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First topic

Non-relativistic backgrounds from massive Kaluza-Klein truncations
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Motivations

Apply AdS/CFT to (strongly coupled) condensed matter systems

E.g. “Fermions at unitarity”

Holography for spaces which are not (asymptotically) anti-de-Sitter

Non-relativistic limits of string theory
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A physical example: “fermions at unitarity”

The model (conformal in d = 2 + ε)

S =

∫
dtddx

(
iψ†

α∂tψα −
1

2m
(∂iψα)2 + cψ†

↑ ψ
†
↓ψ↑ ψ↓

)
Dimensional analysis: [t] = −2, [xi] = −1, [ψα] = d/2, [c] = 2 − d

quartic interaction irrelevant for d − 2 > 0. RG equation in
d = 2 + ε has two fixed points [Nishida,Son] (UV fixed points:
slightly unusual)

1) c = 0: trivial

2) c = 2πε: “unitarity” regime, i.e. infinite scattering length

in d = 3 it is a strongly coupled conformal fixed point → perhaps the
AdS/CFT correspondence can be useful?
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Non-relativistic conformal symmetries

Galilean symmetries

Generators: time translations H; spacial translations Pi;
rotations Jij; Galilean boosts Ki

Non-zero commutators of centrally extended (Bargmann) algebra

[H,Ki] = −iPi [Pi,Kj] = −iδijM plus rotations

Extension by dilatations D

D : xi → λxi t → λzt z “dynamical critical exponent”

[D,Pi] = −iPi [D,H] = −izH

[D,Ki] = i(z − 1)Ki [D,M] = i(z − 2)M

Removing the boosts Ki (and M): (H,Pi, Jij,D) called Lifshitzz

algebra [Kachru,Liu,Mulligan], [Hǒrava]
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Schrödinger symmetry

If z = 2 consistent to add conformal transformations

C : xi →
xi

1 + at
t →

t

1 + at
time-dependent expansions

Additional non-zero commutators. E. g.

[D,C] = 2iC [D,H] = −2iH [H,C] = iD

In summary

Galilei (H,Pi,Ki, Jij) + central term M = Bargmann

Bargmann + (D,C) = Schrödinger

Symmetries of the Schrödinger equation

2iM
∂

∂t
Ψ +

∂

∂xi

∂

∂xi
Ψ = 0

Other non-relativistic conformal groups exist. [Bagchi,Gopakumar],
[DM,Tachikawa]. See talk by Gopakumar
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Geometric realisation of the Schrödinger symmetries

First evidence of AdS/CFT duality: matching of symmetries on two
sides

SO(d + 1, 2) is the (relativistic) conformal group of a d + 1
dimensional CFT = isometry group of AdSd+2

Are there geometries with Schrödinger symmetry?

[Son], [Balasubramanian,McGreevy]: Schrödinger group is embedded
into the relativistic conformal group in two dimensions higher

SO(d + 2, 2) = {M̃µν , P̃µ, K̃µ, D̃}, introduce light-cone
coordinates x± = x0 ± xd+1, xi, i = 1, . . . , d

M = −P̃− H = −P̃+ Pi = P̃i Jij = M̃ij Ki = M̃−i

D = D̃ + 2M̃−+ C = −K̃−
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Geometric realisation of the Schrödinger symmetries

Embedding into isometries of AdS space hints to a geometric
realisation

Sch(d) ⊂ SO(d + 2, 2) → Sch(d) metric obtained as a
deformation of AdSd+3

The Schrödinger invariant metric

ds2 =
dr2

r2
+ r2

[
dxidxi − dx+dx−]︸ ︷︷ ︸
AdSd+3

−σ2r2z(dx+)2

non-relativistic time t = x+: H = −∂/∂x+

mass (central term): M = −∂/∂x−

Schrödinger symmetry requires z = 2. Metrics with z 6= 2 are not
invariant under conformal transformations C
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Embedding the metric in string theory

To build up a holographic dictionary the next step is to see these
metrics emerging as solutions of string theory

The Schrödinger-invariant metric (z=2), with d = 2

ds2 =
dr2

r2
+ r2

[
dxidxi − dx+dx−]− σ2r4(dx+)2

arises in string theory as a solution of type IIB supergravity

It could be obtained using a solution generating technique (TsT).
[Maldacena,DM,Tachikawa], [Herzog,Rangamani,Ross],
[Adams,Balasubramanian,McGreevy]
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Solution to Einstein-Proca equations

[Son], [Balasubramanian,McGreevy] noticed that the metric

ds2 = −σ2r2z(dx+)2 +
dr2

r2
+ r2

(
−dx+dx− + dxidxi

)
is as solution of EOMs following from the Einstein-Proca action:
gravity coupled to a massive photon

SEP =

∫
dd+2xdr

√
−g

(
R − 2Λ−

1

4
FµνFµν −

m2

2
AµAµ

)

The ansatz for the gauge field is A+ ∝ rz. Specific relations among

the parameters: Λ = −
1

2
(d + 1)(d + 2) , m2 = z(z + d)
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Kaluza-Klein consistent truncations

Is SEP contained in some known gauged supergravity arising as
consistent truncations of ten or eleven dimensional supergravities?

S10d → 10d EOMs → 5d EOMs → S5d
sugra

The truncation is consistent if any solution to the 5d EOMs can be
uplifted to a solution of the 10d EOMs using the truncation ansatz

Example: 5d minimal gauged sugra is a consistent truncation of type
IIB supergravity [Buchel-Liu]. Take a Sasaki-Einstein metric
ds2(BKE) + (dψ + P)2

→ metric ansatz: ds210 = ds25 + ds2(BKE) + (dψ + P + A)2

Sminimal =

∫
(R + Λ) ∗ 1 − F ∧ ∗F − F ∧ F ∧ A

Special properties of SE structure allow natural ansatz → we can
generalize this to massive modes
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Massive truncation I

A deformation of Sasaki-Einstein [η = dψ + P] geometry including:
2 scalars, 1 massive gauge field

ds2
10 = e− 2

3 (4U+V)ds2(M5) + e2Uds2(BKE) + e2Vη2

B = A ∧ η , dilaton φ

F5 = (1 + ?)4e−4U−V vol(M5)

This ansatz yields a 5d consistent truncation (u, v lin combinations of U,V)

S =
1

2

∫
d5x
√

−g
[
R + 24e−u−4v − 4e−6u−4v − 8e−10v − 5∂au∂

au

−
15

2
∂av∂

av −
1

2
∂aφ∂

aφ−
1

4
e−φ+4u+vFabF

ab − 4e−φ−2u−3vAaA
a
]

m2
A = 8 ⇒ z = 2 (d = 2) Schrödinger metric is a solution
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Massive truncation II

The second type IIB ansatz involves only metric and F5. (ω = dη/2)

ds2
10 = e− 2

3 (4U+V)ds2(M5) + e2Uds2(BKE) + e2V(η + A)2

F5 = (1 + ?10)
[
2ω2 ∧ (η + A + A) − ω ∧ (η + A) ∧ F

]
F = dA, F = dA, F = F + F . This ansatz yields a different 5d consistent
truncation (below set scalars to zero)

Svec =
1

2

∫
d5x
√

−g
[

−
3

4
(F +

2

3
F)ab(F +

2

3
F)ab

−
1

6
FabF

ab − 8AaA
a
]
+ SCS

One massless gauge field A + 2
3A and one massive gauge field A with

m2
A = 24 ⇒ metric with dynamical exponent z = 4 (d = 2)

It is a massive generalisation of minimal 5D gauged supergravity
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Massive truncation of 11d supergravity

[Gauntlett,Kim,Varela,Waldram] constructed an analogous massive
truncation of eleven dimensional supergravity

ds2
11 = e− 7

3 vds2(M4) + e
2
3 v[ex−2uds2(BKE) + e12u(η + A)2]

G4 = something

This ansatz yields a 4D consistent truncation

It is a massive generalisation of minimal 4D gauged supergravity

It admits a solution with z = 3 and d = 1

ds2(M4) = −σ2r6(dx+)2 +
dr2

r2
+ r2

(
−dx+dx− + dx2

)
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Second topic

AdS4/CFT3 and the CY4/CY3 connection
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M2-branes at Calabi-Yau four-fold singularities

Motivated by ABJM → study AdS4/CFT3 in N ≥ 2 cases

Place N M2 branes at a Calabi-Yau four-fold conical singularity X8

N M2 branes

Existence of a Ricci-flat cone-metric

ds2(X8) = dr2 + r2ds2(Y7)

implies Y7 is a Sasaki-Einstein seven-manifold
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Chern-Simons quivers

Understand more systematically N = 2 Chern-Simons quivers

k_1 k_2

k_1 k_2

k_3k_4

node = U(N) CS term at level ki W= polynomial in Xi

Chern-Simons quivers

N = 2 CS with gauge group G = U(N1) × · · · × U(Nn)

Coupled to bi-fundamental “chiral” fields Xi (“matter”)

Full Lagrangian L = LCS + Lmatter
kin + W
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N = 2 Chern-Simons Lagrangian

The general N = 2 Lagrangian is

S = SCS + Smatter + Spotential

SCS =
n∑

i=1

ki

4π

∫
Tr
(

Ai ∧ dAi +
2

3
Ai ∧ Ai ∧ Ai − χ̄iχi + 2Diσi

)

Smatter =

∫
d3x

∑
a

Dµφ̄aD
µφa − φ̄aσ

2φa + φ̄aDφa

Spotential = −
∫

d3x
∑

a

∣∣∣∣∂W

∂φa

∣∣∣∣2

N ≥ 3 requires special (quartic) W. We keep it general

Same Lagrangian for N = 1 quivers in 4D, with SYM → SCS
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Moduli spaces

Consider Abelian theories: G = U(1)n

After integrating out the auxiliary fields Di, the total (bosonic)
potential is V = VD + VF

VF =
∑
a

∣∣∣∣∂W

∂φa

∣∣∣∣2
VD =

∑
a

|φa|2(σh(a) − σt(a))
2

In the process we get effective D-terms:

−
∑

a|h(a)=i

|φa|2 +
∑

a|t(a)=i

|φa|2 =
kiσi

2π
∀ i

The usual 4d D-terms are LHS = 0
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Supersymmetric vacua

VD,VF must vanish separately

F-terms:
∂W

∂φa
= 0 → Z = {dW = 0} ⊂ CD

D-terms: σ1 = σ2 = · · · = σn ≡ s

Di = −
∑

a|h(a)=i

|φa|2 +
∑

a|t(a)=i

|φa|2 =
ski

2π
∀ i

n∑
i=1

ki = 0 → n − 2 conditions
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Gauge symmetries

We should mod by gauge transformations. Naively mod by:
U(1)n−1 ∼= U(1)n/U(1). Problematic...

A particular U(1) gauge symmetry is broken to a discrete subgroup
Zh by background monopoles. Defining

a =
n∑

i=1

Ai b =
1

h

n∑
i=1

kiAi h = hcf(ki)

the (Abelian) CS action is

SCS(Ai) =
h

2πn

∫
b ∧ da + S′

where under Ai → Ai + λ, δS′ = 0. Then we can dualize b to a
periodic scalar τ integrating out f

b =
n

h
dτ τ ∈ [0,

2π

n
] (∗)
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Gauge transformations:

Ai → Ai + dθi ,

n∑
i=1

kiθi = 0 ; τ → τ +
h

n
θ

Thus θ =
2πl

h
l = 1, . . . , h is a residual gauge symmetry.

May be summarized as “Kernel of the character”:

χk : U(1)n → U(1)(
eiθ1 , . . . , eiθn

)
7→ exp

(
i

n∑
i=1

kiθi

)
The gauge symmetries are then the group

Hk = kerχk/U(1) ∼= U(1)n−2 × Zh

The U(1)n−2 part is the same group for which we imposed D-terms
n∑

i=1

viDi = 0, v ∈ ker(k)
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Periodicity of τ

Justification of τ ∈ [0,
2π

n
]

f = da b =
1

h

n∑
i=1

kiAi SCS(Ai) =
h

2πn

∫
b ∧ f + S′

b is dualized adding Sτ

Sτ = −
1

2π

∫
dτ ∧ f ⇒ b =

n

h
dτ

Periodicity fixed by

∫
σ2

f 6= 0

I

∫
σ2

Fi ∈ 2πZ

I
∑
a∈A

|φa|2(Ah(a) − At(a))
2 = 0 ⇒ F1 = · · · = Fn∫

σ2

f ∈ 2πn Z
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Connection to Calabi-Yau three-fold

The moduli space contains a 4C-dimensional branch

M3d(k) = Z//Hk

If we quotiented by the U(1) symmetry broken by monopoles we
would obtain a 3C-dimensional space

M4d ≡ M3d(k)//U(1)

If we start from a theory with a “parent” 4d N = 1 quiver, then Z is
the baryonic moduli space of the 4d quiver theory

3/4 connection

M4d Calabi-Yau 3-fold ⇒ M3d(k) Calabi-Yau 4-fold

M-theory 4-fold is a fibration over the 3-fold: M3d(k) → C∗ → M4d
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String theory origin of the Chern-Simons theories

[Aganagic]

From these geometric results one can infer a string theory origin of
the Chern-Simons theories

Take N D2-branes at a Calabi-Yau three-fold X3 singularity×R

T-dual to D3 at X3: gauge theory on these is simply the dimensional
reduction of a 4d N = 1 quiver → 3d N = 2 Yang-Mills quiver

Add fractional branes = D4 branes wrapped on vanishing Ci ⊂ X3,
and turn on RR fluxes

SWZ
D4 ∼

∫
R1,2×Ci

A ∧ dA ∧ FRR
2 =

∫
Ci

FRR
2 · SCS

→ Chern-Simons terms are induced in the world-volume theories
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String theory origin of the Chern-Simons theories

Uplift to M-theory: at strong coupling LYM → 0 ⇒ CSM theory

To compute the CS levels consider the M-theory U(1) fibration

X4 → U(1) → [X3 × R]

⇒ [FRR] =
∑

i

qi[ωi]

Every node corresponds to a particular fractional brane ∼ [Ci]

ki =

∫
Ci

FRR =
∑

j

qj ·
∫

Ci

ωj
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Example: string theory origin of ABJM

For illustration consider the ABJM model G = U(1)k × U(1)−k

The F-terms are trivial: Z = C4

The only possible non-trivial U(1) = U(1)rel is broken to the
sub-group HK = Zk. Thus M3d(k) = C4/Zk

The would-be quotient by U(1)rel is the Kähler quotient of C4 by

|a1|2 + |a2|2 − |b1|2 − |b2|2 = t

The Chern-Simons level for the two nodes are computed using

[FRR] = k[ω]resolved conifold

k1 = −k2 = k

∫
CP1

ωresolved conifold = −k
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Summary

1 In the first part

I Non-relativistic conformal (Schrödinger) symmetry

I New consistent truncation of type IIB on Sasaki-Einstein manifolds

I Expect these massive consistent truncations to have several other
applications. E.g. after appropriately supersymmetrized → find several
new susy solutions of type IIB sugra

2 In the second part

I A closer look at N = 2 Chern-Simons-matter quivers

I Geometry of moduli spaces → string theory origin of these theories

I Useful conceptually and practically. Gives a method to derive a
Chern-Simons quiver from a given AdS4 × Y7 M-theory solution

I Application to study cascading Chern-Simons theories (WIP)
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