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A CONSERVATIVE POINT OF VIEW II

String 
theory? It’s all 

here!
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Large N duals

Basic example: Dijkgraaf-Vafa CY backgrounds

Z =

∫
dM e

−

1

gs
V (M)

type B TS on
master

field
u2 + v2 + y2

− (V ′(x))2 + f(x) = 0

y2 = (V ′(x))2 − f(x) spectral curve

ρ(λ) =
1

2πt
Im y(λ)

log Z =
∑

g≥0

Fg(t)g
2g−2

s1/N expansion
perturbative 

topological string 
amplitudes

FMM
g (ti = gsNi) = FTS

g (ti = moduli)
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Toric backgrounds

p

q

inner brane

outer brane

O(−3)→ P2 y(y + x + 1) + zt x3 = 0

A-model: perturbative 
topological string 

amplitudes given by GW 
invariants

(Remodeling the) B-model: 
residue calculus on the 

mirror/spectral curve [M.M., 
BKMP]

mirror symmetry

In principle, no need of explicit matrix model. For some CYs 
(resolved conifold, local P1xP1): Chern-Simons gauge theory 

description [Gopakumar-Vafa, AKMV] and CS matrix model
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• Analyticity of TS amplitudes is here equivalent to analyticity in 
the ‘t Hooft parameters, expected in large N theories without 
renormalons 

• Quantum theory on the spectral curve: unified description of 
matrix models, noncritical strings, toric backgrounds and CS 
theory

Remarks on large N duals

• Nonperturbative effects in the string coupling correspond to 
effects of the type          in the large N duale−N
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Guidelines for nonperturbative computations

• Explicit checks with the large order behavior of string/large N 
perturbation theory:  the instanton amplitude should control the 
large order behavior of the perturbative series 

• Symmetries: nonperturbative effects might restore symmetries 
which are broken in perturbation theory, like in the double-well 
potential.
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A toy model: instantons in 2d gravity

2d gravity means here the (2,3) minimal CFT coupled to gravity

• Continuum description in terms of Liouville and matter
• Large N description in terms of a doubly-scaled matrix model
• TFT description in terms of intersection theory on Deligne-
Mumford moduli space
• Integrable model description in terms of KdV/Painleve I 

t = Ngs

Fg(t) ∼ cg(t− tc)5/2(g−1)

Fds(z) =
∑

g

cgz
−5g/2

u = F ′′
ds(z) satisfies PI: − 1

6u′′ + u2 = z
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• In the integrable model description, instantons are obtained by 
solving PI with a trans-series ansatz:

u = u(0)(z) +
∑

!≥1

C!e−!Az5/4
u(!)(z), z5/4 =

1
gs

• In the matrix model description, instantons correspond to (the 
double-scaling limit of) eigenvalue tunneling [David 91,93]

N − !
!N

• In the continuum description, instantons correspond to D-
instantons/ZZ branes [Martinec, Alexandrov-Kazakov-Kutasov]. However, no 
known description of the instantons in terms of TFT/intersection 
theory (TFT analogue of ZZ brane?)

The trans-series involves two small parameters:      and        
(number of loops/number of instantons)

gs e−1/gs
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Check with large order: cg ∼ (2g)!A−2g, A =
8
√

3
5

But we can be much more precise here:

cg = S Γ
(
2g − 5

2

)
A−2g

{
1 +

a1

g
+

a2

g2
+ · · ·

}

Stokes constant (one 
instanton at one-loop) one instanton at two-loops

one instanton 
at three-loops

We have a hierarchical structure in which the asymptotics of 
the   -instanton series is related to the            -instanton:
resurgence [Ecalle, 1980].  Interestingly, resurgence predicts the 

existence of “exotic” sectors, crucial in the understanding of 
the asymptotics, but with no known matrix model interpretation 

[Garoufalidis-Its-Kapaev-M.M., to appear]

(!± 1)!
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The nonperturbative ambiguity

We have computed a genuine nonperturbative effect, but we are 
still not producing the semiclassical expansion of the exact 
answer, since C (the strength of the instanton corrections) 
cannot be determined: this is the non-perturbative ambiguity.

In general, the ambiguity is due to the need of choosing an 
integration contour in the matrix/path integral (this has been 

argued to be relevant in QFT as well [Guralnik]). In some cases one 
can fix this ambiguity by using nonperturbative input. 
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The specific heat of the noncritical minimal superstring is described 
(at zero RR flux) by the Hastings-McLeod solution to PII [MKS]

u′′ − 2u3 + 2zu = 0

uHM = u(0) − S2

8
u(2) + · · ·

!4 !2 2 4

0.5

1.0

1.5

2.0

The strength of instanton corrections can be fixed [M.M.] and we 
then obtain the exact semiclassical expansion of the 

nonperturbative solution

The details involve Borel resummation and a nonpertubative cancellation 
mechanism which has been discussed in renormalon physics and in the double-

well potential

Fixing the nonperturbative ambiguity I

Wednesday, July 1, 2009



Instantons in the full matrix model
We will compute instanton effects in topological string theory by 

computing them in large N matrix model duals, so we need to 
understand eigenvalue tunneling in matrix models before taking 
the double-scaling limit. We first consider one-cut matrix models

Z(0)(t, gs) =
∫

one cut
dM e−

1
gs

Tr V (M)perturbative 
partition function

N

1/N expansion F (0)(t, gs) = log Z(0)(t, gs) =
∑

g≥0

Fg(t)g2g−2
s
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Traditionally there are two ways to compute the perturbative 
partition function in the 1/N expansion: by using orthogonal 

polynomials or by using saddle-point methods. One can use both 
approaches to compute instanton corrections

The total partition function will include instanton 
corrections to the perturbative partition function, coming 
from eigenvalue tunneling:

Z(t, gs) = Z(0)(t, gs) +
∑

!≥1

e−!A(t)/gsC!Z(!)(t, gs) N − !
!

We expect again a connection 
between the large order behavior 
of the 1/N expansion and these 

instanton effects

Fg(t) ∼ (2g)!(A(t))−2g
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Instantons and difference equations
The method of orthogonal polynomials is closely related to an 
integrable model description. The one-cut model is obtained by 

solving a difference equation of the Toda type. For example, for the 
quartic matrix model one has the off-critical analogue of PI: 

F (t + gs) + F (t− gs)− 2F (t) = log R(t, gs),

R(t, gs)
{

1− λ

12
(R(t, gs) + R(t + gs, gs) + R(t− gs, gs)

}
= t

The instanton amplitudes are obtained, as in the critical case, by 
using a trans-series ansatz for R and F [M.M.]. We should expect 
resurgence properties

R(t, gs) =
∑

g≥0

R(0)
k (t)g2k

s +O(e−A(t)/gs)
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Instantons and the spectral curve

Alternatively, one can solve the model by spectral curve/saddle 
point methods. In the one-cut case, this curve is singular

y(x) = M(x)
√

(x− a)(x− b)

M(x0) = 0a b

Instanton amplitudes can also be 
computed by using spectral curve 

data only. For example, 

A(t) =
∫ x0

b
y(x)dx

One can obtain explicit formulae for the loop corrections around 
the instanton in terms of spectral curve data [M.M.-Schiappa-Weiss ’07]
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Examples of one-cut models
Of course, we can apply these results to matrix models, but we 

are interested in topological strings described either by difference 
equations or one-cut spectral curves

O(−p)⊕O(p− 2)→ P1, p ≥ 2family of Calabi-Yau’s

p → ∞ chiral 2d YM/Hurwitz/Toda

The nonperturbative 
effects computed in this 
way are testable through 

the connection with 
large order behavior

5 10 15

g + 1

0.45

0.50

0.55

0.60

0.65

0.70

                     and its Richardson 
transforms for a fixed value of   , as 
compared to the instanton action 

(horizontal line)      

2g(Fg(t)/Fg+1(t))
1

2

t
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In order to understand more 
general topological string theories, 
we must consider multi-cut matrix 

models, in which all extrema are 
filled up (a lesson from Dijkgraaf 

and Vafa). 

Multi-cut matrix models

fix a background

TS partition function

ZMM(N1, · · · , Np) = ZTS(t1, · · · , tp)

In large N dualities, the perturbative TS partition function 
corresponds to a fixed, generic filling fraction of the matrix 
model. We call this a background.

A1 A2 A3

N3
N2

N1

ti = gsNi
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Z(N ′
1, . . . , N

′
d)

Z(N1, . . . , Nd)
∼ exp

{
− 1

gs

s∑

I=1

(NI −N ′
I)

∂F0(tI)
∂tI

}
.

Given a reference background, any other background can be 
regarded as an instanton:

We don’t see other backgrounds in string perturbation 
theory!

In particular, we can think about the instantons of the one-cut 
matrix model as limiting cases of a two-cut matrix model. This 
gives a powerful method to compute their amplitudes and in 
particular gives regularized formulae for ZZ brane amplitudes 

in 2d gravity [M.M.-Schiappa-Weiss ’08]
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We can incorporate all backgrounds by summing over all filling 
fractions

Z(C1, . . . , Cs) =
∑

N1+···+Ns=N

CN1
1 · · · CNs

s Z(N1, . . . , Ns).

We call this the nonperturbative partition function of the matrix 
model. If we choose a reference background, we obtain the 
perturbative partition function plus instanton corrections/

eigenvalue tunnelings, similar to the total Z we studied in the one-
cut problem. Here however we consider a generic background 

and both the stable and unstable directions [Bonnet-David-Eynard, Eynard]. 

Agrees withvarious previous proposals , although the interpretation is 
slightly different: inclusion of fermion fluxes in [ADKMV], I-brane partition 

function of [Dijkgraaf-Hollands-Sulkowski-Vafa].
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Explicit form of Z at large N
Given any spectral curve, the nonperturbative partition function 

is given by an all-orders     expansion (cf. [Dijkgraaf-Verlinde-Vonk])gs

u =
1
gs

∂F0

∂t

where

nonperturbative ambiguities=characteristic
dual characteristic, no MM 

interpretation

ZΣ(µ, ν; t, gs) = Zpert(t, gs)
{

Θµ,ν + gs

(
Θ′

µ,νF ′
1 +

1
6
Θ′′′

µ,ν F ′′′
0

)

+ g2
s

(1
2
Θ′′

µ,νF ′′
1 +

1
2
Θ′′

µ,νF ′2
1 +

1
24

Θ(4)
µ,νF ′′′′

0 +
1
6
Θ(4)

µ,νF ′′′
0 F ′

1 +
1
72

Θ(6)
ν,µF ′′′2

0

)
+ . . .

}

+
1

2
+

1

2
+

1

24

+
1

6
+

1

72

.

.

.

}

n =
Θ(n)

Θ

graphic representation

Θµ,ν(u, τ) =
∑

n∈Zg

e(n+µ−t/gs)u eπi(n+µ−t/gs)τ(n+µ−t/gs) e2iπnν
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This holomorphic anomaly has been interpreted in terms of 
background independence [Witten]. Since in the nonperturbative Z 
we have summed over all backgrounds, we should expect it to be 

modular and holomorphic. 

In other words, if we add to the perturbative partition function 
(evaluated on a reference background) the sum over spacetime 

instantons we should restore modularity

This looks impossible at first sight, since the breaking of 
modularity is a perturbative phenomenon, while instantons are 
nonperturbative. In fact, we must resum all terms in           at 

each order in    .  This resummation leads to theta functions, so 
there is a chance for modularity!

e−1/gs

gs
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The nonperturbative partition function transforms as the 
partition function of a twisted fermion on the spectral curve:

Z̃Σ(µ̃, ν̃; t̃, gs) = ζ
[µ

ν

]
(Γ)ZΣ(µ, ν; t, gs)

phase

+
1

2
+

1

2
+

1

8

+
1

2
+

1

12
+

1

8

1

2
+

1

2
+

1

8
−

1

2

−

1

2
−

1

8

cancel!

Modularity of Z

cancel!

Modularity of Z
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Fixing the nonperturbative ambiguity II

In this formulation, the nonperturbative ambiguity becomes a 
characteristic in the theta function, which is not fixed a priori

However, if we have a Chern-Simons dual we can fix the value of the 
ambiguity/characteristic by comparing to the exact Chern-Simons 

partition function. 

ZCS(S3/Zp;N, gs)

sum all backgrounds
∑

N1+···+Np=N

CN1

1 · · ·CNp

p ZMM(N1, · · · , Np)=

Notice that in this case the different TS backgrounds correspond to 
different topological sectors of the Chern-Simons theory (i.e. flat 

connections)
∑

(µ,ν)

|ZΣ(µ, ν)|2We might be able to construct 
modular invariants as in CFT OSV?
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Conclusions

We have developed a formalism to understand instanton 
corrections in topological string theory, by using matrix model 

large N duals. We have tested these corrections with 
perturbative tools, following ‘t Hooft advice (large order 

behavior, restoration of modularity).

• Connection to large order behavior/resurgence in the generic multi-cut 
case [work in progress with Klemm and Rauch].

• Intriguing role of exotic sectors: they must be included for consistency. 
Related to anti-D-branes?

• D-brane/geometric interpretation of the instanton sectors.

• Intrinsic formulation of the nonperturbative partition function (cf. I-brane 
theory). Making it more concrete!
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