
N. Nekrasov and S.Shadchin, Comm. Math. Phys. 252 (2004) 359,
                                  hep-th/0404225
A. Marshakov and N. Nekrasov, JHEP 01 (2007) 104, hep-th/0612019

Dorey, Hollowood, Khoze, Mattis, Slater
Bellisai, Fucito, Morales, Poghossian, Tanzini, Travaglini
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Application of localization: computation of Wilson loops 
in N=4 and N=2 gauge theories

Q · Aµ = ψµ , Q · φ = −WµψµRemember:

Consider a circle C in the 1-2 plane, of radius R, 
centered at the origin. The tangent vector is given by 

tµ = −Ωµνxν , Ω12 = −Ω21 =
1
R

Then                     Q ·
∮

C

(
A + φds

)
= 0

We can compute the corresponding Wilson loop using 
localization,

W (C) = P tr exp
(
i

∮

C

(
A + φds

))
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asymptotics of   at infinityφ

If you put the theory on a sphere S4

includes determinant of fluctuations, includes instantons

Amazing formula (Pestun, 2007): includes both an 
infinite set of perturbative corrections and an infinite 
set of non-perturbative corrections (this is the only 
formula of this type that I know of in 4D gauge 
theories).

〈W (C)〉 = tr e2iπRa〈W (C)〉 =
Z(a, R, q) tr e2iπRa

Z(a, R, q)
〈W (C)〉 =

∫
daZ(a, R, q) tr e2iπRa

∫
daZ(a, R, q)〈W (C)〉 =

∫
da |Zpart(a, R, q)|2Zpert(a)e−4π2R2 tr a2/g2

tr e2iπRa

∫
da |Z(a, R, q)|2Zpert(a)e−4π2R2 tr a2/g2

〈W (C)〉N=4 =
∫

da e−4π2R2 tr a2/g2
tr e2iπRa

∫
da e−4π2R2 tr a2/g2

Erickson, Semenoff, Zarembo 2000
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It turns out that the Omega-deformed theory 
preserves a second supercharge,

Going to N=1??? F.F., V. Wens et al., 2007-now

One needs an extra structure to go to N=1, because an 
N=2-breaking superpotential term is not Q-closed in 
general.

Q′ = Ω−
µν(σ̄µν)α̇

αQ̄α
α̇

and we can use a combination of Q and Q’ to study N=1.
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This is actually reminiscent of the N=1 twist by Witten 
(1994) on Kahler manifold. He was using the fact that 
the holonomy on a Kahler manifold is

to construct a Q’.
U(1)× SU(2)2 ⊂ SU(2)1 × SU(2)2

In our case, we are using the fact that the Omega-
rotation is in the same                   subgroup of the 
Lorentz group. 

U(1)× SU(2)2
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There is still a fundamental problem in trying to apply 
localization in N=1 theories, which is actually probably 
the main reason why it was not attempted before very 
recently. 

In N=1 theories, there is always a corner of the moduli 
space where the theory is arbitrarily weakly coupled 
and thus the instanton series converge.

This is NOT the case in general for theories with N=1 
supersymmetry. N=1 theories generically do not have a 
moduli space, but a discrete set of vacua. Some of these 
vacua are intrinsically strongly coupled. Observables can 
be given by fractional instanton series in these vacua. 
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Morally speaking, this means that viewing the infinite 
dimensional instanton moduli space as a union of finite 
dimensional pieces,

is probably not the best way of approaching the 
problem.

M = ∪k≥0Mk

Yet, it is the only point of view we know how to work 
with. How can we reconcile this with our goal which is 
to solve N=1 theories?

Fundamental idea: the variables a, which play such a 
prominent rôle in N=2, are actually also playing an 
important rôle in N=1!
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Instead of trying to compute directly the correlators, 
we use a two-step procedure. We start by considering 
off-shell correlators obtained by computing path 
integrals with fixed boundary conditions at infinity.

F. F., JHEP 10 (2007) 065, arXiv:0707.3885 

〈
a
∣∣O

∣∣a
〉

=

∫
X∞=diag adµOe−SE

∫
X∞=diag adµ e−SE

a = (a1, . . . , aN )

By choosing appropriately   (               ) the path 
integrals can be forced to be weakly coupled, and the 
result is then given exactly by a convergent instanton 
series. For arbitrary  , the answer is obtained by 
analytic continuation.

a

|ai − aj |" Λa
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The variables   play a role in the microscopic formalism 
which is in some sense analogous to the filling fractions 
in the Dijkgraaf-Vafa matrix model formalism.

a

This microscopic superpotential has two fundamental 
properties that distinguish it from all the previously 
used quantum superpotentials.

This formalism, based on using the variables a in the 
N=1 theories, I will call the “microscopic formalism.”

Wmic(a)

Of course, to compute the physical correlators, we need 
to fix the variables a to physical on-shell values. In 
other words, there is a quantum superpotential for a, 
that we call the microscopic superpotential          .  
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1) it can always be computed exactly in the instanton 
approximation for some values of a and then 
obtained for arbitrary values of a by analytic 
continuation.

2) its critical points are in one-to-one 
correspondence with the full set of vacua of the 
theory (for example, the solutions corresponding to 
any number of cuts in the matrix model are obtained 
as critical points of a single superpotential)
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a-plane

region where the instanton
series convergex

x

x

x

x
weakly coupled vacuum

strongly coupled vacuum
as in the pure N=1 theory

x = solution a* to dWmic = 0

Note: expanding around the strongly coupled solutions a* automatically 
produce fractional instanton series for the correlators.
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To make things very concrete, let us explain again the 
procedure, in the N=1 theory obtained by deforming N=2 
by adding the tree-level superpotential,

focusing on the gluino condensate      .

W =
1
2

trφ2

〈λλ〉

1) compute the off-shell correlator            as a 
function of a.

〈a|λλ|a〉

2) compute the microscopic superpotential. In the 
present case it is simply given by

Wmic =
1
2
m〈a| trφ2|a〉

3) extremize this superpotential. We find N distinct 
solutions ak, 0≤k≤N-1.
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4) plug the values ak into            and find the physical 
correlators,

〈a|λλ|a〉

〈ak|λλ|ak〉 = mq1/Ne2iπk/N

We could of course take the            limit and obtain 
the gluino condensate (and thus a derivation of chiral 
symmetry breaking) in the pure N=1 gauge theory. 

m→∞

We now want to be more ambitious and actually 
compute any chiral correlator. As we shall see, the 
resulting structure is very interesting.

We limit the discussion for simplicity to the theory with 
no matter hypermultiplets, but an arbitrary polynomial 
tree-level superpotential        . W (φ)
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The most general chiral operator in the theory is a 
polynomial in the basic operators

uk = trφk , vk = − 1
16π2

trλλφk

for 1≤k≤N and 0≤k≤N-1 respectively.

It is convenient to introduce generating functions:

On-shell:

R|0〉(z; a) =
∑

k≥0

〈0|uk|0〉
zk+1

, S|0〉(z; a) =
∑

k≥0

〈0|vk|0〉
zk+1

solve dWmic = 0

Off-shell:
Rmic(z; a) =

∑

k≥0

〈a|uk|a〉
zk+1

, Smic(z; a) =
∑

k≥0

〈a|vk|a〉
zk+1
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Let us remember that in principle, there is another 
(conjectured) way to compute these chiral operators, by 
using the matrix model (which is itself a direct 
consequence of the closed string description of the 
gauge theory).

In this formalism, one uses generating functions

that are not to be confused with the generating 
functions Rmic(z;a) and Smic(z;a) of the microscopic 
approach (open string approach) that we have 
introduced previously.

RMM(z; s) =
∑

k≥0

〈s|uk|s〉
zk+1

, SMM(z; s) =
∑

k≥0

〈s|vk|s〉
zk+1
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In the MM formalism, the link with the physical 
correlators is made by extremizing effective glueball 
superpotentials that depend on the filling fractions. 
These superpotentials (one for each given number of 
cuts) are conjectured (they follow directly from the 
closed string description where they coincide with flux 
superpotentials).

The glueball superpotentials should not be confused 
with our microscopic superpotential (they do not even 
depend on the same variables).

We shall come back to the relation between the MM 
formalism and our approach later.
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Application: generalized Konishi anomaly equations
This is a set of algebraic constraints on the operators in 
the theory. W ′(X) = 0Tr

(
OW ′(X)

)
= 0

arbitrary operator
A complete set of equations is obtained in the classical 
theory by using  O = Xn+1 , n ≥ −1 .
This amounts to considering the variations
which are generated by the Virasoro operators 

δX ∼ Xn+1

Ln = −Xn+1 δ

δX
, [Ln, Lm] = (n−m)Ln+m

if W ′(X) =
∑

k≥0

gkXk .

Using                     , or                        we get 
the equations

δXk = −Xn+k+1 Ln · uk = −kun+k

Ln · TrW = Ln ·
∑

k≥0

gk

k + 1
uk+1 = −

∑

k≥0

gkun+k+1 = 0
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Ln · TrW = −
∑

k≥0

gkun+k+1 = 0W ′(z)R(z) = polynomial = N∆(z)

R(z) =
∑

I

cI

z − aI

This is not the expected solution, because the cI are 
arbitrary complex numbers, not positive integers. The 
closed string description is missing something. Intuitively, 
open strings (matrices) can be built from the closed 
strings (gauge invariant operators) only when some 
quantization conditions are satisfied.
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The fundamental idea is that the     are not 
independent: there must exist relations of the form    

uk

uN+p = Pp(u1, . . . , uN )

for all        , for some polynomials    that are easy to 
compute.

p ≥ 1 Pp

R(z) =
∑

I

cI

z − aI

if and only if the cI are positive integers. As we shall 
see, this idea has deep consequences for the closed 
string formulation of the quantum theory.

It is not difficult to prove (simple algebraic lemma) that 
the above relations are consistent with
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Let us now discuss the quantum perturbative theory.

Ln = −Xn+1 δ

δX
, [Ln, Lm] = (n−m)Ln+m

−N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2 = 0

classical term one-loop anomaly
(generalized Konishi anomaly)

−N
∑

k≥0

gkvn+k+1 +
∑

k1+k2=n

vk1vk2 = 0

This is the loop equation of the planar matrix model: 
the vk are identified with matrix averages.

Jn =
W 2

16π2

δ

δX
, [Ln, Jm] = (n−m)Jn+m , [Jn, Jm] = 0
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uN+p = Pp(u1, . . . , uN )

R(z) =
∑

I

NI

z − aI
S(z) = 0

−N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2 = 0

−N
∑

k≥0

gkvn+k+1 +
∑

k1+k2=n

vk1vk2 = 0

But we also have the constraints

which are automatically valid to all orders of 
perturbation theory. This is a fundamental ingredient 
that distinguishes the planar           matrix model and 
the finite    gauge theory. The solution of the above 
three sets of equations is just the classical theory,

N
n→∞
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So we see that the anomaly equations DO get non-
perturbative corrections (otherwise we would not have 
quantum corrections to the correlators). For example,

−N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2 = 0

−N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2 +

∑

r≥1

qr
(∑

k≥0

gkA(r)
n,k(up) +

∑

t≥0

C(r)
n,t(up) vt

)
= 0

In particular, the generators Ln and Jn, and the algebra 
they generate, do get strong quantum corrections that 
we shall compute explicitly later.

So what is the strongest result that we can expect at 
the non-perturbative level?
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The non-perturbative anomaly

It is possible to absorb the non-perturbative quantum 
corrections in the anomaly equations by a suitable 
redefinition of the variables that enter the equations.

−N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2 +

∑

r≥1

qr
(∑

k≥0

gkA(r)
n,k(up) +

∑

t≥0

C(r)
n,t(up) vt

)
= 0

−N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2 = 0

uN+p = Pp(u1, . . . , uN , q)

conjecture:theorem:
F. F., arXiv:0709.0472

uN+p → uN+p +
∑

r≥1 qrc(r)
p (uk)

vN+p → vN+p +
∑

r≥1 qrd(r)
p
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A possible route to address the problem was suggested 
in the original CDSW paper.
1) Make an ansatz for the possible non-perturbative 
corrections. For example,

Ln · um = −mun+m +
∑

k≥1

qkr(k)
n,m , . . .

2) Use Wess-Zumino consistency conditions
But this does not work. Ln.um turns out to be multivalued 
(not in the chiral ring!), and thus no simple ansatz can 
be guessed to perform the analysis (it can be shown that 
single-valuedness + WZ would imply no quantum corrections to the 
correlators!).
We need to do better (of course the result will satisfy WZ 
consistency conditions, but for a strongly quantum corrected algebra 
that in particular do not close on the original super-Virasoro 
operators).
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Before we do that, we need to tackle another problem. 
The most general solution to the anomaly equations 
depends on a finite number of arbitrary parameters: the 
constants cI that we had at the classical level, and also 
the matrix model filling fractions (gluino condensates) in 
the quantum theory.
In the usual approach, the cI are postulated to be 
positive integers, and the gluino condensates are found 
by extremizing a suitable glueball superpotential that 
includes Veneziano-Yankielowicz terms.
These results follow directly from the microscopic 
approach. However, it is very interesting to understand 
that they are actually consequences of consistency 
conditions, if we assume the non-perturbative anomaly 
theorem.
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Chiral ring consistency theorem
F. F., hep-th/0701220
F. F. and V. Wens, arXiv:0710.2978

A general solution to the anomaly equations is not 
consistent with the existence of relations of the form

between the variables.
uN+p = Pp(u1, . . . , uN , q)

Consistency is achieved only for special values of the 
filling fractions. 

These special values are precisely the one derived from 
the glueball superpotentials with the correct (uniquely 
specified) Veneziano-Yankielowicz terms. They are 
equivalent to the quantization of the periods of the 
meromorphic one-form Rdz.
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Let Wmic be the microscopic effective quantum 
superpotential. The anomaly polynomials

should be expressed as suitable variations of Wmic 
(textbook version of anomalies).

An = −N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2

Bn = −N
∑

k≥0

gkvn+k+1 +
∑

k1+k2=n

vk1vk2

Microscopic point of view on the anomaly equations
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Ln · Wmic = An , Jn · Wmic = Bn

microscopic quantum version of the classical 
(perturbative) variation operators Ln and Jn 

discussed previously

[Ln,Lm] = (n−m)Ln+m + non-perturbative corrections
etc...

Note: in the planar limit, we could use the matrix model 
free energy and the usual matrix model Virasoro 
operators. The fundamental point is that the anomaly 
equations must be exact at FINITE N in the gauge 
theory! This cannot work with uncorrected operators.
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The non-perturbative anomaly theorem

Ln · Wmic = An , Jn · Wmic = Bn

An = −N
∑

k≥0

gkun+k+1 + 2
∑

k1+k2=n

uk1vk2

Bn = −N
∑

k≥0

gkvn+k+1 +
∑

k1+k2=n

vk1vk2

first order partial
differential operators

Ln =
∑

i

!i(a)
∂

∂ai

, Jn =
∑

i

ji(a)
∂

∂ai

!i(a) ∼
∮

αi

zn+1Rmicdz , ji(a) ∼
∮

αi

zn+1Smicdz

The corrections to the super-Virasoro algebra can be 
computed straightforwardly (the quantum algebra does 
not close on the operators      and     ).  Ln Jn

64



Final remark: the quantum corrections to the 
perturbative operators Ln and Jn are very strong in the 
sense that      and       acting on a chiral operator like 
uk or vk do not yield a chiral operator in the ordinary 
sense.  

Ln Jn

         is a good function of a but a multi-valued 
function of the us and vs (this phenomenon is similar to 
the multi-valuedness on the SW moduli space due to the 
non-trivial monodromies: operators are good function of 
a but not the other way around).

Ln · uk

This explains why the simple polynomial ansatz for the 
quantum corrected operators cannot work.
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So we have a new formalism to solve the N=1 theories, 
based on sums over coloured partitions and the 
microscopic superpotential. This is the open string 
formalism.
On the other hand, the closed string formalism is based 
on summing over hermitian matrices and the Dijkgraaf-
Vafa glueball superpotential.
The two formalisms are clearly totally different, but 
there are some formal similarities when one exchange 
scalar and glueball operators, coloured partitions and 
matrices, identities and equations of motion etc.
When both formalisms are on-shell, they yield the same 
correlators.

F. F., JHEP 11 (2007) 001, arXiv:0709.0472 
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The matrix model recipe The microscopic approach

vk(s) ∼ 〈〈TrXk〉〉 uk(a) ∼ "TrXk#

uk(s) ∼ 〈〈TrXk Tr t′′(X)〉〉 −
〈〈TrXk〉〉〈〈Tr t′′(X)〉〉

vk(a) ∼ "TrXk+2 TrW (X)# −
"TrXk+2#"TrW (X)#

S(z; s) , R(z; s) S(z;a) , R(z;a)

〈vk〉 = vk(a∗)
〈uk〉 = uk(a∗)

〈vk〉 = vk(s∗)
〈uk〉 = uk(s∗)

dWDV(s = s∗) = 0 dWmic(a = a∗) = 0

average over hermitian matrices average over coloured partitions

totally different functions of z
(different analytic structures, etc...)

MUST BE THE SAME
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How is the equivalence supposed to work?

It is useful to remember the anomaly consistency 
theorem. 

The “philosophy” of this theorem is that the open 
strings can be built from the closed strings (uk=Tr Xk) 
only when some quantization conditions, that here follow 
from the glueball/flux superpotential, are satisfied in 
the closed string theory.
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The formula uk=Tr Xk are of course automatically 
implemented in the open string/microscopic description. 
This means that non-trivial dynamics in the closed 
string framework is exchanged with trivial identitied in 
the open string formulation. 

On the other hand, off-shell indentities in the closed 
string/matrix model formulation, like the generalized 
anomaly equations, should correspond to non-trivial 
dynamical identities valid only on-shell in the open 
string/microscopic description.

This is precisely what happens when one study 
mathematically how the equivalence between the 
formalism works.
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Rmic(z,a) , Smic(z,a) Rmac(z, s) , Smac(z, s)
∮

Rmicdz ∈ 2iπZ dWmac ∼
∮

Rmacdz mod 2iπZ

dWmic ∼
∮

S′
micdz

∮
S′

macdz = 0

Rmic(z,a∗) = Rmac(z, s∗) , Smic(z,a∗) = Smac(z, s∗)

Microscopic Macroscopic

ensures consistency with
the open string formulation

(chiral ring consistency theorem)

identity in the open string formalism
 (simply follows from the definition of the 

variables induced by the NC regularization of the 
instanton moduli space) direct consequence of the

anomaly equationsanomaly ∼ δWmic
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Some conclusions

1) we have now a completely rigorous, microscopic, 
formalism to solve the chiral sector of both N=2 and N=1 
gauge theories.

2) this formalism provides interesting insights, we have 
discussed in some details the case of the generalized 
Konishi anomaly equations.

3) there are many interesting open problems, for 
example can we compute N=1 Wilson loops using the 
formalism?.
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Some perspectives

In doing instantons, we always start by using the 
decomposition of the infinite dimensional moduli space as 
a union of finite dimensional spaces, according to the 
topological charge, 

M = ∪kMk

However, the most interesting results correspond to 
“collective” instanton behaviour. We have seen that this 
can yield an answer which is a fractional power of the 
usual instanton factor.
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It would be extremely useful to try to understand the 
space      as a whole, independently of the 
decomposition in terms of the topological charge.  

M

I’m not sure what this could be, some kind of field 
theory of instantons.

In such a set-up, one may be able to get important 
insights into S-duality.

In N=1* for example, we can apply the microscopic 
formalism and find correlators that are modular forms 
of the coupling.
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We can then use two instanton factors:

q = e2iπτ , q′ = e−2iπ/τ

Expanding in terms of q or q’ corresponds to two 
distinct decompositions of    ,     M

M =
⋃

k

Mk =
⋃

k′

M ′
k′

Any good description of    should make the existence of 
these inequivalent decompositions manifest. This is an 
outstanding problem for the future.

M

This problem is related to the question of understanding 
the “quantization” of systems that have distinct, 
inequivalent, classical limits.
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Thank you for this 
wonderful conference!!!
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