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The AdS/CFT correspondence

Maldacena conjecture

AdS5 × S5 dual to N = 4 U(N) super-Yang-Mills (1997)

AdS4 × S7 dual to N = 8 U(N)1 × U(N)−1

Chern-Simons-matter (ABJM 2008)

Our aim:

Study the AdS/CFT correspondence for 0 < N < Nmaximal →
beautiful interplay with geometry
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D3-branes at cone singularities

Supersymmetric gauge theories can be engineered placing N D3
branes transverse to a three-fold conical singularity X6

N D3 branes

Calabi−Yau
Sasaki−Einstein

For AdS/CFT applications we require that there is a Ricci-flat cone
metric ds2(X6) = dr2 + r2ds2(Y5) [Sometimes it does not exist
[Gauntlett,DM,Sparks,Yau]]
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D3-branes at cone singularities

Gravity solutions

The “near-horizon” type IIB supergravity solution is: AdS5 × Y5

If Y5 = S5/Γ is an orbifold, various fractions of supersymmetry can
be preserved

If Y5 is a smooth Sasaki-Einstein manifold the solution is non singular
and preserves N = 1 supersymmetry (8 supercharges)

Gauge theories

When X6 = C3/Γ the gauge theory is the orbifold projection
“N = 4/Γ ”: a “quiver” gauge theory with gauge group
U(N1) × · · · × U(Nn) [Douglas-Moore]

When X6 = C(Y5) it is harder to identify the gauge theory. If the
singularity is toric there are powerful techniques (e.g. brane tilings)
for deriving the gauge theory. These are again of quiver type
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Supersymmetric gauge theories

Quivers

Constructed from microscopic open string d.o.f. on D3-branes

N = 1 SYM with gauge group G = U(N1) × · · · × U(Nn)

Coupled to bi-fundamental chiral fields Xi (“matter”)

Full Lagrangian L = LYM + Lmatter
kin + W

X Y

A

B

node = U(N) arrow = (N̄,N) chiral field Xi W= polynomial in Xi
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M2-branes at cone singularities

Supersymmetric (gauge?) theories should be obtained placing N M2
branes transverse to a four-fold conical singularity X8 [reduce to D2
in the type IIA limit]

N M2 branes

We require the existence of a Ricci-flat cone-metric

ds2(X8) = dr2 + r2ds2(Y7)

so that Y7 is an Einstein manifold
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M2-branes at cone singularities

The “near-horizon” 11d solution is AdS4 × Y7. There are more
possibilities for Y7 now:

N Y7 X8 = C(Y7)
1 weak G2 Spin(7)
2 Sasaki-Einstein Calabi-Yau
3 tri-Sasakian hyper-Kähler

> 3 S7/Γ C4/Γ
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M2-branes at cone singularities

Until 2008 the dual of AdS4 × S7 was not known! ABJM (inspired by
BLG) proposed an N = 6 Chern-Simons-matter theory

It can be written as an N = 2 quiver theory

k_1 k_2

node = U(N) CS term at level ki

k1 = −k2 = k W= polynomial in Xi

Chern-Simons quivers

N = 2 CS with gauge group G = U(N1) × · · · × U(Nn)

Coupled to bi-fundamental “chiral” fields Xi (“matter”)

Full Lagrangian L = LCS + Lmatter
kin + W

Relation to 4d N = 1 [more in the second talk]
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M2-branes at cone singularities

N = 1: squashed S̃7 is an example. Dual Chern-Simons theory
proposed by [Ooguri-Park]. Essentially a less-supersymmetric
completion of the ABJM theory

N = 3: tri-Sasakian metrics abundant. Examples of Chern-Simons
quiver duals proposed by [Jafferis-Tomasiello]

Weak G2 (N = 1) is too hard. Tri-Sasakian (N = 3) is “too easy”. The
Sasaki-Einstein (N = 2) case is again the most interesting to study
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Sasaki-Einstein geometry

Sasaki-Einstein/related geometry allows to make checks of the
AdS/CFT correspondence and predictions in the field theory

Useful characterizations of a Sasakian manifold Y:

1 The metric cone ds2(X) = dr2 + r2ds2(Y) is Kähler

2 Locally the metric can be written as a “fibration”

ds2(Y) = ds2(B) + (dψ + P)2 where B is Kähler

1
∂

∂ψ
is a Killing vector (“Reeb”) ⇒ U(1)R(eeb) isometry

2 ω =
dη

2
, where η = dψ + P, is the Kähler two-form on B

ds2(B) is Einstein ⇔ ds2(Y) is Einstein ⇔ ds2(X) is Ricci-flat
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Some basic checks of AdS5/CFT4

Isometries Giso of Y ↔ flavour symmetries of field theories

U(1)R(eeb) isometry ↔ U(1)R R-symmetry of N = 1 field theories

If U(1)R ⊂ U(1)3 ⊂ Giso, then Y and X are toric → great
simplifications. Toric Calabi-Yau singularities are characterized by
simple combinatorial data, essentially vectors va ∈ Z3

〈Tµ
µ〉 = c(Weyl)2 − a(Euler)

Central charge a =
N2π3

4 vol(Y)
[Henningson-Skenderis]

R-charges of certain BPS “baryonic” operators Ra =
Nπ vol(Σa)

3 vol(Y)

Baryonic operators = D3-branes wrapped on supersymmetric Σ3
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Further checks of AdS5/CFT4: matching of moduli spaces

Gauge theory classical moduli spaces of susy vacua (Abelian)

F-terms: Z = {dW = 0} (a.k.a. “master space”)

D-terms/mod gauge symmetries: M = Z//U(1)n−1

M is the mesonic VMS: gauge-invariant traces Tr[X1 . . . ]loop

Z is the baryonic VMS: determinant-like det(X1 . . . )

Gravity realizations:

M is realized simply as M = C(Y5) = X. Placing N D3-branes at
generic positions gives MN>1 = SymNX

Different branches of Z are realized in the gravity as partial
resolutions of the cone singularities X [Klebanov,Murugan],
[DM,Sparks]
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Counting BPS operators

Problem: “count” chiral BPS operators of a quiver theory, labeled by some
“quantum number”

Geometrically, the problem reduces to “counting” holomorphic
functions (sections) on the appropriate moduli space

E.g. on C: 1, z, z2, z3, . . . .. In general, there are infinitely many
holomorphic functions

Group them into finite sets with definite “quantum numbers”. For
example R-charges. For toric geometries we can label with U(1)3

charges (n1, n2, n3)

Counting mesonic BPS operators: enumerate holomorphic functions
on C(Y5) = X → equivariant index-character on X [DM,Sparks,Yau]

Counting baryonic BPS operators: enumerate holomorphic sections
on Z. More complicated. [Hanany et al]
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Counting BPS operators

Toric case: holomorphic functions ↔ integral points inside the cone
C∗ (recall X ' U(1)3 → C∗)

v_2 v_3

v_4

v_1

C(q,X) =
∑
n∈C∗

qn1
1 qn2

2 qn3
3

Computed by localization techniques

Another physical interpretation: the VMS of BPS D3 wrapped in
S3 ⊂AdS5 (“dual-giant gravitons”) is C(Y5) [DM,Sparks]

C(q,X) is the partition function of such states. Grand-canonical
partition function

Z(ζ, q,X) = exp

[ ∞∑
n=1

ζn

n
C(qn,X)

]
=

∞∑
N=0

ζNZN(q,X)

ZN counts hol functions on SymNX → mesonic BPS operators for N > 1
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Volume minimisation and a-maximisation

Slogan: Sasaki-Einstein manifolds minimise volumes [DM,Sparks,Yau]

More precisely: a Sasakian manifold, as a function of the Reeb vector
field, has minimal volume when the metric becomes Einstein

If the geometry is toric it is easy to visualize: the Reeb b ∈ R3.
The volume vol(Y) of the Sasakian “horizon” Y as a function of b is
a pole in C(q,X):

vol(Y)b = lim
t→0

t3C(qi = e−tbi,X)

Minimizing vol(Y)b gives a b∗, which then can be used to compute
the a central charge and the R-charges of BPS operators

a =
N2π3

4 vol(Y)b∗

∆mesonic[ni] =
3∑
i

bi
∗ni
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Volume minimisation and a-maximisation

In 4d N = 1 SCFTs this is the geometric counterpart of
a-maximisation [Intriligator,Wecht]

〈Tµ
µ〉 = c(Weyl)2 − a(Euler) a =

3

32
(3TrR3 − TrR)

Introducing a “trial” Rt = R0 +
∑

I

sIFI; a is maximised over the

possible R-symmetries

In 3d SCFTs, the geometry predicts a field theory technique to
determine the R-symmetry of N = 2 CS theories
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Examples of AdS5/CFT4

A complete list of dual pairs where both the Sasaki-Einstein metric and
the dual field theory are known explicitly

1 T1,1 metric → Klebanov-Witten quiver (1998)

2 Yp,q metrics [Gauntlett,DM,Sparks,Waldram] → Yp,q quivers
[Benvenuti Franco,Hanany,DM,Sparks] (2004)

3 La,b,c metrics [Cvetic,Lu,Page,Pope] → La,b,c quivers [several people]
(2005)

Lessons from T1,1: first example of non-orbifold AdS/CFT duality;
Klebanov-Strassler cascade; and many more.

Lessons from Yp,q: demonstrated that the volumes of SE manifolds
can be irrational multiples of vol(S5). Reflecting the implications of
a-maximization
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AdS4/CFT3 correspondence

Q: What are the fundamental degrees of freedom on M2-branes?

A: Despite the recent progress, this is not really clarified

The lesson of ABJM is that presumably, we should look for
Chern-Simons-matter theories

Sasaki-Einstein results make predictions on the dual N = 2
Chern-Simons theory

There are a number of proposals for the CFT3 duals to various AdS4

geometries

N = 2 proposals are based on a general result about moduli spaces,
which I will discuss in the part II
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N = 2 AdS4/CFT3: the regular Sasaki-Einstein manifolds

Before 2004 three known examples of Sasaki-Einstein in 7d (different
generalisations of T1,1):

M3,2, Q1,1,1, V5,2

Isometries: SU(3) × SU(2) × U(1), SU(2)3 × U(1), SO(5) × U(1)

They are regular i.e. the volumes are rational multiples of vol(S7)

In the end-’90s proposals for gauge theory duals were given →
problematic; however not Chern-Simons gauge theories

ABJM wisdom: look at N = 2 Chern-Simons-matter quivers!

Other ABJM insight: do not attempt to realise all the symmetries in
the Lagrangian!
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A proposed dual to AdS4 × M3,2/Zk

[DM,Sparks]

3

1

2

The Chern-Simons levels are (k1, k2, k3) = (k, k,−2k)

The superpotential is W = εijkTr (XiYjZk)

As a 4d theory it corresponds to the orbifold model C3/Z3

By construction the moduli space of this CS quiver is
X = C(M3,2/Zk)

A (partial) check: dimensions of some operators match Kaluza-Klein
harmonics on M3,2/Zk [Franco,Klebanov,Rodriguez-Gomez]
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Proposed duals to AdS4 × Q1,1,1/Zk

Two different proposed quivers. [Franco,Hanany,Park,Rodriguez-Gomez]

4

3

C2

A2

C1

A1

B1,B21 2

Chern-Simons levels (k,−k, k,−k).

The superpotential is W = Tr (C2B1A1B2C1A2) − (A1 ↔ A2)

It is not well-defined as a 4d theory
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Proposed duals to AdS4 × Q1,1,1/Zk

[Aganagic]

Chern-Simons levels (k, 0,−k, 0)

The superpotential is W = εikεjlTr (AiBjCkDl)

As a 4d theory it corresponds to the an orbifold T1,1/Z2

Both models pass some basic checks: moduli spaces, and matching of
some dimensions with Kaluza-Klein spectrum

It is not known if ultimately only one of them is the correct theory; or
perhaps the two are related by some duality
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N = 2 AdS4/CFT3: the irregular SE manifolds

[Gauntlett,DM,Sparks,Waldram]: explicit Sasaki-Einstein metrics
Yp,k(B2n) in any D = 2n + 3 dimension (2004)

E.g. Yp,k(CP2) is a generalisations of Yp,q in d = 5

Proposed family of CS quivers [DM,Sparks] has same quiver as
M3,2 = Y2,3(CP2), but CS levels (k1, k2, k3) = (2p− k,−p, k− p)

3

1

2

These examples are of “irregular” type: volumes are non rational
multiples of vol(S7)
Can assign geometric R-charges → irrationals!

Ra =
π vol[Σa]

6 vol(Y7)
Σa supersymmetric 5-submanifolds
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Status of AdS4/CFT3 (N ≥ 2)

From the explicit examples and the general results we can infer some
lessons about AdS4/CFT3

1 Supersymmetry not realized manifestly in ABJM [Gustavsson,Rey],
[Kwon,Oh,Sohn]

2 Flavour symmetries not manifest either: in the “k = 1” cases we
always observe an isometry larger than the symmetries of the
proposed Lagrangians

3 In the N = 2 case the conjectured CFTs have generically irrational
R-charges! It is currently not known how to compute R-charges in the
field theory

4 Volume minimization of Sasaki-Einstein Y7 strongly suggests a 3d
version of a-maximisation
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Status of AdS4/CFT3 (N ≥ 2)

5 “Counting” of mesonic BPS traces goes through. We can predict the
entire BPS Kaluza-Klein spectrum of R-charges

6 Account of non-traces is much more subtle. Monopole operators
involved [Benna,Klebanov,Klose]

7 Different duals to a given AdS4 × Y7 solution. Some are understood
as related by 3d mirror symmetry (M-theory lifts), some as 3d Seiberg
dualities. There is not yet a clear picture though

8 We still lack an “M-theoretic” understanding of the origin of these
Chern-Simons theories
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Beyond Sasaki-Einstein: I

Some non-Sasaki-Einstein geometries with interesting AdS/CFT
applications

Warped AdS5 geometries with non-Freund-Rubin type of fluxes

1 AdS5 × Y5 in type IIB: e.g. mass-deformations of SCFT (e.g.
[Pilch,Warner])

2 AdS5 × Y6 in M-theory: recently [Gaiotto,Maldacena] identified the
field theory duals of N = 2 geometries. There are also several N = 1
explicit solutions [Gauntlett,DM,Sparks,Waldram]!

Supersymmetry implies existence of U(1)R. a-maximization implies
that these Y5,Y6 manifolds have generically irrational volumes

Interesting to set up volume minimization for these geometries.
Hitchin’s “generalized geometry” may be useful
[Gabella,Gauntlett,Palti,Sparks,Waldram]
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Beyond Sasaki-Einstein: II

N ≥ 2 AdS4 × Y7 backgrounds can be reduced to supersymmetric
type IIA backgrounds with RR F2: [F2] ∼Chern-Simons levels

If Y7 is a Sasaki-Einstein manifold, ktot =
∑
nodes

ki = 0 [DM,Sparks]

The sum of the CS levels ktot is proportional to the Romans mass F0

→ supersymmetric AdS4 × M6 geometries in massive type IIA
[Gaiotto,Tomasiello]

Explicit massive type IIA solutions

1 N = 1 deformation of S7 (ABJM) [Tomasiello]

2 N = 2 deformation of M3,2 [Petrini,Zaffaroni]

The field theory analysis suggests a canonical deformation of
Sasaki-Einstein solutions. (Recent paper by [Luest,Tsimpis])
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Beyond Sasaki-Einstein: III

Fractional branes: the best understood case is the Klebanov-Strassler
cascade. Adding fractional branes and deforming the singular conifold
geometry leads to a cascade of Seiberg dualities and confinement in the IR

1 In type IIB, deforming many other cones is not possible. Interpreted
as runaway behaviour in the 4d N = 1 field theory. Supergravity
dual of this not available. Perhaps the perspective in [Maldacena,DM]
will be useful

2 In M-theory, fractional M2-branes behave differently. Correspond to
torsion fluxes, rather subtle to detect [ABJ]

Possible to deform some eight-fold singularities, and add fluxes →
strong indication of phenomenon analogous to the KS cascade for
N = 2 Chern-Simons theories (DM,Sparks WIP). Recent related
paper [Aharony,Hashimoto,Hirano,Ouyang]
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