The AdS/CFT Correspondence and Sasaki-Einstein Geometry II

Dario Martelli (Swansea)

Based on work with:
Gauntlett, Maldacena, Sparks, Tachikawa, Waldram, Yau

Instituto Superior Técnico, Lisbon, Portugal, June 29 - July 1, 2009

Topics

(1) Non-relativistic backgrounds from massive Kaluza-Klein truncations
(2) $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ and the $\mathrm{CY}_{4} / \mathrm{CY}_{3}$ connection

Outline

(1) Non-relativistic backgrounds from massive Kaluza-Klein truncations

- Motivations
- Non-relativistic conformal symmetries and geometric realization
- Massive Kaluza-Klein consistent truncations of type IIB supergravity

Outline

(1) Non-relativistic backgrounds from massive Kaluza-Klein truncations

- Motivations
- Non-relativistic conformal symmetries and geometric realization
- Massive Kaluza-Klein consistent truncations of type IIB supergravity
(2) $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ and the $\mathrm{CY}_{4} / \mathrm{CY}_{3}$ connection
- $\boldsymbol{\mathcal { N }}=\mathbf{2}$ Chern-Simons-matter quiver gauge theories
- Moduli spaces
- Calabi-Yau four-folds from three-folds and string theory origin of CS theories

First topic

Non-relativistic backgrounds from massive Kaluza-Klein truncations

Motivations

- Apply AdS/CFT to (strongly coupled) condensed matter systems
- E.g. "Fermions at unitarity"
- Holography for spaces which are not (asymptotically) anti-de-Sitter
- Non-relativistic limits of string theory

A physical example: "fermions at unitarity"

The model (conformal in $\mathbf{d}=2+\epsilon$)

$$
\mathrm{S}=\int \mathrm{dtd}^{\mathrm{d}} \mathrm{x}\left(\mathrm{i} \psi_{\alpha}^{\dagger} \partial_{\mathrm{t}} \psi_{\alpha}-\frac{1}{2 \mathrm{~m}}\left(\partial_{\mathrm{i}} \psi_{\alpha}\right)^{2}+\mathrm{c} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\uparrow} \psi_{\downarrow}\right)
$$

Dimensional analysis: $[\mathrm{t}]=-2,\left[\mathrm{x}_{\mathrm{i}}\right]=-1,\left[\psi_{\alpha}\right]=\mathrm{d} / 2,[\mathrm{c}]=2-\mathrm{d}$

- quartic interaction irrelevant for $\mathbf{d}-\mathbf{2}>\mathbf{0}$. RG equation in $\mathbf{d}=2+\epsilon$ has two fixed points [Nishida,Son] (UV fixed points: slightly unusual)

1) $\mathbf{c}=\mathbf{0}$: trivial
2) $\mathbf{c}=2 \pi \epsilon$: "unitarity" regime, i.e. infinite scattering length

- in $\mathbf{d}=\mathbf{3}$ it is a strongly coupled conformal fixed point \rightarrow perhaps the AdS/CFT correspondence can be useful?

Non-relativistic conformal symmetries

Galilean symmetries

- Generators: time translations H ; spacial translations P_{i}; rotations J_{ij}; Galilean boosts K_{i}
- Non-zero commutators of centrally extended (Bargmann) algebra

$$
\left[H, K_{i}\right]=-i P_{i} \quad\left[P_{i}, K_{j}\right]=-i \delta_{i j} M \quad \text { plus rotations }
$$

Non-relativistic conformal symmetries

Galilean symmetries

- Generators: time translations \mathbf{H}; spacial translations $\mathbf{P}_{\mathbf{i}}$; rotations J_{ij}; Galilean boosts K_{i}
- Non-zero commutators of centrally extended (Bargmann) algebra

$$
\left[H, K_{i}\right]=-i P_{i} \quad\left[P_{i}, K_{j}\right]=-i \delta_{i j} M \quad \text { plus rotations }
$$

- Extension by dilatations D
$\mathbf{D}: \mathbf{x}_{\mathbf{i}} \rightarrow \boldsymbol{\lambda} \mathbf{x}_{\mathbf{i}} \quad \mathbf{t} \rightarrow \boldsymbol{\lambda}^{\mathbf{z}} \mathbf{t} \quad \mathrm{z}$ "dynamical critical exponent"

$$
\begin{aligned}
{\left[D, P_{i}\right]=-i P_{i} } & {[D, H]=-i z H } \\
{\left[D, K_{i}\right]=i(z-1) K_{i} } & {[D, M]=i(z-2) M }
\end{aligned}
$$

- Removing the boosts $\mathbf{K}_{\mathbf{i}}$ (and \mathbf{M}): ($\mathbf{H}, \mathbf{P}_{\mathbf{i}}, \mathbf{J}_{\mathbf{i j}}, \mathbf{D}$) called Lifshitz z_{z} algebra [Kachru,Liu,Mulligan], [Hořava]

Schrödinger symmetry

- If $\mathbf{z}=\mathbf{2}$ consistent to add conformal transformations
- $\mathbf{C}: \mathbf{x}_{\mathbf{i}} \rightarrow \frac{\mathbf{x}_{\mathbf{i}}}{\mathbf{1 + \mathbf { a t }}} \quad \mathbf{t} \rightarrow \frac{\mathbf{t}}{\mathbf{1 + \mathbf { a t }}}$ time-dependent expansions
- Additional non-zero commutators. E. g.

$$
[D, C]=2 \mathrm{iC} \quad[D, H]=-2 \mathrm{iH} \quad[H, C]=\mathrm{iD}
$$

In summary
Galilei $\left(\mathbf{H}, \mathbf{P}_{\mathbf{i}}, \mathbf{K}_{\mathbf{i}}, \mathbf{J}_{\mathbf{i j}}\right)+$ central term $\mathbf{M}=$ Bargmann
Bargmann $+(\mathbf{D}, \mathbf{C})=$ Schrödinger

- Symmetries of the Schrödinger equation

$$
2 \mathrm{iM} \frac{\partial}{\partial \mathrm{t}} \Psi+\frac{\partial}{\partial \mathrm{x}^{\mathrm{i}}} \frac{\partial}{\partial \mathrm{x}^{\mathbf{i}}} \Psi=0
$$

- Other non-relativistic conformal groups exist. [Bagchi,Gopakumar], [DM,Tachikawa]. See talk by Gopakumar

Geometric realisation of the Schrödinger symmetries

- First evidence of AdS/CFT duality: matching of symmetries on two sides
- $\mathbf{S O}(\mathbf{d}+\mathbf{1}, \mathbf{2})$ is the (relativistic) conformal group of a $\mathbf{d}+\mathbf{1}$ dimensional CFT $=$ isometry group of $\mathrm{AdS}_{\mathbf{d}+2}$
- Are there geometries with Schrödinger symmetry?
- [Son], [Balasubramanian,McGreevy]: Schrödinger group is embedded into the relativistic conformal group in two dimensions higher
- $\mathbf{S O}(\mathbf{d}+2,2)=\left\{\tilde{\mathrm{M}}^{\mu \nu}, \tilde{\mathbf{P}}^{\mu}, \tilde{\mathrm{K}}^{\mu}, \tilde{\mathbf{D}}\right\}$, introduce light-cone coordinates $\mathrm{x}^{ \pm}=\mathrm{x}^{\mathbf{0}} \pm \mathrm{x}^{\mathrm{d}+1}, \mathrm{x}_{\mathrm{i}}, \mathbf{i}=1, \ldots, \mathrm{~d}$

$$
\begin{aligned}
& M=-\tilde{\mathbf{P}}_{-} H=-\tilde{\mathbf{P}}_{+} \quad P_{i}=\tilde{P}_{i} \quad J_{\mathrm{ij}}=\tilde{M}_{\mathrm{ij}} \quad \mathrm{~K}_{\mathrm{i}}=\tilde{\mathrm{M}}_{-\mathrm{i}} \\
& \mathrm{D}=\tilde{\mathrm{D}}+2 \tilde{\mathrm{M}}_{-+} \quad \mathrm{C}=-\tilde{K}_{-}
\end{aligned}
$$

Geometric realisation of the Schrödinger symmetries

- Embedding into isometries of AdS space hints to a geometric realisation
- Sch(d) $\subset \mathbf{S O}(\mathbf{d}+\mathbf{2 , 2)} \rightarrow \operatorname{Sch}(\mathbf{d})$ metric obtained as a deformation of AdS $_{\mathrm{d}+3}$

The Schrödinger invariant metric

$$
d s^{2}=\underbrace{\frac{d r^{2}}{r^{2}}+r^{2}\left[d x_{i} d x_{i}-d x^{+} d x^{-}\right]}_{A d S_{d+3}}-\sigma^{2} r^{2 z}\left(d x^{+}\right)^{2}
$$

- non-relativistic time $\mathbf{t}=\mathbf{x}^{+}: \mathbf{H}=-\boldsymbol{\partial} / \boldsymbol{\partial} \mathbf{x}^{+}$
- mass (central term):
$M=-\partial / \partial x^{-}$
- Schrödinger symmetry requires $z=2$. Metrics with $z \neq 2$ are not invariant under conformal transformations \mathbf{C}

Embedding the metric in string theory

- To build up a holographic dictionary the next step is to see these metrics emerging as solutions of string theory
- The Schrödinger-invariant metric $(z=2)$, with $\mathbf{d}=2$

$$
d s^{2}=\frac{d r^{2}}{\mathbf{r}^{2}}+\mathrm{r}^{2}\left[\mathrm{dx}_{i} d x_{i}-d x^{+} d x^{-}\right]-\sigma^{2} r^{4}\left(d x^{+}\right)^{2}
$$

arises in string theory as a solution of type IIB supergravity

- It could be obtained using a solution generating technique (TsT). [Maldacena,DM,Tachikawa], [Herzog,Rangamani,Ross], [Adams,Balasubramanian,McGreevy]

Solution to Einstein-Proca equations

- [Son], [Balasubramanian,McGreevy] noticed that the metric

$$
\mathrm{ds}^{2}=-\sigma^{2} \mathrm{r}^{2 \mathrm{z}}\left(\mathrm{dx} \mathrm{x}^{+}\right)^{2}+\frac{\mathrm{dr}^{2}}{\mathrm{r}^{2}}+\mathrm{r}^{2}\left(-\mathrm{dx} \mathrm{x}^{+} \mathrm{dx}+\mathrm{dx} \mathrm{~d}_{\mathrm{i}}\right)
$$

is as solution of EOMs following from the Einstein-Proca action: gravity coupled to a massive photon

$$
S_{E P}=\int d^{d+2} x d r \sqrt{-g}\left(R-2 \Lambda-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{\mathbf{m}^{2}}{2} A_{\mu} A^{\mu}\right)
$$

- The ansatz for the gauge field is $\mathbf{A}_{+} \propto \mathbf{r}^{\mathbf{z}}$. Specific relations among the parameters: $\Lambda=-\frac{1}{2}(\mathbf{d}+\mathbf{1})(\mathbf{d}+2), \quad \mathbf{m}^{2}=\mathbf{z}(\mathbf{z}+\mathbf{d})$

Kaluza-Klein consistent truncations

- Is $S_{E P}$ contained in some known gauged supergravity arising as consistent truncations of ten or eleven dimensional supergravities?

Kaluza-Klein consistent truncations

- Is $\mathbf{S}_{\text {EP }}$ contained in some known gauged supergravity arising as consistent truncations of ten or eleven dimensional supergravities?

$$
\mathbf{S}^{10 d} \rightarrow \mathbf{1 0 d} \mathrm{EOMs} \rightarrow \mathbf{5 d} \mathrm{EOMs} \rightarrow \mathbf{S}_{\mathrm{sugra}}^{5 \mathrm{~d}}
$$

- The truncation is consistent if any solution to the 5d EOMs can be uplifted to a solution of the 10d EOMs using the truncation ansatz
- Example: 5d minimal gauged sugra is a consistent truncation of type IIB supergravity [Buchel-Liu]. Take a Sasaki-Einstein metric $\mathrm{ds}^{2}\left(\mathrm{~B}_{\mathrm{KE}}\right)+(\mathrm{d} \psi+\mathbf{P})^{2}$
\rightarrow metric ansatz: $\mathrm{ds}_{10}^{2}=\mathrm{ds}_{5}^{2}+\mathrm{ds}^{2}\left(\mathrm{~B}_{\mathrm{KE}}\right)+(\mathrm{d} \psi+\mathbf{P}+\mathbf{A})^{2}$

$$
\mathrm{S}_{\text {minimal }}=\int(\mathrm{R}+\Lambda) * \mathbf{1}-\mathrm{F} \wedge * \mathrm{~F}-\mathrm{F} \wedge \mathrm{~F} \wedge \mathrm{~A}
$$

- Special properties of SE structure allow natural ansatz \rightarrow we can generalize this to massive modes

Massive truncation I

- A deformation of Sasaki-Einstein $[\eta=\mathbf{d} \psi+\mathbf{P}]$ geometry including: 2 scalars, 1 massive gauge field

$$
\begin{aligned}
\mathrm{ds}_{10}^{2} & =\mathrm{e}^{-\frac{2}{3}(4 \mathrm{U}+\mathrm{V})} \mathrm{ds}^{2}\left(\mathrm{M}_{5}\right)+\mathrm{e}^{2 \mathrm{U}} \mathrm{ds}^{2}\left(\mathrm{~B}_{\mathrm{KE}}\right)+\mathrm{e}^{2 \mathrm{v}} \eta^{2} \\
\mathrm{~B} & =\mathrm{A} \wedge \eta, \quad \text { dilaton } \phi \\
\mathrm{F}_{5} & =(1+\star) 4 \mathrm{e}^{-4 \mathrm{U}-\mathrm{v}} \operatorname{vol}\left(\mathrm{M}_{5}\right)
\end{aligned}
$$

- This ansatz yields a 5d consistent truncation (\mathbf{u}, \mathbf{v} lin combinations of \mathbf{U}, \mathbf{V})

$$
\begin{aligned}
& \mathrm{S}=\frac{1}{2} \int \mathrm{~d}^{5} \mathrm{x} \sqrt{-\mathrm{g}}\left[\mathrm{R}+24 \mathrm{e}^{-\mathrm{u}-4 \mathrm{v}}-4 \mathrm{e}^{-6 u-4 v}-8 \mathrm{e}^{-10 \mathrm{v}}-5 \partial_{\mathrm{a}} \mathrm{u} \partial^{\mathrm{a}} \mathbf{u}\right. \\
& \left.-\frac{15}{2} \partial_{\mathrm{a}} v \partial^{\mathrm{a} v}-\frac{1}{2} \partial_{\mathrm{a}} \phi \partial^{\mathrm{a}} \phi-\frac{1}{4} \mathrm{e}^{-\phi+4 u+v} F_{a b} F^{a b}-4 e^{-\phi-2 u-3 v} A_{a} A^{a}\right]
\end{aligned}
$$

- $m_{A}^{2}=\mathbf{8} \Rightarrow z=\mathbf{2}(\mathbf{d}=2)$ Schrödinger metric is a solution

Massive truncation II

- The second type IIB ansatz involves only metric and $\mathbf{F}_{5} .(\omega=\mathrm{d} \boldsymbol{\eta} / \mathbf{2})$

$$
\begin{aligned}
\mathrm{ds}_{10}^{2} & =\mathrm{e}^{-\frac{2}{3}(4 \mathrm{U}+\mathrm{V})} \mathrm{ds}^{2}\left(\mathrm{M}_{5}\right)+\mathrm{e}^{2 \mathrm{U}} \mathrm{ds}^{2}\left(\mathrm{~B}_{\mathrm{KE}}\right)+\mathrm{e}^{2 \mathrm{~V}}(\eta+\mathcal{A})^{2} \\
\mathrm{~F}_{5} & =\left(1+\star_{10}\right)\left[2 \omega^{2} \wedge(\eta+\mathcal{A}+\mathrm{A})-\omega \wedge(\eta+\mathcal{A}) \wedge \mathbb{F}\right]
\end{aligned}
$$

- $\mathcal{F}=\mathrm{d} \mathcal{A}, \mathrm{F}=\mathrm{dA}, \mathbb{F}=\mathrm{F}+\mathcal{F}$. This ansatz yields a different 5 d consistent truncation (below set scalars to zero)

$$
\begin{aligned}
\mathrm{S}_{\mathrm{vec}}=\frac{1}{2} \int \mathrm{~d}^{5} \times \sqrt{-\mathrm{g}}[& -\frac{3}{4}\left(\mathcal{F}+\frac{2}{3} F\right)_{\mathrm{ab}}\left(\mathcal{F}+\frac{2}{3} F\right)^{\mathrm{ab}} \\
& \left.-\frac{1}{6} \mathrm{~F}_{\mathrm{ab}} \mathrm{~F}^{\mathrm{ab}}-8 \mathrm{~A}_{\mathrm{a}} A^{\mathrm{a}}\right]+\mathrm{S}_{\mathrm{cS}}
\end{aligned}
$$

- One massless gauge field $\mathcal{A}+\frac{2}{3} \mathbf{A}$ and one massive gauge field \mathbf{A} with $\mathbf{m}_{A}^{2}=\mathbf{2 4} \Rightarrow$ metric with dynamical exponent $z=4(\mathbf{d}=2)$
- It is a massive generalisation of minimal 5D gauged supergravity

Massive truncation of 11d supergravity

- [Gauntlett, Kim,Varela,Waldram] constructed an analogous massive truncation of eleven dimensional supergravity

$$
\mathrm{ds}_{11}^{2}=\mathrm{e}^{-\frac{7}{3} v} \mathrm{ds}^{2}\left(\mathrm{M}_{4}\right)+\mathrm{e}^{\frac{2}{3} v}\left[\mathrm{ex}^{-2 \mathrm{u}} \mathrm{ds}^{2}\left(\mathrm{~B}_{\mathrm{KE}}\right)+\mathrm{e}^{12 \mathrm{u}}(\eta+\mathcal{A})^{2}\right]
$$

$$
\mathbf{G}_{4}=\text { something }
$$

- This ansatz yields a 4D consistent truncation
- It is a massive generalisation of minimal 4D gauged supergravity
- It admits a solution with $\mathbf{z}=\mathbf{3}$ and $\mathbf{d}=\mathbf{1}$

$$
d s^{2}\left(M_{4}\right)=-\sigma^{2} r^{6}\left(d x^{+}\right)^{2}+\frac{d r^{2}}{r^{2}}+r^{2}\left(-d x^{+} d x^{-}+d x^{2}\right)
$$

Second topic

$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ and the $\mathrm{CY}_{4} / \mathrm{CY}_{3}$ connection

M2-branes at Calabi-Yau four-fold singularities

- Motivated by $\mathrm{ABJM} \rightarrow$ study $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ in $\boldsymbol{\mathcal { N }} \geq \mathbf{2}$ cases
- Place \mathbf{N} M2 branes at a Calabi-Yau four-fold conical singularity $\mathbf{X}_{\mathbf{8}}$

N M2 branes

- Existence of a Ricci-flat cone-metric

$$
d s^{2}\left(X_{8}\right)=d r^{2}+r^{2} d s^{2}\left(Y_{7}\right)
$$

implies $\mathbf{Y}_{\mathbf{7}}$ is a Sasaki-Einstein seven-manifold

Chern-Simons quivers

- Understand more systematically $\boldsymbol{\mathcal { N }}=\mathbf{2}$ Chern-Simons quivers

node $=\mathbf{U}(\mathbf{N})$ CS term at level $\mathbf{k}_{\mathbf{i}}$
$\mathbf{W}=$ polynomial in $\mathbf{X}_{\mathbf{i}}$

Chern-Simons quivers

- $\mathcal{N}=\mathbf{2}$ CS with gauge group $\mathbf{G}=\mathbf{U}\left(\mathbf{N}_{1}\right) \times \cdots \times \mathbf{U}\left(\mathbf{N}_{\mathbf{n}}\right)$
- Coupled to bi-fundamental "chiral" fields $\mathbf{X}_{\mathbf{i}}$ ("matter")
- Full Lagrangian $\mathcal{L}=\mathcal{L}_{\mathrm{CS}}+\mathcal{L}_{\text {kin }}^{\text {matter }}+\mathrm{W}$

$\mathcal{N}=2$ Chern-Simons Lagrangian

- The general $\boldsymbol{\mathcal { N }}=\mathbf{2}$ Lagrangian is

$$
\begin{gathered}
S=S_{C S}+S_{\text {matter }}+S_{\text {potential }} \\
\mathbf{S}_{\mathrm{CS}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathbf{k}_{\mathrm{i}}}{4 \pi} \int \operatorname{Tr}\left(\mathbf{A}_{\mathrm{i}} \wedge \mathrm{~d} \mathrm{~A}_{\mathrm{i}}+\frac{2}{3} \mathbf{A}_{\mathrm{i}} \wedge \mathrm{~A}_{\mathrm{i}} \wedge \mathrm{~A}_{\mathrm{i}}-\bar{\chi}_{\mathrm{i}} \chi_{\mathrm{i}}+2 \mathrm{D}_{\mathrm{i}} \sigma_{\mathrm{i}}\right) \\
\mathbf{S}_{\text {matter }}=\int \mathrm{d}^{3} \times \sum_{\mathrm{a}} \mathscr{D}_{\mu} \bar{\phi}_{\mathbf{a}} \mathscr{D}^{\mu} \phi_{\mathrm{a}}-\bar{\phi}_{\mathrm{a}} \sigma^{2} \phi_{\mathrm{a}}+\bar{\phi}_{\mathrm{a}} \mathbf{D} \phi_{\mathrm{a}} \\
\mathbf{S}_{\text {potential }}=-\int \mathrm{d}^{3} \times \sum_{\mathrm{a}}\left|\frac{\partial \mathbf{W}}{\partial \phi_{a}}\right|^{2}
\end{gathered}
$$

- $\mathcal{N} \geq \mathbf{3}$ requires special (quartic) \mathbf{W}. We keep it general
- Same Lagrangian for $\mathcal{N}=\mathbf{1}$ quivers in 4D, with $\mathbf{S}_{\text {YM }} \rightarrow \mathbf{S}_{\mathbf{C S}}$

Moduli spaces

- Consider Abelian theories: $\mathbf{G}=\mathbf{U (1)}{ }^{\mathbf{n}}$
- After integrating out the auxiliary fields $\mathbf{D}_{\mathbf{i}}$, the total (bosonic) potential is $\mathcal{V}=\mathcal{V}_{D}+\mathcal{V}_{F}$

$$
\begin{aligned}
& \mathcal{V}_{F}=\sum_{a}\left|\frac{\partial W}{\partial \phi_{\mathrm{a}}}\right|^{2} \\
& \mathcal{V}_{\mathrm{D}}=\sum_{\mathrm{a}}\left|\phi_{\mathrm{a}}\right|^{2}\left(\sigma_{\mathrm{h}(\mathrm{a})}-\sigma_{\mathrm{t}(\mathrm{a})}\right)^{2}
\end{aligned}
$$

- In the process we get effective D-terms:

$$
-\sum_{a \mid \mathbf{h}(a)=i}\left|\phi_{a}\right|^{2}+\sum_{a \mid t(a)=i}\left|\phi_{a}\right|^{2}=\frac{k_{i} \sigma_{i}}{2 \pi} \quad \forall i
$$

- The usual 4d D-terms are LHS $=0$

Supersymmetric vacua

- $\mathcal{V}_{\mathrm{D}}, \mathcal{V}_{\mathrm{F}}$ must vanish separately
- F-terms: $\frac{\partial \mathrm{W}}{\partial \phi_{\mathrm{a}}}=\mathbf{0} \rightarrow \mathcal{Z}=\{\mathrm{dW}=0\} \subset \mathbb{C}^{\mathrm{D}}$
- D-terms: $\sigma_{1}=\sigma_{2}=\cdots=\sigma_{\mathrm{n}} \equiv \mathrm{s}$

$$
\begin{gathered}
\mathcal{D}_{i}=-\sum_{a \mid \mathbf{h}(a)=i}\left|\phi_{a}\right|^{2}+\sum_{a \mid t(a)=i}\left|\phi_{a}\right|^{2}=\frac{\mathbf{s} \mathbf{k}_{\mathbf{i}}}{2 \pi} \quad \forall \quad \mathbf{i} \\
\sum_{i=1}^{n} \mathbf{k}_{\mathbf{i}}=0 \rightarrow n-2 \text { conditions }
\end{gathered}
$$

Gauge symmetries

- We should mod by gauge transformations. Naively mod by: $\mathbf{U}(\mathbf{1})^{\mathbf{n}-1} \cong \mathbf{U}(\mathbf{1})^{\mathbf{n}} / \mathbf{U}(\mathbf{1})$. Problematic...
- A particular $\mathbf{U (1)}$ gauge symmetry is broken to a discrete subgroup \mathbb{Z}_{h} by background monopoles. Defining

$$
a=\sum_{i=1}^{n} A_{i} \quad b=\frac{1}{h} \sum_{i=1}^{n} k_{i} A_{i} \quad h=\operatorname{hcf}\left(k_{i}\right)
$$

the (Abelian) CS action is

$$
S_{C S}\left(A_{i}\right)=\frac{h}{2 \pi n} \int b \wedge d a+S^{\prime}
$$

where under $\mathbf{A}_{\mathbf{i}} \rightarrow \mathbf{A}_{\mathbf{i}}+\boldsymbol{\lambda}, \boldsymbol{\delta} \mathbf{S}^{\prime}=\mathbf{0}$. Then we can dualize \mathbf{b} to a periodic scalar $\boldsymbol{\tau}$ integrating out \mathbf{f}

$$
\begin{equation*}
\mathbf{b}=\frac{\mathbf{n}}{\mathbf{h}} \mathrm{d} \tau \quad \tau \in\left[0, \frac{2 \pi}{\mathbf{n}}\right] \tag{*}
\end{equation*}
$$

- Gauge transformations:

$$
A_{i} \rightarrow A_{i}+d \theta_{i}, \quad \sum_{i=1}^{n} k_{i} \theta_{i}=0 ; \quad \tau \rightarrow \tau+\frac{h}{n} \theta
$$

Thus $\theta=\frac{2 \pi I}{h} \mathrm{I}=1, \ldots, \mathrm{~h}$ is a residual gauge symmetry.

- May be summarized as "Kernel of the character":

$$
\begin{aligned}
& \chi_{\mathrm{k}}: \mathrm{U}(1)^{\mathrm{n}} \rightarrow \mathrm{U}(1) \\
& \quad\left(\mathrm{e}^{\mathrm{i} \theta_{1}}, \ldots, \mathrm{e}^{\mathrm{i} \theta_{\mathrm{n}}}\right) \mapsto \exp \left(\mathrm{i} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{k}_{\mathrm{i}} \theta_{\mathrm{i}}\right)
\end{aligned}
$$

- The gauge symmetries are then the group

$$
H_{k}=\operatorname{ker} \chi_{\mathrm{k}} / \mathrm{U}(1) \cong \mathrm{U}(1)^{\mathrm{n}-2} \times \mathbb{Z}_{\mathrm{h}}
$$

- The $\mathbf{U}(\mathbf{1})^{\mathrm{n}-2}$ part is the same group for which we imposed D-terms

$$
\sum_{i=1}^{n} v_{i} \mathcal{D}_{\mathrm{i}}=0, \quad v \in \operatorname{ker}(k)
$$

Periodicity of τ

- Justification of $\tau \in\left[0, \frac{2 \pi}{n}\right]$

$$
f=d a \quad b=\frac{1}{h} \sum_{i=1}^{n} k_{i} A_{i} \quad S_{C S}\left(A_{i}\right)=\frac{h}{2 \pi n} \int b \wedge f+S^{\prime}
$$

- \mathbf{b} is dualized adding $\mathbf{S}_{\boldsymbol{\tau}}$

$$
\mathrm{S}_{\tau}=-\frac{1}{2 \pi} \int \mathrm{~d} \tau \wedge \mathbf{f} \Rightarrow \mathbf{b}=\frac{\mathbf{n}}{\mathbf{h}} \mathrm{d} \tau
$$

- Periodicity fixed by $\int_{\sigma_{2}} \mathbf{f} \neq \mathbf{0}$

$$
\begin{aligned}
& \int_{\sigma_{2}} F_{i} \in 2 \pi \mathbb{Z} \\
& \sum_{\mathrm{a} \in \mathcal{A}}\left|\phi_{\mathrm{a}}\right|^{2}\left(\mathbf{A}_{\mathrm{h}(\mathrm{a})}-\mathbf{A}_{\mathrm{t}(\mathrm{a})}\right)^{2}=0 \Rightarrow \mathbf{F}_{1}=\cdots=\mathbf{F}_{\mathbf{n}} \\
& \qquad \int_{\sigma_{2}} \mathbf{f} \in 2 \pi \mathbf{n} \mathbb{Z}
\end{aligned}
$$

Connection to Calabi-Yau three-fold

- The moduli space contains a $\mathbf{4}_{\mathbb{C}}$-dimensional branch

$$
\mathscr{M}_{3 \mathrm{~d}}(\mathrm{k})=\mathcal{Z} / / \mathrm{H}_{\mathrm{k}}
$$

- If we quotiented by the $\mathbf{U (1)}$ symmetry broken by monopoles we would obtain a $\mathbf{3}_{\mathbb{C}}$-dimensional space

$$
\mathscr{M}_{4 \mathrm{~d}} \equiv \mathscr{M}_{\mathbf{3 d}}(\mathbf{k}) / / \mathbf{U}(\mathbf{1})
$$

- If we start from a theory with a "parent" $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{1}$ quiver, then \mathcal{Z} is the baryonic moduli space of the 4d quiver theory

3/4 connection

- $\mathscr{M}_{\mathbf{4 d}}$ Calabi-Yau 3-fold $\Rightarrow \mathscr{M}_{\mathbf{3 d}}(\mathbf{k})$ Calabi-Yau 4-fold
- M-theory 4-fold is a fibration over the 3-fold: $\mathscr{M}_{\mathbf{3 d}}(\mathbf{k}) \rightarrow \mathbb{C}^{*} \rightarrow \mathscr{M}_{\mathbf{4 d}}$

String theory origin of the Chern-Simons theories

[Aganagic]

- From these geometric results one can infer a string theory origin of the Chern-Simons theories
- Take N D2-branes at a Calabi-Yau three-fold \mathbf{X}_{3} singularity $\times \mathbb{R}$
- T-dual to D3 at $\mathbf{X}_{\mathbf{3}}$: gauge theory on these is simply the dimensional reduction of a $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{1}$ quiver $\rightarrow 3 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2}$ Yang-Mills quiver
- Add fractional branes $=\mathrm{D} 4$ branes wrapped on vanishing $\mathbf{C}_{\mathbf{i}} \subset \mathbf{X}_{\mathbf{3}}$, and turn on RR fluxes

$$
\mathrm{S}_{\mathrm{D} 4}^{\mathrm{WZ}} \sim \int_{\mathbb{R}^{1,2} \times \mathrm{C}_{\mathrm{i}}} \mathrm{~A} \wedge \mathrm{dA} \wedge \mathrm{~F}_{2}^{\mathrm{RR}}=\int_{\mathrm{C}_{\mathrm{i}}} \mathrm{~F}_{2}^{\mathrm{RR}} \cdot \mathrm{~S}_{\mathrm{CS}}
$$

\rightarrow Chern-Simons terms are induced in the world-volume theories

String theory origin of the Chern-Simons theories

- Uplift to M-theory: at strong coupling $\mathcal{L}_{\mathrm{YM}} \rightarrow \mathbf{0} \Rightarrow$ CSM theory
- To compute the CS levels consider the M-theory $\mathbf{U}(\mathbf{1})$ fibration

$$
\begin{aligned}
& \mathrm{X}_{4} \rightarrow \mathrm{U}(1) \rightarrow\left[\mathrm{X}_{3} \times \mathbb{R}\right] \\
& \Rightarrow \quad\left[\mathrm{F}_{\mathrm{RR}}\right]=\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}\left[\omega_{\mathrm{i}}\right]
\end{aligned}
$$

- Every node corresponds to a particular fractional brane $\sim\left[\mathrm{C}_{\mathbf{i}}\right]$

$$
k_{i}=\int_{C_{i}} F_{R R}=\sum_{j} q_{j} \cdot \int_{C_{i}} \omega_{j}
$$

Example: string theory origin of ABJM

- For illustration consider the $A B J M$ model $\mathbf{G}=\mathbf{U}(\mathbf{1})_{k} \times \mathbf{U}(\mathbf{1})_{-k}$
- The F-terms are trivial: $\mathcal{Z}=\mathbb{C}^{4}$
- The only possible non-trivial $\mathbf{U}(\mathbf{1})=\mathbf{U}(\mathbf{1})_{\text {rel }}$ is broken to the sub-group $\mathbf{H}_{K}=\mathbb{Z}_{\mathbf{k}}$. Thus $\mathscr{M}_{\mathbf{3 d}}(\mathbf{k})=\mathbb{C}^{4} / \mathbb{Z}_{\mathbf{k}}$
- The would-be quotient by $\mathbf{U}(\mathbf{1})_{\text {rel }}$ is the Kähler quotient of \mathbb{C}^{4} by

$$
\left|\mathbf{a}_{1}\right|^{2}+\left|\mathbf{a}_{2}\right|^{2}-\left|\mathbf{b}_{1}\right|^{2}-\left|\mathbf{b}_{2}\right|^{2}=\mathbf{t}
$$

- The Chern-Simons level for the two nodes are computed using

$$
\begin{gathered}
{\left[F_{R R}\right]=k[\omega]_{\text {resolved conifold }}} \\
k_{1}=-k_{2}=k \int_{\mathbb{C P}^{1}} \omega_{\text {resolved conifold }}=-k
\end{gathered}
$$

Summary

(1) In the first part

- Non-relativistic conformal (Schrödinger) symmetry
- New consistent truncation of type IIB on Sasaki-Einstein manifolds
- Expect these massive consistent truncations to have several other applications. E.g. after appropriately supersymmetrized \rightarrow find several new susy solutions of type IIB sugra
(2) In the second part
- A closer look at $\mathcal{N}=\mathbf{2}$ Chern-Simons-matter quivers
- Geometry of moduli spaces \rightarrow string theory origin of these theories
- Useful conceptually and practically. Gives a method to derive a Chern-Simons quiver from a given $\mathrm{AdS}_{4} \times \mathbf{Y}_{7}$ M-theory solution
- Application to study cascading Chern-Simons theories (WIP)

