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A CONSERVATIVE POINT OF VIEW 1

String theory?
and where is God in 

all this?
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Goals

• Improve our understanding of nonperturbative effects in 
topological string theory (w.r.t. the string coupling 
constant) and in the 1/N expansion 

• New mathematical structures and new information about 
the old ones: D-instanton sector of topological string 
theory. 

• Mathematical bonus: asymptotic properties at large genus 
of perturbative amplitudes (with applications in 
combinatorics, enumerative geometry...).
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• Basics of topological strings. A and B models. CYs

• Nonperturbative structure as a function of CY moduli. Phases. 
Modular properties of the amplitudes

• Nonperturbative effects in the string coupling constant: motivation 
and perturbative/nonpertubative connection

• Review of matrix models. Large N duals of topological strings

• Instantons from large N duals: the case of 2d gravity

• Instantons in the full matrix model and applications to topological 
strings

• A holomorphic and background independent nonperturbative 
partition function: a proposal

• Conclusions and open problems
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What is topological string theory? 

S =
1
!2s

∫
dz
√

g gµν GIJ∂µφI∂νφJ + · · ·

Topological string theory can be regarded as a toy model of a 
full-fledged string theory. In terms of complexity:

The target of this sigma model will be taken to be a Calabi-Yau 
threefold.  We recall that this is a six-dimensional, Kahler 

manifold which satisfies Einstein's equations in the vacuum 

RIJ = 0

Noncritical strings <  Topological strings  < Superstrings

The starting point is a 2d topological field theory, the topological 
sigma model, with action 
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The A and the B models

As in usual string theory, we can study the target metric by 
perturbing the 2d action with graviton vertex operators. 

However, due to the topological nature of the theory, only a 
limited set of fluctuations can be incorporated. For a CY 

Mmetrics =MKahler ×Mcomplex

 There are two versions of topological string theory: the A model 
incorporates the Kahler parameters (“sizes”), while the B model 

incorporates complex parameters (“shapes”). 
We will then study the free energies at genus g as a function of 

these parameters

FA
g (tKahler) FB

g (tcomplex)
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Mirror symmetry

A fundamental duality in string theory: given a CY manifold     , 
there is generically another (topologically different) CY manifold    

such that

X

X̃

MKahler(X) =Mcomplex(X̃)

FA
g (X; tKahler) = FB

g (X̃; tcomplex)

For the last equality to make sense, we must have a map 

tKahler ↔ tcomplex

This is called the mirror map 
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Examples 1

A very useful example of CY backgrounds are the so-called toric 
CYs. These are non-compact, but they have large N duals, as we 

will discuss

Simplest example: the resolved 
conifold. The moduli space of 

Kahler deformations is just         , 
which describes the complexified 

size of the two-sphere 

O(−1)⊕O(−1)→ S2

t ∈ C

X̃ : uv = P (x, y)

P (x, y) = 1 + x + y + e−txy

mirror:
spectral curve
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O(−3)→ P2
X̃ : uv = P (x, y)

P (x, y) = y(y + x + 1) + ztx
3

X =

local          

Moduli space

orbifold pointlarge radius

t = 0t = ∞ → C
3/Z3

P2

Examples 2
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S2

S2

A1

t1, t2 = ∞

t1, t2 = 0

t1 = 0, t2 = ∞

perturbative gauge theory

SW theory

local              : fibration of the       4d singularity over     . 
It has two Kahler deformations          (size of the base + 
     in the resolved singularity). 

P1 × P1 A1
P1

P1

t1, t2

Examples 3
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The A model
In the A model the free energy at genus g is exhausted by a 

semiclassical expansion around instantons of the 2d sigma model. 
These are holomorphic maps from a Riemann surface of genus g to 

the Calabi-Yau

x holomorphic

X
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These amplitudes encode an enormous amount of geometric 
information: 

Σ
d

Σg

Fg(t) =
∑

d

Nd,ge−dt/!2s = e−dt/!2s

It is also possible to add D-branes, in the form of Lagrangian 
submanifolds, and compute the corresponding open string 

amplitudes

Σ
p

w1

1

d, wi

p
wh

h

Σg,h

Fg,h(t, p1, · · · , ph) =

e−dt/!2s
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The total free energy is 
given by F (t, gs) =

∞∑

g=0

Fg(t)g2g−2
s

Notice that this theory has two quantum parameters:

• In the worldsheet,               and since it appears in the 
combination       , weak coupling is large size in the target 
geometry

• In spacetime,              , the string coupling constant

!ws = !2s

!st = gs

The semiclassical expansion of the A model is a weak coupling 
expansion: it is only valid for large sizes and small string 

coupling constant.

t/!2s
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Nonperturbative structure at small distances
Thanks to mirror symmetry, much is known about the non 

perturbative structure of the total free energy as a function of 

Main result:          is an analytic function of                  at the 
origin (i.e. it has a finite radius of convergence                  ). 

!s

Q = e−t/!2sFg(t)

The point     is called the conifold and at this point there is a phase 
transition characterized by the universal critical behavior [BCOV, 

Ghoshal-Vafa]

Q∗ = e−t∗/!2s

Fg(t) ∼
B2g

2g(2g − 2)
µ2−2g, µ ∼ t− t∗

t∗
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Consequence: there is a very rich phase structure in t-space 
[Witten, Aspinwall-Greene-Morrison...]. By studying the small size regime, 

we can discover for example spacetime topology change in 
string theory

X

X ′

large size

small size
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Global structure and modularity

There is a modular group acting on topological string amplitudes. In 
the toric case, this group is                 , where g is the genus of the 

spectral curve
Sp(2g, Z)

τ =
∂2F0

∂t2
→ ατ + β

γτ + δ
This acts on the standard way on the 

modular parameter of the curve:

The modular group relates different descriptions of the 
amplitudes. Typically, in different regions of the CY moduli space, 

some descriptions are more appropriate than others.
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F
conifold
g

∼ (t − t∗)
2−2g

orbifold t → 0, F orbifold
g =

∑
d NOGW

g,d td

large radius t→∞, FLR
g =

∑
d NGW

g,d e−dt

conifold t∗ ∼ !2
s

There are many genus g amplitudes, related by suitable actions of 
the symplectic group.  At every special point (large radius, ...) 
there is a preferred frame and a set of parameters t where the 

amplitudes        have a good expansion (recall SW theory!). They 
define generalizations of GW theory

Fg(t)

Wednesday, July 1, 2009



The relation between large and small distances can be regarded 
as an example of strong/weak coupling interpolation

In the case of the resolved conifold the interpolation is simply 
analytic continuation

t = 0 t = ∞

Li3(e
−t

)

e
−t

+
1

8
e
−2t

+ · · ·

t
3

12
−

t
4

288
+ · · ·

In general we have analytic continuation plus modular 
transformation
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Modular properties

With respect to the modular group, the topological 
string amplitudes (which are holomorphic ) transform 
with shifts, so they are only quasi-modular [BCOV, ABK].

+
1

2
+

1

2
+

1

8

+
1
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+

1

12
+

1
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}

n
g

= F
(n)
g = − 1

2πi

(γτ + δ)
−1

γGraphic notation:
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Almost modular forms can be promoted to full modular objects by 
introducing a non-holomorphic dependence

The dependence on    can be deduced from worldsheet arguments 
[BCOV] and gives the famous holomorphic anomaly equations

The holomorphic anomaly

Fg(t)→ Fg(t, t̄)

∂t̄I Fg =
1
2
C

JK
Ī

(
DJDKFg−1 +

g−1∑

h=1

DJFhDKFg−h

)

t̄

... so far the most general method to actually compute        . 
They miss however holomorphic information (the holomorphic 
ambiguity). Supplemented with appropriate data at the “special 
points” in moduli space they can be sometimes solved to high 

genus [Huang-Klemm-Quackenbush]

Fg(t)
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Recap, goals and problems

Pragmatically, we would like to compute the topological string 
amplitudes at all genus. Is the topological string exactly solvable on a 

generic CY? 

Like in any string theory, the genus expansion is only defined 
perturbatively.  Are there nonperturbative effects that can be 

computed (in the string coupling constant)? Are there 
nonperturbative definitions of the theory? 

For fixed genus, we understand quite well the topological string 
amplitudes, and in particular their nonperturbative properties as 

a function of the Kahler/complex moduli: they are analytic 
functions with modular properties (like elliptic functions). 
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Let us then recall two basic facts in quantum theories:

• perturbation theory leads, generically, to divergent series: 

We will address the last issue from a conservative point of 
view, i.e. by making use “as much as possible of the important 

pieces of information contained in the coupling constant 
expansion” (G. ‘t Hooft, 1979)

E =
∑

n

angn, an ∼ n!A−n

• nonperturbative effects can be “discovered” by looking at 
perturbation theory at large order:

E = Ep +O(e−A/g)

These effects are exponentially small corrections to the 
semiclassical expansion, so they are still weak coupling effects
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Instantons in quantum mechanics

In both cases, the perturbative series is divergent, and resummation 
is ambiguous (in technical parlance, the series is not Borel summable). 
Nonperturbative effects change qualitatively the physics: In the first 
example, they restore a symmetry which is broken in perturbation 

theory and lift the degeneracy. In the second example, they trigger 
false vacuum decay

E+ − E− = O(e−A/g) Im E = O(e−A/g)

In the first case, there is a clear nonperturbative definition of 
the theory (nonambiguous ground state energy). In the second 

case, there is no clear nonperturbative definition 
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These nonperturbative effects are due to instantons. By 
including them, we are taking into account different 

semiclassical backgrounds which were not included in our 
original description. 

What happens in (topological) string theory?

One expects similar (but stronger) nonperturbative effects [Shenker]

found experimentally in non-critical string theory, identified 
as D-instanton effects later on [Polchinski 1994]

Fg(t) ∼ (2g)!(A(t))−2g ⇒ O(e−A(t)/gs)
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Large N duals
If the string theory we are considering has a large N dual, we 
might be able to compute these effects reliably. We will focus 
on topological strings whose large N dual is a matrix model/ 

Chern-Simons gauge theory 

We recall that matrix models are defined by integrals over 
Hermitian matrices

This free energy has an asymptotic expansion of the form

F =
∞∑

g=0

Fg(t)g2g−2
s , t = Ngs

‘t Hooft parameter

F = log
∫

dM e−
1

gs
tr V (M)
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Master fields and algebraic curves
At large N, the matrix eigenvalues reach an equilibrium 

distribution and they sit along intervals in the complex plane. 
Their density is supported on these intervals.

V (x) =
x2

2

N

ρ(λ) =
1

2πt

√
4t − λ2

If we have s extrema of the potential, the general saddle of the 
matrix model is described by s sets of     eigenvalues  Ni

ti = gsNi
partial ‘t Hooft 

parameters
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Equivalently, the intervals can be regarded as branch cuts of a 
spectral curve         characterizing the model. The density of 

eigenvalues is given by 

ρ(x) =
1

2πt
Im y(x)

Given the spectral curve only, the large N expansion of the free 
energy and correlators can be computed explicitly and 

recursively at all orders [ Ambjorn et al, Eynard et al] 

A
1

A
2

N1 N2

y(x)
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Another U(N) theory we will use is Chern-Simons theory. This 
is an exactly solvable topological gauge theory in 3d with action

S =
1
gs

∫

M
tr(A ∧ dA +

2
3
A ∧A ∧A)

Chern-Simons theory

On some special 3-manifolds, this theory is essentially equivalent 
to a matrix model [M.M.]  and we will use the matrix model 

language/description
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