# The AdS/CFT Correspondence and Sasaki-Einstein Geometry I: Overview 

Dario Martelli (Swansea)

Based on work with:
Gauntlett, Maldacena, Sparks, Tachikawa, Waldram, Yau

Instituto Superior Técnico, Lisbon, Portugal, June 29 - July 1, 2009

## Outline

(1) AdS/CFT correspondence and branes at singularities
(2) Sasaki-Einstein geometry
(3) Basic checks: symmetries, volumes
(9) More advanced checks: moduli spaces and "counting" BPS operators
(5) Volume minimisation and a-maximisation
(0) Some examples
(1) $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ correspondence
(8) Beyond the realm of Sasaki-Einstein geometry

## The AdS/CFT correspondence

Maldacena conjecture

- $\mathrm{AdS}_{5} \times \mathbf{S}^{\mathbf{5}}$ dual to $\boldsymbol{\mathcal { N }}=\mathbf{4} \mathbf{U}(\mathbf{N})$ super-Yang-Mills


## The AdS/CFT correspondence

Maldacena conjecture

- $\mathrm{AdS}_{5} \times \mathbf{S}^{\mathbf{5}}$ dual to $\boldsymbol{\mathcal { N }}=\mathbf{4} \mathbf{U}(\mathbf{N})$ super-Yang-Mills
- $\mathrm{AdS}_{4} \times \mathbf{S}^{\mathbf{7}}$ dual to $\boldsymbol{N}=\mathbf{8} \quad \mathbf{U}(\mathbf{N})_{\mathbf{1}} \times \mathbf{U}(\mathbf{N})_{-\mathbf{1}}$ Chern-Simons-matter


## The AdS/CFT correspondence

Maldacena conjecture

- $\mathrm{AdS}_{5} \times \mathbf{S}^{5}$ dual to $\mathcal{N}=\mathbf{4} \mathbf{U}(\mathrm{N})$ super-Yang-Mills
- $\mathrm{AdS}_{4} \times \mathbf{S}^{\mathbf{7}}$ dual to $\boldsymbol{\mathcal { N }}=\mathbf{8} \quad \mathbf{U}(\mathbf{N})_{1} \times \mathbf{U}(\mathbf{N})_{-1}$ Chern-Simons-matter

Our aim:

- Study the AdS/CFT correspondence for $\mathbf{0}<\boldsymbol{\mathcal { N }}<\mathcal{N}_{\text {maximal }} \rightarrow$ beautiful interplay with geometry


## D3-branes at cone singularities

- Supersymmetric gauge theories can be engineered placing N D3 branes transverse to a three-fold conical singularity $\mathbf{X}_{\mathbf{6}}$

- For AdS/CFT applications we require that there is a Ricci-flat cone metric $\mathbf{d s}^{2}\left(\mathbf{X}_{6}\right)=\mathbf{d r}^{2}+\mathbf{r}^{\mathbf{2}} \mathbf{d s}^{\mathbf{2}}\left(\mathbf{Y}_{5}\right)$ [Sometimes it does not exist [Gauntlett,DM,Sparks,Yau]]


## D3-branes at cone singularities

## Gravity solutions

- The "near-horizon" type IIB supergravity solution is: $\mathrm{AdS}_{5} \times \mathbf{Y}_{5}$
- If $\mathbf{Y}_{5}=\mathbf{S}^{\mathbf{5}} / \boldsymbol{\Gamma}$ is an orbifold, various fractions of supersymmetry can be preserved
- If $\mathbf{Y}_{5}$ is a smooth Sasaki-Einstein manifold the solution is non singular and preserves $\boldsymbol{\mathcal { N }}=\mathbf{1}$ supersymmetry (8 supercharges)


## D3-branes at cone singularities

## Gravity solutions

- The "near-horizon" type IIB supergravity solution is: $\mathrm{AdS}_{5} \times \mathbf{Y}_{5}$
- If $\mathbf{Y}_{5}=\mathbf{S}^{\mathbf{5}} / \boldsymbol{\Gamma}$ is an orbifold, various fractions of supersymmetry can be preserved
- If $\mathbf{Y}_{\mathbf{5}}$ is a smooth Sasaki-Einstein manifold the solution is non singular and preserves $\boldsymbol{\mathcal { N }}=\mathbf{1}$ supersymmetry (8 supercharges)


## Gauge theories

- When $\mathbf{X}_{6}=\mathbb{C}^{\mathbf{3}} / \boldsymbol{\Gamma}$ the gauge theory is the orbifold projection " $\mathcal{N}=4 / \boldsymbol{\Gamma}$ ": a "quiver" gauge theory with gauge group $\mathbf{U}\left(\mathbf{N}_{\mathbf{1}}\right) \times \cdots \times \mathbf{U}\left(\mathbf{N}_{\mathbf{n}}\right)$ [Douglas-Moore]
- When $\mathbf{X}_{6}=\mathbf{C}\left(\mathbf{Y}_{5}\right)$ it is harder to identify the gauge theory. If the singularity is toric there are powerful techniques (e.g. brane tilings) for deriving the gauge theory. These are again of quiver type


## Supersymmetric gauge theories

## Quivers

- Constructed from microscopic open string d.o.f. on D3-branes
- $\mathcal{N}=1$ SYM with gauge group $\mathbf{G}=\mathbf{U}\left(\mathbf{N}_{1}\right) \times \cdots \times \mathbf{U}\left(\mathbf{N}_{\mathbf{n}}\right)$
- Coupled to bi-fundamental chiral fields $\mathbf{X}_{\mathbf{i}}$ ("matter")
- Full Lagrangian $\mathcal{L}=\mathcal{L}_{\mathrm{YM}}+\mathcal{L}_{\text {kin }}^{\text {matter }}+\mathrm{W}$

node $=\mathbf{U}(\mathbf{N}) \quad$ arrow $=(\overline{\mathbf{N}}, \mathbf{N})$ chiral field $\mathbf{X}_{\mathbf{i}} \quad \mathbf{W}=$ polynomial in $\mathbf{X}_{\mathbf{i}}$


## M2-branes at cone singularities

- Supersymmetric (gauge?) theories should be obtained placing N M2 branes transverse to a four-fold conical singularity $\mathbf{X}_{\mathbf{8}}$ [reduce to D2 in the type IIA limit]

- We require the existence of a Ricci-flat cone-metric

$$
d s^{2}\left(X_{8}\right)=d r^{2}+r^{2} d s^{2}\left(Y_{7}\right)
$$

so that $\mathbf{Y}_{\mathbf{7}}$ is an Einstein manifold

## M2-branes at cone singularities

- The "near-horizon" 11d solution is $\mathrm{AdS}_{4} \times \mathrm{Y}_{7}$. There are more possibilities for $\mathbf{Y}_{7}$ now:

| $\boldsymbol{\mathcal { N }}$ | $\mathbf{Y}_{\mathbf{7}}$ | $\mathbf{X}_{\mathbf{8}}=\mathbf{C}\left(\mathbf{Y}_{\mathbf{7}}\right)$ |
| :---: | :---: | :--- |
| $\mathbf{1}$ | weak $\mathbf{G}_{\mathbf{2}}$ | Spin(7) |
| $\mathbf{2}$ | Sasaki-Einstein | Calabi-Yau |
| $\mathbf{3}$ | tri-Sasakian | hyper-Kähler |
| $>\mathbf{3}$ | $\mathbf{S}^{\mathbf{7}} / \boldsymbol{\Gamma}$ | $\mathbb{C}^{\mathbf{4}} / \boldsymbol{\Gamma}$ |

## M2-branes at cone singularities

- Until 2008 the dual of $\mathrm{AdS}_{4} \times \mathbf{S}^{\mathbf{7}}$ was not known! ABJM (inspired by BLG) proposed an $\mathcal{N}=\mathbf{6}$ Chern-Simons-matter theory
- It can be written as an $\boldsymbol{\mathcal { N }}=\mathbf{2}$ quiver theory



## Chern-Simons quivers

- $\boldsymbol{N}=\mathbf{2}$ CS with gauge group $\mathbf{G}=\mathbf{U}\left(\mathbf{N}_{1}\right) \times \cdots \times \mathbf{U}\left(\mathbf{N}_{\mathbf{n}}\right)$
- Coupled to bi-fundamental "chiral" fields $\mathbf{X}_{\mathbf{i}}$ ("matter")
- Full Lagrangian $\mathcal{L}=\mathcal{L}_{\mathrm{CS}}+\mathcal{L}_{\text {kin }}^{\text {matter }}+\mathrm{W}$
- Relation to $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{1}$ [more in the second talk]


## M2-branes at cone singularities

- $\boldsymbol{\mathcal { N }}=\mathbf{1}$ : squashed $\tilde{\mathbf{S}}^{7}$ is an example. Dual Chern-Simons theory proposed by [Ooguri-Park]. Essentially a less-supersymmetric completion of the ABJM theory
- $\boldsymbol{\mathcal { N }}=3$ 3: tri-Sasakian metrics abundant. Examples of Chern-Simons quiver duals proposed by [Jafferis-Tomasiello]

Weak $\mathbf{G}_{2}(\mathcal{N}=1)$ is too hard. Tri-Sasakian $(\mathcal{N}=3)$ is "too easy". The Sasaki-Einstein $(\boldsymbol{\mathcal { N }}=2)$ case is again the most interesting to study

## Sasaki-Einstein geometry

- Sasaki-Einstein/related geometry allows to make checks of the AdS/CFT correspondence and predictions in the field theory
- Useful characterizations of a Sasakian manifold $\mathbf{Y}$ :
(1) The metric cone $\mathbf{d s}^{2}(X)=\mathbf{d r}^{2}+\mathbf{r}^{2} \mathbf{d s}^{2}(Y)$ is Kähler
(2) Locally the metric can be written as a "fibration"

$$
\mathbf{d s}^{2}(\mathbf{Y})=\mathbf{d s}^{2}(\mathbf{B})+(\mathbf{d} \psi+\mathbf{P})^{2} \text { where } \mathbf{B} \text { is Kähler }
$$

## Sasaki-Einstein geometry

- Sasaki-Einstein/related geometry allows to make checks of the AdS/CFT correspondence and predictions in the field theory
- Useful characterizations of a Sasakian manifold Y:
(1) The metric cone $\mathbf{d s}^{2}(X)=$ dr $^{2}+\mathbf{r}^{2} \mathbf{d s}^{2}(Y)$ is Kähler
(2) Locally the metric can be written as a "fibration"

$$
\mathbf{d s}^{2}(\mathbf{Y})=\mathbf{d s}^{2}(\mathbf{B})+(\mathbf{d} \psi+\mathbf{P})^{2} \text { where } \mathbf{B} \text { is Kähler }
$$

(1) $\frac{\partial}{\partial \psi}$ is a Killing vector ("Reeb") $\Rightarrow \mathbf{U}(\mathbf{1})_{\mathrm{R}(\mathrm{eeb})}$ isometry
(2) $\omega=\frac{\mathbf{d} \eta}{2}$, where $\boldsymbol{\eta}=\mathbf{d} \psi+\mathbf{P}$, is the Kähler two-form on $\mathbf{B}$
$\mathbf{d s}^{2}(B)$ is Einstein $\Leftrightarrow \mathbf{d s}^{2}(Y)$ is Einstein $\Leftrightarrow \mathbf{d s}^{2}(X)$ is Ricci-flat

## Some basic checks of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

- Isometries $\mathbf{G}_{\text {iso }}$ of $\mathbf{Y} \leftrightarrow$ flavour symmetries of field theories
- $\mathbf{U}(1)_{\mathrm{R}(\mathrm{eeb})}$ isometry $\leftrightarrow \mathbf{U}(\mathbf{1})_{\mathbf{R}} \mathbf{R}$-symmetry of $\mathcal{N}=1$ field theories
- If $\mathbf{U}(\mathbf{1})_{\mathbf{R}} \subset \mathbf{U}(\mathbf{1})^{\mathbf{3}} \subset \mathbf{G}_{\text {iso }}$, then $\mathbf{Y}$ and $\mathbf{X}$ are toric $\rightarrow$ great simplifications. Toric Calabi-Yau singularities are characterized by simple combinatorial data, essentially vectors $\mathbf{v}_{\mathbf{a}} \in \mathbb{Z}^{3}$


## Some basic checks of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

- Isometries $\mathbf{G}_{\text {iso }}$ of $\mathbf{Y} \leftrightarrow$ flavour symmetries of field theories
- $\mathbf{U}(\mathbf{1})_{\mathbf{R}(\text { eeb })}$ isometry $\leftrightarrow \mathbf{U ( 1 )} \mathbf{R}_{\mathbf{R}} \mathbf{R}$-symmetry of $\mathcal{N}=\mathbf{1}$ field theories
- If $\mathbf{U}(\mathbf{1})_{\mathbf{R}} \subset \mathbf{U}(\mathbf{1})^{\mathbf{3}} \subset \mathbf{G}_{\text {iso }}$, then $\mathbf{Y}$ and $\mathbf{X}$ are toric $\rightarrow$ great simplifications. Toric Calabi-Yau singularities are characterized by simple combinatorial data, essentially vectors $\mathbf{v}_{\mathbf{a}} \in \mathbb{Z}^{3}$

$$
\left\langle\mathrm{T}_{\mu}^{\mu}\right\rangle=\mathrm{c}(\text { Weyl })^{2}-\mathrm{a}(\text { Euler })
$$

- Central charge $\mathbf{a}=\frac{\mathbf{N}^{2} \pi^{3}}{4 \operatorname{vol}(\mathbf{Y})}$ [Henningson-Skenderis]
- R-charges of certain BPS "baryonic" operators $\mathbf{R}_{\mathrm{a}}=\frac{\mathbf{N} \pi \operatorname{vol}\left(\boldsymbol{\Sigma}_{\mathrm{a}}\right)}{3 \operatorname{vol}(\mathbf{Y})}$ Baryonic operators $=$ D3-branes wrapped on supersymmetric $\boldsymbol{\Sigma}_{3}$


## Further checks of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ : matching of moduli spaces

Gauge theory classical moduli spaces of susy vacua (Abelian)

- F-terms: $\mathcal{Z}=\{\mathrm{dW}=0\}$ (a.k.a. "master space")
- D-terms/mod gauge symmetries: $\mathscr{M}=\mathcal{Z} / / \mathbf{U}(\mathbf{1})^{\mathrm{n}-1}$
- $\mathscr{M}$ is the mesonic VMS: gauge-invariant traces $\operatorname{Tr}\left[\mathbf{X}_{1} \ldots\right]_{\text {loop }}$
- $\mathcal{Z}$ is the baryonic VMS: determinant-like $\operatorname{det}\left(\mathrm{X}_{\mathbf{1}} \ldots\right)$


## Further checks of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ : matching of moduli spaces

Gauge theory classical moduli spaces of susy vacua (Abelian)

- F-terms: $\mathcal{Z}=\{\mathrm{dW}=\mathbf{0}\}$ (a.k.a. "master space")
- D-terms/mod gauge symmetries: $\mathscr{M}=\mathcal{Z} / / \mathbf{U}(\mathbf{1})^{\mathrm{n}-1}$
- $\mathscr{M}$ is the mesonic VMS: gauge-invariant traces $\operatorname{Tr}\left[\mathbf{X}_{1} \ldots\right]_{\text {loop }}$
- $\mathcal{Z}$ is the baryonic VMS: determinant-like $\operatorname{det}\left(\mathrm{X}_{\mathbf{1}} \ldots\right)$

Gravity realizations:

- $\mathscr{M}$ is realized simply as $\mathscr{M}=\mathbf{C}\left(\mathbf{Y}_{\mathbf{5}}\right)=\mathbf{X}$. Placing $\mathbf{N}$ D3-branes at generic positions gives $\mathscr{M}_{\mathrm{N}>1}=\mathbf{S y m}^{{ }^{N} \mathbf{X}}$
- Different branches of $\mathcal{Z}$ are realized in the gravity as partial resolutions of the cone singularities $\mathbf{X}$ [Klebanov,Murugan], [DM,Sparks]


## Counting BPS operators

Problem: "count" chiral BPS operators of a quiver theory, labeled by some "quantum number"

- Geometrically, the problem reduces to "counting" holomorphic functions (sections) on the appropriate moduli space
- E.g. on $\mathbb{C}: \mathbf{1}, \mathbf{z}, \mathbf{z}^{2}, \mathbf{z}^{\mathbf{3}}, \ldots$. In general, there are infinitely many holomorphic functions
- Group them into finite sets with definite "quantum numbers". For example R-charges. For toric geometries we can label with $\mathbf{U ( 1 )} \mathbf{3}^{\mathbf{3}}$ charges ( $\mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}, \mathbf{n}_{\mathbf{3}}$ )
- Counting mesonic BPS operators: enumerate holomorphic functions on $\mathbf{C}\left(\mathbf{Y}_{5}\right)=\mathbf{X} \rightarrow$ equivariant index-character on $\mathbf{X}$ [DM,Sparks, Yau]
- Counting baryonic BPS operators: enumerate holomorphic sections on $\mathcal{Z}$. More complicated. [Hanany et al]


## Counting BPS operators

- Toric case: holomorphic functions $\leftrightarrow$ integral points inside the cone $\mathcal{C}^{*}\left(\right.$ recall $\left.\mathrm{X} \simeq \mathbf{U}(1)^{3} \rightarrow \mathcal{C}^{*}\right)$


$$
\mathbf{C}(\mathbf{q}, X)=\sum_{n \in \mathcal{C}^{*}} q_{1}^{\mathbf{n}_{1}} \mathbf{q}_{2}^{\mathbf{n}_{2}} \mathbf{q}_{3}^{\mathbf{n}_{3}}
$$

Computed by localization techniques

- Another physical interpretation: the VMS of BPS D3 wrapped in $\mathbf{S}^{\mathbf{3}} \subset \mathrm{AdS}_{5}$ ("dual-giant gravitons") is $\mathbf{C}\left(\mathrm{Y}_{5}\right)$ [DM,Sparks]
- $\mathbf{C}(\mathbf{q}, \mathbf{X})$ is the partition function of such states. Grand-canonical partition function

$$
\mathcal{Z}(\zeta, q, X)=\exp \left[\sum_{n=1}^{\infty} \frac{\zeta^{n}}{n} C\left(q^{n}, X\right)\right]=\sum_{N=0}^{\infty} \zeta^{N} Z_{N}(q, X)
$$

$\mathbf{Z}_{\mathbf{N}}$ counts hol functions on $\mathbf{S y m}^{\mathbf{N}} \mathbf{X} \rightarrow$ mesonic BPS operators for $\mathbf{N}>\mathbf{1}$

## Volume minimisation and a-maximisation

Slogan: Sasaki-Einstein manifolds minimise volumes [DM,Sparks, Yau]

- More precisely: a Sasakian manifold, as a function of the Reeb vector field, has minimal volume when the metric becomes Einstein
- If the geometry is toric it is easy to visualize: the Reeb $\mathbf{b} \in \mathbb{R}^{3}$. The volume $\operatorname{vol}(\mathbf{Y})$ of the Sasakian "horizon" $\mathbf{Y}$ as a function of $\mathbf{b}$ is a pole in $\mathbf{C}(\mathbf{q}, \mathbf{X})$ :

$$
\operatorname{vol}(Y)_{b}=\lim _{t \rightarrow 0} t^{3} C\left(q_{i}=e^{-t b_{i}}, X\right)
$$

- Minimizing $\operatorname{vol}(\mathbf{Y})_{\mathbf{b}}$ gives a $\mathbf{b}_{*}$, which then can be used to compute the a central charge and the $\mathbf{R}$-charges of BPS operators

$$
a=\frac{N^{2} \pi^{3}}{4 \operatorname{vol}(Y)_{b_{*}}} \quad \Delta_{\text {mesonic }}\left[n_{i}\right]=\sum_{i}^{3} b_{*}^{i} n_{i}
$$

## Volume minimisation and a-maximisation

- $\ln 4 d \boldsymbol{\mathcal { N }}=\mathbf{1}$ SCFTs this is the geometric counterpart of a-maximisation [Intriligator,Wecht]

$$
\left\langle\mathrm{T}_{\mu}^{\mu}\right\rangle=\mathrm{c}(\text { Weyl })^{2}-\mathrm{a}(\text { Euler }) \quad \mathrm{a}=\frac{3}{32}\left(3 \operatorname{TrR}^{3}-\operatorname{TrR}\right)
$$

Introducing a "trial" $\mathbf{R}_{\mathbf{t}}=\mathbf{R}_{\mathbf{0}}+\sum_{\mathbf{l}} \mathbf{s}^{\mathbf{\prime}} \mathbf{F}_{\mathbf{1}}$; a is maximised over the possible R-symmetries

## Volume minimisation and a-maximisation

- $\ln 4 d \boldsymbol{\mathcal { N }}=\mathbf{1}$ SCFTs this is the geometric counterpart of a-maximisation [Intriligator,Wecht]

$$
\left\langle\mathrm{T}_{\mu}^{\mu}\right\rangle=\mathrm{c}(\text { Weyl })^{2}-\mathrm{a}(\text { Euler }) \quad \mathrm{a}=\frac{3}{32}\left(3 \operatorname{TrR}^{3}-\operatorname{TrR}\right)
$$

Introducing a "trial" $\mathbf{R}_{\mathbf{t}}=\mathbf{R}_{\mathbf{0}}+\sum_{\mathbf{l}} \mathbf{s}^{\mathbf{\prime}} \mathbf{F}_{\mathbf{1}}$; a is maximised over the possible R-symmetries

- In 3d SCFTs, the geometry predicts a field theory technique to determine the $\mathbf{R}$-symmetry of $\boldsymbol{\mathcal { N }}=\mathbf{2} \mathrm{CS}$ theories


## Examples of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$

A complete list of dual pairs where both the Sasaki-Einstein metric and the dual field theory are known explicitly
(1) $\mathbf{T}^{\mathbf{1 , 1}}$ metric $\rightarrow$ Klebanov-Witten quiver (1998)
(2) $\mathbf{Y}^{\mathbf{p}, \mathbf{q}}$ metrics [Gauntlett,DM,Sparks,Waldram] $\rightarrow \mathbf{Y}^{\mathbf{p}, \mathbf{q}}$ quivers [Benvenuti Franco,Hanany, DM,Sparks] (2004)
(3) $\mathbf{L}^{\mathbf{a}, \mathbf{b}, \mathbf{c}}$ metrics [Cvetic,Lu,Page,Pope] $\rightarrow \mathbf{L}^{\mathbf{a}, \mathbf{b}, \mathbf{c}}$ quivers [several people] (2005)

- Lessons from $\mathbf{T}^{\mathbf{1 , 1}}$ : first example of non-orbifold AdS/CFT duality; Klebanov-Strassler cascade; and many more.
- Lessons from $\mathbf{Y}^{\mathbf{p}, \mathbf{q}}$ : demonstrated that the volumes of SE manifolds can be irrational multiples of $\operatorname{vol}\left(\mathbf{S}^{5}\right)$. Reflecting the implications of a-maximization


## Examples



## $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ correspondence

- Q: What are the fundamental degrees of freedom on M2-branes?


## $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ correspondence

- Q: What are the fundamental degrees of freedom on M2-branes? A: Despite the recent progress, this is not really clarified
- The lesson of ABJM is that presumably, we should look for Chern-Simons-matter theories
- Sasaki-Einstein results make predictions on the dual $\boldsymbol{\mathcal { N }}=\mathbf{2}$ Chern-Simons theory
- There are a number of proposals for the $\mathrm{CFT}_{3}$ duals to various $\mathrm{AdS}_{4}$ geometries
- $\mathcal{N}=\mathbf{2}$ proposals are based on a general result about moduli spaces, which I will discuss in the part II


## $\mathcal{N}=2 \mathrm{AdS}_{4} / \mathrm{CFT}_{3}:$ the regular Sasaki-Einstein manifolds

- Before 2004 three known examples of Sasaki-Einstein in 7d (different generalisations of $\mathbf{T}^{\mathbf{1 , 1}}$ ):

$$
\mathbf{M}^{3,2}, \quad \mathbf{Q}^{1,1,1}, \quad \mathbf{V}_{5,2}
$$

- Isometries: $\mathbf{S U ( 3 )} \times \mathbf{S U ( 2 )} \times \mathbf{U}(1), \mathrm{SU}(2)^{\mathbf{3}} \times \mathrm{U}(1), \mathrm{SO}(5) \times \mathrm{U}(1)$
- They are regular i.e. the volumes are rational multiples of $\operatorname{vol}\left(\mathbf{S}^{7}\right)$
- In the end-'90s proposals for gauge theory duals were given $\rightarrow$ problematic; however not Chern-Simons gauge theories
- ABJM wisdom: look at $\boldsymbol{\mathcal { N }}=\mathbf{2}$ Chern-Simons-matter quivers!
- Other ABJM insight: do not attempt to realise all the symmetries in the Lagrangian!


## A proposed dual to $\mathrm{AdS}_{4} \times \mathrm{M}^{3,2} / \mathbb{Z}_{\mathbf{k}}$

[DM,Sparks]


- The Chern-Simons levels are $\left(\mathbf{k}_{\mathbf{1}}, \mathbf{k}_{\mathbf{2}}, \mathbf{k}_{\mathbf{3}}\right)=(\mathbf{k}, \mathbf{k}, \mathbf{2 k})$
- The superpotential is $\mathrm{W}=\epsilon_{\mathrm{ijk}} \operatorname{Tr}\left(\mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{j}} \mathrm{Z}_{\mathrm{k}}\right)$
- As a $4 d$ theory it corresponds to the orbifold model $\mathbb{C}^{3} / \mathbb{Z}_{3}$
- By construction the moduli space of this CS quiver is $\mathrm{X}=\mathrm{C}\left(\mathrm{M}^{3,2} / \mathbb{Z}_{\mathbf{k}}\right)$
- A (partial) check: dimensions of some operators match Kaluza-Klein harmonics on $\mathbf{M}^{\mathbf{3 , 2}} / \mathbb{Z}_{\mathbf{k}}$ [Franco,Klebanov, Rodriguez-Gomez]


## Proposed duals to $\mathrm{AdS}_{4} \times \mathbf{Q}^{1,1,1} / \mathbb{Z}_{\mathbf{k}}$

Two different proposed quivers. [Franco,Hanany,Park,Rodriguez-Gomez]


- Chern-Simons levels ( $\mathbf{k},-\mathbf{k}, \mathbf{k},-\mathbf{k}$ ).
- The superpotential is $\mathbf{W}=\operatorname{Tr}\left(\mathbf{C}_{2} \mathbf{B}_{1} \mathbf{A}_{\mathbf{1}} \mathbf{B}_{2} \mathbf{C}_{\mathbf{1}} \mathbf{A}_{\mathbf{2}}\right)-\left(\mathbf{A}_{1} \leftrightarrow \mathbf{A}_{\mathbf{2}}\right)$
- It is not well-defined as a 4d theory


## Proposed duals to $\mathrm{AdS}_{4} \times \mathbf{Q}^{1,1,1} / \mathbb{Z}_{\mathbf{k}}$

 [Aganagic]

- Chern-Simons levels ( $\mathbf{k}, \mathbf{0}, \mathbf{k}, \mathbf{0}$ )
- The superpotential is $\mathbf{W}=\epsilon_{i k} \epsilon_{j l} \operatorname{Tr}\left(\mathbf{A}_{\mathbf{i}} \mathbf{B}_{\mathbf{j}} \mathbf{C}_{\mathrm{k}} \mathbf{D}_{\mathbf{l}}\right)$
- As a 4 d theory it corresponds to the an orbifold $\mathbf{T}^{\mathbf{1 , 1}} / \mathbb{Z}_{\mathbf{2}}$
- Both models pass some basic checks: moduli spaces, and matching of some dimensions with Kaluza-Klein spectrum

It is not known if ultimately only one of them is the correct theory; or perhaps the two are related by some duality

## $\mathcal{N}=2 \mathrm{AdS}_{4} / \mathrm{CFT}_{3}:$ the irregular SE manifolds

- [Gauntlett,DM,Sparks,Waldram]: explicit Sasaki-Einstein metrics $\mathbf{Y}^{\mathbf{p}, \mathbf{k}}\left(\mathbf{B}_{2 \mathbf{n}}\right)$ in any $\mathbf{D}=\mathbf{2 n}+\mathbf{3}$ dimension (2004)
- E.g. $\mathbf{Y}^{\mathbf{p , k}}\left(\mathbb{C} \mathbf{P}^{\mathbf{2}}\right)$ is a generalisations of $\mathbf{Y}^{\mathrm{p}, \mathbf{q}}$ in $\mathbf{d}=\mathbf{5}$ Proposed family of CS quivers [DM, Sparks] has same quiver as $\mathbf{M}^{3,2}=\mathbf{Y}^{\mathbf{2 , 3}}\left(\mathbb{C} \mathbf{P}^{2}\right)$, but CS levels $\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=(2 \mathbf{p}-\mathbf{k},-\mathbf{p}, \mathbf{k}-\mathbf{p})$

- These examples are of "irregular" type: volumes are non rational multiples of $\operatorname{vol}\left(\mathbf{S}^{7}\right)$
- Can assign geometric R-charges $\rightarrow$ irrationals!

$$
\mathrm{R}_{\mathrm{a}}=\frac{\pi \operatorname{vol}\left[\Sigma_{\mathrm{a}}\right]}{6 \operatorname{vol}\left(\mathrm{Y}_{7}\right)}
$$

$\boldsymbol{\Sigma}_{\text {a }}$ supersymmetric 5-submanifolds

## Status of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}(\mathcal{N} \geq 2)$

From the explicit examples and the general results we can infer some lessons about $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$
(1) Supersymmetry not realized manifestly in ABJM [Gustavsson,Rey], [Kwon,Oh,Sohn]
(2) Flavour symmetries not manifest either: in the " $k=1$ " cases we always observe an isometry larger than the symmetries of the proposed Lagrangians
(3) In the $\boldsymbol{\mathcal { N }}=\mathbf{2}$ case the conjectured CFTs have generically irrational R-charges! It is currently not known how to compute R-charges in the field theory
(9) Volume minimization of Sasaki-Einstein $\mathbf{Y}_{7}$ strongly suggests a 3d version of a-maximisation

## Status of $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}(\mathcal{N} \geq 2)$

(5) "Counting" of mesonic BPS traces goes through. We can predict the entire BPS Kaluza-Klein spectrum of R-charges
(0) Account of non-traces is much more subtle. Monopole operators involved [Benna,Klebanov, Klose]
(1) Different duals to a given $\mathrm{AdS}_{\mathbf{4}} \times \mathbf{Y}_{\mathbf{7}}$ solution. Some are understood as related by 3d mirror symmetry (M-theory lifts), some as 3d Seiberg dualities. There is not yet a clear picture though
(8) We still lack an "M-theoretic" understanding of the origin of these Chern-Simons theories

## Beyond Sasaki-Einstein: I

Some non-Sasaki-Einstein geometries with interesting AdS/CFT applications

- Warped $\mathrm{AdS}_{5}$ geometries with non-Freund-Rubin type of fluxes
(1) $\mathrm{AdS}_{5} \times \mathrm{Y}_{5}$ in type IIB: e.g. mass-deformations of SCFT (e.g. [Pilch,Warner])
(2) $\operatorname{AdS}_{5} \times \mathbf{Y}_{6}$ in M-theory: recently [Gaiotto,Maldacena] identified the field theory duals of $\boldsymbol{\mathcal { N }}=\mathbf{2}$ geometries. There are also several $\boldsymbol{\mathcal { N }}=\mathbf{1}$ explicit solutions [Gauntlett,DM,Sparks,Waldram]!
- Supersymmetry implies existence of $\mathbf{U}(\mathbf{1})_{\mathbf{R}}$. a-maximization implies that these $\mathbf{Y}_{5}, \mathbf{Y}_{\mathbf{6}}$ manifolds have generically irrational volumes
- Interesting to set up volume minimization for these geometries. Hitchin's "generalized geometry" may be useful [Gabella,Gauntlett,Palti,Sparks,Waldram]


## Beyond Sasaki-Einstein: II

- $\mathcal{N} \geq 2$ AdS $_{4} \times \mathbf{Y}_{7}$ backgrounds can be reduced to supersymmetric type IIA backgrounds with RR $\mathbf{F}_{\mathbf{2}}$ : $\left[\mathbf{F}_{\mathbf{2}}\right] \sim$ Chern-Simons levels
- If $\mathbf{Y}_{\mathbf{7}}$ is a Sasaki-Einstein manifold, $\mathbf{k}_{\mathbf{t o t}}=\sum_{\text {nodes }} \mathbf{k}_{\mathbf{i}}=\mathbf{0}$ [DM,Sparks]
- The sum of the CS levels $\mathbf{k}_{\text {tot }}$ is proportional to the Romans mass $\mathbf{F}_{\mathbf{0}}$ $\rightarrow$ supersymmetric $\mathrm{AdS}_{\mathbf{4}} \times \mathbf{M}_{\mathbf{6}}$ geometries in massive type IIA [Gaiotto,Tomasiello]
- Explicit massive type IIA solutions
(1) $\mathcal{N}=\mathbf{1}$ deformation of $\mathbf{S}^{\mathbf{7}}$ (ABJM) [Tomasiello]
(2) $\boldsymbol{\mathcal { N }}=\mathbf{2}$ deformation of $\mathbf{M}^{\mathbf{3 , 2}}$ [Petrini,Zaffaroni]
- The field theory analysis suggests a canonical deformation of Sasaki-Einstein solutions. (Recent paper by [Luest, Tsimpis])


## Beyond Sasaki-Einstein: III

Fractional branes: the best understood case is the Klebanov-Strassler cascade. Adding fractional branes and deforming the singular conifold geometry leads to a cascade of Seiberg dualities and confinement in the IR
(1) In type IIB, deforming many other cones is not possible. Interpreted as runaway behaviour in the $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{1}$ field theory. Supergravity dual of this not available. Perhaps the perspective in [Maldacena,DM] will be useful
(2) In M-theory, fractional M2-branes behave differently. Correspond to torsion fluxes, rather subtle to detect [ABJ]

Possible to deform some eight-fold singularities, and add fluxes $\rightarrow$ strong indication of phenomenon analogous to the KS cascade for $\mathcal{N}=2$ Chern-Simons theories (DM,Sparks WIP). Recent related paper [Aharony,Hashimoto,Hirano,Ouyang]

