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First topic

Non-relativistic backgrounds from massive Kaluza-Klein truncations
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Motivations

Apply AdS/CFT to (strongly coupled) condensed matter systems

E.g. “Fermions at unitarity”

Holography for spaces which are not (asymptotically) anti-de-Sitter

Non-relativistic limits of string theory
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A physical example: “fermions at unitarity”

The model (conformal ind = 2 + €)

1
S = / dtdx (ingat% — E(anpa)z + eyl iy dn)

Dimensional analysis: [t] = —2, [xi] = —1, [¢o] =d/2, [c] =2 —d

@ quartic interaction irrelevant for d — 2 > 0. RG equation in
d = 2 + € has two fixed points [Nishida,Son] (UV fixed points:
slightly unusual)

1) ¢ = 0: trivial

2) ¢ = 2me: “unitarity” regime, i.e. infinite scattering length

@ ind = 3 it is a strongly coupled conformal fixed point — perhaps the
AdS/CFT correspondence can be useful?
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Non-relativistic conformal symmetries

Galilean symmetries

o Generators: time translations H; spacial translations P;;
rotations J;j; Galilean boosts K;

@ Non-zero commutators of centrally extended (Bargmann) algebra

[H, K] = —iP; [Pi, Kj] = —iozM plus rotations
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Non-relativistic conformal symmetries

Galilean symmetries

o Generators: time translations H; spacial translations P;;
rotations J;j; Galilean boosts K;

@ Non-zero commutators of centrally extended (Bargmann) algebra

[H, K] = —iP; [Pi, Kj] = —iozM plus rotations

@ Extension by dilatations D

D:xi — Ax; t— Atz “dynamical critical exponent”

[D,P;] = —iP;  [D,H] = —izH
[D,Ki] =i(z — 1)K; [D,M] =i(z — 2)M
@ Removing the boosts K; (and M): (H, P;, J;j, D) called Lifshitz,
algebra [Kachru,Liu,Mulligan], [HoFava]
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Schrodinger symmetry

@ If z = 2 consistent to add conformal transformations
Xi

t —
1+ at 1+ at

o C:x; — time-dependent expansions

@ Additional non-zero commutators. E. g.
[D,C] = 2iC [D,H] = —2iH [H,C] =iD

In summary
Galilei (H, P;, Kj, Jjj) + central term M = Bargmann
Bargmann + (D, C) = Schrodinger

@ Symmetries of the Schrodinger equation

.0 0 0
2iIM—Y¥ 4+ — —
ot ox! Ox!

v =0

@ Other non-relativistic conformal groups exist. [Bagchi,Gopakumar],
[DM, Tachikawa]. See talk by Gopakumar
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Geometric realisation of the Schrodinger symmetries

o First evidence of AdS/CFT duality: matching of symmetries on two
sides

e SO(d + 1, 2) is the (relativistic) conformal group of ad + 1
dimensional CFT = isometry group of AdSq42

@ Are there geometries with Schrédinger symmetry?

e [Son|, [Balasubramanian,McGreevy|: Schrédinger group is embedded
into the relativistic conformal group in two dimensions higher

o SO(d 4 2,2) = {M*¥, P* KM, D}, introduce light-cone
coordinates xT = x? 4 x4+1, x,i=1,...,d
M=-P_ H=-P, Pi=P; J;j=

i Ki=M_;

PIER<!
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Geometric realisation of the Schrodinger symmetries

@ Embedding into isometries of AdS space hints to a geometric
realisation

@ Sch(d) C SO(d 4+ 2,2) — Sch(d) metric obtained as a
deformation of AdSq+3

The Schrodinger invariant metric

r
ds? = =) + r? [dxidxi — dx+dx_] —0'2r22(dx"')2
AdSa+s
@ non-relativistic time t = x*: H = —8/0x*
@ mass (central term): M= —-9/0x"

@ Schrodinger symmetry requires z = 2. Metrics with z # 2 are not
invariant under conformal transformations C
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Embedding the metric in string theory

@ To build up a holographic dictionary the next step is to see these
metrics emerging as solutions of string theory

@ The Schrddinger-invariant metric (z=2), with d = 2

d 2
ds? = — + 12 [dxidx; — dxtdx™| — o 2p4 (dx™)?

arises in string theory as a solution of type IIB supergravity

e It could be obtained using a solution generating technique (TsT).
[Maldacena,DM, Tachikawa], [Herzog,Rangamani,Ross]|,
[Adams,Balasubramanian,McGreevy|
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Solution to Einstein-Proca equations

e [Son|, [Balasubramanian,McGreevy| noticed that the metric

d 2
ds? = —o-zrzz(dx"')2 + —; + 2 (—dx+dx_ + dxidxi)
r

is as solution of EOMs following from the Einstein-Proca action:
gravity coupled to a massive photon

1 2
Sep = /dd"'zxdr\/—g <R — 24— JF P — n;A,LA“)

@ The ansatz for the gauge field is Ay o< r?. Specific relations among

1
the parameters: A = _E(d +1)(d+2), m?=2z(z+d)
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Kaluza-Klein consistent truncations

@ Is Sgp contained in some known gauged supergravity arising as
consistent truncations of ten or eleven dimensional supergravities?
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Kaluza-Klein consistent truncations

@ Is Sgp contained in some known gauged supergravity arising as
consistent truncations of ten or eleven dimensional supergravities?

s10d _, 10d EOMs — 5d EOMs —s S3d

sugra

@ The truncation is consistent if any solution to the 5d EOMs can be
uplifted to a solution of the 10d EOMs using the truncation ansatz

@ Example: 5d minimal gauged sugra is a consistent truncation of type
lIB supergravity [Buchel-Liu]. Take a Sasaki-Einstein metric
ds?(Bkg) + (dy + P)?

— metric ansatz: ds%0 = dsg + dsz(BKE) + (dy + P + A)2

Sminimal=/(R+A)*1—F/\*F_F/\F/\A

@ Special properties of SE structure allow natural ansatz — we can
generalize this to massive modes
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Massive truncation |

@ A deformation of Sasaki-Einstein [n = dv> + P] geometry including:
2 scalars, 1 massive gauge field

ds%o — e—%(4U+V)ds2(M5) + eZUdSZ(BKE) + e2V,’72
B=AAn, dilaton ¢
Fs = (1 + x)4e %Y~V vol(Ms)

@ This ansatz yields a 5d consistent truncation (u, v lin combinations of U, V)

1
S = 2 d5x\/—g [R + 247" _ ge 0% _ 810V _ 59 udu

15 1 1
— 50O — S 0a0°p — LTI FY — 4ot AN

o m3 =8 = z =2 (d = 2) Schrédinger metric is a solution
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Massive truncation |l

@ The second type |IB ansatz involves only metric and Fs5. (w = dn/2)

dsi, = e_%("u‘*v)dsz(Mg,) + e?Vds?(Bke) + €V (n + A)?
Fs = (1 +x10) 2w’ A(n+ A+ A) —wA (n+ A) AF]

o F=dA F=dA, F =F+ F. This ansatz yields a different 5d consistent
truncation (below set scalars to zero)

3
vec 2/d5 - - Z(]:+ F)ab(-r'l' F)ab

1
- aFabFab - sAaAa} + Scs

@ One massless gauge field A + %A and one massive gauge field A with
mi = 24 = metric with dynamical exponent z = 4 (d = 2)

@ It is a massive generalisation of minimal 5D gauged supergravity
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Massive truncation of 11d supergravity

o [Gauntlett,Kim,Varela,Waldram| constructed an analogous massive
truncation of eleven dimensional supergravity

ds}, = e 5Vds?(My) + e3'[ex—2'ds?(Bke) + €' (n + A)?]
G; = something
@ This ansatz yields a 4D consistent truncation

@ It is a massive generalisation of minimal 4D gauged supergravity
@ It admits a solution withz=3 andd =1

d 2
ds* (Ma) = —o2r0(dx*)? + S + 1 (—dx*Tdx™ + dx?)
r
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Second topic

AdS4/CFT3 and the CY4/CY3 connection
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M2-branes at Calabi-Yau four-fold singularities

@ Motivated by ABJM — study AdS;/CFT3 in N/ > 2 cases

@ Place N M2 branes at a Calabi-Yau four-fold conical singularity Xg

N M2 branes

@ Existence of a Ricci-flat cone-metric
ds?(Xg) = dr® + r2ds?(Y7)
implies Y7 is a Sasaki-Einstein seven-manifold
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Chern-Simons quivers

@ Understand more systematically /' = 2 Chern-Simons quivers

k1 k_2
k 4 \ k_3
node = U(N) CS term at level k; W= polynomial in X;

Chern-Simons quivers
e N = 2 CS with gauge group G = U(N7) X --- x U(N,)
e Coupled to bi-fundamental “chiral” fields X; (“matter”)
o Full Lagrangian £ = Lcs + L2 + W
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N = 2 Chern-Simons Lagrangian

@ The general N' = 2 Lagrangian is

S = Scs + Smatter + Spotential

Dk 2
Scs = Z y /TI‘ (Ai A dA; + §Ai A AN A — Xixi + 2Di0'i>
i=1

Smatter = [ xS 9,827" 60 — $:0°0s + 5.D¢,
a

Potentlal - /d3 Z ‘ad)
a

e N > 3 requires special (quartic) W. We keep it general

@ Same Lagrangian for A" = 1 quivers in 4D, with Syn — Scs
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Moduli spaces

o Consider Abelian theories: G = U(1)"

o After integrating out the auxiliary fields D;, the total (bosonic)
potential is V = Vp + V¢

Vo = Z |¢a|2(‘7h(a) - Ut(a))z
a
@ In the process we get effective D-terms:
2 2 kio .
_Z|¢a|+2|¢a|=_v'
. . 27
alh(a)=i alt(a)=i
@ The usual 4d D-terms are LHS =0
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Supersymmetric vacua

@ Vp, VF must vanish separately

oW
d¢a

o F-terms:

=0 — Z={dw=0}ccP
@ D-terms: o1=02=:--=0h=Ss

ki
Di=— 3 g2+ Y IdalP=20 Vi

alh(a)=i alt(a)=i 2%

n
Z kk=0 — n— 2 conditions
i=1
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Gauge symmetries

@ We should mod by gauge transformations. Naively mod by:
Uu(1)"~! = U(1)"/U(1). Problematic...

@ A particular U(1) gauge symmetry is broken to a discrete subgroup
Zn by background monopoles. Defining

n 1 n
a=i§Ai b=hi§kiAi h = hcf(k;)
the (Abelian) CS action is
h
SCS(A;) = /b A da + s’
27n

where under A; — A; + X\, S’ = 0. Then we can dualize b to a
periodic scalar T integrating out f

2
b= dr rel0,5] (%
h n
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@ Gauge transformations:

n h
A — A + d6; , > ki =0; rT—>T14+ -0
N n

iy
Thus 68 = e I=1,...,his a residual gauge symmetry.

@ May be summarized as “Kernel of the character”:
xw s U(1)" — U(1)

(e,...,e"%) > exp < Zk@)
@ The gauge symmetries are then the group

Hy = ker xi/U(1) = U(1)" 2 x 7,

o The U(l)"_2 part is the same group for which we imposed D-terms

Zvi’D; =0, v € ker(k)
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Periodicity of T

27
e Justification of 7 € [0, —]
n
Foda b=13 kA  Scs(A) h/b/\f+S’
=da = - iR )= 5
hi=l cs 27n

o b is dualized adding S

1 n
S.,—=——/d‘r/\f = b=-dr
27 h

@ Periodicity fixed by/ f#£0

o
> / F, € 2nZ
o2
> Z |¢a|2(Ah(a) — At(a))2 =0 = Fl = . = Fn
acA

fe2mnZ
(e}
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Connection to Calabi-Yau three-fold

@ The moduli space contains a 4c-dimensional branch
AM34(k) = Z//Hg
o If we quotiented by the U(1) symmetry broken by monopoles we
would obtain a 3¢-dimensional space
Mag = A3a(k)//U(1)

o If we start from a theory with a “parent” 4d N = 1 quiver, then Z is
the baryonic moduli space of the 4d quiver theory

3/4 connection
@ /a4 Calabi-Yau 3-fold = .#34(k) Calabi-Yau 4-fold

@ M-theory 4-fold is a fibration over the 3-fold: .#34(k) — C* — #aq4
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String theory origin of the Chern-Simons theories

[Aganagic]
@ From these geometric results one can infer a string theory origin of
the Chern-Simons theories

o Take N D2-branes at a Calabi-Yau three-fold X3 singularity X R

@ T-dual to D3 at X3: gauge theory on these is simply the dimensional
reduction of a 4d N = 1 quiver — 3d N = 2 Yang-Mills quiver

@ Add fractional branes = D4 branes wrapped on vanishing C; C X3,
and turn on RR fluxes

SNZ ~ AAdA/\FzRR=/ FR - Scs
Rl’z)(ci C;

— Chern-Simons terms are induced in the world-volume theories

Dario Martelli (Swansea) June 2009 27 / 30



String theory origin of the Chern-Simons theories

o Uplift to M-theory: at strong coupling Lypm — 0 = CSM theory

e To compute the CS levels consider the M-theory U(1) fibration

Xz — U(1) — [X3 X R]

= |[Frr] = Zqi[wi]

e Every node corresponds to a particular fractional brane ~ [Cj]

ki=/ FRR=ZQJ'/¢UJ
Ci j Ci
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Example: string theory origin of ABJM
e For illustration consider the ABJM model G = U(1)x x U(1)_k
@ The F-terms are trivial: Z = C*

@ The only possible non-trivial U(1) = U(1)yel is broken to the
sub-group Hk = Z. Thus .#34(k) = C*/7Z

@ The would-be quotient by U(1)el is the Kahler quotient of C* by
|a1]? + |az|* — [b1]? — b2 =t
@ The Chern-Simons level for the two nodes are computed using

[FRR] = k[w]resolved conifold

ki = —ky = k/ Wresolved conifold = —k
cp!
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Summary

O In the first part
» Non-relativistic conformal (Schrédinger) symmetry
» New consistent truncation of type 1IB on Sasaki-Einstein manifolds

» Expect these massive consistent truncations to have several other
applications. E.g. after appropriately supersymmetrized — find several
new susy solutions of type IIB sugra

@ In the second part
» A closer look at A/ = 2 Chern-Simons-matter quivers
» Geometry of moduli spaces — string theory origin of these theories

» Useful conceptually and practically. Gives a method to derive a
Chern-Simons quiver from a given AdSs X Y7 M-theory solution

v

Application to study cascading Chern-Simons theories (WIP)
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